]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
24 static const char rcsid
[] =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.69.2.1 2002-03-24 23:25:38 guy Exp $ (LBL)";
42 #ifdef HAVE_OS_PROTO_H
50 #define A_ATOM BPF_MEMWORDS
51 #define X_ATOM (BPF_MEMWORDS+1)
56 * This define is used to represent *both* the accumulator and
57 * x register in use-def computations.
58 * Currently, the use-def code assumes only one definition per instruction.
60 #define AX_ATOM N_ATOMS
63 * A flag to indicate that further optimization is needed.
64 * Iterative passes are continued until a given pass yields no
70 * A block is marked if only if its mark equals the current mark.
71 * Rather than traverse the code array, marking each item, 'cur_mark' is
72 * incremented. This automatically makes each element unmarked.
75 #define isMarked(p) ((p)->mark == cur_mark)
76 #define unMarkAll() cur_mark += 1
77 #define Mark(p) ((p)->mark = cur_mark)
79 static void opt_init(struct block
*);
80 static void opt_cleanup(void);
82 static void make_marks(struct block
*);
83 static void mark_code(struct block
*);
85 static void intern_blocks(struct block
*);
87 static int eq_slist(struct slist
*, struct slist
*);
89 static void find_levels_r(struct block
*);
91 static void find_levels(struct block
*);
92 static void find_dom(struct block
*);
93 static void propedom(struct edge
*);
94 static void find_edom(struct block
*);
95 static void find_closure(struct block
*);
96 static int atomuse(struct stmt
*);
97 static int atomdef(struct stmt
*);
98 static void compute_local_ud(struct block
*);
99 static void find_ud(struct block
*);
100 static void init_val(void);
101 static int F(int, int, int);
102 static inline void vstore(struct stmt
*, int *, int, int);
103 static void opt_blk(struct block
*, int);
104 static int use_conflict(struct block
*, struct block
*);
105 static void opt_j(struct edge
*);
106 static void or_pullup(struct block
*);
107 static void and_pullup(struct block
*);
108 static void opt_blks(struct block
*, int);
109 static inline void link_inedge(struct edge
*, struct block
*);
110 static void find_inedges(struct block
*);
111 static void opt_root(struct block
**);
112 static void opt_loop(struct block
*, int);
113 static void fold_op(struct stmt
*, int, int);
114 static inline struct slist
*this_op(struct slist
*);
115 static void opt_not(struct block
*);
116 static void opt_peep(struct block
*);
117 static void opt_stmt(struct stmt
*, int[], int);
118 static void deadstmt(struct stmt
*, struct stmt
*[]);
119 static void opt_deadstores(struct block
*);
120 static void opt_blk(struct block
*, int);
121 static int use_conflict(struct block
*, struct block
*);
122 static void opt_j(struct edge
*);
123 static struct block
*fold_edge(struct block
*, struct edge
*);
124 static inline int eq_blk(struct block
*, struct block
*);
125 static int slength(struct slist
*);
126 static int count_blocks(struct block
*);
127 static void number_blks_r(struct block
*);
128 static int count_stmts(struct block
*);
129 static int convert_code_r(struct block
*);
131 static void opt_dump(struct block
*);
135 struct block
**blocks
;
140 * A bit vector set representation of the dominators.
141 * We round up the set size to the next power of two.
143 static int nodewords
;
144 static int edgewords
;
145 struct block
**levels
;
147 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
149 * True if a is in uset {p}
151 #define SET_MEMBER(p, a) \
152 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
157 #define SET_INSERT(p, a) \
158 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
161 * Delete 'a' from uset p.
163 #define SET_DELETE(p, a) \
164 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
169 #define SET_INTERSECT(a, b, n)\
171 register bpf_u_int32 *_x = a, *_y = b;\
172 register int _n = n;\
173 while (--_n >= 0) *_x++ &= *_y++;\
179 #define SET_SUBTRACT(a, b, n)\
181 register bpf_u_int32 *_x = a, *_y = b;\
182 register int _n = n;\
183 while (--_n >= 0) *_x++ &=~ *_y++;\
189 #define SET_UNION(a, b, n)\
191 register bpf_u_int32 *_x = a, *_y = b;\
192 register int _n = n;\
193 while (--_n >= 0) *_x++ |= *_y++;\
196 static uset all_dom_sets
;
197 static uset all_closure_sets
;
198 static uset all_edge_sets
;
201 #define MAX(a,b) ((a)>(b)?(a):(b))
217 find_levels_r(JT(b
));
218 find_levels_r(JF(b
));
219 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
223 b
->link
= levels
[level
];
228 * Level graph. The levels go from 0 at the leaves to
229 * N_LEVELS at the root. The levels[] array points to the
230 * first node of the level list, whose elements are linked
231 * with the 'link' field of the struct block.
237 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
243 * Find dominator relationships.
244 * Assumes graph has been leveled.
255 * Initialize sets to contain all nodes.
258 i
= n_blocks
* nodewords
;
261 /* Root starts off empty. */
262 for (i
= nodewords
; --i
>= 0;)
265 /* root->level is the highest level no found. */
266 for (i
= root
->level
; i
>= 0; --i
) {
267 for (b
= levels
[i
]; b
; b
= b
->link
) {
268 SET_INSERT(b
->dom
, b
->id
);
271 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
272 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
281 SET_INSERT(ep
->edom
, ep
->id
);
283 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
284 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
289 * Compute edge dominators.
290 * Assumes graph has been leveled and predecessors established.
301 for (i
= n_edges
* edgewords
; --i
>= 0; )
304 /* root->level is the highest level no found. */
305 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
306 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
307 for (i
= root
->level
; i
>= 0; --i
) {
308 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
316 * Find the backwards transitive closure of the flow graph. These sets
317 * are backwards in the sense that we find the set of nodes that reach
318 * a given node, not the set of nodes that can be reached by a node.
320 * Assumes graph has been leveled.
330 * Initialize sets to contain no nodes.
332 memset((char *)all_closure_sets
, 0,
333 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
335 /* root->level is the highest level no found. */
336 for (i
= root
->level
; i
>= 0; --i
) {
337 for (b
= levels
[i
]; b
; b
= b
->link
) {
338 SET_INSERT(b
->closure
, b
->id
);
341 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
342 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
348 * Return the register number that is used by s. If A and X are both
349 * used, return AX_ATOM. If no register is used, return -1.
351 * The implementation should probably change to an array access.
357 register int c
= s
->code
;
362 switch (BPF_CLASS(c
)) {
365 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
366 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
370 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
371 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
381 if (BPF_SRC(c
) == BPF_X
)
386 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
393 * Return the register number that is defined by 's'. We assume that
394 * a single stmt cannot define more than one register. If no register
395 * is defined, return -1.
397 * The implementation should probably change to an array access.
406 switch (BPF_CLASS(s
->code
)) {
420 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
430 atomset def
= 0, use
= 0, kill
= 0;
433 for (s
= b
->stmts
; s
; s
= s
->next
) {
434 if (s
->s
.code
== NOP
)
436 atom
= atomuse(&s
->s
);
438 if (atom
== AX_ATOM
) {
439 if (!ATOMELEM(def
, X_ATOM
))
440 use
|= ATOMMASK(X_ATOM
);
441 if (!ATOMELEM(def
, A_ATOM
))
442 use
|= ATOMMASK(A_ATOM
);
444 else if (atom
< N_ATOMS
) {
445 if (!ATOMELEM(def
, atom
))
446 use
|= ATOMMASK(atom
);
451 atom
= atomdef(&s
->s
);
453 if (!ATOMELEM(use
, atom
))
454 kill
|= ATOMMASK(atom
);
455 def
|= ATOMMASK(atom
);
458 if (!ATOMELEM(def
, A_ATOM
) && BPF_CLASS(b
->s
.code
) == BPF_JMP
)
459 use
|= ATOMMASK(A_ATOM
);
467 * Assume graph is already leveled.
477 * root->level is the highest level no found;
478 * count down from there.
480 maxlevel
= root
->level
;
481 for (i
= maxlevel
; i
>= 0; --i
)
482 for (p
= levels
[i
]; p
; p
= p
->link
) {
487 for (i
= 1; i
<= maxlevel
; ++i
) {
488 for (p
= levels
[i
]; p
; p
= p
->link
) {
489 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
490 p
->in_use
|= p
->out_use
&~ p
->kill
;
496 * These data structures are used in a Cocke and Shwarz style
497 * value numbering scheme. Since the flowgraph is acyclic,
498 * exit values can be propagated from a node's predecessors
499 * provided it is uniquely defined.
505 struct valnode
*next
;
509 static struct valnode
*hashtbl
[MODULUS
];
513 /* Integer constants mapped with the load immediate opcode. */
514 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
521 struct vmapinfo
*vmap
;
522 struct valnode
*vnode_base
;
523 struct valnode
*next_vnode
;
529 next_vnode
= vnode_base
;
530 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
531 memset((char *)hashtbl
, 0, sizeof hashtbl
);
534 /* Because we really don't have an IR, this stuff is a little messy. */
544 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
547 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
548 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
552 if (BPF_MODE(code
) == BPF_IMM
&&
553 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
554 vmap
[val
].const_val
= v0
;
555 vmap
[val
].is_const
= 1;
562 p
->next
= hashtbl
[hash
];
569 vstore(s
, valp
, newval
, alter
)
575 if (alter
&& *valp
== newval
)
588 a
= vmap
[v0
].const_val
;
589 b
= vmap
[v1
].const_val
;
591 switch (BPF_OP(s
->code
)) {
606 bpf_error("division by zero");
634 s
->code
= BPF_LD
|BPF_IMM
;
638 static inline struct slist
*
642 while (s
!= 0 && s
->s
.code
== NOP
)
651 struct block
*tmp
= JT(b
);
662 struct slist
*next
, *last
;
674 next
= this_op(s
->next
);
680 * st M[k] --> st M[k]
683 if (s
->s
.code
== BPF_ST
&&
684 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
685 s
->s
.k
== next
->s
.k
) {
687 next
->s
.code
= BPF_MISC
|BPF_TAX
;
693 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
694 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
695 s
->s
.code
= BPF_LDX
|BPF_IMM
;
696 next
->s
.code
= BPF_MISC
|BPF_TXA
;
700 * This is an ugly special case, but it happens
701 * when you say tcp[k] or udp[k] where k is a constant.
703 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
704 struct slist
*add
, *tax
, *ild
;
707 * Check that X isn't used on exit from this
708 * block (which the optimizer might cause).
709 * We know the code generator won't generate
710 * any local dependencies.
712 if (ATOMELEM(b
->out_use
, X_ATOM
))
715 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
718 add
= this_op(next
->next
);
719 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
722 tax
= this_op(add
->next
);
723 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
726 ild
= this_op(tax
->next
);
727 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
728 BPF_MODE(ild
->s
.code
) != BPF_IND
)
731 * XXX We need to check that X is not
732 * subsequently used. We know we can eliminate the
733 * accumulator modifications since it is defined
734 * by the last stmt of this sequence.
736 * We want to turn this sequence:
739 * (005) ldxms [14] {next} -- optional
742 * (008) ild [x+0] {ild}
744 * into this sequence:
762 * If we have a subtract to do a comparison, and the X register
763 * is a known constant, we can merge this value into the
766 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
) &&
767 !ATOMELEM(b
->out_use
, A_ATOM
)) {
768 val
= b
->val
[X_ATOM
];
769 if (vmap
[val
].is_const
) {
772 b
->s
.k
+= vmap
[val
].const_val
;
773 op
= BPF_OP(b
->s
.code
);
774 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
775 struct block
*t
= JT(b
);
778 b
->s
.k
+= 0x80000000;
782 } else if (b
->s
.k
== 0) {
788 b
->s
.code
= BPF_CLASS(b
->s
.code
) | BPF_OP(b
->s
.code
) |
794 * Likewise, a constant subtract can be simplified.
796 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
) &&
797 !ATOMELEM(b
->out_use
, A_ATOM
)) {
802 op
= BPF_OP(b
->s
.code
);
803 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
804 struct block
*t
= JT(b
);
807 b
->s
.k
+= 0x80000000;
815 if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
816 !ATOMELEM(b
->out_use
, A_ATOM
) && b
->s
.k
== 0) {
818 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
824 * If the accumulator is a known constant, we can compute the
827 val
= b
->val
[A_ATOM
];
828 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
829 bpf_int32 v
= vmap
[val
].const_val
;
830 switch (BPF_OP(b
->s
.code
)) {
837 v
= (unsigned)v
> b
->s
.k
;
841 v
= (unsigned)v
>= b
->s
.k
;
861 * Compute the symbolic value of expression of 's', and update
862 * anything it defines in the value table 'val'. If 'alter' is true,
863 * do various optimizations. This code would be cleaner if symbolic
864 * evaluation and code transformations weren't folded together.
867 opt_stmt(s
, val
, alter
)
877 case BPF_LD
|BPF_ABS
|BPF_W
:
878 case BPF_LD
|BPF_ABS
|BPF_H
:
879 case BPF_LD
|BPF_ABS
|BPF_B
:
880 v
= F(s
->code
, s
->k
, 0L);
881 vstore(s
, &val
[A_ATOM
], v
, alter
);
884 case BPF_LD
|BPF_IND
|BPF_W
:
885 case BPF_LD
|BPF_IND
|BPF_H
:
886 case BPF_LD
|BPF_IND
|BPF_B
:
888 if (alter
&& vmap
[v
].is_const
) {
889 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
890 s
->k
+= vmap
[v
].const_val
;
891 v
= F(s
->code
, s
->k
, 0L);
895 v
= F(s
->code
, s
->k
, v
);
896 vstore(s
, &val
[A_ATOM
], v
, alter
);
900 v
= F(s
->code
, 0L, 0L);
901 vstore(s
, &val
[A_ATOM
], v
, alter
);
906 vstore(s
, &val
[A_ATOM
], v
, alter
);
909 case BPF_LDX
|BPF_IMM
:
911 vstore(s
, &val
[X_ATOM
], v
, alter
);
914 case BPF_LDX
|BPF_MSH
|BPF_B
:
915 v
= F(s
->code
, s
->k
, 0L);
916 vstore(s
, &val
[X_ATOM
], v
, alter
);
919 case BPF_ALU
|BPF_NEG
:
920 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
921 s
->code
= BPF_LD
|BPF_IMM
;
922 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
923 val
[A_ATOM
] = K(s
->k
);
926 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
929 case BPF_ALU
|BPF_ADD
|BPF_K
:
930 case BPF_ALU
|BPF_SUB
|BPF_K
:
931 case BPF_ALU
|BPF_MUL
|BPF_K
:
932 case BPF_ALU
|BPF_DIV
|BPF_K
:
933 case BPF_ALU
|BPF_AND
|BPF_K
:
934 case BPF_ALU
|BPF_OR
|BPF_K
:
935 case BPF_ALU
|BPF_LSH
|BPF_K
:
936 case BPF_ALU
|BPF_RSH
|BPF_K
:
937 op
= BPF_OP(s
->code
);
940 /* don't optimize away "sub #0"
941 * as it may be needed later to
942 * fixup the generated math code */
944 op
== BPF_LSH
|| op
== BPF_RSH
||
949 if (op
== BPF_MUL
|| op
== BPF_AND
) {
950 s
->code
= BPF_LD
|BPF_IMM
;
951 val
[A_ATOM
] = K(s
->k
);
955 if (vmap
[val
[A_ATOM
]].is_const
) {
956 fold_op(s
, val
[A_ATOM
], K(s
->k
));
957 val
[A_ATOM
] = K(s
->k
);
961 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
964 case BPF_ALU
|BPF_ADD
|BPF_X
:
965 case BPF_ALU
|BPF_SUB
|BPF_X
:
966 case BPF_ALU
|BPF_MUL
|BPF_X
:
967 case BPF_ALU
|BPF_DIV
|BPF_X
:
968 case BPF_ALU
|BPF_AND
|BPF_X
:
969 case BPF_ALU
|BPF_OR
|BPF_X
:
970 case BPF_ALU
|BPF_LSH
|BPF_X
:
971 case BPF_ALU
|BPF_RSH
|BPF_X
:
972 op
= BPF_OP(s
->code
);
973 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
974 if (vmap
[val
[A_ATOM
]].is_const
) {
975 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
976 val
[A_ATOM
] = K(s
->k
);
979 s
->code
= BPF_ALU
|BPF_K
|op
;
980 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
983 F(s
->code
, val
[A_ATOM
], K(s
->k
));
988 * Check if we're doing something to an accumulator
989 * that is 0, and simplify. This may not seem like
990 * much of a simplification but it could open up further
992 * XXX We could also check for mul by 1, and -1, etc.
994 if (alter
&& vmap
[val
[A_ATOM
]].is_const
995 && vmap
[val
[A_ATOM
]].const_val
== 0) {
996 if (op
== BPF_ADD
|| op
== BPF_OR
||
997 op
== BPF_LSH
|| op
== BPF_RSH
|| op
== BPF_SUB
) {
998 s
->code
= BPF_MISC
|BPF_TXA
;
999 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1002 else if (op
== BPF_MUL
|| op
== BPF_DIV
||
1004 s
->code
= BPF_LD
|BPF_IMM
;
1006 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1009 else if (op
== BPF_NEG
) {
1014 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1017 case BPF_MISC
|BPF_TXA
:
1018 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1021 case BPF_LD
|BPF_MEM
:
1023 if (alter
&& vmap
[v
].is_const
) {
1024 s
->code
= BPF_LD
|BPF_IMM
;
1025 s
->k
= vmap
[v
].const_val
;
1028 vstore(s
, &val
[A_ATOM
], v
, alter
);
1031 case BPF_MISC
|BPF_TAX
:
1032 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1035 case BPF_LDX
|BPF_MEM
:
1037 if (alter
&& vmap
[v
].is_const
) {
1038 s
->code
= BPF_LDX
|BPF_IMM
;
1039 s
->k
= vmap
[v
].const_val
;
1042 vstore(s
, &val
[X_ATOM
], v
, alter
);
1046 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1050 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1057 register struct stmt
*s
;
1058 register struct stmt
*last
[];
1064 if (atom
== AX_ATOM
) {
1075 last
[atom
]->code
= NOP
;
1083 register struct block
*b
;
1085 register struct slist
*s
;
1087 struct stmt
*last
[N_ATOMS
];
1089 memset((char *)last
, 0, sizeof last
);
1091 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1092 deadstmt(&s
->s
, last
);
1093 deadstmt(&b
->s
, last
);
1095 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1096 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1097 last
[atom
]->code
= NOP
;
1103 opt_blk(b
, do_stmts
)
1113 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1114 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1121 * Initialize the atom values.
1122 * If we have no predecessors, everything is undefined.
1123 * Otherwise, we inherent our values from our predecessors.
1124 * If any register has an ambiguous value (i.e. control paths are
1125 * merging) give it the undefined value of 0.
1129 memset((char *)b
->val
, 0, sizeof(b
->val
));
1131 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1132 while ((p
= p
->next
) != NULL
) {
1133 for (i
= 0; i
< N_ATOMS
; ++i
)
1134 if (b
->val
[i
] != p
->pred
->val
[i
])
1138 aval
= b
->val
[A_ATOM
];
1139 for (s
= b
->stmts
; s
; s
= s
->next
)
1140 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1143 * This is a special case: if we don't use anything from this
1144 * block, and we load the accumulator with value that is
1145 * already there, or if this block is a return,
1146 * eliminate all the statements.
1149 ((b
->out_use
== 0 && aval
!= 0 &&b
->val
[A_ATOM
] == aval
) ||
1150 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1151 if (b
->stmts
!= 0) {
1160 * Set up values for branch optimizer.
1162 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1163 b
->oval
= K(b
->s
.k
);
1165 b
->oval
= b
->val
[X_ATOM
];
1166 b
->et
.code
= b
->s
.code
;
1167 b
->ef
.code
= -b
->s
.code
;
1171 * Return true if any register that is used on exit from 'succ', has
1172 * an exit value that is different from the corresponding exit value
1176 use_conflict(b
, succ
)
1177 struct block
*b
, *succ
;
1180 atomset use
= succ
->out_use
;
1185 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1186 if (ATOMELEM(use
, atom
))
1187 if (b
->val
[atom
] != succ
->val
[atom
])
1192 static struct block
*
1193 fold_edge(child
, ep
)
1194 struct block
*child
;
1198 int aval0
, aval1
, oval0
, oval1
;
1199 int code
= ep
->code
;
1207 if (child
->s
.code
!= code
)
1210 aval0
= child
->val
[A_ATOM
];
1211 oval0
= child
->oval
;
1212 aval1
= ep
->pred
->val
[A_ATOM
];
1213 oval1
= ep
->pred
->oval
;
1220 * The operands are identical, so the
1221 * result is true if a true branch was
1222 * taken to get here, otherwise false.
1224 return sense
? JT(child
) : JF(child
);
1226 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1228 * At this point, we only know the comparison if we
1229 * came down the true branch, and it was an equality
1230 * comparison with a constant. We rely on the fact that
1231 * distinct constants have distinct value numbers.
1243 register struct block
*target
;
1245 if (JT(ep
->succ
) == 0)
1248 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1250 * Common branch targets can be eliminated, provided
1251 * there is no data dependency.
1253 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1255 ep
->succ
= JT(ep
->succ
);
1259 * For each edge dominator that matches the successor of this
1260 * edge, promote the edge successor to the its grandchild.
1262 * XXX We violate the set abstraction here in favor a reasonably
1266 for (i
= 0; i
< edgewords
; ++i
) {
1267 register bpf_u_int32 x
= ep
->edom
[i
];
1272 k
+= i
* BITS_PER_WORD
;
1274 target
= fold_edge(ep
->succ
, edges
[k
]);
1276 * Check that there is no data dependency between
1277 * nodes that will be violated if we move the edge.
1279 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1282 if (JT(target
) != 0)
1284 * Start over unless we hit a leaf.
1300 struct block
**diffp
, **samep
;
1308 * Make sure each predecessor loads the same value.
1311 val
= ep
->pred
->val
[A_ATOM
];
1312 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1313 if (val
!= ep
->pred
->val
[A_ATOM
])
1316 if (JT(b
->in_edges
->pred
) == b
)
1317 diffp
= &JT(b
->in_edges
->pred
);
1319 diffp
= &JF(b
->in_edges
->pred
);
1326 if (JT(*diffp
) != JT(b
))
1329 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1332 if ((*diffp
)->val
[A_ATOM
] != val
)
1335 diffp
= &JF(*diffp
);
1338 samep
= &JF(*diffp
);
1343 if (JT(*samep
) != JT(b
))
1346 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1349 if ((*samep
)->val
[A_ATOM
] == val
)
1352 /* XXX Need to check that there are no data dependencies
1353 between dp0 and dp1. Currently, the code generator
1354 will not produce such dependencies. */
1355 samep
= &JF(*samep
);
1358 /* XXX This doesn't cover everything. */
1359 for (i
= 0; i
< N_ATOMS
; ++i
)
1360 if ((*samep
)->val
[i
] != pred
->val
[i
])
1363 /* Pull up the node. */
1369 * At the top of the chain, each predecessor needs to point at the
1370 * pulled up node. Inside the chain, there is only one predecessor
1374 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1375 if (JT(ep
->pred
) == b
)
1376 JT(ep
->pred
) = pull
;
1378 JF(ep
->pred
) = pull
;
1393 struct block
**diffp
, **samep
;
1401 * Make sure each predecessor loads the same value.
1403 val
= ep
->pred
->val
[A_ATOM
];
1404 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1405 if (val
!= ep
->pred
->val
[A_ATOM
])
1408 if (JT(b
->in_edges
->pred
) == b
)
1409 diffp
= &JT(b
->in_edges
->pred
);
1411 diffp
= &JF(b
->in_edges
->pred
);
1418 if (JF(*diffp
) != JF(b
))
1421 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1424 if ((*diffp
)->val
[A_ATOM
] != val
)
1427 diffp
= &JT(*diffp
);
1430 samep
= &JT(*diffp
);
1435 if (JF(*samep
) != JF(b
))
1438 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1441 if ((*samep
)->val
[A_ATOM
] == val
)
1444 /* XXX Need to check that there are no data dependencies
1445 between diffp and samep. Currently, the code generator
1446 will not produce such dependencies. */
1447 samep
= &JT(*samep
);
1450 /* XXX This doesn't cover everything. */
1451 for (i
= 0; i
< N_ATOMS
; ++i
)
1452 if ((*samep
)->val
[i
] != pred
->val
[i
])
1455 /* Pull up the node. */
1461 * At the top of the chain, each predecessor needs to point at the
1462 * pulled up node. Inside the chain, there is only one predecessor
1466 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1467 if (JT(ep
->pred
) == b
)
1468 JT(ep
->pred
) = pull
;
1470 JF(ep
->pred
) = pull
;
1480 opt_blks(root
, do_stmts
)
1488 maxlevel
= root
->level
;
1491 for (i
= maxlevel
; i
>= 0; --i
)
1492 for (p
= levels
[i
]; p
; p
= p
->link
)
1493 opt_blk(p
, do_stmts
);
1497 * No point trying to move branches; it can't possibly
1498 * make a difference at this point.
1502 for (i
= 1; i
<= maxlevel
; ++i
) {
1503 for (p
= levels
[i
]; p
; p
= p
->link
) {
1510 for (i
= 1; i
<= maxlevel
; ++i
) {
1511 for (p
= levels
[i
]; p
; p
= p
->link
) {
1519 link_inedge(parent
, child
)
1520 struct edge
*parent
;
1521 struct block
*child
;
1523 parent
->next
= child
->in_edges
;
1524 child
->in_edges
= parent
;
1534 for (i
= 0; i
< n_blocks
; ++i
)
1535 blocks
[i
]->in_edges
= 0;
1538 * Traverse the graph, adding each edge to the predecessor
1539 * list of its successors. Skip the leaves (i.e. level 0).
1541 for (i
= root
->level
; i
> 0; --i
) {
1542 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1543 link_inedge(&b
->et
, JT(b
));
1544 link_inedge(&b
->ef
, JF(b
));
1553 struct slist
*tmp
, *s
;
1557 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1566 * If the root node is a return, then there is no
1567 * point executing any statements (since the bpf machine
1568 * has no side effects).
1570 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1575 opt_loop(root
, do_stmts
)
1582 printf("opt_loop(root, %d) begin\n", do_stmts
);
1593 opt_blks(root
, do_stmts
);
1596 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, done
);
1604 * Optimize the filter code in its dag representation.
1608 struct block
**rootp
;
1617 intern_blocks(root
);
1620 printf("after intern_blocks()\n");
1627 printf("after opt_root()\n");
1640 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1648 * Mark code array such that isMarked(i) is true
1649 * only for nodes that are alive.
1660 * True iff the two stmt lists load the same value from the packet into
1665 struct slist
*x
, *y
;
1668 while (x
&& x
->s
.code
== NOP
)
1670 while (y
&& y
->s
.code
== NOP
)
1676 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1685 struct block
*b0
, *b1
;
1687 if (b0
->s
.code
== b1
->s
.code
&&
1688 b0
->s
.k
== b1
->s
.k
&&
1689 b0
->et
.succ
== b1
->et
.succ
&&
1690 b0
->ef
.succ
== b1
->ef
.succ
)
1691 return eq_slist(b0
->stmts
, b1
->stmts
);
1704 for (i
= 0; i
< n_blocks
; ++i
)
1705 blocks
[i
]->link
= 0;
1709 for (i
= n_blocks
- 1; --i
>= 0; ) {
1710 if (!isMarked(blocks
[i
]))
1712 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1713 if (!isMarked(blocks
[j
]))
1715 if (eq_blk(blocks
[i
], blocks
[j
])) {
1716 blocks
[i
]->link
= blocks
[j
]->link
?
1717 blocks
[j
]->link
: blocks
[j
];
1722 for (i
= 0; i
< n_blocks
; ++i
) {
1728 JT(p
) = JT(p
)->link
;
1732 JF(p
) = JF(p
)->link
;
1742 free((void *)vnode_base
);
1744 free((void *)edges
);
1745 free((void *)space
);
1746 free((void *)levels
);
1747 free((void *)blocks
);
1751 * Return the number of stmts in 's'.
1759 for (; s
; s
= s
->next
)
1760 if (s
->s
.code
!= NOP
)
1766 * Return the number of nodes reachable by 'p'.
1767 * All nodes should be initially unmarked.
1773 if (p
== 0 || isMarked(p
))
1776 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1780 * Do a depth first search on the flow graph, numbering the
1781 * the basic blocks, and entering them into the 'blocks' array.`
1789 if (p
== 0 || isMarked(p
))
1797 number_blks_r(JT(p
));
1798 number_blks_r(JF(p
));
1802 * Return the number of stmts in the flowgraph reachable by 'p'.
1803 * The nodes should be unmarked before calling.
1805 * Note that "stmts" means "instructions", and that this includes
1807 * side-effect statements in 'p' (slength(p->stmts));
1809 * statements in the true branch from 'p' (count_stmts(JT(p)));
1811 * statements in the false branch from 'p' (count_stmts(JF(p)));
1813 * the conditional jump itself (1);
1815 * an extra long jump if the true branch requires it (p->longjt);
1817 * an extra long jump if the false branch requires it (p->longjf).
1825 if (p
== 0 || isMarked(p
))
1828 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1829 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
1833 * Allocate memory. All allocation is done before optimization
1834 * is begun. A linear bound on the size of all data structures is computed
1835 * from the total number of blocks and/or statements.
1842 int i
, n
, max_stmts
;
1845 * First, count the blocks, so we can malloc an array to map
1846 * block number to block. Then, put the blocks into the array.
1849 n
= count_blocks(root
);
1850 blocks
= (struct block
**)malloc(n
* sizeof(*blocks
));
1853 number_blks_r(root
);
1855 n_edges
= 2 * n_blocks
;
1856 edges
= (struct edge
**)malloc(n_edges
* sizeof(*edges
));
1859 * The number of levels is bounded by the number of nodes.
1861 levels
= (struct block
**)malloc(n_blocks
* sizeof(*levels
));
1863 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1864 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1867 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1868 + n_edges
* edgewords
* sizeof(*space
));
1871 for (i
= 0; i
< n
; ++i
) {
1875 all_closure_sets
= p
;
1876 for (i
= 0; i
< n
; ++i
) {
1877 blocks
[i
]->closure
= p
;
1881 for (i
= 0; i
< n
; ++i
) {
1882 register struct block
*b
= blocks
[i
];
1890 b
->ef
.id
= n_blocks
+ i
;
1891 edges
[n_blocks
+ i
] = &b
->ef
;
1896 for (i
= 0; i
< n
; ++i
)
1897 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1899 * We allocate at most 3 value numbers per statement,
1900 * so this is an upper bound on the number of valnodes
1903 maxval
= 3 * max_stmts
;
1904 vmap
= (struct vmapinfo
*)malloc(maxval
* sizeof(*vmap
));
1905 vnode_base
= (struct valnode
*)malloc(maxval
* sizeof(*vnode_base
));
1909 * Some pointers used to convert the basic block form of the code,
1910 * into the array form that BPF requires. 'fstart' will point to
1911 * the malloc'd array while 'ftail' is used during the recursive traversal.
1913 static struct bpf_insn
*fstart
;
1914 static struct bpf_insn
*ftail
;
1921 * Returns true if successful. Returns false if a branch has
1922 * an offset that is too large. If so, we have marked that
1923 * branch so that on a subsequent iteration, it will be treated
1930 struct bpf_insn
*dst
;
1934 int extrajmps
; /* number of extra jumps inserted */
1935 struct slist
**offset
= NULL
;
1937 if (p
== 0 || isMarked(p
))
1941 if (convert_code_r(JF(p
)) == 0)
1943 if (convert_code_r(JT(p
)) == 0)
1946 slen
= slength(p
->stmts
);
1947 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
1948 /* inflate length by any extra jumps */
1950 p
->offset
= dst
- fstart
;
1952 /* generate offset[] for convenience */
1954 offset
= (struct slist
**)calloc(sizeof(struct slist
*), slen
);
1956 bpf_error("not enough core");
1961 for (off
= 0; off
< slen
&& src
; off
++) {
1963 printf("off=%d src=%x\n", off
, src
);
1970 for (src
= p
->stmts
; src
; src
= src
->next
) {
1971 if (src
->s
.code
== NOP
)
1973 dst
->code
= (u_short
)src
->s
.code
;
1976 /* fill block-local relative jump */
1977 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
1979 if (src
->s
.jt
|| src
->s
.jf
) {
1980 bpf_error("illegal jmp destination");
1986 if (off
== slen
- 2) /*???*/
1992 char *ljerr
= "%s for block-local relative jump: off=%d";
1995 printf("code=%x off=%d %x %x\n", src
->s
.code
,
1996 off
, src
->s
.jt
, src
->s
.jf
);
1999 if (!src
->s
.jt
|| !src
->s
.jf
) {
2000 bpf_error(ljerr
, "no jmp destination", off
);
2005 for (i
= 0; i
< slen
; i
++) {
2006 if (offset
[i
] == src
->s
.jt
) {
2008 bpf_error(ljerr
, "multiple matches", off
);
2012 dst
->jt
= i
- off
- 1;
2015 if (offset
[i
] == src
->s
.jf
) {
2017 bpf_error(ljerr
, "multiple matches", off
);
2020 dst
->jf
= i
- off
- 1;
2025 bpf_error(ljerr
, "no destination found", off
);
2037 bids
[dst
- fstart
] = p
->id
+ 1;
2039 dst
->code
= (u_short
)p
->s
.code
;
2043 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2045 /* offset too large for branch, must add a jump */
2046 if (p
->longjt
== 0) {
2047 /* mark this instruction and retry */
2051 /* branch if T to following jump */
2052 dst
->jt
= extrajmps
;
2054 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2055 dst
[extrajmps
].k
= off
- extrajmps
;
2059 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2061 /* offset too large for branch, must add a jump */
2062 if (p
->longjf
== 0) {
2063 /* mark this instruction and retry */
2067 /* branch if F to following jump */
2068 /* if two jumps are inserted, F goes to second one */
2069 dst
->jf
= extrajmps
;
2071 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2072 dst
[extrajmps
].k
= off
- extrajmps
;
2082 * Convert flowgraph intermediate representation to the
2083 * BPF array representation. Set *lenp to the number of instructions.
2086 icode_to_fcode(root
, lenp
)
2091 struct bpf_insn
*fp
;
2094 * Loop doing convert_code_r() until no branches remain
2095 * with too-large offsets.
2099 n
= *lenp
= count_stmts(root
);
2101 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2102 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2107 if (convert_code_r(root
))
2116 * Make a copy of a BPF program and put it in the "fcode" member of
2119 * If we fail to allocate memory for the copy, fill in the "errbuf"
2120 * member of the "pcap_t" with an error message, and return -1;
2121 * otherwise, return 0.
2124 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2129 * Free up any already installed program.
2131 pcap_freecode(&p
->fcode
);
2133 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2134 p
->fcode
.bf_len
= fp
->bf_len
;
2135 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2136 if (p
->fcode
.bf_insns
== NULL
) {
2137 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2138 "malloc: %s", pcap_strerror(errno
));
2141 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2150 struct bpf_program f
;
2152 memset(bids
, 0, sizeof bids
);
2153 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2156 free((char *)f
.bf_insns
);