]> The Tcpdump Group git mirrors - libpcap/blob - optimize.c
[optimizer] Recompute dominators if and/or_pullup succeeds
[libpcap] / optimize.c
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for BPF code intermediate representation.
22 */
23
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27
28 #include <pcap-types.h>
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <string.h>
35 #include <limits.h> /* for SIZE_MAX */
36 #include <errno.h>
37
38 #include "pcap-int.h"
39
40 #include "gencode.h"
41 #include "optimize.h"
42 #include "diag-control.h"
43
44 #ifdef HAVE_OS_PROTO_H
45 #include "os-proto.h"
46 #endif
47
48 #ifdef BDEBUG
49 /*
50 * The internal "debug printout" flag for the filter expression optimizer.
51 * The code to print that stuff is present only if BDEBUG is defined, so
52 * the flag, and the routine to set it, are defined only if BDEBUG is
53 * defined.
54 */
55 static int pcap_optimizer_debug;
56
57 /*
58 * Routine to set that flag.
59 *
60 * This is intended for libpcap developers, not for general use.
61 * If you want to set these in a program, you'll have to declare this
62 * routine yourself, with the appropriate DLL import attribute on Windows;
63 * it's not declared in any header file, and won't be declared in any
64 * header file provided by libpcap.
65 */
66 PCAP_API void pcap_set_optimizer_debug(int value);
67
68 PCAP_API_DEF void
69 pcap_set_optimizer_debug(int value)
70 {
71 pcap_optimizer_debug = value;
72 }
73
74 /*
75 * The internal "print dot graph" flag for the filter expression optimizer.
76 * The code to print that stuff is present only if BDEBUG is defined, so
77 * the flag, and the routine to set it, are defined only if BDEBUG is
78 * defined.
79 */
80 static int pcap_print_dot_graph;
81
82 /*
83 * Routine to set that flag.
84 *
85 * This is intended for libpcap developers, not for general use.
86 * If you want to set these in a program, you'll have to declare this
87 * routine yourself, with the appropriate DLL import attribute on Windows;
88 * it's not declared in any header file, and won't be declared in any
89 * header file provided by libpcap.
90 */
91 PCAP_API void pcap_set_print_dot_graph(int value);
92
93 PCAP_API_DEF void
94 pcap_set_print_dot_graph(int value)
95 {
96 pcap_print_dot_graph = value;
97 }
98
99 #endif
100
101 /*
102 * lowest_set_bit().
103 *
104 * Takes a 32-bit integer as an argument.
105 *
106 * If handed a non-zero value, returns the index of the lowest set bit,
107 * counting upwards from zero.
108 *
109 * If handed zero, the results are platform- and compiler-dependent.
110 * Keep it out of the light, don't give it any water, don't feed it
111 * after midnight, and don't pass zero to it.
112 *
113 * This is the same as the count of trailing zeroes in the word.
114 */
115 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116 /*
117 * GCC 3.4 and later; we have __builtin_ctz().
118 */
119 #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
120 #elif defined(_MSC_VER)
121 /*
122 * Visual Studio; we support only 2005 and later, so use
123 * _BitScanForward().
124 */
125 #include <intrin.h>
126
127 #ifndef __clang__
128 #pragma intrinsic(_BitScanForward)
129 #endif
130
131 static __forceinline u_int
132 lowest_set_bit(int mask)
133 {
134 unsigned long bit;
135
136 /*
137 * Don't sign-extend mask if long is longer than int.
138 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139 */
140 if (_BitScanForward(&bit, (unsigned int)mask) == 0)
141 abort(); /* mask is zero */
142 return (u_int)bit;
143 }
144 #else
145 /*
146 * None of the above.
147 * Use a perfect-hash-function-based function.
148 */
149 static u_int
150 lowest_set_bit(int mask)
151 {
152 unsigned int v = (unsigned int)mask;
153
154 static const u_int MultiplyDeBruijnBitPosition[32] = {
155 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
156 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
157 };
158
159 /*
160 * We strip off all but the lowermost set bit (v & ~v),
161 * and perform a minimal perfect hash on it to look up the
162 * number of low-order zero bits in a table.
163 *
164 * See:
165 *
166 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
167 *
168 * http://supertech.csail.mit.edu/papers/debruijn.pdf
169 */
170 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
171 }
172 #endif
173
174 /*
175 * Represents a deleted instruction.
176 */
177 #define NOP -1
178
179 /*
180 * Register numbers for use-def values.
181 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
182 * location. A_ATOM is the accumulator and X_ATOM is the index
183 * register.
184 */
185 #define A_ATOM BPF_MEMWORDS
186 #define X_ATOM (BPF_MEMWORDS+1)
187
188 /*
189 * This define is used to represent *both* the accumulator and
190 * x register in use-def computations.
191 * Currently, the use-def code assumes only one definition per instruction.
192 */
193 #define AX_ATOM N_ATOMS
194
195 /*
196 * These data structures are used in a Cocke and Schwartz style
197 * value numbering scheme. Since the flowgraph is acyclic,
198 * exit values can be propagated from a node's predecessors
199 * provided it is uniquely defined.
200 */
201 struct valnode {
202 int code;
203 bpf_u_int32 v0, v1;
204 int val; /* the value number */
205 struct valnode *next;
206 };
207
208 /* Integer constants mapped with the load immediate opcode. */
209 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
210
211 struct vmapinfo {
212 int is_const;
213 bpf_u_int32 const_val;
214 };
215
216 typedef struct {
217 /*
218 * Place to longjmp to on an error.
219 */
220 jmp_buf top_ctx;
221
222 /*
223 * The buffer into which to put error message.
224 */
225 char *errbuf;
226
227 /*
228 * A flag to indicate that further optimization is needed.
229 * Iterative passes are continued until a given pass yields no
230 * code simplification or branch movement.
231 */
232 int done;
233
234 /*
235 * XXX - detect loops that do nothing but repeated AND/OR pullups
236 * and edge moves.
237 * If 100 passes in a row do nothing but that, treat that as a
238 * sign that we're in a loop that just shuffles in a cycle in
239 * which each pass just shuffles the code and we eventually
240 * get back to the original configuration.
241 *
242 * XXX - we need a non-heuristic way of detecting, or preventing,
243 * such a cycle.
244 */
245 int non_branch_movement_performed;
246
247 u_int n_blocks; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
248 struct block **blocks;
249 u_int n_edges; /* twice n_blocks, so guaranteed to be > 0 */
250 struct edge **edges;
251
252 /*
253 * A bit vector set representation of the dominators.
254 * We round up the set size to the next power of two.
255 */
256 u_int nodewords; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
257 u_int edgewords; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
258 struct block **levels;
259 bpf_u_int32 *space;
260
261 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
262 /*
263 * True if a is in uset {p}
264 */
265 #define SET_MEMBER(p, a) \
266 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
267
268 /*
269 * Add 'a' to uset p.
270 */
271 #define SET_INSERT(p, a) \
272 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
273
274 /*
275 * Delete 'a' from uset p.
276 */
277 #define SET_DELETE(p, a) \
278 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
279
280 /*
281 * a := a intersect b
282 * n must be guaranteed to be > 0
283 */
284 #define SET_INTERSECT(a, b, n)\
285 {\
286 register bpf_u_int32 *_x = a, *_y = b;\
287 register u_int _n = n;\
288 do *_x++ &= *_y++; while (--_n != 0);\
289 }
290
291 /*
292 * a := a - b
293 * n must be guaranteed to be > 0
294 */
295 #define SET_SUBTRACT(a, b, n)\
296 {\
297 register bpf_u_int32 *_x = a, *_y = b;\
298 register u_int _n = n;\
299 do *_x++ &=~ *_y++; while (--_n != 0);\
300 }
301
302 /*
303 * a := a union b
304 * n must be guaranteed to be > 0
305 */
306 #define SET_UNION(a, b, n)\
307 {\
308 register bpf_u_int32 *_x = a, *_y = b;\
309 register u_int _n = n;\
310 do *_x++ |= *_y++; while (--_n != 0);\
311 }
312
313 uset all_dom_sets;
314 uset all_closure_sets;
315 uset all_edge_sets;
316
317 #define MODULUS 213
318 struct valnode *hashtbl[MODULUS];
319 bpf_u_int32 curval;
320 bpf_u_int32 maxval;
321
322 struct vmapinfo *vmap;
323 struct valnode *vnode_base;
324 struct valnode *next_vnode;
325 } opt_state_t;
326
327 typedef struct {
328 /*
329 * Place to longjmp to on an error.
330 */
331 jmp_buf top_ctx;
332
333 /*
334 * The buffer into which to put error message.
335 */
336 char *errbuf;
337
338 /*
339 * Some pointers used to convert the basic block form of the code,
340 * into the array form that BPF requires. 'fstart' will point to
341 * the malloc'd array while 'ftail' is used during the recursive
342 * traversal.
343 */
344 struct bpf_insn *fstart;
345 struct bpf_insn *ftail;
346 } conv_state_t;
347
348 static void opt_init(opt_state_t *, struct icode *);
349 static void opt_cleanup(opt_state_t *);
350 static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
351 PCAP_PRINTFLIKE(2, 3);
352
353 static void intern_blocks(opt_state_t *, struct icode *);
354
355 static void find_inedges(opt_state_t *, struct block *);
356 #ifdef BDEBUG
357 static void opt_dump(opt_state_t *, struct icode *);
358 #endif
359
360 #ifndef MAX
361 #define MAX(a,b) ((a)>(b)?(a):(b))
362 #endif
363
364 static void
365 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
366 {
367 int level;
368
369 if (isMarked(ic, b))
370 return;
371
372 Mark(ic, b);
373 b->link = 0;
374
375 if (JT(b)) {
376 find_levels_r(opt_state, ic, JT(b));
377 find_levels_r(opt_state, ic, JF(b));
378 level = MAX(JT(b)->level, JF(b)->level) + 1;
379 } else
380 level = 0;
381 b->level = level;
382 b->link = opt_state->levels[level];
383 opt_state->levels[level] = b;
384 }
385
386 /*
387 * Level graph. The levels go from 0 at the leaves to
388 * N_LEVELS at the root. The opt_state->levels[] array points to the
389 * first node of the level list, whose elements are linked
390 * with the 'link' field of the struct block.
391 */
392 static void
393 find_levels(opt_state_t *opt_state, struct icode *ic)
394 {
395 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
396 unMarkAll(ic);
397 find_levels_r(opt_state, ic, ic->root);
398 }
399
400 /*
401 * Find dominator relationships.
402 * Assumes graph has been leveled.
403 */
404 static void
405 find_dom(opt_state_t *opt_state, struct block *root)
406 {
407 u_int i;
408 int level;
409 struct block *b;
410 bpf_u_int32 *x;
411
412 /*
413 * Initialize sets to contain all nodes.
414 */
415 x = opt_state->all_dom_sets;
416 /*
417 * In opt_init(), we've made sure the product doesn't overflow.
418 */
419 i = opt_state->n_blocks * opt_state->nodewords;
420 while (i != 0) {
421 --i;
422 *x++ = 0xFFFFFFFFU;
423 }
424 /* Root starts off empty. */
425 for (i = opt_state->nodewords; i != 0;) {
426 --i;
427 root->dom[i] = 0;
428 }
429
430 /* root->level is the highest level no found. */
431 for (level = root->level; level >= 0; --level) {
432 for (b = opt_state->levels[level]; b; b = b->link) {
433 SET_INSERT(b->dom, b->id);
434 if (JT(b) == 0)
435 continue;
436 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
437 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
438 }
439 }
440 }
441
442 static void
443 propedom(opt_state_t *opt_state, struct edge *ep)
444 {
445 SET_INSERT(ep->edom, ep->id);
446 if (ep->succ) {
447 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
448 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
449 }
450 }
451
452 /*
453 * Compute edge dominators.
454 * Assumes graph has been leveled and predecessors established.
455 */
456 static void
457 find_edom(opt_state_t *opt_state, struct block *root)
458 {
459 u_int i;
460 uset x;
461 int level;
462 struct block *b;
463
464 x = opt_state->all_edge_sets;
465 /*
466 * In opt_init(), we've made sure the product doesn't overflow.
467 */
468 for (i = opt_state->n_edges * opt_state->edgewords; i != 0; ) {
469 --i;
470 x[i] = 0xFFFFFFFFU;
471 }
472
473 /* root->level is the highest level no found. */
474 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
475 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
476 for (level = root->level; level >= 0; --level) {
477 for (b = opt_state->levels[level]; b != 0; b = b->link) {
478 propedom(opt_state, &b->et);
479 propedom(opt_state, &b->ef);
480 }
481 }
482 }
483
484 /*
485 * Find the backwards transitive closure of the flow graph. These sets
486 * are backwards in the sense that we find the set of nodes that reach
487 * a given node, not the set of nodes that can be reached by a node.
488 *
489 * Assumes graph has been leveled.
490 */
491 static void
492 find_closure(opt_state_t *opt_state, struct block *root)
493 {
494 int level;
495 struct block *b;
496
497 /*
498 * Initialize sets to contain no nodes.
499 */
500 memset((char *)opt_state->all_closure_sets, 0,
501 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
502
503 /* root->level is the highest level no found. */
504 for (level = root->level; level >= 0; --level) {
505 for (b = opt_state->levels[level]; b; b = b->link) {
506 SET_INSERT(b->closure, b->id);
507 if (JT(b) == 0)
508 continue;
509 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
510 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
511 }
512 }
513 }
514
515 /*
516 * Return the register number that is used by s.
517 *
518 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
519 * are used, the scratch memory location's number if a scratch memory
520 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
521 *
522 * The implementation should probably change to an array access.
523 */
524 static int
525 atomuse(struct stmt *s)
526 {
527 register int c = s->code;
528
529 if (c == NOP)
530 return -1;
531
532 switch (BPF_CLASS(c)) {
533
534 case BPF_RET:
535 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
536 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
537
538 case BPF_LD:
539 case BPF_LDX:
540 /*
541 * As there are fewer than 2^31 memory locations,
542 * s->k should be convertible to int without problems.
543 */
544 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
545 (BPF_MODE(c) == BPF_MEM) ? (int)s->k : -1;
546
547 case BPF_ST:
548 return A_ATOM;
549
550 case BPF_STX:
551 return X_ATOM;
552
553 case BPF_JMP:
554 case BPF_ALU:
555 if (BPF_SRC(c) == BPF_X)
556 return AX_ATOM;
557 return A_ATOM;
558
559 case BPF_MISC:
560 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
561 }
562 abort();
563 /* NOTREACHED */
564 }
565
566 /*
567 * Return the register number that is defined by 's'. We assume that
568 * a single stmt cannot define more than one register. If no register
569 * is defined, return -1.
570 *
571 * The implementation should probably change to an array access.
572 */
573 static int
574 atomdef(struct stmt *s)
575 {
576 if (s->code == NOP)
577 return -1;
578
579 switch (BPF_CLASS(s->code)) {
580
581 case BPF_LD:
582 case BPF_ALU:
583 return A_ATOM;
584
585 case BPF_LDX:
586 return X_ATOM;
587
588 case BPF_ST:
589 case BPF_STX:
590 return s->k;
591
592 case BPF_MISC:
593 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
594 }
595 return -1;
596 }
597
598 /*
599 * Compute the sets of registers used, defined, and killed by 'b'.
600 *
601 * "Used" means that a statement in 'b' uses the register before any
602 * statement in 'b' defines it, i.e. it uses the value left in
603 * that register by a predecessor block of this block.
604 * "Defined" means that a statement in 'b' defines it.
605 * "Killed" means that a statement in 'b' defines it before any
606 * statement in 'b' uses it, i.e. it kills the value left in that
607 * register by a predecessor block of this block.
608 */
609 static void
610 compute_local_ud(struct block *b)
611 {
612 struct slist *s;
613 atomset def = 0, use = 0, killed = 0;
614 int atom;
615
616 for (s = b->stmts; s; s = s->next) {
617 if (s->s.code == NOP)
618 continue;
619 atom = atomuse(&s->s);
620 if (atom >= 0) {
621 if (atom == AX_ATOM) {
622 if (!ATOMELEM(def, X_ATOM))
623 use |= ATOMMASK(X_ATOM);
624 if (!ATOMELEM(def, A_ATOM))
625 use |= ATOMMASK(A_ATOM);
626 }
627 else if (atom < N_ATOMS) {
628 if (!ATOMELEM(def, atom))
629 use |= ATOMMASK(atom);
630 }
631 else
632 abort();
633 }
634 atom = atomdef(&s->s);
635 if (atom >= 0) {
636 if (!ATOMELEM(use, atom))
637 killed |= ATOMMASK(atom);
638 def |= ATOMMASK(atom);
639 }
640 }
641 if (BPF_CLASS(b->s.code) == BPF_JMP) {
642 /*
643 * XXX - what about RET?
644 */
645 atom = atomuse(&b->s);
646 if (atom >= 0) {
647 if (atom == AX_ATOM) {
648 if (!ATOMELEM(def, X_ATOM))
649 use |= ATOMMASK(X_ATOM);
650 if (!ATOMELEM(def, A_ATOM))
651 use |= ATOMMASK(A_ATOM);
652 }
653 else if (atom < N_ATOMS) {
654 if (!ATOMELEM(def, atom))
655 use |= ATOMMASK(atom);
656 }
657 else
658 abort();
659 }
660 }
661
662 b->def = def;
663 b->kill = killed;
664 b->in_use = use;
665 }
666
667 /*
668 * Assume graph is already leveled.
669 */
670 static void
671 find_ud(opt_state_t *opt_state, struct block *root)
672 {
673 int i, maxlevel;
674 struct block *p;
675
676 /*
677 * root->level is the highest level no found;
678 * count down from there.
679 */
680 maxlevel = root->level;
681 for (i = maxlevel; i >= 0; --i)
682 for (p = opt_state->levels[i]; p; p = p->link) {
683 compute_local_ud(p);
684 p->out_use = 0;
685 }
686
687 for (i = 1; i <= maxlevel; ++i) {
688 for (p = opt_state->levels[i]; p; p = p->link) {
689 p->out_use |= JT(p)->in_use | JF(p)->in_use;
690 p->in_use |= p->out_use &~ p->kill;
691 }
692 }
693 }
694 static void
695 init_val(opt_state_t *opt_state)
696 {
697 opt_state->curval = 0;
698 opt_state->next_vnode = opt_state->vnode_base;
699 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
700 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
701 }
702
703 /*
704 * Because we really don't have an IR, this stuff is a little messy.
705 *
706 * This routine looks in the table of existing value number for a value
707 * with generated from an operation with the specified opcode and
708 * the specified values. If it finds it, it returns its value number,
709 * otherwise it makes a new entry in the table and returns the
710 * value number of that entry.
711 */
712 static bpf_u_int32
713 F(opt_state_t *opt_state, int code, bpf_u_int32 v0, bpf_u_int32 v1)
714 {
715 u_int hash;
716 bpf_u_int32 val;
717 struct valnode *p;
718
719 hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
720 hash %= MODULUS;
721
722 for (p = opt_state->hashtbl[hash]; p; p = p->next)
723 if (p->code == code && p->v0 == v0 && p->v1 == v1)
724 return p->val;
725
726 /*
727 * Not found. Allocate a new value, and assign it a new
728 * value number.
729 *
730 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
731 * increment it before using it as the new value number, which
732 * means we never assign VAL_UNKNOWN.
733 *
734 * XXX - unless we overflow, but we probably won't have 2^32-1
735 * values; we treat 32 bits as effectively infinite.
736 */
737 val = ++opt_state->curval;
738 if (BPF_MODE(code) == BPF_IMM &&
739 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
740 opt_state->vmap[val].const_val = v0;
741 opt_state->vmap[val].is_const = 1;
742 }
743 p = opt_state->next_vnode++;
744 p->val = val;
745 p->code = code;
746 p->v0 = v0;
747 p->v1 = v1;
748 p->next = opt_state->hashtbl[hash];
749 opt_state->hashtbl[hash] = p;
750
751 return val;
752 }
753
754 static inline void
755 vstore(struct stmt *s, bpf_u_int32 *valp, bpf_u_int32 newval, int alter)
756 {
757 if (alter && newval != VAL_UNKNOWN && *valp == newval)
758 s->code = NOP;
759 else
760 *valp = newval;
761 }
762
763 /*
764 * Do constant-folding on binary operators.
765 * (Unary operators are handled elsewhere.)
766 */
767 static void
768 fold_op(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 v0, bpf_u_int32 v1)
769 {
770 bpf_u_int32 a, b;
771
772 a = opt_state->vmap[v0].const_val;
773 b = opt_state->vmap[v1].const_val;
774
775 switch (BPF_OP(s->code)) {
776 case BPF_ADD:
777 a += b;
778 break;
779
780 case BPF_SUB:
781 a -= b;
782 break;
783
784 case BPF_MUL:
785 a *= b;
786 break;
787
788 case BPF_DIV:
789 if (b == 0)
790 opt_error(opt_state, "division by zero");
791 a /= b;
792 break;
793
794 case BPF_MOD:
795 if (b == 0)
796 opt_error(opt_state, "modulus by zero");
797 a %= b;
798 break;
799
800 case BPF_AND:
801 a &= b;
802 break;
803
804 case BPF_OR:
805 a |= b;
806 break;
807
808 case BPF_XOR:
809 a ^= b;
810 break;
811
812 case BPF_LSH:
813 /*
814 * A left shift of more than the width of the type
815 * is undefined in C; we'll just treat it as shifting
816 * all the bits out.
817 *
818 * XXX - the BPF interpreter doesn't check for this,
819 * so its behavior is dependent on the behavior of
820 * the processor on which it's running. There are
821 * processors on which it shifts all the bits out
822 * and processors on which it does no shift.
823 */
824 if (b < 32)
825 a <<= b;
826 else
827 a = 0;
828 break;
829
830 case BPF_RSH:
831 /*
832 * A right shift of more than the width of the type
833 * is undefined in C; we'll just treat it as shifting
834 * all the bits out.
835 *
836 * XXX - the BPF interpreter doesn't check for this,
837 * so its behavior is dependent on the behavior of
838 * the processor on which it's running. There are
839 * processors on which it shifts all the bits out
840 * and processors on which it does no shift.
841 */
842 if (b < 32)
843 a >>= b;
844 else
845 a = 0;
846 break;
847
848 default:
849 abort();
850 }
851 s->k = a;
852 s->code = BPF_LD|BPF_IMM;
853 /*
854 * XXX - optimizer loop detection.
855 */
856 opt_state->non_branch_movement_performed = 1;
857 opt_state->done = 0;
858 }
859
860 static inline struct slist *
861 this_op(struct slist *s)
862 {
863 while (s != 0 && s->s.code == NOP)
864 s = s->next;
865 return s;
866 }
867
868 static void
869 opt_not(struct block *b)
870 {
871 struct block *tmp = JT(b);
872
873 JT(b) = JF(b);
874 JF(b) = tmp;
875 }
876
877 static void
878 opt_peep(opt_state_t *opt_state, struct block *b)
879 {
880 struct slist *s;
881 struct slist *next, *last;
882 bpf_u_int32 val;
883
884 s = b->stmts;
885 if (s == 0)
886 return;
887
888 last = s;
889 for (/*empty*/; /*empty*/; s = next) {
890 /*
891 * Skip over nops.
892 */
893 s = this_op(s);
894 if (s == 0)
895 break; /* nothing left in the block */
896
897 /*
898 * Find the next real instruction after that one
899 * (skipping nops).
900 */
901 next = this_op(s->next);
902 if (next == 0)
903 break; /* no next instruction */
904 last = next;
905
906 /*
907 * st M[k] --> st M[k]
908 * ldx M[k] tax
909 */
910 if (s->s.code == BPF_ST &&
911 next->s.code == (BPF_LDX|BPF_MEM) &&
912 s->s.k == next->s.k) {
913 /*
914 * XXX - optimizer loop detection.
915 */
916 opt_state->non_branch_movement_performed = 1;
917 opt_state->done = 0;
918 next->s.code = BPF_MISC|BPF_TAX;
919 }
920 /*
921 * ld #k --> ldx #k
922 * tax txa
923 */
924 if (s->s.code == (BPF_LD|BPF_IMM) &&
925 next->s.code == (BPF_MISC|BPF_TAX)) {
926 s->s.code = BPF_LDX|BPF_IMM;
927 next->s.code = BPF_MISC|BPF_TXA;
928 /*
929 * XXX - optimizer loop detection.
930 */
931 opt_state->non_branch_movement_performed = 1;
932 opt_state->done = 0;
933 }
934 /*
935 * This is an ugly special case, but it happens
936 * when you say tcp[k] or udp[k] where k is a constant.
937 */
938 if (s->s.code == (BPF_LD|BPF_IMM)) {
939 struct slist *add, *tax, *ild;
940
941 /*
942 * Check that X isn't used on exit from this
943 * block (which the optimizer might cause).
944 * We know the code generator won't generate
945 * any local dependencies.
946 */
947 if (ATOMELEM(b->out_use, X_ATOM))
948 continue;
949
950 /*
951 * Check that the instruction following the ldi
952 * is an addx, or it's an ldxms with an addx
953 * following it (with 0 or more nops between the
954 * ldxms and addx).
955 */
956 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
957 add = next;
958 else
959 add = this_op(next->next);
960 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
961 continue;
962
963 /*
964 * Check that a tax follows that (with 0 or more
965 * nops between them).
966 */
967 tax = this_op(add->next);
968 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
969 continue;
970
971 /*
972 * Check that an ild follows that (with 0 or more
973 * nops between them).
974 */
975 ild = this_op(tax->next);
976 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
977 BPF_MODE(ild->s.code) != BPF_IND)
978 continue;
979 /*
980 * We want to turn this sequence:
981 *
982 * (004) ldi #0x2 {s}
983 * (005) ldxms [14] {next} -- optional
984 * (006) addx {add}
985 * (007) tax {tax}
986 * (008) ild [x+0] {ild}
987 *
988 * into this sequence:
989 *
990 * (004) nop
991 * (005) ldxms [14]
992 * (006) nop
993 * (007) nop
994 * (008) ild [x+2]
995 *
996 * XXX We need to check that X is not
997 * subsequently used, because we want to change
998 * what'll be in it after this sequence.
999 *
1000 * We know we can eliminate the accumulator
1001 * modifications earlier in the sequence since
1002 * it is defined by the last stmt of this sequence
1003 * (i.e., the last statement of the sequence loads
1004 * a value into the accumulator, so we can eliminate
1005 * earlier operations on the accumulator).
1006 */
1007 ild->s.k += s->s.k;
1008 s->s.code = NOP;
1009 add->s.code = NOP;
1010 tax->s.code = NOP;
1011 /*
1012 * XXX - optimizer loop detection.
1013 */
1014 opt_state->non_branch_movement_performed = 1;
1015 opt_state->done = 0;
1016 }
1017 }
1018 /*
1019 * If the comparison at the end of a block is an equality
1020 * comparison against a constant, and nobody uses the value
1021 * we leave in the A register at the end of a block, and
1022 * the operation preceding the comparison is an arithmetic
1023 * operation, we can sometime optimize it away.
1024 */
1025 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
1026 !ATOMELEM(b->out_use, A_ATOM)) {
1027 /*
1028 * We can optimize away certain subtractions of the
1029 * X register.
1030 */
1031 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
1032 val = b->val[X_ATOM];
1033 if (opt_state->vmap[val].is_const) {
1034 /*
1035 * If we have a subtract to do a comparison,
1036 * and the X register is a known constant,
1037 * we can merge this value into the
1038 * comparison:
1039 *
1040 * sub x -> nop
1041 * jeq #y jeq #(x+y)
1042 */
1043 b->s.k += opt_state->vmap[val].const_val;
1044 last->s.code = NOP;
1045 /*
1046 * XXX - optimizer loop detection.
1047 */
1048 opt_state->non_branch_movement_performed = 1;
1049 opt_state->done = 0;
1050 } else if (b->s.k == 0) {
1051 /*
1052 * If the X register isn't a constant,
1053 * and the comparison in the test is
1054 * against 0, we can compare with the
1055 * X register, instead:
1056 *
1057 * sub x -> nop
1058 * jeq #0 jeq x
1059 */
1060 last->s.code = NOP;
1061 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
1062 /*
1063 * XXX - optimizer loop detection.
1064 */
1065 opt_state->non_branch_movement_performed = 1;
1066 opt_state->done = 0;
1067 }
1068 }
1069 /*
1070 * Likewise, a constant subtract can be simplified:
1071 *
1072 * sub #x -> nop
1073 * jeq #y -> jeq #(x+y)
1074 */
1075 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1076 last->s.code = NOP;
1077 b->s.k += last->s.k;
1078 /*
1079 * XXX - optimizer loop detection.
1080 */
1081 opt_state->non_branch_movement_performed = 1;
1082 opt_state->done = 0;
1083 }
1084 /*
1085 * And, similarly, a constant AND can be simplified
1086 * if we're testing against 0, i.e.:
1087 *
1088 * and #k nop
1089 * jeq #0 -> jset #k
1090 */
1091 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1092 b->s.k == 0) {
1093 b->s.k = last->s.k;
1094 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1095 last->s.code = NOP;
1096 /*
1097 * XXX - optimizer loop detection.
1098 */
1099 opt_state->non_branch_movement_performed = 1;
1100 opt_state->done = 0;
1101 opt_not(b);
1102 }
1103 }
1104 /*
1105 * jset #0 -> never
1106 * jset #ffffffff -> always
1107 */
1108 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1109 if (b->s.k == 0)
1110 JT(b) = JF(b);
1111 if (b->s.k == 0xffffffffU)
1112 JF(b) = JT(b);
1113 }
1114 /*
1115 * If we're comparing against the index register, and the index
1116 * register is a known constant, we can just compare against that
1117 * constant.
1118 */
1119 val = b->val[X_ATOM];
1120 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1121 bpf_u_int32 v = opt_state->vmap[val].const_val;
1122 b->s.code &= ~BPF_X;
1123 b->s.k = v;
1124 }
1125 /*
1126 * If the accumulator is a known constant, we can compute the
1127 * comparison result.
1128 */
1129 val = b->val[A_ATOM];
1130 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1131 bpf_u_int32 v = opt_state->vmap[val].const_val;
1132 switch (BPF_OP(b->s.code)) {
1133
1134 case BPF_JEQ:
1135 v = v == b->s.k;
1136 break;
1137
1138 case BPF_JGT:
1139 v = v > b->s.k;
1140 break;
1141
1142 case BPF_JGE:
1143 v = v >= b->s.k;
1144 break;
1145
1146 case BPF_JSET:
1147 v &= b->s.k;
1148 break;
1149
1150 default:
1151 abort();
1152 }
1153 if (JF(b) != JT(b)) {
1154 /*
1155 * XXX - optimizer loop detection.
1156 */
1157 opt_state->non_branch_movement_performed = 1;
1158 opt_state->done = 0;
1159 }
1160 if (v)
1161 JF(b) = JT(b);
1162 else
1163 JT(b) = JF(b);
1164 }
1165 }
1166
1167 /*
1168 * Compute the symbolic value of expression of 's', and update
1169 * anything it defines in the value table 'val'. If 'alter' is true,
1170 * do various optimizations. This code would be cleaner if symbolic
1171 * evaluation and code transformations weren't folded together.
1172 */
1173 static void
1174 opt_stmt(opt_state_t *opt_state, struct stmt *s, bpf_u_int32 val[], int alter)
1175 {
1176 int op;
1177 bpf_u_int32 v;
1178
1179 switch (s->code) {
1180
1181 case BPF_LD|BPF_ABS|BPF_W:
1182 case BPF_LD|BPF_ABS|BPF_H:
1183 case BPF_LD|BPF_ABS|BPF_B:
1184 v = F(opt_state, s->code, s->k, 0L);
1185 vstore(s, &val[A_ATOM], v, alter);
1186 break;
1187
1188 case BPF_LD|BPF_IND|BPF_W:
1189 case BPF_LD|BPF_IND|BPF_H:
1190 case BPF_LD|BPF_IND|BPF_B:
1191 v = val[X_ATOM];
1192 if (alter && opt_state->vmap[v].is_const) {
1193 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1194 s->k += opt_state->vmap[v].const_val;
1195 v = F(opt_state, s->code, s->k, 0L);
1196 /*
1197 * XXX - optimizer loop detection.
1198 */
1199 opt_state->non_branch_movement_performed = 1;
1200 opt_state->done = 0;
1201 }
1202 else
1203 v = F(opt_state, s->code, s->k, v);
1204 vstore(s, &val[A_ATOM], v, alter);
1205 break;
1206
1207 case BPF_LD|BPF_LEN:
1208 v = F(opt_state, s->code, 0L, 0L);
1209 vstore(s, &val[A_ATOM], v, alter);
1210 break;
1211
1212 case BPF_LD|BPF_IMM:
1213 v = K(s->k);
1214 vstore(s, &val[A_ATOM], v, alter);
1215 break;
1216
1217 case BPF_LDX|BPF_IMM:
1218 v = K(s->k);
1219 vstore(s, &val[X_ATOM], v, alter);
1220 break;
1221
1222 case BPF_LDX|BPF_MSH|BPF_B:
1223 v = F(opt_state, s->code, s->k, 0L);
1224 vstore(s, &val[X_ATOM], v, alter);
1225 break;
1226
1227 case BPF_ALU|BPF_NEG:
1228 if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1229 s->code = BPF_LD|BPF_IMM;
1230 /*
1231 * Do this negation as unsigned arithmetic; that's
1232 * what modern BPF engines do, and it guarantees
1233 * that all possible values can be negated. (Yeah,
1234 * negating 0x80000000, the minimum signed 32-bit
1235 * two's-complement value, results in 0x80000000,
1236 * so it's still negative, but we *should* be doing
1237 * all unsigned arithmetic here, to match what
1238 * modern BPF engines do.)
1239 *
1240 * Express it as 0U - (unsigned value) so that we
1241 * don't get compiler warnings about negating an
1242 * unsigned value and don't get UBSan warnings
1243 * about the result of negating 0x80000000 being
1244 * undefined.
1245 */
1246 s->k = 0U - opt_state->vmap[val[A_ATOM]].const_val;
1247 val[A_ATOM] = K(s->k);
1248 }
1249 else
1250 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1251 break;
1252
1253 case BPF_ALU|BPF_ADD|BPF_K:
1254 case BPF_ALU|BPF_SUB|BPF_K:
1255 case BPF_ALU|BPF_MUL|BPF_K:
1256 case BPF_ALU|BPF_DIV|BPF_K:
1257 case BPF_ALU|BPF_MOD|BPF_K:
1258 case BPF_ALU|BPF_AND|BPF_K:
1259 case BPF_ALU|BPF_OR|BPF_K:
1260 case BPF_ALU|BPF_XOR|BPF_K:
1261 case BPF_ALU|BPF_LSH|BPF_K:
1262 case BPF_ALU|BPF_RSH|BPF_K:
1263 op = BPF_OP(s->code);
1264 if (alter) {
1265 if (s->k == 0) {
1266 /*
1267 * Optimize operations where the constant
1268 * is zero.
1269 *
1270 * Don't optimize away "sub #0"
1271 * as it may be needed later to
1272 * fixup the generated math code.
1273 *
1274 * Fail if we're dividing by zero or taking
1275 * a modulus by zero.
1276 */
1277 if (op == BPF_ADD ||
1278 op == BPF_LSH || op == BPF_RSH ||
1279 op == BPF_OR || op == BPF_XOR) {
1280 s->code = NOP;
1281 break;
1282 }
1283 if (op == BPF_MUL || op == BPF_AND) {
1284 s->code = BPF_LD|BPF_IMM;
1285 val[A_ATOM] = K(s->k);
1286 break;
1287 }
1288 if (op == BPF_DIV)
1289 opt_error(opt_state,
1290 "division by zero");
1291 if (op == BPF_MOD)
1292 opt_error(opt_state,
1293 "modulus by zero");
1294 }
1295 if (opt_state->vmap[val[A_ATOM]].is_const) {
1296 fold_op(opt_state, s, val[A_ATOM], K(s->k));
1297 val[A_ATOM] = K(s->k);
1298 break;
1299 }
1300 }
1301 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1302 break;
1303
1304 case BPF_ALU|BPF_ADD|BPF_X:
1305 case BPF_ALU|BPF_SUB|BPF_X:
1306 case BPF_ALU|BPF_MUL|BPF_X:
1307 case BPF_ALU|BPF_DIV|BPF_X:
1308 case BPF_ALU|BPF_MOD|BPF_X:
1309 case BPF_ALU|BPF_AND|BPF_X:
1310 case BPF_ALU|BPF_OR|BPF_X:
1311 case BPF_ALU|BPF_XOR|BPF_X:
1312 case BPF_ALU|BPF_LSH|BPF_X:
1313 case BPF_ALU|BPF_RSH|BPF_X:
1314 op = BPF_OP(s->code);
1315 if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1316 if (opt_state->vmap[val[A_ATOM]].is_const) {
1317 fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1318 val[A_ATOM] = K(s->k);
1319 }
1320 else {
1321 s->code = BPF_ALU|BPF_K|op;
1322 s->k = opt_state->vmap[val[X_ATOM]].const_val;
1323 if ((op == BPF_LSH || op == BPF_RSH) &&
1324 s->k > 31)
1325 opt_error(opt_state,
1326 "shift by more than 31 bits");
1327 /*
1328 * XXX - optimizer loop detection.
1329 */
1330 opt_state->non_branch_movement_performed = 1;
1331 opt_state->done = 0;
1332 val[A_ATOM] =
1333 F(opt_state, s->code, val[A_ATOM], K(s->k));
1334 }
1335 break;
1336 }
1337 /*
1338 * Check if we're doing something to an accumulator
1339 * that is 0, and simplify. This may not seem like
1340 * much of a simplification but it could open up further
1341 * optimizations.
1342 * XXX We could also check for mul by 1, etc.
1343 */
1344 if (alter && opt_state->vmap[val[A_ATOM]].is_const
1345 && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1346 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1347 s->code = BPF_MISC|BPF_TXA;
1348 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1349 break;
1350 }
1351 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1352 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1353 s->code = BPF_LD|BPF_IMM;
1354 s->k = 0;
1355 vstore(s, &val[A_ATOM], K(s->k), alter);
1356 break;
1357 }
1358 else if (op == BPF_NEG) {
1359 s->code = NOP;
1360 break;
1361 }
1362 }
1363 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1364 break;
1365
1366 case BPF_MISC|BPF_TXA:
1367 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1368 break;
1369
1370 case BPF_LD|BPF_MEM:
1371 v = val[s->k];
1372 if (alter && opt_state->vmap[v].is_const) {
1373 s->code = BPF_LD|BPF_IMM;
1374 s->k = opt_state->vmap[v].const_val;
1375 /*
1376 * XXX - optimizer loop detection.
1377 */
1378 opt_state->non_branch_movement_performed = 1;
1379 opt_state->done = 0;
1380 }
1381 vstore(s, &val[A_ATOM], v, alter);
1382 break;
1383
1384 case BPF_MISC|BPF_TAX:
1385 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1386 break;
1387
1388 case BPF_LDX|BPF_MEM:
1389 v = val[s->k];
1390 if (alter && opt_state->vmap[v].is_const) {
1391 s->code = BPF_LDX|BPF_IMM;
1392 s->k = opt_state->vmap[v].const_val;
1393 /*
1394 * XXX - optimizer loop detection.
1395 */
1396 opt_state->non_branch_movement_performed = 1;
1397 opt_state->done = 0;
1398 }
1399 vstore(s, &val[X_ATOM], v, alter);
1400 break;
1401
1402 case BPF_ST:
1403 vstore(s, &val[s->k], val[A_ATOM], alter);
1404 break;
1405
1406 case BPF_STX:
1407 vstore(s, &val[s->k], val[X_ATOM], alter);
1408 break;
1409 }
1410 }
1411
1412 static void
1413 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1414 {
1415 register int atom;
1416
1417 atom = atomuse(s);
1418 if (atom >= 0) {
1419 if (atom == AX_ATOM) {
1420 last[X_ATOM] = 0;
1421 last[A_ATOM] = 0;
1422 }
1423 else
1424 last[atom] = 0;
1425 }
1426 atom = atomdef(s);
1427 if (atom >= 0) {
1428 if (last[atom]) {
1429 /*
1430 * XXX - optimizer loop detection.
1431 */
1432 opt_state->non_branch_movement_performed = 1;
1433 opt_state->done = 0;
1434 last[atom]->code = NOP;
1435 }
1436 last[atom] = s;
1437 }
1438 }
1439
1440 static void
1441 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1442 {
1443 register struct slist *s;
1444 register int atom;
1445 struct stmt *last[N_ATOMS];
1446
1447 memset((char *)last, 0, sizeof last);
1448
1449 for (s = b->stmts; s != 0; s = s->next)
1450 deadstmt(opt_state, &s->s, last);
1451 deadstmt(opt_state, &b->s, last);
1452
1453 for (atom = 0; atom < N_ATOMS; ++atom)
1454 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1455 last[atom]->code = NOP;
1456 /*
1457 * XXX - optimizer loop detection.
1458 */
1459 opt_state->non_branch_movement_performed = 1;
1460 opt_state->done = 0;
1461 }
1462 }
1463
1464 static void
1465 opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1466 {
1467 struct slist *s;
1468 struct edge *p;
1469 int i;
1470 bpf_u_int32 aval, xval;
1471
1472 #if 0
1473 for (s = b->stmts; s && s->next; s = s->next)
1474 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1475 do_stmts = 0;
1476 break;
1477 }
1478 #endif
1479
1480 /*
1481 * Initialize the atom values.
1482 */
1483 p = b->in_edges;
1484 if (p == 0) {
1485 /*
1486 * We have no predecessors, so everything is undefined
1487 * upon entry to this block.
1488 */
1489 memset((char *)b->val, 0, sizeof(b->val));
1490 } else {
1491 /*
1492 * Inherit values from our predecessors.
1493 *
1494 * First, get the values from the predecessor along the
1495 * first edge leading to this node.
1496 */
1497 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1498 /*
1499 * Now look at all the other nodes leading to this node.
1500 * If, for the predecessor along that edge, a register
1501 * has a different value from the one we have (i.e.,
1502 * control paths are merging, and the merging paths
1503 * assign different values to that register), give the
1504 * register the undefined value of 0.
1505 */
1506 while ((p = p->next) != NULL) {
1507 for (i = 0; i < N_ATOMS; ++i)
1508 if (b->val[i] != p->pred->val[i])
1509 b->val[i] = 0;
1510 }
1511 }
1512 aval = b->val[A_ATOM];
1513 xval = b->val[X_ATOM];
1514 for (s = b->stmts; s; s = s->next)
1515 opt_stmt(opt_state, &s->s, b->val, do_stmts);
1516
1517 /*
1518 * This is a special case: if we don't use anything from this
1519 * block, and we load the accumulator or index register with a
1520 * value that is already there, or if this block is a return,
1521 * eliminate all the statements.
1522 *
1523 * XXX - what if it does a store? Presumably that falls under
1524 * the heading of "if we don't use anything from this block",
1525 * i.e., if we use any memory location set to a different
1526 * value by this block, then we use something from this block.
1527 *
1528 * XXX - why does it matter whether we use anything from this
1529 * block? If the accumulator or index register doesn't change
1530 * its value, isn't that OK even if we use that value?
1531 *
1532 * XXX - if we load the accumulator with a different value,
1533 * and the block ends with a conditional branch, we obviously
1534 * can't eliminate it, as the branch depends on that value.
1535 * For the index register, the conditional branch only depends
1536 * on the index register value if the test is against the index
1537 * register value rather than a constant; if nothing uses the
1538 * value we put into the index register, and we're not testing
1539 * against the index register's value, and there aren't any
1540 * other problems that would keep us from eliminating this
1541 * block, can we eliminate it?
1542 */
1543 if (do_stmts &&
1544 ((b->out_use == 0 &&
1545 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1546 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1547 BPF_CLASS(b->s.code) == BPF_RET)) {
1548 if (b->stmts != 0) {
1549 b->stmts = 0;
1550 /*
1551 * XXX - optimizer loop detection.
1552 */
1553 opt_state->non_branch_movement_performed = 1;
1554 opt_state->done = 0;
1555 }
1556 } else {
1557 opt_peep(opt_state, b);
1558 opt_deadstores(opt_state, b);
1559 }
1560 /*
1561 * Set up values for branch optimizer.
1562 */
1563 if (BPF_SRC(b->s.code) == BPF_K)
1564 b->oval = K(b->s.k);
1565 else
1566 b->oval = b->val[X_ATOM];
1567 b->et.code = b->s.code;
1568 b->ef.code = -b->s.code;
1569 }
1570
1571 /*
1572 * Return true if any register that is used on exit from 'succ', has
1573 * an exit value that is different from the corresponding exit value
1574 * from 'b'.
1575 */
1576 static int
1577 use_conflict(struct block *b, struct block *succ)
1578 {
1579 int atom;
1580 atomset use = succ->out_use;
1581
1582 if (use == 0)
1583 return 0;
1584
1585 for (atom = 0; atom < N_ATOMS; ++atom)
1586 if (ATOMELEM(use, atom))
1587 if (b->val[atom] != succ->val[atom])
1588 return 1;
1589 return 0;
1590 }
1591
1592 /*
1593 * Given a block that is the successor of an edge, and an edge that
1594 * dominates that edge, return either a pointer to a child of that
1595 * block (a block to which that block jumps) if that block is a
1596 * candidate to replace the successor of the latter edge or NULL
1597 * if neither of the children of the first block are candidates.
1598 */
1599 static struct block *
1600 fold_edge(struct block *child, struct edge *ep)
1601 {
1602 int sense;
1603 bpf_u_int32 aval0, aval1, oval0, oval1;
1604 int code = ep->code;
1605
1606 if (code < 0) {
1607 /*
1608 * This edge is a "branch if false" edge.
1609 */
1610 code = -code;
1611 sense = 0;
1612 } else {
1613 /*
1614 * This edge is a "branch if true" edge.
1615 */
1616 sense = 1;
1617 }
1618
1619 /*
1620 * If the opcode for the branch at the end of the block we
1621 * were handed isn't the same as the opcode for the branch
1622 * to which the edge we were handed corresponds, the tests
1623 * for those branches aren't testing the same conditions,
1624 * so the blocks to which the first block branches aren't
1625 * candidates to replace the successor of the edge.
1626 */
1627 if (child->s.code != code)
1628 return 0;
1629
1630 aval0 = child->val[A_ATOM];
1631 oval0 = child->oval;
1632 aval1 = ep->pred->val[A_ATOM];
1633 oval1 = ep->pred->oval;
1634
1635 /*
1636 * If the A register value on exit from the successor block
1637 * isn't the same as the A register value on exit from the
1638 * predecessor of the edge, the blocks to which the first
1639 * block branches aren't candidates to replace the successor
1640 * of the edge.
1641 */
1642 if (aval0 != aval1)
1643 return 0;
1644
1645 if (oval0 == oval1)
1646 /*
1647 * The operands of the branch instructions are
1648 * identical, so the branches are testing the
1649 * same condition, and the result is true if a true
1650 * branch was taken to get here, otherwise false.
1651 */
1652 return sense ? JT(child) : JF(child);
1653
1654 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1655 /*
1656 * At this point, we only know the comparison if we
1657 * came down the true branch, and it was an equality
1658 * comparison with a constant.
1659 *
1660 * I.e., if we came down the true branch, and the branch
1661 * was an equality comparison with a constant, we know the
1662 * accumulator contains that constant. If we came down
1663 * the false branch, or the comparison wasn't with a
1664 * constant, we don't know what was in the accumulator.
1665 *
1666 * We rely on the fact that distinct constants have distinct
1667 * value numbers.
1668 */
1669 return JF(child);
1670
1671 return 0;
1672 }
1673
1674 /*
1675 * If we can make this edge go directly to a child of the edge's current
1676 * successor, do so.
1677 */
1678 static void
1679 opt_j(opt_state_t *opt_state, struct edge *ep)
1680 {
1681 register u_int i, k;
1682 register struct block *target;
1683
1684 /*
1685 * Does this edge go to a block where, if the test
1686 * at the end of it succeeds, it goes to a block
1687 * that's a leaf node of the DAG, i.e. a return
1688 * statement?
1689 * If so, there's nothing to optimize.
1690 */
1691 if (JT(ep->succ) == 0)
1692 return;
1693
1694 /*
1695 * Does this edge go to a block that goes, in turn, to
1696 * the same block regardless of whether the test at the
1697 * end succeeds or fails?
1698 */
1699 if (JT(ep->succ) == JF(ep->succ)) {
1700 /*
1701 * Common branch targets can be eliminated, provided
1702 * there is no data dependency.
1703 *
1704 * Check whether any register used on exit from the
1705 * block to which the successor of this edge goes
1706 * has a value at that point that's different from
1707 * the value it has on exit from the predecessor of
1708 * this edge. If not, the predecessor of this edge
1709 * can just go to the block to which the successor
1710 * of this edge goes, bypassing the successor of this
1711 * edge, as the successor of this edge isn't doing
1712 * any calculations whose results are different
1713 * from what the blocks before it did and isn't
1714 * doing any tests the results of which matter.
1715 */
1716 if (!use_conflict(ep->pred, JT(ep->succ))) {
1717 /*
1718 * No, there isn't.
1719 * Make this edge go to the block to
1720 * which the successor of that edge
1721 * goes.
1722 *
1723 * XXX - optimizer loop detection.
1724 */
1725 opt_state->non_branch_movement_performed = 1;
1726 opt_state->done = 0;
1727 ep->succ = JT(ep->succ);
1728 }
1729 }
1730 /*
1731 * For each edge dominator that matches the successor of this
1732 * edge, promote the edge successor to the its grandchild.
1733 *
1734 * XXX We violate the set abstraction here in favor a reasonably
1735 * efficient loop.
1736 */
1737 top:
1738 for (i = 0; i < opt_state->edgewords; ++i) {
1739 /* i'th word in the bitset of dominators */
1740 register bpf_u_int32 x = ep->edom[i];
1741
1742 while (x != 0) {
1743 /* Find the next dominator in that word and mark it as found */
1744 k = lowest_set_bit(x);
1745 x &=~ ((bpf_u_int32)1 << k);
1746 k += i * BITS_PER_WORD;
1747
1748 target = fold_edge(ep->succ, opt_state->edges[k]);
1749 /*
1750 * We have a candidate to replace the successor
1751 * of ep.
1752 *
1753 * Check that there is no data dependency between
1754 * nodes that will be violated if we move the edge;
1755 * i.e., if any register used on exit from the
1756 * candidate has a value at that point different
1757 * from the value it has when we exit the
1758 * predecessor of that edge, there's a data
1759 * dependency that will be violated.
1760 */
1761 if (target != 0 && !use_conflict(ep->pred, target)) {
1762 /*
1763 * It's safe to replace the successor of
1764 * ep; do so, and note that we've made
1765 * at least one change.
1766 *
1767 * XXX - this is one of the operations that
1768 * happens when the optimizer gets into
1769 * one of those infinite loops.
1770 */
1771 opt_state->done = 0;
1772 ep->succ = target;
1773 if (JT(target) != 0)
1774 /*
1775 * Start over unless we hit a leaf.
1776 */
1777 goto top;
1778 return;
1779 }
1780 }
1781 }
1782 }
1783
1784 /*
1785 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1786 * "Predicate Assertion Propagation" in the BPF+ paper?
1787 *
1788 * Note that this looks at block dominators, not edge dominators.
1789 * Don't think so.
1790 *
1791 * "A or B" compiles into
1792 *
1793 * A
1794 * t / \ f
1795 * / B
1796 * / t / \ f
1797 * \ /
1798 * \ /
1799 * X
1800 *
1801 *
1802 */
1803 static void
1804 or_pullup(opt_state_t *opt_state, struct block *b, struct block *root)
1805 {
1806 bpf_u_int32 val;
1807 int at_top;
1808 struct block *pull;
1809 struct block **diffp, **samep;
1810 struct edge *ep;
1811
1812 ep = b->in_edges;
1813 if (ep == 0)
1814 return;
1815
1816 /*
1817 * Make sure each predecessor loads the same value.
1818 * XXX why?
1819 */
1820 val = ep->pred->val[A_ATOM];
1821 for (ep = ep->next; ep != 0; ep = ep->next)
1822 if (val != ep->pred->val[A_ATOM])
1823 return;
1824
1825 /*
1826 * For the first edge in the list of edges coming into this block,
1827 * see whether the predecessor of that edge comes here via a true
1828 * branch or a false branch.
1829 */
1830 if (JT(b->in_edges->pred) == b)
1831 diffp = &JT(b->in_edges->pred); /* jt */
1832 else
1833 diffp = &JF(b->in_edges->pred); /* jf */
1834
1835 /*
1836 * diffp is a pointer to a pointer to the block.
1837 *
1838 * Go down the false chain looking as far as you can,
1839 * making sure that each jump-compare is doing the
1840 * same as the original block.
1841 *
1842 * If you reach the bottom before you reach a
1843 * different jump-compare, just exit. There's nothing
1844 * to do here. XXX - no, this version is checking for
1845 * the value leaving the block; that's from the BPF+
1846 * pullup routine.
1847 */
1848 at_top = 1;
1849 for (;;) {
1850 /*
1851 * Done if that's not going anywhere XXX
1852 */
1853 if (*diffp == 0)
1854 return;
1855
1856 /*
1857 * Done if that predecessor blah blah blah isn't
1858 * going the same place we're going XXX
1859 *
1860 * Does the true edge of this block point to the same
1861 * location as the true edge of b?
1862 */
1863 if (JT(*diffp) != JT(b))
1864 return;
1865
1866 /*
1867 * Done if this node isn't a dominator of that
1868 * node blah blah blah XXX
1869 *
1870 * Does b dominate diffp?
1871 */
1872 if (!SET_MEMBER((*diffp)->dom, b->id))
1873 return;
1874
1875 /*
1876 * Break out of the loop if that node's value of A
1877 * isn't the value of A above XXX
1878 */
1879 if ((*diffp)->val[A_ATOM] != val)
1880 break;
1881
1882 /*
1883 * Get the JF for that node XXX
1884 * Go down the false path.
1885 */
1886 diffp = &JF(*diffp);
1887 at_top = 0;
1888 }
1889
1890 /*
1891 * Now that we've found a different jump-compare in a chain
1892 * below b, search further down until we find another
1893 * jump-compare that looks at the original value. This
1894 * jump-compare should get pulled up. XXX again we're
1895 * comparing values not jump-compares.
1896 */
1897 samep = &JF(*diffp);
1898 for (;;) {
1899 /*
1900 * Done if that's not going anywhere XXX
1901 */
1902 if (*samep == 0)
1903 return;
1904
1905 /*
1906 * Done if that predecessor blah blah blah isn't
1907 * going the same place we're going XXX
1908 */
1909 if (JT(*samep) != JT(b))
1910 return;
1911
1912 /*
1913 * Done if this node isn't a dominator of that
1914 * node blah blah blah XXX
1915 *
1916 * Does b dominate samep?
1917 */
1918 if (!SET_MEMBER((*samep)->dom, b->id))
1919 return;
1920
1921 /*
1922 * Break out of the loop if that node's value of A
1923 * is the value of A above XXX
1924 */
1925 if ((*samep)->val[A_ATOM] == val)
1926 break;
1927
1928 /* XXX Need to check that there are no data dependencies
1929 between dp0 and dp1. Currently, the code generator
1930 will not produce such dependencies. */
1931 samep = &JF(*samep);
1932 }
1933 #ifdef notdef
1934 /* XXX This doesn't cover everything. */
1935 for (i = 0; i < N_ATOMS; ++i)
1936 if ((*samep)->val[i] != pred->val[i])
1937 return;
1938 #endif
1939 /* Pull up the node. */
1940 pull = *samep;
1941 *samep = JF(pull);
1942 JF(pull) = *diffp;
1943
1944 /*
1945 * At the top of the chain, each predecessor needs to point at the
1946 * pulled up node. Inside the chain, there is only one predecessor
1947 * to worry about.
1948 */
1949 if (at_top) {
1950 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1951 if (JT(ep->pred) == b)
1952 JT(ep->pred) = pull;
1953 else
1954 JF(ep->pred) = pull;
1955 }
1956 }
1957 else
1958 *diffp = pull;
1959
1960 /*
1961 * XXX - this is one of the operations that happens when the
1962 * optimizer gets into one of those infinite loops.
1963 */
1964 opt_state->done = 0;
1965
1966 /*
1967 * Recompute dominator sets as control flow graph has changed.
1968 */
1969 find_dom(opt_state, root);
1970 }
1971
1972 static void
1973 and_pullup(opt_state_t *opt_state, struct block *b, struct block *root)
1974 {
1975 bpf_u_int32 val;
1976 int at_top;
1977 struct block *pull;
1978 struct block **diffp, **samep;
1979 struct edge *ep;
1980
1981 ep = b->in_edges;
1982 if (ep == 0)
1983 return;
1984
1985 /*
1986 * Make sure each predecessor loads the same value.
1987 */
1988 val = ep->pred->val[A_ATOM];
1989 for (ep = ep->next; ep != 0; ep = ep->next)
1990 if (val != ep->pred->val[A_ATOM])
1991 return;
1992
1993 if (JT(b->in_edges->pred) == b)
1994 diffp = &JT(b->in_edges->pred);
1995 else
1996 diffp = &JF(b->in_edges->pred);
1997
1998 at_top = 1;
1999 for (;;) {
2000 if (*diffp == 0)
2001 return;
2002
2003 if (JF(*diffp) != JF(b))
2004 return;
2005
2006 if (!SET_MEMBER((*diffp)->dom, b->id))
2007 return;
2008
2009 if ((*diffp)->val[A_ATOM] != val)
2010 break;
2011
2012 diffp = &JT(*diffp);
2013 at_top = 0;
2014 }
2015 samep = &JT(*diffp);
2016 for (;;) {
2017 if (*samep == 0)
2018 return;
2019
2020 if (JF(*samep) != JF(b))
2021 return;
2022
2023 if (!SET_MEMBER((*samep)->dom, b->id))
2024 return;
2025
2026 if ((*samep)->val[A_ATOM] == val)
2027 break;
2028
2029 /* XXX Need to check that there are no data dependencies
2030 between diffp and samep. Currently, the code generator
2031 will not produce such dependencies. */
2032 samep = &JT(*samep);
2033 }
2034 #ifdef notdef
2035 /* XXX This doesn't cover everything. */
2036 for (i = 0; i < N_ATOMS; ++i)
2037 if ((*samep)->val[i] != pred->val[i])
2038 return;
2039 #endif
2040 /* Pull up the node. */
2041 pull = *samep;
2042 *samep = JT(pull);
2043 JT(pull) = *diffp;
2044
2045 /*
2046 * At the top of the chain, each predecessor needs to point at the
2047 * pulled up node. Inside the chain, there is only one predecessor
2048 * to worry about.
2049 */
2050 if (at_top) {
2051 for (ep = b->in_edges; ep != 0; ep = ep->next) {
2052 if (JT(ep->pred) == b)
2053 JT(ep->pred) = pull;
2054 else
2055 JF(ep->pred) = pull;
2056 }
2057 }
2058 else
2059 *diffp = pull;
2060
2061 /*
2062 * XXX - this is one of the operations that happens when the
2063 * optimizer gets into one of those infinite loops.
2064 */
2065 opt_state->done = 0;
2066
2067 /*
2068 * Recompute dominator sets as control flow graph has changed.
2069 */
2070 find_dom(opt_state, root);
2071 }
2072
2073 static void
2074 opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2075 {
2076 int i, maxlevel;
2077 struct block *p;
2078
2079 init_val(opt_state);
2080 maxlevel = ic->root->level;
2081
2082 find_inedges(opt_state, ic->root);
2083 for (i = maxlevel; i >= 0; --i)
2084 for (p = opt_state->levels[i]; p; p = p->link)
2085 opt_blk(opt_state, p, do_stmts);
2086
2087 if (do_stmts)
2088 /*
2089 * No point trying to move branches; it can't possibly
2090 * make a difference at this point.
2091 *
2092 * XXX - this might be after we detect a loop where
2093 * we were just looping infinitely moving branches
2094 * in such a fashion that we went through two or more
2095 * versions of the machine code, eventually returning
2096 * to the first version. (We're really not doing a
2097 * full loop detection, we're just testing for two
2098 * passes in a row where we do nothing but
2099 * move branches.)
2100 */
2101 return;
2102
2103 /*
2104 * Is this what the BPF+ paper describes in sections 6.1.1,
2105 * 6.1.2, and 6.1.3?
2106 */
2107 for (i = 1; i <= maxlevel; ++i) {
2108 for (p = opt_state->levels[i]; p; p = p->link) {
2109 opt_j(opt_state, &p->et);
2110 opt_j(opt_state, &p->ef);
2111 }
2112 }
2113
2114 find_inedges(opt_state, ic->root);
2115 for (i = 1; i <= maxlevel; ++i) {
2116 for (p = opt_state->levels[i]; p; p = p->link) {
2117 or_pullup(opt_state, p, ic->root);
2118 and_pullup(opt_state, p, ic->root);
2119 }
2120 }
2121 }
2122
2123 static inline void
2124 link_inedge(struct edge *parent, struct block *child)
2125 {
2126 parent->next = child->in_edges;
2127 child->in_edges = parent;
2128 }
2129
2130 static void
2131 find_inedges(opt_state_t *opt_state, struct block *root)
2132 {
2133 u_int i;
2134 int level;
2135 struct block *b;
2136
2137 for (i = 0; i < opt_state->n_blocks; ++i)
2138 opt_state->blocks[i]->in_edges = 0;
2139
2140 /*
2141 * Traverse the graph, adding each edge to the predecessor
2142 * list of its successors. Skip the leaves (i.e. level 0).
2143 */
2144 for (level = root->level; level > 0; --level) {
2145 for (b = opt_state->levels[level]; b != 0; b = b->link) {
2146 link_inedge(&b->et, JT(b));
2147 link_inedge(&b->ef, JF(b));
2148 }
2149 }
2150 }
2151
2152 static void
2153 opt_root(struct block **b)
2154 {
2155 struct slist *tmp, *s;
2156
2157 s = (*b)->stmts;
2158 (*b)->stmts = 0;
2159 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
2160 *b = JT(*b);
2161
2162 tmp = (*b)->stmts;
2163 if (tmp != 0)
2164 sappend(s, tmp);
2165 (*b)->stmts = s;
2166
2167 /*
2168 * If the root node is a return, then there is no
2169 * point executing any statements (since the bpf machine
2170 * has no side effects).
2171 */
2172 if (BPF_CLASS((*b)->s.code) == BPF_RET)
2173 (*b)->stmts = 0;
2174 }
2175
2176 static void
2177 opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
2178 {
2179
2180 #ifdef BDEBUG
2181 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2182 printf("opt_loop(root, %d) begin\n", do_stmts);
2183 opt_dump(opt_state, ic);
2184 }
2185 #endif
2186
2187 /*
2188 * XXX - optimizer loop detection.
2189 */
2190 int loop_count = 0;
2191 for (;;) {
2192 opt_state->done = 1;
2193 /*
2194 * XXX - optimizer loop detection.
2195 */
2196 opt_state->non_branch_movement_performed = 0;
2197 find_levels(opt_state, ic);
2198 find_dom(opt_state, ic->root);
2199 find_closure(opt_state, ic->root);
2200 find_ud(opt_state, ic->root);
2201 find_edom(opt_state, ic->root);
2202 opt_blks(opt_state, ic, do_stmts);
2203 #ifdef BDEBUG
2204 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2205 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
2206 opt_dump(opt_state, ic);
2207 }
2208 #endif
2209
2210 /*
2211 * Was anything done in this optimizer pass?
2212 */
2213 if (opt_state->done) {
2214 /*
2215 * No, so we've reached a fixed point.
2216 * We're done.
2217 */
2218 break;
2219 }
2220
2221 /*
2222 * XXX - was anything done other than branch movement
2223 * in this pass?
2224 */
2225 if (opt_state->non_branch_movement_performed) {
2226 /*
2227 * Yes. Clear any loop-detection counter;
2228 * we're making some form of progress (assuming
2229 * we can't get into a cycle doing *other*
2230 * optimizations...).
2231 */
2232 loop_count = 0;
2233 } else {
2234 /*
2235 * No - increment the counter, and quit if
2236 * it's up to 100.
2237 */
2238 loop_count++;
2239 if (loop_count >= 100) {
2240 /*
2241 * We've done nothing but branch movement
2242 * for 100 passes; we're probably
2243 * in a cycle and will never reach a
2244 * fixed point.
2245 *
2246 * XXX - yes, we really need a non-
2247 * heuristic way of detecting a cycle.
2248 */
2249 opt_state->done = 1;
2250 break;
2251 }
2252 }
2253 }
2254 }
2255
2256 /*
2257 * Optimize the filter code in its dag representation.
2258 * Return 0 on success, -1 on error.
2259 */
2260 int
2261 bpf_optimize(struct icode *ic, char *errbuf)
2262 {
2263 opt_state_t opt_state;
2264
2265 memset(&opt_state, 0, sizeof(opt_state));
2266 opt_state.errbuf = errbuf;
2267 opt_state.non_branch_movement_performed = 0;
2268 if (setjmp(opt_state.top_ctx)) {
2269 opt_cleanup(&opt_state);
2270 return -1;
2271 }
2272 opt_init(&opt_state, ic);
2273 opt_loop(&opt_state, ic, 0);
2274 opt_loop(&opt_state, ic, 1);
2275 intern_blocks(&opt_state, ic);
2276 #ifdef BDEBUG
2277 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2278 printf("after intern_blocks()\n");
2279 opt_dump(&opt_state, ic);
2280 }
2281 #endif
2282 opt_root(&ic->root);
2283 #ifdef BDEBUG
2284 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
2285 printf("after opt_root()\n");
2286 opt_dump(&opt_state, ic);
2287 }
2288 #endif
2289 opt_cleanup(&opt_state);
2290 return 0;
2291 }
2292
2293 static void
2294 make_marks(struct icode *ic, struct block *p)
2295 {
2296 if (!isMarked(ic, p)) {
2297 Mark(ic, p);
2298 if (BPF_CLASS(p->s.code) != BPF_RET) {
2299 make_marks(ic, JT(p));
2300 make_marks(ic, JF(p));
2301 }
2302 }
2303 }
2304
2305 /*
2306 * Mark code array such that isMarked(ic->cur_mark, i) is true
2307 * only for nodes that are alive.
2308 */
2309 static void
2310 mark_code(struct icode *ic)
2311 {
2312 ic->cur_mark += 1;
2313 make_marks(ic, ic->root);
2314 }
2315
2316 /*
2317 * True iff the two stmt lists load the same value from the packet into
2318 * the accumulator.
2319 */
2320 static int
2321 eq_slist(struct slist *x, struct slist *y)
2322 {
2323 for (;;) {
2324 while (x && x->s.code == NOP)
2325 x = x->next;
2326 while (y && y->s.code == NOP)
2327 y = y->next;
2328 if (x == 0)
2329 return y == 0;
2330 if (y == 0)
2331 return x == 0;
2332 if (x->s.code != y->s.code || x->s.k != y->s.k)
2333 return 0;
2334 x = x->next;
2335 y = y->next;
2336 }
2337 }
2338
2339 static inline int
2340 eq_blk(struct block *b0, struct block *b1)
2341 {
2342 if (b0->s.code == b1->s.code &&
2343 b0->s.k == b1->s.k &&
2344 b0->et.succ == b1->et.succ &&
2345 b0->ef.succ == b1->ef.succ)
2346 return eq_slist(b0->stmts, b1->stmts);
2347 return 0;
2348 }
2349
2350 static void
2351 intern_blocks(opt_state_t *opt_state, struct icode *ic)
2352 {
2353 struct block *p;
2354 u_int i, j;
2355 int done1; /* don't shadow global */
2356 top:
2357 done1 = 1;
2358 for (i = 0; i < opt_state->n_blocks; ++i)
2359 opt_state->blocks[i]->link = 0;
2360
2361 mark_code(ic);
2362
2363 for (i = opt_state->n_blocks - 1; i != 0; ) {
2364 --i;
2365 if (!isMarked(ic, opt_state->blocks[i]))
2366 continue;
2367 for (j = i + 1; j < opt_state->n_blocks; ++j) {
2368 if (!isMarked(ic, opt_state->blocks[j]))
2369 continue;
2370 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2371 opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2372 opt_state->blocks[j]->link : opt_state->blocks[j];
2373 break;
2374 }
2375 }
2376 }
2377 for (i = 0; i < opt_state->n_blocks; ++i) {
2378 p = opt_state->blocks[i];
2379 if (JT(p) == 0)
2380 continue;
2381 if (JT(p)->link) {
2382 done1 = 0;
2383 JT(p) = JT(p)->link;
2384 }
2385 if (JF(p)->link) {
2386 done1 = 0;
2387 JF(p) = JF(p)->link;
2388 }
2389 }
2390 if (!done1)
2391 goto top;
2392 }
2393
2394 static void
2395 opt_cleanup(opt_state_t *opt_state)
2396 {
2397 free((void *)opt_state->vnode_base);
2398 free((void *)opt_state->vmap);
2399 free((void *)opt_state->edges);
2400 free((void *)opt_state->space);
2401 free((void *)opt_state->levels);
2402 free((void *)opt_state->blocks);
2403 }
2404
2405 /*
2406 * For optimizer errors.
2407 */
2408 static void PCAP_NORETURN
2409 opt_error(opt_state_t *opt_state, const char *fmt, ...)
2410 {
2411 va_list ap;
2412
2413 if (opt_state->errbuf != NULL) {
2414 va_start(ap, fmt);
2415 (void)vsnprintf(opt_state->errbuf,
2416 PCAP_ERRBUF_SIZE, fmt, ap);
2417 va_end(ap);
2418 }
2419 longjmp(opt_state->top_ctx, 1);
2420 /* NOTREACHED */
2421 #ifdef _AIX
2422 PCAP_UNREACHABLE
2423 #endif /* _AIX */
2424 }
2425
2426 /*
2427 * Return the number of stmts in 's'.
2428 */
2429 static u_int
2430 slength(struct slist *s)
2431 {
2432 u_int n = 0;
2433
2434 for (; s; s = s->next)
2435 if (s->s.code != NOP)
2436 ++n;
2437 return n;
2438 }
2439
2440 /*
2441 * Return the number of nodes reachable by 'p'.
2442 * All nodes should be initially unmarked.
2443 */
2444 static int
2445 count_blocks(struct icode *ic, struct block *p)
2446 {
2447 if (p == 0 || isMarked(ic, p))
2448 return 0;
2449 Mark(ic, p);
2450 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2451 }
2452
2453 /*
2454 * Do a depth first search on the flow graph, numbering the
2455 * the basic blocks, and entering them into the 'blocks' array.`
2456 */
2457 static void
2458 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2459 {
2460 u_int n;
2461
2462 if (p == 0 || isMarked(ic, p))
2463 return;
2464
2465 Mark(ic, p);
2466 n = opt_state->n_blocks++;
2467 if (opt_state->n_blocks == 0) {
2468 /*
2469 * Overflow.
2470 */
2471 opt_error(opt_state, "filter is too complex to optimize");
2472 }
2473 p->id = n;
2474 opt_state->blocks[n] = p;
2475
2476 number_blks_r(opt_state, ic, JT(p));
2477 number_blks_r(opt_state, ic, JF(p));
2478 }
2479
2480 /*
2481 * Return the number of stmts in the flowgraph reachable by 'p'.
2482 * The nodes should be unmarked before calling.
2483 *
2484 * Note that "stmts" means "instructions", and that this includes
2485 *
2486 * side-effect statements in 'p' (slength(p->stmts));
2487 *
2488 * statements in the true branch from 'p' (count_stmts(JT(p)));
2489 *
2490 * statements in the false branch from 'p' (count_stmts(JF(p)));
2491 *
2492 * the conditional jump itself (1);
2493 *
2494 * an extra long jump if the true branch requires it (p->longjt);
2495 *
2496 * an extra long jump if the false branch requires it (p->longjf).
2497 */
2498 static u_int
2499 count_stmts(struct icode *ic, struct block *p)
2500 {
2501 u_int n;
2502
2503 if (p == 0 || isMarked(ic, p))
2504 return 0;
2505 Mark(ic, p);
2506 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2507 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2508 }
2509
2510 /*
2511 * Allocate memory. All allocation is done before optimization
2512 * is begun. A linear bound on the size of all data structures is computed
2513 * from the total number of blocks and/or statements.
2514 */
2515 static void
2516 opt_init(opt_state_t *opt_state, struct icode *ic)
2517 {
2518 bpf_u_int32 *p;
2519 int i, n, max_stmts;
2520 u_int product;
2521 size_t block_memsize, edge_memsize;
2522
2523 /*
2524 * First, count the blocks, so we can malloc an array to map
2525 * block number to block. Then, put the blocks into the array.
2526 */
2527 unMarkAll(ic);
2528 n = count_blocks(ic, ic->root);
2529 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2530 if (opt_state->blocks == NULL)
2531 opt_error(opt_state, "malloc");
2532 unMarkAll(ic);
2533 opt_state->n_blocks = 0;
2534 number_blks_r(opt_state, ic, ic->root);
2535
2536 /*
2537 * This "should not happen".
2538 */
2539 if (opt_state->n_blocks == 0)
2540 opt_error(opt_state, "filter has no instructions; please report this as a libpcap issue");
2541
2542 opt_state->n_edges = 2 * opt_state->n_blocks;
2543 if ((opt_state->n_edges / 2) != opt_state->n_blocks) {
2544 /*
2545 * Overflow.
2546 */
2547 opt_error(opt_state, "filter is too complex to optimize");
2548 }
2549 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2550 if (opt_state->edges == NULL) {
2551 opt_error(opt_state, "malloc");
2552 }
2553
2554 /*
2555 * The number of levels is bounded by the number of nodes.
2556 */
2557 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2558 if (opt_state->levels == NULL) {
2559 opt_error(opt_state, "malloc");
2560 }
2561
2562 opt_state->edgewords = opt_state->n_edges / BITS_PER_WORD + 1;
2563 opt_state->nodewords = opt_state->n_blocks / BITS_PER_WORD + 1;
2564
2565 /*
2566 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2567 * in a u_int; we use it as a u_int number-of-iterations
2568 * value.
2569 */
2570 product = opt_state->n_blocks * opt_state->nodewords;
2571 if ((product / opt_state->n_blocks) != opt_state->nodewords) {
2572 /*
2573 * XXX - just punt and don't try to optimize?
2574 * In practice, this is unlikely to happen with
2575 * a normal filter.
2576 */
2577 opt_error(opt_state, "filter is too complex to optimize");
2578 }
2579
2580 /*
2581 * Make sure the total memory required for that doesn't
2582 * overflow.
2583 */
2584 block_memsize = (size_t)2 * product * sizeof(*opt_state->space);
2585 if ((block_memsize / product) != 2 * sizeof(*opt_state->space)) {
2586 opt_error(opt_state, "filter is too complex to optimize");
2587 }
2588
2589 /*
2590 * Make sure opt_state->n_edges * opt_state->edgewords fits
2591 * in a u_int; we use it as a u_int number-of-iterations
2592 * value.
2593 */
2594 product = opt_state->n_edges * opt_state->edgewords;
2595 if ((product / opt_state->n_edges) != opt_state->edgewords) {
2596 opt_error(opt_state, "filter is too complex to optimize");
2597 }
2598
2599 /*
2600 * Make sure the total memory required for that doesn't
2601 * overflow.
2602 */
2603 edge_memsize = (size_t)product * sizeof(*opt_state->space);
2604 if (edge_memsize / product != sizeof(*opt_state->space)) {
2605 opt_error(opt_state, "filter is too complex to optimize");
2606 }
2607
2608 /*
2609 * Make sure the total memory required for both of them doesn't
2610 * overflow.
2611 */
2612 if (block_memsize > SIZE_MAX - edge_memsize) {
2613 opt_error(opt_state, "filter is too complex to optimize");
2614 }
2615
2616 /* XXX */
2617 opt_state->space = (bpf_u_int32 *)malloc(block_memsize + edge_memsize);
2618 if (opt_state->space == NULL) {
2619 opt_error(opt_state, "malloc");
2620 }
2621 p = opt_state->space;
2622 opt_state->all_dom_sets = p;
2623 for (i = 0; i < n; ++i) {
2624 opt_state->blocks[i]->dom = p;
2625 p += opt_state->nodewords;
2626 }
2627 opt_state->all_closure_sets = p;
2628 for (i = 0; i < n; ++i) {
2629 opt_state->blocks[i]->closure = p;
2630 p += opt_state->nodewords;
2631 }
2632 opt_state->all_edge_sets = p;
2633 for (i = 0; i < n; ++i) {
2634 register struct block *b = opt_state->blocks[i];
2635
2636 b->et.edom = p;
2637 p += opt_state->edgewords;
2638 b->ef.edom = p;
2639 p += opt_state->edgewords;
2640 b->et.id = i;
2641 opt_state->edges[i] = &b->et;
2642 b->ef.id = opt_state->n_blocks + i;
2643 opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2644 b->et.pred = b;
2645 b->ef.pred = b;
2646 }
2647 max_stmts = 0;
2648 for (i = 0; i < n; ++i)
2649 max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2650 /*
2651 * We allocate at most 3 value numbers per statement,
2652 * so this is an upper bound on the number of valnodes
2653 * we'll need.
2654 */
2655 opt_state->maxval = 3 * max_stmts;
2656 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2657 if (opt_state->vmap == NULL) {
2658 opt_error(opt_state, "malloc");
2659 }
2660 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2661 if (opt_state->vnode_base == NULL) {
2662 opt_error(opt_state, "malloc");
2663 }
2664 }
2665
2666 /*
2667 * This is only used when supporting optimizer debugging. It is
2668 * global state, so do *not* do more than one compile in parallel
2669 * and expect it to provide meaningful information.
2670 */
2671 #ifdef BDEBUG
2672 int bids[NBIDS];
2673 #endif
2674
2675 static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2676 PCAP_PRINTFLIKE(2, 3);
2677
2678 /*
2679 * Returns true if successful. Returns false if a branch has
2680 * an offset that is too large. If so, we have marked that
2681 * branch so that on a subsequent iteration, it will be treated
2682 * properly.
2683 */
2684 static int
2685 convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2686 {
2687 struct bpf_insn *dst;
2688 struct slist *src;
2689 u_int slen;
2690 u_int off;
2691 struct slist **offset = NULL;
2692
2693 if (p == 0 || isMarked(ic, p))
2694 return (1);
2695 Mark(ic, p);
2696
2697 if (convert_code_r(conv_state, ic, JF(p)) == 0)
2698 return (0);
2699 if (convert_code_r(conv_state, ic, JT(p)) == 0)
2700 return (0);
2701
2702 slen = slength(p->stmts);
2703 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2704 /* inflate length by any extra jumps */
2705
2706 p->offset = (int)(dst - conv_state->fstart);
2707
2708 /* generate offset[] for convenience */
2709 if (slen) {
2710 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2711 if (!offset) {
2712 conv_error(conv_state, "not enough core");
2713 /*NOTREACHED*/
2714 }
2715 }
2716 src = p->stmts;
2717 for (off = 0; off < slen && src; off++) {
2718 #if 0
2719 printf("off=%d src=%x\n", off, src);
2720 #endif
2721 offset[off] = src;
2722 src = src->next;
2723 }
2724
2725 off = 0;
2726 for (src = p->stmts; src; src = src->next) {
2727 if (src->s.code == NOP)
2728 continue;
2729 dst->code = (u_short)src->s.code;
2730 dst->k = src->s.k;
2731
2732 /* fill block-local relative jump */
2733 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2734 #if 0
2735 if (src->s.jt || src->s.jf) {
2736 free(offset);
2737 conv_error(conv_state, "illegal jmp destination");
2738 /*NOTREACHED*/
2739 }
2740 #endif
2741 goto filled;
2742 }
2743 if (off == slen - 2) /*???*/
2744 goto filled;
2745
2746 {
2747 u_int i;
2748 int jt, jf;
2749 const char ljerr[] = "%s for block-local relative jump: off=%d";
2750
2751 #if 0
2752 printf("code=%x off=%d %x %x\n", src->s.code,
2753 off, src->s.jt, src->s.jf);
2754 #endif
2755
2756 if (!src->s.jt || !src->s.jf) {
2757 free(offset);
2758 conv_error(conv_state, ljerr, "no jmp destination", off);
2759 /*NOTREACHED*/
2760 }
2761
2762 jt = jf = 0;
2763 for (i = 0; i < slen; i++) {
2764 if (offset[i] == src->s.jt) {
2765 if (jt) {
2766 free(offset);
2767 conv_error(conv_state, ljerr, "multiple matches", off);
2768 /*NOTREACHED*/
2769 }
2770
2771 if (i - off - 1 >= 256) {
2772 free(offset);
2773 conv_error(conv_state, ljerr, "out-of-range jump", off);
2774 /*NOTREACHED*/
2775 }
2776 dst->jt = (u_char)(i - off - 1);
2777 jt++;
2778 }
2779 if (offset[i] == src->s.jf) {
2780 if (jf) {
2781 free(offset);
2782 conv_error(conv_state, ljerr, "multiple matches", off);
2783 /*NOTREACHED*/
2784 }
2785 if (i - off - 1 >= 256) {
2786 free(offset);
2787 conv_error(conv_state, ljerr, "out-of-range jump", off);
2788 /*NOTREACHED*/
2789 }
2790 dst->jf = (u_char)(i - off - 1);
2791 jf++;
2792 }
2793 }
2794 if (!jt || !jf) {
2795 free(offset);
2796 conv_error(conv_state, ljerr, "no destination found", off);
2797 /*NOTREACHED*/
2798 }
2799 }
2800 filled:
2801 ++dst;
2802 ++off;
2803 }
2804 if (offset)
2805 free(offset);
2806
2807 #ifdef BDEBUG
2808 if (dst - conv_state->fstart < NBIDS)
2809 bids[dst - conv_state->fstart] = p->id + 1;
2810 #endif
2811 dst->code = (u_short)p->s.code;
2812 dst->k = p->s.k;
2813 if (JT(p)) {
2814 /* number of extra jumps inserted */
2815 u_char extrajmps = 0;
2816 off = JT(p)->offset - (p->offset + slen) - 1;
2817 if (off >= 256) {
2818 /* offset too large for branch, must add a jump */
2819 if (p->longjt == 0) {
2820 /* mark this instruction and retry */
2821 p->longjt++;
2822 return(0);
2823 }
2824 dst->jt = extrajmps;
2825 extrajmps++;
2826 dst[extrajmps].code = BPF_JMP|BPF_JA;
2827 dst[extrajmps].k = off - extrajmps;
2828 }
2829 else
2830 dst->jt = (u_char)off;
2831 off = JF(p)->offset - (p->offset + slen) - 1;
2832 if (off >= 256) {
2833 /* offset too large for branch, must add a jump */
2834 if (p->longjf == 0) {
2835 /* mark this instruction and retry */
2836 p->longjf++;
2837 return(0);
2838 }
2839 /* branch if F to following jump */
2840 /* if two jumps are inserted, F goes to second one */
2841 dst->jf = extrajmps;
2842 extrajmps++;
2843 dst[extrajmps].code = BPF_JMP|BPF_JA;
2844 dst[extrajmps].k = off - extrajmps;
2845 }
2846 else
2847 dst->jf = (u_char)off;
2848 }
2849 return (1);
2850 }
2851
2852
2853 /*
2854 * Convert flowgraph intermediate representation to the
2855 * BPF array representation. Set *lenp to the number of instructions.
2856 *
2857 * This routine does *NOT* leak the memory pointed to by fp. It *must
2858 * not* do free(fp) before returning fp; doing so would make no sense,
2859 * as the BPF array pointed to by the return value of icode_to_fcode()
2860 * must be valid - it's being returned for use in a bpf_program structure.
2861 *
2862 * If it appears that icode_to_fcode() is leaking, the problem is that
2863 * the program using pcap_compile() is failing to free the memory in
2864 * the BPF program when it's done - the leak is in the program, not in
2865 * the routine that happens to be allocating the memory. (By analogy, if
2866 * a program calls fopen() without ever calling fclose() on the FILE *,
2867 * it will leak the FILE structure; the leak is not in fopen(), it's in
2868 * the program.) Change the program to use pcap_freecode() when it's
2869 * done with the filter program. See the pcap man page.
2870 */
2871 struct bpf_insn *
2872 icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2873 char *errbuf)
2874 {
2875 u_int n;
2876 struct bpf_insn *fp;
2877 conv_state_t conv_state;
2878
2879 conv_state.fstart = NULL;
2880 conv_state.errbuf = errbuf;
2881 if (setjmp(conv_state.top_ctx) != 0) {
2882 free(conv_state.fstart);
2883 return NULL;
2884 }
2885
2886 /*
2887 * Loop doing convert_code_r() until no branches remain
2888 * with too-large offsets.
2889 */
2890 for (;;) {
2891 unMarkAll(ic);
2892 n = *lenp = count_stmts(ic, root);
2893
2894 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2895 if (fp == NULL) {
2896 (void)snprintf(errbuf, PCAP_ERRBUF_SIZE,
2897 "malloc");
2898 return NULL;
2899 }
2900 memset((char *)fp, 0, sizeof(*fp) * n);
2901 conv_state.fstart = fp;
2902 conv_state.ftail = fp + n;
2903
2904 unMarkAll(ic);
2905 if (convert_code_r(&conv_state, ic, root))
2906 break;
2907 free(fp);
2908 }
2909
2910 return fp;
2911 }
2912
2913 /*
2914 * For iconv_to_fconv() errors.
2915 */
2916 static void PCAP_NORETURN
2917 conv_error(conv_state_t *conv_state, const char *fmt, ...)
2918 {
2919 va_list ap;
2920
2921 va_start(ap, fmt);
2922 (void)vsnprintf(conv_state->errbuf,
2923 PCAP_ERRBUF_SIZE, fmt, ap);
2924 va_end(ap);
2925 longjmp(conv_state->top_ctx, 1);
2926 /* NOTREACHED */
2927 #ifdef _AIX
2928 PCAP_UNREACHABLE
2929 #endif /* _AIX */
2930 }
2931
2932 /*
2933 * Make a copy of a BPF program and put it in the "fcode" member of
2934 * a "pcap_t".
2935 *
2936 * If we fail to allocate memory for the copy, fill in the "errbuf"
2937 * member of the "pcap_t" with an error message, and return -1;
2938 * otherwise, return 0.
2939 */
2940 int
2941 pcapint_install_bpf_program(pcap_t *p, struct bpf_program *fp)
2942 {
2943 size_t prog_size;
2944
2945 /*
2946 * Validate the program.
2947 */
2948 if (!pcapint_validate_filter(fp->bf_insns, fp->bf_len)) {
2949 snprintf(p->errbuf, sizeof(p->errbuf),
2950 "BPF program is not valid");
2951 return (-1);
2952 }
2953
2954 /*
2955 * Free up any already installed program.
2956 */
2957 pcap_freecode(&p->fcode);
2958
2959 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2960 p->fcode.bf_len = fp->bf_len;
2961 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2962 if (p->fcode.bf_insns == NULL) {
2963 pcapint_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2964 errno, "malloc");
2965 return (-1);
2966 }
2967 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2968 return (0);
2969 }
2970
2971 #ifdef BDEBUG
2972 static void
2973 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2974 FILE *out)
2975 {
2976 int icount, noffset;
2977 int i;
2978
2979 if (block == NULL || isMarked(ic, block))
2980 return;
2981 Mark(ic, block);
2982
2983 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2984 noffset = min(block->offset + icount, (int)prog->bf_len);
2985
2986 fprintf(out, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block->id, block->id, block->id);
2987 for (i = block->offset; i < noffset; i++) {
2988 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2989 }
2990 fprintf(out, "\" tooltip=\"");
2991 for (i = 0; i < BPF_MEMWORDS; i++)
2992 if (block->val[i] != VAL_UNKNOWN)
2993 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2994 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2995 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2996 fprintf(out, "\"");
2997 if (JT(block) == NULL)
2998 fprintf(out, ", peripheries=2");
2999 fprintf(out, "];\n");
3000
3001 dot_dump_node(ic, JT(block), prog, out);
3002 dot_dump_node(ic, JF(block), prog, out);
3003 }
3004
3005 static void
3006 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
3007 {
3008 if (block == NULL || isMarked(ic, block))
3009 return;
3010 Mark(ic, block);
3011
3012 if (JT(block)) {
3013 fprintf(out, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3014 block->id, JT(block)->id);
3015 fprintf(out, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3016 block->id, JF(block)->id);
3017 }
3018 dot_dump_edge(ic, JT(block), out);
3019 dot_dump_edge(ic, JF(block), out);
3020 }
3021
3022 /* Output the block CFG using graphviz/DOT language
3023 * In the CFG, block's code, value index for each registers at EXIT,
3024 * and the jump relationship is show.
3025 *
3026 * example DOT for BPF `ip src host 1.1.1.1' is:
3027 digraph BPF {
3028 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
3029 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
3030 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3031 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3032 "block0":se -> "block1":n [label="T"];
3033 "block0":sw -> "block3":n [label="F"];
3034 "block1":se -> "block2":n [label="T"];
3035 "block1":sw -> "block3":n [label="F"];
3036 }
3037 *
3038 * After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3039 * and run `dot -Tpng -O bpf.dot' to draw the graph.
3040 */
3041 static int
3042 dot_dump(struct icode *ic, char *errbuf)
3043 {
3044 struct bpf_program f;
3045 FILE *out = stdout;
3046
3047 memset(bids, 0, sizeof bids);
3048 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3049 if (f.bf_insns == NULL)
3050 return -1;
3051
3052 fprintf(out, "digraph BPF {\n");
3053 unMarkAll(ic);
3054 dot_dump_node(ic, ic->root, &f, out);
3055 unMarkAll(ic);
3056 dot_dump_edge(ic, ic->root, out);
3057 fprintf(out, "}\n");
3058
3059 free((char *)f.bf_insns);
3060 return 0;
3061 }
3062
3063 static int
3064 plain_dump(struct icode *ic, char *errbuf)
3065 {
3066 struct bpf_program f;
3067
3068 memset(bids, 0, sizeof bids);
3069 f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
3070 if (f.bf_insns == NULL)
3071 return -1;
3072 bpf_dump(&f, 1);
3073 putchar('\n');
3074 free((char *)f.bf_insns);
3075 return 0;
3076 }
3077
3078 static void
3079 opt_dump(opt_state_t *opt_state, struct icode *ic)
3080 {
3081 int status;
3082 char errbuf[PCAP_ERRBUF_SIZE];
3083
3084 /*
3085 * If the CFG, in DOT format, is requested, output it rather than
3086 * the code that would be generated from that graph.
3087 */
3088 if (pcap_print_dot_graph)
3089 status = dot_dump(ic, errbuf);
3090 else
3091 status = plain_dump(ic, errbuf);
3092 if (status == -1)
3093 opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
3094 }
3095 #endif