2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
42 #ifdef HAVE_OS_PROTO_H
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
53 static int pcap_optimizer_debug
;
56 * Routine to set that flag.
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
64 PCAP_API
void pcap_set_optimizer_debug(int value
);
67 pcap_set_optimizer_debug(int value
)
69 pcap_optimizer_debug
= value
;
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
78 static int pcap_print_dot_graph
;
81 * Routine to set that flag.
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
89 PCAP_API
void pcap_set_print_dot_graph(int value
);
92 pcap_set_print_dot_graph(int value
)
94 pcap_print_dot_graph
= value
;
102 * Takes a 32-bit integer as an argument.
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards fro zero.
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
111 * This is the same as the count of trailing zeroes in the word.
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115 * GCC 3.4 and later; we have __builtin_ctz().
117 #define lowest_set_bit(mask) __builtin_ctz(mask)
118 #elif defined(_MSC_VER)
120 * Visual Studio; we support only 2005 and later, so use
126 #pragma intrinsic(_BitScanForward)
129 static __forceinline
int
130 lowest_set_bit(int mask
)
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
139 return -1; /* mask is zero */
142 #elif defined(MSDOS) && defined(__DJGPP__)
144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
145 * we've already included.
147 #define lowest_set_bit(mask) (ffs((mask)) - 1)
148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
151 * or some other platform (UN*X conforming to a sufficient recent version
152 * of the Single UNIX Specification).
155 #define lowest_set_bit(mask) (ffs((mask)) - 1)
159 * Use a perfect-hash-function-based function.
162 lowest_set_bit(int mask
)
164 unsigned int v
= (unsigned int)mask
;
166 static const int MultiplyDeBruijnBitPosition
[32] = {
167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
172 * We strip off all but the lowermost set bit (v & ~v),
173 * and perform a minimal perfect hash on it to look up the
174 * number of low-order zero bits in a table.
178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 * http://supertech.csail.mit.edu/papers/debruijn.pdf
182 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
187 * Represents a deleted instruction.
192 * Register numbers for use-def values.
193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
194 * location. A_ATOM is the accumulator and X_ATOM is the index
197 #define A_ATOM BPF_MEMWORDS
198 #define X_ATOM (BPF_MEMWORDS+1)
201 * This define is used to represent *both* the accumulator and
202 * x register in use-def computations.
203 * Currently, the use-def code assumes only one definition per instruction.
205 #define AX_ATOM N_ATOMS
208 * These data structures are used in a Cocke and Shwarz style
209 * value numbering scheme. Since the flowgraph is acyclic,
210 * exit values can be propagated from a node's predecessors
211 * provided it is uniquely defined.
217 struct valnode
*next
;
220 /* Integer constants mapped with the load immediate opcode. */
221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
230 * A flag to indicate that further optimization is needed.
231 * Iterative passes are continued until a given pass yields no
237 struct block
**blocks
;
242 * A bit vector set representation of the dominators.
243 * We round up the set size to the next power of two.
247 struct block
**levels
;
250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
252 * True if a is in uset {p}
254 #define SET_MEMBER(p, a) \
255 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
260 #define SET_INSERT(p, a) \
261 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
264 * Delete 'a' from uset p.
266 #define SET_DELETE(p, a) \
267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
272 #define SET_INTERSECT(a, b, n)\
274 register bpf_u_int32 *_x = a, *_y = b;\
275 register int _n = n;\
276 while (--_n >= 0) *_x++ &= *_y++;\
282 #define SET_SUBTRACT(a, b, n)\
284 register bpf_u_int32 *_x = a, *_y = b;\
285 register int _n = n;\
286 while (--_n >= 0) *_x++ &=~ *_y++;\
292 #define SET_UNION(a, b, n)\
294 register bpf_u_int32 *_x = a, *_y = b;\
295 register int _n = n;\
296 while (--_n >= 0) *_x++ |= *_y++;\
300 uset all_closure_sets
;
304 struct valnode
*hashtbl
[MODULUS
];
308 struct vmapinfo
*vmap
;
309 struct valnode
*vnode_base
;
310 struct valnode
*next_vnode
;
315 * Some pointers used to convert the basic block form of the code,
316 * into the array form that BPF requires. 'fstart' will point to
317 * the malloc'd array while 'ftail' is used during the recursive
320 struct bpf_insn
*fstart
;
321 struct bpf_insn
*ftail
;
324 static void opt_init(compiler_state_t
*, opt_state_t
*, struct icode
*);
325 static void opt_cleanup(opt_state_t
*);
327 static void intern_blocks(opt_state_t
*, struct icode
*);
329 static void find_inedges(opt_state_t
*, struct block
*);
331 static void opt_dump(compiler_state_t
*, struct icode
*);
335 #define MAX(a,b) ((a)>(b)?(a):(b))
339 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
350 find_levels_r(opt_state
, ic
, JT(b
));
351 find_levels_r(opt_state
, ic
, JF(b
));
352 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
356 b
->link
= opt_state
->levels
[level
];
357 opt_state
->levels
[level
] = b
;
361 * Level graph. The levels go from 0 at the leaves to
362 * N_LEVELS at the root. The opt_state->levels[] array points to the
363 * first node of the level list, whose elements are linked
364 * with the 'link' field of the struct block.
367 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
369 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
371 find_levels_r(opt_state
, ic
, ic
->root
);
375 * Find dominator relationships.
376 * Assumes graph has been leveled.
379 find_dom(opt_state_t
*opt_state
, struct block
*root
)
386 * Initialize sets to contain all nodes.
388 x
= opt_state
->all_dom_sets
;
389 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
392 /* Root starts off empty. */
393 for (i
= opt_state
->nodewords
; --i
>= 0;)
396 /* root->level is the highest level no found. */
397 for (i
= root
->level
; i
>= 0; --i
) {
398 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
399 SET_INSERT(b
->dom
, b
->id
);
402 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
403 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
409 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
411 SET_INSERT(ep
->edom
, ep
->id
);
413 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
414 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
419 * Compute edge dominators.
420 * Assumes graph has been leveled and predecessors established.
423 find_edom(opt_state_t
*opt_state
, struct block
*root
)
429 x
= opt_state
->all_edge_sets
;
430 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
433 /* root->level is the highest level no found. */
434 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
435 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
436 for (i
= root
->level
; i
>= 0; --i
) {
437 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
438 propedom(opt_state
, &b
->et
);
439 propedom(opt_state
, &b
->ef
);
445 * Find the backwards transitive closure of the flow graph. These sets
446 * are backwards in the sense that we find the set of nodes that reach
447 * a given node, not the set of nodes that can be reached by a node.
449 * Assumes graph has been leveled.
452 find_closure(opt_state_t
*opt_state
, struct block
*root
)
458 * Initialize sets to contain no nodes.
460 memset((char *)opt_state
->all_closure_sets
, 0,
461 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
463 /* root->level is the highest level no found. */
464 for (i
= root
->level
; i
>= 0; --i
) {
465 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
466 SET_INSERT(b
->closure
, b
->id
);
469 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
470 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
476 * Return the register number that is used by s. If A and X are both
477 * used, return AX_ATOM. If no register is used, return -1.
479 * The implementation should probably change to an array access.
482 atomuse(struct stmt
*s
)
484 register int c
= s
->code
;
489 switch (BPF_CLASS(c
)) {
492 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
493 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
497 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
498 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
508 if (BPF_SRC(c
) == BPF_X
)
513 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
520 * Return the register number that is defined by 's'. We assume that
521 * a single stmt cannot define more than one register. If no register
522 * is defined, return -1.
524 * The implementation should probably change to an array access.
527 atomdef(struct stmt
*s
)
532 switch (BPF_CLASS(s
->code
)) {
546 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
552 * Compute the sets of registers used, defined, and killed by 'b'.
554 * "Used" means that a statement in 'b' uses the register before any
555 * statement in 'b' defines it, i.e. it uses the value left in
556 * that register by a predecessor block of this block.
557 * "Defined" means that a statement in 'b' defines it.
558 * "Killed" means that a statement in 'b' defines it before any
559 * statement in 'b' uses it, i.e. it kills the value left in that
560 * register by a predecessor block of this block.
563 compute_local_ud(struct block
*b
)
566 atomset def
= 0, use
= 0, killed
= 0;
569 for (s
= b
->stmts
; s
; s
= s
->next
) {
570 if (s
->s
.code
== NOP
)
572 atom
= atomuse(&s
->s
);
574 if (atom
== AX_ATOM
) {
575 if (!ATOMELEM(def
, X_ATOM
))
576 use
|= ATOMMASK(X_ATOM
);
577 if (!ATOMELEM(def
, A_ATOM
))
578 use
|= ATOMMASK(A_ATOM
);
580 else if (atom
< N_ATOMS
) {
581 if (!ATOMELEM(def
, atom
))
582 use
|= ATOMMASK(atom
);
587 atom
= atomdef(&s
->s
);
589 if (!ATOMELEM(use
, atom
))
590 killed
|= ATOMMASK(atom
);
591 def
|= ATOMMASK(atom
);
594 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
596 * XXX - what about RET?
598 atom
= atomuse(&b
->s
);
600 if (atom
== AX_ATOM
) {
601 if (!ATOMELEM(def
, X_ATOM
))
602 use
|= ATOMMASK(X_ATOM
);
603 if (!ATOMELEM(def
, A_ATOM
))
604 use
|= ATOMMASK(A_ATOM
);
606 else if (atom
< N_ATOMS
) {
607 if (!ATOMELEM(def
, atom
))
608 use
|= ATOMMASK(atom
);
621 * Assume graph is already leveled.
624 find_ud(opt_state_t
*opt_state
, struct block
*root
)
630 * root->level is the highest level no found;
631 * count down from there.
633 maxlevel
= root
->level
;
634 for (i
= maxlevel
; i
>= 0; --i
)
635 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
640 for (i
= 1; i
<= maxlevel
; ++i
) {
641 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
642 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
643 p
->in_use
|= p
->out_use
&~ p
->kill
;
648 init_val(opt_state_t
*opt_state
)
650 opt_state
->curval
= 0;
651 opt_state
->next_vnode
= opt_state
->vnode_base
;
652 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
653 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
656 /* Because we really don't have an IR, this stuff is a little messy. */
658 F(opt_state_t
*opt_state
, int code
, int v0
, int v1
)
664 hash
= (u_int
)code
^ ((u_int
)v0
<< 4) ^ ((u_int
)v1
<< 8);
667 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
668 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
671 val
= ++opt_state
->curval
;
672 if (BPF_MODE(code
) == BPF_IMM
&&
673 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
674 opt_state
->vmap
[val
].const_val
= v0
;
675 opt_state
->vmap
[val
].is_const
= 1;
677 p
= opt_state
->next_vnode
++;
682 p
->next
= opt_state
->hashtbl
[hash
];
683 opt_state
->hashtbl
[hash
] = p
;
689 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
691 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
698 * Do constant-folding on binary operators.
699 * (Unary operators are handled elsewhere.)
702 fold_op(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
703 struct stmt
*s
, int v0
, int v1
)
707 a
= opt_state
->vmap
[v0
].const_val
;
708 b
= opt_state
->vmap
[v1
].const_val
;
710 switch (BPF_OP(s
->code
)) {
725 bpf_error(cstate
, "division by zero");
731 bpf_error(cstate
, "modulus by zero");
759 s
->code
= BPF_LD
|BPF_IMM
;
763 static inline struct slist
*
764 this_op(struct slist
*s
)
766 while (s
!= 0 && s
->s
.code
== NOP
)
772 opt_not(struct block
*b
)
774 struct block
*tmp
= JT(b
);
781 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
784 struct slist
*next
, *last
;
792 for (/*empty*/; /*empty*/; s
= next
) {
798 break; /* nothing left in the block */
801 * Find the next real instruction after that one
804 next
= this_op(s
->next
);
806 break; /* no next instruction */
810 * st M[k] --> st M[k]
813 if (s
->s
.code
== BPF_ST
&&
814 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
815 s
->s
.k
== next
->s
.k
) {
817 next
->s
.code
= BPF_MISC
|BPF_TAX
;
823 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
824 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
825 s
->s
.code
= BPF_LDX
|BPF_IMM
;
826 next
->s
.code
= BPF_MISC
|BPF_TXA
;
830 * This is an ugly special case, but it happens
831 * when you say tcp[k] or udp[k] where k is a constant.
833 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
834 struct slist
*add
, *tax
, *ild
;
837 * Check that X isn't used on exit from this
838 * block (which the optimizer might cause).
839 * We know the code generator won't generate
840 * any local dependencies.
842 if (ATOMELEM(b
->out_use
, X_ATOM
))
846 * Check that the instruction following the ldi
847 * is an addx, or it's an ldxms with an addx
848 * following it (with 0 or more nops between the
851 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
854 add
= this_op(next
->next
);
855 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
859 * Check that a tax follows that (with 0 or more
860 * nops between them).
862 tax
= this_op(add
->next
);
863 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
867 * Check that an ild follows that (with 0 or more
868 * nops between them).
870 ild
= this_op(tax
->next
);
871 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
872 BPF_MODE(ild
->s
.code
) != BPF_IND
)
875 * We want to turn this sequence:
878 * (005) ldxms [14] {next} -- optional
881 * (008) ild [x+0] {ild}
883 * into this sequence:
891 * XXX We need to check that X is not
892 * subsequently used, because we want to change
893 * what'll be in it after this sequence.
895 * We know we can eliminate the accumulator
896 * modifications earlier in the sequence since
897 * it is defined by the last stmt of this sequence
898 * (i.e., the last statement of the sequence loads
899 * a value into the accumulator, so we can eliminate
900 * earlier operations on the accumulator).
910 * If the comparison at the end of a block is an equality
911 * comparison against a constant, and nobody uses the value
912 * we leave in the A register at the end of a block, and
913 * the operation preceding the comparison is an arithmetic
914 * operation, we can sometime optimize it away.
916 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
917 !ATOMELEM(b
->out_use
, A_ATOM
)) {
919 * We can optimize away certain subtractions of the
922 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
923 val
= b
->val
[X_ATOM
];
924 if (opt_state
->vmap
[val
].is_const
) {
926 * If we have a subtract to do a comparison,
927 * and the X register is a known constant,
928 * we can merge this value into the
934 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
937 } else if (b
->s
.k
== 0) {
939 * If the X register isn't a constant,
940 * and the comparison in the test is
941 * against 0, we can compare with the
942 * X register, instead:
948 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
953 * Likewise, a constant subtract can be simplified:
956 * jeq #y -> jeq #(x+y)
958 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
964 * And, similarly, a constant AND can be simplified
965 * if we're testing against 0, i.e.:
970 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
973 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
981 * jset #ffffffff -> always
983 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
986 if ((u_int
)b
->s
.k
== 0xffffffffU
)
990 * If we're comparing against the index register, and the index
991 * register is a known constant, we can just compare against that
994 val
= b
->val
[X_ATOM
];
995 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
996 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1001 * If the accumulator is a known constant, we can compute the
1002 * comparison result.
1004 val
= b
->val
[A_ATOM
];
1005 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1006 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1007 switch (BPF_OP(b
->s
.code
)) {
1014 v
= (unsigned)v
> (unsigned)b
->s
.k
;
1018 v
= (unsigned)v
>= (unsigned)b
->s
.k
;
1029 opt_state
->done
= 0;
1038 * Compute the symbolic value of expression of 's', and update
1039 * anything it defines in the value table 'val'. If 'alter' is true,
1040 * do various optimizations. This code would be cleaner if symbolic
1041 * evaluation and code transformations weren't folded together.
1044 opt_stmt(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1045 struct stmt
*s
, int val
[], int alter
)
1052 case BPF_LD
|BPF_ABS
|BPF_W
:
1053 case BPF_LD
|BPF_ABS
|BPF_H
:
1054 case BPF_LD
|BPF_ABS
|BPF_B
:
1055 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1056 vstore(s
, &val
[A_ATOM
], v
, alter
);
1059 case BPF_LD
|BPF_IND
|BPF_W
:
1060 case BPF_LD
|BPF_IND
|BPF_H
:
1061 case BPF_LD
|BPF_IND
|BPF_B
:
1063 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1064 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1065 s
->k
+= opt_state
->vmap
[v
].const_val
;
1066 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1067 opt_state
->done
= 0;
1070 v
= F(opt_state
, s
->code
, s
->k
, v
);
1071 vstore(s
, &val
[A_ATOM
], v
, alter
);
1074 case BPF_LD
|BPF_LEN
:
1075 v
= F(opt_state
, s
->code
, 0L, 0L);
1076 vstore(s
, &val
[A_ATOM
], v
, alter
);
1079 case BPF_LD
|BPF_IMM
:
1081 vstore(s
, &val
[A_ATOM
], v
, alter
);
1084 case BPF_LDX
|BPF_IMM
:
1086 vstore(s
, &val
[X_ATOM
], v
, alter
);
1089 case BPF_LDX
|BPF_MSH
|BPF_B
:
1090 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1091 vstore(s
, &val
[X_ATOM
], v
, alter
);
1094 case BPF_ALU
|BPF_NEG
:
1095 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1096 s
->code
= BPF_LD
|BPF_IMM
;
1097 s
->k
= -opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1098 val
[A_ATOM
] = K(s
->k
);
1101 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1104 case BPF_ALU
|BPF_ADD
|BPF_K
:
1105 case BPF_ALU
|BPF_SUB
|BPF_K
:
1106 case BPF_ALU
|BPF_MUL
|BPF_K
:
1107 case BPF_ALU
|BPF_DIV
|BPF_K
:
1108 case BPF_ALU
|BPF_MOD
|BPF_K
:
1109 case BPF_ALU
|BPF_AND
|BPF_K
:
1110 case BPF_ALU
|BPF_OR
|BPF_K
:
1111 case BPF_ALU
|BPF_XOR
|BPF_K
:
1112 case BPF_ALU
|BPF_LSH
|BPF_K
:
1113 case BPF_ALU
|BPF_RSH
|BPF_K
:
1114 op
= BPF_OP(s
->code
);
1117 /* don't optimize away "sub #0"
1118 * as it may be needed later to
1119 * fixup the generated math code */
1120 if (op
== BPF_ADD
||
1121 op
== BPF_LSH
|| op
== BPF_RSH
||
1122 op
== BPF_OR
|| op
== BPF_XOR
) {
1126 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1127 s
->code
= BPF_LD
|BPF_IMM
;
1128 val
[A_ATOM
] = K(s
->k
);
1132 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1133 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1134 val
[A_ATOM
] = K(s
->k
);
1138 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1141 case BPF_ALU
|BPF_ADD
|BPF_X
:
1142 case BPF_ALU
|BPF_SUB
|BPF_X
:
1143 case BPF_ALU
|BPF_MUL
|BPF_X
:
1144 case BPF_ALU
|BPF_DIV
|BPF_X
:
1145 case BPF_ALU
|BPF_MOD
|BPF_X
:
1146 case BPF_ALU
|BPF_AND
|BPF_X
:
1147 case BPF_ALU
|BPF_OR
|BPF_X
:
1148 case BPF_ALU
|BPF_XOR
|BPF_X
:
1149 case BPF_ALU
|BPF_LSH
|BPF_X
:
1150 case BPF_ALU
|BPF_RSH
|BPF_X
:
1151 op
= BPF_OP(s
->code
);
1152 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1153 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1154 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1155 val
[A_ATOM
] = K(s
->k
);
1158 s
->code
= BPF_ALU
|BPF_K
|op
;
1159 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1160 opt_state
->done
= 0;
1162 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1167 * Check if we're doing something to an accumulator
1168 * that is 0, and simplify. This may not seem like
1169 * much of a simplification but it could open up further
1171 * XXX We could also check for mul by 1, etc.
1173 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1174 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1175 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1176 s
->code
= BPF_MISC
|BPF_TXA
;
1177 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1180 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1181 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1182 s
->code
= BPF_LD
|BPF_IMM
;
1184 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1187 else if (op
== BPF_NEG
) {
1192 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1195 case BPF_MISC
|BPF_TXA
:
1196 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1199 case BPF_LD
|BPF_MEM
:
1201 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1202 s
->code
= BPF_LD
|BPF_IMM
;
1203 s
->k
= opt_state
->vmap
[v
].const_val
;
1204 opt_state
->done
= 0;
1206 vstore(s
, &val
[A_ATOM
], v
, alter
);
1209 case BPF_MISC
|BPF_TAX
:
1210 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1213 case BPF_LDX
|BPF_MEM
:
1215 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1216 s
->code
= BPF_LDX
|BPF_IMM
;
1217 s
->k
= opt_state
->vmap
[v
].const_val
;
1218 opt_state
->done
= 0;
1220 vstore(s
, &val
[X_ATOM
], v
, alter
);
1224 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1228 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1234 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1240 if (atom
== AX_ATOM
) {
1250 opt_state
->done
= 0;
1251 last
[atom
]->code
= NOP
;
1258 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1260 register struct slist
*s
;
1262 struct stmt
*last
[N_ATOMS
];
1264 memset((char *)last
, 0, sizeof last
);
1266 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1267 deadstmt(opt_state
, &s
->s
, last
);
1268 deadstmt(opt_state
, &b
->s
, last
);
1270 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1271 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1272 last
[atom
]->code
= NOP
;
1273 opt_state
->done
= 0;
1278 opt_blk(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1279 struct block
*b
, int do_stmts
)
1284 bpf_int32 aval
, xval
;
1287 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1288 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1295 * Initialize the atom values.
1300 * We have no predecessors, so everything is undefined
1301 * upon entry to this block.
1303 memset((char *)b
->val
, 0, sizeof(b
->val
));
1306 * Inherit values from our predecessors.
1308 * First, get the values from the predecessor along the
1309 * first edge leading to this node.
1311 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1313 * Now look at all the other nodes leading to this node.
1314 * If, for the predecessor along that edge, a register
1315 * has a different value from the one we have (i.e.,
1316 * control paths are merging, and the merging paths
1317 * assign different values to that register), give the
1318 * register the undefined value of 0.
1320 while ((p
= p
->next
) != NULL
) {
1321 for (i
= 0; i
< N_ATOMS
; ++i
)
1322 if (b
->val
[i
] != p
->pred
->val
[i
])
1326 aval
= b
->val
[A_ATOM
];
1327 xval
= b
->val
[X_ATOM
];
1328 for (s
= b
->stmts
; s
; s
= s
->next
)
1329 opt_stmt(cstate
, opt_state
, &s
->s
, b
->val
, do_stmts
);
1332 * This is a special case: if we don't use anything from this
1333 * block, and we load the accumulator or index register with a
1334 * value that is already there, or if this block is a return,
1335 * eliminate all the statements.
1337 * XXX - what if it does a store?
1339 * XXX - why does it matter whether we use anything from this
1340 * block? If the accumulator or index register doesn't change
1341 * its value, isn't that OK even if we use that value?
1343 * XXX - if we load the accumulator with a different value,
1344 * and the block ends with a conditional branch, we obviously
1345 * can't eliminate it, as the branch depends on that value.
1346 * For the index register, the conditional branch only depends
1347 * on the index register value if the test is against the index
1348 * register value rather than a constant; if nothing uses the
1349 * value we put into the index register, and we're not testing
1350 * against the index register's value, and there aren't any
1351 * other problems that would keep us from eliminating this
1352 * block, can we eliminate it?
1355 ((b
->out_use
== 0 &&
1356 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1357 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1358 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1359 if (b
->stmts
!= 0) {
1361 opt_state
->done
= 0;
1364 opt_peep(opt_state
, b
);
1365 opt_deadstores(opt_state
, b
);
1368 * Set up values for branch optimizer.
1370 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1371 b
->oval
= K(b
->s
.k
);
1373 b
->oval
= b
->val
[X_ATOM
];
1374 b
->et
.code
= b
->s
.code
;
1375 b
->ef
.code
= -b
->s
.code
;
1379 * Return true if any register that is used on exit from 'succ', has
1380 * an exit value that is different from the corresponding exit value
1384 use_conflict(struct block
*b
, struct block
*succ
)
1387 atomset use
= succ
->out_use
;
1392 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1393 if (ATOMELEM(use
, atom
))
1394 if (b
->val
[atom
] != succ
->val
[atom
])
1399 static struct block
*
1400 fold_edge(struct block
*child
, struct edge
*ep
)
1403 int aval0
, aval1
, oval0
, oval1
;
1404 int code
= ep
->code
;
1412 if (child
->s
.code
!= code
)
1415 aval0
= child
->val
[A_ATOM
];
1416 oval0
= child
->oval
;
1417 aval1
= ep
->pred
->val
[A_ATOM
];
1418 oval1
= ep
->pred
->oval
;
1425 * The operands of the branch instructions are
1426 * identical, so the result is true if a true
1427 * branch was taken to get here, otherwise false.
1429 return sense
? JT(child
) : JF(child
);
1431 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1433 * At this point, we only know the comparison if we
1434 * came down the true branch, and it was an equality
1435 * comparison with a constant.
1437 * I.e., if we came down the true branch, and the branch
1438 * was an equality comparison with a constant, we know the
1439 * accumulator contains that constant. If we came down
1440 * the false branch, or the comparison wasn't with a
1441 * constant, we don't know what was in the accumulator.
1443 * We rely on the fact that distinct constants have distinct
1452 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1455 register struct block
*target
;
1457 if (JT(ep
->succ
) == 0)
1460 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1462 * Common branch targets can be eliminated, provided
1463 * there is no data dependency.
1465 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1466 opt_state
->done
= 0;
1467 ep
->succ
= JT(ep
->succ
);
1471 * For each edge dominator that matches the successor of this
1472 * edge, promote the edge successor to the its grandchild.
1474 * XXX We violate the set abstraction here in favor a reasonably
1478 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1479 register bpf_u_int32 x
= ep
->edom
[i
];
1482 k
= lowest_set_bit(x
);
1484 k
+= i
* BITS_PER_WORD
;
1486 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1488 * Check that there is no data dependency between
1489 * nodes that will be violated if we move the edge.
1491 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1492 opt_state
->done
= 0;
1494 if (JT(target
) != 0)
1496 * Start over unless we hit a leaf.
1507 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1511 struct block
**diffp
, **samep
;
1519 * Make sure each predecessor loads the same value.
1522 val
= ep
->pred
->val
[A_ATOM
];
1523 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1524 if (val
!= ep
->pred
->val
[A_ATOM
])
1527 if (JT(b
->in_edges
->pred
) == b
)
1528 diffp
= &JT(b
->in_edges
->pred
);
1530 diffp
= &JF(b
->in_edges
->pred
);
1537 if (JT(*diffp
) != JT(b
))
1540 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1543 if ((*diffp
)->val
[A_ATOM
] != val
)
1546 diffp
= &JF(*diffp
);
1549 samep
= &JF(*diffp
);
1554 if (JT(*samep
) != JT(b
))
1557 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1560 if ((*samep
)->val
[A_ATOM
] == val
)
1563 /* XXX Need to check that there are no data dependencies
1564 between dp0 and dp1. Currently, the code generator
1565 will not produce such dependencies. */
1566 samep
= &JF(*samep
);
1569 /* XXX This doesn't cover everything. */
1570 for (i
= 0; i
< N_ATOMS
; ++i
)
1571 if ((*samep
)->val
[i
] != pred
->val
[i
])
1574 /* Pull up the node. */
1580 * At the top of the chain, each predecessor needs to point at the
1581 * pulled up node. Inside the chain, there is only one predecessor
1585 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1586 if (JT(ep
->pred
) == b
)
1587 JT(ep
->pred
) = pull
;
1589 JF(ep
->pred
) = pull
;
1595 opt_state
->done
= 0;
1599 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1603 struct block
**diffp
, **samep
;
1611 * Make sure each predecessor loads the same value.
1613 val
= ep
->pred
->val
[A_ATOM
];
1614 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1615 if (val
!= ep
->pred
->val
[A_ATOM
])
1618 if (JT(b
->in_edges
->pred
) == b
)
1619 diffp
= &JT(b
->in_edges
->pred
);
1621 diffp
= &JF(b
->in_edges
->pred
);
1628 if (JF(*diffp
) != JF(b
))
1631 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1634 if ((*diffp
)->val
[A_ATOM
] != val
)
1637 diffp
= &JT(*diffp
);
1640 samep
= &JT(*diffp
);
1645 if (JF(*samep
) != JF(b
))
1648 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1651 if ((*samep
)->val
[A_ATOM
] == val
)
1654 /* XXX Need to check that there are no data dependencies
1655 between diffp and samep. Currently, the code generator
1656 will not produce such dependencies. */
1657 samep
= &JT(*samep
);
1660 /* XXX This doesn't cover everything. */
1661 for (i
= 0; i
< N_ATOMS
; ++i
)
1662 if ((*samep
)->val
[i
] != pred
->val
[i
])
1665 /* Pull up the node. */
1671 * At the top of the chain, each predecessor needs to point at the
1672 * pulled up node. Inside the chain, there is only one predecessor
1676 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1677 if (JT(ep
->pred
) == b
)
1678 JT(ep
->pred
) = pull
;
1680 JF(ep
->pred
) = pull
;
1686 opt_state
->done
= 0;
1690 opt_blks(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1696 init_val(opt_state
);
1697 maxlevel
= ic
->root
->level
;
1699 find_inedges(opt_state
, ic
->root
);
1700 for (i
= maxlevel
; i
>= 0; --i
)
1701 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1702 opt_blk(cstate
, opt_state
, p
, do_stmts
);
1706 * No point trying to move branches; it can't possibly
1707 * make a difference at this point.
1711 for (i
= 1; i
<= maxlevel
; ++i
) {
1712 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1713 opt_j(opt_state
, &p
->et
);
1714 opt_j(opt_state
, &p
->ef
);
1718 find_inedges(opt_state
, ic
->root
);
1719 for (i
= 1; i
<= maxlevel
; ++i
) {
1720 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1721 or_pullup(opt_state
, p
);
1722 and_pullup(opt_state
, p
);
1728 link_inedge(struct edge
*parent
, struct block
*child
)
1730 parent
->next
= child
->in_edges
;
1731 child
->in_edges
= parent
;
1735 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1740 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1741 opt_state
->blocks
[i
]->in_edges
= 0;
1744 * Traverse the graph, adding each edge to the predecessor
1745 * list of its successors. Skip the leaves (i.e. level 0).
1747 for (i
= root
->level
; i
> 0; --i
) {
1748 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1749 link_inedge(&b
->et
, JT(b
));
1750 link_inedge(&b
->ef
, JF(b
));
1756 opt_root(struct block
**b
)
1758 struct slist
*tmp
, *s
;
1762 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1771 * If the root node is a return, then there is no
1772 * point executing any statements (since the bpf machine
1773 * has no side effects).
1775 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1780 opt_loop(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1785 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1786 printf("opt_loop(root, %d) begin\n", do_stmts
);
1787 opt_dump(cstate
, ic
);
1791 opt_state
->done
= 1;
1792 find_levels(opt_state
, ic
);
1793 find_dom(opt_state
, ic
->root
);
1794 find_closure(opt_state
, ic
->root
);
1795 find_ud(opt_state
, ic
->root
);
1796 find_edom(opt_state
, ic
->root
);
1797 opt_blks(cstate
, opt_state
, ic
, do_stmts
);
1799 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1800 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1801 opt_dump(cstate
, ic
);
1804 } while (!opt_state
->done
);
1808 * Optimize the filter code in its dag representation.
1811 bpf_optimize(compiler_state_t
*cstate
, struct icode
*ic
)
1813 opt_state_t opt_state
;
1815 opt_init(cstate
, &opt_state
, ic
);
1816 opt_loop(cstate
, &opt_state
, ic
, 0);
1817 opt_loop(cstate
, &opt_state
, ic
, 1);
1818 intern_blocks(&opt_state
, ic
);
1820 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1821 printf("after intern_blocks()\n");
1822 opt_dump(cstate
, ic
);
1825 opt_root(&ic
->root
);
1827 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1828 printf("after opt_root()\n");
1829 opt_dump(cstate
, ic
);
1832 opt_cleanup(&opt_state
);
1836 make_marks(struct icode
*ic
, struct block
*p
)
1838 if (!isMarked(ic
, p
)) {
1840 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1841 make_marks(ic
, JT(p
));
1842 make_marks(ic
, JF(p
));
1848 * Mark code array such that isMarked(ic->cur_mark, i) is true
1849 * only for nodes that are alive.
1852 mark_code(struct icode
*ic
)
1855 make_marks(ic
, ic
->root
);
1859 * True iff the two stmt lists load the same value from the packet into
1863 eq_slist(struct slist
*x
, struct slist
*y
)
1866 while (x
&& x
->s
.code
== NOP
)
1868 while (y
&& y
->s
.code
== NOP
)
1874 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1882 eq_blk(struct block
*b0
, struct block
*b1
)
1884 if (b0
->s
.code
== b1
->s
.code
&&
1885 b0
->s
.k
== b1
->s
.k
&&
1886 b0
->et
.succ
== b1
->et
.succ
&&
1887 b0
->ef
.succ
== b1
->ef
.succ
)
1888 return eq_slist(b0
->stmts
, b1
->stmts
);
1893 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
1897 int done1
; /* don't shadow global */
1900 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1901 opt_state
->blocks
[i
]->link
= 0;
1905 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
1906 if (!isMarked(ic
, opt_state
->blocks
[i
]))
1908 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
1909 if (!isMarked(ic
, opt_state
->blocks
[j
]))
1911 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
1912 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
1913 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
1918 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
1919 p
= opt_state
->blocks
[i
];
1924 JT(p
) = JT(p
)->link
;
1928 JF(p
) = JF(p
)->link
;
1936 opt_cleanup(opt_state_t
*opt_state
)
1938 free((void *)opt_state
->vnode_base
);
1939 free((void *)opt_state
->vmap
);
1940 free((void *)opt_state
->edges
);
1941 free((void *)opt_state
->space
);
1942 free((void *)opt_state
->levels
);
1943 free((void *)opt_state
->blocks
);
1947 * Return the number of stmts in 's'.
1950 slength(struct slist
*s
)
1954 for (; s
; s
= s
->next
)
1955 if (s
->s
.code
!= NOP
)
1961 * Return the number of nodes reachable by 'p'.
1962 * All nodes should be initially unmarked.
1965 count_blocks(struct icode
*ic
, struct block
*p
)
1967 if (p
== 0 || isMarked(ic
, p
))
1970 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
1974 * Do a depth first search on the flow graph, numbering the
1975 * the basic blocks, and entering them into the 'blocks' array.`
1978 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
1982 if (p
== 0 || isMarked(ic
, p
))
1986 n
= opt_state
->n_blocks
++;
1988 opt_state
->blocks
[n
] = p
;
1990 number_blks_r(opt_state
, ic
, JT(p
));
1991 number_blks_r(opt_state
, ic
, JF(p
));
1995 * Return the number of stmts in the flowgraph reachable by 'p'.
1996 * The nodes should be unmarked before calling.
1998 * Note that "stmts" means "instructions", and that this includes
2000 * side-effect statements in 'p' (slength(p->stmts));
2002 * statements in the true branch from 'p' (count_stmts(JT(p)));
2004 * statements in the false branch from 'p' (count_stmts(JF(p)));
2006 * the conditional jump itself (1);
2008 * an extra long jump if the true branch requires it (p->longjt);
2010 * an extra long jump if the false branch requires it (p->longjf).
2013 count_stmts(struct icode
*ic
, struct block
*p
)
2017 if (p
== 0 || isMarked(ic
, p
))
2020 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2021 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2025 * Allocate memory. All allocation is done before optimization
2026 * is begun. A linear bound on the size of all data structures is computed
2027 * from the total number of blocks and/or statements.
2030 opt_init(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
)
2033 int i
, n
, max_stmts
;
2036 * First, count the blocks, so we can malloc an array to map
2037 * block number to block. Then, put the blocks into the array.
2040 n
= count_blocks(ic
, ic
->root
);
2041 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2042 if (opt_state
->blocks
== NULL
)
2043 bpf_error(cstate
, "malloc");
2045 opt_state
->n_blocks
= 0;
2046 number_blks_r(opt_state
, ic
, ic
->root
);
2048 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2049 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2050 if (opt_state
->edges
== NULL
)
2051 bpf_error(cstate
, "malloc");
2054 * The number of levels is bounded by the number of nodes.
2056 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2057 if (opt_state
->levels
== NULL
)
2058 bpf_error(cstate
, "malloc");
2060 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
2061 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
2064 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
2065 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
2066 if (opt_state
->space
== NULL
)
2067 bpf_error(cstate
, "malloc");
2068 p
= opt_state
->space
;
2069 opt_state
->all_dom_sets
= p
;
2070 for (i
= 0; i
< n
; ++i
) {
2071 opt_state
->blocks
[i
]->dom
= p
;
2072 p
+= opt_state
->nodewords
;
2074 opt_state
->all_closure_sets
= p
;
2075 for (i
= 0; i
< n
; ++i
) {
2076 opt_state
->blocks
[i
]->closure
= p
;
2077 p
+= opt_state
->nodewords
;
2079 opt_state
->all_edge_sets
= p
;
2080 for (i
= 0; i
< n
; ++i
) {
2081 register struct block
*b
= opt_state
->blocks
[i
];
2084 p
+= opt_state
->edgewords
;
2086 p
+= opt_state
->edgewords
;
2088 opt_state
->edges
[i
] = &b
->et
;
2089 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2090 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2095 for (i
= 0; i
< n
; ++i
)
2096 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2098 * We allocate at most 3 value numbers per statement,
2099 * so this is an upper bound on the number of valnodes
2102 opt_state
->maxval
= 3 * max_stmts
;
2103 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2104 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2105 if (opt_state
->vmap
== NULL
|| opt_state
->vnode_base
== NULL
)
2106 bpf_error(cstate
, "malloc");
2110 * This is only used when supporting optimizer debugging. It is
2111 * global state, so do *not* do more than one compile in parallel
2112 * and expect it to provide meaningful information.
2119 * Returns true if successful. Returns false if a branch has
2120 * an offset that is too large. If so, we have marked that
2121 * branch so that on a subsequent iteration, it will be treated
2125 convert_code_r(compiler_state_t
*cstate
, conv_state_t
*conv_state
,
2126 struct icode
*ic
, struct block
*p
)
2128 struct bpf_insn
*dst
;
2132 u_int extrajmps
; /* number of extra jumps inserted */
2133 struct slist
**offset
= NULL
;
2135 if (p
== 0 || isMarked(ic
, p
))
2139 if (convert_code_r(cstate
, conv_state
, ic
, JF(p
)) == 0)
2141 if (convert_code_r(cstate
, conv_state
, ic
, JT(p
)) == 0)
2144 slen
= slength(p
->stmts
);
2145 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2146 /* inflate length by any extra jumps */
2148 p
->offset
= (int)(dst
- conv_state
->fstart
);
2150 /* generate offset[] for convenience */
2152 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2154 bpf_error(cstate
, "not enough core");
2159 for (off
= 0; off
< slen
&& src
; off
++) {
2161 printf("off=%d src=%x\n", off
, src
);
2168 for (src
= p
->stmts
; src
; src
= src
->next
) {
2169 if (src
->s
.code
== NOP
)
2171 dst
->code
= (u_short
)src
->s
.code
;
2174 /* fill block-local relative jump */
2175 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2177 if (src
->s
.jt
|| src
->s
.jf
) {
2178 bpf_error(cstate
, "illegal jmp destination");
2184 if (off
== slen
- 2) /*???*/
2190 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2193 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2194 off
, src
->s
.jt
, src
->s
.jf
);
2197 if (!src
->s
.jt
|| !src
->s
.jf
) {
2198 bpf_error(cstate
, ljerr
, "no jmp destination", off
);
2203 for (i
= 0; i
< slen
; i
++) {
2204 if (offset
[i
] == src
->s
.jt
) {
2206 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2210 if (i
- off
- 1 >= 256) {
2211 bpf_error(cstate
, ljerr
, "out-of-range jump", off
);
2214 dst
->jt
= (u_char
)(i
- off
- 1);
2217 if (offset
[i
] == src
->s
.jf
) {
2219 bpf_error(cstate
, ljerr
, "multiple matches", off
);
2222 if (i
- off
- 1 >= 256) {
2223 bpf_error(cstate
, ljerr
, "out-of-range jump", off
);
2226 dst
->jf
= (u_char
)(i
- off
- 1);
2231 bpf_error(cstate
, ljerr
, "no destination found", off
);
2243 if (dst
- conv_state
->fstart
< NBIDS
)
2244 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2246 dst
->code
= (u_short
)p
->s
.code
;
2250 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2252 /* offset too large for branch, must add a jump */
2253 if (p
->longjt
== 0) {
2254 /* mark this instruction and retry */
2258 /* branch if T to following jump */
2259 if (extrajmps
>= 256) {
2260 bpf_error(cstate
, "too many extra jumps");
2263 dst
->jt
= (u_char
)extrajmps
;
2265 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2266 dst
[extrajmps
].k
= off
- extrajmps
;
2269 dst
->jt
= (u_char
)off
;
2270 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2272 /* offset too large for branch, must add a jump */
2273 if (p
->longjf
== 0) {
2274 /* mark this instruction and retry */
2278 /* branch if F to following jump */
2279 /* if two jumps are inserted, F goes to second one */
2280 if (extrajmps
>= 256) {
2281 bpf_error(cstate
, "too many extra jumps");
2284 dst
->jf
= (u_char
)extrajmps
;
2286 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2287 dst
[extrajmps
].k
= off
- extrajmps
;
2290 dst
->jf
= (u_char
)off
;
2297 * Convert flowgraph intermediate representation to the
2298 * BPF array representation. Set *lenp to the number of instructions.
2300 * This routine does *NOT* leak the memory pointed to by fp. It *must
2301 * not* do free(fp) before returning fp; doing so would make no sense,
2302 * as the BPF array pointed to by the return value of icode_to_fcode()
2303 * must be valid - it's being returned for use in a bpf_program structure.
2305 * If it appears that icode_to_fcode() is leaking, the problem is that
2306 * the program using pcap_compile() is failing to free the memory in
2307 * the BPF program when it's done - the leak is in the program, not in
2308 * the routine that happens to be allocating the memory. (By analogy, if
2309 * a program calls fopen() without ever calling fclose() on the FILE *,
2310 * it will leak the FILE structure; the leak is not in fopen(), it's in
2311 * the program.) Change the program to use pcap_freecode() when it's
2312 * done with the filter program. See the pcap man page.
2315 icode_to_fcode(compiler_state_t
*cstate
, struct icode
*ic
,
2316 struct block
*root
, u_int
*lenp
)
2319 struct bpf_insn
*fp
;
2320 conv_state_t conv_state
;
2323 * Loop doing convert_code_r() until no branches remain
2324 * with too-large offsets.
2328 n
= *lenp
= count_stmts(ic
, root
);
2330 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2332 bpf_error(cstate
, "malloc");
2333 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2334 conv_state
.fstart
= fp
;
2335 conv_state
.ftail
= fp
+ n
;
2338 if (convert_code_r(cstate
, &conv_state
, ic
, root
))
2347 * Make a copy of a BPF program and put it in the "fcode" member of
2350 * If we fail to allocate memory for the copy, fill in the "errbuf"
2351 * member of the "pcap_t" with an error message, and return -1;
2352 * otherwise, return 0.
2355 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2360 * Validate the program.
2362 if (!bpf_validate(fp
->bf_insns
, fp
->bf_len
)) {
2363 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2364 "BPF program is not valid");
2369 * Free up any already installed program.
2371 pcap_freecode(&p
->fcode
);
2373 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2374 p
->fcode
.bf_len
= fp
->bf_len
;
2375 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2376 if (p
->fcode
.bf_insns
== NULL
) {
2377 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2381 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2387 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2390 int icount
, noffset
;
2393 if (block
== NULL
|| isMarked(ic
, block
))
2397 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2398 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2400 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2401 for (i
= block
->offset
; i
< noffset
; i
++) {
2402 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2404 fprintf(out
, "\" tooltip=\"");
2405 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2406 if (block
->val
[i
] != VAL_UNKNOWN
)
2407 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2408 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2409 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2411 if (JT(block
) == NULL
)
2412 fprintf(out
, ", peripheries=2");
2413 fprintf(out
, "];\n");
2415 dot_dump_node(ic
, JT(block
), prog
, out
);
2416 dot_dump_node(ic
, JF(block
), prog
, out
);
2420 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2422 if (block
== NULL
|| isMarked(ic
, block
))
2427 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2428 block
->id
, JT(block
)->id
);
2429 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2430 block
->id
, JF(block
)->id
);
2432 dot_dump_edge(ic
, JT(block
), out
);
2433 dot_dump_edge(ic
, JF(block
), out
);
2436 /* Output the block CFG using graphviz/DOT language
2437 * In the CFG, block's code, value index for each registers at EXIT,
2438 * and the jump relationship is show.
2440 * example DOT for BPF `ip src host 1.1.1.1' is:
2442 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2443 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2444 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2445 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2446 "block0":se -> "block1":n [label="T"];
2447 "block0":sw -> "block3":n [label="F"];
2448 "block1":se -> "block2":n [label="T"];
2449 "block1":sw -> "block3":n [label="F"];
2452 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2453 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2456 dot_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2458 struct bpf_program f
;
2461 memset(bids
, 0, sizeof bids
);
2462 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2464 fprintf(out
, "digraph BPF {\n");
2466 dot_dump_node(ic
, ic
->root
, &f
, out
);
2468 dot_dump_edge(ic
, ic
->root
, out
);
2469 fprintf(out
, "}\n");
2471 free((char *)f
.bf_insns
);
2475 plain_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2477 struct bpf_program f
;
2479 memset(bids
, 0, sizeof bids
);
2480 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2483 free((char *)f
.bf_insns
);
2487 opt_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2490 * If the CFG, in DOT format, is requested, output it rather than
2491 * the code that would be generated from that graph.
2493 if (pcap_print_dot_graph
)
2494 dot_dump(cstate
, ic
);
2496 plain_dump(cstate
, ic
);