]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Make Sun C build warning-free.
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #ifdef _WIN32
27 #include <ws2tcpip.h>
28 #else
29 #include <sys/socket.h>
30
31 #ifdef __NetBSD__
32 #include <sys/param.h>
33 #endif
34
35 #include <netinet/in.h>
36 #include <arpa/inet.h>
37 #endif /* _WIN32 */
38
39 #include <stdlib.h>
40 #include <string.h>
41 #include <memory.h>
42 #include <setjmp.h>
43 #include <stdarg.h>
44 #include <stdio.h>
45
46 #include "pcap-int.h"
47
48 #include "extract.h"
49
50 #include "ethertype.h"
51 #include "nlpid.h"
52 #include "llc.h"
53 #include "gencode.h"
54 #include "ieee80211.h"
55 #include "atmuni31.h"
56 #include "sunatmpos.h"
57 #include "pflog.h"
58 #include "ppp.h"
59 #include "pcap/sll.h"
60 #include "pcap/ipnet.h"
61 #include "arcnet.h"
62 #include "diag-control.h"
63
64 #include "scanner.h"
65
66 #if defined(linux)
67 #include <linux/types.h>
68 #include <linux/if_packet.h>
69 #include <linux/filter.h>
70 #endif
71
72 #ifndef offsetof
73 #define offsetof(s, e) ((size_t)&((s *)0)->e)
74 #endif
75
76 #ifdef _WIN32
77 #ifdef INET6
78 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
79 /* IPv6 address */
80 struct in6_addr
81 {
82 union
83 {
84 uint8_t u6_addr8[16];
85 uint16_t u6_addr16[8];
86 uint32_t u6_addr32[4];
87 } in6_u;
88 #define s6_addr in6_u.u6_addr8
89 #define s6_addr16 in6_u.u6_addr16
90 #define s6_addr32 in6_u.u6_addr32
91 #define s6_addr64 in6_u.u6_addr64
92 };
93
94 typedef unsigned short sa_family_t;
95
96 #define __SOCKADDR_COMMON(sa_prefix) \
97 sa_family_t sa_prefix##family
98
99 /* Ditto, for IPv6. */
100 struct sockaddr_in6
101 {
102 __SOCKADDR_COMMON (sin6_);
103 uint16_t sin6_port; /* Transport layer port # */
104 uint32_t sin6_flowinfo; /* IPv6 flow information */
105 struct in6_addr sin6_addr; /* IPv6 address */
106 };
107
108 #ifndef EAI_ADDRFAMILY
109 struct addrinfo {
110 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
111 int ai_family; /* PF_xxx */
112 int ai_socktype; /* SOCK_xxx */
113 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
114 size_t ai_addrlen; /* length of ai_addr */
115 char *ai_canonname; /* canonical name for hostname */
116 struct sockaddr *ai_addr; /* binary address */
117 struct addrinfo *ai_next; /* next structure in linked list */
118 };
119 #endif /* EAI_ADDRFAMILY */
120 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
121 #endif /* INET6 */
122 #else /* _WIN32 */
123 #include <netdb.h> /* for "struct addrinfo" */
124 #endif /* _WIN32 */
125 #include <pcap/namedb.h>
126
127 #include "nametoaddr.h"
128
129 #define ETHERMTU 1500
130
131 #ifndef IPPROTO_HOPOPTS
132 #define IPPROTO_HOPOPTS 0
133 #endif
134 #ifndef IPPROTO_ROUTING
135 #define IPPROTO_ROUTING 43
136 #endif
137 #ifndef IPPROTO_FRAGMENT
138 #define IPPROTO_FRAGMENT 44
139 #endif
140 #ifndef IPPROTO_DSTOPTS
141 #define IPPROTO_DSTOPTS 60
142 #endif
143 #ifndef IPPROTO_SCTP
144 #define IPPROTO_SCTP 132
145 #endif
146
147 #define GENEVE_PORT 6081
148
149 #ifdef HAVE_OS_PROTO_H
150 #include "os-proto.h"
151 #endif
152
153 #define JMP(c) ((c)|BPF_JMP|BPF_K)
154
155 /*
156 * "Push" the current value of the link-layer header type and link-layer
157 * header offset onto a "stack", and set a new value. (It's not a
158 * full-blown stack; we keep only the top two items.)
159 */
160 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
161 { \
162 (cs)->prevlinktype = (cs)->linktype; \
163 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
164 (cs)->linktype = (new_linktype); \
165 (cs)->off_linkhdr.is_variable = (new_is_variable); \
166 (cs)->off_linkhdr.constant_part = (new_constant_part); \
167 (cs)->off_linkhdr.reg = (new_reg); \
168 (cs)->is_geneve = 0; \
169 }
170
171 /*
172 * Offset "not set" value.
173 */
174 #define OFFSET_NOT_SET 0xffffffffU
175
176 /*
177 * Absolute offsets, which are offsets from the beginning of the raw
178 * packet data, are, in the general case, the sum of a variable value
179 * and a constant value; the variable value may be absent, in which
180 * case the offset is only the constant value, and the constant value
181 * may be zero, in which case the offset is only the variable value.
182 *
183 * bpf_abs_offset is a structure containing all that information:
184 *
185 * is_variable is 1 if there's a variable part.
186 *
187 * constant_part is the constant part of the value, possibly zero;
188 *
189 * if is_variable is 1, reg is the register number for a register
190 * containing the variable value if the register has been assigned,
191 * and -1 otherwise.
192 */
193 typedef struct {
194 int is_variable;
195 u_int constant_part;
196 int reg;
197 } bpf_abs_offset;
198
199 /*
200 * Value passed to gen_load_a() to indicate what the offset argument
201 * is relative to the beginning of.
202 */
203 enum e_offrel {
204 OR_PACKET, /* full packet data */
205 OR_LINKHDR, /* link-layer header */
206 OR_PREVLINKHDR, /* previous link-layer header */
207 OR_LLC, /* 802.2 LLC header */
208 OR_PREVMPLSHDR, /* previous MPLS header */
209 OR_LINKTYPE, /* link-layer type */
210 OR_LINKPL, /* link-layer payload */
211 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
212 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
213 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
214 };
215
216 /*
217 * We divvy out chunks of memory rather than call malloc each time so
218 * we don't have to worry about leaking memory. It's probably
219 * not a big deal if all this memory was wasted but if this ever
220 * goes into a library that would probably not be a good idea.
221 *
222 * XXX - this *is* in a library....
223 */
224 #define NCHUNKS 16
225 #define CHUNK0SIZE 1024
226 struct chunk {
227 size_t n_left;
228 void *m;
229 };
230
231 /*
232 * A chunk can store any of:
233 * - a string (guaranteed alignment 1 but present for completeness)
234 * - a block
235 * - an slist
236 * - an arth
237 * For this simple allocator every allocated chunk gets rounded up to the
238 * alignment needed for any chunk.
239 */
240 struct chunk_align {
241 char dummy;
242 union {
243 char c;
244 struct block b;
245 struct slist s;
246 struct arth a;
247 } u;
248 };
249 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
250
251 /* Code generator state */
252
253 struct _compiler_state {
254 jmp_buf top_ctx;
255 pcap_t *bpf_pcap;
256 int error_set;
257
258 struct icode ic;
259
260 int snaplen;
261
262 int linktype;
263 int prevlinktype;
264 int outermostlinktype;
265
266 bpf_u_int32 netmask;
267 int no_optimize;
268
269 /* Hack for handling VLAN and MPLS stacks. */
270 u_int label_stack_depth;
271 u_int vlan_stack_depth;
272
273 /* XXX */
274 u_int pcap_fddipad;
275
276 /*
277 * As errors are handled by a longjmp, anything allocated must
278 * be freed in the longjmp handler, so it must be reachable
279 * from that handler.
280 *
281 * One thing that's allocated is the result of pcap_nametoaddrinfo();
282 * it must be freed with freeaddrinfo(). This variable points to
283 * any addrinfo structure that would need to be freed.
284 */
285 struct addrinfo *ai;
286
287 /*
288 * Another thing that's allocated is the result of pcap_ether_aton();
289 * it must be freed with free(). This variable points to any
290 * address that would need to be freed.
291 */
292 u_char *e;
293
294 /*
295 * Various code constructs need to know the layout of the packet.
296 * These values give the necessary offsets from the beginning
297 * of the packet data.
298 */
299
300 /*
301 * Absolute offset of the beginning of the link-layer header.
302 */
303 bpf_abs_offset off_linkhdr;
304
305 /*
306 * If we're checking a link-layer header for a packet encapsulated
307 * in another protocol layer, this is the equivalent information
308 * for the previous layers' link-layer header from the beginning
309 * of the raw packet data.
310 */
311 bpf_abs_offset off_prevlinkhdr;
312
313 /*
314 * This is the equivalent information for the outermost layers'
315 * link-layer header.
316 */
317 bpf_abs_offset off_outermostlinkhdr;
318
319 /*
320 * Absolute offset of the beginning of the link-layer payload.
321 */
322 bpf_abs_offset off_linkpl;
323
324 /*
325 * "off_linktype" is the offset to information in the link-layer
326 * header giving the packet type. This is an absolute offset
327 * from the beginning of the packet.
328 *
329 * For Ethernet, it's the offset of the Ethernet type field; this
330 * means that it must have a value that skips VLAN tags.
331 *
332 * For link-layer types that always use 802.2 headers, it's the
333 * offset of the LLC header; this means that it must have a value
334 * that skips VLAN tags.
335 *
336 * For PPP, it's the offset of the PPP type field.
337 *
338 * For Cisco HDLC, it's the offset of the CHDLC type field.
339 *
340 * For BSD loopback, it's the offset of the AF_ value.
341 *
342 * For Linux cooked sockets, it's the offset of the type field.
343 *
344 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
345 * encapsulation, in which case, IP is assumed.
346 */
347 bpf_abs_offset off_linktype;
348
349 /*
350 * TRUE if the link layer includes an ATM pseudo-header.
351 */
352 int is_atm;
353
354 /*
355 * TRUE if "geneve" appeared in the filter; it causes us to
356 * generate code that checks for a Geneve header and assume
357 * that later filters apply to the encapsulated payload.
358 */
359 int is_geneve;
360
361 /*
362 * TRUE if we need variable length part of VLAN offset
363 */
364 int is_vlan_vloffset;
365
366 /*
367 * These are offsets for the ATM pseudo-header.
368 */
369 u_int off_vpi;
370 u_int off_vci;
371 u_int off_proto;
372
373 /*
374 * These are offsets for the MTP2 fields.
375 */
376 u_int off_li;
377 u_int off_li_hsl;
378
379 /*
380 * These are offsets for the MTP3 fields.
381 */
382 u_int off_sio;
383 u_int off_opc;
384 u_int off_dpc;
385 u_int off_sls;
386
387 /*
388 * This is the offset of the first byte after the ATM pseudo_header,
389 * or -1 if there is no ATM pseudo-header.
390 */
391 u_int off_payload;
392
393 /*
394 * These are offsets to the beginning of the network-layer header.
395 * They are relative to the beginning of the link-layer payload
396 * (i.e., they don't include off_linkhdr.constant_part or
397 * off_linkpl.constant_part).
398 *
399 * If the link layer never uses 802.2 LLC:
400 *
401 * "off_nl" and "off_nl_nosnap" are the same.
402 *
403 * If the link layer always uses 802.2 LLC:
404 *
405 * "off_nl" is the offset if there's a SNAP header following
406 * the 802.2 header;
407 *
408 * "off_nl_nosnap" is the offset if there's no SNAP header.
409 *
410 * If the link layer is Ethernet:
411 *
412 * "off_nl" is the offset if the packet is an Ethernet II packet
413 * (we assume no 802.3+802.2+SNAP);
414 *
415 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
416 * with an 802.2 header following it.
417 */
418 u_int off_nl;
419 u_int off_nl_nosnap;
420
421 /*
422 * Here we handle simple allocation of the scratch registers.
423 * If too many registers are alloc'd, the allocator punts.
424 */
425 int regused[BPF_MEMWORDS];
426 int curreg;
427
428 /*
429 * Memory chunks.
430 */
431 struct chunk chunks[NCHUNKS];
432 int cur_chunk;
433 };
434
435 /*
436 * For use by routines outside this file.
437 */
438 /* VARARGS */
439 void
440 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
441 {
442 va_list ap;
443
444 /*
445 * If we've already set an error, don't override it.
446 * The lexical analyzer reports some errors by setting
447 * the error and then returning a LEX_ERROR token, which
448 * is not recognized by any grammar rule, and thus forces
449 * the parse to stop. We don't want the error reported
450 * by the lexical analyzer to be overwritten by the syntax
451 * error.
452 */
453 if (!cstate->error_set) {
454 va_start(ap, fmt);
455 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
456 fmt, ap);
457 va_end(ap);
458 cstate->error_set = 1;
459 }
460 }
461
462 /*
463 * For use *ONLY* in routines in this file.
464 */
465 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
466 PCAP_PRINTFLIKE(2, 3);
467
468 /* VARARGS */
469 static void PCAP_NORETURN
470 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
471 {
472 va_list ap;
473
474 va_start(ap, fmt);
475 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
476 fmt, ap);
477 va_end(ap);
478 longjmp(cstate->top_ctx, 1);
479 /*NOTREACHED*/
480 #ifdef _AIX
481 PCAP_UNREACHABLE
482 #endif /* _AIX */
483 }
484
485 static int init_linktype(compiler_state_t *, pcap_t *);
486
487 static void init_regs(compiler_state_t *);
488 static int alloc_reg(compiler_state_t *);
489 static void free_reg(compiler_state_t *, int);
490
491 static void initchunks(compiler_state_t *cstate);
492 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
493 static void *newchunk(compiler_state_t *cstate, size_t);
494 static void freechunks(compiler_state_t *cstate);
495 static inline struct block *new_block(compiler_state_t *cstate, int);
496 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
497 static struct block *gen_retblk(compiler_state_t *cstate, int);
498 static inline void syntax(compiler_state_t *cstate);
499
500 static void backpatch(struct block *, struct block *);
501 static void merge(struct block *, struct block *);
502 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
503 u_int, bpf_u_int32);
504 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
505 u_int, bpf_u_int32);
506 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
507 u_int, bpf_u_int32);
508 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
509 u_int, bpf_u_int32);
510 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
511 u_int, bpf_u_int32);
512 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
513 u_int, bpf_u_int32, bpf_u_int32);
514 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
515 u_int, const u_char *);
516 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
517 u_int, bpf_u_int32, int, int, bpf_u_int32);
518 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
519 u_int, u_int);
520 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
521 u_int);
522 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
523 static struct block *gen_uncond(compiler_state_t *, int);
524 static inline struct block *gen_true(compiler_state_t *);
525 static inline struct block *gen_false(compiler_state_t *);
526 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
527 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
528 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
529 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
530 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
531 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
532 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
533 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
534 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
535 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
536 bpf_abs_offset *);
537 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
538 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
539 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
540 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
541 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
542 int, bpf_u_int32, u_int, u_int);
543 #ifdef INET6
544 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
545 struct in6_addr *, int, bpf_u_int32, u_int, u_int);
546 #endif
547 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
548 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
549 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
550 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
551 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
552 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
553 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
554 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
555 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
556 int, int, int);
557 #ifdef INET6
558 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
559 struct in6_addr *, int, int, int);
560 #endif
561 #ifndef INET6
562 static struct block *gen_gateway(compiler_state_t *, const u_char *,
563 struct addrinfo *, int, int);
564 #endif
565 static struct block *gen_ipfrag(compiler_state_t *);
566 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
567 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
568 bpf_u_int32);
569 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
570 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
571 bpf_u_int32);
572 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
573 static struct block *gen_port(compiler_state_t *, u_int, int, int);
574 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
575 bpf_u_int32, int);
576 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
577 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
578 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
579 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
580 bpf_u_int32, int);
581 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
582 static int lookup_proto(compiler_state_t *, const char *, int);
583 #if !defined(NO_PROTOCHAIN)
584 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
585 #endif /* !defined(NO_PROTOCHAIN) */
586 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
587 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
588 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
589 static struct block *gen_mac_multicast(compiler_state_t *, int);
590 static struct block *gen_len(compiler_state_t *, int, int);
591 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
592 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
593
594 static struct block *gen_ppi_dlt_check(compiler_state_t *);
595 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
596 bpf_u_int32, int, int);
597 static struct block *gen_atmtype_llc(compiler_state_t *);
598 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
599
600 static void
601 initchunks(compiler_state_t *cstate)
602 {
603 int i;
604
605 for (i = 0; i < NCHUNKS; i++) {
606 cstate->chunks[i].n_left = 0;
607 cstate->chunks[i].m = NULL;
608 }
609 cstate->cur_chunk = 0;
610 }
611
612 static void *
613 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
614 {
615 struct chunk *cp;
616 int k;
617 size_t size;
618
619 /* Round up to chunk alignment. */
620 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
621
622 cp = &cstate->chunks[cstate->cur_chunk];
623 if (n > cp->n_left) {
624 ++cp;
625 k = ++cstate->cur_chunk;
626 if (k >= NCHUNKS) {
627 bpf_set_error(cstate, "out of memory");
628 return (NULL);
629 }
630 size = CHUNK0SIZE << k;
631 cp->m = (void *)malloc(size);
632 if (cp->m == NULL) {
633 bpf_set_error(cstate, "out of memory");
634 return (NULL);
635 }
636 memset((char *)cp->m, 0, size);
637 cp->n_left = size;
638 if (n > size) {
639 bpf_set_error(cstate, "out of memory");
640 return (NULL);
641 }
642 }
643 cp->n_left -= n;
644 return (void *)((char *)cp->m + cp->n_left);
645 }
646
647 static void *
648 newchunk(compiler_state_t *cstate, size_t n)
649 {
650 void *p;
651
652 p = newchunk_nolongjmp(cstate, n);
653 if (p == NULL) {
654 longjmp(cstate->top_ctx, 1);
655 /*NOTREACHED*/
656 }
657 return (p);
658 }
659
660 static void
661 freechunks(compiler_state_t *cstate)
662 {
663 int i;
664
665 for (i = 0; i < NCHUNKS; ++i)
666 if (cstate->chunks[i].m != NULL)
667 free(cstate->chunks[i].m);
668 }
669
670 /*
671 * A strdup whose allocations are freed after code generation is over.
672 * This is used by the lexical analyzer, so it can't longjmp; it just
673 * returns NULL on an allocation error, and the callers must check
674 * for it.
675 */
676 char *
677 sdup(compiler_state_t *cstate, const char *s)
678 {
679 size_t n = strlen(s) + 1;
680 char *cp = newchunk_nolongjmp(cstate, n);
681
682 if (cp == NULL)
683 return (NULL);
684 pcapint_strlcpy(cp, s, n);
685 return (cp);
686 }
687
688 static inline struct block *
689 new_block(compiler_state_t *cstate, int code)
690 {
691 struct block *p;
692
693 p = (struct block *)newchunk(cstate, sizeof(*p));
694 p->s.code = code;
695 p->head = p;
696
697 return p;
698 }
699
700 static inline struct slist *
701 new_stmt(compiler_state_t *cstate, int code)
702 {
703 struct slist *p;
704
705 p = (struct slist *)newchunk(cstate, sizeof(*p));
706 p->s.code = code;
707
708 return p;
709 }
710
711 static struct block *
712 gen_retblk(compiler_state_t *cstate, int v)
713 {
714 struct block *b = new_block(cstate, BPF_RET|BPF_K);
715
716 b->s.k = v;
717 return b;
718 }
719
720 static inline PCAP_NORETURN_DEF void
721 syntax(compiler_state_t *cstate)
722 {
723 bpf_error(cstate, "syntax error in filter expression");
724 }
725
726 int
727 pcap_compile(pcap_t *p, struct bpf_program *program,
728 const char *buf, int optimize, bpf_u_int32 mask)
729 {
730 #ifdef _WIN32
731 static int done = 0;
732 #endif
733 compiler_state_t cstate;
734 const char * volatile xbuf = buf;
735 yyscan_t scanner = NULL;
736 volatile YY_BUFFER_STATE in_buffer = NULL;
737 u_int len;
738 int rc;
739
740 /*
741 * If this pcap_t hasn't been activated, it doesn't have a
742 * link-layer type, so we can't use it.
743 */
744 if (!p->activated) {
745 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
746 "not-yet-activated pcap_t passed to pcap_compile");
747 return (PCAP_ERROR);
748 }
749
750 #ifdef _WIN32
751 if (!done) {
752 pcap_wsockinit();
753 done = 1;
754 }
755 #endif
756
757 #ifdef ENABLE_REMOTE
758 /*
759 * If the device on which we're capturing need to be notified
760 * that a new filter is being compiled, do so.
761 *
762 * This allows them to save a copy of it, in case, for example,
763 * they're implementing a form of remote packet capture, and
764 * want the remote machine to filter out the packets in which
765 * it's sending the packets it's captured.
766 *
767 * XXX - the fact that we happen to be compiling a filter
768 * doesn't necessarily mean we'll be installing it as the
769 * filter for this pcap_t; we might be running it from userland
770 * on captured packets to do packet classification. We really
771 * need a better way of handling this, but this is all that
772 * the WinPcap remote capture code did.
773 */
774 if (p->save_current_filter_op != NULL)
775 (p->save_current_filter_op)(p, buf);
776 #endif
777
778 initchunks(&cstate);
779 cstate.no_optimize = 0;
780 #ifdef INET6
781 cstate.ai = NULL;
782 #endif
783 cstate.e = NULL;
784 cstate.ic.root = NULL;
785 cstate.ic.cur_mark = 0;
786 cstate.bpf_pcap = p;
787 cstate.error_set = 0;
788 init_regs(&cstate);
789
790 cstate.netmask = mask;
791
792 cstate.snaplen = pcap_snapshot(p);
793 if (cstate.snaplen == 0) {
794 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
795 "snaplen of 0 rejects all packets");
796 rc = PCAP_ERROR;
797 goto quit;
798 }
799
800 if (pcap_lex_init(&scanner) != 0) {
801 pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
802 errno, "can't initialize scanner");
803 rc = PCAP_ERROR;
804 goto quit;
805 }
806 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
807
808 /*
809 * Associate the compiler state with the lexical analyzer
810 * state.
811 */
812 pcap_set_extra(&cstate, scanner);
813
814 if (init_linktype(&cstate, p) == -1) {
815 rc = PCAP_ERROR;
816 goto quit;
817 }
818 if (pcap_parse(scanner, &cstate) != 0) {
819 #ifdef INET6
820 if (cstate.ai != NULL)
821 freeaddrinfo(cstate.ai);
822 #endif
823 if (cstate.e != NULL)
824 free(cstate.e);
825 rc = PCAP_ERROR;
826 goto quit;
827 }
828
829 if (cstate.ic.root == NULL) {
830 /*
831 * Catch errors reported by gen_retblk().
832 */
833 if (setjmp(cstate.top_ctx)) {
834 rc = PCAP_ERROR;
835 goto quit;
836 }
837 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
838 }
839
840 if (optimize && !cstate.no_optimize) {
841 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
842 /* Failure */
843 rc = PCAP_ERROR;
844 goto quit;
845 }
846 if (cstate.ic.root == NULL ||
847 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
848 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
849 "expression rejects all packets");
850 rc = PCAP_ERROR;
851 goto quit;
852 }
853 }
854 program->bf_insns = icode_to_fcode(&cstate.ic,
855 cstate.ic.root, &len, p->errbuf);
856 if (program->bf_insns == NULL) {
857 /* Failure */
858 rc = PCAP_ERROR;
859 goto quit;
860 }
861 program->bf_len = len;
862
863 rc = 0; /* We're all okay */
864
865 quit:
866 /*
867 * Clean up everything for the lexical analyzer.
868 */
869 if (in_buffer != NULL)
870 pcap__delete_buffer(in_buffer, scanner);
871 if (scanner != NULL)
872 pcap_lex_destroy(scanner);
873
874 /*
875 * Clean up our own allocated memory.
876 */
877 freechunks(&cstate);
878
879 return (rc);
880 }
881
882 /*
883 * entry point for using the compiler with no pcap open
884 * pass in all the stuff that is needed explicitly instead.
885 */
886 int
887 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
888 struct bpf_program *program,
889 const char *buf, int optimize, bpf_u_int32 mask)
890 {
891 pcap_t *p;
892 int ret;
893
894 p = pcap_open_dead(linktype_arg, snaplen_arg);
895 if (p == NULL)
896 return (PCAP_ERROR);
897 ret = pcap_compile(p, program, buf, optimize, mask);
898 pcap_close(p);
899 return (ret);
900 }
901
902 /*
903 * Clean up a "struct bpf_program" by freeing all the memory allocated
904 * in it.
905 */
906 void
907 pcap_freecode(struct bpf_program *program)
908 {
909 program->bf_len = 0;
910 if (program->bf_insns != NULL) {
911 free((char *)program->bf_insns);
912 program->bf_insns = NULL;
913 }
914 }
915
916 /*
917 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
918 * which of the jt and jf fields has been resolved and which is a pointer
919 * back to another unresolved block (or nil). At least one of the fields
920 * in each block is already resolved.
921 */
922 static void
923 backpatch(struct block *list, struct block *target)
924 {
925 struct block *next;
926
927 while (list) {
928 if (!list->sense) {
929 next = JT(list);
930 JT(list) = target;
931 } else {
932 next = JF(list);
933 JF(list) = target;
934 }
935 list = next;
936 }
937 }
938
939 /*
940 * Merge the lists in b0 and b1, using the 'sense' field to indicate
941 * which of jt and jf is the link.
942 */
943 static void
944 merge(struct block *b0, struct block *b1)
945 {
946 register struct block **p = &b0;
947
948 /* Find end of list. */
949 while (*p)
950 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
951
952 /* Concatenate the lists. */
953 *p = b1;
954 }
955
956 int
957 finish_parse(compiler_state_t *cstate, struct block *p)
958 {
959 struct block *ppi_dlt_check;
960
961 /*
962 * Catch errors reported by us and routines below us, and return -1
963 * on an error.
964 */
965 if (setjmp(cstate->top_ctx))
966 return (-1);
967
968 /*
969 * Insert before the statements of the first (root) block any
970 * statements needed to load the lengths of any variable-length
971 * headers into registers.
972 *
973 * XXX - a fancier strategy would be to insert those before the
974 * statements of all blocks that use those lengths and that
975 * have no predecessors that use them, so that we only compute
976 * the lengths if we need them. There might be even better
977 * approaches than that.
978 *
979 * However, those strategies would be more complicated, and
980 * as we don't generate code to compute a length if the
981 * program has no tests that use the length, and as most
982 * tests will probably use those lengths, we would just
983 * postpone computing the lengths so that it's not done
984 * for tests that fail early, and it's not clear that's
985 * worth the effort.
986 */
987 insert_compute_vloffsets(cstate, p->head);
988
989 /*
990 * For DLT_PPI captures, generate a check of the per-packet
991 * DLT value to make sure it's DLT_IEEE802_11.
992 *
993 * XXX - TurboCap cards use DLT_PPI for Ethernet.
994 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
995 * with appropriate Ethernet information and use that rather
996 * than using something such as DLT_PPI where you don't know
997 * the link-layer header type until runtime, which, in the
998 * general case, would force us to generate both Ethernet *and*
999 * 802.11 code (*and* anything else for which PPI is used)
1000 * and choose between them early in the BPF program?
1001 */
1002 ppi_dlt_check = gen_ppi_dlt_check(cstate);
1003 if (ppi_dlt_check != NULL)
1004 gen_and(ppi_dlt_check, p);
1005
1006 backpatch(p, gen_retblk(cstate, cstate->snaplen));
1007 p->sense = !p->sense;
1008 backpatch(p, gen_retblk(cstate, 0));
1009 cstate->ic.root = p->head;
1010 return (0);
1011 }
1012
1013 void
1014 gen_and(struct block *b0, struct block *b1)
1015 {
1016 backpatch(b0, b1->head);
1017 b0->sense = !b0->sense;
1018 b1->sense = !b1->sense;
1019 merge(b1, b0);
1020 b1->sense = !b1->sense;
1021 b1->head = b0->head;
1022 }
1023
1024 void
1025 gen_or(struct block *b0, struct block *b1)
1026 {
1027 b0->sense = !b0->sense;
1028 backpatch(b0, b1->head);
1029 b0->sense = !b0->sense;
1030 merge(b1, b0);
1031 b1->head = b0->head;
1032 }
1033
1034 void
1035 gen_not(struct block *b)
1036 {
1037 b->sense = !b->sense;
1038 }
1039
1040 static struct block *
1041 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1042 u_int size, bpf_u_int32 v)
1043 {
1044 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1045 }
1046
1047 static struct block *
1048 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1049 u_int size, bpf_u_int32 v)
1050 {
1051 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1052 }
1053
1054 static struct block *
1055 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1056 u_int size, bpf_u_int32 v)
1057 {
1058 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1059 }
1060
1061 static struct block *
1062 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1063 u_int size, bpf_u_int32 v)
1064 {
1065 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1066 }
1067
1068 static struct block *
1069 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1070 u_int size, bpf_u_int32 v)
1071 {
1072 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1073 }
1074
1075 static struct block *
1076 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1077 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1078 {
1079 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1080 }
1081
1082 static struct block *
1083 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1084 u_int size, const u_char *v)
1085 {
1086 register struct block *b, *tmp;
1087
1088 b = NULL;
1089 while (size >= 4) {
1090 register const u_char *p = &v[size - 4];
1091
1092 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1093 EXTRACT_BE_U_4(p));
1094 if (b != NULL)
1095 gen_and(b, tmp);
1096 b = tmp;
1097 size -= 4;
1098 }
1099 while (size >= 2) {
1100 register const u_char *p = &v[size - 2];
1101
1102 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1103 EXTRACT_BE_U_2(p));
1104 if (b != NULL)
1105 gen_and(b, tmp);
1106 b = tmp;
1107 size -= 2;
1108 }
1109 if (size > 0) {
1110 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1111 if (b != NULL)
1112 gen_and(b, tmp);
1113 b = tmp;
1114 }
1115 return b;
1116 }
1117
1118 /*
1119 * AND the field of size "size" at offset "offset" relative to the header
1120 * specified by "offrel" with "mask", and compare it with the value "v"
1121 * with the test specified by "jtype"; if "reverse" is true, the test
1122 * should test the opposite of "jtype".
1123 */
1124 static struct block *
1125 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1126 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1127 bpf_u_int32 v)
1128 {
1129 struct slist *s, *s2;
1130 struct block *b;
1131
1132 s = gen_load_a(cstate, offrel, offset, size);
1133
1134 if (mask != 0xffffffff) {
1135 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1136 s2->s.k = mask;
1137 sappend(s, s2);
1138 }
1139
1140 b = new_block(cstate, JMP(jtype));
1141 b->stmts = s;
1142 b->s.k = v;
1143 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1144 gen_not(b);
1145 return b;
1146 }
1147
1148 static int
1149 init_linktype(compiler_state_t *cstate, pcap_t *p)
1150 {
1151 cstate->pcap_fddipad = p->fddipad;
1152
1153 /*
1154 * We start out with only one link-layer header.
1155 */
1156 cstate->outermostlinktype = pcap_datalink(p);
1157 cstate->off_outermostlinkhdr.constant_part = 0;
1158 cstate->off_outermostlinkhdr.is_variable = 0;
1159 cstate->off_outermostlinkhdr.reg = -1;
1160
1161 cstate->prevlinktype = cstate->outermostlinktype;
1162 cstate->off_prevlinkhdr.constant_part = 0;
1163 cstate->off_prevlinkhdr.is_variable = 0;
1164 cstate->off_prevlinkhdr.reg = -1;
1165
1166 cstate->linktype = cstate->outermostlinktype;
1167 cstate->off_linkhdr.constant_part = 0;
1168 cstate->off_linkhdr.is_variable = 0;
1169 cstate->off_linkhdr.reg = -1;
1170
1171 /*
1172 * XXX
1173 */
1174 cstate->off_linkpl.constant_part = 0;
1175 cstate->off_linkpl.is_variable = 0;
1176 cstate->off_linkpl.reg = -1;
1177
1178 cstate->off_linktype.constant_part = 0;
1179 cstate->off_linktype.is_variable = 0;
1180 cstate->off_linktype.reg = -1;
1181
1182 /*
1183 * Assume it's not raw ATM with a pseudo-header, for now.
1184 */
1185 cstate->is_atm = 0;
1186 cstate->off_vpi = OFFSET_NOT_SET;
1187 cstate->off_vci = OFFSET_NOT_SET;
1188 cstate->off_proto = OFFSET_NOT_SET;
1189 cstate->off_payload = OFFSET_NOT_SET;
1190
1191 /*
1192 * And not Geneve.
1193 */
1194 cstate->is_geneve = 0;
1195
1196 /*
1197 * No variable length VLAN offset by default
1198 */
1199 cstate->is_vlan_vloffset = 0;
1200
1201 /*
1202 * And assume we're not doing SS7.
1203 */
1204 cstate->off_li = OFFSET_NOT_SET;
1205 cstate->off_li_hsl = OFFSET_NOT_SET;
1206 cstate->off_sio = OFFSET_NOT_SET;
1207 cstate->off_opc = OFFSET_NOT_SET;
1208 cstate->off_dpc = OFFSET_NOT_SET;
1209 cstate->off_sls = OFFSET_NOT_SET;
1210
1211 cstate->label_stack_depth = 0;
1212 cstate->vlan_stack_depth = 0;
1213
1214 switch (cstate->linktype) {
1215
1216 case DLT_ARCNET:
1217 cstate->off_linktype.constant_part = 2;
1218 cstate->off_linkpl.constant_part = 6;
1219 cstate->off_nl = 0; /* XXX in reality, variable! */
1220 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1221 break;
1222
1223 case DLT_ARCNET_LINUX:
1224 cstate->off_linktype.constant_part = 4;
1225 cstate->off_linkpl.constant_part = 8;
1226 cstate->off_nl = 0; /* XXX in reality, variable! */
1227 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1228 break;
1229
1230 case DLT_EN10MB:
1231 cstate->off_linktype.constant_part = 12;
1232 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1233 cstate->off_nl = 0; /* Ethernet II */
1234 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1235 break;
1236
1237 case DLT_SLIP:
1238 /*
1239 * SLIP doesn't have a link level type. The 16 byte
1240 * header is hacked into our SLIP driver.
1241 */
1242 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1243 cstate->off_linkpl.constant_part = 16;
1244 cstate->off_nl = 0;
1245 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1246 break;
1247
1248 case DLT_SLIP_BSDOS:
1249 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1250 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1251 /* XXX end */
1252 cstate->off_linkpl.constant_part = 24;
1253 cstate->off_nl = 0;
1254 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1255 break;
1256
1257 case DLT_NULL:
1258 case DLT_LOOP:
1259 cstate->off_linktype.constant_part = 0;
1260 cstate->off_linkpl.constant_part = 4;
1261 cstate->off_nl = 0;
1262 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1263 break;
1264
1265 case DLT_ENC:
1266 cstate->off_linktype.constant_part = 0;
1267 cstate->off_linkpl.constant_part = 12;
1268 cstate->off_nl = 0;
1269 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1270 break;
1271
1272 case DLT_PPP:
1273 case DLT_PPP_PPPD:
1274 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1275 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1276 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1277 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1278 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1279 cstate->off_nl = 0;
1280 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1281 break;
1282
1283 case DLT_PPP_ETHER:
1284 /*
1285 * This does no include the Ethernet header, and
1286 * only covers session state.
1287 */
1288 cstate->off_linktype.constant_part = 6;
1289 cstate->off_linkpl.constant_part = 8;
1290 cstate->off_nl = 0;
1291 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1292 break;
1293
1294 case DLT_PPP_BSDOS:
1295 cstate->off_linktype.constant_part = 5;
1296 cstate->off_linkpl.constant_part = 24;
1297 cstate->off_nl = 0;
1298 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1299 break;
1300
1301 case DLT_FDDI:
1302 /*
1303 * FDDI doesn't really have a link-level type field.
1304 * We set "off_linktype" to the offset of the LLC header.
1305 *
1306 * To check for Ethernet types, we assume that SSAP = SNAP
1307 * is being used and pick out the encapsulated Ethernet type.
1308 * XXX - should we generate code to check for SNAP?
1309 */
1310 cstate->off_linktype.constant_part = 13;
1311 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1312 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1313 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1314 cstate->off_nl = 8; /* 802.2+SNAP */
1315 cstate->off_nl_nosnap = 3; /* 802.2 */
1316 break;
1317
1318 case DLT_IEEE802:
1319 /*
1320 * Token Ring doesn't really have a link-level type field.
1321 * We set "off_linktype" to the offset of the LLC header.
1322 *
1323 * To check for Ethernet types, we assume that SSAP = SNAP
1324 * is being used and pick out the encapsulated Ethernet type.
1325 * XXX - should we generate code to check for SNAP?
1326 *
1327 * XXX - the header is actually variable-length.
1328 * Some various Linux patched versions gave 38
1329 * as "off_linktype" and 40 as "off_nl"; however,
1330 * if a token ring packet has *no* routing
1331 * information, i.e. is not source-routed, the correct
1332 * values are 20 and 22, as they are in the vanilla code.
1333 *
1334 * A packet is source-routed iff the uppermost bit
1335 * of the first byte of the source address, at an
1336 * offset of 8, has the uppermost bit set. If the
1337 * packet is source-routed, the total number of bytes
1338 * of routing information is 2 plus bits 0x1F00 of
1339 * the 16-bit value at an offset of 14 (shifted right
1340 * 8 - figure out which byte that is).
1341 */
1342 cstate->off_linktype.constant_part = 14;
1343 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1344 cstate->off_nl = 8; /* 802.2+SNAP */
1345 cstate->off_nl_nosnap = 3; /* 802.2 */
1346 break;
1347
1348 case DLT_PRISM_HEADER:
1349 case DLT_IEEE802_11_RADIO_AVS:
1350 case DLT_IEEE802_11_RADIO:
1351 cstate->off_linkhdr.is_variable = 1;
1352 /* Fall through, 802.11 doesn't have a variable link
1353 * prefix but is otherwise the same. */
1354 /* FALLTHROUGH */
1355
1356 case DLT_IEEE802_11:
1357 /*
1358 * 802.11 doesn't really have a link-level type field.
1359 * We set "off_linktype.constant_part" to the offset of
1360 * the LLC header.
1361 *
1362 * To check for Ethernet types, we assume that SSAP = SNAP
1363 * is being used and pick out the encapsulated Ethernet type.
1364 * XXX - should we generate code to check for SNAP?
1365 *
1366 * We also handle variable-length radio headers here.
1367 * The Prism header is in theory variable-length, but in
1368 * practice it's always 144 bytes long. However, some
1369 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1370 * sometimes or always supply an AVS header, so we
1371 * have to check whether the radio header is a Prism
1372 * header or an AVS header, so, in practice, it's
1373 * variable-length.
1374 */
1375 cstate->off_linktype.constant_part = 24;
1376 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1377 cstate->off_linkpl.is_variable = 1;
1378 cstate->off_nl = 8; /* 802.2+SNAP */
1379 cstate->off_nl_nosnap = 3; /* 802.2 */
1380 break;
1381
1382 case DLT_PPI:
1383 /*
1384 * At the moment we treat PPI the same way that we treat
1385 * normal Radiotap encoded packets. The difference is in
1386 * the function that generates the code at the beginning
1387 * to compute the header length. Since this code generator
1388 * of PPI supports bare 802.11 encapsulation only (i.e.
1389 * the encapsulated DLT should be DLT_IEEE802_11) we
1390 * generate code to check for this too.
1391 */
1392 cstate->off_linktype.constant_part = 24;
1393 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1394 cstate->off_linkpl.is_variable = 1;
1395 cstate->off_linkhdr.is_variable = 1;
1396 cstate->off_nl = 8; /* 802.2+SNAP */
1397 cstate->off_nl_nosnap = 3; /* 802.2 */
1398 break;
1399
1400 case DLT_ATM_RFC1483:
1401 case DLT_ATM_CLIP: /* Linux ATM defines this */
1402 /*
1403 * assume routed, non-ISO PDUs
1404 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1405 *
1406 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1407 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1408 * latter would presumably be treated the way PPPoE
1409 * should be, so you can do "pppoe and udp port 2049"
1410 * or "pppoa and tcp port 80" and have it check for
1411 * PPPo{A,E} and a PPP protocol of IP and....
1412 */
1413 cstate->off_linktype.constant_part = 0;
1414 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1415 cstate->off_nl = 8; /* 802.2+SNAP */
1416 cstate->off_nl_nosnap = 3; /* 802.2 */
1417 break;
1418
1419 case DLT_SUNATM:
1420 /*
1421 * Full Frontal ATM; you get AALn PDUs with an ATM
1422 * pseudo-header.
1423 */
1424 cstate->is_atm = 1;
1425 cstate->off_vpi = SUNATM_VPI_POS;
1426 cstate->off_vci = SUNATM_VCI_POS;
1427 cstate->off_proto = PROTO_POS;
1428 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1429 cstate->off_linktype.constant_part = cstate->off_payload;
1430 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1431 cstate->off_nl = 8; /* 802.2+SNAP */
1432 cstate->off_nl_nosnap = 3; /* 802.2 */
1433 break;
1434
1435 case DLT_RAW:
1436 case DLT_IPV4:
1437 case DLT_IPV6:
1438 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1439 cstate->off_linkpl.constant_part = 0;
1440 cstate->off_nl = 0;
1441 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1442 break;
1443
1444 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1445 cstate->off_linktype.constant_part = 14;
1446 cstate->off_linkpl.constant_part = 16;
1447 cstate->off_nl = 0;
1448 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1449 break;
1450
1451 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1452 cstate->off_linktype.constant_part = 0;
1453 cstate->off_linkpl.constant_part = 20;
1454 cstate->off_nl = 0;
1455 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1456 break;
1457
1458 case DLT_LTALK:
1459 /*
1460 * LocalTalk does have a 1-byte type field in the LLAP header,
1461 * but really it just indicates whether there is a "short" or
1462 * "long" DDP packet following.
1463 */
1464 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1465 cstate->off_linkpl.constant_part = 0;
1466 cstate->off_nl = 0;
1467 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1468 break;
1469
1470 case DLT_IP_OVER_FC:
1471 /*
1472 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1473 * link-level type field. We set "off_linktype" to the
1474 * offset of the LLC header.
1475 *
1476 * To check for Ethernet types, we assume that SSAP = SNAP
1477 * is being used and pick out the encapsulated Ethernet type.
1478 * XXX - should we generate code to check for SNAP? RFC
1479 * 2625 says SNAP should be used.
1480 */
1481 cstate->off_linktype.constant_part = 16;
1482 cstate->off_linkpl.constant_part = 16;
1483 cstate->off_nl = 8; /* 802.2+SNAP */
1484 cstate->off_nl_nosnap = 3; /* 802.2 */
1485 break;
1486
1487 case DLT_FRELAY:
1488 /*
1489 * XXX - we should set this to handle SNAP-encapsulated
1490 * frames (NLPID of 0x80).
1491 */
1492 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1493 cstate->off_linkpl.constant_part = 0;
1494 cstate->off_nl = 0;
1495 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1496 break;
1497
1498 /*
1499 * the only BPF-interesting FRF.16 frames are non-control frames;
1500 * Frame Relay has a variable length link-layer
1501 * so lets start with offset 4 for now and increments later on (FIXME);
1502 */
1503 case DLT_MFR:
1504 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1505 cstate->off_linkpl.constant_part = 0;
1506 cstate->off_nl = 4;
1507 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1508 break;
1509
1510 case DLT_APPLE_IP_OVER_IEEE1394:
1511 cstate->off_linktype.constant_part = 16;
1512 cstate->off_linkpl.constant_part = 18;
1513 cstate->off_nl = 0;
1514 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1515 break;
1516
1517 case DLT_SYMANTEC_FIREWALL:
1518 cstate->off_linktype.constant_part = 6;
1519 cstate->off_linkpl.constant_part = 44;
1520 cstate->off_nl = 0; /* Ethernet II */
1521 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1522 break;
1523
1524 case DLT_PFLOG:
1525 cstate->off_linktype.constant_part = 0;
1526 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1527 cstate->off_linkpl.is_variable = 1;
1528 cstate->off_nl = 0;
1529 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1530 break;
1531
1532 case DLT_JUNIPER_MFR:
1533 case DLT_JUNIPER_MLFR:
1534 case DLT_JUNIPER_MLPPP:
1535 case DLT_JUNIPER_PPP:
1536 case DLT_JUNIPER_CHDLC:
1537 case DLT_JUNIPER_FRELAY:
1538 cstate->off_linktype.constant_part = 4;
1539 cstate->off_linkpl.constant_part = 4;
1540 cstate->off_nl = 0;
1541 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1542 break;
1543
1544 case DLT_JUNIPER_ATM1:
1545 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1546 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1547 cstate->off_nl = 0;
1548 cstate->off_nl_nosnap = 10;
1549 break;
1550
1551 case DLT_JUNIPER_ATM2:
1552 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1553 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1554 cstate->off_nl = 0;
1555 cstate->off_nl_nosnap = 10;
1556 break;
1557
1558 /* frames captured on a Juniper PPPoE service PIC
1559 * contain raw ethernet frames */
1560 case DLT_JUNIPER_PPPOE:
1561 case DLT_JUNIPER_ETHER:
1562 cstate->off_linkpl.constant_part = 14;
1563 cstate->off_linktype.constant_part = 16;
1564 cstate->off_nl = 18; /* Ethernet II */
1565 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1566 break;
1567
1568 case DLT_JUNIPER_PPPOE_ATM:
1569 cstate->off_linktype.constant_part = 4;
1570 cstate->off_linkpl.constant_part = 6;
1571 cstate->off_nl = 0;
1572 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1573 break;
1574
1575 case DLT_JUNIPER_GGSN:
1576 cstate->off_linktype.constant_part = 6;
1577 cstate->off_linkpl.constant_part = 12;
1578 cstate->off_nl = 0;
1579 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1580 break;
1581
1582 case DLT_JUNIPER_ES:
1583 cstate->off_linktype.constant_part = 6;
1584 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1585 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1586 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1587 break;
1588
1589 case DLT_JUNIPER_MONITOR:
1590 cstate->off_linktype.constant_part = 12;
1591 cstate->off_linkpl.constant_part = 12;
1592 cstate->off_nl = 0; /* raw IP/IP6 header */
1593 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1594 break;
1595
1596 case DLT_BACNET_MS_TP:
1597 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1598 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1599 cstate->off_nl = OFFSET_NOT_SET;
1600 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1601 break;
1602
1603 case DLT_JUNIPER_SERVICES:
1604 cstate->off_linktype.constant_part = 12;
1605 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1606 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1607 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1608 break;
1609
1610 case DLT_JUNIPER_VP:
1611 cstate->off_linktype.constant_part = 18;
1612 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1613 cstate->off_nl = OFFSET_NOT_SET;
1614 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1615 break;
1616
1617 case DLT_JUNIPER_ST:
1618 cstate->off_linktype.constant_part = 18;
1619 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1620 cstate->off_nl = OFFSET_NOT_SET;
1621 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1622 break;
1623
1624 case DLT_JUNIPER_ISM:
1625 cstate->off_linktype.constant_part = 8;
1626 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1627 cstate->off_nl = OFFSET_NOT_SET;
1628 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1629 break;
1630
1631 case DLT_JUNIPER_VS:
1632 case DLT_JUNIPER_SRX_E2E:
1633 case DLT_JUNIPER_FIBRECHANNEL:
1634 case DLT_JUNIPER_ATM_CEMIC:
1635 cstate->off_linktype.constant_part = 8;
1636 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637 cstate->off_nl = OFFSET_NOT_SET;
1638 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639 break;
1640
1641 case DLT_MTP2:
1642 cstate->off_li = 2;
1643 cstate->off_li_hsl = 4;
1644 cstate->off_sio = 3;
1645 cstate->off_opc = 4;
1646 cstate->off_dpc = 4;
1647 cstate->off_sls = 7;
1648 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650 cstate->off_nl = OFFSET_NOT_SET;
1651 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652 break;
1653
1654 case DLT_MTP2_WITH_PHDR:
1655 cstate->off_li = 6;
1656 cstate->off_li_hsl = 8;
1657 cstate->off_sio = 7;
1658 cstate->off_opc = 8;
1659 cstate->off_dpc = 8;
1660 cstate->off_sls = 11;
1661 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663 cstate->off_nl = OFFSET_NOT_SET;
1664 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665 break;
1666
1667 case DLT_ERF:
1668 cstate->off_li = 22;
1669 cstate->off_li_hsl = 24;
1670 cstate->off_sio = 23;
1671 cstate->off_opc = 24;
1672 cstate->off_dpc = 24;
1673 cstate->off_sls = 27;
1674 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1675 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1676 cstate->off_nl = OFFSET_NOT_SET;
1677 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1678 break;
1679
1680 case DLT_PFSYNC:
1681 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1682 cstate->off_linkpl.constant_part = 4;
1683 cstate->off_nl = 0;
1684 cstate->off_nl_nosnap = 0;
1685 break;
1686
1687 case DLT_AX25_KISS:
1688 /*
1689 * Currently, only raw "link[N:M]" filtering is supported.
1690 */
1691 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1692 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1693 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1694 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1695 break;
1696
1697 case DLT_IPNET:
1698 cstate->off_linktype.constant_part = 1;
1699 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1700 cstate->off_nl = 0;
1701 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1702 break;
1703
1704 case DLT_NETANALYZER:
1705 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1706 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1707 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1708 cstate->off_nl = 0; /* Ethernet II */
1709 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1710 break;
1711
1712 case DLT_NETANALYZER_TRANSPARENT:
1713 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1714 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1715 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1716 cstate->off_nl = 0; /* Ethernet II */
1717 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1718 break;
1719
1720 default:
1721 /*
1722 * For values in the range in which we've assigned new
1723 * DLT_ values, only raw "link[N:M]" filtering is supported.
1724 */
1725 if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
1726 cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
1727 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1728 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1729 cstate->off_nl = OFFSET_NOT_SET;
1730 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1731 } else {
1732 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1733 cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
1734 return (-1);
1735 }
1736 break;
1737 }
1738
1739 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1740 return (0);
1741 }
1742
1743 /*
1744 * Load a value relative to the specified absolute offset.
1745 */
1746 static struct slist *
1747 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1748 u_int offset, u_int size)
1749 {
1750 struct slist *s, *s2;
1751
1752 s = gen_abs_offset_varpart(cstate, abs_offset);
1753
1754 /*
1755 * If "s" is non-null, it has code to arrange that the X register
1756 * contains the variable part of the absolute offset, so we
1757 * generate a load relative to that, with an offset of
1758 * abs_offset->constant_part + offset.
1759 *
1760 * Otherwise, we can do an absolute load with an offset of
1761 * abs_offset->constant_part + offset.
1762 */
1763 if (s != NULL) {
1764 /*
1765 * "s" points to a list of statements that puts the
1766 * variable part of the absolute offset into the X register.
1767 * Do an indirect load, to use the X register as an offset.
1768 */
1769 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1770 s2->s.k = abs_offset->constant_part + offset;
1771 sappend(s, s2);
1772 } else {
1773 /*
1774 * There is no variable part of the absolute offset, so
1775 * just do an absolute load.
1776 */
1777 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1778 s->s.k = abs_offset->constant_part + offset;
1779 }
1780 return s;
1781 }
1782
1783 /*
1784 * Load a value relative to the beginning of the specified header.
1785 */
1786 static struct slist *
1787 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1788 u_int size)
1789 {
1790 struct slist *s, *s2;
1791
1792 /*
1793 * Squelch warnings from compilers that *don't* assume that
1794 * offrel always has a valid enum value and therefore don't
1795 * assume that we'll always go through one of the case arms.
1796 *
1797 * If we have a default case, compilers that *do* assume that
1798 * will then complain about the default case code being
1799 * unreachable.
1800 *
1801 * Damned if you do, damned if you don't.
1802 */
1803 s = NULL;
1804
1805 switch (offrel) {
1806
1807 case OR_PACKET:
1808 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1809 s->s.k = offset;
1810 break;
1811
1812 case OR_LINKHDR:
1813 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1814 break;
1815
1816 case OR_PREVLINKHDR:
1817 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1818 break;
1819
1820 case OR_LLC:
1821 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1822 break;
1823
1824 case OR_PREVMPLSHDR:
1825 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1826 break;
1827
1828 case OR_LINKPL:
1829 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1830 break;
1831
1832 case OR_LINKPL_NOSNAP:
1833 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1834 break;
1835
1836 case OR_LINKTYPE:
1837 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1838 break;
1839
1840 case OR_TRAN_IPV4:
1841 /*
1842 * Load the X register with the length of the IPv4 header
1843 * (plus the offset of the link-layer header, if it's
1844 * preceded by a variable-length header such as a radio
1845 * header), in bytes.
1846 */
1847 s = gen_loadx_iphdrlen(cstate);
1848
1849 /*
1850 * Load the item at {offset of the link-layer payload} +
1851 * {offset, relative to the start of the link-layer
1852 * payload, of the IPv4 header} + {length of the IPv4 header} +
1853 * {specified offset}.
1854 *
1855 * If the offset of the link-layer payload is variable,
1856 * the variable part of that offset is included in the
1857 * value in the X register, and we include the constant
1858 * part in the offset of the load.
1859 */
1860 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1861 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1862 sappend(s, s2);
1863 break;
1864
1865 case OR_TRAN_IPV6:
1866 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1867 break;
1868 }
1869 return s;
1870 }
1871
1872 /*
1873 * Generate code to load into the X register the sum of the length of
1874 * the IPv4 header and the variable part of the offset of the link-layer
1875 * payload.
1876 */
1877 static struct slist *
1878 gen_loadx_iphdrlen(compiler_state_t *cstate)
1879 {
1880 struct slist *s, *s2;
1881
1882 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1883 if (s != NULL) {
1884 /*
1885 * The offset of the link-layer payload has a variable
1886 * part. "s" points to a list of statements that put
1887 * the variable part of that offset into the X register.
1888 *
1889 * The 4*([k]&0xf) addressing mode can't be used, as we
1890 * don't have a constant offset, so we have to load the
1891 * value in question into the A register and add to it
1892 * the value from the X register.
1893 */
1894 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1895 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1896 sappend(s, s2);
1897 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1898 s2->s.k = 0xf;
1899 sappend(s, s2);
1900 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1901 s2->s.k = 2;
1902 sappend(s, s2);
1903
1904 /*
1905 * The A register now contains the length of the IP header.
1906 * We need to add to it the variable part of the offset of
1907 * the link-layer payload, which is still in the X
1908 * register, and move the result into the X register.
1909 */
1910 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1911 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1912 } else {
1913 /*
1914 * The offset of the link-layer payload is a constant,
1915 * so no code was generated to load the (nonexistent)
1916 * variable part of that offset.
1917 *
1918 * This means we can use the 4*([k]&0xf) addressing
1919 * mode. Load the length of the IPv4 header, which
1920 * is at an offset of cstate->off_nl from the beginning of
1921 * the link-layer payload, and thus at an offset of
1922 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1923 * of the raw packet data, using that addressing mode.
1924 */
1925 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1926 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1927 }
1928 return s;
1929 }
1930
1931
1932 static struct block *
1933 gen_uncond(compiler_state_t *cstate, int rsense)
1934 {
1935 struct block *b;
1936 struct slist *s;
1937
1938 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1939 s->s.k = !rsense;
1940 b = new_block(cstate, JMP(BPF_JEQ));
1941 b->stmts = s;
1942
1943 return b;
1944 }
1945
1946 static inline struct block *
1947 gen_true(compiler_state_t *cstate)
1948 {
1949 return gen_uncond(cstate, 1);
1950 }
1951
1952 static inline struct block *
1953 gen_false(compiler_state_t *cstate)
1954 {
1955 return gen_uncond(cstate, 0);
1956 }
1957
1958 /*
1959 * Byte-swap a 32-bit number.
1960 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1961 * big-endian platforms.)
1962 */
1963 #define SWAPLONG(y) \
1964 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1965
1966 /*
1967 * Generate code to match a particular packet type.
1968 *
1969 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1970 * value, if <= ETHERMTU. We use that to determine whether to
1971 * match the type/length field or to check the type/length field for
1972 * a value <= ETHERMTU to see whether it's a type field and then do
1973 * the appropriate test.
1974 */
1975 static struct block *
1976 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1977 {
1978 struct block *b0, *b1;
1979
1980 switch (ll_proto) {
1981
1982 case LLCSAP_ISONS:
1983 case LLCSAP_IP:
1984 case LLCSAP_NETBEUI:
1985 /*
1986 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1987 * so we check the DSAP and SSAP.
1988 *
1989 * LLCSAP_IP checks for IP-over-802.2, rather
1990 * than IP-over-Ethernet or IP-over-SNAP.
1991 *
1992 * XXX - should we check both the DSAP and the
1993 * SSAP, like this, or should we check just the
1994 * DSAP, as we do for other types <= ETHERMTU
1995 * (i.e., other SAP values)?
1996 */
1997 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1998 gen_not(b0);
1999 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2000 gen_and(b0, b1);
2001 return b1;
2002
2003 case LLCSAP_IPX:
2004 /*
2005 * Check for;
2006 *
2007 * Ethernet_II frames, which are Ethernet
2008 * frames with a frame type of ETHERTYPE_IPX;
2009 *
2010 * Ethernet_802.3 frames, which are 802.3
2011 * frames (i.e., the type/length field is
2012 * a length field, <= ETHERMTU, rather than
2013 * a type field) with the first two bytes
2014 * after the Ethernet/802.3 header being
2015 * 0xFFFF;
2016 *
2017 * Ethernet_802.2 frames, which are 802.3
2018 * frames with an 802.2 LLC header and
2019 * with the IPX LSAP as the DSAP in the LLC
2020 * header;
2021 *
2022 * Ethernet_SNAP frames, which are 802.3
2023 * frames with an LLC header and a SNAP
2024 * header and with an OUI of 0x000000
2025 * (encapsulated Ethernet) and a protocol
2026 * ID of ETHERTYPE_IPX in the SNAP header.
2027 *
2028 * XXX - should we generate the same code both
2029 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2030 */
2031
2032 /*
2033 * This generates code to check both for the
2034 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2035 */
2036 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2037 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2038 gen_or(b0, b1);
2039
2040 /*
2041 * Now we add code to check for SNAP frames with
2042 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2043 */
2044 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2045 gen_or(b0, b1);
2046
2047 /*
2048 * Now we generate code to check for 802.3
2049 * frames in general.
2050 */
2051 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2052 gen_not(b0);
2053
2054 /*
2055 * Now add the check for 802.3 frames before the
2056 * check for Ethernet_802.2 and Ethernet_802.3,
2057 * as those checks should only be done on 802.3
2058 * frames, not on Ethernet frames.
2059 */
2060 gen_and(b0, b1);
2061
2062 /*
2063 * Now add the check for Ethernet_II frames, and
2064 * do that before checking for the other frame
2065 * types.
2066 */
2067 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2068 gen_or(b0, b1);
2069 return b1;
2070
2071 case ETHERTYPE_ATALK:
2072 case ETHERTYPE_AARP:
2073 /*
2074 * EtherTalk (AppleTalk protocols on Ethernet link
2075 * layer) may use 802.2 encapsulation.
2076 */
2077
2078 /*
2079 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2080 * we check for an Ethernet type field less than
2081 * 1500, which means it's an 802.3 length field.
2082 */
2083 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2084 gen_not(b0);
2085
2086 /*
2087 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2088 * SNAP packets with an organization code of
2089 * 0x080007 (Apple, for Appletalk) and a protocol
2090 * type of ETHERTYPE_ATALK (Appletalk).
2091 *
2092 * 802.2-encapsulated ETHERTYPE_AARP packets are
2093 * SNAP packets with an organization code of
2094 * 0x000000 (encapsulated Ethernet) and a protocol
2095 * type of ETHERTYPE_AARP (Appletalk ARP).
2096 */
2097 if (ll_proto == ETHERTYPE_ATALK)
2098 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2099 else /* ll_proto == ETHERTYPE_AARP */
2100 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2101 gen_and(b0, b1);
2102
2103 /*
2104 * Check for Ethernet encapsulation (Ethertalk
2105 * phase 1?); we just check for the Ethernet
2106 * protocol type.
2107 */
2108 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2109
2110 gen_or(b0, b1);
2111 return b1;
2112
2113 default:
2114 if (ll_proto <= ETHERMTU) {
2115 /*
2116 * This is an LLC SAP value, so the frames
2117 * that match would be 802.2 frames.
2118 * Check that the frame is an 802.2 frame
2119 * (i.e., that the length/type field is
2120 * a length field, <= ETHERMTU) and
2121 * then check the DSAP.
2122 */
2123 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2124 gen_not(b0);
2125 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2126 gen_and(b0, b1);
2127 return b1;
2128 } else {
2129 /*
2130 * This is an Ethernet type, so compare
2131 * the length/type field with it (if
2132 * the frame is an 802.2 frame, the length
2133 * field will be <= ETHERMTU, and, as
2134 * "ll_proto" is > ETHERMTU, this test
2135 * will fail and the frame won't match,
2136 * which is what we want).
2137 */
2138 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2139 }
2140 }
2141 }
2142
2143 static struct block *
2144 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2145 {
2146 /*
2147 * For DLT_NULL, the link-layer header is a 32-bit word
2148 * containing an AF_ value in *host* byte order, and for
2149 * DLT_ENC, the link-layer header begins with a 32-bit
2150 * word containing an AF_ value in host byte order.
2151 *
2152 * In addition, if we're reading a saved capture file,
2153 * the host byte order in the capture may not be the
2154 * same as the host byte order on this machine.
2155 *
2156 * For DLT_LOOP, the link-layer header is a 32-bit
2157 * word containing an AF_ value in *network* byte order.
2158 */
2159 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2160 /*
2161 * The AF_ value is in host byte order, but the BPF
2162 * interpreter will convert it to network byte order.
2163 *
2164 * If this is a save file, and it's from a machine
2165 * with the opposite byte order to ours, we byte-swap
2166 * the AF_ value.
2167 *
2168 * Then we run it through "htonl()", and generate
2169 * code to compare against the result.
2170 */
2171 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2172 ll_proto = SWAPLONG(ll_proto);
2173 ll_proto = htonl(ll_proto);
2174 }
2175 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2176 }
2177
2178 /*
2179 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2180 * or IPv6 then we have an error.
2181 */
2182 static struct block *
2183 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2184 {
2185 switch (ll_proto) {
2186
2187 case ETHERTYPE_IP:
2188 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2189 /*NOTREACHED*/
2190
2191 case ETHERTYPE_IPV6:
2192 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2193 /*NOTREACHED*/
2194
2195 default:
2196 break;
2197 }
2198
2199 return gen_false(cstate);
2200 }
2201
2202 /*
2203 * Generate code to match a particular packet type.
2204 *
2205 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2206 * value, if <= ETHERMTU. We use that to determine whether to
2207 * match the type field or to check the type field for the special
2208 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2209 */
2210 static struct block *
2211 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2212 {
2213 struct block *b0, *b1;
2214
2215 switch (ll_proto) {
2216
2217 case LLCSAP_ISONS:
2218 case LLCSAP_IP:
2219 case LLCSAP_NETBEUI:
2220 /*
2221 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2222 * so we check the DSAP and SSAP.
2223 *
2224 * LLCSAP_IP checks for IP-over-802.2, rather
2225 * than IP-over-Ethernet or IP-over-SNAP.
2226 *
2227 * XXX - should we check both the DSAP and the
2228 * SSAP, like this, or should we check just the
2229 * DSAP, as we do for other types <= ETHERMTU
2230 * (i.e., other SAP values)?
2231 */
2232 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2233 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2234 gen_and(b0, b1);
2235 return b1;
2236
2237 case LLCSAP_IPX:
2238 /*
2239 * Ethernet_II frames, which are Ethernet
2240 * frames with a frame type of ETHERTYPE_IPX;
2241 *
2242 * Ethernet_802.3 frames, which have a frame
2243 * type of LINUX_SLL_P_802_3;
2244 *
2245 * Ethernet_802.2 frames, which are 802.3
2246 * frames with an 802.2 LLC header (i.e, have
2247 * a frame type of LINUX_SLL_P_802_2) and
2248 * with the IPX LSAP as the DSAP in the LLC
2249 * header;
2250 *
2251 * Ethernet_SNAP frames, which are 802.3
2252 * frames with an LLC header and a SNAP
2253 * header and with an OUI of 0x000000
2254 * (encapsulated Ethernet) and a protocol
2255 * ID of ETHERTYPE_IPX in the SNAP header.
2256 *
2257 * First, do the checks on LINUX_SLL_P_802_2
2258 * frames; generate the check for either
2259 * Ethernet_802.2 or Ethernet_SNAP frames, and
2260 * then put a check for LINUX_SLL_P_802_2 frames
2261 * before it.
2262 */
2263 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2264 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2265 gen_or(b0, b1);
2266 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2267 gen_and(b0, b1);
2268
2269 /*
2270 * Now check for 802.3 frames and OR that with
2271 * the previous test.
2272 */
2273 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2274 gen_or(b0, b1);
2275
2276 /*
2277 * Now add the check for Ethernet_II frames, and
2278 * do that before checking for the other frame
2279 * types.
2280 */
2281 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2282 gen_or(b0, b1);
2283 return b1;
2284
2285 case ETHERTYPE_ATALK:
2286 case ETHERTYPE_AARP:
2287 /*
2288 * EtherTalk (AppleTalk protocols on Ethernet link
2289 * layer) may use 802.2 encapsulation.
2290 */
2291
2292 /*
2293 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2294 * we check for the 802.2 protocol type in the
2295 * "Ethernet type" field.
2296 */
2297 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2298
2299 /*
2300 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2301 * SNAP packets with an organization code of
2302 * 0x080007 (Apple, for Appletalk) and a protocol
2303 * type of ETHERTYPE_ATALK (Appletalk).
2304 *
2305 * 802.2-encapsulated ETHERTYPE_AARP packets are
2306 * SNAP packets with an organization code of
2307 * 0x000000 (encapsulated Ethernet) and a protocol
2308 * type of ETHERTYPE_AARP (Appletalk ARP).
2309 */
2310 if (ll_proto == ETHERTYPE_ATALK)
2311 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2312 else /* ll_proto == ETHERTYPE_AARP */
2313 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2314 gen_and(b0, b1);
2315
2316 /*
2317 * Check for Ethernet encapsulation (Ethertalk
2318 * phase 1?); we just check for the Ethernet
2319 * protocol type.
2320 */
2321 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2322
2323 gen_or(b0, b1);
2324 return b1;
2325
2326 default:
2327 if (ll_proto <= ETHERMTU) {
2328 /*
2329 * This is an LLC SAP value, so the frames
2330 * that match would be 802.2 frames.
2331 * Check for the 802.2 protocol type
2332 * in the "Ethernet type" field, and
2333 * then check the DSAP.
2334 */
2335 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2336 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2337 ll_proto);
2338 gen_and(b0, b1);
2339 return b1;
2340 } else {
2341 /*
2342 * This is an Ethernet type, so compare
2343 * the length/type field with it (if
2344 * the frame is an 802.2 frame, the length
2345 * field will be <= ETHERMTU, and, as
2346 * "ll_proto" is > ETHERMTU, this test
2347 * will fail and the frame won't match,
2348 * which is what we want).
2349 */
2350 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2351 }
2352 }
2353 }
2354
2355 /*
2356 * Load a value relative to the beginning of the link-layer header after the
2357 * pflog header.
2358 */
2359 static struct slist *
2360 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2361 {
2362 struct slist *s1, *s2;
2363
2364 /*
2365 * Generate code to load the length of the pflog header into
2366 * the register assigned to hold that length, if one has been
2367 * assigned. (If one hasn't been assigned, no code we've
2368 * generated uses that prefix, so we don't need to generate any
2369 * code to load it.)
2370 */
2371 if (cstate->off_linkpl.reg != -1) {
2372 /*
2373 * The length is in the first byte of the header.
2374 */
2375 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2376 s1->s.k = 0;
2377
2378 /*
2379 * Round it up to a multiple of 4.
2380 * Add 3, and clear the lower 2 bits.
2381 */
2382 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2383 s2->s.k = 3;
2384 sappend(s1, s2);
2385 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2386 s2->s.k = 0xfffffffc;
2387 sappend(s1, s2);
2388
2389 /*
2390 * Now allocate a register to hold that value and store
2391 * it.
2392 */
2393 s2 = new_stmt(cstate, BPF_ST);
2394 s2->s.k = cstate->off_linkpl.reg;
2395 sappend(s1, s2);
2396
2397 /*
2398 * Now move it into the X register.
2399 */
2400 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2401 sappend(s1, s2);
2402
2403 return (s1);
2404 } else
2405 return (NULL);
2406 }
2407
2408 static struct slist *
2409 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2410 {
2411 struct slist *s1, *s2;
2412 struct slist *sjeq_avs_cookie;
2413 struct slist *sjcommon;
2414
2415 /*
2416 * This code is not compatible with the optimizer, as
2417 * we are generating jmp instructions within a normal
2418 * slist of instructions
2419 */
2420 cstate->no_optimize = 1;
2421
2422 /*
2423 * Generate code to load the length of the radio header into
2424 * the register assigned to hold that length, if one has been
2425 * assigned. (If one hasn't been assigned, no code we've
2426 * generated uses that prefix, so we don't need to generate any
2427 * code to load it.)
2428 *
2429 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2430 * or always use the AVS header rather than the Prism header.
2431 * We load a 4-byte big-endian value at the beginning of the
2432 * raw packet data, and see whether, when masked with 0xFFFFF000,
2433 * it's equal to 0x80211000. If so, that indicates that it's
2434 * an AVS header (the masked-out bits are the version number).
2435 * Otherwise, it's a Prism header.
2436 *
2437 * XXX - the Prism header is also, in theory, variable-length,
2438 * but no known software generates headers that aren't 144
2439 * bytes long.
2440 */
2441 if (cstate->off_linkhdr.reg != -1) {
2442 /*
2443 * Load the cookie.
2444 */
2445 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2446 s1->s.k = 0;
2447
2448 /*
2449 * AND it with 0xFFFFF000.
2450 */
2451 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2452 s2->s.k = 0xFFFFF000;
2453 sappend(s1, s2);
2454
2455 /*
2456 * Compare with 0x80211000.
2457 */
2458 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2459 sjeq_avs_cookie->s.k = 0x80211000;
2460 sappend(s1, sjeq_avs_cookie);
2461
2462 /*
2463 * If it's AVS:
2464 *
2465 * The 4 bytes at an offset of 4 from the beginning of
2466 * the AVS header are the length of the AVS header.
2467 * That field is big-endian.
2468 */
2469 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2470 s2->s.k = 4;
2471 sappend(s1, s2);
2472 sjeq_avs_cookie->s.jt = s2;
2473
2474 /*
2475 * Now jump to the code to allocate a register
2476 * into which to save the header length and
2477 * store the length there. (The "jump always"
2478 * instruction needs to have the k field set;
2479 * it's added to the PC, so, as we're jumping
2480 * over a single instruction, it should be 1.)
2481 */
2482 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2483 sjcommon->s.k = 1;
2484 sappend(s1, sjcommon);
2485
2486 /*
2487 * Now for the code that handles the Prism header.
2488 * Just load the length of the Prism header (144)
2489 * into the A register. Have the test for an AVS
2490 * header branch here if we don't have an AVS header.
2491 */
2492 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2493 s2->s.k = 144;
2494 sappend(s1, s2);
2495 sjeq_avs_cookie->s.jf = s2;
2496
2497 /*
2498 * Now allocate a register to hold that value and store
2499 * it. The code for the AVS header will jump here after
2500 * loading the length of the AVS header.
2501 */
2502 s2 = new_stmt(cstate, BPF_ST);
2503 s2->s.k = cstate->off_linkhdr.reg;
2504 sappend(s1, s2);
2505 sjcommon->s.jf = s2;
2506
2507 /*
2508 * Now move it into the X register.
2509 */
2510 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2511 sappend(s1, s2);
2512
2513 return (s1);
2514 } else
2515 return (NULL);
2516 }
2517
2518 static struct slist *
2519 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2520 {
2521 struct slist *s1, *s2;
2522
2523 /*
2524 * Generate code to load the length of the AVS header into
2525 * the register assigned to hold that length, if one has been
2526 * assigned. (If one hasn't been assigned, no code we've
2527 * generated uses that prefix, so we don't need to generate any
2528 * code to load it.)
2529 */
2530 if (cstate->off_linkhdr.reg != -1) {
2531 /*
2532 * The 4 bytes at an offset of 4 from the beginning of
2533 * the AVS header are the length of the AVS header.
2534 * That field is big-endian.
2535 */
2536 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2537 s1->s.k = 4;
2538
2539 /*
2540 * Now allocate a register to hold that value and store
2541 * it.
2542 */
2543 s2 = new_stmt(cstate, BPF_ST);
2544 s2->s.k = cstate->off_linkhdr.reg;
2545 sappend(s1, s2);
2546
2547 /*
2548 * Now move it into the X register.
2549 */
2550 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2551 sappend(s1, s2);
2552
2553 return (s1);
2554 } else
2555 return (NULL);
2556 }
2557
2558 static struct slist *
2559 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2560 {
2561 struct slist *s1, *s2;
2562
2563 /*
2564 * Generate code to load the length of the radiotap header into
2565 * the register assigned to hold that length, if one has been
2566 * assigned. (If one hasn't been assigned, no code we've
2567 * generated uses that prefix, so we don't need to generate any
2568 * code to load it.)
2569 */
2570 if (cstate->off_linkhdr.reg != -1) {
2571 /*
2572 * The 2 bytes at offsets of 2 and 3 from the beginning
2573 * of the radiotap header are the length of the radiotap
2574 * header; unfortunately, it's little-endian, so we have
2575 * to load it a byte at a time and construct the value.
2576 */
2577
2578 /*
2579 * Load the high-order byte, at an offset of 3, shift it
2580 * left a byte, and put the result in the X register.
2581 */
2582 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2583 s1->s.k = 3;
2584 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2585 sappend(s1, s2);
2586 s2->s.k = 8;
2587 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2588 sappend(s1, s2);
2589
2590 /*
2591 * Load the next byte, at an offset of 2, and OR the
2592 * value from the X register into it.
2593 */
2594 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2595 sappend(s1, s2);
2596 s2->s.k = 2;
2597 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2598 sappend(s1, s2);
2599
2600 /*
2601 * Now allocate a register to hold that value and store
2602 * it.
2603 */
2604 s2 = new_stmt(cstate, BPF_ST);
2605 s2->s.k = cstate->off_linkhdr.reg;
2606 sappend(s1, s2);
2607
2608 /*
2609 * Now move it into the X register.
2610 */
2611 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2612 sappend(s1, s2);
2613
2614 return (s1);
2615 } else
2616 return (NULL);
2617 }
2618
2619 /*
2620 * At the moment we treat PPI as normal Radiotap encoded
2621 * packets. The difference is in the function that generates
2622 * the code at the beginning to compute the header length.
2623 * Since this code generator of PPI supports bare 802.11
2624 * encapsulation only (i.e. the encapsulated DLT should be
2625 * DLT_IEEE802_11) we generate code to check for this too;
2626 * that's done in finish_parse().
2627 */
2628 static struct slist *
2629 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2630 {
2631 struct slist *s1, *s2;
2632
2633 /*
2634 * Generate code to load the length of the radiotap header
2635 * into the register assigned to hold that length, if one has
2636 * been assigned.
2637 */
2638 if (cstate->off_linkhdr.reg != -1) {
2639 /*
2640 * The 2 bytes at offsets of 2 and 3 from the beginning
2641 * of the radiotap header are the length of the radiotap
2642 * header; unfortunately, it's little-endian, so we have
2643 * to load it a byte at a time and construct the value.
2644 */
2645
2646 /*
2647 * Load the high-order byte, at an offset of 3, shift it
2648 * left a byte, and put the result in the X register.
2649 */
2650 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2651 s1->s.k = 3;
2652 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2653 sappend(s1, s2);
2654 s2->s.k = 8;
2655 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2656 sappend(s1, s2);
2657
2658 /*
2659 * Load the next byte, at an offset of 2, and OR the
2660 * value from the X register into it.
2661 */
2662 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2663 sappend(s1, s2);
2664 s2->s.k = 2;
2665 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2666 sappend(s1, s2);
2667
2668 /*
2669 * Now allocate a register to hold that value and store
2670 * it.
2671 */
2672 s2 = new_stmt(cstate, BPF_ST);
2673 s2->s.k = cstate->off_linkhdr.reg;
2674 sappend(s1, s2);
2675
2676 /*
2677 * Now move it into the X register.
2678 */
2679 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2680 sappend(s1, s2);
2681
2682 return (s1);
2683 } else
2684 return (NULL);
2685 }
2686
2687 /*
2688 * Load a value relative to the beginning of the link-layer header after the 802.11
2689 * header, i.e. LLC_SNAP.
2690 * The link-layer header doesn't necessarily begin at the beginning
2691 * of the packet data; there might be a variable-length prefix containing
2692 * radio information.
2693 */
2694 static struct slist *
2695 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2696 {
2697 struct slist *s2;
2698 struct slist *sjset_data_frame_1;
2699 struct slist *sjset_data_frame_2;
2700 struct slist *sjset_qos;
2701 struct slist *sjset_radiotap_flags_present;
2702 struct slist *sjset_radiotap_ext_present;
2703 struct slist *sjset_radiotap_tsft_present;
2704 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2705 struct slist *s_roundup;
2706
2707 if (cstate->off_linkpl.reg == -1) {
2708 /*
2709 * No register has been assigned to the offset of
2710 * the link-layer payload, which means nobody needs
2711 * it; don't bother computing it - just return
2712 * what we already have.
2713 */
2714 return (s);
2715 }
2716
2717 /*
2718 * This code is not compatible with the optimizer, as
2719 * we are generating jmp instructions within a normal
2720 * slist of instructions
2721 */
2722 cstate->no_optimize = 1;
2723
2724 /*
2725 * If "s" is non-null, it has code to arrange that the X register
2726 * contains the length of the prefix preceding the link-layer
2727 * header.
2728 *
2729 * Otherwise, the length of the prefix preceding the link-layer
2730 * header is "off_outermostlinkhdr.constant_part".
2731 */
2732 if (s == NULL) {
2733 /*
2734 * There is no variable-length header preceding the
2735 * link-layer header.
2736 *
2737 * Load the length of the fixed-length prefix preceding
2738 * the link-layer header (if any) into the X register,
2739 * and store it in the cstate->off_linkpl.reg register.
2740 * That length is off_outermostlinkhdr.constant_part.
2741 */
2742 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2743 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2744 }
2745
2746 /*
2747 * The X register contains the offset of the beginning of the
2748 * link-layer header; add 24, which is the minimum length
2749 * of the MAC header for a data frame, to that, and store it
2750 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2751 * which is at the offset in the X register, with an indexed load.
2752 */
2753 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2754 sappend(s, s2);
2755 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2756 s2->s.k = 24;
2757 sappend(s, s2);
2758 s2 = new_stmt(cstate, BPF_ST);
2759 s2->s.k = cstate->off_linkpl.reg;
2760 sappend(s, s2);
2761
2762 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2763 s2->s.k = 0;
2764 sappend(s, s2);
2765
2766 /*
2767 * Check the Frame Control field to see if this is a data frame;
2768 * a data frame has the 0x08 bit (b3) in that field set and the
2769 * 0x04 bit (b2) clear.
2770 */
2771 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2772 sjset_data_frame_1->s.k = 0x08;
2773 sappend(s, sjset_data_frame_1);
2774
2775 /*
2776 * If b3 is set, test b2, otherwise go to the first statement of
2777 * the rest of the program.
2778 */
2779 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2780 sjset_data_frame_2->s.k = 0x04;
2781 sappend(s, sjset_data_frame_2);
2782 sjset_data_frame_1->s.jf = snext;
2783
2784 /*
2785 * If b2 is not set, this is a data frame; test the QoS bit.
2786 * Otherwise, go to the first statement of the rest of the
2787 * program.
2788 */
2789 sjset_data_frame_2->s.jt = snext;
2790 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2791 sjset_qos->s.k = 0x80; /* QoS bit */
2792 sappend(s, sjset_qos);
2793
2794 /*
2795 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2796 * field.
2797 * Otherwise, go to the first statement of the rest of the
2798 * program.
2799 */
2800 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2801 s2->s.k = cstate->off_linkpl.reg;
2802 sappend(s, s2);
2803 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2804 s2->s.k = 2;
2805 sappend(s, s2);
2806 s2 = new_stmt(cstate, BPF_ST);
2807 s2->s.k = cstate->off_linkpl.reg;
2808 sappend(s, s2);
2809
2810 /*
2811 * If we have a radiotap header, look at it to see whether
2812 * there's Atheros padding between the MAC-layer header
2813 * and the payload.
2814 *
2815 * Note: all of the fields in the radiotap header are
2816 * little-endian, so we byte-swap all of the values
2817 * we test against, as they will be loaded as big-endian
2818 * values.
2819 *
2820 * XXX - in the general case, we would have to scan through
2821 * *all* the presence bits, if there's more than one word of
2822 * presence bits. That would require a loop, meaning that
2823 * we wouldn't be able to run the filter in the kernel.
2824 *
2825 * We assume here that the Atheros adapters that insert the
2826 * annoying padding don't have multiple antennae and therefore
2827 * do not generate radiotap headers with multiple presence words.
2828 */
2829 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2830 /*
2831 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2832 * in the first presence flag word?
2833 */
2834 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2835 s2->s.k = 4;
2836 sappend(s, s2);
2837
2838 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2839 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2840 sappend(s, sjset_radiotap_flags_present);
2841
2842 /*
2843 * If not, skip all of this.
2844 */
2845 sjset_radiotap_flags_present->s.jf = snext;
2846
2847 /*
2848 * Otherwise, is the "extension" bit set in that word?
2849 */
2850 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2851 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2852 sappend(s, sjset_radiotap_ext_present);
2853 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2854
2855 /*
2856 * If so, skip all of this.
2857 */
2858 sjset_radiotap_ext_present->s.jt = snext;
2859
2860 /*
2861 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2862 */
2863 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2864 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2865 sappend(s, sjset_radiotap_tsft_present);
2866 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2867
2868 /*
2869 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2870 * at an offset of 16 from the beginning of the raw packet
2871 * data (8 bytes for the radiotap header and 8 bytes for
2872 * the TSFT field).
2873 *
2874 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2875 * is set.
2876 */
2877 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2878 s2->s.k = 16;
2879 sappend(s, s2);
2880 sjset_radiotap_tsft_present->s.jt = s2;
2881
2882 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2883 sjset_tsft_datapad->s.k = 0x20;
2884 sappend(s, sjset_tsft_datapad);
2885
2886 /*
2887 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2888 * at an offset of 8 from the beginning of the raw packet
2889 * data (8 bytes for the radiotap header).
2890 *
2891 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2892 * is set.
2893 */
2894 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2895 s2->s.k = 8;
2896 sappend(s, s2);
2897 sjset_radiotap_tsft_present->s.jf = s2;
2898
2899 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2900 sjset_notsft_datapad->s.k = 0x20;
2901 sappend(s, sjset_notsft_datapad);
2902
2903 /*
2904 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2905 * set, round the length of the 802.11 header to
2906 * a multiple of 4. Do that by adding 3 and then
2907 * dividing by and multiplying by 4, which we do by
2908 * ANDing with ~3.
2909 */
2910 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2911 s_roundup->s.k = cstate->off_linkpl.reg;
2912 sappend(s, s_roundup);
2913 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2914 s2->s.k = 3;
2915 sappend(s, s2);
2916 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2917 s2->s.k = (bpf_u_int32)~3;
2918 sappend(s, s2);
2919 s2 = new_stmt(cstate, BPF_ST);
2920 s2->s.k = cstate->off_linkpl.reg;
2921 sappend(s, s2);
2922
2923 sjset_tsft_datapad->s.jt = s_roundup;
2924 sjset_tsft_datapad->s.jf = snext;
2925 sjset_notsft_datapad->s.jt = s_roundup;
2926 sjset_notsft_datapad->s.jf = snext;
2927 } else
2928 sjset_qos->s.jf = snext;
2929
2930 return s;
2931 }
2932
2933 static void
2934 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2935 {
2936 struct slist *s;
2937
2938 /* There is an implicit dependency between the link
2939 * payload and link header since the payload computation
2940 * includes the variable part of the header. Therefore,
2941 * if nobody else has allocated a register for the link
2942 * header and we need it, do it now. */
2943 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2944 cstate->off_linkhdr.reg == -1)
2945 cstate->off_linkhdr.reg = alloc_reg(cstate);
2946
2947 /*
2948 * For link-layer types that have a variable-length header
2949 * preceding the link-layer header, generate code to load
2950 * the offset of the link-layer header into the register
2951 * assigned to that offset, if any.
2952 *
2953 * XXX - this, and the next switch statement, won't handle
2954 * encapsulation of 802.11 or 802.11+radio information in
2955 * some other protocol stack. That's significantly more
2956 * complicated.
2957 */
2958 switch (cstate->outermostlinktype) {
2959
2960 case DLT_PRISM_HEADER:
2961 s = gen_load_prism_llprefixlen(cstate);
2962 break;
2963
2964 case DLT_IEEE802_11_RADIO_AVS:
2965 s = gen_load_avs_llprefixlen(cstate);
2966 break;
2967
2968 case DLT_IEEE802_11_RADIO:
2969 s = gen_load_radiotap_llprefixlen(cstate);
2970 break;
2971
2972 case DLT_PPI:
2973 s = gen_load_ppi_llprefixlen(cstate);
2974 break;
2975
2976 default:
2977 s = NULL;
2978 break;
2979 }
2980
2981 /*
2982 * For link-layer types that have a variable-length link-layer
2983 * header, generate code to load the offset of the link-layer
2984 * payload into the register assigned to that offset, if any.
2985 */
2986 switch (cstate->outermostlinktype) {
2987
2988 case DLT_IEEE802_11:
2989 case DLT_PRISM_HEADER:
2990 case DLT_IEEE802_11_RADIO_AVS:
2991 case DLT_IEEE802_11_RADIO:
2992 case DLT_PPI:
2993 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2994 break;
2995
2996 case DLT_PFLOG:
2997 s = gen_load_pflog_llprefixlen(cstate);
2998 break;
2999 }
3000
3001 /*
3002 * If there is no initialization yet and we need variable
3003 * length offsets for VLAN, initialize them to zero
3004 */
3005 if (s == NULL && cstate->is_vlan_vloffset) {
3006 struct slist *s2;
3007
3008 if (cstate->off_linkpl.reg == -1)
3009 cstate->off_linkpl.reg = alloc_reg(cstate);
3010 if (cstate->off_linktype.reg == -1)
3011 cstate->off_linktype.reg = alloc_reg(cstate);
3012
3013 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3014 s->s.k = 0;
3015 s2 = new_stmt(cstate, BPF_ST);
3016 s2->s.k = cstate->off_linkpl.reg;
3017 sappend(s, s2);
3018 s2 = new_stmt(cstate, BPF_ST);
3019 s2->s.k = cstate->off_linktype.reg;
3020 sappend(s, s2);
3021 }
3022
3023 /*
3024 * If we have any offset-loading code, append all the
3025 * existing statements in the block to those statements,
3026 * and make the resulting list the list of statements
3027 * for the block.
3028 */
3029 if (s != NULL) {
3030 sappend(s, b->stmts);
3031 b->stmts = s;
3032 }
3033 }
3034
3035 static struct block *
3036 gen_ppi_dlt_check(compiler_state_t *cstate)
3037 {
3038 struct slist *s_load_dlt;
3039 struct block *b;
3040
3041 if (cstate->linktype == DLT_PPI)
3042 {
3043 /* Create the statements that check for the DLT
3044 */
3045 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3046 s_load_dlt->s.k = 4;
3047
3048 b = new_block(cstate, JMP(BPF_JEQ));
3049
3050 b->stmts = s_load_dlt;
3051 b->s.k = SWAPLONG(DLT_IEEE802_11);
3052 }
3053 else
3054 {
3055 b = NULL;
3056 }
3057
3058 return b;
3059 }
3060
3061 /*
3062 * Take an absolute offset, and:
3063 *
3064 * if it has no variable part, return NULL;
3065 *
3066 * if it has a variable part, generate code to load the register
3067 * containing that variable part into the X register, returning
3068 * a pointer to that code - if no register for that offset has
3069 * been allocated, allocate it first.
3070 *
3071 * (The code to set that register will be generated later, but will
3072 * be placed earlier in the code sequence.)
3073 */
3074 static struct slist *
3075 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3076 {
3077 struct slist *s;
3078
3079 if (off->is_variable) {
3080 if (off->reg == -1) {
3081 /*
3082 * We haven't yet assigned a register for the
3083 * variable part of the offset of the link-layer
3084 * header; allocate one.
3085 */
3086 off->reg = alloc_reg(cstate);
3087 }
3088
3089 /*
3090 * Load the register containing the variable part of the
3091 * offset of the link-layer header into the X register.
3092 */
3093 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3094 s->s.k = off->reg;
3095 return s;
3096 } else {
3097 /*
3098 * That offset isn't variable, there's no variable part,
3099 * so we don't need to generate any code.
3100 */
3101 return NULL;
3102 }
3103 }
3104
3105 /*
3106 * Map an Ethernet type to the equivalent PPP type.
3107 */
3108 static bpf_u_int32
3109 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3110 {
3111 switch (ll_proto) {
3112
3113 case ETHERTYPE_IP:
3114 ll_proto = PPP_IP;
3115 break;
3116
3117 case ETHERTYPE_IPV6:
3118 ll_proto = PPP_IPV6;
3119 break;
3120
3121 case ETHERTYPE_DN:
3122 ll_proto = PPP_DECNET;
3123 break;
3124
3125 case ETHERTYPE_ATALK:
3126 ll_proto = PPP_APPLE;
3127 break;
3128
3129 case ETHERTYPE_NS:
3130 ll_proto = PPP_NS;
3131 break;
3132
3133 case LLCSAP_ISONS:
3134 ll_proto = PPP_OSI;
3135 break;
3136
3137 case LLCSAP_8021D:
3138 /*
3139 * I'm assuming the "Bridging PDU"s that go
3140 * over PPP are Spanning Tree Protocol
3141 * Bridging PDUs.
3142 */
3143 ll_proto = PPP_BRPDU;
3144 break;
3145
3146 case LLCSAP_IPX:
3147 ll_proto = PPP_IPX;
3148 break;
3149 }
3150 return (ll_proto);
3151 }
3152
3153 /*
3154 * Generate any tests that, for encapsulation of a link-layer packet
3155 * inside another protocol stack, need to be done to check for those
3156 * link-layer packets (and that haven't already been done by a check
3157 * for that encapsulation).
3158 */
3159 static struct block *
3160 gen_prevlinkhdr_check(compiler_state_t *cstate)
3161 {
3162 struct block *b0;
3163
3164 if (cstate->is_geneve)
3165 return gen_geneve_ll_check(cstate);
3166
3167 switch (cstate->prevlinktype) {
3168
3169 case DLT_SUNATM:
3170 /*
3171 * This is LANE-encapsulated Ethernet; check that the LANE
3172 * packet doesn't begin with an LE Control marker, i.e.
3173 * that it's data, not a control message.
3174 *
3175 * (We've already generated a test for LANE.)
3176 */
3177 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3178 gen_not(b0);
3179 return b0;
3180
3181 default:
3182 /*
3183 * No such tests are necessary.
3184 */
3185 return NULL;
3186 }
3187 /*NOTREACHED*/
3188 }
3189
3190 /*
3191 * The three different values we should check for when checking for an
3192 * IPv6 packet with DLT_NULL.
3193 */
3194 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3195 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3196 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3197
3198 /*
3199 * Generate code to match a particular packet type by matching the
3200 * link-layer type field or fields in the 802.2 LLC header.
3201 *
3202 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3203 * value, if <= ETHERMTU.
3204 */
3205 static struct block *
3206 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3207 {
3208 struct block *b0, *b1, *b2;
3209 const char *description;
3210
3211 /* are we checking MPLS-encapsulated packets? */
3212 if (cstate->label_stack_depth > 0)
3213 return gen_mpls_linktype(cstate, ll_proto);
3214
3215 switch (cstate->linktype) {
3216
3217 case DLT_EN10MB:
3218 case DLT_NETANALYZER:
3219 case DLT_NETANALYZER_TRANSPARENT:
3220 /* Geneve has an EtherType regardless of whether there is an
3221 * L2 header. */
3222 if (!cstate->is_geneve)
3223 b0 = gen_prevlinkhdr_check(cstate);
3224 else
3225 b0 = NULL;
3226
3227 b1 = gen_ether_linktype(cstate, ll_proto);
3228 if (b0 != NULL)
3229 gen_and(b0, b1);
3230 return b1;
3231 /*NOTREACHED*/
3232
3233 case DLT_C_HDLC:
3234 case DLT_HDLC:
3235 switch (ll_proto) {
3236
3237 case LLCSAP_ISONS:
3238 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3239 /* fall through */
3240
3241 default:
3242 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3243 /*NOTREACHED*/
3244 }
3245
3246 case DLT_IEEE802_11:
3247 case DLT_PRISM_HEADER:
3248 case DLT_IEEE802_11_RADIO_AVS:
3249 case DLT_IEEE802_11_RADIO:
3250 case DLT_PPI:
3251 /*
3252 * Check that we have a data frame.
3253 */
3254 b0 = gen_check_802_11_data_frame(cstate);
3255
3256 /*
3257 * Now check for the specified link-layer type.
3258 */
3259 b1 = gen_llc_linktype(cstate, ll_proto);
3260 gen_and(b0, b1);
3261 return b1;
3262 /*NOTREACHED*/
3263
3264 case DLT_FDDI:
3265 /*
3266 * XXX - check for LLC frames.
3267 */
3268 return gen_llc_linktype(cstate, ll_proto);
3269 /*NOTREACHED*/
3270
3271 case DLT_IEEE802:
3272 /*
3273 * XXX - check for LLC PDUs, as per IEEE 802.5.
3274 */
3275 return gen_llc_linktype(cstate, ll_proto);
3276 /*NOTREACHED*/
3277
3278 case DLT_ATM_RFC1483:
3279 case DLT_ATM_CLIP:
3280 case DLT_IP_OVER_FC:
3281 return gen_llc_linktype(cstate, ll_proto);
3282 /*NOTREACHED*/
3283
3284 case DLT_SUNATM:
3285 /*
3286 * Check for an LLC-encapsulated version of this protocol;
3287 * if we were checking for LANE, linktype would no longer
3288 * be DLT_SUNATM.
3289 *
3290 * Check for LLC encapsulation and then check the protocol.
3291 */
3292 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3293 b1 = gen_llc_linktype(cstate, ll_proto);
3294 gen_and(b0, b1);
3295 return b1;
3296 /*NOTREACHED*/
3297
3298 case DLT_LINUX_SLL:
3299 return gen_linux_sll_linktype(cstate, ll_proto);
3300 /*NOTREACHED*/
3301
3302 case DLT_SLIP:
3303 case DLT_SLIP_BSDOS:
3304 case DLT_RAW:
3305 /*
3306 * These types don't provide any type field; packets
3307 * are always IPv4 or IPv6.
3308 *
3309 * XXX - for IPv4, check for a version number of 4, and,
3310 * for IPv6, check for a version number of 6?
3311 */
3312 switch (ll_proto) {
3313
3314 case ETHERTYPE_IP:
3315 /* Check for a version number of 4. */
3316 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3317
3318 case ETHERTYPE_IPV6:
3319 /* Check for a version number of 6. */
3320 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3321
3322 default:
3323 return gen_false(cstate); /* always false */
3324 }
3325 /*NOTREACHED*/
3326
3327 case DLT_IPV4:
3328 /*
3329 * Raw IPv4, so no type field.
3330 */
3331 if (ll_proto == ETHERTYPE_IP)
3332 return gen_true(cstate); /* always true */
3333
3334 /* Checking for something other than IPv4; always false */
3335 return gen_false(cstate);
3336 /*NOTREACHED*/
3337
3338 case DLT_IPV6:
3339 /*
3340 * Raw IPv6, so no type field.
3341 */
3342 if (ll_proto == ETHERTYPE_IPV6)
3343 return gen_true(cstate); /* always true */
3344
3345 /* Checking for something other than IPv6; always false */
3346 return gen_false(cstate);
3347 /*NOTREACHED*/
3348
3349 case DLT_PPP:
3350 case DLT_PPP_PPPD:
3351 case DLT_PPP_SERIAL:
3352 case DLT_PPP_ETHER:
3353 /*
3354 * We use Ethernet protocol types inside libpcap;
3355 * map them to the corresponding PPP protocol types.
3356 */
3357 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3358 ethertype_to_ppptype(ll_proto));
3359 /*NOTREACHED*/
3360
3361 case DLT_PPP_BSDOS:
3362 /*
3363 * We use Ethernet protocol types inside libpcap;
3364 * map them to the corresponding PPP protocol types.
3365 */
3366 switch (ll_proto) {
3367
3368 case ETHERTYPE_IP:
3369 /*
3370 * Also check for Van Jacobson-compressed IP.
3371 * XXX - do this for other forms of PPP?
3372 */
3373 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3374 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3375 gen_or(b0, b1);
3376 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3377 gen_or(b1, b0);
3378 return b0;
3379
3380 default:
3381 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3382 ethertype_to_ppptype(ll_proto));
3383 }
3384 /*NOTREACHED*/
3385
3386 case DLT_NULL:
3387 case DLT_LOOP:
3388 case DLT_ENC:
3389 switch (ll_proto) {
3390
3391 case ETHERTYPE_IP:
3392 return (gen_loopback_linktype(cstate, AF_INET));
3393
3394 case ETHERTYPE_IPV6:
3395 /*
3396 * AF_ values may, unfortunately, be platform-
3397 * dependent; AF_INET isn't, because everybody
3398 * used 4.2BSD's value, but AF_INET6 is, because
3399 * 4.2BSD didn't have a value for it (given that
3400 * IPv6 didn't exist back in the early 1980's),
3401 * and they all picked their own values.
3402 *
3403 * This means that, if we're reading from a
3404 * savefile, we need to check for all the
3405 * possible values.
3406 *
3407 * If we're doing a live capture, we only need
3408 * to check for this platform's value; however,
3409 * Npcap uses 24, which isn't Windows's AF_INET6
3410 * value. (Given the multiple different values,
3411 * programs that read pcap files shouldn't be
3412 * checking for their platform's AF_INET6 value
3413 * anyway, they should check for all of the
3414 * possible values. and they might as well do
3415 * that even for live captures.)
3416 */
3417 if (cstate->bpf_pcap->rfile != NULL) {
3418 /*
3419 * Savefile - check for all three
3420 * possible IPv6 values.
3421 */
3422 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3423 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3424 gen_or(b0, b1);
3425 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3426 gen_or(b0, b1);
3427 return (b1);
3428 } else {
3429 /*
3430 * Live capture, so we only need to
3431 * check for the value used on this
3432 * platform.
3433 */
3434 #ifdef _WIN32
3435 /*
3436 * Npcap doesn't use Windows's AF_INET6,
3437 * as that collides with AF_IPX on
3438 * some BSDs (both have the value 23).
3439 * Instead, it uses 24.
3440 */
3441 return (gen_loopback_linktype(cstate, 24));
3442 #else /* _WIN32 */
3443 #ifdef AF_INET6
3444 return (gen_loopback_linktype(cstate, AF_INET6));
3445 #else /* AF_INET6 */
3446 /*
3447 * I guess this platform doesn't support
3448 * IPv6, so we just reject all packets.
3449 */
3450 return gen_false(cstate);
3451 #endif /* AF_INET6 */
3452 #endif /* _WIN32 */
3453 }
3454
3455 default:
3456 /*
3457 * Not a type on which we support filtering.
3458 * XXX - support those that have AF_ values
3459 * #defined on this platform, at least?
3460 */
3461 return gen_false(cstate);
3462 }
3463
3464 case DLT_PFLOG:
3465 /*
3466 * af field is host byte order in contrast to the rest of
3467 * the packet.
3468 */
3469 if (ll_proto == ETHERTYPE_IP)
3470 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3471 BPF_B, AF_INET));
3472 else if (ll_proto == ETHERTYPE_IPV6)
3473 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3474 BPF_B, AF_INET6));
3475 else
3476 return gen_false(cstate);
3477 /*NOTREACHED*/
3478
3479 case DLT_ARCNET:
3480 case DLT_ARCNET_LINUX:
3481 /*
3482 * XXX should we check for first fragment if the protocol
3483 * uses PHDS?
3484 */
3485 switch (ll_proto) {
3486
3487 default:
3488 return gen_false(cstate);
3489
3490 case ETHERTYPE_IPV6:
3491 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3492 ARCTYPE_INET6));
3493
3494 case ETHERTYPE_IP:
3495 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3496 ARCTYPE_IP);
3497 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3498 ARCTYPE_IP_OLD);
3499 gen_or(b0, b1);
3500 return (b1);
3501
3502 case ETHERTYPE_ARP:
3503 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3504 ARCTYPE_ARP);
3505 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3506 ARCTYPE_ARP_OLD);
3507 gen_or(b0, b1);
3508 return (b1);
3509
3510 case ETHERTYPE_REVARP:
3511 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3512 ARCTYPE_REVARP));
3513
3514 case ETHERTYPE_ATALK:
3515 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3516 ARCTYPE_ATALK));
3517 }
3518 /*NOTREACHED*/
3519
3520 case DLT_LTALK:
3521 switch (ll_proto) {
3522 case ETHERTYPE_ATALK:
3523 return gen_true(cstate);
3524 default:
3525 return gen_false(cstate);
3526 }
3527 /*NOTREACHED*/
3528
3529 case DLT_FRELAY:
3530 /*
3531 * XXX - assumes a 2-byte Frame Relay header with
3532 * DLCI and flags. What if the address is longer?
3533 */
3534 switch (ll_proto) {
3535
3536 case ETHERTYPE_IP:
3537 /*
3538 * Check for the special NLPID for IP.
3539 */
3540 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3541
3542 case ETHERTYPE_IPV6:
3543 /*
3544 * Check for the special NLPID for IPv6.
3545 */
3546 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3547
3548 case LLCSAP_ISONS:
3549 /*
3550 * Check for several OSI protocols.
3551 *
3552 * Frame Relay packets typically have an OSI
3553 * NLPID at the beginning; we check for each
3554 * of them.
3555 *
3556 * What we check for is the NLPID and a frame
3557 * control field of UI, i.e. 0x03 followed
3558 * by the NLPID.
3559 */
3560 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3561 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3562 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3563 gen_or(b1, b2);
3564 gen_or(b0, b2);
3565 return b2;
3566
3567 default:
3568 return gen_false(cstate);
3569 }
3570 /*NOTREACHED*/
3571
3572 case DLT_MFR:
3573 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3574
3575 case DLT_JUNIPER_MFR:
3576 case DLT_JUNIPER_MLFR:
3577 case DLT_JUNIPER_MLPPP:
3578 case DLT_JUNIPER_ATM1:
3579 case DLT_JUNIPER_ATM2:
3580 case DLT_JUNIPER_PPPOE:
3581 case DLT_JUNIPER_PPPOE_ATM:
3582 case DLT_JUNIPER_GGSN:
3583 case DLT_JUNIPER_ES:
3584 case DLT_JUNIPER_MONITOR:
3585 case DLT_JUNIPER_SERVICES:
3586 case DLT_JUNIPER_ETHER:
3587 case DLT_JUNIPER_PPP:
3588 case DLT_JUNIPER_FRELAY:
3589 case DLT_JUNIPER_CHDLC:
3590 case DLT_JUNIPER_VP:
3591 case DLT_JUNIPER_ST:
3592 case DLT_JUNIPER_ISM:
3593 case DLT_JUNIPER_VS:
3594 case DLT_JUNIPER_SRX_E2E:
3595 case DLT_JUNIPER_FIBRECHANNEL:
3596 case DLT_JUNIPER_ATM_CEMIC:
3597
3598 /* just lets verify the magic number for now -
3599 * on ATM we may have up to 6 different encapsulations on the wire
3600 * and need a lot of heuristics to figure out that the payload
3601 * might be;
3602 *
3603 * FIXME encapsulation specific BPF_ filters
3604 */
3605 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3606
3607 case DLT_BACNET_MS_TP:
3608 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3609
3610 case DLT_IPNET:
3611 return gen_ipnet_linktype(cstate, ll_proto);
3612
3613 case DLT_LINUX_IRDA:
3614 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3615
3616 case DLT_DOCSIS:
3617 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3618
3619 case DLT_MTP2:
3620 case DLT_MTP2_WITH_PHDR:
3621 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3622
3623 case DLT_ERF:
3624 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3625
3626 case DLT_PFSYNC:
3627 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3628
3629 case DLT_LINUX_LAPD:
3630 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3631
3632 case DLT_USB_FREEBSD:
3633 case DLT_USB_LINUX:
3634 case DLT_USB_LINUX_MMAPPED:
3635 case DLT_USBPCAP:
3636 bpf_error(cstate, "USB link-layer type filtering not implemented");
3637
3638 case DLT_BLUETOOTH_HCI_H4:
3639 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3640 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3641
3642 case DLT_CAN20B:
3643 case DLT_CAN_SOCKETCAN:
3644 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3645
3646 case DLT_IEEE802_15_4:
3647 case DLT_IEEE802_15_4_LINUX:
3648 case DLT_IEEE802_15_4_NONASK_PHY:
3649 case DLT_IEEE802_15_4_NOFCS:
3650 case DLT_IEEE802_15_4_TAP:
3651 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3652
3653 case DLT_IEEE802_16_MAC_CPS_RADIO:
3654 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3655
3656 case DLT_SITA:
3657 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3658
3659 case DLT_RAIF1:
3660 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3661
3662 case DLT_IPMB_KONTRON:
3663 case DLT_IPMB_LINUX:
3664 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3665
3666 case DLT_AX25_KISS:
3667 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3668
3669 case DLT_NFLOG:
3670 /* Using the fixed-size NFLOG header it is possible to tell only
3671 * the address family of the packet, other meaningful data is
3672 * either missing or behind TLVs.
3673 */
3674 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3675
3676 default:
3677 /*
3678 * Does this link-layer header type have a field
3679 * indicating the type of the next protocol? If
3680 * so, off_linktype.constant_part will be the offset of that
3681 * field in the packet; if not, it will be OFFSET_NOT_SET.
3682 */
3683 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3684 /*
3685 * Yes; assume it's an Ethernet type. (If
3686 * it's not, it needs to be handled specially
3687 * above.)
3688 */
3689 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3690 /*NOTREACHED */
3691 } else {
3692 /*
3693 * No; report an error.
3694 */
3695 description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3696 bpf_error(cstate, "%s link-layer type filtering not implemented",
3697 description);
3698 /*NOTREACHED */
3699 }
3700 }
3701 }
3702
3703 /*
3704 * Check for an LLC SNAP packet with a given organization code and
3705 * protocol type; we check the entire contents of the 802.2 LLC and
3706 * snap headers, checking for DSAP and SSAP of SNAP and a control
3707 * field of 0x03 in the LLC header, and for the specified organization
3708 * code and protocol type in the SNAP header.
3709 */
3710 static struct block *
3711 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3712 {
3713 u_char snapblock[8];
3714
3715 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3716 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3717 snapblock[2] = 0x03; /* control = UI */
3718 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3719 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3720 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3721 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3722 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3723 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3724 }
3725
3726 /*
3727 * Generate code to match frames with an LLC header.
3728 */
3729 static struct block *
3730 gen_llc_internal(compiler_state_t *cstate)
3731 {
3732 struct block *b0, *b1;
3733
3734 switch (cstate->linktype) {
3735
3736 case DLT_EN10MB:
3737 /*
3738 * We check for an Ethernet type field less than
3739 * 1500, which means it's an 802.3 length field.
3740 */
3741 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3742 gen_not(b0);
3743
3744 /*
3745 * Now check for the purported DSAP and SSAP not being
3746 * 0xFF, to rule out NetWare-over-802.3.
3747 */
3748 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3749 gen_not(b1);
3750 gen_and(b0, b1);
3751 return b1;
3752
3753 case DLT_SUNATM:
3754 /*
3755 * We check for LLC traffic.
3756 */
3757 b0 = gen_atmtype_llc(cstate);
3758 return b0;
3759
3760 case DLT_IEEE802: /* Token Ring */
3761 /*
3762 * XXX - check for LLC frames.
3763 */
3764 return gen_true(cstate);
3765
3766 case DLT_FDDI:
3767 /*
3768 * XXX - check for LLC frames.
3769 */
3770 return gen_true(cstate);
3771
3772 case DLT_ATM_RFC1483:
3773 /*
3774 * For LLC encapsulation, these are defined to have an
3775 * 802.2 LLC header.
3776 *
3777 * For VC encapsulation, they don't, but there's no
3778 * way to check for that; the protocol used on the VC
3779 * is negotiated out of band.
3780 */
3781 return gen_true(cstate);
3782
3783 case DLT_IEEE802_11:
3784 case DLT_PRISM_HEADER:
3785 case DLT_IEEE802_11_RADIO:
3786 case DLT_IEEE802_11_RADIO_AVS:
3787 case DLT_PPI:
3788 /*
3789 * Check that we have a data frame.
3790 */
3791 b0 = gen_check_802_11_data_frame(cstate);
3792 return b0;
3793
3794 default:
3795 bpf_error(cstate, "'llc' not supported for %s",
3796 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3797 /*NOTREACHED*/
3798 }
3799 }
3800
3801 struct block *
3802 gen_llc(compiler_state_t *cstate)
3803 {
3804 /*
3805 * Catch errors reported by us and routines below us, and return NULL
3806 * on an error.
3807 */
3808 if (setjmp(cstate->top_ctx))
3809 return (NULL);
3810
3811 return gen_llc_internal(cstate);
3812 }
3813
3814 struct block *
3815 gen_llc_i(compiler_state_t *cstate)
3816 {
3817 struct block *b0, *b1;
3818 struct slist *s;
3819
3820 /*
3821 * Catch errors reported by us and routines below us, and return NULL
3822 * on an error.
3823 */
3824 if (setjmp(cstate->top_ctx))
3825 return (NULL);
3826
3827 /*
3828 * Check whether this is an LLC frame.
3829 */
3830 b0 = gen_llc_internal(cstate);
3831
3832 /*
3833 * Load the control byte and test the low-order bit; it must
3834 * be clear for I frames.
3835 */
3836 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3837 b1 = new_block(cstate, JMP(BPF_JSET));
3838 b1->s.k = 0x01;
3839 b1->stmts = s;
3840 gen_not(b1);
3841 gen_and(b0, b1);
3842 return b1;
3843 }
3844
3845 struct block *
3846 gen_llc_s(compiler_state_t *cstate)
3847 {
3848 struct block *b0, *b1;
3849
3850 /*
3851 * Catch errors reported by us and routines below us, and return NULL
3852 * on an error.
3853 */
3854 if (setjmp(cstate->top_ctx))
3855 return (NULL);
3856
3857 /*
3858 * Check whether this is an LLC frame.
3859 */
3860 b0 = gen_llc_internal(cstate);
3861
3862 /*
3863 * Now compare the low-order 2 bit of the control byte against
3864 * the appropriate value for S frames.
3865 */
3866 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3867 gen_and(b0, b1);
3868 return b1;
3869 }
3870
3871 struct block *
3872 gen_llc_u(compiler_state_t *cstate)
3873 {
3874 struct block *b0, *b1;
3875
3876 /*
3877 * Catch errors reported by us and routines below us, and return NULL
3878 * on an error.
3879 */
3880 if (setjmp(cstate->top_ctx))
3881 return (NULL);
3882
3883 /*
3884 * Check whether this is an LLC frame.
3885 */
3886 b0 = gen_llc_internal(cstate);
3887
3888 /*
3889 * Now compare the low-order 2 bit of the control byte against
3890 * the appropriate value for U frames.
3891 */
3892 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3893 gen_and(b0, b1);
3894 return b1;
3895 }
3896
3897 struct block *
3898 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3899 {
3900 struct block *b0, *b1;
3901
3902 /*
3903 * Catch errors reported by us and routines below us, and return NULL
3904 * on an error.
3905 */
3906 if (setjmp(cstate->top_ctx))
3907 return (NULL);
3908
3909 /*
3910 * Check whether this is an LLC frame.
3911 */
3912 b0 = gen_llc_internal(cstate);
3913
3914 /*
3915 * Now check for an S frame with the appropriate type.
3916 */
3917 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3918 gen_and(b0, b1);
3919 return b1;
3920 }
3921
3922 struct block *
3923 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3924 {
3925 struct block *b0, *b1;
3926
3927 /*
3928 * Catch errors reported by us and routines below us, and return NULL
3929 * on an error.
3930 */
3931 if (setjmp(cstate->top_ctx))
3932 return (NULL);
3933
3934 /*
3935 * Check whether this is an LLC frame.
3936 */
3937 b0 = gen_llc_internal(cstate);
3938
3939 /*
3940 * Now check for a U frame with the appropriate type.
3941 */
3942 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3943 gen_and(b0, b1);
3944 return b1;
3945 }
3946
3947 /*
3948 * Generate code to match a particular packet type, for link-layer types
3949 * using 802.2 LLC headers.
3950 *
3951 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3952 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3953 *
3954 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3955 * value, if <= ETHERMTU. We use that to determine whether to
3956 * match the DSAP or both DSAP and LSAP or to check the OUI and
3957 * protocol ID in a SNAP header.
3958 */
3959 static struct block *
3960 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3961 {
3962 /*
3963 * XXX - handle token-ring variable-length header.
3964 */
3965 switch (ll_proto) {
3966
3967 case LLCSAP_IP:
3968 case LLCSAP_ISONS:
3969 case LLCSAP_NETBEUI:
3970 /*
3971 * XXX - should we check both the DSAP and the
3972 * SSAP, like this, or should we check just the
3973 * DSAP, as we do for other SAP values?
3974 */
3975 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3976 ((ll_proto << 8) | ll_proto));
3977
3978 case LLCSAP_IPX:
3979 /*
3980 * XXX - are there ever SNAP frames for IPX on
3981 * non-Ethernet 802.x networks?
3982 */
3983 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3984
3985 case ETHERTYPE_ATALK:
3986 /*
3987 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3988 * SNAP packets with an organization code of
3989 * 0x080007 (Apple, for Appletalk) and a protocol
3990 * type of ETHERTYPE_ATALK (Appletalk).
3991 *
3992 * XXX - check for an organization code of
3993 * encapsulated Ethernet as well?
3994 */
3995 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3996
3997 default:
3998 /*
3999 * XXX - we don't have to check for IPX 802.3
4000 * here, but should we check for the IPX Ethertype?
4001 */
4002 if (ll_proto <= ETHERMTU) {
4003 /*
4004 * This is an LLC SAP value, so check
4005 * the DSAP.
4006 */
4007 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4008 } else {
4009 /*
4010 * This is an Ethernet type; we assume that it's
4011 * unlikely that it'll appear in the right place
4012 * at random, and therefore check only the
4013 * location that would hold the Ethernet type
4014 * in a SNAP frame with an organization code of
4015 * 0x000000 (encapsulated Ethernet).
4016 *
4017 * XXX - if we were to check for the SNAP DSAP and
4018 * LSAP, as per XXX, and were also to check for an
4019 * organization code of 0x000000 (encapsulated
4020 * Ethernet), we'd do
4021 *
4022 * return gen_snap(cstate, 0x000000, ll_proto);
4023 *
4024 * here; for now, we don't, as per the above.
4025 * I don't know whether it's worth the extra CPU
4026 * time to do the right check or not.
4027 */
4028 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4029 }
4030 }
4031 }
4032
4033 static struct block *
4034 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4035 int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4036 {
4037 struct block *b0, *b1;
4038 u_int offset;
4039
4040 switch (dir) {
4041
4042 case Q_SRC:
4043 offset = src_off;
4044 break;
4045
4046 case Q_DST:
4047 offset = dst_off;
4048 break;
4049
4050 case Q_AND:
4051 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4052 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4053 gen_and(b0, b1);
4054 return b1;
4055
4056 case Q_DEFAULT:
4057 case Q_OR:
4058 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4059 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4060 gen_or(b0, b1);
4061 return b1;
4062
4063 case Q_ADDR1:
4064 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4065 /*NOTREACHED*/
4066
4067 case Q_ADDR2:
4068 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4069 /*NOTREACHED*/
4070
4071 case Q_ADDR3:
4072 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4073 /*NOTREACHED*/
4074
4075 case Q_ADDR4:
4076 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4077 /*NOTREACHED*/
4078
4079 case Q_RA:
4080 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4081 /*NOTREACHED*/
4082
4083 case Q_TA:
4084 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4085 /*NOTREACHED*/
4086
4087 default:
4088 abort();
4089 /*NOTREACHED*/
4090 }
4091 b0 = gen_linktype(cstate, ll_proto);
4092 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4093 gen_and(b0, b1);
4094 return b1;
4095 }
4096
4097 #ifdef INET6
4098 static struct block *
4099 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4100 struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4101 u_int dst_off)
4102 {
4103 struct block *b0, *b1;
4104 u_int offset;
4105 /*
4106 * Code below needs to access four separate 32-bit parts of the 128-bit
4107 * IPv6 address and mask. In some OSes this is as simple as using the
4108 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4109 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4110 * far as libpcap sees it. Hence copy the data before use to avoid
4111 * potential unaligned memory access and the associated compiler
4112 * warnings (whether genuine or not).
4113 */
4114 bpf_u_int32 a[4], m[4];
4115
4116 switch (dir) {
4117
4118 case Q_SRC:
4119 offset = src_off;
4120 break;
4121
4122 case Q_DST:
4123 offset = dst_off;
4124 break;
4125
4126 case Q_AND:
4127 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4128 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4129 gen_and(b0, b1);
4130 return b1;
4131
4132 case Q_DEFAULT:
4133 case Q_OR:
4134 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4135 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4136 gen_or(b0, b1);
4137 return b1;
4138
4139 case Q_ADDR1:
4140 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4141 /*NOTREACHED*/
4142
4143 case Q_ADDR2:
4144 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4145 /*NOTREACHED*/
4146
4147 case Q_ADDR3:
4148 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4149 /*NOTREACHED*/
4150
4151 case Q_ADDR4:
4152 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4153 /*NOTREACHED*/
4154
4155 case Q_RA:
4156 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4157 /*NOTREACHED*/
4158
4159 case Q_TA:
4160 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4161 /*NOTREACHED*/
4162
4163 default:
4164 abort();
4165 /*NOTREACHED*/
4166 }
4167 /* this order is important */
4168 memcpy(a, addr, sizeof(a));
4169 memcpy(m, mask, sizeof(m));
4170 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4171 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4172 gen_and(b0, b1);
4173 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4174 gen_and(b0, b1);
4175 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4176 gen_and(b0, b1);
4177 b0 = gen_linktype(cstate, ll_proto);
4178 gen_and(b0, b1);
4179 return b1;
4180 }
4181 #endif
4182
4183 static struct block *
4184 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4185 {
4186 register struct block *b0, *b1;
4187
4188 switch (dir) {
4189 case Q_SRC:
4190 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4191
4192 case Q_DST:
4193 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4194
4195 case Q_AND:
4196 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4197 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4198 gen_and(b0, b1);
4199 return b1;
4200
4201 case Q_DEFAULT:
4202 case Q_OR:
4203 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4204 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4205 gen_or(b0, b1);
4206 return b1;
4207
4208 case Q_ADDR1:
4209 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4210 /*NOTREACHED*/
4211
4212 case Q_ADDR2:
4213 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4214 /*NOTREACHED*/
4215
4216 case Q_ADDR3:
4217 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4218 /*NOTREACHED*/
4219
4220 case Q_ADDR4:
4221 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4222 /*NOTREACHED*/
4223
4224 case Q_RA:
4225 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4226 /*NOTREACHED*/
4227
4228 case Q_TA:
4229 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4230 /*NOTREACHED*/
4231 }
4232 abort();
4233 /*NOTREACHED*/
4234 }
4235
4236 /*
4237 * Like gen_ehostop, but for DLT_FDDI
4238 */
4239 static struct block *
4240 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4241 {
4242 struct block *b0, *b1;
4243
4244 switch (dir) {
4245 case Q_SRC:
4246 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4247
4248 case Q_DST:
4249 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4250
4251 case Q_AND:
4252 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4253 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4254 gen_and(b0, b1);
4255 return b1;
4256
4257 case Q_DEFAULT:
4258 case Q_OR:
4259 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4260 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4261 gen_or(b0, b1);
4262 return b1;
4263
4264 case Q_ADDR1:
4265 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4266 /*NOTREACHED*/
4267
4268 case Q_ADDR2:
4269 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4270 /*NOTREACHED*/
4271
4272 case Q_ADDR3:
4273 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4274 /*NOTREACHED*/
4275
4276 case Q_ADDR4:
4277 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4278 /*NOTREACHED*/
4279
4280 case Q_RA:
4281 bpf_error(cstate, "'ra' is only supported on 802.11");
4282 /*NOTREACHED*/
4283
4284 case Q_TA:
4285 bpf_error(cstate, "'ta' is only supported on 802.11");
4286 /*NOTREACHED*/
4287 }
4288 abort();
4289 /*NOTREACHED*/
4290 }
4291
4292 /*
4293 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4294 */
4295 static struct block *
4296 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4297 {
4298 register struct block *b0, *b1;
4299
4300 switch (dir) {
4301 case Q_SRC:
4302 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4303
4304 case Q_DST:
4305 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4306
4307 case Q_AND:
4308 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4309 b1 = gen_thostop(cstate, eaddr, Q_DST);
4310 gen_and(b0, b1);
4311 return b1;
4312
4313 case Q_DEFAULT:
4314 case Q_OR:
4315 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4316 b1 = gen_thostop(cstate, eaddr, Q_DST);
4317 gen_or(b0, b1);
4318 return b1;
4319
4320 case Q_ADDR1:
4321 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4322 /*NOTREACHED*/
4323
4324 case Q_ADDR2:
4325 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4326 /*NOTREACHED*/
4327
4328 case Q_ADDR3:
4329 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4330 /*NOTREACHED*/
4331
4332 case Q_ADDR4:
4333 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4334 /*NOTREACHED*/
4335
4336 case Q_RA:
4337 bpf_error(cstate, "'ra' is only supported on 802.11");
4338 /*NOTREACHED*/
4339
4340 case Q_TA:
4341 bpf_error(cstate, "'ta' is only supported on 802.11");
4342 /*NOTREACHED*/
4343 }
4344 abort();
4345 /*NOTREACHED*/
4346 }
4347
4348 /*
4349 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4350 * various 802.11 + radio headers.
4351 */
4352 static struct block *
4353 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4354 {
4355 register struct block *b0, *b1, *b2;
4356 register struct slist *s;
4357
4358 #ifdef ENABLE_WLAN_FILTERING_PATCH
4359 /*
4360 * TODO GV 20070613
4361 * We need to disable the optimizer because the optimizer is buggy
4362 * and wipes out some LD instructions generated by the below
4363 * code to validate the Frame Control bits
4364 */
4365 cstate->no_optimize = 1;
4366 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4367
4368 switch (dir) {
4369 case Q_SRC:
4370 /*
4371 * Oh, yuk.
4372 *
4373 * For control frames, there is no SA.
4374 *
4375 * For management frames, SA is at an
4376 * offset of 10 from the beginning of
4377 * the packet.
4378 *
4379 * For data frames, SA is at an offset
4380 * of 10 from the beginning of the packet
4381 * if From DS is clear, at an offset of
4382 * 16 from the beginning of the packet
4383 * if From DS is set and To DS is clear,
4384 * and an offset of 24 from the beginning
4385 * of the packet if From DS is set and To DS
4386 * is set.
4387 */
4388
4389 /*
4390 * Generate the tests to be done for data frames
4391 * with From DS set.
4392 *
4393 * First, check for To DS set, i.e. check "link[1] & 0x01".
4394 */
4395 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4396 b1 = new_block(cstate, JMP(BPF_JSET));
4397 b1->s.k = 0x01; /* To DS */
4398 b1->stmts = s;
4399
4400 /*
4401 * If To DS is set, the SA is at 24.
4402 */
4403 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4404 gen_and(b1, b0);
4405
4406 /*
4407 * Now, check for To DS not set, i.e. check
4408 * "!(link[1] & 0x01)".
4409 */
4410 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4411 b2 = new_block(cstate, JMP(BPF_JSET));
4412 b2->s.k = 0x01; /* To DS */
4413 b2->stmts = s;
4414 gen_not(b2);
4415
4416 /*
4417 * If To DS is not set, the SA is at 16.
4418 */
4419 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4420 gen_and(b2, b1);
4421
4422 /*
4423 * Now OR together the last two checks. That gives
4424 * the complete set of checks for data frames with
4425 * From DS set.
4426 */
4427 gen_or(b1, b0);
4428
4429 /*
4430 * Now check for From DS being set, and AND that with
4431 * the ORed-together checks.
4432 */
4433 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4434 b1 = new_block(cstate, JMP(BPF_JSET));
4435 b1->s.k = 0x02; /* From DS */
4436 b1->stmts = s;
4437 gen_and(b1, b0);
4438
4439 /*
4440 * Now check for data frames with From DS not set.
4441 */
4442 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4443 b2 = new_block(cstate, JMP(BPF_JSET));
4444 b2->s.k = 0x02; /* From DS */
4445 b2->stmts = s;
4446 gen_not(b2);
4447
4448 /*
4449 * If From DS isn't set, the SA is at 10.
4450 */
4451 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4452 gen_and(b2, b1);
4453
4454 /*
4455 * Now OR together the checks for data frames with
4456 * From DS not set and for data frames with From DS
4457 * set; that gives the checks done for data frames.
4458 */
4459 gen_or(b1, b0);
4460
4461 /*
4462 * Now check for a data frame.
4463 * I.e, check "link[0] & 0x08".
4464 */
4465 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4466 b1 = new_block(cstate, JMP(BPF_JSET));
4467 b1->s.k = 0x08;
4468 b1->stmts = s;
4469
4470 /*
4471 * AND that with the checks done for data frames.
4472 */
4473 gen_and(b1, b0);
4474
4475 /*
4476 * If the high-order bit of the type value is 0, this
4477 * is a management frame.
4478 * I.e, check "!(link[0] & 0x08)".
4479 */
4480 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4481 b2 = new_block(cstate, JMP(BPF_JSET));
4482 b2->s.k = 0x08;
4483 b2->stmts = s;
4484 gen_not(b2);
4485
4486 /*
4487 * For management frames, the SA is at 10.
4488 */
4489 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4490 gen_and(b2, b1);
4491
4492 /*
4493 * OR that with the checks done for data frames.
4494 * That gives the checks done for management and
4495 * data frames.
4496 */
4497 gen_or(b1, b0);
4498
4499 /*
4500 * If the low-order bit of the type value is 1,
4501 * this is either a control frame or a frame
4502 * with a reserved type, and thus not a
4503 * frame with an SA.
4504 *
4505 * I.e., check "!(link[0] & 0x04)".
4506 */
4507 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4508 b1 = new_block(cstate, JMP(BPF_JSET));
4509 b1->s.k = 0x04;
4510 b1->stmts = s;
4511 gen_not(b1);
4512
4513 /*
4514 * AND that with the checks for data and management
4515 * frames.
4516 */
4517 gen_and(b1, b0);
4518 return b0;
4519
4520 case Q_DST:
4521 /*
4522 * Oh, yuk.
4523 *
4524 * For control frames, there is no DA.
4525 *
4526 * For management frames, DA is at an
4527 * offset of 4 from the beginning of
4528 * the packet.
4529 *
4530 * For data frames, DA is at an offset
4531 * of 4 from the beginning of the packet
4532 * if To DS is clear and at an offset of
4533 * 16 from the beginning of the packet
4534 * if To DS is set.
4535 */
4536
4537 /*
4538 * Generate the tests to be done for data frames.
4539 *
4540 * First, check for To DS set, i.e. "link[1] & 0x01".
4541 */
4542 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4543 b1 = new_block(cstate, JMP(BPF_JSET));
4544 b1->s.k = 0x01; /* To DS */
4545 b1->stmts = s;
4546
4547 /*
4548 * If To DS is set, the DA is at 16.
4549 */
4550 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4551 gen_and(b1, b0);
4552
4553 /*
4554 * Now, check for To DS not set, i.e. check
4555 * "!(link[1] & 0x01)".
4556 */
4557 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4558 b2 = new_block(cstate, JMP(BPF_JSET));
4559 b2->s.k = 0x01; /* To DS */
4560 b2->stmts = s;
4561 gen_not(b2);
4562
4563 /*
4564 * If To DS is not set, the DA is at 4.
4565 */
4566 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4567 gen_and(b2, b1);
4568
4569 /*
4570 * Now OR together the last two checks. That gives
4571 * the complete set of checks for data frames.
4572 */
4573 gen_or(b1, b0);
4574
4575 /*
4576 * Now check for a data frame.
4577 * I.e, check "link[0] & 0x08".
4578 */
4579 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4580 b1 = new_block(cstate, JMP(BPF_JSET));
4581 b1->s.k = 0x08;
4582 b1->stmts = s;
4583
4584 /*
4585 * AND that with the checks done for data frames.
4586 */
4587 gen_and(b1, b0);
4588
4589 /*
4590 * If the high-order bit of the type value is 0, this
4591 * is a management frame.
4592 * I.e, check "!(link[0] & 0x08)".
4593 */
4594 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4595 b2 = new_block(cstate, JMP(BPF_JSET));
4596 b2->s.k = 0x08;
4597 b2->stmts = s;
4598 gen_not(b2);
4599
4600 /*
4601 * For management frames, the DA is at 4.
4602 */
4603 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4604 gen_and(b2, b1);
4605
4606 /*
4607 * OR that with the checks done for data frames.
4608 * That gives the checks done for management and
4609 * data frames.
4610 */
4611 gen_or(b1, b0);
4612
4613 /*
4614 * If the low-order bit of the type value is 1,
4615 * this is either a control frame or a frame
4616 * with a reserved type, and thus not a
4617 * frame with an SA.
4618 *
4619 * I.e., check "!(link[0] & 0x04)".
4620 */
4621 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4622 b1 = new_block(cstate, JMP(BPF_JSET));
4623 b1->s.k = 0x04;
4624 b1->stmts = s;
4625 gen_not(b1);
4626
4627 /*
4628 * AND that with the checks for data and management
4629 * frames.
4630 */
4631 gen_and(b1, b0);
4632 return b0;
4633
4634 case Q_AND:
4635 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4636 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4637 gen_and(b0, b1);
4638 return b1;
4639
4640 case Q_DEFAULT:
4641 case Q_OR:
4642 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4643 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4644 gen_or(b0, b1);
4645 return b1;
4646
4647 /*
4648 * XXX - add BSSID keyword?
4649 */
4650 case Q_ADDR1:
4651 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4652
4653 case Q_ADDR2:
4654 /*
4655 * Not present in CTS or ACK control frames.
4656 */
4657 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4658 IEEE80211_FC0_TYPE_MASK);
4659 gen_not(b0);
4660 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4661 IEEE80211_FC0_SUBTYPE_MASK);
4662 gen_not(b1);
4663 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4664 IEEE80211_FC0_SUBTYPE_MASK);
4665 gen_not(b2);
4666 gen_and(b1, b2);
4667 gen_or(b0, b2);
4668 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4669 gen_and(b2, b1);
4670 return b1;
4671
4672 case Q_ADDR3:
4673 /*
4674 * Not present in control frames.
4675 */
4676 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4677 IEEE80211_FC0_TYPE_MASK);
4678 gen_not(b0);
4679 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4680 gen_and(b0, b1);
4681 return b1;
4682
4683 case Q_ADDR4:
4684 /*
4685 * Present only if the direction mask has both "From DS"
4686 * and "To DS" set. Neither control frames nor management
4687 * frames should have both of those set, so we don't
4688 * check the frame type.
4689 */
4690 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4691 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4692 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4693 gen_and(b0, b1);
4694 return b1;
4695
4696 case Q_RA:
4697 /*
4698 * Not present in management frames; addr1 in other
4699 * frames.
4700 */
4701
4702 /*
4703 * If the high-order bit of the type value is 0, this
4704 * is a management frame.
4705 * I.e, check "(link[0] & 0x08)".
4706 */
4707 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4708 b1 = new_block(cstate, JMP(BPF_JSET));
4709 b1->s.k = 0x08;
4710 b1->stmts = s;
4711
4712 /*
4713 * Check addr1.
4714 */
4715 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4716
4717 /*
4718 * AND that with the check of addr1.
4719 */
4720 gen_and(b1, b0);
4721 return (b0);
4722
4723 case Q_TA:
4724 /*
4725 * Not present in management frames; addr2, if present,
4726 * in other frames.
4727 */
4728
4729 /*
4730 * Not present in CTS or ACK control frames.
4731 */
4732 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4733 IEEE80211_FC0_TYPE_MASK);
4734 gen_not(b0);
4735 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4736 IEEE80211_FC0_SUBTYPE_MASK);
4737 gen_not(b1);
4738 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4739 IEEE80211_FC0_SUBTYPE_MASK);
4740 gen_not(b2);
4741 gen_and(b1, b2);
4742 gen_or(b0, b2);
4743
4744 /*
4745 * If the high-order bit of the type value is 0, this
4746 * is a management frame.
4747 * I.e, check "(link[0] & 0x08)".
4748 */
4749 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4750 b1 = new_block(cstate, JMP(BPF_JSET));
4751 b1->s.k = 0x08;
4752 b1->stmts = s;
4753
4754 /*
4755 * AND that with the check for frames other than
4756 * CTS and ACK frames.
4757 */
4758 gen_and(b1, b2);
4759
4760 /*
4761 * Check addr2.
4762 */
4763 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4764 gen_and(b2, b1);
4765 return b1;
4766 }
4767 abort();
4768 /*NOTREACHED*/
4769 }
4770
4771 /*
4772 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4773 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4774 * as the RFC states.)
4775 */
4776 static struct block *
4777 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4778 {
4779 register struct block *b0, *b1;
4780
4781 switch (dir) {
4782 case Q_SRC:
4783 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4784
4785 case Q_DST:
4786 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4787
4788 case Q_AND:
4789 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4790 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4791 gen_and(b0, b1);
4792 return b1;
4793
4794 case Q_DEFAULT:
4795 case Q_OR:
4796 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4797 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4798 gen_or(b0, b1);
4799 return b1;
4800
4801 case Q_ADDR1:
4802 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4803 /*NOTREACHED*/
4804
4805 case Q_ADDR2:
4806 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4807 /*NOTREACHED*/
4808
4809 case Q_ADDR3:
4810 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4811 /*NOTREACHED*/
4812
4813 case Q_ADDR4:
4814 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4815 /*NOTREACHED*/
4816
4817 case Q_RA:
4818 bpf_error(cstate, "'ra' is only supported on 802.11");
4819 /*NOTREACHED*/
4820
4821 case Q_TA:
4822 bpf_error(cstate, "'ta' is only supported on 802.11");
4823 /*NOTREACHED*/
4824 }
4825 abort();
4826 /*NOTREACHED*/
4827 }
4828
4829 /*
4830 * This is quite tricky because there may be pad bytes in front of the
4831 * DECNET header, and then there are two possible data packet formats that
4832 * carry both src and dst addresses, plus 5 packet types in a format that
4833 * carries only the src node, plus 2 types that use a different format and
4834 * also carry just the src node.
4835 *
4836 * Yuck.
4837 *
4838 * Instead of doing those all right, we just look for data packets with
4839 * 0 or 1 bytes of padding. If you want to look at other packets, that
4840 * will require a lot more hacking.
4841 *
4842 * To add support for filtering on DECNET "areas" (network numbers)
4843 * one would want to add a "mask" argument to this routine. That would
4844 * make the filter even more inefficient, although one could be clever
4845 * and not generate masking instructions if the mask is 0xFFFF.
4846 */
4847 static struct block *
4848 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4849 {
4850 struct block *b0, *b1, *b2, *tmp;
4851 u_int offset_lh; /* offset if long header is received */
4852 u_int offset_sh; /* offset if short header is received */
4853
4854 switch (dir) {
4855
4856 case Q_DST:
4857 offset_sh = 1; /* follows flags */
4858 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4859 break;
4860
4861 case Q_SRC:
4862 offset_sh = 3; /* follows flags, dstnode */
4863 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4864 break;
4865
4866 case Q_AND:
4867 /* Inefficient because we do our Calvinball dance twice */
4868 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4869 b1 = gen_dnhostop(cstate, addr, Q_DST);
4870 gen_and(b0, b1);
4871 return b1;
4872
4873 case Q_DEFAULT:
4874 case Q_OR:
4875 /* Inefficient because we do our Calvinball dance twice */
4876 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4877 b1 = gen_dnhostop(cstate, addr, Q_DST);
4878 gen_or(b0, b1);
4879 return b1;
4880
4881 case Q_ADDR1:
4882 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4883 /*NOTREACHED*/
4884
4885 case Q_ADDR2:
4886 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4887 /*NOTREACHED*/
4888
4889 case Q_ADDR3:
4890 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4891 /*NOTREACHED*/
4892
4893 case Q_ADDR4:
4894 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4895 /*NOTREACHED*/
4896
4897 case Q_RA:
4898 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4899 /*NOTREACHED*/
4900
4901 case Q_TA:
4902 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4903 /*NOTREACHED*/
4904
4905 default:
4906 abort();
4907 /*NOTREACHED*/
4908 }
4909 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4910 /* Check for pad = 1, long header case */
4911 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4912 (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4913 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4914 BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4915 gen_and(tmp, b1);
4916 /* Check for pad = 0, long header case */
4917 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4918 (bpf_u_int32)0x7);
4919 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4920 (bpf_u_int32)ntohs((u_short)addr));
4921 gen_and(tmp, b2);
4922 gen_or(b2, b1);
4923 /* Check for pad = 1, short header case */
4924 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4925 (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4926 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4927 (bpf_u_int32)ntohs((u_short)addr));
4928 gen_and(tmp, b2);
4929 gen_or(b2, b1);
4930 /* Check for pad = 0, short header case */
4931 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4932 (bpf_u_int32)0x7);
4933 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4934 (bpf_u_int32)ntohs((u_short)addr));
4935 gen_and(tmp, b2);
4936 gen_or(b2, b1);
4937
4938 /* Combine with test for cstate->linktype */
4939 gen_and(b0, b1);
4940 return b1;
4941 }
4942
4943 /*
4944 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4945 * test the bottom-of-stack bit, and then check the version number
4946 * field in the IP header.
4947 */
4948 static struct block *
4949 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4950 {
4951 struct block *b0, *b1;
4952
4953 switch (ll_proto) {
4954
4955 case ETHERTYPE_IP:
4956 /* match the bottom-of-stack bit */
4957 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4958 /* match the IPv4 version number */
4959 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4960 gen_and(b0, b1);
4961 return b1;
4962
4963 case ETHERTYPE_IPV6:
4964 /* match the bottom-of-stack bit */
4965 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4966 /* match the IPv4 version number */
4967 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4968 gen_and(b0, b1);
4969 return b1;
4970
4971 default:
4972 /* FIXME add other L3 proto IDs */
4973 bpf_error(cstate, "unsupported protocol over mpls");
4974 /*NOTREACHED*/
4975 }
4976 }
4977
4978 static struct block *
4979 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4980 int proto, int dir, int type)
4981 {
4982 struct block *b0, *b1;
4983 const char *typestr;
4984
4985 if (type == Q_NET)
4986 typestr = "net";
4987 else
4988 typestr = "host";
4989
4990 switch (proto) {
4991
4992 case Q_DEFAULT:
4993 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4994 /*
4995 * Only check for non-IPv4 addresses if we're not
4996 * checking MPLS-encapsulated packets.
4997 */
4998 if (cstate->label_stack_depth == 0) {
4999 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
5000 gen_or(b0, b1);
5001 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
5002 gen_or(b1, b0);
5003 }
5004 return b0;
5005
5006 case Q_LINK:
5007 bpf_error(cstate, "link-layer modifier applied to %s", typestr);
5008
5009 case Q_IP:
5010 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
5011
5012 case Q_RARP:
5013 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5014
5015 case Q_ARP:
5016 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5017
5018 case Q_SCTP:
5019 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5020
5021 case Q_TCP:
5022 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5023
5024 case Q_UDP:
5025 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5026
5027 case Q_ICMP:
5028 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5029
5030 case Q_IGMP:
5031 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5032
5033 case Q_IGRP:
5034 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5035
5036 case Q_ATALK:
5037 bpf_error(cstate, "AppleTalk host filtering not implemented");
5038
5039 case Q_DECNET:
5040 return gen_dnhostop(cstate, addr, dir);
5041
5042 case Q_LAT:
5043 bpf_error(cstate, "LAT host filtering not implemented");
5044
5045 case Q_SCA:
5046 bpf_error(cstate, "SCA host filtering not implemented");
5047
5048 case Q_MOPRC:
5049 bpf_error(cstate, "MOPRC host filtering not implemented");
5050
5051 case Q_MOPDL:
5052 bpf_error(cstate, "MOPDL host filtering not implemented");
5053
5054 case Q_IPV6:
5055 bpf_error(cstate, "'ip6' modifier applied to ip host");
5056
5057 case Q_ICMPV6:
5058 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5059
5060 case Q_AH:
5061 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5062
5063 case Q_ESP:
5064 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5065
5066 case Q_PIM:
5067 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5068
5069 case Q_VRRP:
5070 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5071
5072 case Q_AARP:
5073 bpf_error(cstate, "AARP host filtering not implemented");
5074
5075 case Q_ISO:
5076 bpf_error(cstate, "ISO host filtering not implemented");
5077
5078 case Q_ESIS:
5079 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5080
5081 case Q_ISIS:
5082 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5083
5084 case Q_CLNP:
5085 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5086
5087 case Q_STP:
5088 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5089
5090 case Q_IPX:
5091 bpf_error(cstate, "IPX host filtering not implemented");
5092
5093 case Q_NETBEUI:
5094 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5095
5096 case Q_ISIS_L1:
5097 bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5098
5099 case Q_ISIS_L2:
5100 bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5101
5102 case Q_ISIS_IIH:
5103 bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5104
5105 case Q_ISIS_SNP:
5106 bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5107
5108 case Q_ISIS_CSNP:
5109 bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5110
5111 case Q_ISIS_PSNP:
5112 bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5113
5114 case Q_ISIS_LSP:
5115 bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5116
5117 case Q_RADIO:
5118 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5119
5120 case Q_CARP:
5121 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5122
5123 default:
5124 abort();
5125 }
5126 /*NOTREACHED*/
5127 }
5128
5129 #ifdef INET6
5130 static struct block *
5131 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5132 struct in6_addr *mask, int proto, int dir, int type)
5133 {
5134 const char *typestr;
5135
5136 if (type == Q_NET)
5137 typestr = "net";
5138 else
5139 typestr = "host";
5140
5141 switch (proto) {
5142
5143 case Q_DEFAULT:
5144 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5145
5146 case Q_LINK:
5147 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5148
5149 case Q_IP:
5150 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5151
5152 case Q_RARP:
5153 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5154
5155 case Q_ARP:
5156 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5157
5158 case Q_SCTP:
5159 bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5160
5161 case Q_TCP:
5162 bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5163
5164 case Q_UDP:
5165 bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5166
5167 case Q_ICMP:
5168 bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5169
5170 case Q_IGMP:
5171 bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5172
5173 case Q_IGRP:
5174 bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5175
5176 case Q_ATALK:
5177 bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5178
5179 case Q_DECNET:
5180 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5181
5182 case Q_LAT:
5183 bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5184
5185 case Q_SCA:
5186 bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5187
5188 case Q_MOPRC:
5189 bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5190
5191 case Q_MOPDL:
5192 bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5193
5194 case Q_IPV6:
5195 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5196
5197 case Q_ICMPV6:
5198 bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5199
5200 case Q_AH:
5201 bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5202
5203 case Q_ESP:
5204 bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5205
5206 case Q_PIM:
5207 bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5208
5209 case Q_VRRP:
5210 bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5211
5212 case Q_AARP:
5213 bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5214
5215 case Q_ISO:
5216 bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5217
5218 case Q_ESIS:
5219 bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5220
5221 case Q_ISIS:
5222 bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5223
5224 case Q_CLNP:
5225 bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5226
5227 case Q_STP:
5228 bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5229
5230 case Q_IPX:
5231 bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5232
5233 case Q_NETBEUI:
5234 bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5235
5236 case Q_ISIS_L1:
5237 bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5238
5239 case Q_ISIS_L2:
5240 bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5241
5242 case Q_ISIS_IIH:
5243 bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5244
5245 case Q_ISIS_SNP:
5246 bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5247
5248 case Q_ISIS_CSNP:
5249 bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5250
5251 case Q_ISIS_PSNP:
5252 bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5253
5254 case Q_ISIS_LSP:
5255 bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5256
5257 case Q_RADIO:
5258 bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5259
5260 case Q_CARP:
5261 bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5262
5263 default:
5264 abort();
5265 }
5266 /*NOTREACHED*/
5267 }
5268 #endif
5269
5270 #ifndef INET6
5271 static struct block *
5272 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5273 struct addrinfo *alist, int proto, int dir)
5274 {
5275 struct block *b0, *b1, *tmp;
5276 struct addrinfo *ai;
5277 struct sockaddr_in *sin;
5278
5279 if (dir != 0)
5280 bpf_error(cstate, "direction applied to 'gateway'");
5281
5282 switch (proto) {
5283 case Q_DEFAULT:
5284 case Q_IP:
5285 case Q_ARP:
5286 case Q_RARP:
5287 switch (cstate->linktype) {
5288 case DLT_EN10MB:
5289 case DLT_NETANALYZER:
5290 case DLT_NETANALYZER_TRANSPARENT:
5291 b1 = gen_prevlinkhdr_check(cstate);
5292 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5293 if (b1 != NULL)
5294 gen_and(b1, b0);
5295 break;
5296 case DLT_FDDI:
5297 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5298 break;
5299 case DLT_IEEE802:
5300 b0 = gen_thostop(cstate, eaddr, Q_OR);
5301 break;
5302 case DLT_IEEE802_11:
5303 case DLT_PRISM_HEADER:
5304 case DLT_IEEE802_11_RADIO_AVS:
5305 case DLT_IEEE802_11_RADIO:
5306 case DLT_PPI:
5307 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5308 break;
5309 case DLT_SUNATM:
5310 /*
5311 * This is LLC-multiplexed traffic; if it were
5312 * LANE, cstate->linktype would have been set to
5313 * DLT_EN10MB.
5314 */
5315 bpf_error(cstate,
5316 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5317 case DLT_IP_OVER_FC:
5318 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5319 break;
5320 default:
5321 bpf_error(cstate,
5322 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5323 }
5324 b1 = NULL;
5325 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5326 /*
5327 * Does it have an address?
5328 */
5329 if (ai->ai_addr != NULL) {
5330 /*
5331 * Yes. Is it an IPv4 address?
5332 */
5333 if (ai->ai_addr->sa_family == AF_INET) {
5334 /*
5335 * Generate an entry for it.
5336 */
5337 sin = (struct sockaddr_in *)ai->ai_addr;
5338 tmp = gen_host(cstate,
5339 ntohl(sin->sin_addr.s_addr),
5340 0xffffffff, proto, Q_OR, Q_HOST);
5341 /*
5342 * Is it the *first* IPv4 address?
5343 */
5344 if (b1 == NULL) {
5345 /*
5346 * Yes, so start with it.
5347 */
5348 b1 = tmp;
5349 } else {
5350 /*
5351 * No, so OR it into the
5352 * existing set of
5353 * addresses.
5354 */
5355 gen_or(b1, tmp);
5356 b1 = tmp;
5357 }
5358 }
5359 }
5360 }
5361 if (b1 == NULL) {
5362 /*
5363 * No IPv4 addresses found.
5364 */
5365 return (NULL);
5366 }
5367 gen_not(b1);
5368 gen_and(b0, b1);
5369 return b1;
5370 }
5371 bpf_error(cstate, "illegal modifier of 'gateway'");
5372 /*NOTREACHED*/
5373 }
5374 #endif
5375
5376 static struct block *
5377 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5378 {
5379 struct block *b0;
5380 struct block *b1;
5381
5382 switch (proto) {
5383
5384 case Q_SCTP:
5385 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5386 break;
5387
5388 case Q_TCP:
5389 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5390 break;
5391
5392 case Q_UDP:
5393 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5394 break;
5395
5396 case Q_ICMP:
5397 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5398 break;
5399
5400 #ifndef IPPROTO_IGMP
5401 #define IPPROTO_IGMP 2
5402 #endif
5403
5404 case Q_IGMP:
5405 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5406 break;
5407
5408 #ifndef IPPROTO_IGRP
5409 #define IPPROTO_IGRP 9
5410 #endif
5411 case Q_IGRP:
5412 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5413 break;
5414
5415 #ifndef IPPROTO_PIM
5416 #define IPPROTO_PIM 103
5417 #endif
5418
5419 case Q_PIM:
5420 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5421 break;
5422
5423 #ifndef IPPROTO_VRRP
5424 #define IPPROTO_VRRP 112
5425 #endif
5426
5427 case Q_VRRP:
5428 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5429 break;
5430
5431 #ifndef IPPROTO_CARP
5432 #define IPPROTO_CARP 112
5433 #endif
5434
5435 case Q_CARP:
5436 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5437 break;
5438
5439 case Q_IP:
5440 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5441 break;
5442
5443 case Q_ARP:
5444 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5445 break;
5446
5447 case Q_RARP:
5448 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5449 break;
5450
5451 case Q_LINK:
5452 bpf_error(cstate, "link layer applied in wrong context");
5453
5454 case Q_ATALK:
5455 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5456 break;
5457
5458 case Q_AARP:
5459 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5460 break;
5461
5462 case Q_DECNET:
5463 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5464 break;
5465
5466 case Q_SCA:
5467 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5468 break;
5469
5470 case Q_LAT:
5471 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5472 break;
5473
5474 case Q_MOPDL:
5475 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5476 break;
5477
5478 case Q_MOPRC:
5479 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5480 break;
5481
5482 case Q_IPV6:
5483 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5484 break;
5485
5486 #ifndef IPPROTO_ICMPV6
5487 #define IPPROTO_ICMPV6 58
5488 #endif
5489 case Q_ICMPV6:
5490 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5491 break;
5492
5493 #ifndef IPPROTO_AH
5494 #define IPPROTO_AH 51
5495 #endif
5496 case Q_AH:
5497 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5498 break;
5499
5500 #ifndef IPPROTO_ESP
5501 #define IPPROTO_ESP 50
5502 #endif
5503 case Q_ESP:
5504 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5505 break;
5506
5507 case Q_ISO:
5508 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5509 break;
5510
5511 case Q_ESIS:
5512 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5513 break;
5514
5515 case Q_ISIS:
5516 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5517 break;
5518
5519 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5520 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5521 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5522 gen_or(b0, b1);
5523 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5524 gen_or(b0, b1);
5525 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5526 gen_or(b0, b1);
5527 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5528 gen_or(b0, b1);
5529 break;
5530
5531 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5532 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5533 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5534 gen_or(b0, b1);
5535 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5536 gen_or(b0, b1);
5537 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5538 gen_or(b0, b1);
5539 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5540 gen_or(b0, b1);
5541 break;
5542
5543 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5544 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5545 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5546 gen_or(b0, b1);
5547 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5548 gen_or(b0, b1);
5549 break;
5550
5551 case Q_ISIS_LSP:
5552 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5553 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5554 gen_or(b0, b1);
5555 break;
5556
5557 case Q_ISIS_SNP:
5558 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5559 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5560 gen_or(b0, b1);
5561 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5562 gen_or(b0, b1);
5563 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5564 gen_or(b0, b1);
5565 break;
5566
5567 case Q_ISIS_CSNP:
5568 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5569 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5570 gen_or(b0, b1);
5571 break;
5572
5573 case Q_ISIS_PSNP:
5574 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5575 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5576 gen_or(b0, b1);
5577 break;
5578
5579 case Q_CLNP:
5580 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5581 break;
5582
5583 case Q_STP:
5584 b1 = gen_linktype(cstate, LLCSAP_8021D);
5585 break;
5586
5587 case Q_IPX:
5588 b1 = gen_linktype(cstate, LLCSAP_IPX);
5589 break;
5590
5591 case Q_NETBEUI:
5592 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5593 break;
5594
5595 case Q_RADIO:
5596 bpf_error(cstate, "'radio' is not a valid protocol type");
5597
5598 default:
5599 abort();
5600 }
5601 return b1;
5602 }
5603
5604 struct block *
5605 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5606 {
5607 /*
5608 * Catch errors reported by us and routines below us, and return NULL
5609 * on an error.
5610 */
5611 if (setjmp(cstate->top_ctx))
5612 return (NULL);
5613
5614 return gen_proto_abbrev_internal(cstate, proto);
5615 }
5616
5617 static struct block *
5618 gen_ipfrag(compiler_state_t *cstate)
5619 {
5620 struct slist *s;
5621 struct block *b;
5622
5623 /* not IPv4 frag other than the first frag */
5624 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5625 b = new_block(cstate, JMP(BPF_JSET));
5626 b->s.k = 0x1fff;
5627 b->stmts = s;
5628 gen_not(b);
5629
5630 return b;
5631 }
5632
5633 /*
5634 * Generate a comparison to a port value in the transport-layer header
5635 * at the specified offset from the beginning of that header.
5636 *
5637 * XXX - this handles a variable-length prefix preceding the link-layer
5638 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5639 * variable-length link-layer headers (such as Token Ring or 802.11
5640 * headers).
5641 */
5642 static struct block *
5643 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5644 {
5645 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5646 }
5647
5648 static struct block *
5649 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5650 {
5651 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5652 }
5653
5654 static struct block *
5655 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5656 {
5657 struct block *b0, *b1, *tmp;
5658
5659 /* ip proto 'proto' and not a fragment other than the first fragment */
5660 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5661 b0 = gen_ipfrag(cstate);
5662 gen_and(tmp, b0);
5663
5664 switch (dir) {
5665 case Q_SRC:
5666 b1 = gen_portatom(cstate, 0, port);
5667 break;
5668
5669 case Q_DST:
5670 b1 = gen_portatom(cstate, 2, port);
5671 break;
5672
5673 case Q_AND:
5674 tmp = gen_portatom(cstate, 0, port);
5675 b1 = gen_portatom(cstate, 2, port);
5676 gen_and(tmp, b1);
5677 break;
5678
5679 case Q_DEFAULT:
5680 case Q_OR:
5681 tmp = gen_portatom(cstate, 0, port);
5682 b1 = gen_portatom(cstate, 2, port);
5683 gen_or(tmp, b1);
5684 break;
5685
5686 case Q_ADDR1:
5687 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5688 /*NOTREACHED*/
5689
5690 case Q_ADDR2:
5691 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5692 /*NOTREACHED*/
5693
5694 case Q_ADDR3:
5695 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5696 /*NOTREACHED*/
5697
5698 case Q_ADDR4:
5699 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5700 /*NOTREACHED*/
5701
5702 case Q_RA:
5703 bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5704 /*NOTREACHED*/
5705
5706 case Q_TA:
5707 bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5708 /*NOTREACHED*/
5709
5710 default:
5711 abort();
5712 /*NOTREACHED*/
5713 }
5714 gen_and(b0, b1);
5715
5716 return b1;
5717 }
5718
5719 static struct block *
5720 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5721 {
5722 struct block *b0, *b1, *tmp;
5723
5724 /*
5725 * ether proto ip
5726 *
5727 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5728 * not LLC encapsulation with LLCSAP_IP.
5729 *
5730 * For IEEE 802 networks - which includes 802.5 token ring
5731 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5732 * says that SNAP encapsulation is used, not LLC encapsulation
5733 * with LLCSAP_IP.
5734 *
5735 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5736 * RFC 2225 say that SNAP encapsulation is used, not LLC
5737 * encapsulation with LLCSAP_IP.
5738 *
5739 * So we always check for ETHERTYPE_IP.
5740 */
5741 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5742
5743 switch (ip_proto) {
5744 case IPPROTO_UDP:
5745 case IPPROTO_TCP:
5746 case IPPROTO_SCTP:
5747 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5748 break;
5749
5750 case PROTO_UNDEF:
5751 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5752 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5753 gen_or(tmp, b1);
5754 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5755 gen_or(tmp, b1);
5756 break;
5757
5758 default:
5759 abort();
5760 }
5761 gen_and(b0, b1);
5762 return b1;
5763 }
5764
5765 struct block *
5766 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5767 {
5768 struct block *b0, *b1, *tmp;
5769
5770 /* ip6 proto 'proto' */
5771 /* XXX - catch the first fragment of a fragmented packet? */
5772 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5773
5774 switch (dir) {
5775 case Q_SRC:
5776 b1 = gen_portatom6(cstate, 0, port);
5777 break;
5778
5779 case Q_DST:
5780 b1 = gen_portatom6(cstate, 2, port);
5781 break;
5782
5783 case Q_AND:
5784 tmp = gen_portatom6(cstate, 0, port);
5785 b1 = gen_portatom6(cstate, 2, port);
5786 gen_and(tmp, b1);
5787 break;
5788
5789 case Q_DEFAULT:
5790 case Q_OR:
5791 tmp = gen_portatom6(cstate, 0, port);
5792 b1 = gen_portatom6(cstate, 2, port);
5793 gen_or(tmp, b1);
5794 break;
5795
5796 default:
5797 abort();
5798 }
5799 gen_and(b0, b1);
5800
5801 return b1;
5802 }
5803
5804 static struct block *
5805 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5806 {
5807 struct block *b0, *b1, *tmp;
5808
5809 /* link proto ip6 */
5810 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5811
5812 switch (ip_proto) {
5813 case IPPROTO_UDP:
5814 case IPPROTO_TCP:
5815 case IPPROTO_SCTP:
5816 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5817 break;
5818
5819 case PROTO_UNDEF:
5820 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5821 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5822 gen_or(tmp, b1);
5823 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5824 gen_or(tmp, b1);
5825 break;
5826
5827 default:
5828 abort();
5829 }
5830 gen_and(b0, b1);
5831 return b1;
5832 }
5833
5834 /* gen_portrange code */
5835 static struct block *
5836 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5837 bpf_u_int32 v2)
5838 {
5839 struct block *b1, *b2;
5840
5841 if (v1 > v2) {
5842 /*
5843 * Reverse the order of the ports, so v1 is the lower one.
5844 */
5845 bpf_u_int32 vtemp;
5846
5847 vtemp = v1;
5848 v1 = v2;
5849 v2 = vtemp;
5850 }
5851
5852 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5853 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5854
5855 gen_and(b1, b2);
5856
5857 return b2;
5858 }
5859
5860 static struct block *
5861 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5862 bpf_u_int32 proto, int dir)
5863 {
5864 struct block *b0, *b1, *tmp;
5865
5866 /* ip proto 'proto' and not a fragment other than the first fragment */
5867 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5868 b0 = gen_ipfrag(cstate);
5869 gen_and(tmp, b0);
5870
5871 switch (dir) {
5872 case Q_SRC:
5873 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5874 break;
5875
5876 case Q_DST:
5877 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5878 break;
5879
5880 case Q_AND:
5881 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5882 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5883 gen_and(tmp, b1);
5884 break;
5885
5886 case Q_DEFAULT:
5887 case Q_OR:
5888 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5889 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5890 gen_or(tmp, b1);
5891 break;
5892
5893 case Q_ADDR1:
5894 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5895 /*NOTREACHED*/
5896
5897 case Q_ADDR2:
5898 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5899 /*NOTREACHED*/
5900
5901 case Q_ADDR3:
5902 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5903 /*NOTREACHED*/
5904
5905 case Q_ADDR4:
5906 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5907 /*NOTREACHED*/
5908
5909 case Q_RA:
5910 bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5911 /*NOTREACHED*/
5912
5913 case Q_TA:
5914 bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5915 /*NOTREACHED*/
5916
5917 default:
5918 abort();
5919 /*NOTREACHED*/
5920 }
5921 gen_and(b0, b1);
5922
5923 return b1;
5924 }
5925
5926 static struct block *
5927 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5928 int dir)
5929 {
5930 struct block *b0, *b1, *tmp;
5931
5932 /* link proto ip */
5933 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5934
5935 switch (ip_proto) {
5936 case IPPROTO_UDP:
5937 case IPPROTO_TCP:
5938 case IPPROTO_SCTP:
5939 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5940 dir);
5941 break;
5942
5943 case PROTO_UNDEF:
5944 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5945 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5946 gen_or(tmp, b1);
5947 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5948 gen_or(tmp, b1);
5949 break;
5950
5951 default:
5952 abort();
5953 }
5954 gen_and(b0, b1);
5955 return b1;
5956 }
5957
5958 static struct block *
5959 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5960 bpf_u_int32 v2)
5961 {
5962 struct block *b1, *b2;
5963
5964 if (v1 > v2) {
5965 /*
5966 * Reverse the order of the ports, so v1 is the lower one.
5967 */
5968 bpf_u_int32 vtemp;
5969
5970 vtemp = v1;
5971 v1 = v2;
5972 v2 = vtemp;
5973 }
5974
5975 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5976 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5977
5978 gen_and(b1, b2);
5979
5980 return b2;
5981 }
5982
5983 static struct block *
5984 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5985 bpf_u_int32 proto, int dir)
5986 {
5987 struct block *b0, *b1, *tmp;
5988
5989 /* ip6 proto 'proto' */
5990 /* XXX - catch the first fragment of a fragmented packet? */
5991 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5992
5993 switch (dir) {
5994 case Q_SRC:
5995 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5996 break;
5997
5998 case Q_DST:
5999 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6000 break;
6001
6002 case Q_AND:
6003 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6004 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6005 gen_and(tmp, b1);
6006 break;
6007
6008 case Q_DEFAULT:
6009 case Q_OR:
6010 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6011 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6012 gen_or(tmp, b1);
6013 break;
6014
6015 default:
6016 abort();
6017 }
6018 gen_and(b0, b1);
6019
6020 return b1;
6021 }
6022
6023 static struct block *
6024 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6025 int dir)
6026 {
6027 struct block *b0, *b1, *tmp;
6028
6029 /* link proto ip6 */
6030 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6031
6032 switch (ip_proto) {
6033 case IPPROTO_UDP:
6034 case IPPROTO_TCP:
6035 case IPPROTO_SCTP:
6036 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6037 dir);
6038 break;
6039
6040 case PROTO_UNDEF:
6041 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6042 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6043 gen_or(tmp, b1);
6044 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6045 gen_or(tmp, b1);
6046 break;
6047
6048 default:
6049 abort();
6050 }
6051 gen_and(b0, b1);
6052 return b1;
6053 }
6054
6055 static int
6056 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6057 {
6058 register int v;
6059
6060 switch (proto) {
6061
6062 case Q_DEFAULT:
6063 case Q_IP:
6064 case Q_IPV6:
6065 v = pcap_nametoproto(name);
6066 if (v == PROTO_UNDEF)
6067 bpf_error(cstate, "unknown ip proto '%s'", name);
6068 break;
6069
6070 case Q_LINK:
6071 /* XXX should look up h/w protocol type based on cstate->linktype */
6072 v = pcap_nametoeproto(name);
6073 if (v == PROTO_UNDEF) {
6074 v = pcap_nametollc(name);
6075 if (v == PROTO_UNDEF)
6076 bpf_error(cstate, "unknown ether proto '%s'", name);
6077 }
6078 break;
6079
6080 case Q_ISO:
6081 if (strcmp(name, "esis") == 0)
6082 v = ISO9542_ESIS;
6083 else if (strcmp(name, "isis") == 0)
6084 v = ISO10589_ISIS;
6085 else if (strcmp(name, "clnp") == 0)
6086 v = ISO8473_CLNP;
6087 else
6088 bpf_error(cstate, "unknown osi proto '%s'", name);
6089 break;
6090
6091 default:
6092 v = PROTO_UNDEF;
6093 break;
6094 }
6095 return v;
6096 }
6097
6098 #if !defined(NO_PROTOCHAIN)
6099 static struct block *
6100 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6101 {
6102 struct block *b0, *b;
6103 struct slist *s[100];
6104 int fix2, fix3, fix4, fix5;
6105 int ahcheck, again, end;
6106 int i, max;
6107 int reg2 = alloc_reg(cstate);
6108
6109 memset(s, 0, sizeof(s));
6110 fix3 = fix4 = fix5 = 0;
6111
6112 switch (proto) {
6113 case Q_IP:
6114 case Q_IPV6:
6115 break;
6116 case Q_DEFAULT:
6117 b0 = gen_protochain(cstate, v, Q_IP);
6118 b = gen_protochain(cstate, v, Q_IPV6);
6119 gen_or(b0, b);
6120 return b;
6121 default:
6122 bpf_error(cstate, "bad protocol applied for 'protochain'");
6123 /*NOTREACHED*/
6124 }
6125
6126 /*
6127 * We don't handle variable-length prefixes before the link-layer
6128 * header, or variable-length link-layer headers, here yet.
6129 * We might want to add BPF instructions to do the protochain
6130 * work, to simplify that and, on platforms that have a BPF
6131 * interpreter with the new instructions, let the filtering
6132 * be done in the kernel. (We already require a modified BPF
6133 * engine to do the protochain stuff, to support backward
6134 * branches, and backward branch support is unlikely to appear
6135 * in kernel BPF engines.)
6136 */
6137 if (cstate->off_linkpl.is_variable)
6138 bpf_error(cstate, "'protochain' not supported with variable length headers");
6139
6140 /*
6141 * To quote a comment in optimize.c:
6142 *
6143 * "These data structures are used in a Cocke and Schwartz style
6144 * value numbering scheme. Since the flowgraph is acyclic,
6145 * exit values can be propagated from a node's predecessors
6146 * provided it is uniquely defined."
6147 *
6148 * "Acyclic" means "no backward branches", which means "no
6149 * loops", so we have to turn the optimizer off.
6150 */
6151 cstate->no_optimize = 1;
6152
6153 /*
6154 * s[0] is a dummy entry to protect other BPF insn from damage
6155 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6156 * hard to find interdependency made by jump table fixup.
6157 */
6158 i = 0;
6159 s[i] = new_stmt(cstate, 0); /*dummy*/
6160 i++;
6161
6162 switch (proto) {
6163 case Q_IP:
6164 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6165
6166 /* A = ip->ip_p */
6167 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6168 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6169 i++;
6170 /* X = ip->ip_hl << 2 */
6171 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6172 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6173 i++;
6174 break;
6175
6176 case Q_IPV6:
6177 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6178
6179 /* A = ip6->ip_nxt */
6180 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6181 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6182 i++;
6183 /* X = sizeof(struct ip6_hdr) */
6184 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6185 s[i]->s.k = 40;
6186 i++;
6187 break;
6188
6189 default:
6190 bpf_error(cstate, "unsupported proto to gen_protochain");
6191 /*NOTREACHED*/
6192 }
6193
6194 /* again: if (A == v) goto end; else fall through; */
6195 again = i;
6196 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6197 s[i]->s.k = v;
6198 s[i]->s.jt = NULL; /*later*/
6199 s[i]->s.jf = NULL; /*update in next stmt*/
6200 fix5 = i;
6201 i++;
6202
6203 #ifndef IPPROTO_NONE
6204 #define IPPROTO_NONE 59
6205 #endif
6206 /* if (A == IPPROTO_NONE) goto end */
6207 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6208 s[i]->s.jt = NULL; /*later*/
6209 s[i]->s.jf = NULL; /*update in next stmt*/
6210 s[i]->s.k = IPPROTO_NONE;
6211 s[fix5]->s.jf = s[i];
6212 fix2 = i;
6213 i++;
6214
6215 if (proto == Q_IPV6) {
6216 int v6start, v6end, v6advance, j;
6217
6218 v6start = i;
6219 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6220 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6221 s[i]->s.jt = NULL; /*later*/
6222 s[i]->s.jf = NULL; /*update in next stmt*/
6223 s[i]->s.k = IPPROTO_HOPOPTS;
6224 s[fix2]->s.jf = s[i];
6225 i++;
6226 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6227 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6228 s[i]->s.jt = NULL; /*later*/
6229 s[i]->s.jf = NULL; /*update in next stmt*/
6230 s[i]->s.k = IPPROTO_DSTOPTS;
6231 i++;
6232 /* if (A == IPPROTO_ROUTING) goto v6advance */
6233 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6234 s[i]->s.jt = NULL; /*later*/
6235 s[i]->s.jf = NULL; /*update in next stmt*/
6236 s[i]->s.k = IPPROTO_ROUTING;
6237 i++;
6238 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6239 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6240 s[i]->s.jt = NULL; /*later*/
6241 s[i]->s.jf = NULL; /*later*/
6242 s[i]->s.k = IPPROTO_FRAGMENT;
6243 fix3 = i;
6244 v6end = i;
6245 i++;
6246
6247 /* v6advance: */
6248 v6advance = i;
6249
6250 /*
6251 * in short,
6252 * A = P[X + packet head];
6253 * X = X + (P[X + packet head + 1] + 1) * 8;
6254 */
6255 /* A = P[X + packet head] */
6256 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6257 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6258 i++;
6259 /* MEM[reg2] = A */
6260 s[i] = new_stmt(cstate, BPF_ST);
6261 s[i]->s.k = reg2;
6262 i++;
6263 /* A = P[X + packet head + 1]; */
6264 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6265 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6266 i++;
6267 /* A += 1 */
6268 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6269 s[i]->s.k = 1;
6270 i++;
6271 /* A *= 8 */
6272 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6273 s[i]->s.k = 8;
6274 i++;
6275 /* A += X */
6276 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6277 s[i]->s.k = 0;
6278 i++;
6279 /* X = A; */
6280 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6281 i++;
6282 /* A = MEM[reg2] */
6283 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6284 s[i]->s.k = reg2;
6285 i++;
6286
6287 /* goto again; (must use BPF_JA for backward jump) */
6288 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6289 s[i]->s.k = again - i - 1;
6290 s[i - 1]->s.jf = s[i];
6291 i++;
6292
6293 /* fixup */
6294 for (j = v6start; j <= v6end; j++)
6295 s[j]->s.jt = s[v6advance];
6296 } else {
6297 /* nop */
6298 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6299 s[i]->s.k = 0;
6300 s[fix2]->s.jf = s[i];
6301 i++;
6302 }
6303
6304 /* ahcheck: */
6305 ahcheck = i;
6306 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6307 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6308 s[i]->s.jt = NULL; /*later*/
6309 s[i]->s.jf = NULL; /*later*/
6310 s[i]->s.k = IPPROTO_AH;
6311 if (fix3)
6312 s[fix3]->s.jf = s[ahcheck];
6313 fix4 = i;
6314 i++;
6315
6316 /*
6317 * in short,
6318 * A = P[X];
6319 * X = X + (P[X + 1] + 2) * 4;
6320 */
6321 /* A = X */
6322 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6323 i++;
6324 /* A = P[X + packet head]; */
6325 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6326 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6327 i++;
6328 /* MEM[reg2] = A */
6329 s[i] = new_stmt(cstate, BPF_ST);
6330 s[i]->s.k = reg2;
6331 i++;
6332 /* A = X */
6333 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6334 i++;
6335 /* A += 1 */
6336 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6337 s[i]->s.k = 1;
6338 i++;
6339 /* X = A */
6340 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6341 i++;
6342 /* A = P[X + packet head] */
6343 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6344 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6345 i++;
6346 /* A += 2 */
6347 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6348 s[i]->s.k = 2;
6349 i++;
6350 /* A *= 4 */
6351 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6352 s[i]->s.k = 4;
6353 i++;
6354 /* X = A; */
6355 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6356 i++;
6357 /* A = MEM[reg2] */
6358 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6359 s[i]->s.k = reg2;
6360 i++;
6361
6362 /* goto again; (must use BPF_JA for backward jump) */
6363 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6364 s[i]->s.k = again - i - 1;
6365 i++;
6366
6367 /* end: nop */
6368 end = i;
6369 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6370 s[i]->s.k = 0;
6371 s[fix2]->s.jt = s[end];
6372 s[fix4]->s.jf = s[end];
6373 s[fix5]->s.jt = s[end];
6374 i++;
6375
6376 /*
6377 * make slist chain
6378 */
6379 max = i;
6380 for (i = 0; i < max - 1; i++)
6381 s[i]->next = s[i + 1];
6382 s[max - 1]->next = NULL;
6383
6384 /*
6385 * emit final check
6386 */
6387 b = new_block(cstate, JMP(BPF_JEQ));
6388 b->stmts = s[1]; /*remember, s[0] is dummy*/
6389 b->s.k = v;
6390
6391 free_reg(cstate, reg2);
6392
6393 gen_and(b0, b);
6394 return b;
6395 }
6396 #endif /* !defined(NO_PROTOCHAIN) */
6397
6398 static struct block *
6399 gen_check_802_11_data_frame(compiler_state_t *cstate)
6400 {
6401 struct slist *s;
6402 struct block *b0, *b1;
6403
6404 /*
6405 * A data frame has the 0x08 bit (b3) in the frame control field set
6406 * and the 0x04 bit (b2) clear.
6407 */
6408 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6409 b0 = new_block(cstate, JMP(BPF_JSET));
6410 b0->s.k = 0x08;
6411 b0->stmts = s;
6412
6413 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6414 b1 = new_block(cstate, JMP(BPF_JSET));
6415 b1->s.k = 0x04;
6416 b1->stmts = s;
6417 gen_not(b1);
6418
6419 gen_and(b1, b0);
6420
6421 return b0;
6422 }
6423
6424 /*
6425 * Generate code that checks whether the packet is a packet for protocol
6426 * <proto> and whether the type field in that protocol's header has
6427 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6428 * IP packet and checks the protocol number in the IP header against <v>.
6429 *
6430 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6431 * against Q_IP and Q_IPV6.
6432 */
6433 static struct block *
6434 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6435 {
6436 struct block *b0, *b1;
6437 struct block *b2;
6438
6439 if (dir != Q_DEFAULT)
6440 bpf_error(cstate, "direction applied to 'proto'");
6441
6442 switch (proto) {
6443 case Q_DEFAULT:
6444 b0 = gen_proto(cstate, v, Q_IP, dir);
6445 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6446 gen_or(b0, b1);
6447 return b1;
6448
6449 case Q_LINK:
6450 return gen_linktype(cstate, v);
6451
6452 case Q_IP:
6453 /*
6454 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6455 * not LLC encapsulation with LLCSAP_IP.
6456 *
6457 * For IEEE 802 networks - which includes 802.5 token ring
6458 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6459 * says that SNAP encapsulation is used, not LLC encapsulation
6460 * with LLCSAP_IP.
6461 *
6462 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6463 * RFC 2225 say that SNAP encapsulation is used, not LLC
6464 * encapsulation with LLCSAP_IP.
6465 *
6466 * So we always check for ETHERTYPE_IP.
6467 */
6468 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6469 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6470 gen_and(b0, b1);
6471 return b1;
6472
6473 case Q_ARP:
6474 bpf_error(cstate, "arp does not encapsulate another protocol");
6475 /*NOTREACHED*/
6476
6477 case Q_RARP:
6478 bpf_error(cstate, "rarp does not encapsulate another protocol");
6479 /*NOTREACHED*/
6480
6481 case Q_SCTP:
6482 bpf_error(cstate, "'sctp proto' is bogus");
6483 /*NOTREACHED*/
6484
6485 case Q_TCP:
6486 bpf_error(cstate, "'tcp proto' is bogus");
6487 /*NOTREACHED*/
6488
6489 case Q_UDP:
6490 bpf_error(cstate, "'udp proto' is bogus");
6491 /*NOTREACHED*/
6492
6493 case Q_ICMP:
6494 bpf_error(cstate, "'icmp proto' is bogus");
6495 /*NOTREACHED*/
6496
6497 case Q_IGMP:
6498 bpf_error(cstate, "'igmp proto' is bogus");
6499 /*NOTREACHED*/
6500
6501 case Q_IGRP:
6502 bpf_error(cstate, "'igrp proto' is bogus");
6503 /*NOTREACHED*/
6504
6505 case Q_ATALK:
6506 bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6507 /*NOTREACHED*/
6508
6509 case Q_DECNET:
6510 bpf_error(cstate, "DECNET encapsulation is not specifiable");
6511 /*NOTREACHED*/
6512
6513 case Q_LAT:
6514 bpf_error(cstate, "LAT does not encapsulate another protocol");
6515 /*NOTREACHED*/
6516
6517 case Q_SCA:
6518 bpf_error(cstate, "SCA does not encapsulate another protocol");
6519 /*NOTREACHED*/
6520
6521 case Q_MOPRC:
6522 bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6523 /*NOTREACHED*/
6524
6525 case Q_MOPDL:
6526 bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6527 /*NOTREACHED*/
6528
6529 case Q_IPV6:
6530 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6531 /*
6532 * Also check for a fragment header before the final
6533 * header.
6534 */
6535 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6536 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6537 gen_and(b2, b1);
6538 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6539 gen_or(b2, b1);
6540 gen_and(b0, b1);
6541 return b1;
6542
6543 case Q_ICMPV6:
6544 bpf_error(cstate, "'icmp6 proto' is bogus");
6545 /*NOTREACHED*/
6546
6547 case Q_AH:
6548 bpf_error(cstate, "'ah proto' is bogus");
6549 /*NOTREACHED*/
6550
6551 case Q_ESP:
6552 bpf_error(cstate, "'esp proto' is bogus");
6553 /*NOTREACHED*/
6554
6555 case Q_PIM:
6556 bpf_error(cstate, "'pim proto' is bogus");
6557 /*NOTREACHED*/
6558
6559 case Q_VRRP:
6560 bpf_error(cstate, "'vrrp proto' is bogus");
6561 /*NOTREACHED*/
6562
6563 case Q_AARP:
6564 bpf_error(cstate, "'aarp proto' is bogus");
6565 /*NOTREACHED*/
6566
6567 case Q_ISO:
6568 switch (cstate->linktype) {
6569
6570 case DLT_FRELAY:
6571 /*
6572 * Frame Relay packets typically have an OSI
6573 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6574 * generates code to check for all the OSI
6575 * NLPIDs, so calling it and then adding a check
6576 * for the particular NLPID for which we're
6577 * looking is bogus, as we can just check for
6578 * the NLPID.
6579 *
6580 * What we check for is the NLPID and a frame
6581 * control field value of UI, i.e. 0x03 followed
6582 * by the NLPID.
6583 *
6584 * XXX - assumes a 2-byte Frame Relay header with
6585 * DLCI and flags. What if the address is longer?
6586 *
6587 * XXX - what about SNAP-encapsulated frames?
6588 */
6589 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6590 /*NOTREACHED*/
6591
6592 case DLT_C_HDLC:
6593 case DLT_HDLC:
6594 /*
6595 * Cisco uses an Ethertype lookalike - for OSI,
6596 * it's 0xfefe.
6597 */
6598 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6599 /* OSI in C-HDLC is stuffed with a fudge byte */
6600 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6601 gen_and(b0, b1);
6602 return b1;
6603
6604 default:
6605 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6606 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6607 gen_and(b0, b1);
6608 return b1;
6609 }
6610
6611 case Q_ESIS:
6612 bpf_error(cstate, "'esis proto' is bogus");
6613 /*NOTREACHED*/
6614
6615 case Q_ISIS:
6616 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6617 /*
6618 * 4 is the offset of the PDU type relative to the IS-IS
6619 * header.
6620 */
6621 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6622 gen_and(b0, b1);
6623 return b1;
6624
6625 case Q_CLNP:
6626 bpf_error(cstate, "'clnp proto' is not supported");
6627 /*NOTREACHED*/
6628
6629 case Q_STP:
6630 bpf_error(cstate, "'stp proto' is bogus");
6631 /*NOTREACHED*/
6632
6633 case Q_IPX:
6634 bpf_error(cstate, "'ipx proto' is bogus");
6635 /*NOTREACHED*/
6636
6637 case Q_NETBEUI:
6638 bpf_error(cstate, "'netbeui proto' is bogus");
6639 /*NOTREACHED*/
6640
6641 case Q_ISIS_L1:
6642 bpf_error(cstate, "'l1 proto' is bogus");
6643 /*NOTREACHED*/
6644
6645 case Q_ISIS_L2:
6646 bpf_error(cstate, "'l2 proto' is bogus");
6647 /*NOTREACHED*/
6648
6649 case Q_ISIS_IIH:
6650 bpf_error(cstate, "'iih proto' is bogus");
6651 /*NOTREACHED*/
6652
6653 case Q_ISIS_SNP:
6654 bpf_error(cstate, "'snp proto' is bogus");
6655 /*NOTREACHED*/
6656
6657 case Q_ISIS_CSNP:
6658 bpf_error(cstate, "'csnp proto' is bogus");
6659 /*NOTREACHED*/
6660
6661 case Q_ISIS_PSNP:
6662 bpf_error(cstate, "'psnp proto' is bogus");
6663 /*NOTREACHED*/
6664
6665 case Q_ISIS_LSP:
6666 bpf_error(cstate, "'lsp proto' is bogus");
6667 /*NOTREACHED*/
6668
6669 case Q_RADIO:
6670 bpf_error(cstate, "'radio proto' is bogus");
6671 /*NOTREACHED*/
6672
6673 case Q_CARP:
6674 bpf_error(cstate, "'carp proto' is bogus");
6675 /*NOTREACHED*/
6676
6677 default:
6678 abort();
6679 /*NOTREACHED*/
6680 }
6681 /*NOTREACHED*/
6682 }
6683
6684 /*
6685 * Convert a non-numeric name to a port number.
6686 */
6687 static int
6688 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6689 {
6690 struct addrinfo hints, *res, *ai;
6691 int error;
6692 struct sockaddr_in *in4;
6693 #ifdef INET6
6694 struct sockaddr_in6 *in6;
6695 #endif
6696 int port = -1;
6697
6698 /*
6699 * We check for both TCP and UDP in case there are
6700 * ambiguous entries.
6701 */
6702 memset(&hints, 0, sizeof(hints));
6703 hints.ai_family = PF_UNSPEC;
6704 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6705 hints.ai_protocol = ipproto;
6706 error = getaddrinfo(NULL, name, &hints, &res);
6707 if (error != 0) {
6708 switch (error) {
6709
6710 case EAI_NONAME:
6711 case EAI_SERVICE:
6712 /*
6713 * No such port. Just return -1.
6714 */
6715 break;
6716
6717 #ifdef EAI_SYSTEM
6718 case EAI_SYSTEM:
6719 /*
6720 * We don't use strerror() because it's not
6721 * guaranteed to be thread-safe on all platforms
6722 * (probably because it might use a non-thread-local
6723 * buffer into which to format an error message
6724 * if the error code isn't one for which it has
6725 * a canned string; three cheers for C string
6726 * handling).
6727 */
6728 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6729 name, errno);
6730 port = -2; /* a real error */
6731 break;
6732 #endif
6733
6734 default:
6735 /*
6736 * This is a real error, not just "there's
6737 * no such service name".
6738 *
6739 * We don't use gai_strerror() because it's not
6740 * guaranteed to be thread-safe on all platforms
6741 * (probably because it might use a non-thread-local
6742 * buffer into which to format an error message
6743 * if the error code isn't one for which it has
6744 * a canned string; three cheers for C string
6745 * handling).
6746 */
6747 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6748 name, error);
6749 port = -2; /* a real error */
6750 break;
6751 }
6752 } else {
6753 /*
6754 * OK, we found it. Did it find anything?
6755 */
6756 for (ai = res; ai != NULL; ai = ai->ai_next) {
6757 /*
6758 * Does it have an address?
6759 */
6760 if (ai->ai_addr != NULL) {
6761 /*
6762 * Yes. Get a port number; we're done.
6763 */
6764 if (ai->ai_addr->sa_family == AF_INET) {
6765 in4 = (struct sockaddr_in *)ai->ai_addr;
6766 port = ntohs(in4->sin_port);
6767 break;
6768 }
6769 #ifdef INET6
6770 if (ai->ai_addr->sa_family == AF_INET6) {
6771 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6772 port = ntohs(in6->sin6_port);
6773 break;
6774 }
6775 #endif
6776 }
6777 }
6778 freeaddrinfo(res);
6779 }
6780 return port;
6781 }
6782
6783 /*
6784 * Convert a string to a port number.
6785 */
6786 static bpf_u_int32
6787 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6788 int *proto)
6789 {
6790 stoulen_ret ret;
6791 char *cpy;
6792 bpf_u_int32 val;
6793 int tcp_port = -1;
6794 int udp_port = -1;
6795
6796 /*
6797 * See if it's a number.
6798 */
6799 ret = stoulen(string, string_size, &val, cstate);
6800 switch (ret) {
6801
6802 case STOULEN_OK:
6803 /* Unknown port type - it's just a number. */
6804 *proto = PROTO_UNDEF;
6805 break;
6806
6807 case STOULEN_NOT_OCTAL_NUMBER:
6808 case STOULEN_NOT_HEX_NUMBER:
6809 case STOULEN_NOT_DECIMAL_NUMBER:
6810 /*
6811 * Not a valid number; try looking it up as a port.
6812 */
6813 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6814 memcpy(cpy, string, string_size);
6815 cpy[string_size] = '\0';
6816 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6817 if (tcp_port == -2) {
6818 /*
6819 * We got a hard error; the error string has
6820 * already been set.
6821 */
6822 free(cpy);
6823 longjmp(cstate->top_ctx, 1);
6824 /*NOTREACHED*/
6825 }
6826 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6827 if (udp_port == -2) {
6828 /*
6829 * We got a hard error; the error string has
6830 * already been set.
6831 */
6832 free(cpy);
6833 longjmp(cstate->top_ctx, 1);
6834 /*NOTREACHED*/
6835 }
6836
6837 /*
6838 * We need to check /etc/services for ambiguous entries.
6839 * If we find an ambiguous entry, and it has the
6840 * same port number, change the proto to PROTO_UNDEF
6841 * so both TCP and UDP will be checked.
6842 */
6843 if (tcp_port >= 0) {
6844 val = (bpf_u_int32)tcp_port;
6845 *proto = IPPROTO_TCP;
6846 if (udp_port >= 0) {
6847 if (udp_port == tcp_port)
6848 *proto = PROTO_UNDEF;
6849 #ifdef notdef
6850 else
6851 /* Can't handle ambiguous names that refer
6852 to different port numbers. */
6853 warning("ambiguous port %s in /etc/services",
6854 cpy);
6855 #endif
6856 }
6857 free(cpy);
6858 break;
6859 }
6860 if (udp_port >= 0) {
6861 val = (bpf_u_int32)udp_port;
6862 *proto = IPPROTO_UDP;
6863 free(cpy);
6864 break;
6865 }
6866 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6867 free(cpy);
6868 longjmp(cstate->top_ctx, 1);
6869 /*NOTREACHED*/
6870
6871 case STOULEN_ERROR:
6872 /* Error already set. */
6873 longjmp(cstate->top_ctx, 1);
6874 /*NOTREACHED*/
6875
6876 default:
6877 /* Should not happen */
6878 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6879 longjmp(cstate->top_ctx, 1);
6880 /*NOTREACHED*/
6881 }
6882 return (val);
6883 }
6884
6885 /*
6886 * Convert a string in the form PPP-PPP, which correspond to ports, to
6887 * a starting and ending port in a port range.
6888 */
6889 static void
6890 stringtoportrange(compiler_state_t *cstate, const char *string,
6891 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6892 {
6893 char *hyphen_off;
6894 const char *first, *second;
6895 size_t first_size, second_size;
6896 int save_proto;
6897
6898 if ((hyphen_off = strchr(string, '-')) == NULL)
6899 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6900
6901 /*
6902 * Make sure there are no other hyphens.
6903 *
6904 * XXX - we support named ports, but there are some port names
6905 * in /etc/services that include hyphens, so this would rule
6906 * that out.
6907 */
6908 if (strchr(hyphen_off + 1, '-') != NULL)
6909 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6910 string);
6911
6912 /*
6913 * Get the length of the first port.
6914 */
6915 first = string;
6916 first_size = hyphen_off - string;
6917 if (first_size == 0) {
6918 /* Range of "-port", which we don't support. */
6919 bpf_error(cstate, "port range '%s' has no starting port", string);
6920 }
6921
6922 /*
6923 * Try to convert it to a port.
6924 */
6925 *port1 = stringtoport(cstate, first, first_size, proto);
6926 save_proto = *proto;
6927
6928 /*
6929 * Get the length of the second port.
6930 */
6931 second = hyphen_off + 1;
6932 second_size = strlen(second);
6933 if (second_size == 0) {
6934 /* Range of "port-", which we don't support. */
6935 bpf_error(cstate, "port range '%s' has no ending port", string);
6936 }
6937
6938 /*
6939 * Try to convert it to a port.
6940 */
6941 *port2 = stringtoport(cstate, second, second_size, proto);
6942 if (*proto != save_proto)
6943 *proto = PROTO_UNDEF;
6944 }
6945
6946 struct block *
6947 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6948 {
6949 int proto = q.proto;
6950 int dir = q.dir;
6951 int tproto;
6952 u_char *eaddr;
6953 bpf_u_int32 mask, addr;
6954 struct addrinfo *res, *res0;
6955 struct sockaddr_in *sin4;
6956 #ifdef INET6
6957 int tproto6;
6958 struct sockaddr_in6 *sin6;
6959 struct in6_addr mask128;
6960 #endif /*INET6*/
6961 struct block *b, *tmp;
6962 int port, real_proto;
6963 bpf_u_int32 port1, port2;
6964
6965 /*
6966 * Catch errors reported by us and routines below us, and return NULL
6967 * on an error.
6968 */
6969 if (setjmp(cstate->top_ctx))
6970 return (NULL);
6971
6972 switch (q.addr) {
6973
6974 case Q_NET:
6975 addr = pcap_nametonetaddr(name);
6976 if (addr == 0)
6977 bpf_error(cstate, "unknown network '%s'", name);
6978 /* Left justify network addr and calculate its network mask */
6979 mask = 0xffffffff;
6980 while (addr && (addr & 0xff000000) == 0) {
6981 addr <<= 8;
6982 mask <<= 8;
6983 }
6984 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6985
6986 case Q_DEFAULT:
6987 case Q_HOST:
6988 if (proto == Q_LINK) {
6989 switch (cstate->linktype) {
6990
6991 case DLT_EN10MB:
6992 case DLT_NETANALYZER:
6993 case DLT_NETANALYZER_TRANSPARENT:
6994 eaddr = pcap_ether_hostton(name);
6995 if (eaddr == NULL)
6996 bpf_error(cstate,
6997 "unknown ether host '%s'", name);
6998 tmp = gen_prevlinkhdr_check(cstate);
6999 b = gen_ehostop(cstate, eaddr, dir);
7000 if (tmp != NULL)
7001 gen_and(tmp, b);
7002 free(eaddr);
7003 return b;
7004
7005 case DLT_FDDI:
7006 eaddr = pcap_ether_hostton(name);
7007 if (eaddr == NULL)
7008 bpf_error(cstate,
7009 "unknown FDDI host '%s'", name);
7010 b = gen_fhostop(cstate, eaddr, dir);
7011 free(eaddr);
7012 return b;
7013
7014 case DLT_IEEE802:
7015 eaddr = pcap_ether_hostton(name);
7016 if (eaddr == NULL)
7017 bpf_error(cstate,
7018 "unknown token ring host '%s'", name);
7019 b = gen_thostop(cstate, eaddr, dir);
7020 free(eaddr);
7021 return b;
7022
7023 case DLT_IEEE802_11:
7024 case DLT_PRISM_HEADER:
7025 case DLT_IEEE802_11_RADIO_AVS:
7026 case DLT_IEEE802_11_RADIO:
7027 case DLT_PPI:
7028 eaddr = pcap_ether_hostton(name);
7029 if (eaddr == NULL)
7030 bpf_error(cstate,
7031 "unknown 802.11 host '%s'", name);
7032 b = gen_wlanhostop(cstate, eaddr, dir);
7033 free(eaddr);
7034 return b;
7035
7036 case DLT_IP_OVER_FC:
7037 eaddr = pcap_ether_hostton(name);
7038 if (eaddr == NULL)
7039 bpf_error(cstate,
7040 "unknown Fibre Channel host '%s'", name);
7041 b = gen_ipfchostop(cstate, eaddr, dir);
7042 free(eaddr);
7043 return b;
7044 }
7045
7046 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7047 } else if (proto == Q_DECNET) {
7048 /*
7049 * A long time ago on Ultrix libpcap supported
7050 * translation of DECnet host names into DECnet
7051 * addresses, but this feature is history now.
7052 */
7053 bpf_error(cstate, "invalid DECnet address '%s'", name);
7054 } else {
7055 #ifdef INET6
7056 memset(&mask128, 0xff, sizeof(mask128));
7057 #endif
7058 res0 = res = pcap_nametoaddrinfo(name);
7059 if (res == NULL)
7060 bpf_error(cstate, "unknown host '%s'", name);
7061 cstate->ai = res;
7062 b = tmp = NULL;
7063 tproto = proto;
7064 #ifdef INET6
7065 tproto6 = proto;
7066 #endif
7067 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7068 tproto == Q_DEFAULT) {
7069 tproto = Q_IP;
7070 #ifdef INET6
7071 tproto6 = Q_IPV6;
7072 #endif
7073 }
7074 for (res = res0; res; res = res->ai_next) {
7075 switch (res->ai_family) {
7076 case AF_INET:
7077 #ifdef INET6
7078 if (tproto == Q_IPV6)
7079 continue;
7080 #endif
7081
7082 sin4 = (struct sockaddr_in *)
7083 res->ai_addr;
7084 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7085 0xffffffff, tproto, dir, q.addr);
7086 break;
7087 #ifdef INET6
7088 case AF_INET6:
7089 if (tproto6 == Q_IP)
7090 continue;
7091
7092 sin6 = (struct sockaddr_in6 *)
7093 res->ai_addr;
7094 tmp = gen_host6(cstate, &sin6->sin6_addr,
7095 &mask128, tproto6, dir, q.addr);
7096 break;
7097 #endif
7098 default:
7099 continue;
7100 }
7101 if (b)
7102 gen_or(b, tmp);
7103 b = tmp;
7104 }
7105 cstate->ai = NULL;
7106 freeaddrinfo(res0);
7107 if (b == NULL) {
7108 bpf_error(cstate, "unknown host '%s'%s", name,
7109 (proto == Q_DEFAULT)
7110 ? ""
7111 : " for specified address family");
7112 }
7113 return b;
7114 }
7115
7116 case Q_PORT:
7117 if (proto != Q_DEFAULT &&
7118 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7119 bpf_error(cstate, "illegal qualifier of 'port'");
7120 if (pcap_nametoport(name, &port, &real_proto) == 0)
7121 bpf_error(cstate, "unknown port '%s'", name);
7122 if (proto == Q_UDP) {
7123 if (real_proto == IPPROTO_TCP)
7124 bpf_error(cstate, "port '%s' is tcp", name);
7125 else if (real_proto == IPPROTO_SCTP)
7126 bpf_error(cstate, "port '%s' is sctp", name);
7127 else
7128 /* override PROTO_UNDEF */
7129 real_proto = IPPROTO_UDP;
7130 }
7131 if (proto == Q_TCP) {
7132 if (real_proto == IPPROTO_UDP)
7133 bpf_error(cstate, "port '%s' is udp", name);
7134
7135 else if (real_proto == IPPROTO_SCTP)
7136 bpf_error(cstate, "port '%s' is sctp", name);
7137 else
7138 /* override PROTO_UNDEF */
7139 real_proto = IPPROTO_TCP;
7140 }
7141 if (proto == Q_SCTP) {
7142 if (real_proto == IPPROTO_UDP)
7143 bpf_error(cstate, "port '%s' is udp", name);
7144
7145 else if (real_proto == IPPROTO_TCP)
7146 bpf_error(cstate, "port '%s' is tcp", name);
7147 else
7148 /* override PROTO_UNDEF */
7149 real_proto = IPPROTO_SCTP;
7150 }
7151 if (port < 0)
7152 bpf_error(cstate, "illegal port number %d < 0", port);
7153 if (port > 65535)
7154 bpf_error(cstate, "illegal port number %d > 65535", port);
7155 b = gen_port(cstate, port, real_proto, dir);
7156 gen_or(gen_port6(cstate, port, real_proto, dir), b);
7157 return b;
7158
7159 case Q_PORTRANGE:
7160 if (proto != Q_DEFAULT &&
7161 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7162 bpf_error(cstate, "illegal qualifier of 'portrange'");
7163 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7164 if (proto == Q_UDP) {
7165 if (real_proto == IPPROTO_TCP)
7166 bpf_error(cstate, "port in range '%s' is tcp", name);
7167 else if (real_proto == IPPROTO_SCTP)
7168 bpf_error(cstate, "port in range '%s' is sctp", name);
7169 else
7170 /* override PROTO_UNDEF */
7171 real_proto = IPPROTO_UDP;
7172 }
7173 if (proto == Q_TCP) {
7174 if (real_proto == IPPROTO_UDP)
7175 bpf_error(cstate, "port in range '%s' is udp", name);
7176 else if (real_proto == IPPROTO_SCTP)
7177 bpf_error(cstate, "port in range '%s' is sctp", name);
7178 else
7179 /* override PROTO_UNDEF */
7180 real_proto = IPPROTO_TCP;
7181 }
7182 if (proto == Q_SCTP) {
7183 if (real_proto == IPPROTO_UDP)
7184 bpf_error(cstate, "port in range '%s' is udp", name);
7185 else if (real_proto == IPPROTO_TCP)
7186 bpf_error(cstate, "port in range '%s' is tcp", name);
7187 else
7188 /* override PROTO_UNDEF */
7189 real_proto = IPPROTO_SCTP;
7190 }
7191 if (port1 > 65535)
7192 bpf_error(cstate, "illegal port number %d > 65535", port1);
7193 if (port2 > 65535)
7194 bpf_error(cstate, "illegal port number %d > 65535", port2);
7195
7196 b = gen_portrange(cstate, port1, port2, real_proto, dir);
7197 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7198 return b;
7199
7200 case Q_GATEWAY:
7201 #ifndef INET6
7202 eaddr = pcap_ether_hostton(name);
7203 if (eaddr == NULL)
7204 bpf_error(cstate, "unknown ether host: %s", name);
7205
7206 res = pcap_nametoaddrinfo(name);
7207 cstate->ai = res;
7208 if (res == NULL)
7209 bpf_error(cstate, "unknown host '%s'", name);
7210 b = gen_gateway(cstate, eaddr, res, proto, dir);
7211 cstate->ai = NULL;
7212 freeaddrinfo(res);
7213 if (b == NULL)
7214 bpf_error(cstate, "unknown host '%s'", name);
7215 return b;
7216 #else
7217 bpf_error(cstate, "'gateway' not supported in this configuration");
7218 #endif /*INET6*/
7219
7220 case Q_PROTO:
7221 real_proto = lookup_proto(cstate, name, proto);
7222 if (real_proto >= 0)
7223 return gen_proto(cstate, real_proto, proto, dir);
7224 else
7225 bpf_error(cstate, "unknown protocol: %s", name);
7226
7227 #if !defined(NO_PROTOCHAIN)
7228 case Q_PROTOCHAIN:
7229 real_proto = lookup_proto(cstate, name, proto);
7230 if (real_proto >= 0)
7231 return gen_protochain(cstate, real_proto, proto);
7232 else
7233 bpf_error(cstate, "unknown protocol: %s", name);
7234 #endif /* !defined(NO_PROTOCHAIN) */
7235
7236 case Q_UNDEF:
7237 syntax(cstate);
7238 /*NOTREACHED*/
7239 }
7240 abort();
7241 /*NOTREACHED*/
7242 }
7243
7244 struct block *
7245 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7246 bpf_u_int32 masklen, struct qual q)
7247 {
7248 register int nlen, mlen;
7249 bpf_u_int32 n, m;
7250
7251 /*
7252 * Catch errors reported by us and routines below us, and return NULL
7253 * on an error.
7254 */
7255 if (setjmp(cstate->top_ctx))
7256 return (NULL);
7257
7258 nlen = __pcap_atoin(s1, &n);
7259 if (nlen < 0)
7260 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7261 /* Promote short ipaddr */
7262 n <<= 32 - nlen;
7263
7264 if (s2 != NULL) {
7265 mlen = __pcap_atoin(s2, &m);
7266 if (mlen < 0)
7267 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7268 /* Promote short ipaddr */
7269 m <<= 32 - mlen;
7270 if ((n & ~m) != 0)
7271 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7272 s1, s2);
7273 } else {
7274 /* Convert mask len to mask */
7275 if (masklen > 32)
7276 bpf_error(cstate, "mask length must be <= 32");
7277 if (masklen == 0) {
7278 /*
7279 * X << 32 is not guaranteed by C to be 0; it's
7280 * undefined.
7281 */
7282 m = 0;
7283 } else
7284 m = 0xffffffff << (32 - masklen);
7285 if ((n & ~m) != 0)
7286 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7287 s1, masklen);
7288 }
7289
7290 switch (q.addr) {
7291
7292 case Q_NET:
7293 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7294
7295 default:
7296 bpf_error(cstate, "Mask syntax for networks only");
7297 /*NOTREACHED*/
7298 }
7299 /*NOTREACHED*/
7300 }
7301
7302 struct block *
7303 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7304 {
7305 bpf_u_int32 mask;
7306 int proto;
7307 int dir;
7308 register int vlen;
7309
7310 /*
7311 * Catch errors reported by us and routines below us, and return NULL
7312 * on an error.
7313 */
7314 if (setjmp(cstate->top_ctx))
7315 return (NULL);
7316
7317 proto = q.proto;
7318 dir = q.dir;
7319 if (s == NULL) {
7320 /*
7321 * v contains a 32-bit unsigned parsed from a string of the
7322 * form {N}, which could be decimal, hexadecimal or octal.
7323 * Although it would be possible to use the value as a raw
7324 * 16-bit DECnet address when the value fits into 16 bits, this
7325 * would be a questionable feature: DECnet address wire
7326 * encoding is little-endian, so this would not work as
7327 * intuitively as the same works for [big-endian] IPv4
7328 * addresses (0x01020304 means 1.2.3.4).
7329 */
7330 if (proto == Q_DECNET)
7331 bpf_error(cstate, "invalid DECnet address '%u'", v);
7332 vlen = 32;
7333 } else if (proto == Q_DECNET) {
7334 /*
7335 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7336 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7337 * for a valid DECnet address.
7338 */
7339 vlen = __pcap_atodn(s, &v);
7340 if (vlen == 0)
7341 bpf_error(cstate, "invalid DECnet address '%s'", s);
7342 } else {
7343 /*
7344 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7345 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7346 * IPv4 address.
7347 */
7348 vlen = __pcap_atoin(s, &v);
7349 if (vlen < 0)
7350 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7351 }
7352
7353 switch (q.addr) {
7354
7355 case Q_DEFAULT:
7356 case Q_HOST:
7357 case Q_NET:
7358 if (proto == Q_DECNET)
7359 return gen_host(cstate, v, 0, proto, dir, q.addr);
7360 else if (proto == Q_LINK) {
7361 bpf_error(cstate, "illegal link layer address");
7362 } else {
7363 mask = 0xffffffff;
7364 if (s == NULL && q.addr == Q_NET) {
7365 /* Promote short net number */
7366 while (v && (v & 0xff000000) == 0) {
7367 v <<= 8;
7368 mask <<= 8;
7369 }
7370 } else {
7371 /* Promote short ipaddr */
7372 v <<= 32 - vlen;
7373 mask <<= 32 - vlen ;
7374 }
7375 return gen_host(cstate, v, mask, proto, dir, q.addr);
7376 }
7377
7378 case Q_PORT:
7379 if (proto == Q_UDP)
7380 proto = IPPROTO_UDP;
7381 else if (proto == Q_TCP)
7382 proto = IPPROTO_TCP;
7383 else if (proto == Q_SCTP)
7384 proto = IPPROTO_SCTP;
7385 else if (proto == Q_DEFAULT)
7386 proto = PROTO_UNDEF;
7387 else
7388 bpf_error(cstate, "illegal qualifier of 'port'");
7389
7390 if (v > 65535)
7391 bpf_error(cstate, "illegal port number %u > 65535", v);
7392
7393 {
7394 struct block *b;
7395 b = gen_port(cstate, v, proto, dir);
7396 gen_or(gen_port6(cstate, v, proto, dir), b);
7397 return b;
7398 }
7399
7400 case Q_PORTRANGE:
7401 if (proto == Q_UDP)
7402 proto = IPPROTO_UDP;
7403 else if (proto == Q_TCP)
7404 proto = IPPROTO_TCP;
7405 else if (proto == Q_SCTP)
7406 proto = IPPROTO_SCTP;
7407 else if (proto == Q_DEFAULT)
7408 proto = PROTO_UNDEF;
7409 else
7410 bpf_error(cstate, "illegal qualifier of 'portrange'");
7411
7412 if (v > 65535)
7413 bpf_error(cstate, "illegal port number %u > 65535", v);
7414
7415 {
7416 struct block *b;
7417 b = gen_portrange(cstate, v, v, proto, dir);
7418 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7419 return b;
7420 }
7421
7422 case Q_GATEWAY:
7423 bpf_error(cstate, "'gateway' requires a name");
7424 /*NOTREACHED*/
7425
7426 case Q_PROTO:
7427 return gen_proto(cstate, v, proto, dir);
7428
7429 #if !defined(NO_PROTOCHAIN)
7430 case Q_PROTOCHAIN:
7431 return gen_protochain(cstate, v, proto);
7432 #endif
7433
7434 case Q_UNDEF:
7435 syntax(cstate);
7436 /*NOTREACHED*/
7437
7438 default:
7439 abort();
7440 /*NOTREACHED*/
7441 }
7442 /*NOTREACHED*/
7443 }
7444
7445 #ifdef INET6
7446 struct block *
7447 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7448 struct qual q)
7449 {
7450 struct addrinfo *res;
7451 struct in6_addr *addr;
7452 struct in6_addr mask;
7453 struct block *b;
7454 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7455
7456 /*
7457 * Catch errors reported by us and routines below us, and return NULL
7458 * on an error.
7459 */
7460 if (setjmp(cstate->top_ctx))
7461 return (NULL);
7462
7463 res = pcap_nametoaddrinfo(s);
7464 if (!res)
7465 bpf_error(cstate, "invalid ip6 address %s", s);
7466 cstate->ai = res;
7467 if (res->ai_next)
7468 bpf_error(cstate, "%s resolved to multiple address", s);
7469 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7470
7471 if (masklen > sizeof(mask.s6_addr) * 8)
7472 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7473 memset(&mask, 0, sizeof(mask));
7474 memset(&mask.s6_addr, 0xff, masklen / 8);
7475 if (masklen % 8) {
7476 mask.s6_addr[masklen / 8] =
7477 (0xff << (8 - masklen % 8)) & 0xff;
7478 }
7479
7480 memcpy(a, addr, sizeof(a));
7481 memcpy(m, &mask, sizeof(m));
7482 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7483 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7484 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7485 }
7486
7487 switch (q.addr) {
7488
7489 case Q_DEFAULT:
7490 case Q_HOST:
7491 if (masklen != 128)
7492 bpf_error(cstate, "Mask syntax for networks only");
7493 /* FALLTHROUGH */
7494
7495 case Q_NET:
7496 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7497 cstate->ai = NULL;
7498 freeaddrinfo(res);
7499 return b;
7500
7501 default:
7502 bpf_error(cstate, "invalid qualifier against IPv6 address");
7503 /*NOTREACHED*/
7504 }
7505 }
7506 #endif /*INET6*/
7507
7508 struct block *
7509 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7510 {
7511 struct block *b, *tmp;
7512
7513 /*
7514 * Catch errors reported by us and routines below us, and return NULL
7515 * on an error.
7516 */
7517 if (setjmp(cstate->top_ctx))
7518 return (NULL);
7519
7520 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7521 cstate->e = pcap_ether_aton(s);
7522 if (cstate->e == NULL)
7523 bpf_error(cstate, "malloc");
7524 switch (cstate->linktype) {
7525 case DLT_EN10MB:
7526 case DLT_NETANALYZER:
7527 case DLT_NETANALYZER_TRANSPARENT:
7528 tmp = gen_prevlinkhdr_check(cstate);
7529 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7530 if (tmp != NULL)
7531 gen_and(tmp, b);
7532 break;
7533 case DLT_FDDI:
7534 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7535 break;
7536 case DLT_IEEE802:
7537 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7538 break;
7539 case DLT_IEEE802_11:
7540 case DLT_PRISM_HEADER:
7541 case DLT_IEEE802_11_RADIO_AVS:
7542 case DLT_IEEE802_11_RADIO:
7543 case DLT_PPI:
7544 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7545 break;
7546 case DLT_IP_OVER_FC:
7547 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7548 break;
7549 default:
7550 free(cstate->e);
7551 cstate->e = NULL;
7552 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7553 /*NOTREACHED*/
7554 }
7555 free(cstate->e);
7556 cstate->e = NULL;
7557 return (b);
7558 }
7559 bpf_error(cstate, "ethernet address used in non-ether expression");
7560 /*NOTREACHED*/
7561 }
7562
7563 void
7564 sappend(struct slist *s0, struct slist *s1)
7565 {
7566 /*
7567 * This is definitely not the best way to do this, but the
7568 * lists will rarely get long.
7569 */
7570 while (s0->next)
7571 s0 = s0->next;
7572 s0->next = s1;
7573 }
7574
7575 static struct slist *
7576 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7577 {
7578 struct slist *s;
7579
7580 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7581 s->s.k = a->regno;
7582 return s;
7583 }
7584
7585 static struct slist *
7586 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7587 {
7588 struct slist *s;
7589
7590 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7591 s->s.k = a->regno;
7592 return s;
7593 }
7594
7595 /*
7596 * Modify "index" to use the value stored into its register as an
7597 * offset relative to the beginning of the header for the protocol
7598 * "proto", and allocate a register and put an item "size" bytes long
7599 * (1, 2, or 4) at that offset into that register, making it the register
7600 * for "index".
7601 */
7602 static struct arth *
7603 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7604 bpf_u_int32 size)
7605 {
7606 int size_code;
7607 struct slist *s, *tmp;
7608 struct block *b;
7609 int regno = alloc_reg(cstate);
7610
7611 free_reg(cstate, inst->regno);
7612 switch (size) {
7613
7614 default:
7615 bpf_error(cstate, "data size must be 1, 2, or 4");
7616 /*NOTREACHED*/
7617
7618 case 1:
7619 size_code = BPF_B;
7620 break;
7621
7622 case 2:
7623 size_code = BPF_H;
7624 break;
7625
7626 case 4:
7627 size_code = BPF_W;
7628 break;
7629 }
7630 switch (proto) {
7631 default:
7632 bpf_error(cstate, "unsupported index operation");
7633
7634 case Q_RADIO:
7635 /*
7636 * The offset is relative to the beginning of the packet
7637 * data, if we have a radio header. (If we don't, this
7638 * is an error.)
7639 */
7640 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7641 cstate->linktype != DLT_IEEE802_11_RADIO &&
7642 cstate->linktype != DLT_PRISM_HEADER)
7643 bpf_error(cstate, "radio information not present in capture");
7644
7645 /*
7646 * Load into the X register the offset computed into the
7647 * register specified by "index".
7648 */
7649 s = xfer_to_x(cstate, inst);
7650
7651 /*
7652 * Load the item at that offset.
7653 */
7654 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7655 sappend(s, tmp);
7656 sappend(inst->s, s);
7657 break;
7658
7659 case Q_LINK:
7660 /*
7661 * The offset is relative to the beginning of
7662 * the link-layer header.
7663 *
7664 * XXX - what about ATM LANE? Should the index be
7665 * relative to the beginning of the AAL5 frame, so
7666 * that 0 refers to the beginning of the LE Control
7667 * field, or relative to the beginning of the LAN
7668 * frame, so that 0 refers, for Ethernet LANE, to
7669 * the beginning of the destination address?
7670 */
7671 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7672
7673 /*
7674 * If "s" is non-null, it has code to arrange that the
7675 * X register contains the length of the prefix preceding
7676 * the link-layer header. Add to it the offset computed
7677 * into the register specified by "index", and move that
7678 * into the X register. Otherwise, just load into the X
7679 * register the offset computed into the register specified
7680 * by "index".
7681 */
7682 if (s != NULL) {
7683 sappend(s, xfer_to_a(cstate, inst));
7684 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7685 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7686 } else
7687 s = xfer_to_x(cstate, inst);
7688
7689 /*
7690 * Load the item at the sum of the offset we've put in the
7691 * X register and the offset of the start of the link
7692 * layer header (which is 0 if the radio header is
7693 * variable-length; that header length is what we put
7694 * into the X register and then added to the index).
7695 */
7696 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7697 tmp->s.k = cstate->off_linkhdr.constant_part;
7698 sappend(s, tmp);
7699 sappend(inst->s, s);
7700 break;
7701
7702 case Q_IP:
7703 case Q_ARP:
7704 case Q_RARP:
7705 case Q_ATALK:
7706 case Q_DECNET:
7707 case Q_SCA:
7708 case Q_LAT:
7709 case Q_MOPRC:
7710 case Q_MOPDL:
7711 case Q_IPV6:
7712 /*
7713 * The offset is relative to the beginning of
7714 * the network-layer header.
7715 * XXX - are there any cases where we want
7716 * cstate->off_nl_nosnap?
7717 */
7718 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7719
7720 /*
7721 * If "s" is non-null, it has code to arrange that the
7722 * X register contains the variable part of the offset
7723 * of the link-layer payload. Add to it the offset
7724 * computed into the register specified by "index",
7725 * and move that into the X register. Otherwise, just
7726 * load into the X register the offset computed into
7727 * the register specified by "index".
7728 */
7729 if (s != NULL) {
7730 sappend(s, xfer_to_a(cstate, inst));
7731 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7732 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7733 } else
7734 s = xfer_to_x(cstate, inst);
7735
7736 /*
7737 * Load the item at the sum of the offset we've put in the
7738 * X register, the offset of the start of the network
7739 * layer header from the beginning of the link-layer
7740 * payload, and the constant part of the offset of the
7741 * start of the link-layer payload.
7742 */
7743 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7744 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7745 sappend(s, tmp);
7746 sappend(inst->s, s);
7747
7748 /*
7749 * Do the computation only if the packet contains
7750 * the protocol in question.
7751 */
7752 b = gen_proto_abbrev_internal(cstate, proto);
7753 if (inst->b)
7754 gen_and(inst->b, b);
7755 inst->b = b;
7756 break;
7757
7758 case Q_SCTP:
7759 case Q_TCP:
7760 case Q_UDP:
7761 case Q_ICMP:
7762 case Q_IGMP:
7763 case Q_IGRP:
7764 case Q_PIM:
7765 case Q_VRRP:
7766 case Q_CARP:
7767 /*
7768 * The offset is relative to the beginning of
7769 * the transport-layer header.
7770 *
7771 * Load the X register with the length of the IPv4 header
7772 * (plus the offset of the link-layer header, if it's
7773 * a variable-length header), in bytes.
7774 *
7775 * XXX - are there any cases where we want
7776 * cstate->off_nl_nosnap?
7777 * XXX - we should, if we're built with
7778 * IPv6 support, generate code to load either
7779 * IPv4, IPv6, or both, as appropriate.
7780 */
7781 s = gen_loadx_iphdrlen(cstate);
7782
7783 /*
7784 * The X register now contains the sum of the variable
7785 * part of the offset of the link-layer payload and the
7786 * length of the network-layer header.
7787 *
7788 * Load into the A register the offset relative to
7789 * the beginning of the transport layer header,
7790 * add the X register to that, move that to the
7791 * X register, and load with an offset from the
7792 * X register equal to the sum of the constant part of
7793 * the offset of the link-layer payload and the offset,
7794 * relative to the beginning of the link-layer payload,
7795 * of the network-layer header.
7796 */
7797 sappend(s, xfer_to_a(cstate, inst));
7798 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7799 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7800 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7801 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7802 sappend(inst->s, s);
7803
7804 /*
7805 * Do the computation only if the packet contains
7806 * the protocol in question - which is true only
7807 * if this is an IP datagram and is the first or
7808 * only fragment of that datagram.
7809 */
7810 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7811 if (inst->b)
7812 gen_and(inst->b, b);
7813 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7814 inst->b = b;
7815 break;
7816 case Q_ICMPV6:
7817 /*
7818 * Do the computation only if the packet contains
7819 * the protocol in question.
7820 */
7821 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7822 if (inst->b)
7823 gen_and(inst->b, b);
7824 inst->b = b;
7825
7826 /*
7827 * Check if we have an icmp6 next header
7828 */
7829 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7830 if (inst->b)
7831 gen_and(inst->b, b);
7832 inst->b = b;
7833
7834 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7835 /*
7836 * If "s" is non-null, it has code to arrange that the
7837 * X register contains the variable part of the offset
7838 * of the link-layer payload. Add to it the offset
7839 * computed into the register specified by "index",
7840 * and move that into the X register. Otherwise, just
7841 * load into the X register the offset computed into
7842 * the register specified by "index".
7843 */
7844 if (s != NULL) {
7845 sappend(s, xfer_to_a(cstate, inst));
7846 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7847 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7848 } else
7849 s = xfer_to_x(cstate, inst);
7850
7851 /*
7852 * Load the item at the sum of the offset we've put in the
7853 * X register, the offset of the start of the network
7854 * layer header from the beginning of the link-layer
7855 * payload, and the constant part of the offset of the
7856 * start of the link-layer payload.
7857 */
7858 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7859 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7860
7861 sappend(s, tmp);
7862 sappend(inst->s, s);
7863
7864 break;
7865 }
7866 inst->regno = regno;
7867 s = new_stmt(cstate, BPF_ST);
7868 s->s.k = regno;
7869 sappend(inst->s, s);
7870
7871 return inst;
7872 }
7873
7874 struct arth *
7875 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7876 bpf_u_int32 size)
7877 {
7878 /*
7879 * Catch errors reported by us and routines below us, and return NULL
7880 * on an error.
7881 */
7882 if (setjmp(cstate->top_ctx))
7883 return (NULL);
7884
7885 return gen_load_internal(cstate, proto, inst, size);
7886 }
7887
7888 static struct block *
7889 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7890 struct arth *a1, int reversed)
7891 {
7892 struct slist *s0, *s1, *s2;
7893 struct block *b, *tmp;
7894
7895 s0 = xfer_to_x(cstate, a1);
7896 s1 = xfer_to_a(cstate, a0);
7897 if (code == BPF_JEQ) {
7898 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7899 b = new_block(cstate, JMP(code));
7900 sappend(s1, s2);
7901 }
7902 else
7903 b = new_block(cstate, BPF_JMP|code|BPF_X);
7904 if (reversed)
7905 gen_not(b);
7906
7907 sappend(s0, s1);
7908 sappend(a1->s, s0);
7909 sappend(a0->s, a1->s);
7910
7911 b->stmts = a0->s;
7912
7913 free_reg(cstate, a0->regno);
7914 free_reg(cstate, a1->regno);
7915
7916 /* 'and' together protocol checks */
7917 if (a0->b) {
7918 if (a1->b) {
7919 gen_and(a0->b, tmp = a1->b);
7920 }
7921 else
7922 tmp = a0->b;
7923 } else
7924 tmp = a1->b;
7925
7926 if (tmp)
7927 gen_and(tmp, b);
7928
7929 return b;
7930 }
7931
7932 struct block *
7933 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7934 struct arth *a1, int reversed)
7935 {
7936 /*
7937 * Catch errors reported by us and routines below us, and return NULL
7938 * on an error.
7939 */
7940 if (setjmp(cstate->top_ctx))
7941 return (NULL);
7942
7943 return gen_relation_internal(cstate, code, a0, a1, reversed);
7944 }
7945
7946 struct arth *
7947 gen_loadlen(compiler_state_t *cstate)
7948 {
7949 int regno;
7950 struct arth *a;
7951 struct slist *s;
7952
7953 /*
7954 * Catch errors reported by us and routines below us, and return NULL
7955 * on an error.
7956 */
7957 if (setjmp(cstate->top_ctx))
7958 return (NULL);
7959
7960 regno = alloc_reg(cstate);
7961 a = (struct arth *)newchunk(cstate, sizeof(*a));
7962 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7963 s->next = new_stmt(cstate, BPF_ST);
7964 s->next->s.k = regno;
7965 a->s = s;
7966 a->regno = regno;
7967
7968 return a;
7969 }
7970
7971 static struct arth *
7972 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7973 {
7974 struct arth *a;
7975 struct slist *s;
7976 int reg;
7977
7978 a = (struct arth *)newchunk(cstate, sizeof(*a));
7979
7980 reg = alloc_reg(cstate);
7981
7982 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7983 s->s.k = val;
7984 s->next = new_stmt(cstate, BPF_ST);
7985 s->next->s.k = reg;
7986 a->s = s;
7987 a->regno = reg;
7988
7989 return a;
7990 }
7991
7992 struct arth *
7993 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7994 {
7995 /*
7996 * Catch errors reported by us and routines below us, and return NULL
7997 * on an error.
7998 */
7999 if (setjmp(cstate->top_ctx))
8000 return (NULL);
8001
8002 return gen_loadi_internal(cstate, val);
8003 }
8004
8005 /*
8006 * The a_arg dance is to avoid annoying whining by compilers that
8007 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8008 * It's not *used* after setjmp returns.
8009 */
8010 struct arth *
8011 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
8012 {
8013 struct arth *a = a_arg;
8014 struct slist *s;
8015
8016 /*
8017 * Catch errors reported by us and routines below us, and return NULL
8018 * on an error.
8019 */
8020 if (setjmp(cstate->top_ctx))
8021 return (NULL);
8022
8023 s = xfer_to_a(cstate, a);
8024 sappend(a->s, s);
8025 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8026 s->s.k = 0;
8027 sappend(a->s, s);
8028 s = new_stmt(cstate, BPF_ST);
8029 s->s.k = a->regno;
8030 sappend(a->s, s);
8031
8032 return a;
8033 }
8034
8035 /*
8036 * The a0_arg dance is to avoid annoying whining by compilers that
8037 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8038 * It's not *used* after setjmp returns.
8039 */
8040 struct arth *
8041 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8042 struct arth *a1)
8043 {
8044 struct arth *a0 = a0_arg;
8045 struct slist *s0, *s1, *s2;
8046
8047 /*
8048 * Catch errors reported by us and routines below us, and return NULL
8049 * on an error.
8050 */
8051 if (setjmp(cstate->top_ctx))
8052 return (NULL);
8053
8054 /*
8055 * Disallow division by, or modulus by, zero; we do this here
8056 * so that it gets done even if the optimizer is disabled.
8057 *
8058 * Also disallow shifts by a value greater than 31; we do this
8059 * here, for the same reason.
8060 */
8061 if (code == BPF_DIV) {
8062 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8063 bpf_error(cstate, "division by zero");
8064 } else if (code == BPF_MOD) {
8065 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8066 bpf_error(cstate, "modulus by zero");
8067 } else if (code == BPF_LSH || code == BPF_RSH) {
8068 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8069 bpf_error(cstate, "shift by more than 31 bits");
8070 }
8071 s0 = xfer_to_x(cstate, a1);
8072 s1 = xfer_to_a(cstate, a0);
8073 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8074
8075 sappend(s1, s2);
8076 sappend(s0, s1);
8077 sappend(a1->s, s0);
8078 sappend(a0->s, a1->s);
8079
8080 free_reg(cstate, a0->regno);
8081 free_reg(cstate, a1->regno);
8082
8083 s0 = new_stmt(cstate, BPF_ST);
8084 a0->regno = s0->s.k = alloc_reg(cstate);
8085 sappend(a0->s, s0);
8086
8087 return a0;
8088 }
8089
8090 /*
8091 * Initialize the table of used registers and the current register.
8092 */
8093 static void
8094 init_regs(compiler_state_t *cstate)
8095 {
8096 cstate->curreg = 0;
8097 memset(cstate->regused, 0, sizeof cstate->regused);
8098 }
8099
8100 /*
8101 * Return the next free register.
8102 */
8103 static int
8104 alloc_reg(compiler_state_t *cstate)
8105 {
8106 int n = BPF_MEMWORDS;
8107
8108 while (--n >= 0) {
8109 if (cstate->regused[cstate->curreg])
8110 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8111 else {
8112 cstate->regused[cstate->curreg] = 1;
8113 return cstate->curreg;
8114 }
8115 }
8116 bpf_error(cstate, "too many registers needed to evaluate expression");
8117 /*NOTREACHED*/
8118 }
8119
8120 /*
8121 * Return a register to the table so it can
8122 * be used later.
8123 */
8124 static void
8125 free_reg(compiler_state_t *cstate, int n)
8126 {
8127 cstate->regused[n] = 0;
8128 }
8129
8130 static struct block *
8131 gen_len(compiler_state_t *cstate, int jmp, int n)
8132 {
8133 struct slist *s;
8134 struct block *b;
8135
8136 s = new_stmt(cstate, BPF_LD|BPF_LEN);
8137 b = new_block(cstate, JMP(jmp));
8138 b->stmts = s;
8139 b->s.k = n;
8140
8141 return b;
8142 }
8143
8144 struct block *
8145 gen_greater(compiler_state_t *cstate, int n)
8146 {
8147 /*
8148 * Catch errors reported by us and routines below us, and return NULL
8149 * on an error.
8150 */
8151 if (setjmp(cstate->top_ctx))
8152 return (NULL);
8153
8154 return gen_len(cstate, BPF_JGE, n);
8155 }
8156
8157 /*
8158 * Actually, this is less than or equal.
8159 */
8160 struct block *
8161 gen_less(compiler_state_t *cstate, int n)
8162 {
8163 struct block *b;
8164
8165 /*
8166 * Catch errors reported by us and routines below us, and return NULL
8167 * on an error.
8168 */
8169 if (setjmp(cstate->top_ctx))
8170 return (NULL);
8171
8172 b = gen_len(cstate, BPF_JGT, n);
8173 gen_not(b);
8174
8175 return b;
8176 }
8177
8178 /*
8179 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8180 * the beginning of the link-layer header.
8181 * XXX - that means you can't test values in the radiotap header, but
8182 * as that header is difficult if not impossible to parse generally
8183 * without a loop, that might not be a severe problem. A new keyword
8184 * "radio" could be added for that, although what you'd really want
8185 * would be a way of testing particular radio header values, which
8186 * would generate code appropriate to the radio header in question.
8187 */
8188 struct block *
8189 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8190 {
8191 struct block *b;
8192 struct slist *s;
8193
8194 /*
8195 * Catch errors reported by us and routines below us, and return NULL
8196 * on an error.
8197 */
8198 if (setjmp(cstate->top_ctx))
8199 return (NULL);
8200
8201 switch (op) {
8202 default:
8203 abort();
8204
8205 case '=':
8206 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8207
8208 case '<':
8209 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8210 return b;
8211
8212 case '>':
8213 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8214 return b;
8215
8216 case '|':
8217 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8218 break;
8219
8220 case '&':
8221 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8222 break;
8223 }
8224 s->s.k = val;
8225 b = new_block(cstate, JMP(BPF_JEQ));
8226 b->stmts = s;
8227 gen_not(b);
8228
8229 return b;
8230 }
8231
8232 static const u_char abroadcast[] = { 0x0 };
8233
8234 struct block *
8235 gen_broadcast(compiler_state_t *cstate, int proto)
8236 {
8237 bpf_u_int32 hostmask;
8238 struct block *b0, *b1, *b2;
8239 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8240
8241 /*
8242 * Catch errors reported by us and routines below us, and return NULL
8243 * on an error.
8244 */
8245 if (setjmp(cstate->top_ctx))
8246 return (NULL);
8247
8248 switch (proto) {
8249
8250 case Q_DEFAULT:
8251 case Q_LINK:
8252 switch (cstate->linktype) {
8253 case DLT_ARCNET:
8254 case DLT_ARCNET_LINUX:
8255 return gen_ahostop(cstate, abroadcast, Q_DST);
8256 case DLT_EN10MB:
8257 case DLT_NETANALYZER:
8258 case DLT_NETANALYZER_TRANSPARENT:
8259 b1 = gen_prevlinkhdr_check(cstate);
8260 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8261 if (b1 != NULL)
8262 gen_and(b1, b0);
8263 return b0;
8264 case DLT_FDDI:
8265 return gen_fhostop(cstate, ebroadcast, Q_DST);
8266 case DLT_IEEE802:
8267 return gen_thostop(cstate, ebroadcast, Q_DST);
8268 case DLT_IEEE802_11:
8269 case DLT_PRISM_HEADER:
8270 case DLT_IEEE802_11_RADIO_AVS:
8271 case DLT_IEEE802_11_RADIO:
8272 case DLT_PPI:
8273 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8274 case DLT_IP_OVER_FC:
8275 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8276 default:
8277 bpf_error(cstate, "not a broadcast link");
8278 }
8279 /*NOTREACHED*/
8280
8281 case Q_IP:
8282 /*
8283 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8284 * as an indication that we don't know the netmask, and fail
8285 * in that case.
8286 */
8287 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8288 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8289 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8290 hostmask = ~cstate->netmask;
8291 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8292 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8293 ~0 & hostmask, hostmask);
8294 gen_or(b1, b2);
8295 gen_and(b0, b2);
8296 return b2;
8297 }
8298 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8299 /*NOTREACHED*/
8300 }
8301
8302 /*
8303 * Generate code to test the low-order bit of a MAC address (that's
8304 * the bottom bit of the *first* byte).
8305 */
8306 static struct block *
8307 gen_mac_multicast(compiler_state_t *cstate, int offset)
8308 {
8309 register struct block *b0;
8310 register struct slist *s;
8311
8312 /* link[offset] & 1 != 0 */
8313 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8314 b0 = new_block(cstate, JMP(BPF_JSET));
8315 b0->s.k = 1;
8316 b0->stmts = s;
8317 return b0;
8318 }
8319
8320 struct block *
8321 gen_multicast(compiler_state_t *cstate, int proto)
8322 {
8323 register struct block *b0, *b1, *b2;
8324 register struct slist *s;
8325
8326 /*
8327 * Catch errors reported by us and routines below us, and return NULL
8328 * on an error.
8329 */
8330 if (setjmp(cstate->top_ctx))
8331 return (NULL);
8332
8333 switch (proto) {
8334
8335 case Q_DEFAULT:
8336 case Q_LINK:
8337 switch (cstate->linktype) {
8338 case DLT_ARCNET:
8339 case DLT_ARCNET_LINUX:
8340 /* all ARCnet multicasts use the same address */
8341 return gen_ahostop(cstate, abroadcast, Q_DST);
8342 case DLT_EN10MB:
8343 case DLT_NETANALYZER:
8344 case DLT_NETANALYZER_TRANSPARENT:
8345 b1 = gen_prevlinkhdr_check(cstate);
8346 /* ether[0] & 1 != 0 */
8347 b0 = gen_mac_multicast(cstate, 0);
8348 if (b1 != NULL)
8349 gen_and(b1, b0);
8350 return b0;
8351 case DLT_FDDI:
8352 /*
8353 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8354 *
8355 * XXX - was that referring to bit-order issues?
8356 */
8357 /* fddi[1] & 1 != 0 */
8358 return gen_mac_multicast(cstate, 1);
8359 case DLT_IEEE802:
8360 /* tr[2] & 1 != 0 */
8361 return gen_mac_multicast(cstate, 2);
8362 case DLT_IEEE802_11:
8363 case DLT_PRISM_HEADER:
8364 case DLT_IEEE802_11_RADIO_AVS:
8365 case DLT_IEEE802_11_RADIO:
8366 case DLT_PPI:
8367 /*
8368 * Oh, yuk.
8369 *
8370 * For control frames, there is no DA.
8371 *
8372 * For management frames, DA is at an
8373 * offset of 4 from the beginning of
8374 * the packet.
8375 *
8376 * For data frames, DA is at an offset
8377 * of 4 from the beginning of the packet
8378 * if To DS is clear and at an offset of
8379 * 16 from the beginning of the packet
8380 * if To DS is set.
8381 */
8382
8383 /*
8384 * Generate the tests to be done for data frames.
8385 *
8386 * First, check for To DS set, i.e. "link[1] & 0x01".
8387 */
8388 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8389 b1 = new_block(cstate, JMP(BPF_JSET));
8390 b1->s.k = 0x01; /* To DS */
8391 b1->stmts = s;
8392
8393 /*
8394 * If To DS is set, the DA is at 16.
8395 */
8396 b0 = gen_mac_multicast(cstate, 16);
8397 gen_and(b1, b0);
8398
8399 /*
8400 * Now, check for To DS not set, i.e. check
8401 * "!(link[1] & 0x01)".
8402 */
8403 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8404 b2 = new_block(cstate, JMP(BPF_JSET));
8405 b2->s.k = 0x01; /* To DS */
8406 b2->stmts = s;
8407 gen_not(b2);
8408
8409 /*
8410 * If To DS is not set, the DA is at 4.
8411 */
8412 b1 = gen_mac_multicast(cstate, 4);
8413 gen_and(b2, b1);
8414
8415 /*
8416 * Now OR together the last two checks. That gives
8417 * the complete set of checks for data frames.
8418 */
8419 gen_or(b1, b0);
8420
8421 /*
8422 * Now check for a data frame.
8423 * I.e, check "link[0] & 0x08".
8424 */
8425 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8426 b1 = new_block(cstate, JMP(BPF_JSET));
8427 b1->s.k = 0x08;
8428 b1->stmts = s;
8429
8430 /*
8431 * AND that with the checks done for data frames.
8432 */
8433 gen_and(b1, b0);
8434
8435 /*
8436 * If the high-order bit of the type value is 0, this
8437 * is a management frame.
8438 * I.e, check "!(link[0] & 0x08)".
8439 */
8440 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8441 b2 = new_block(cstate, JMP(BPF_JSET));
8442 b2->s.k = 0x08;
8443 b2->stmts = s;
8444 gen_not(b2);
8445
8446 /*
8447 * For management frames, the DA is at 4.
8448 */
8449 b1 = gen_mac_multicast(cstate, 4);
8450 gen_and(b2, b1);
8451
8452 /*
8453 * OR that with the checks done for data frames.
8454 * That gives the checks done for management and
8455 * data frames.
8456 */
8457 gen_or(b1, b0);
8458
8459 /*
8460 * If the low-order bit of the type value is 1,
8461 * this is either a control frame or a frame
8462 * with a reserved type, and thus not a
8463 * frame with an SA.
8464 *
8465 * I.e., check "!(link[0] & 0x04)".
8466 */
8467 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8468 b1 = new_block(cstate, JMP(BPF_JSET));
8469 b1->s.k = 0x04;
8470 b1->stmts = s;
8471 gen_not(b1);
8472
8473 /*
8474 * AND that with the checks for data and management
8475 * frames.
8476 */
8477 gen_and(b1, b0);
8478 return b0;
8479 case DLT_IP_OVER_FC:
8480 b0 = gen_mac_multicast(cstate, 2);
8481 return b0;
8482 default:
8483 break;
8484 }
8485 /* Link not known to support multicasts */
8486 break;
8487
8488 case Q_IP:
8489 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8490 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8491 gen_and(b0, b1);
8492 return b1;
8493
8494 case Q_IPV6:
8495 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8496 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8497 gen_and(b0, b1);
8498 return b1;
8499 }
8500 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8501 /*NOTREACHED*/
8502 }
8503
8504 struct block *
8505 gen_ifindex(compiler_state_t *cstate, int ifindex)
8506 {
8507 register struct block *b0;
8508
8509 /*
8510 * Catch errors reported by us and routines below us, and return NULL
8511 * on an error.
8512 */
8513 if (setjmp(cstate->top_ctx))
8514 return (NULL);
8515
8516 /*
8517 * Only some data link types support ifindex qualifiers.
8518 */
8519 switch (cstate->linktype) {
8520 case DLT_LINUX_SLL2:
8521 /* match packets on this interface */
8522 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8523 break;
8524 default:
8525 #if defined(linux)
8526 /*
8527 * This is Linux; we require PF_PACKET support.
8528 * If this is a *live* capture, we can look at
8529 * special meta-data in the filter expression;
8530 * if it's a savefile, we can't.
8531 */
8532 if (cstate->bpf_pcap->rfile != NULL) {
8533 /* We have a FILE *, so this is a savefile */
8534 bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8535 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8536 /*NOTREACHED*/
8537 }
8538 /* match ifindex */
8539 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8540 ifindex);
8541 #else /* defined(linux) */
8542 bpf_error(cstate, "ifindex not supported on %s",
8543 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8544 /*NOTREACHED*/
8545 #endif /* defined(linux) */
8546 }
8547 return (b0);
8548 }
8549
8550 /*
8551 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8552 * Outbound traffic is sent by this machine, while inbound traffic is
8553 * sent by a remote machine (and may include packets destined for a
8554 * unicast or multicast link-layer address we are not subscribing to).
8555 * These are the same definitions implemented by pcap_setdirection().
8556 * Capturing only unicast traffic destined for this host is probably
8557 * better accomplished using a higher-layer filter.
8558 */
8559 struct block *
8560 gen_inbound(compiler_state_t *cstate, int dir)
8561 {
8562 register struct block *b0;
8563
8564 /*
8565 * Catch errors reported by us and routines below us, and return NULL
8566 * on an error.
8567 */
8568 if (setjmp(cstate->top_ctx))
8569 return (NULL);
8570
8571 /*
8572 * Only some data link types support inbound/outbound qualifiers.
8573 */
8574 switch (cstate->linktype) {
8575 case DLT_SLIP:
8576 b0 = gen_relation_internal(cstate, BPF_JEQ,
8577 gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8578 gen_loadi_internal(cstate, 0),
8579 dir);
8580 break;
8581
8582 case DLT_IPNET:
8583 if (dir) {
8584 /* match outgoing packets */
8585 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8586 } else {
8587 /* match incoming packets */
8588 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8589 }
8590 break;
8591
8592 case DLT_LINUX_SLL:
8593 /* match outgoing packets */
8594 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8595 if (!dir) {
8596 /* to filter on inbound traffic, invert the match */
8597 gen_not(b0);
8598 }
8599 break;
8600
8601 case DLT_LINUX_SLL2:
8602 /* match outgoing packets */
8603 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8604 if (!dir) {
8605 /* to filter on inbound traffic, invert the match */
8606 gen_not(b0);
8607 }
8608 break;
8609
8610 case DLT_PFLOG:
8611 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8612 ((dir == 0) ? PF_IN : PF_OUT));
8613 break;
8614
8615 case DLT_PPP_PPPD:
8616 if (dir) {
8617 /* match outgoing packets */
8618 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8619 } else {
8620 /* match incoming packets */
8621 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8622 }
8623 break;
8624
8625 case DLT_JUNIPER_MFR:
8626 case DLT_JUNIPER_MLFR:
8627 case DLT_JUNIPER_MLPPP:
8628 case DLT_JUNIPER_ATM1:
8629 case DLT_JUNIPER_ATM2:
8630 case DLT_JUNIPER_PPPOE:
8631 case DLT_JUNIPER_PPPOE_ATM:
8632 case DLT_JUNIPER_GGSN:
8633 case DLT_JUNIPER_ES:
8634 case DLT_JUNIPER_MONITOR:
8635 case DLT_JUNIPER_SERVICES:
8636 case DLT_JUNIPER_ETHER:
8637 case DLT_JUNIPER_PPP:
8638 case DLT_JUNIPER_FRELAY:
8639 case DLT_JUNIPER_CHDLC:
8640 case DLT_JUNIPER_VP:
8641 case DLT_JUNIPER_ST:
8642 case DLT_JUNIPER_ISM:
8643 case DLT_JUNIPER_VS:
8644 case DLT_JUNIPER_SRX_E2E:
8645 case DLT_JUNIPER_FIBRECHANNEL:
8646 case DLT_JUNIPER_ATM_CEMIC:
8647
8648 /* juniper flags (including direction) are stored
8649 * the byte after the 3-byte magic number */
8650 if (dir) {
8651 /* match outgoing packets */
8652 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8653 } else {
8654 /* match incoming packets */
8655 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8656 }
8657 break;
8658
8659 default:
8660 /*
8661 * If we have packet meta-data indicating a direction,
8662 * and that metadata can be checked by BPF code, check
8663 * it. Otherwise, give up, as this link-layer type has
8664 * nothing in the packet data.
8665 *
8666 * Currently, the only platform where a BPF filter can
8667 * check that metadata is Linux with the in-kernel
8668 * BPF interpreter. If other packet capture mechanisms
8669 * and BPF filters also supported this, it would be
8670 * nice. It would be even better if they made that
8671 * metadata available so that we could provide it
8672 * with newer capture APIs, allowing it to be saved
8673 * in pcapng files.
8674 */
8675 #if defined(linux)
8676 /*
8677 * This is Linux; we require PF_PACKET support.
8678 * If this is a *live* capture, we can look at
8679 * special meta-data in the filter expression;
8680 * if it's a savefile, we can't.
8681 */
8682 if (cstate->bpf_pcap->rfile != NULL) {
8683 /* We have a FILE *, so this is a savefile */
8684 bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8685 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8686 /*NOTREACHED*/
8687 }
8688 /* match outgoing packets */
8689 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8690 PACKET_OUTGOING);
8691 if (!dir) {
8692 /* to filter on inbound traffic, invert the match */
8693 gen_not(b0);
8694 }
8695 #else /* defined(linux) */
8696 bpf_error(cstate, "inbound/outbound not supported on %s",
8697 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8698 /*NOTREACHED*/
8699 #endif /* defined(linux) */
8700 }
8701 return (b0);
8702 }
8703
8704 /* PF firewall log matched interface */
8705 struct block *
8706 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8707 {
8708 struct block *b0;
8709 u_int len, off;
8710
8711 /*
8712 * Catch errors reported by us and routines below us, and return NULL
8713 * on an error.
8714 */
8715 if (setjmp(cstate->top_ctx))
8716 return (NULL);
8717
8718 if (cstate->linktype != DLT_PFLOG) {
8719 bpf_error(cstate, "ifname supported only on PF linktype");
8720 /*NOTREACHED*/
8721 }
8722 len = sizeof(((struct pfloghdr *)0)->ifname);
8723 off = offsetof(struct pfloghdr, ifname);
8724 if (strlen(ifname) >= len) {
8725 bpf_error(cstate, "ifname interface names can only be %d characters",
8726 len-1);
8727 /*NOTREACHED*/
8728 }
8729 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8730 (const u_char *)ifname);
8731 return (b0);
8732 }
8733
8734 /* PF firewall log ruleset name */
8735 struct block *
8736 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8737 {
8738 struct block *b0;
8739
8740 /*
8741 * Catch errors reported by us and routines below us, and return NULL
8742 * on an error.
8743 */
8744 if (setjmp(cstate->top_ctx))
8745 return (NULL);
8746
8747 if (cstate->linktype != DLT_PFLOG) {
8748 bpf_error(cstate, "ruleset supported only on PF linktype");
8749 /*NOTREACHED*/
8750 }
8751
8752 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8753 bpf_error(cstate, "ruleset names can only be %ld characters",
8754 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8755 /*NOTREACHED*/
8756 }
8757
8758 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8759 (u_int)strlen(ruleset), (const u_char *)ruleset);
8760 return (b0);
8761 }
8762
8763 /* PF firewall log rule number */
8764 struct block *
8765 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8766 {
8767 struct block *b0;
8768
8769 /*
8770 * Catch errors reported by us and routines below us, and return NULL
8771 * on an error.
8772 */
8773 if (setjmp(cstate->top_ctx))
8774 return (NULL);
8775
8776 if (cstate->linktype != DLT_PFLOG) {
8777 bpf_error(cstate, "rnr supported only on PF linktype");
8778 /*NOTREACHED*/
8779 }
8780
8781 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8782 (bpf_u_int32)rnr);
8783 return (b0);
8784 }
8785
8786 /* PF firewall log sub-rule number */
8787 struct block *
8788 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8789 {
8790 struct block *b0;
8791
8792 /*
8793 * Catch errors reported by us and routines below us, and return NULL
8794 * on an error.
8795 */
8796 if (setjmp(cstate->top_ctx))
8797 return (NULL);
8798
8799 if (cstate->linktype != DLT_PFLOG) {
8800 bpf_error(cstate, "srnr supported only on PF linktype");
8801 /*NOTREACHED*/
8802 }
8803
8804 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8805 (bpf_u_int32)srnr);
8806 return (b0);
8807 }
8808
8809 /* PF firewall log reason code */
8810 struct block *
8811 gen_pf_reason(compiler_state_t *cstate, int reason)
8812 {
8813 struct block *b0;
8814
8815 /*
8816 * Catch errors reported by us and routines below us, and return NULL
8817 * on an error.
8818 */
8819 if (setjmp(cstate->top_ctx))
8820 return (NULL);
8821
8822 if (cstate->linktype != DLT_PFLOG) {
8823 bpf_error(cstate, "reason supported only on PF linktype");
8824 /*NOTREACHED*/
8825 }
8826
8827 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8828 (bpf_u_int32)reason);
8829 return (b0);
8830 }
8831
8832 /* PF firewall log action */
8833 struct block *
8834 gen_pf_action(compiler_state_t *cstate, int action)
8835 {
8836 struct block *b0;
8837
8838 /*
8839 * Catch errors reported by us and routines below us, and return NULL
8840 * on an error.
8841 */
8842 if (setjmp(cstate->top_ctx))
8843 return (NULL);
8844
8845 if (cstate->linktype != DLT_PFLOG) {
8846 bpf_error(cstate, "action supported only on PF linktype");
8847 /*NOTREACHED*/
8848 }
8849
8850 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8851 (bpf_u_int32)action);
8852 return (b0);
8853 }
8854
8855 /* IEEE 802.11 wireless header */
8856 struct block *
8857 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8858 {
8859 struct block *b0;
8860
8861 /*
8862 * Catch errors reported by us and routines below us, and return NULL
8863 * on an error.
8864 */
8865 if (setjmp(cstate->top_ctx))
8866 return (NULL);
8867
8868 switch (cstate->linktype) {
8869
8870 case DLT_IEEE802_11:
8871 case DLT_PRISM_HEADER:
8872 case DLT_IEEE802_11_RADIO_AVS:
8873 case DLT_IEEE802_11_RADIO:
8874 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8875 break;
8876
8877 default:
8878 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8879 /*NOTREACHED*/
8880 }
8881
8882 return (b0);
8883 }
8884
8885 struct block *
8886 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8887 {
8888 struct block *b0;
8889
8890 /*
8891 * Catch errors reported by us and routines below us, and return NULL
8892 * on an error.
8893 */
8894 if (setjmp(cstate->top_ctx))
8895 return (NULL);
8896
8897 switch (cstate->linktype) {
8898
8899 case DLT_IEEE802_11:
8900 case DLT_PRISM_HEADER:
8901 case DLT_IEEE802_11_RADIO_AVS:
8902 case DLT_IEEE802_11_RADIO:
8903 break;
8904
8905 default:
8906 bpf_error(cstate, "frame direction supported only with 802.11 headers");
8907 /*NOTREACHED*/
8908 }
8909
8910 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8911 IEEE80211_FC1_DIR_MASK);
8912
8913 return (b0);
8914 }
8915
8916 struct block *
8917 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8918 {
8919 struct block *b;
8920
8921 /*
8922 * Catch errors reported by us and routines below us, and return NULL
8923 * on an error.
8924 */
8925 if (setjmp(cstate->top_ctx))
8926 return (NULL);
8927
8928 switch (cstate->linktype) {
8929
8930 case DLT_ARCNET:
8931 case DLT_ARCNET_LINUX:
8932 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8933 q.proto == Q_LINK) {
8934 cstate->e = pcap_ether_aton(s);
8935 if (cstate->e == NULL)
8936 bpf_error(cstate, "malloc");
8937 b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8938 free(cstate->e);
8939 cstate->e = NULL;
8940 return (b);
8941 } else
8942 bpf_error(cstate, "ARCnet address used in non-arc expression");
8943 /*NOTREACHED*/
8944
8945 default:
8946 bpf_error(cstate, "aid supported only on ARCnet");
8947 /*NOTREACHED*/
8948 }
8949 }
8950
8951 static struct block *
8952 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8953 {
8954 register struct block *b0, *b1;
8955
8956 switch (dir) {
8957 /* src comes first, different from Ethernet */
8958 case Q_SRC:
8959 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8960
8961 case Q_DST:
8962 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8963
8964 case Q_AND:
8965 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8966 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8967 gen_and(b0, b1);
8968 return b1;
8969
8970 case Q_DEFAULT:
8971 case Q_OR:
8972 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8973 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8974 gen_or(b0, b1);
8975 return b1;
8976
8977 case Q_ADDR1:
8978 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8979 /*NOTREACHED*/
8980
8981 case Q_ADDR2:
8982 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8983 /*NOTREACHED*/
8984
8985 case Q_ADDR3:
8986 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8987 /*NOTREACHED*/
8988
8989 case Q_ADDR4:
8990 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8991 /*NOTREACHED*/
8992
8993 case Q_RA:
8994 bpf_error(cstate, "'ra' is only supported on 802.11");
8995 /*NOTREACHED*/
8996
8997 case Q_TA:
8998 bpf_error(cstate, "'ta' is only supported on 802.11");
8999 /*NOTREACHED*/
9000 }
9001 abort();
9002 /*NOTREACHED*/
9003 }
9004
9005 static struct block *
9006 gen_vlan_tpid_test(compiler_state_t *cstate)
9007 {
9008 struct block *b0, *b1;
9009
9010 /* check for VLAN, including 802.1ad and QinQ */
9011 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
9012 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
9013 gen_or(b0,b1);
9014 b0 = b1;
9015 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
9016 gen_or(b0,b1);
9017
9018 return b1;
9019 }
9020
9021 static struct block *
9022 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9023 {
9024 if (vlan_num > 0x0fff) {
9025 bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9026 vlan_num, 0x0fff);
9027 }
9028 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9029 }
9030
9031 static struct block *
9032 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9033 int has_vlan_tag)
9034 {
9035 struct block *b0, *b1;
9036
9037 b0 = gen_vlan_tpid_test(cstate);
9038
9039 if (has_vlan_tag) {
9040 b1 = gen_vlan_vid_test(cstate, vlan_num);
9041 gen_and(b0, b1);
9042 b0 = b1;
9043 }
9044
9045 /*
9046 * Both payload and link header type follow the VLAN tags so that
9047 * both need to be updated.
9048 */
9049 cstate->off_linkpl.constant_part += 4;
9050 cstate->off_linktype.constant_part += 4;
9051
9052 return b0;
9053 }
9054
9055 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9056 /* add v to variable part of off */
9057 static void
9058 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9059 bpf_u_int32 v, struct slist *s)
9060 {
9061 struct slist *s2;
9062
9063 if (!off->is_variable)
9064 off->is_variable = 1;
9065 if (off->reg == -1)
9066 off->reg = alloc_reg(cstate);
9067
9068 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9069 s2->s.k = off->reg;
9070 sappend(s, s2);
9071 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9072 s2->s.k = v;
9073 sappend(s, s2);
9074 s2 = new_stmt(cstate, BPF_ST);
9075 s2->s.k = off->reg;
9076 sappend(s, s2);
9077 }
9078
9079 /*
9080 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9081 * and link type offsets first
9082 */
9083 static void
9084 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9085 {
9086 struct slist s;
9087
9088 /* offset determined at run time, shift variable part */
9089 s.next = NULL;
9090 cstate->is_vlan_vloffset = 1;
9091 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9092 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9093
9094 /* we get a pointer to a chain of or-ed blocks, patch first of them */
9095 sappend(s.next, b_tpid->head->stmts);
9096 b_tpid->head->stmts = s.next;
9097 }
9098
9099 /*
9100 * patch block b_vid (VLAN id test) to load VID value either from packet
9101 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9102 */
9103 static void
9104 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9105 {
9106 struct slist *s, *s2, *sjeq;
9107 unsigned cnt;
9108
9109 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9110 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9111
9112 /* true -> next instructions, false -> beginning of b_vid */
9113 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9114 sjeq->s.k = 1;
9115 sjeq->s.jf = b_vid->stmts;
9116 sappend(s, sjeq);
9117
9118 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9119 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9120 sappend(s, s2);
9121 sjeq->s.jt = s2;
9122
9123 /* Jump to the test in b_vid. We need to jump one instruction before
9124 * the end of the b_vid block so that we only skip loading the TCI
9125 * from packet data and not the 'and' instruction extracting VID.
9126 */
9127 cnt = 0;
9128 for (s2 = b_vid->stmts; s2; s2 = s2->next)
9129 cnt++;
9130 s2 = new_stmt(cstate, JMP(BPF_JA));
9131 s2->s.k = cnt - 1;
9132 sappend(s, s2);
9133
9134 /* insert our statements at the beginning of b_vid */
9135 sappend(s, b_vid->stmts);
9136 b_vid->stmts = s;
9137 }
9138
9139 /*
9140 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9141 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9142 * tag can be either in metadata or in packet data; therefore if the
9143 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9144 * header for VLAN tag. As the decision is done at run time, we need
9145 * update variable part of the offsets
9146 */
9147 static struct block *
9148 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9149 int has_vlan_tag)
9150 {
9151 struct block *b0, *b_tpid, *b_vid = NULL;
9152 struct slist *s;
9153
9154 /* generate new filter code based on extracting packet
9155 * metadata */
9156 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9157 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9158
9159 b0 = new_block(cstate, JMP(BPF_JEQ));
9160 b0->stmts = s;
9161 b0->s.k = 1;
9162
9163 /*
9164 * This is tricky. We need to insert the statements updating variable
9165 * parts of offsets before the traditional TPID and VID tests so
9166 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9167 * we do not want this update to affect those checks. That's why we
9168 * generate both test blocks first and insert the statements updating
9169 * variable parts of both offsets after that. This wouldn't work if
9170 * there already were variable length link header when entering this
9171 * function but gen_vlan_bpf_extensions() isn't called in that case.
9172 */
9173 b_tpid = gen_vlan_tpid_test(cstate);
9174 if (has_vlan_tag)
9175 b_vid = gen_vlan_vid_test(cstate, vlan_num);
9176
9177 gen_vlan_patch_tpid_test(cstate, b_tpid);
9178 gen_or(b0, b_tpid);
9179 b0 = b_tpid;
9180
9181 if (has_vlan_tag) {
9182 gen_vlan_patch_vid_test(cstate, b_vid);
9183 gen_and(b0, b_vid);
9184 b0 = b_vid;
9185 }
9186
9187 return b0;
9188 }
9189 #endif
9190
9191 /*
9192 * support IEEE 802.1Q VLAN trunk over ethernet
9193 */
9194 struct block *
9195 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9196 {
9197 struct block *b0;
9198
9199 /*
9200 * Catch errors reported by us and routines below us, and return NULL
9201 * on an error.
9202 */
9203 if (setjmp(cstate->top_ctx))
9204 return (NULL);
9205
9206 /* can't check for VLAN-encapsulated packets inside MPLS */
9207 if (cstate->label_stack_depth > 0)
9208 bpf_error(cstate, "no VLAN match after MPLS");
9209
9210 /*
9211 * Check for a VLAN packet, and then change the offsets to point
9212 * to the type and data fields within the VLAN packet. Just
9213 * increment the offsets, so that we can support a hierarchy, e.g.
9214 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9215 * VLAN 100.
9216 *
9217 * XXX - this is a bit of a kludge. If we were to split the
9218 * compiler into a parser that parses an expression and
9219 * generates an expression tree, and a code generator that
9220 * takes an expression tree (which could come from our
9221 * parser or from some other parser) and generates BPF code,
9222 * we could perhaps make the offsets parameters of routines
9223 * and, in the handler for an "AND" node, pass to subnodes
9224 * other than the VLAN node the adjusted offsets.
9225 *
9226 * This would mean that "vlan" would, instead of changing the
9227 * behavior of *all* tests after it, change only the behavior
9228 * of tests ANDed with it. That would change the documented
9229 * semantics of "vlan", which might break some expressions.
9230 * However, it would mean that "(vlan and ip) or ip" would check
9231 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9232 * checking only for VLAN-encapsulated IP, so that could still
9233 * be considered worth doing; it wouldn't break expressions
9234 * that are of the form "vlan and ..." or "vlan N and ...",
9235 * which I suspect are the most common expressions involving
9236 * "vlan". "vlan or ..." doesn't necessarily do what the user
9237 * would really want, now, as all the "or ..." tests would
9238 * be done assuming a VLAN, even though the "or" could be viewed
9239 * as meaning "or, if this isn't a VLAN packet...".
9240 */
9241 switch (cstate->linktype) {
9242
9243 case DLT_EN10MB:
9244 /*
9245 * Newer version of the Linux kernel pass around
9246 * packets in which the VLAN tag has been removed
9247 * from the packet data and put into metadata.
9248 *
9249 * This requires special treatment.
9250 */
9251 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9252 /* Verify that this is the outer part of the packet and
9253 * not encapsulated somehow. */
9254 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9255 cstate->off_linkhdr.constant_part ==
9256 cstate->off_outermostlinkhdr.constant_part) {
9257 /*
9258 * Do we need special VLAN handling?
9259 */
9260 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9261 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9262 has_vlan_tag);
9263 else
9264 b0 = gen_vlan_no_bpf_extensions(cstate,
9265 vlan_num, has_vlan_tag);
9266 } else
9267 #endif
9268 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9269 has_vlan_tag);
9270 break;
9271
9272 case DLT_NETANALYZER:
9273 case DLT_NETANALYZER_TRANSPARENT:
9274 case DLT_IEEE802_11:
9275 case DLT_PRISM_HEADER:
9276 case DLT_IEEE802_11_RADIO_AVS:
9277 case DLT_IEEE802_11_RADIO:
9278 /*
9279 * These are either Ethernet packets with an additional
9280 * metadata header (the NetAnalyzer types), or 802.11
9281 * packets, possibly with an additional metadata header.
9282 *
9283 * For the first of those, the VLAN tag is in the normal
9284 * place, so the special-case handling above isn't
9285 * necessary.
9286 *
9287 * For the second of those, we don't do the special-case
9288 * handling for now.
9289 */
9290 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9291 break;
9292
9293 default:
9294 bpf_error(cstate, "no VLAN support for %s",
9295 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9296 /*NOTREACHED*/
9297 }
9298
9299 cstate->vlan_stack_depth++;
9300
9301 return (b0);
9302 }
9303
9304 /*
9305 * support for MPLS
9306 *
9307 * The label_num_arg dance is to avoid annoying whining by compilers that
9308 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9309 * It's not *used* after setjmp returns.
9310 */
9311 struct block *
9312 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9313 int has_label_num)
9314 {
9315 volatile bpf_u_int32 label_num = label_num_arg;
9316 struct block *b0, *b1;
9317
9318 /*
9319 * Catch errors reported by us and routines below us, and return NULL
9320 * on an error.
9321 */
9322 if (setjmp(cstate->top_ctx))
9323 return (NULL);
9324
9325 if (cstate->label_stack_depth > 0) {
9326 /* just match the bottom-of-stack bit clear */
9327 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9328 } else {
9329 /*
9330 * We're not in an MPLS stack yet, so check the link-layer
9331 * type against MPLS.
9332 */
9333 switch (cstate->linktype) {
9334
9335 case DLT_C_HDLC: /* fall through */
9336 case DLT_HDLC:
9337 case DLT_EN10MB:
9338 case DLT_NETANALYZER:
9339 case DLT_NETANALYZER_TRANSPARENT:
9340 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9341 break;
9342
9343 case DLT_PPP:
9344 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9345 break;
9346
9347 /* FIXME add other DLT_s ...
9348 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9349 * leave it for now */
9350
9351 default:
9352 bpf_error(cstate, "no MPLS support for %s",
9353 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9354 /*NOTREACHED*/
9355 }
9356 }
9357
9358 /* If a specific MPLS label is requested, check it */
9359 if (has_label_num) {
9360 if (label_num > 0xFFFFF) {
9361 bpf_error(cstate, "MPLS label %u greater than maximum %u",
9362 label_num, 0xFFFFF);
9363 }
9364 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9365 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9366 0xfffff000); /* only compare the first 20 bits */
9367 gen_and(b0, b1);
9368 b0 = b1;
9369 }
9370
9371 /*
9372 * Change the offsets to point to the type and data fields within
9373 * the MPLS packet. Just increment the offsets, so that we
9374 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9375 * capture packets with an outer label of 100000 and an inner
9376 * label of 1024.
9377 *
9378 * Increment the MPLS stack depth as well; this indicates that
9379 * we're checking MPLS-encapsulated headers, to make sure higher
9380 * level code generators don't try to match against IP-related
9381 * protocols such as Q_ARP, Q_RARP etc.
9382 *
9383 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9384 */
9385 cstate->off_nl_nosnap += 4;
9386 cstate->off_nl += 4;
9387 cstate->label_stack_depth++;
9388 return (b0);
9389 }
9390
9391 /*
9392 * Support PPPOE discovery and session.
9393 */
9394 struct block *
9395 gen_pppoed(compiler_state_t *cstate)
9396 {
9397 /*
9398 * Catch errors reported by us and routines below us, and return NULL
9399 * on an error.
9400 */
9401 if (setjmp(cstate->top_ctx))
9402 return (NULL);
9403
9404 /* check for PPPoE discovery */
9405 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9406 }
9407
9408 struct block *
9409 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9410 {
9411 struct block *b0, *b1;
9412
9413 /*
9414 * Catch errors reported by us and routines below us, and return NULL
9415 * on an error.
9416 */
9417 if (setjmp(cstate->top_ctx))
9418 return (NULL);
9419
9420 /*
9421 * Test against the PPPoE session link-layer type.
9422 */
9423 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9424
9425 /* If a specific session is requested, check PPPoE session id */
9426 if (has_sess_num) {
9427 if (sess_num > 0x0000ffff) {
9428 bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9429 sess_num, 0x0000ffff);
9430 }
9431 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9432 gen_and(b0, b1);
9433 b0 = b1;
9434 }
9435
9436 /*
9437 * Change the offsets to point to the type and data fields within
9438 * the PPP packet, and note that this is PPPoE rather than
9439 * raw PPP.
9440 *
9441 * XXX - this is a bit of a kludge. See the comments in
9442 * gen_vlan().
9443 *
9444 * The "network-layer" protocol is PPPoE, which has a 6-byte
9445 * PPPoE header, followed by a PPP packet.
9446 *
9447 * There is no HDLC encapsulation for the PPP packet (it's
9448 * encapsulated in PPPoES instead), so the link-layer type
9449 * starts at the first byte of the PPP packet. For PPPoE,
9450 * that offset is relative to the beginning of the total
9451 * link-layer payload, including any 802.2 LLC header, so
9452 * it's 6 bytes past cstate->off_nl.
9453 */
9454 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9455 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9456 cstate->off_linkpl.reg);
9457
9458 cstate->off_linktype = cstate->off_linkhdr;
9459 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9460
9461 cstate->off_nl = 0;
9462 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9463
9464 return b0;
9465 }
9466
9467 /* Check that this is Geneve and the VNI is correct if
9468 * specified. Parameterized to handle both IPv4 and IPv6. */
9469 static struct block *
9470 gen_geneve_check(compiler_state_t *cstate,
9471 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9472 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9473 {
9474 struct block *b0, *b1;
9475
9476 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9477
9478 /* Check that we are operating on version 0. Otherwise, we
9479 * can't decode the rest of the fields. The version is 2 bits
9480 * in the first byte of the Geneve header. */
9481 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9482 gen_and(b0, b1);
9483 b0 = b1;
9484
9485 if (has_vni) {
9486 if (vni > 0xffffff) {
9487 bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9488 vni, 0xffffff);
9489 }
9490 vni <<= 8; /* VNI is in the upper 3 bytes */
9491 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9492 gen_and(b0, b1);
9493 b0 = b1;
9494 }
9495
9496 return b0;
9497 }
9498
9499 /* The IPv4 and IPv6 Geneve checks need to do two things:
9500 * - Verify that this actually is Geneve with the right VNI.
9501 * - Place the IP header length (plus variable link prefix if
9502 * needed) into register A to be used later to compute
9503 * the inner packet offsets. */
9504 static struct block *
9505 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9506 {
9507 struct block *b0, *b1;
9508 struct slist *s, *s1;
9509
9510 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9511
9512 /* Load the IP header length into A. */
9513 s = gen_loadx_iphdrlen(cstate);
9514
9515 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9516 sappend(s, s1);
9517
9518 /* Forcibly append these statements to the true condition
9519 * of the protocol check by creating a new block that is
9520 * always true and ANDing them. */
9521 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9522 b1->stmts = s;
9523 b1->s.k = 0;
9524
9525 gen_and(b0, b1);
9526
9527 return b1;
9528 }
9529
9530 static struct block *
9531 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9532 {
9533 struct block *b0, *b1;
9534 struct slist *s, *s1;
9535
9536 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9537
9538 /* Load the IP header length. We need to account for a
9539 * variable length link prefix if there is one. */
9540 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9541 if (s) {
9542 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9543 s1->s.k = 40;
9544 sappend(s, s1);
9545
9546 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9547 s1->s.k = 0;
9548 sappend(s, s1);
9549 } else {
9550 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9551 s->s.k = 40;
9552 }
9553
9554 /* Forcibly append these statements to the true condition
9555 * of the protocol check by creating a new block that is
9556 * always true and ANDing them. */
9557 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9558 sappend(s, s1);
9559
9560 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9561 b1->stmts = s;
9562 b1->s.k = 0;
9563
9564 gen_and(b0, b1);
9565
9566 return b1;
9567 }
9568
9569 /* We need to store three values based on the Geneve header::
9570 * - The offset of the linktype.
9571 * - The offset of the end of the Geneve header.
9572 * - The offset of the end of the encapsulated MAC header. */
9573 static struct slist *
9574 gen_geneve_offsets(compiler_state_t *cstate)
9575 {
9576 struct slist *s, *s1, *s_proto;
9577
9578 /* First we need to calculate the offset of the Geneve header
9579 * itself. This is composed of the IP header previously calculated
9580 * (include any variable link prefix) and stored in A plus the
9581 * fixed sized headers (fixed link prefix, MAC length, and UDP
9582 * header). */
9583 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9584 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9585
9586 /* Stash this in X since we'll need it later. */
9587 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9588 sappend(s, s1);
9589
9590 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9591 * store it. */
9592 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9593 s1->s.k = 2;
9594 sappend(s, s1);
9595
9596 cstate->off_linktype.reg = alloc_reg(cstate);
9597 cstate->off_linktype.is_variable = 1;
9598 cstate->off_linktype.constant_part = 0;
9599
9600 s1 = new_stmt(cstate, BPF_ST);
9601 s1->s.k = cstate->off_linktype.reg;
9602 sappend(s, s1);
9603
9604 /* Load the Geneve option length and mask and shift to get the
9605 * number of bytes. It is stored in the first byte of the Geneve
9606 * header. */
9607 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9608 s1->s.k = 0;
9609 sappend(s, s1);
9610
9611 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9612 s1->s.k = 0x3f;
9613 sappend(s, s1);
9614
9615 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9616 s1->s.k = 4;
9617 sappend(s, s1);
9618
9619 /* Add in the rest of the Geneve base header. */
9620 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9621 s1->s.k = 8;
9622 sappend(s, s1);
9623
9624 /* Add the Geneve header length to its offset and store. */
9625 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9626 s1->s.k = 0;
9627 sappend(s, s1);
9628
9629 /* Set the encapsulated type as Ethernet. Even though we may
9630 * not actually have Ethernet inside there are two reasons this
9631 * is useful:
9632 * - The linktype field is always in EtherType format regardless
9633 * of whether it is in Geneve or an inner Ethernet frame.
9634 * - The only link layer that we have specific support for is
9635 * Ethernet. We will confirm that the packet actually is
9636 * Ethernet at runtime before executing these checks. */
9637 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9638
9639 s1 = new_stmt(cstate, BPF_ST);
9640 s1->s.k = cstate->off_linkhdr.reg;
9641 sappend(s, s1);
9642
9643 /* Calculate whether we have an Ethernet header or just raw IP/
9644 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9645 * and linktype by 14 bytes so that the network header can be found
9646 * seamlessly. Otherwise, keep what we've calculated already. */
9647
9648 /* We have a bare jmp so we can't use the optimizer. */
9649 cstate->no_optimize = 1;
9650
9651 /* Load the EtherType in the Geneve header, 2 bytes in. */
9652 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9653 s1->s.k = 2;
9654 sappend(s, s1);
9655
9656 /* Load X with the end of the Geneve header. */
9657 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9658 s1->s.k = cstate->off_linkhdr.reg;
9659 sappend(s, s1);
9660
9661 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9662 * end of this check, we should have the total length in X. In
9663 * the non-Ethernet case, it's already there. */
9664 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9665 s_proto->s.k = ETHERTYPE_TEB;
9666 sappend(s, s_proto);
9667
9668 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9669 sappend(s, s1);
9670 s_proto->s.jt = s1;
9671
9672 /* Since this is Ethernet, use the EtherType of the payload
9673 * directly as the linktype. Overwrite what we already have. */
9674 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9675 s1->s.k = 12;
9676 sappend(s, s1);
9677
9678 s1 = new_stmt(cstate, BPF_ST);
9679 s1->s.k = cstate->off_linktype.reg;
9680 sappend(s, s1);
9681
9682 /* Advance two bytes further to get the end of the Ethernet
9683 * header. */
9684 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9685 s1->s.k = 2;
9686 sappend(s, s1);
9687
9688 /* Move the result to X. */
9689 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9690 sappend(s, s1);
9691
9692 /* Store the final result of our linkpl calculation. */
9693 cstate->off_linkpl.reg = alloc_reg(cstate);
9694 cstate->off_linkpl.is_variable = 1;
9695 cstate->off_linkpl.constant_part = 0;
9696
9697 s1 = new_stmt(cstate, BPF_STX);
9698 s1->s.k = cstate->off_linkpl.reg;
9699 sappend(s, s1);
9700 s_proto->s.jf = s1;
9701
9702 cstate->off_nl = 0;
9703
9704 return s;
9705 }
9706
9707 /* Check to see if this is a Geneve packet. */
9708 struct block *
9709 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9710 {
9711 struct block *b0, *b1;
9712 struct slist *s;
9713
9714 /*
9715 * Catch errors reported by us and routines below us, and return NULL
9716 * on an error.
9717 */
9718 if (setjmp(cstate->top_ctx))
9719 return (NULL);
9720
9721 b0 = gen_geneve4(cstate, vni, has_vni);
9722 b1 = gen_geneve6(cstate, vni, has_vni);
9723
9724 gen_or(b0, b1);
9725 b0 = b1;
9726
9727 /* Later filters should act on the payload of the Geneve frame,
9728 * update all of the header pointers. Attach this code so that
9729 * it gets executed in the event that the Geneve filter matches. */
9730 s = gen_geneve_offsets(cstate);
9731
9732 b1 = gen_true(cstate);
9733 sappend(s, b1->stmts);
9734 b1->stmts = s;
9735
9736 gen_and(b0, b1);
9737
9738 cstate->is_geneve = 1;
9739
9740 return b1;
9741 }
9742
9743 /* Check that the encapsulated frame has a link layer header
9744 * for Ethernet filters. */
9745 static struct block *
9746 gen_geneve_ll_check(compiler_state_t *cstate)
9747 {
9748 struct block *b0;
9749 struct slist *s, *s1;
9750
9751 /* The easiest way to see if there is a link layer present
9752 * is to check if the link layer header and payload are not
9753 * the same. */
9754
9755 /* Geneve always generates pure variable offsets so we can
9756 * compare only the registers. */
9757 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9758 s->s.k = cstate->off_linkhdr.reg;
9759
9760 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9761 s1->s.k = cstate->off_linkpl.reg;
9762 sappend(s, s1);
9763
9764 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9765 b0->stmts = s;
9766 b0->s.k = 0;
9767 gen_not(b0);
9768
9769 return b0;
9770 }
9771
9772 static struct block *
9773 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9774 bpf_u_int32 jvalue, int jtype, int reverse)
9775 {
9776 struct block *b0;
9777
9778 switch (atmfield) {
9779
9780 case A_VPI:
9781 if (!cstate->is_atm)
9782 bpf_error(cstate, "'vpi' supported only on raw ATM");
9783 if (cstate->off_vpi == OFFSET_NOT_SET)
9784 abort();
9785 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9786 0xffffffffU, jtype, reverse, jvalue);
9787 break;
9788
9789 case A_VCI:
9790 if (!cstate->is_atm)
9791 bpf_error(cstate, "'vci' supported only on raw ATM");
9792 if (cstate->off_vci == OFFSET_NOT_SET)
9793 abort();
9794 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9795 0xffffffffU, jtype, reverse, jvalue);
9796 break;
9797
9798 case A_PROTOTYPE:
9799 if (cstate->off_proto == OFFSET_NOT_SET)
9800 abort(); /* XXX - this isn't on FreeBSD */
9801 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9802 0x0fU, jtype, reverse, jvalue);
9803 break;
9804
9805 case A_MSGTYPE:
9806 if (cstate->off_payload == OFFSET_NOT_SET)
9807 abort();
9808 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9809 0xffffffffU, jtype, reverse, jvalue);
9810 break;
9811
9812 case A_CALLREFTYPE:
9813 if (!cstate->is_atm)
9814 bpf_error(cstate, "'callref' supported only on raw ATM");
9815 if (cstate->off_proto == OFFSET_NOT_SET)
9816 abort();
9817 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9818 0xffffffffU, jtype, reverse, jvalue);
9819 break;
9820
9821 default:
9822 abort();
9823 }
9824 return b0;
9825 }
9826
9827 static struct block *
9828 gen_atmtype_metac(compiler_state_t *cstate)
9829 {
9830 struct block *b0, *b1;
9831
9832 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9833 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9834 gen_and(b0, b1);
9835 return b1;
9836 }
9837
9838 static struct block *
9839 gen_atmtype_sc(compiler_state_t *cstate)
9840 {
9841 struct block *b0, *b1;
9842
9843 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9844 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9845 gen_and(b0, b1);
9846 return b1;
9847 }
9848
9849 static struct block *
9850 gen_atmtype_llc(compiler_state_t *cstate)
9851 {
9852 struct block *b0;
9853
9854 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9855 cstate->linktype = cstate->prevlinktype;
9856 return b0;
9857 }
9858
9859 struct block *
9860 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9861 bpf_u_int32 jvalue, int jtype, int reverse)
9862 {
9863 /*
9864 * Catch errors reported by us and routines below us, and return NULL
9865 * on an error.
9866 */
9867 if (setjmp(cstate->top_ctx))
9868 return (NULL);
9869
9870 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9871 reverse);
9872 }
9873
9874 struct block *
9875 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9876 {
9877 struct block *b0, *b1;
9878
9879 /*
9880 * Catch errors reported by us and routines below us, and return NULL
9881 * on an error.
9882 */
9883 if (setjmp(cstate->top_ctx))
9884 return (NULL);
9885
9886 switch (type) {
9887
9888 case A_METAC:
9889 /* Get all packets in Meta signalling Circuit */
9890 if (!cstate->is_atm)
9891 bpf_error(cstate, "'metac' supported only on raw ATM");
9892 b1 = gen_atmtype_metac(cstate);
9893 break;
9894
9895 case A_BCC:
9896 /* Get all packets in Broadcast Circuit*/
9897 if (!cstate->is_atm)
9898 bpf_error(cstate, "'bcc' supported only on raw ATM");
9899 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9900 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9901 gen_and(b0, b1);
9902 break;
9903
9904 case A_OAMF4SC:
9905 /* Get all cells in Segment OAM F4 circuit*/
9906 if (!cstate->is_atm)
9907 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9908 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9909 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9910 gen_and(b0, b1);
9911 break;
9912
9913 case A_OAMF4EC:
9914 /* Get all cells in End-to-End OAM F4 Circuit*/
9915 if (!cstate->is_atm)
9916 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9917 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9918 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9919 gen_and(b0, b1);
9920 break;
9921
9922 case A_SC:
9923 /* Get all packets in connection Signalling Circuit */
9924 if (!cstate->is_atm)
9925 bpf_error(cstate, "'sc' supported only on raw ATM");
9926 b1 = gen_atmtype_sc(cstate);
9927 break;
9928
9929 case A_ILMIC:
9930 /* Get all packets in ILMI Circuit */
9931 if (!cstate->is_atm)
9932 bpf_error(cstate, "'ilmic' supported only on raw ATM");
9933 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9934 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9935 gen_and(b0, b1);
9936 break;
9937
9938 case A_LANE:
9939 /* Get all LANE packets */
9940 if (!cstate->is_atm)
9941 bpf_error(cstate, "'lane' supported only on raw ATM");
9942 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9943
9944 /*
9945 * Arrange that all subsequent tests assume LANE
9946 * rather than LLC-encapsulated packets, and set
9947 * the offsets appropriately for LANE-encapsulated
9948 * Ethernet.
9949 *
9950 * We assume LANE means Ethernet, not Token Ring.
9951 */
9952 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9953 cstate->off_payload + 2, /* Ethernet header */
9954 -1);
9955 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9956 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9957 cstate->off_nl = 0; /* Ethernet II */
9958 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9959 break;
9960
9961 case A_LLC:
9962 /* Get all LLC-encapsulated packets */
9963 if (!cstate->is_atm)
9964 bpf_error(cstate, "'llc' supported only on raw ATM");
9965 b1 = gen_atmtype_llc(cstate);
9966 break;
9967
9968 default:
9969 abort();
9970 }
9971 return b1;
9972 }
9973
9974 /*
9975 * Filtering for MTP2 messages based on li value
9976 * FISU, length is null
9977 * LSSU, length is 1 or 2
9978 * MSU, length is 3 or more
9979 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9980 */
9981 struct block *
9982 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9983 {
9984 struct block *b0, *b1;
9985
9986 /*
9987 * Catch errors reported by us and routines below us, and return NULL
9988 * on an error.
9989 */
9990 if (setjmp(cstate->top_ctx))
9991 return (NULL);
9992
9993 switch (type) {
9994
9995 case M_FISU:
9996 if ( (cstate->linktype != DLT_MTP2) &&
9997 (cstate->linktype != DLT_ERF) &&
9998 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9999 bpf_error(cstate, "'fisu' supported only on MTP2");
10000 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10001 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10002 0x3fU, BPF_JEQ, 0, 0U);
10003 break;
10004
10005 case M_LSSU:
10006 if ( (cstate->linktype != DLT_MTP2) &&
10007 (cstate->linktype != DLT_ERF) &&
10008 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10009 bpf_error(cstate, "'lssu' supported only on MTP2");
10010 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10011 0x3fU, BPF_JGT, 1, 2U);
10012 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10013 0x3fU, BPF_JGT, 0, 0U);
10014 gen_and(b1, b0);
10015 break;
10016
10017 case M_MSU:
10018 if ( (cstate->linktype != DLT_MTP2) &&
10019 (cstate->linktype != DLT_ERF) &&
10020 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10021 bpf_error(cstate, "'msu' supported only on MTP2");
10022 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10023 0x3fU, BPF_JGT, 0, 2U);
10024 break;
10025
10026 case MH_FISU:
10027 if ( (cstate->linktype != DLT_MTP2) &&
10028 (cstate->linktype != DLT_ERF) &&
10029 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10030 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
10031 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10032 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10033 0xff80U, BPF_JEQ, 0, 0U);
10034 break;
10035
10036 case MH_LSSU:
10037 if ( (cstate->linktype != DLT_MTP2) &&
10038 (cstate->linktype != DLT_ERF) &&
10039 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10040 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10041 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10042 0xff80U, BPF_JGT, 1, 0x0100U);
10043 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10044 0xff80U, BPF_JGT, 0, 0U);
10045 gen_and(b1, b0);
10046 break;
10047
10048 case MH_MSU:
10049 if ( (cstate->linktype != DLT_MTP2) &&
10050 (cstate->linktype != DLT_ERF) &&
10051 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10052 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10053 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10054 0xff80U, BPF_JGT, 0, 0x0100U);
10055 break;
10056
10057 default:
10058 abort();
10059 }
10060 return b0;
10061 }
10062
10063 /*
10064 * The jvalue_arg dance is to avoid annoying whining by compilers that
10065 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10066 * It's not *used* after setjmp returns.
10067 */
10068 struct block *
10069 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10070 bpf_u_int32 jvalue_arg, int jtype, int reverse)
10071 {
10072 volatile bpf_u_int32 jvalue = jvalue_arg;
10073 struct block *b0;
10074 bpf_u_int32 val1 , val2 , val3;
10075 u_int newoff_sio;
10076 u_int newoff_opc;
10077 u_int newoff_dpc;
10078 u_int newoff_sls;
10079
10080 /*
10081 * Catch errors reported by us and routines below us, and return NULL
10082 * on an error.
10083 */
10084 if (setjmp(cstate->top_ctx))
10085 return (NULL);
10086
10087 newoff_sio = cstate->off_sio;
10088 newoff_opc = cstate->off_opc;
10089 newoff_dpc = cstate->off_dpc;
10090 newoff_sls = cstate->off_sls;
10091 switch (mtp3field) {
10092
10093 case MH_SIO:
10094 newoff_sio += 3; /* offset for MTP2_HSL */
10095 /* FALLTHROUGH */
10096
10097 case M_SIO:
10098 if (cstate->off_sio == OFFSET_NOT_SET)
10099 bpf_error(cstate, "'sio' supported only on SS7");
10100 /* sio coded on 1 byte so max value 255 */
10101 if(jvalue > 255)
10102 bpf_error(cstate, "sio value %u too big; max value = 255",
10103 jvalue);
10104 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10105 jtype, reverse, jvalue);
10106 break;
10107
10108 case MH_OPC:
10109 newoff_opc += 3;
10110
10111 /* FALLTHROUGH */
10112 case M_OPC:
10113 if (cstate->off_opc == OFFSET_NOT_SET)
10114 bpf_error(cstate, "'opc' supported only on SS7");
10115 /* opc coded on 14 bits so max value 16383 */
10116 if (jvalue > 16383)
10117 bpf_error(cstate, "opc value %u too big; max value = 16383",
10118 jvalue);
10119 /* the following instructions are made to convert jvalue
10120 * to the form used to write opc in an ss7 message*/
10121 val1 = jvalue & 0x00003c00;
10122 val1 = val1 >>10;
10123 val2 = jvalue & 0x000003fc;
10124 val2 = val2 <<6;
10125 val3 = jvalue & 0x00000003;
10126 val3 = val3 <<22;
10127 jvalue = val1 + val2 + val3;
10128 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10129 jtype, reverse, jvalue);
10130 break;
10131
10132 case MH_DPC:
10133 newoff_dpc += 3;
10134 /* FALLTHROUGH */
10135
10136 case M_DPC:
10137 if (cstate->off_dpc == OFFSET_NOT_SET)
10138 bpf_error(cstate, "'dpc' supported only on SS7");
10139 /* dpc coded on 14 bits so max value 16383 */
10140 if (jvalue > 16383)
10141 bpf_error(cstate, "dpc value %u too big; max value = 16383",
10142 jvalue);
10143 /* the following instructions are made to convert jvalue
10144 * to the forme used to write dpc in an ss7 message*/
10145 val1 = jvalue & 0x000000ff;
10146 val1 = val1 << 24;
10147 val2 = jvalue & 0x00003f00;
10148 val2 = val2 << 8;
10149 jvalue = val1 + val2;
10150 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10151 jtype, reverse, jvalue);
10152 break;
10153
10154 case MH_SLS:
10155 newoff_sls += 3;
10156 /* FALLTHROUGH */
10157
10158 case M_SLS:
10159 if (cstate->off_sls == OFFSET_NOT_SET)
10160 bpf_error(cstate, "'sls' supported only on SS7");
10161 /* sls coded on 4 bits so max value 15 */
10162 if (jvalue > 15)
10163 bpf_error(cstate, "sls value %u too big; max value = 15",
10164 jvalue);
10165 /* the following instruction is made to convert jvalue
10166 * to the forme used to write sls in an ss7 message*/
10167 jvalue = jvalue << 4;
10168 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10169 jtype, reverse, jvalue);
10170 break;
10171
10172 default:
10173 abort();
10174 }
10175 return b0;
10176 }
10177
10178 static struct block *
10179 gen_msg_abbrev(compiler_state_t *cstate, int type)
10180 {
10181 struct block *b1;
10182
10183 /*
10184 * Q.2931 signalling protocol messages for handling virtual circuits
10185 * establishment and teardown
10186 */
10187 switch (type) {
10188
10189 case A_SETUP:
10190 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10191 break;
10192
10193 case A_CALLPROCEED:
10194 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10195 break;
10196
10197 case A_CONNECT:
10198 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10199 break;
10200
10201 case A_CONNECTACK:
10202 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10203 break;
10204
10205 case A_RELEASE:
10206 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10207 break;
10208
10209 case A_RELEASE_DONE:
10210 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10211 break;
10212
10213 default:
10214 abort();
10215 }
10216 return b1;
10217 }
10218
10219 struct block *
10220 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10221 {
10222 struct block *b0, *b1;
10223
10224 /*
10225 * Catch errors reported by us and routines below us, and return NULL
10226 * on an error.
10227 */
10228 if (setjmp(cstate->top_ctx))
10229 return (NULL);
10230
10231 switch (type) {
10232
10233 case A_OAM:
10234 if (!cstate->is_atm)
10235 bpf_error(cstate, "'oam' supported only on raw ATM");
10236 /* OAM F4 type */
10237 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10238 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10239 gen_or(b0, b1);
10240 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10241 gen_and(b0, b1);
10242 break;
10243
10244 case A_OAMF4:
10245 if (!cstate->is_atm)
10246 bpf_error(cstate, "'oamf4' supported only on raw ATM");
10247 /* OAM F4 type */
10248 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10249 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10250 gen_or(b0, b1);
10251 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10252 gen_and(b0, b1);
10253 break;
10254
10255 case A_CONNECTMSG:
10256 /*
10257 * Get Q.2931 signalling messages for switched
10258 * virtual connection
10259 */
10260 if (!cstate->is_atm)
10261 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10262 b0 = gen_msg_abbrev(cstate, A_SETUP);
10263 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10264 gen_or(b0, b1);
10265 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10266 gen_or(b0, b1);
10267 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10268 gen_or(b0, b1);
10269 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10270 gen_or(b0, b1);
10271 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10272 gen_or(b0, b1);
10273 b0 = gen_atmtype_sc(cstate);
10274 gen_and(b0, b1);
10275 break;
10276
10277 case A_METACONNECT:
10278 if (!cstate->is_atm)
10279 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10280 b0 = gen_msg_abbrev(cstate, A_SETUP);
10281 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10282 gen_or(b0, b1);
10283 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10284 gen_or(b0, b1);
10285 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10286 gen_or(b0, b1);
10287 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10288 gen_or(b0, b1);
10289 b0 = gen_atmtype_metac(cstate);
10290 gen_and(b0, b1);
10291 break;
10292
10293 default:
10294 abort();
10295 }
10296 return b1;
10297 }