2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
42 #ifdef HAVE_OS_PROTO_H
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
53 static int pcap_optimizer_debug
;
56 * Routine to set that flag.
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
64 PCAP_API
void pcap_set_optimizer_debug(int value
);
67 pcap_set_optimizer_debug(int value
)
69 pcap_optimizer_debug
= value
;
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
78 static int pcap_print_dot_graph
;
81 * Routine to set that flag.
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
89 PCAP_API
void pcap_set_print_dot_graph(int value
);
92 pcap_set_print_dot_graph(int value
)
94 pcap_print_dot_graph
= value
;
102 * Takes a 32-bit integer as an argument.
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards fro zero.
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
111 * This is the same as the count of trailing zeroes in the word.
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115 * GCC 3.4 and later; we have __builtin_ctz().
117 #define lowest_set_bit(mask) __builtin_ctz(mask)
118 #elif defined(_MSC_VER)
120 * Visual Studio; we support only 2005 and later, so use
126 #pragma intrinsic(_BitScanForward)
129 static __forceinline
int
130 lowest_set_bit(int mask
)
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
139 return -1; /* mask is zero */
142 #elif defined(MSDOS) && defined(__DJGPP__)
144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
145 * we've already included.
147 #define lowest_set_bit(mask) (ffs((mask)) - 1)
148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
151 * or some other platform (UN*X conforming to a sufficient recent version
152 * of the Single UNIX Specification).
155 #define lowest_set_bit(mask) (ffs((mask)) - 1)
159 * Use a perfect-hash-function-based function.
162 lowest_set_bit(int mask
)
164 unsigned int v
= (unsigned int)mask
;
166 static const int MultiplyDeBruijnBitPosition
[32] = {
167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
172 * We strip off all but the lowermost set bit (v & ~v),
173 * and perform a minimal perfect hash on it to look up the
174 * number of low-order zero bits in a table.
178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 * http://supertech.csail.mit.edu/papers/debruijn.pdf
182 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
187 * Represents a deleted instruction.
192 * Register numbers for use-def values.
193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
194 * location. A_ATOM is the accumulator and X_ATOM is the index
197 #define A_ATOM BPF_MEMWORDS
198 #define X_ATOM (BPF_MEMWORDS+1)
201 * This define is used to represent *both* the accumulator and
202 * x register in use-def computations.
203 * Currently, the use-def code assumes only one definition per instruction.
205 #define AX_ATOM N_ATOMS
208 * These data structures are used in a Cocke and Shwarz style
209 * value numbering scheme. Since the flowgraph is acyclic,
210 * exit values can be propagated from a node's predecessors
211 * provided it is uniquely defined.
217 struct valnode
*next
;
220 /* Integer constants mapped with the load immediate opcode. */
221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
230 * A flag to indicate that further optimization is needed.
231 * Iterative passes are continued until a given pass yields no
237 struct block
**blocks
;
242 * A bit vector set representation of the dominators.
243 * We round up the set size to the next power of two.
247 struct block
**levels
;
250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
252 * True if a is in uset {p}
254 #define SET_MEMBER(p, a) \
255 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
260 #define SET_INSERT(p, a) \
261 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
264 * Delete 'a' from uset p.
266 #define SET_DELETE(p, a) \
267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
272 #define SET_INTERSECT(a, b, n)\
274 register bpf_u_int32 *_x = a, *_y = b;\
275 register int _n = n;\
276 while (--_n >= 0) *_x++ &= *_y++;\
282 #define SET_SUBTRACT(a, b, n)\
284 register bpf_u_int32 *_x = a, *_y = b;\
285 register int _n = n;\
286 while (--_n >= 0) *_x++ &=~ *_y++;\
292 #define SET_UNION(a, b, n)\
294 register bpf_u_int32 *_x = a, *_y = b;\
295 register int _n = n;\
296 while (--_n >= 0) *_x++ |= *_y++;\
300 uset all_closure_sets
;
304 struct valnode
*hashtbl
[MODULUS
];
308 struct vmapinfo
*vmap
;
309 struct valnode
*vnode_base
;
310 struct valnode
*next_vnode
;
315 * Some pointers used to convert the basic block form of the code,
316 * into the array form that BPF requires. 'fstart' will point to
317 * the malloc'd array while 'ftail' is used during the recursive
320 struct bpf_insn
*fstart
;
321 struct bpf_insn
*ftail
;
324 static void opt_init(compiler_state_t
*, opt_state_t
*, struct icode
*);
325 static void opt_cleanup(opt_state_t
*);
326 static void PCAP_NORETURN
opt_error(compiler_state_t
*, opt_state_t
*, const char *, ...)
327 PCAP_PRINTFLIKE(3, 4);
329 static void intern_blocks(opt_state_t
*, struct icode
*);
331 static void find_inedges(opt_state_t
*, struct block
*);
333 static void opt_dump(compiler_state_t
*, struct icode
*);
337 #define MAX(a,b) ((a)>(b)?(a):(b))
341 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
352 find_levels_r(opt_state
, ic
, JT(b
));
353 find_levels_r(opt_state
, ic
, JF(b
));
354 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
358 b
->link
= opt_state
->levels
[level
];
359 opt_state
->levels
[level
] = b
;
363 * Level graph. The levels go from 0 at the leaves to
364 * N_LEVELS at the root. The opt_state->levels[] array points to the
365 * first node of the level list, whose elements are linked
366 * with the 'link' field of the struct block.
369 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
371 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
373 find_levels_r(opt_state
, ic
, ic
->root
);
377 * Find dominator relationships.
378 * Assumes graph has been leveled.
381 find_dom(opt_state_t
*opt_state
, struct block
*root
)
388 * Initialize sets to contain all nodes.
390 x
= opt_state
->all_dom_sets
;
391 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
394 /* Root starts off empty. */
395 for (i
= opt_state
->nodewords
; --i
>= 0;)
398 /* root->level is the highest level no found. */
399 for (i
= root
->level
; i
>= 0; --i
) {
400 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
401 SET_INSERT(b
->dom
, b
->id
);
404 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
405 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
411 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
413 SET_INSERT(ep
->edom
, ep
->id
);
415 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
416 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
421 * Compute edge dominators.
422 * Assumes graph has been leveled and predecessors established.
425 find_edom(opt_state_t
*opt_state
, struct block
*root
)
431 x
= opt_state
->all_edge_sets
;
432 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
435 /* root->level is the highest level no found. */
436 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
437 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
438 for (i
= root
->level
; i
>= 0; --i
) {
439 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
440 propedom(opt_state
, &b
->et
);
441 propedom(opt_state
, &b
->ef
);
447 * Find the backwards transitive closure of the flow graph. These sets
448 * are backwards in the sense that we find the set of nodes that reach
449 * a given node, not the set of nodes that can be reached by a node.
451 * Assumes graph has been leveled.
454 find_closure(opt_state_t
*opt_state
, struct block
*root
)
460 * Initialize sets to contain no nodes.
462 memset((char *)opt_state
->all_closure_sets
, 0,
463 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
465 /* root->level is the highest level no found. */
466 for (i
= root
->level
; i
>= 0; --i
) {
467 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
468 SET_INSERT(b
->closure
, b
->id
);
471 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
472 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
478 * Return the register number that is used by s. If A and X are both
479 * used, return AX_ATOM. If no register is used, return -1.
481 * The implementation should probably change to an array access.
484 atomuse(struct stmt
*s
)
486 register int c
= s
->code
;
491 switch (BPF_CLASS(c
)) {
494 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
495 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
499 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
500 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
510 if (BPF_SRC(c
) == BPF_X
)
515 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
522 * Return the register number that is defined by 's'. We assume that
523 * a single stmt cannot define more than one register. If no register
524 * is defined, return -1.
526 * The implementation should probably change to an array access.
529 atomdef(struct stmt
*s
)
534 switch (BPF_CLASS(s
->code
)) {
548 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
554 * Compute the sets of registers used, defined, and killed by 'b'.
556 * "Used" means that a statement in 'b' uses the register before any
557 * statement in 'b' defines it, i.e. it uses the value left in
558 * that register by a predecessor block of this block.
559 * "Defined" means that a statement in 'b' defines it.
560 * "Killed" means that a statement in 'b' defines it before any
561 * statement in 'b' uses it, i.e. it kills the value left in that
562 * register by a predecessor block of this block.
565 compute_local_ud(struct block
*b
)
568 atomset def
= 0, use
= 0, killed
= 0;
571 for (s
= b
->stmts
; s
; s
= s
->next
) {
572 if (s
->s
.code
== NOP
)
574 atom
= atomuse(&s
->s
);
576 if (atom
== AX_ATOM
) {
577 if (!ATOMELEM(def
, X_ATOM
))
578 use
|= ATOMMASK(X_ATOM
);
579 if (!ATOMELEM(def
, A_ATOM
))
580 use
|= ATOMMASK(A_ATOM
);
582 else if (atom
< N_ATOMS
) {
583 if (!ATOMELEM(def
, atom
))
584 use
|= ATOMMASK(atom
);
589 atom
= atomdef(&s
->s
);
591 if (!ATOMELEM(use
, atom
))
592 killed
|= ATOMMASK(atom
);
593 def
|= ATOMMASK(atom
);
596 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
598 * XXX - what about RET?
600 atom
= atomuse(&b
->s
);
602 if (atom
== AX_ATOM
) {
603 if (!ATOMELEM(def
, X_ATOM
))
604 use
|= ATOMMASK(X_ATOM
);
605 if (!ATOMELEM(def
, A_ATOM
))
606 use
|= ATOMMASK(A_ATOM
);
608 else if (atom
< N_ATOMS
) {
609 if (!ATOMELEM(def
, atom
))
610 use
|= ATOMMASK(atom
);
623 * Assume graph is already leveled.
626 find_ud(opt_state_t
*opt_state
, struct block
*root
)
632 * root->level is the highest level no found;
633 * count down from there.
635 maxlevel
= root
->level
;
636 for (i
= maxlevel
; i
>= 0; --i
)
637 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
642 for (i
= 1; i
<= maxlevel
; ++i
) {
643 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
644 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
645 p
->in_use
|= p
->out_use
&~ p
->kill
;
650 init_val(opt_state_t
*opt_state
)
652 opt_state
->curval
= 0;
653 opt_state
->next_vnode
= opt_state
->vnode_base
;
654 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
655 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
658 /* Because we really don't have an IR, this stuff is a little messy. */
660 F(opt_state_t
*opt_state
, int code
, int v0
, int v1
)
666 hash
= (u_int
)code
^ ((u_int
)v0
<< 4) ^ ((u_int
)v1
<< 8);
669 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
670 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
673 val
= ++opt_state
->curval
;
674 if (BPF_MODE(code
) == BPF_IMM
&&
675 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
676 opt_state
->vmap
[val
].const_val
= v0
;
677 opt_state
->vmap
[val
].is_const
= 1;
679 p
= opt_state
->next_vnode
++;
684 p
->next
= opt_state
->hashtbl
[hash
];
685 opt_state
->hashtbl
[hash
] = p
;
691 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
693 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
700 * Do constant-folding on binary operators.
701 * (Unary operators are handled elsewhere.)
704 fold_op(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
705 struct stmt
*s
, int v0
, int v1
)
709 a
= opt_state
->vmap
[v0
].const_val
;
710 b
= opt_state
->vmap
[v1
].const_val
;
712 switch (BPF_OP(s
->code
)) {
727 opt_error(cstate
, opt_state
, "division by zero");
733 opt_error(cstate
, opt_state
, "modulus by zero");
751 * A left shift of more than the width of the type
752 * is undefined in C; we'll just treat it as shifting
755 * XXX - the BPF interpreter doesn't check for this,
756 * so its behavior is dependent on the behavior of
757 * the processor on which it's running. There are
758 * processors on which it shifts all the bits out
759 * and processors on which it does no shift.
769 * A right shift of more than the width of the type
770 * is undefined in C; we'll just treat it as shifting
773 * XXX - the BPF interpreter doesn't check for this,
774 * so its behavior is dependent on the behavior of
775 * the processor on which it's running. There are
776 * processors on which it shifts all the bits out
777 * and processors on which it does no shift.
789 s
->code
= BPF_LD
|BPF_IMM
;
793 static inline struct slist
*
794 this_op(struct slist
*s
)
796 while (s
!= 0 && s
->s
.code
== NOP
)
802 opt_not(struct block
*b
)
804 struct block
*tmp
= JT(b
);
811 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
814 struct slist
*next
, *last
;
822 for (/*empty*/; /*empty*/; s
= next
) {
828 break; /* nothing left in the block */
831 * Find the next real instruction after that one
834 next
= this_op(s
->next
);
836 break; /* no next instruction */
840 * st M[k] --> st M[k]
843 if (s
->s
.code
== BPF_ST
&&
844 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
845 s
->s
.k
== next
->s
.k
) {
847 next
->s
.code
= BPF_MISC
|BPF_TAX
;
853 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
854 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
855 s
->s
.code
= BPF_LDX
|BPF_IMM
;
856 next
->s
.code
= BPF_MISC
|BPF_TXA
;
860 * This is an ugly special case, but it happens
861 * when you say tcp[k] or udp[k] where k is a constant.
863 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
864 struct slist
*add
, *tax
, *ild
;
867 * Check that X isn't used on exit from this
868 * block (which the optimizer might cause).
869 * We know the code generator won't generate
870 * any local dependencies.
872 if (ATOMELEM(b
->out_use
, X_ATOM
))
876 * Check that the instruction following the ldi
877 * is an addx, or it's an ldxms with an addx
878 * following it (with 0 or more nops between the
881 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
884 add
= this_op(next
->next
);
885 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
889 * Check that a tax follows that (with 0 or more
890 * nops between them).
892 tax
= this_op(add
->next
);
893 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
897 * Check that an ild follows that (with 0 or more
898 * nops between them).
900 ild
= this_op(tax
->next
);
901 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
902 BPF_MODE(ild
->s
.code
) != BPF_IND
)
905 * We want to turn this sequence:
908 * (005) ldxms [14] {next} -- optional
911 * (008) ild [x+0] {ild}
913 * into this sequence:
921 * XXX We need to check that X is not
922 * subsequently used, because we want to change
923 * what'll be in it after this sequence.
925 * We know we can eliminate the accumulator
926 * modifications earlier in the sequence since
927 * it is defined by the last stmt of this sequence
928 * (i.e., the last statement of the sequence loads
929 * a value into the accumulator, so we can eliminate
930 * earlier operations on the accumulator).
940 * If the comparison at the end of a block is an equality
941 * comparison against a constant, and nobody uses the value
942 * we leave in the A register at the end of a block, and
943 * the operation preceding the comparison is an arithmetic
944 * operation, we can sometime optimize it away.
946 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
947 !ATOMELEM(b
->out_use
, A_ATOM
)) {
949 * We can optimize away certain subtractions of the
952 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
953 val
= b
->val
[X_ATOM
];
954 if (opt_state
->vmap
[val
].is_const
) {
956 * If we have a subtract to do a comparison,
957 * and the X register is a known constant,
958 * we can merge this value into the
964 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
967 } else if (b
->s
.k
== 0) {
969 * If the X register isn't a constant,
970 * and the comparison in the test is
971 * against 0, we can compare with the
972 * X register, instead:
978 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
983 * Likewise, a constant subtract can be simplified:
986 * jeq #y -> jeq #(x+y)
988 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
994 * And, similarly, a constant AND can be simplified
995 * if we're testing against 0, i.e.:
1000 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1003 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1005 opt_state
->done
= 0;
1011 * jset #ffffffff -> always
1013 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1016 if ((u_int
)b
->s
.k
== 0xffffffffU
)
1020 * If we're comparing against the index register, and the index
1021 * register is a known constant, we can just compare against that
1024 val
= b
->val
[X_ATOM
];
1025 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1026 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1027 b
->s
.code
&= ~BPF_X
;
1031 * If the accumulator is a known constant, we can compute the
1032 * comparison result.
1034 val
= b
->val
[A_ATOM
];
1035 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1036 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1037 switch (BPF_OP(b
->s
.code
)) {
1044 v
= (unsigned)v
> (unsigned)b
->s
.k
;
1048 v
= (unsigned)v
>= (unsigned)b
->s
.k
;
1059 opt_state
->done
= 0;
1068 * Compute the symbolic value of expression of 's', and update
1069 * anything it defines in the value table 'val'. If 'alter' is true,
1070 * do various optimizations. This code would be cleaner if symbolic
1071 * evaluation and code transformations weren't folded together.
1074 opt_stmt(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1075 struct stmt
*s
, int val
[], int alter
)
1082 case BPF_LD
|BPF_ABS
|BPF_W
:
1083 case BPF_LD
|BPF_ABS
|BPF_H
:
1084 case BPF_LD
|BPF_ABS
|BPF_B
:
1085 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1086 vstore(s
, &val
[A_ATOM
], v
, alter
);
1089 case BPF_LD
|BPF_IND
|BPF_W
:
1090 case BPF_LD
|BPF_IND
|BPF_H
:
1091 case BPF_LD
|BPF_IND
|BPF_B
:
1093 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1094 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1095 s
->k
+= opt_state
->vmap
[v
].const_val
;
1096 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1097 opt_state
->done
= 0;
1100 v
= F(opt_state
, s
->code
, s
->k
, v
);
1101 vstore(s
, &val
[A_ATOM
], v
, alter
);
1104 case BPF_LD
|BPF_LEN
:
1105 v
= F(opt_state
, s
->code
, 0L, 0L);
1106 vstore(s
, &val
[A_ATOM
], v
, alter
);
1109 case BPF_LD
|BPF_IMM
:
1111 vstore(s
, &val
[A_ATOM
], v
, alter
);
1114 case BPF_LDX
|BPF_IMM
:
1116 vstore(s
, &val
[X_ATOM
], v
, alter
);
1119 case BPF_LDX
|BPF_MSH
|BPF_B
:
1120 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1121 vstore(s
, &val
[X_ATOM
], v
, alter
);
1124 case BPF_ALU
|BPF_NEG
:
1125 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1126 s
->code
= BPF_LD
|BPF_IMM
;
1127 s
->k
= -opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1128 val
[A_ATOM
] = K(s
->k
);
1131 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1134 case BPF_ALU
|BPF_ADD
|BPF_K
:
1135 case BPF_ALU
|BPF_SUB
|BPF_K
:
1136 case BPF_ALU
|BPF_MUL
|BPF_K
:
1137 case BPF_ALU
|BPF_DIV
|BPF_K
:
1138 case BPF_ALU
|BPF_MOD
|BPF_K
:
1139 case BPF_ALU
|BPF_AND
|BPF_K
:
1140 case BPF_ALU
|BPF_OR
|BPF_K
:
1141 case BPF_ALU
|BPF_XOR
|BPF_K
:
1142 case BPF_ALU
|BPF_LSH
|BPF_K
:
1143 case BPF_ALU
|BPF_RSH
|BPF_K
:
1144 op
= BPF_OP(s
->code
);
1148 * Optimize operations where the constant
1151 * Don't optimize away "sub #0"
1152 * as it may be needed later to
1153 * fixup the generated math code.
1155 * Fail if we're dividing by zero or taking
1156 * a modulus by zero.
1158 if (op
== BPF_ADD
||
1159 op
== BPF_LSH
|| op
== BPF_RSH
||
1160 op
== BPF_OR
|| op
== BPF_XOR
) {
1164 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1165 s
->code
= BPF_LD
|BPF_IMM
;
1166 val
[A_ATOM
] = K(s
->k
);
1170 opt_error(cstate
, opt_state
,
1171 "division by zero");
1173 opt_error(cstate
, opt_state
,
1176 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1177 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1178 val
[A_ATOM
] = K(s
->k
);
1182 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1185 case BPF_ALU
|BPF_ADD
|BPF_X
:
1186 case BPF_ALU
|BPF_SUB
|BPF_X
:
1187 case BPF_ALU
|BPF_MUL
|BPF_X
:
1188 case BPF_ALU
|BPF_DIV
|BPF_X
:
1189 case BPF_ALU
|BPF_MOD
|BPF_X
:
1190 case BPF_ALU
|BPF_AND
|BPF_X
:
1191 case BPF_ALU
|BPF_OR
|BPF_X
:
1192 case BPF_ALU
|BPF_XOR
|BPF_X
:
1193 case BPF_ALU
|BPF_LSH
|BPF_X
:
1194 case BPF_ALU
|BPF_RSH
|BPF_X
:
1195 op
= BPF_OP(s
->code
);
1196 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1197 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1198 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1199 val
[A_ATOM
] = K(s
->k
);
1202 s
->code
= BPF_ALU
|BPF_K
|op
;
1203 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1204 opt_state
->done
= 0;
1206 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1211 * Check if we're doing something to an accumulator
1212 * that is 0, and simplify. This may not seem like
1213 * much of a simplification but it could open up further
1215 * XXX We could also check for mul by 1, etc.
1217 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1218 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1219 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1220 s
->code
= BPF_MISC
|BPF_TXA
;
1221 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1224 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1225 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1226 s
->code
= BPF_LD
|BPF_IMM
;
1228 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1231 else if (op
== BPF_NEG
) {
1236 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1239 case BPF_MISC
|BPF_TXA
:
1240 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1243 case BPF_LD
|BPF_MEM
:
1245 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1246 s
->code
= BPF_LD
|BPF_IMM
;
1247 s
->k
= opt_state
->vmap
[v
].const_val
;
1248 opt_state
->done
= 0;
1250 vstore(s
, &val
[A_ATOM
], v
, alter
);
1253 case BPF_MISC
|BPF_TAX
:
1254 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1257 case BPF_LDX
|BPF_MEM
:
1259 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1260 s
->code
= BPF_LDX
|BPF_IMM
;
1261 s
->k
= opt_state
->vmap
[v
].const_val
;
1262 opt_state
->done
= 0;
1264 vstore(s
, &val
[X_ATOM
], v
, alter
);
1268 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1272 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1278 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1284 if (atom
== AX_ATOM
) {
1294 opt_state
->done
= 0;
1295 last
[atom
]->code
= NOP
;
1302 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1304 register struct slist
*s
;
1306 struct stmt
*last
[N_ATOMS
];
1308 memset((char *)last
, 0, sizeof last
);
1310 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1311 deadstmt(opt_state
, &s
->s
, last
);
1312 deadstmt(opt_state
, &b
->s
, last
);
1314 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1315 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1316 last
[atom
]->code
= NOP
;
1317 opt_state
->done
= 0;
1322 opt_blk(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1323 struct block
*b
, int do_stmts
)
1328 bpf_int32 aval
, xval
;
1331 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1332 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1339 * Initialize the atom values.
1344 * We have no predecessors, so everything is undefined
1345 * upon entry to this block.
1347 memset((char *)b
->val
, 0, sizeof(b
->val
));
1350 * Inherit values from our predecessors.
1352 * First, get the values from the predecessor along the
1353 * first edge leading to this node.
1355 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1357 * Now look at all the other nodes leading to this node.
1358 * If, for the predecessor along that edge, a register
1359 * has a different value from the one we have (i.e.,
1360 * control paths are merging, and the merging paths
1361 * assign different values to that register), give the
1362 * register the undefined value of 0.
1364 while ((p
= p
->next
) != NULL
) {
1365 for (i
= 0; i
< N_ATOMS
; ++i
)
1366 if (b
->val
[i
] != p
->pred
->val
[i
])
1370 aval
= b
->val
[A_ATOM
];
1371 xval
= b
->val
[X_ATOM
];
1372 for (s
= b
->stmts
; s
; s
= s
->next
)
1373 opt_stmt(cstate
, opt_state
, &s
->s
, b
->val
, do_stmts
);
1376 * This is a special case: if we don't use anything from this
1377 * block, and we load the accumulator or index register with a
1378 * value that is already there, or if this block is a return,
1379 * eliminate all the statements.
1381 * XXX - what if it does a store?
1383 * XXX - why does it matter whether we use anything from this
1384 * block? If the accumulator or index register doesn't change
1385 * its value, isn't that OK even if we use that value?
1387 * XXX - if we load the accumulator with a different value,
1388 * and the block ends with a conditional branch, we obviously
1389 * can't eliminate it, as the branch depends on that value.
1390 * For the index register, the conditional branch only depends
1391 * on the index register value if the test is against the index
1392 * register value rather than a constant; if nothing uses the
1393 * value we put into the index register, and we're not testing
1394 * against the index register's value, and there aren't any
1395 * other problems that would keep us from eliminating this
1396 * block, can we eliminate it?
1399 ((b
->out_use
== 0 &&
1400 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1401 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1402 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1403 if (b
->stmts
!= 0) {
1405 opt_state
->done
= 0;
1408 opt_peep(opt_state
, b
);
1409 opt_deadstores(opt_state
, b
);
1412 * Set up values for branch optimizer.
1414 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1415 b
->oval
= K(b
->s
.k
);
1417 b
->oval
= b
->val
[X_ATOM
];
1418 b
->et
.code
= b
->s
.code
;
1419 b
->ef
.code
= -b
->s
.code
;
1423 * Return true if any register that is used on exit from 'succ', has
1424 * an exit value that is different from the corresponding exit value
1428 use_conflict(struct block
*b
, struct block
*succ
)
1431 atomset use
= succ
->out_use
;
1436 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1437 if (ATOMELEM(use
, atom
))
1438 if (b
->val
[atom
] != succ
->val
[atom
])
1443 static struct block
*
1444 fold_edge(struct block
*child
, struct edge
*ep
)
1447 int aval0
, aval1
, oval0
, oval1
;
1448 int code
= ep
->code
;
1456 if (child
->s
.code
!= code
)
1459 aval0
= child
->val
[A_ATOM
];
1460 oval0
= child
->oval
;
1461 aval1
= ep
->pred
->val
[A_ATOM
];
1462 oval1
= ep
->pred
->oval
;
1469 * The operands of the branch instructions are
1470 * identical, so the result is true if a true
1471 * branch was taken to get here, otherwise false.
1473 return sense
? JT(child
) : JF(child
);
1475 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1477 * At this point, we only know the comparison if we
1478 * came down the true branch, and it was an equality
1479 * comparison with a constant.
1481 * I.e., if we came down the true branch, and the branch
1482 * was an equality comparison with a constant, we know the
1483 * accumulator contains that constant. If we came down
1484 * the false branch, or the comparison wasn't with a
1485 * constant, we don't know what was in the accumulator.
1487 * We rely on the fact that distinct constants have distinct
1496 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1499 register struct block
*target
;
1501 if (JT(ep
->succ
) == 0)
1504 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1506 * Common branch targets can be eliminated, provided
1507 * there is no data dependency.
1509 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1510 opt_state
->done
= 0;
1511 ep
->succ
= JT(ep
->succ
);
1515 * For each edge dominator that matches the successor of this
1516 * edge, promote the edge successor to the its grandchild.
1518 * XXX We violate the set abstraction here in favor a reasonably
1522 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1523 register bpf_u_int32 x
= ep
->edom
[i
];
1526 k
= lowest_set_bit(x
);
1527 x
&=~ ((bpf_u_int32
)1 << k
);
1528 k
+= i
* BITS_PER_WORD
;
1530 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1532 * Check that there is no data dependency between
1533 * nodes that will be violated if we move the edge.
1535 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1536 opt_state
->done
= 0;
1538 if (JT(target
) != 0)
1540 * Start over unless we hit a leaf.
1551 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1555 struct block
**diffp
, **samep
;
1563 * Make sure each predecessor loads the same value.
1566 val
= ep
->pred
->val
[A_ATOM
];
1567 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1568 if (val
!= ep
->pred
->val
[A_ATOM
])
1571 if (JT(b
->in_edges
->pred
) == b
)
1572 diffp
= &JT(b
->in_edges
->pred
);
1574 diffp
= &JF(b
->in_edges
->pred
);
1581 if (JT(*diffp
) != JT(b
))
1584 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1587 if ((*diffp
)->val
[A_ATOM
] != val
)
1590 diffp
= &JF(*diffp
);
1593 samep
= &JF(*diffp
);
1598 if (JT(*samep
) != JT(b
))
1601 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1604 if ((*samep
)->val
[A_ATOM
] == val
)
1607 /* XXX Need to check that there are no data dependencies
1608 between dp0 and dp1. Currently, the code generator
1609 will not produce such dependencies. */
1610 samep
= &JF(*samep
);
1613 /* XXX This doesn't cover everything. */
1614 for (i
= 0; i
< N_ATOMS
; ++i
)
1615 if ((*samep
)->val
[i
] != pred
->val
[i
])
1618 /* Pull up the node. */
1624 * At the top of the chain, each predecessor needs to point at the
1625 * pulled up node. Inside the chain, there is only one predecessor
1629 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1630 if (JT(ep
->pred
) == b
)
1631 JT(ep
->pred
) = pull
;
1633 JF(ep
->pred
) = pull
;
1639 opt_state
->done
= 0;
1643 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1647 struct block
**diffp
, **samep
;
1655 * Make sure each predecessor loads the same value.
1657 val
= ep
->pred
->val
[A_ATOM
];
1658 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1659 if (val
!= ep
->pred
->val
[A_ATOM
])
1662 if (JT(b
->in_edges
->pred
) == b
)
1663 diffp
= &JT(b
->in_edges
->pred
);
1665 diffp
= &JF(b
->in_edges
->pred
);
1672 if (JF(*diffp
) != JF(b
))
1675 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1678 if ((*diffp
)->val
[A_ATOM
] != val
)
1681 diffp
= &JT(*diffp
);
1684 samep
= &JT(*diffp
);
1689 if (JF(*samep
) != JF(b
))
1692 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1695 if ((*samep
)->val
[A_ATOM
] == val
)
1698 /* XXX Need to check that there are no data dependencies
1699 between diffp and samep. Currently, the code generator
1700 will not produce such dependencies. */
1701 samep
= &JT(*samep
);
1704 /* XXX This doesn't cover everything. */
1705 for (i
= 0; i
< N_ATOMS
; ++i
)
1706 if ((*samep
)->val
[i
] != pred
->val
[i
])
1709 /* Pull up the node. */
1715 * At the top of the chain, each predecessor needs to point at the
1716 * pulled up node. Inside the chain, there is only one predecessor
1720 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1721 if (JT(ep
->pred
) == b
)
1722 JT(ep
->pred
) = pull
;
1724 JF(ep
->pred
) = pull
;
1730 opt_state
->done
= 0;
1734 opt_blks(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1740 init_val(opt_state
);
1741 maxlevel
= ic
->root
->level
;
1743 find_inedges(opt_state
, ic
->root
);
1744 for (i
= maxlevel
; i
>= 0; --i
)
1745 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1746 opt_blk(cstate
, opt_state
, p
, do_stmts
);
1750 * No point trying to move branches; it can't possibly
1751 * make a difference at this point.
1755 for (i
= 1; i
<= maxlevel
; ++i
) {
1756 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1757 opt_j(opt_state
, &p
->et
);
1758 opt_j(opt_state
, &p
->ef
);
1762 find_inedges(opt_state
, ic
->root
);
1763 for (i
= 1; i
<= maxlevel
; ++i
) {
1764 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1765 or_pullup(opt_state
, p
);
1766 and_pullup(opt_state
, p
);
1772 link_inedge(struct edge
*parent
, struct block
*child
)
1774 parent
->next
= child
->in_edges
;
1775 child
->in_edges
= parent
;
1779 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1784 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1785 opt_state
->blocks
[i
]->in_edges
= 0;
1788 * Traverse the graph, adding each edge to the predecessor
1789 * list of its successors. Skip the leaves (i.e. level 0).
1791 for (i
= root
->level
; i
> 0; --i
) {
1792 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1793 link_inedge(&b
->et
, JT(b
));
1794 link_inedge(&b
->ef
, JF(b
));
1800 opt_root(struct block
**b
)
1802 struct slist
*tmp
, *s
;
1806 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1815 * If the root node is a return, then there is no
1816 * point executing any statements (since the bpf machine
1817 * has no side effects).
1819 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1824 opt_loop(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1829 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1830 printf("opt_loop(root, %d) begin\n", do_stmts
);
1831 opt_dump(cstate
, ic
);
1835 opt_state
->done
= 1;
1836 find_levels(opt_state
, ic
);
1837 find_dom(opt_state
, ic
->root
);
1838 find_closure(opt_state
, ic
->root
);
1839 find_ud(opt_state
, ic
->root
);
1840 find_edom(opt_state
, ic
->root
);
1841 opt_blks(cstate
, opt_state
, ic
, do_stmts
);
1843 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1844 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1845 opt_dump(cstate
, ic
);
1848 } while (!opt_state
->done
);
1852 * Optimize the filter code in its dag representation.
1855 bpf_optimize(compiler_state_t
*cstate
, struct icode
*ic
)
1857 opt_state_t opt_state
;
1859 opt_init(cstate
, &opt_state
, ic
);
1860 opt_loop(cstate
, &opt_state
, ic
, 0);
1861 opt_loop(cstate
, &opt_state
, ic
, 1);
1862 intern_blocks(&opt_state
, ic
);
1864 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1865 printf("after intern_blocks()\n");
1866 opt_dump(cstate
, ic
);
1869 opt_root(&ic
->root
);
1871 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1872 printf("after opt_root()\n");
1873 opt_dump(cstate
, ic
);
1876 opt_cleanup(&opt_state
);
1880 make_marks(struct icode
*ic
, struct block
*p
)
1882 if (!isMarked(ic
, p
)) {
1884 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1885 make_marks(ic
, JT(p
));
1886 make_marks(ic
, JF(p
));
1892 * Mark code array such that isMarked(ic->cur_mark, i) is true
1893 * only for nodes that are alive.
1896 mark_code(struct icode
*ic
)
1899 make_marks(ic
, ic
->root
);
1903 * True iff the two stmt lists load the same value from the packet into
1907 eq_slist(struct slist
*x
, struct slist
*y
)
1910 while (x
&& x
->s
.code
== NOP
)
1912 while (y
&& y
->s
.code
== NOP
)
1918 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1926 eq_blk(struct block
*b0
, struct block
*b1
)
1928 if (b0
->s
.code
== b1
->s
.code
&&
1929 b0
->s
.k
== b1
->s
.k
&&
1930 b0
->et
.succ
== b1
->et
.succ
&&
1931 b0
->ef
.succ
== b1
->ef
.succ
)
1932 return eq_slist(b0
->stmts
, b1
->stmts
);
1937 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
1941 int done1
; /* don't shadow global */
1944 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1945 opt_state
->blocks
[i
]->link
= 0;
1949 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
1950 if (!isMarked(ic
, opt_state
->blocks
[i
]))
1952 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
1953 if (!isMarked(ic
, opt_state
->blocks
[j
]))
1955 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
1956 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
1957 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
1962 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
1963 p
= opt_state
->blocks
[i
];
1968 JT(p
) = JT(p
)->link
;
1972 JF(p
) = JF(p
)->link
;
1980 opt_cleanup(opt_state_t
*opt_state
)
1982 free((void *)opt_state
->vnode_base
);
1983 free((void *)opt_state
->vmap
);
1984 free((void *)opt_state
->edges
);
1985 free((void *)opt_state
->space
);
1986 free((void *)opt_state
->levels
);
1987 free((void *)opt_state
->blocks
);
1991 * Like bpf_error(), but also cleans up the optimizer state.
1993 static void PCAP_NORETURN
1994 opt_error(compiler_state_t
*cstate
, opt_state_t
*opt_state
, const char *fmt
, ...)
1998 opt_cleanup(opt_state
);
2000 bpf_vset_error(cstate
, fmt
, ap
);
2002 bpf_abort_compilation(cstate
);
2007 * Return the number of stmts in 's'.
2010 slength(struct slist
*s
)
2014 for (; s
; s
= s
->next
)
2015 if (s
->s
.code
!= NOP
)
2021 * Return the number of nodes reachable by 'p'.
2022 * All nodes should be initially unmarked.
2025 count_blocks(struct icode
*ic
, struct block
*p
)
2027 if (p
== 0 || isMarked(ic
, p
))
2030 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2034 * Do a depth first search on the flow graph, numbering the
2035 * the basic blocks, and entering them into the 'blocks' array.`
2038 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2042 if (p
== 0 || isMarked(ic
, p
))
2046 n
= opt_state
->n_blocks
++;
2048 opt_state
->blocks
[n
] = p
;
2050 number_blks_r(opt_state
, ic
, JT(p
));
2051 number_blks_r(opt_state
, ic
, JF(p
));
2055 * Return the number of stmts in the flowgraph reachable by 'p'.
2056 * The nodes should be unmarked before calling.
2058 * Note that "stmts" means "instructions", and that this includes
2060 * side-effect statements in 'p' (slength(p->stmts));
2062 * statements in the true branch from 'p' (count_stmts(JT(p)));
2064 * statements in the false branch from 'p' (count_stmts(JF(p)));
2066 * the conditional jump itself (1);
2068 * an extra long jump if the true branch requires it (p->longjt);
2070 * an extra long jump if the false branch requires it (p->longjf).
2073 count_stmts(struct icode
*ic
, struct block
*p
)
2077 if (p
== 0 || isMarked(ic
, p
))
2080 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2081 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2085 * Allocate memory. All allocation is done before optimization
2086 * is begun. A linear bound on the size of all data structures is computed
2087 * from the total number of blocks and/or statements.
2090 opt_init(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
)
2093 int i
, n
, max_stmts
;
2096 * First, count the blocks, so we can malloc an array to map
2097 * block number to block. Then, put the blocks into the array.
2100 n
= count_blocks(ic
, ic
->root
);
2101 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2102 if (opt_state
->blocks
== NULL
)
2103 bpf_error(cstate
, "malloc");
2105 opt_state
->n_blocks
= 0;
2106 number_blks_r(opt_state
, ic
, ic
->root
);
2108 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2109 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2110 if (opt_state
->edges
== NULL
) {
2111 free(opt_state
->blocks
);
2112 bpf_error(cstate
, "malloc");
2116 * The number of levels is bounded by the number of nodes.
2118 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2119 if (opt_state
->levels
== NULL
) {
2120 free(opt_state
->edges
);
2121 free(opt_state
->blocks
);
2122 bpf_error(cstate
, "malloc");
2125 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
2126 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
2129 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
2130 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
2131 if (opt_state
->space
== NULL
) {
2132 free(opt_state
->levels
);
2133 free(opt_state
->edges
);
2134 free(opt_state
->blocks
);
2135 bpf_error(cstate
, "malloc");
2137 p
= opt_state
->space
;
2138 opt_state
->all_dom_sets
= p
;
2139 for (i
= 0; i
< n
; ++i
) {
2140 opt_state
->blocks
[i
]->dom
= p
;
2141 p
+= opt_state
->nodewords
;
2143 opt_state
->all_closure_sets
= p
;
2144 for (i
= 0; i
< n
; ++i
) {
2145 opt_state
->blocks
[i
]->closure
= p
;
2146 p
+= opt_state
->nodewords
;
2148 opt_state
->all_edge_sets
= p
;
2149 for (i
= 0; i
< n
; ++i
) {
2150 register struct block
*b
= opt_state
->blocks
[i
];
2153 p
+= opt_state
->edgewords
;
2155 p
+= opt_state
->edgewords
;
2157 opt_state
->edges
[i
] = &b
->et
;
2158 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2159 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2164 for (i
= 0; i
< n
; ++i
)
2165 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2167 * We allocate at most 3 value numbers per statement,
2168 * so this is an upper bound on the number of valnodes
2171 opt_state
->maxval
= 3 * max_stmts
;
2172 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2173 if (opt_state
->vmap
== NULL
) {
2174 free(opt_state
->space
);
2175 free(opt_state
->levels
);
2176 free(opt_state
->edges
);
2177 free(opt_state
->blocks
);
2178 bpf_error(cstate
, "malloc");
2180 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2181 if (opt_state
->vnode_base
== NULL
) {
2182 free(opt_state
->vmap
);
2183 free(opt_state
->space
);
2184 free(opt_state
->levels
);
2185 free(opt_state
->edges
);
2186 free(opt_state
->blocks
);
2187 bpf_error(cstate
, "malloc");
2192 * This is only used when supporting optimizer debugging. It is
2193 * global state, so do *not* do more than one compile in parallel
2194 * and expect it to provide meaningful information.
2200 static void PCAP_NORETURN
conv_error(compiler_state_t
*, conv_state_t
*, const char *, ...)
2201 PCAP_PRINTFLIKE(3, 4);
2204 * Returns true if successful. Returns false if a branch has
2205 * an offset that is too large. If so, we have marked that
2206 * branch so that on a subsequent iteration, it will be treated
2210 convert_code_r(compiler_state_t
*cstate
, conv_state_t
*conv_state
,
2211 struct icode
*ic
, struct block
*p
)
2213 struct bpf_insn
*dst
;
2217 u_int extrajmps
; /* number of extra jumps inserted */
2218 struct slist
**offset
= NULL
;
2220 if (p
== 0 || isMarked(ic
, p
))
2224 if (convert_code_r(cstate
, conv_state
, ic
, JF(p
)) == 0)
2226 if (convert_code_r(cstate
, conv_state
, ic
, JT(p
)) == 0)
2229 slen
= slength(p
->stmts
);
2230 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2231 /* inflate length by any extra jumps */
2233 p
->offset
= (int)(dst
- conv_state
->fstart
);
2235 /* generate offset[] for convenience */
2237 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2239 conv_error(cstate
, conv_state
, "not enough core");
2244 for (off
= 0; off
< slen
&& src
; off
++) {
2246 printf("off=%d src=%x\n", off
, src
);
2253 for (src
= p
->stmts
; src
; src
= src
->next
) {
2254 if (src
->s
.code
== NOP
)
2256 dst
->code
= (u_short
)src
->s
.code
;
2259 /* fill block-local relative jump */
2260 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2262 if (src
->s
.jt
|| src
->s
.jf
) {
2264 conv_error(cstate
, conv_state
, "illegal jmp destination");
2270 if (off
== slen
- 2) /*???*/
2276 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2279 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2280 off
, src
->s
.jt
, src
->s
.jf
);
2283 if (!src
->s
.jt
|| !src
->s
.jf
) {
2285 conv_error(cstate
, conv_state
, ljerr
, "no jmp destination", off
);
2290 for (i
= 0; i
< slen
; i
++) {
2291 if (offset
[i
] == src
->s
.jt
) {
2294 conv_error(cstate
, conv_state
, ljerr
, "multiple matches", off
);
2298 if (i
- off
- 1 >= 256) {
2300 conv_error(cstate
, conv_state
, ljerr
, "out-of-range jump", off
);
2303 dst
->jt
= (u_char
)(i
- off
- 1);
2306 if (offset
[i
] == src
->s
.jf
) {
2309 conv_error(cstate
, conv_state
, ljerr
, "multiple matches", off
);
2312 if (i
- off
- 1 >= 256) {
2314 conv_error(cstate
, conv_state
, ljerr
, "out-of-range jump", off
);
2317 dst
->jf
= (u_char
)(i
- off
- 1);
2323 conv_error(cstate
, conv_state
, ljerr
, "no destination found", off
);
2335 if (dst
- conv_state
->fstart
< NBIDS
)
2336 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2338 dst
->code
= (u_short
)p
->s
.code
;
2342 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2344 /* offset too large for branch, must add a jump */
2345 if (p
->longjt
== 0) {
2346 /* mark this instruction and retry */
2350 /* branch if T to following jump */
2351 if (extrajmps
>= 256) {
2352 conv_error(cstate
, conv_state
, "too many extra jumps");
2355 dst
->jt
= (u_char
)extrajmps
;
2357 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2358 dst
[extrajmps
].k
= off
- extrajmps
;
2361 dst
->jt
= (u_char
)off
;
2362 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2364 /* offset too large for branch, must add a jump */
2365 if (p
->longjf
== 0) {
2366 /* mark this instruction and retry */
2370 /* branch if F to following jump */
2371 /* if two jumps are inserted, F goes to second one */
2372 if (extrajmps
>= 256) {
2373 conv_error(cstate
, conv_state
, "too many extra jumps");
2376 dst
->jf
= (u_char
)extrajmps
;
2378 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2379 dst
[extrajmps
].k
= off
- extrajmps
;
2382 dst
->jf
= (u_char
)off
;
2389 * Convert flowgraph intermediate representation to the
2390 * BPF array representation. Set *lenp to the number of instructions.
2392 * This routine does *NOT* leak the memory pointed to by fp. It *must
2393 * not* do free(fp) before returning fp; doing so would make no sense,
2394 * as the BPF array pointed to by the return value of icode_to_fcode()
2395 * must be valid - it's being returned for use in a bpf_program structure.
2397 * If it appears that icode_to_fcode() is leaking, the problem is that
2398 * the program using pcap_compile() is failing to free the memory in
2399 * the BPF program when it's done - the leak is in the program, not in
2400 * the routine that happens to be allocating the memory. (By analogy, if
2401 * a program calls fopen() without ever calling fclose() on the FILE *,
2402 * it will leak the FILE structure; the leak is not in fopen(), it's in
2403 * the program.) Change the program to use pcap_freecode() when it's
2404 * done with the filter program. See the pcap man page.
2407 icode_to_fcode(compiler_state_t
*cstate
, struct icode
*ic
,
2408 struct block
*root
, u_int
*lenp
)
2411 struct bpf_insn
*fp
;
2412 conv_state_t conv_state
;
2415 * Loop doing convert_code_r() until no branches remain
2416 * with too-large offsets.
2420 n
= *lenp
= count_stmts(ic
, root
);
2422 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2424 bpf_error(cstate
, "malloc");
2425 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2426 conv_state
.fstart
= fp
;
2427 conv_state
.ftail
= fp
+ n
;
2430 if (convert_code_r(cstate
, &conv_state
, ic
, root
))
2439 * Like bpf_error(), but also frees the array into which we're putting
2440 * the generated BPF code.
2442 static void PCAP_NORETURN
2443 conv_error(compiler_state_t
*cstate
, conv_state_t
*conv_state
, const char *fmt
, ...)
2447 free(conv_state
->fstart
);
2449 bpf_vset_error(cstate
, fmt
, ap
);
2451 bpf_abort_compilation(cstate
);
2456 * Make a copy of a BPF program and put it in the "fcode" member of
2459 * If we fail to allocate memory for the copy, fill in the "errbuf"
2460 * member of the "pcap_t" with an error message, and return -1;
2461 * otherwise, return 0.
2464 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2469 * Validate the program.
2471 if (!pcap_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2472 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2473 "BPF program is not valid");
2478 * Free up any already installed program.
2480 pcap_freecode(&p
->fcode
);
2482 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2483 p
->fcode
.bf_len
= fp
->bf_len
;
2484 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2485 if (p
->fcode
.bf_insns
== NULL
) {
2486 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2490 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2496 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2499 int icount
, noffset
;
2502 if (block
== NULL
|| isMarked(ic
, block
))
2506 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2507 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2509 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2510 for (i
= block
->offset
; i
< noffset
; i
++) {
2511 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2513 fprintf(out
, "\" tooltip=\"");
2514 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2515 if (block
->val
[i
] != VAL_UNKNOWN
)
2516 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2517 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2518 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2520 if (JT(block
) == NULL
)
2521 fprintf(out
, ", peripheries=2");
2522 fprintf(out
, "];\n");
2524 dot_dump_node(ic
, JT(block
), prog
, out
);
2525 dot_dump_node(ic
, JF(block
), prog
, out
);
2529 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2531 if (block
== NULL
|| isMarked(ic
, block
))
2536 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2537 block
->id
, JT(block
)->id
);
2538 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2539 block
->id
, JF(block
)->id
);
2541 dot_dump_edge(ic
, JT(block
), out
);
2542 dot_dump_edge(ic
, JF(block
), out
);
2545 /* Output the block CFG using graphviz/DOT language
2546 * In the CFG, block's code, value index for each registers at EXIT,
2547 * and the jump relationship is show.
2549 * example DOT for BPF `ip src host 1.1.1.1' is:
2551 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2552 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2553 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2554 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2555 "block0":se -> "block1":n [label="T"];
2556 "block0":sw -> "block3":n [label="F"];
2557 "block1":se -> "block2":n [label="T"];
2558 "block1":sw -> "block3":n [label="F"];
2561 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2562 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2565 dot_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2567 struct bpf_program f
;
2570 memset(bids
, 0, sizeof bids
);
2571 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2573 fprintf(out
, "digraph BPF {\n");
2575 dot_dump_node(ic
, ic
->root
, &f
, out
);
2577 dot_dump_edge(ic
, ic
->root
, out
);
2578 fprintf(out
, "}\n");
2580 free((char *)f
.bf_insns
);
2584 plain_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2586 struct bpf_program f
;
2588 memset(bids
, 0, sizeof bids
);
2589 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2592 free((char *)f
.bf_insns
);
2596 opt_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2599 * If the CFG, in DOT format, is requested, output it rather than
2600 * the code that would be generated from that graph.
2602 if (pcap_print_dot_graph
)
2603 dot_dump(cstate
, ic
);
2605 plain_dump(cstate
, ic
);