2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_unset(compiler_state_t
*, bpf_u_int32
, struct slist
*);
650 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
651 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
652 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
654 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
656 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
657 static struct block
*gen_uncond(compiler_state_t
*, int);
658 static inline struct block
*gen_true(compiler_state_t
*);
659 static inline struct block
*gen_false(compiler_state_t
*);
660 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
663 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
667 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
668 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
669 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
671 static uint16_t ethertype_to_ppptype(compiler_state_t
*, bpf_u_int32
);
672 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
673 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
674 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
675 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
678 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
679 struct in6_addr
*, int, u_int
, u_int
);
681 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
682 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
683 static unsigned char is_mac48_linktype(const int);
684 static struct block
*gen_mac48host(compiler_state_t
*, const u_char
*,
685 const u_char
, const char *);
686 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
687 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
688 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
691 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
692 struct in6_addr
*, int, int, int);
694 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
695 struct addrinfo
*, int);
696 static struct block
*gen_ip_proto(compiler_state_t
*, const uint8_t);
697 static struct block
*gen_ip6_proto(compiler_state_t
*, const uint8_t);
698 static struct block
*gen_ipfrag(compiler_state_t
*);
699 static struct block
*gen_portatom(compiler_state_t
*, int, uint16_t);
700 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, uint16_t,
702 static struct block
*gen_portatom6(compiler_state_t
*, int, uint16_t);
703 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, uint16_t,
705 static struct block
*gen_port(compiler_state_t
*, uint16_t, int, int);
706 static struct block
*gen_port_common(compiler_state_t
*, int, struct block
*);
707 static struct block
*gen_portrange(compiler_state_t
*, uint16_t, uint16_t,
709 static struct block
*gen_port6(compiler_state_t
*, uint16_t, int, int);
710 static struct block
*gen_port6_common(compiler_state_t
*, int, struct block
*);
711 static struct block
*gen_portrange6(compiler_state_t
*, uint16_t, uint16_t,
713 static int lookup_proto(compiler_state_t
*, const char *, int);
714 #if !defined(NO_PROTOCHAIN)
715 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
716 #endif /* !defined(NO_PROTOCHAIN) */
717 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
718 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
719 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
720 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
721 static struct block
*gen_len(compiler_state_t
*, int, int);
722 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
724 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
725 bpf_u_int32
, int, int);
726 static struct block
*gen_atmtype_llc(compiler_state_t
*);
727 static struct block
*gen_msg_abbrev(compiler_state_t
*, const uint8_t);
728 static struct block
*gen_atm_prototype(compiler_state_t
*, const uint8_t);
729 static struct block
*gen_atm_vpi(compiler_state_t
*, const uint8_t);
730 static struct block
*gen_atm_vci(compiler_state_t
*, const uint16_t);
733 initchunks(compiler_state_t
*cstate
)
737 for (i
= 0; i
< NCHUNKS
; i
++) {
738 cstate
->chunks
[i
].n_left
= 0;
739 cstate
->chunks
[i
].m
= NULL
;
741 cstate
->cur_chunk
= 0;
745 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
751 /* Round up to chunk alignment. */
752 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
754 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
755 if (n
> cp
->n_left
) {
757 k
= ++cstate
->cur_chunk
;
759 bpf_set_error(cstate
, "out of memory");
762 size
= CHUNK0SIZE
<< k
;
763 cp
->m
= (void *)malloc(size
);
765 bpf_set_error(cstate
, "out of memory");
768 memset((char *)cp
->m
, 0, size
);
771 bpf_set_error(cstate
, "out of memory");
776 return (void *)((char *)cp
->m
+ cp
->n_left
);
780 newchunk(compiler_state_t
*cstate
, size_t n
)
784 p
= newchunk_nolongjmp(cstate
, n
);
786 longjmp(cstate
->top_ctx
, 1);
793 freechunks(compiler_state_t
*cstate
)
797 for (i
= 0; i
< NCHUNKS
; ++i
)
798 if (cstate
->chunks
[i
].m
!= NULL
)
799 free(cstate
->chunks
[i
].m
);
803 * A strdup whose allocations are freed after code generation is over.
804 * This is used by the lexical analyzer, so it can't longjmp; it just
805 * returns NULL on an allocation error, and the callers must check
809 sdup(compiler_state_t
*cstate
, const char *s
)
811 size_t n
= strlen(s
) + 1;
812 char *cp
= newchunk_nolongjmp(cstate
, n
);
816 pcapint_strlcpy(cp
, s
, n
);
820 static inline struct block
*
821 new_block(compiler_state_t
*cstate
, int code
)
825 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
832 static inline struct slist
*
833 new_stmt(compiler_state_t
*cstate
, int code
)
837 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
843 static struct block
*
844 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
846 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
852 static struct block
*
853 gen_retblk(compiler_state_t
*cstate
, int v
)
855 if (setjmp(cstate
->top_ctx
)) {
857 * gen_retblk() only fails because a memory
858 * allocation failed in newchunk(), meaning
859 * that it can't return a pointer.
865 return gen_retblk_internal(cstate
, v
);
868 static inline PCAP_NORETURN_DEF
void
869 syntax(compiler_state_t
*cstate
)
871 bpf_error(cstate
, "syntax error in filter expression");
875 * For the given integer return a string with the keyword (or the nominal
876 * keyword if there is more than one). This is a simpler version of tok2str()
877 * in tcpdump because in this problem space a valid integer value is not
881 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
884 static char buf
[4][64];
887 if (id
< size
&& tokens
[id
])
890 char *ret
= buf
[idx
];
891 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
892 ret
[0] = '\0'; // just in case
893 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
897 // protocol qualifier keywords
899 pqkw(const unsigned id
)
901 const char * tokens
[] = {
913 [Q_DECNET
] = "decnet",
919 [Q_ICMPV6
] = "icmp6",
931 [Q_NETBEUI
] = "netbeui",
934 [Q_ISIS_IIH
] = "iih",
935 [Q_ISIS_SNP
] = "snp",
936 [Q_ISIS_CSNP
] = "csnp",
937 [Q_ISIS_PSNP
] = "psnp",
938 [Q_ISIS_LSP
] = "lsp",
942 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
945 // direction qualifier keywords
947 dqkw(const unsigned id
)
949 const char * map
[] = {
952 [Q_OR
] = "src or dst",
953 [Q_AND
] = "src and dst",
961 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
966 atmkw(const unsigned id
)
968 const char * tokens
[] = {
971 [A_OAMF4SC
] = "oamf4sc",
972 [A_OAMF4EC
] = "oamf4ec",
980 [A_CONNECTMSG
] = "connectmsg",
981 [A_METACONNECT
] = "metaconnect",
983 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
988 ss7kw(const unsigned id
)
990 const char * tokens
[] = {
1006 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1009 static PCAP_NORETURN_DEF
void
1010 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1012 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1013 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1017 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1019 if (cstate
->linktype
!= DLT_PFLOG
)
1020 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1024 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1027 * Belt and braces: init_linktype() sets either all of these struct
1028 * members (for DLT_SUNATM) or none (otherwise).
1030 if (cstate
->linktype
!= DLT_SUNATM
||
1032 cstate
->off_vpi
== OFFSET_NOT_SET
||
1033 cstate
->off_vci
== OFFSET_NOT_SET
||
1034 cstate
->off_proto
== OFFSET_NOT_SET
||
1035 cstate
->off_payload
== OFFSET_NOT_SET
)
1036 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1040 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1042 switch (cstate
->linktype
) {
1045 case DLT_MTP2_WITH_PHDR
:
1046 // Belt and braces, same as in assert_atm().
1047 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1048 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1049 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1050 cstate
->off_sls
!= OFFSET_NOT_SET
)
1053 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1057 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1058 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1061 bpf_error(cstate
, "%s %u greater than maximum %u",
1065 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1066 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1067 #define ERRSTR_UNKNOWN_MAC48HOST "unknown Ethernet-like host '%s'"
1069 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1071 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1079 return IPPROTO_SCTP
;
1083 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1087 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1088 const char *buf
, int optimize
, bpf_u_int32 mask
)
1094 compiler_state_t cstate
;
1095 yyscan_t scanner
= NULL
;
1096 YY_BUFFER_STATE in_buffer
= NULL
;
1101 * If this pcap_t hasn't been activated, it doesn't have a
1102 * link-layer type, so we can't use it.
1104 if (!p
->activated
) {
1105 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1106 "not-yet-activated pcap_t passed to pcap_compile");
1107 return (PCAP_ERROR
);
1112 * Initialize Winsock, asking for the latest version (2.2),
1113 * as we may be calling Winsock routines to translate
1114 * host names to addresses.
1116 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1118 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1119 err
, "Error calling WSAStartup()");
1120 return (PCAP_ERROR
);
1124 #ifdef ENABLE_REMOTE
1126 * If the device on which we're capturing need to be notified
1127 * that a new filter is being compiled, do so.
1129 * This allows them to save a copy of it, in case, for example,
1130 * they're implementing a form of remote packet capture, and
1131 * want the remote machine to filter out the packets in which
1132 * it's sending the packets it's captured.
1134 * XXX - the fact that we happen to be compiling a filter
1135 * doesn't necessarily mean we'll be installing it as the
1136 * filter for this pcap_t; we might be running it from userland
1137 * on captured packets to do packet classification. We really
1138 * need a better way of handling this, but this is all that
1139 * the WinPcap remote capture code did.
1141 if (p
->save_current_filter_op
!= NULL
)
1142 (p
->save_current_filter_op
)(p
, buf
);
1145 initchunks(&cstate
);
1146 cstate
.no_optimize
= 0;
1149 cstate
.ic
.root
= NULL
;
1150 cstate
.ic
.cur_mark
= 0;
1151 cstate
.bpf_pcap
= p
;
1152 cstate
.error_set
= 0;
1155 cstate
.netmask
= mask
;
1157 cstate
.snaplen
= pcap_snapshot(p
);
1158 if (cstate
.snaplen
== 0) {
1159 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1160 "snaplen of 0 rejects all packets");
1165 if (pcap_lex_init(&scanner
) != 0) {
1166 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1167 errno
, "can't initialize scanner");
1171 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1174 * Associate the compiler state with the lexical analyzer
1177 pcap_set_extra(&cstate
, scanner
);
1179 if (init_linktype(&cstate
, p
) == -1) {
1183 if (pcap_parse(scanner
, &cstate
) != 0) {
1184 if (cstate
.ai
!= NULL
)
1185 freeaddrinfo(cstate
.ai
);
1186 if (cstate
.e
!= NULL
)
1192 if (cstate
.ic
.root
== NULL
) {
1193 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1196 * Catch errors reported by gen_retblk().
1198 if (cstate
.ic
.root
== NULL
) {
1204 if (optimize
&& !cstate
.no_optimize
) {
1205 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1210 if (cstate
.ic
.root
== NULL
||
1211 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1212 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1213 "expression rejects all packets");
1218 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1219 cstate
.ic
.root
, &len
, p
->errbuf
);
1220 if (program
->bf_insns
== NULL
) {
1225 program
->bf_len
= len
;
1227 rc
= 0; /* We're all okay */
1231 * Clean up everything for the lexical analyzer.
1233 if (in_buffer
!= NULL
)
1234 pcap__delete_buffer(in_buffer
, scanner
);
1235 if (scanner
!= NULL
)
1236 pcap_lex_destroy(scanner
);
1239 * Clean up our own allocated memory.
1241 freechunks(&cstate
);
1251 * entry point for using the compiler with no pcap open
1252 * pass in all the stuff that is needed explicitly instead.
1255 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1256 struct bpf_program
*program
,
1257 const char *buf
, int optimize
, bpf_u_int32 mask
)
1262 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1264 return (PCAP_ERROR
);
1265 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1271 * Clean up a "struct bpf_program" by freeing all the memory allocated
1275 pcap_freecode(struct bpf_program
*program
)
1277 program
->bf_len
= 0;
1278 if (program
->bf_insns
!= NULL
) {
1279 free((char *)program
->bf_insns
);
1280 program
->bf_insns
= NULL
;
1285 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1286 * which of the jt and jf fields has been resolved and which is a pointer
1287 * back to another unresolved block (or nil). At least one of the fields
1288 * in each block is already resolved.
1291 backpatch(struct block
*list
, struct block
*target
)
1308 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1309 * which of jt and jf is the link.
1312 merge(struct block
*b0
, struct block
*b1
)
1314 register struct block
**p
= &b0
;
1316 /* Find end of list. */
1318 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1320 /* Concatenate the lists. */
1325 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1328 * Catch errors reported by us and routines below us, and return -1
1331 if (setjmp(cstate
->top_ctx
))
1335 * Insert before the statements of the first (root) block any
1336 * statements needed to load the lengths of any variable-length
1337 * headers into registers.
1339 * XXX - a fancier strategy would be to insert those before the
1340 * statements of all blocks that use those lengths and that
1341 * have no predecessors that use them, so that we only compute
1342 * the lengths if we need them. There might be even better
1343 * approaches than that.
1345 * However, those strategies would be more complicated, and
1346 * as we don't generate code to compute a length if the
1347 * program has no tests that use the length, and as most
1348 * tests will probably use those lengths, we would just
1349 * postpone computing the lengths so that it's not done
1350 * for tests that fail early, and it's not clear that's
1353 insert_compute_vloffsets(cstate
, p
->head
);
1356 * For DLT_PPI captures, generate a check of the per-packet
1357 * DLT value to make sure it's DLT_IEEE802_11.
1359 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1360 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1361 * with appropriate Ethernet information and use that rather
1362 * than using something such as DLT_PPI where you don't know
1363 * the link-layer header type until runtime, which, in the
1364 * general case, would force us to generate both Ethernet *and*
1365 * 802.11 code (*and* anything else for which PPI is used)
1366 * and choose between them early in the BPF program?
1368 if (cstate
->linktype
== DLT_PPI
) {
1369 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1370 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1371 gen_and(ppi_dlt_check
, p
);
1374 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1375 p
->sense
= !p
->sense
;
1376 backpatch(p
, gen_retblk_internal(cstate
, 0));
1377 cstate
->ic
.root
= p
->head
;
1382 gen_and(struct block
*b0
, struct block
*b1
)
1384 backpatch(b0
, b1
->head
);
1385 b0
->sense
= !b0
->sense
;
1386 b1
->sense
= !b1
->sense
;
1388 b1
->sense
= !b1
->sense
;
1389 b1
->head
= b0
->head
;
1393 gen_or(struct block
*b0
, struct block
*b1
)
1395 b0
->sense
= !b0
->sense
;
1396 backpatch(b0
, b1
->head
);
1397 b0
->sense
= !b0
->sense
;
1399 b1
->head
= b0
->head
;
1403 gen_not(struct block
*b
)
1405 b
->sense
= !b
->sense
;
1408 static struct block
*
1409 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1410 u_int size
, bpf_u_int32 v
)
1412 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1415 static struct block
*
1416 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1417 u_int size
, bpf_u_int32 v
)
1419 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1422 static struct block
*
1423 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1424 u_int size
, bpf_u_int32 v
)
1426 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1429 static struct block
*
1430 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1431 u_int size
, bpf_u_int32 v
)
1433 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1436 static struct block
*
1437 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1438 u_int size
, bpf_u_int32 v
)
1440 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1443 static struct block
*
1444 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1445 u_int size
, bpf_u_int32 v
)
1447 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1450 static struct block
*
1451 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1452 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1455 * For any A: if mask == 0, it means A & mask == 0, so the result is
1456 * true iff v == 0. In this case ideally the caller should have
1457 * skipped this invocation and have fewer statement blocks to juggle.
1458 * If the caller could have skipped, but has not, produce a block with
1461 * This could be done in gen_ncmp() in a more generic way, but this
1462 * function is the only code path that can have mask == 0.
1465 return v
? gen_false(cstate
) : gen_true(cstate
);
1467 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1470 static struct block
*
1471 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1472 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1474 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1477 static struct block
*
1478 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1479 u_int size
, const u_char
*v
)
1481 register struct block
*b
, *tmp
;
1485 register const u_char
*p
= &v
[size
- 4];
1487 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1495 register const u_char
*p
= &v
[size
- 2];
1497 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1505 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1513 static struct block
*
1514 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1516 struct block
*b
= new_block(cstate
, JMP(jtype
));
1522 static struct block
*
1523 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1525 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1528 static struct block
*
1529 gen_unset(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1531 struct block
*b
= gen_set(cstate
, v
, stmts
);
1537 * AND the field of size "size" at offset "offset" relative to the header
1538 * specified by "offrel" with "mask", and compare it with the value "v"
1539 * with the test specified by "jtype"; if "reverse" is true, the test
1540 * should test the opposite of "jtype".
1542 static struct block
*
1543 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1544 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1547 struct slist
*s
, *s2
;
1550 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1552 if (mask
!= 0xffffffff) {
1553 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1558 b
= gen_jmp(cstate
, jtype
, v
, s
);
1565 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1567 cstate
->pcap_fddipad
= p
->fddipad
;
1570 * We start out with only one link-layer header.
1572 cstate
->outermostlinktype
= pcap_datalink(p
);
1573 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1574 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1575 cstate
->off_outermostlinkhdr
.reg
= -1;
1577 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1578 cstate
->off_prevlinkhdr
.constant_part
= 0;
1579 cstate
->off_prevlinkhdr
.is_variable
= 0;
1580 cstate
->off_prevlinkhdr
.reg
= -1;
1582 cstate
->linktype
= cstate
->outermostlinktype
;
1583 cstate
->off_linkhdr
.constant_part
= 0;
1584 cstate
->off_linkhdr
.is_variable
= 0;
1585 cstate
->off_linkhdr
.reg
= -1;
1590 cstate
->off_linkpl
.constant_part
= 0;
1591 cstate
->off_linkpl
.is_variable
= 0;
1592 cstate
->off_linkpl
.reg
= -1;
1594 cstate
->off_linktype
.constant_part
= 0;
1595 cstate
->off_linktype
.is_variable
= 0;
1596 cstate
->off_linktype
.reg
= -1;
1599 * Assume it's not raw ATM with a pseudo-header, for now.
1602 cstate
->off_vpi
= OFFSET_NOT_SET
;
1603 cstate
->off_vci
= OFFSET_NOT_SET
;
1604 cstate
->off_proto
= OFFSET_NOT_SET
;
1605 cstate
->off_payload
= OFFSET_NOT_SET
;
1608 * And not encapsulated with either Geneve or VXLAN.
1610 cstate
->is_encap
= 0;
1613 * No variable length VLAN offset by default
1615 cstate
->is_vlan_vloffset
= 0;
1618 * And assume we're not doing SS7.
1620 cstate
->off_li
= OFFSET_NOT_SET
;
1621 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1622 cstate
->off_sio
= OFFSET_NOT_SET
;
1623 cstate
->off_opc
= OFFSET_NOT_SET
;
1624 cstate
->off_dpc
= OFFSET_NOT_SET
;
1625 cstate
->off_sls
= OFFSET_NOT_SET
;
1627 cstate
->label_stack_depth
= 0;
1628 cstate
->vlan_stack_depth
= 0;
1630 switch (cstate
->linktype
) {
1633 cstate
->off_linktype
.constant_part
= 2;
1634 cstate
->off_linkpl
.constant_part
= 6;
1635 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1636 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1639 case DLT_ARCNET_LINUX
:
1640 cstate
->off_linktype
.constant_part
= 4;
1641 cstate
->off_linkpl
.constant_part
= 8;
1642 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1643 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1647 cstate
->off_linktype
.constant_part
= 12;
1648 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1649 cstate
->off_nl
= 0; /* Ethernet II */
1650 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1655 * SLIP doesn't have a link level type. The 16 byte
1656 * header is hacked into our SLIP driver.
1658 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1659 cstate
->off_linkpl
.constant_part
= 16;
1661 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1664 case DLT_SLIP_BSDOS
:
1665 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1666 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1668 cstate
->off_linkpl
.constant_part
= 24;
1670 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1675 cstate
->off_linktype
.constant_part
= 0;
1676 cstate
->off_linkpl
.constant_part
= 4;
1678 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1682 cstate
->off_linktype
.constant_part
= 0;
1683 cstate
->off_linkpl
.constant_part
= 12;
1685 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1690 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1691 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1692 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1693 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1694 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1696 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1701 * This does not include the Ethernet header, and
1702 * only covers session state.
1704 cstate
->off_linktype
.constant_part
= 6;
1705 cstate
->off_linkpl
.constant_part
= 8;
1707 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1711 cstate
->off_linktype
.constant_part
= 5;
1712 cstate
->off_linkpl
.constant_part
= 24;
1714 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1719 * FDDI doesn't really have a link-level type field.
1720 * We set "off_linktype" to the offset of the LLC header.
1722 * To check for Ethernet types, we assume that SSAP = SNAP
1723 * is being used and pick out the encapsulated Ethernet type.
1724 * XXX - should we generate code to check for SNAP?
1726 cstate
->off_linktype
.constant_part
= 13;
1727 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1728 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1729 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1730 cstate
->off_nl
= 8; /* 802.2+SNAP */
1731 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1736 * Token Ring doesn't really have a link-level type field.
1737 * We set "off_linktype" to the offset of the LLC header.
1739 * To check for Ethernet types, we assume that SSAP = SNAP
1740 * is being used and pick out the encapsulated Ethernet type.
1741 * XXX - should we generate code to check for SNAP?
1743 * XXX - the header is actually variable-length.
1744 * Some various Linux patched versions gave 38
1745 * as "off_linktype" and 40 as "off_nl"; however,
1746 * if a token ring packet has *no* routing
1747 * information, i.e. is not source-routed, the correct
1748 * values are 20 and 22, as they are in the vanilla code.
1750 * A packet is source-routed iff the uppermost bit
1751 * of the first byte of the source address, at an
1752 * offset of 8, has the uppermost bit set. If the
1753 * packet is source-routed, the total number of bytes
1754 * of routing information is 2 plus bits 0x1F00 of
1755 * the 16-bit value at an offset of 14 (shifted right
1756 * 8 - figure out which byte that is).
1758 cstate
->off_linktype
.constant_part
= 14;
1759 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1760 cstate
->off_nl
= 8; /* 802.2+SNAP */
1761 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1764 case DLT_PRISM_HEADER
:
1765 case DLT_IEEE802_11_RADIO_AVS
:
1766 case DLT_IEEE802_11_RADIO
:
1767 cstate
->off_linkhdr
.is_variable
= 1;
1768 /* Fall through, 802.11 doesn't have a variable link
1769 * prefix but is otherwise the same. */
1772 case DLT_IEEE802_11
:
1774 * 802.11 doesn't really have a link-level type field.
1775 * We set "off_linktype.constant_part" to the offset of
1778 * To check for Ethernet types, we assume that SSAP = SNAP
1779 * is being used and pick out the encapsulated Ethernet type.
1780 * XXX - should we generate code to check for SNAP?
1782 * We also handle variable-length radio headers here.
1783 * The Prism header is in theory variable-length, but in
1784 * practice it's always 144 bytes long. However, some
1785 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1786 * sometimes or always supply an AVS header, so we
1787 * have to check whether the radio header is a Prism
1788 * header or an AVS header, so, in practice, it's
1791 cstate
->off_linktype
.constant_part
= 24;
1792 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1793 cstate
->off_linkpl
.is_variable
= 1;
1794 cstate
->off_nl
= 8; /* 802.2+SNAP */
1795 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1800 * At the moment we treat PPI the same way that we treat
1801 * normal Radiotap encoded packets. The difference is in
1802 * the function that generates the code at the beginning
1803 * to compute the header length. Since this code generator
1804 * of PPI supports bare 802.11 encapsulation only (i.e.
1805 * the encapsulated DLT should be DLT_IEEE802_11) we
1806 * generate code to check for this too.
1808 cstate
->off_linktype
.constant_part
= 24;
1809 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1810 cstate
->off_linkpl
.is_variable
= 1;
1811 cstate
->off_linkhdr
.is_variable
= 1;
1812 cstate
->off_nl
= 8; /* 802.2+SNAP */
1813 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1816 case DLT_ATM_RFC1483
:
1817 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1819 * assume routed, non-ISO PDUs
1820 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1822 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1823 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1824 * latter would presumably be treated the way PPPoE
1825 * should be, so you can do "pppoe and udp port 2049"
1826 * or "pppoa and tcp port 80" and have it check for
1827 * PPPo{A,E} and a PPP protocol of IP and....
1829 cstate
->off_linktype
.constant_part
= 0;
1830 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1831 cstate
->off_nl
= 8; /* 802.2+SNAP */
1832 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1837 * Full Frontal ATM; you get AALn PDUs with an ATM
1841 cstate
->off_vpi
= SUNATM_VPI_POS
;
1842 cstate
->off_vci
= SUNATM_VCI_POS
;
1843 cstate
->off_proto
= PROTO_POS
;
1844 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1845 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1846 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1847 cstate
->off_nl
= 8; /* 802.2+SNAP */
1848 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1854 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1855 cstate
->off_linkpl
.constant_part
= 0;
1857 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1860 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1861 cstate
->off_linktype
.constant_part
= 14;
1862 cstate
->off_linkpl
.constant_part
= 16;
1864 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1867 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1868 cstate
->off_linktype
.constant_part
= 0;
1869 cstate
->off_linkpl
.constant_part
= 20;
1871 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1876 * LocalTalk does have a 1-byte type field in the LLAP header,
1877 * but really it just indicates whether there is a "short" or
1878 * "long" DDP packet following.
1880 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1881 cstate
->off_linkpl
.constant_part
= 0;
1883 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1886 case DLT_IP_OVER_FC
:
1888 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1889 * link-level type field. We set "off_linktype" to the
1890 * offset of the LLC header.
1892 * To check for Ethernet types, we assume that SSAP = SNAP
1893 * is being used and pick out the encapsulated Ethernet type.
1894 * XXX - should we generate code to check for SNAP? RFC
1895 * 2625 says SNAP should be used.
1897 cstate
->off_linktype
.constant_part
= 16;
1898 cstate
->off_linkpl
.constant_part
= 16;
1899 cstate
->off_nl
= 8; /* 802.2+SNAP */
1900 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1905 * XXX - we should set this to handle SNAP-encapsulated
1906 * frames (NLPID of 0x80).
1908 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1909 cstate
->off_linkpl
.constant_part
= 0;
1911 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1915 * the only BPF-interesting FRF.16 frames are non-control frames;
1916 * Frame Relay has a variable length link-layer
1917 * so lets start with offset 4 for now and increments later on (FIXME);
1920 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1921 cstate
->off_linkpl
.constant_part
= 0;
1923 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1926 case DLT_APPLE_IP_OVER_IEEE1394
:
1927 cstate
->off_linktype
.constant_part
= 16;
1928 cstate
->off_linkpl
.constant_part
= 18;
1930 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1933 case DLT_SYMANTEC_FIREWALL
:
1934 cstate
->off_linktype
.constant_part
= 6;
1935 cstate
->off_linkpl
.constant_part
= 44;
1936 cstate
->off_nl
= 0; /* Ethernet II */
1937 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1941 cstate
->off_linktype
.constant_part
= 0;
1942 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1943 cstate
->off_linkpl
.is_variable
= 1;
1945 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1948 case DLT_JUNIPER_MFR
:
1949 case DLT_JUNIPER_MLFR
:
1950 case DLT_JUNIPER_MLPPP
:
1951 case DLT_JUNIPER_PPP
:
1952 case DLT_JUNIPER_CHDLC
:
1953 case DLT_JUNIPER_FRELAY
:
1954 cstate
->off_linktype
.constant_part
= 4;
1955 cstate
->off_linkpl
.constant_part
= 4;
1957 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1960 case DLT_JUNIPER_ATM1
:
1961 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1962 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1964 cstate
->off_nl_nosnap
= 10;
1967 case DLT_JUNIPER_ATM2
:
1968 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1969 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1971 cstate
->off_nl_nosnap
= 10;
1974 /* frames captured on a Juniper PPPoE service PIC
1975 * contain raw ethernet frames */
1976 case DLT_JUNIPER_PPPOE
:
1977 case DLT_JUNIPER_ETHER
:
1978 cstate
->off_linkpl
.constant_part
= 14;
1979 cstate
->off_linktype
.constant_part
= 16;
1980 cstate
->off_nl
= 18; /* Ethernet II */
1981 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1984 case DLT_JUNIPER_PPPOE_ATM
:
1985 cstate
->off_linktype
.constant_part
= 4;
1986 cstate
->off_linkpl
.constant_part
= 6;
1988 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1991 case DLT_JUNIPER_GGSN
:
1992 cstate
->off_linktype
.constant_part
= 6;
1993 cstate
->off_linkpl
.constant_part
= 12;
1995 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1998 case DLT_JUNIPER_ES
:
1999 cstate
->off_linktype
.constant_part
= 6;
2000 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2001 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2002 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2005 case DLT_JUNIPER_MONITOR
:
2006 cstate
->off_linktype
.constant_part
= 12;
2007 cstate
->off_linkpl
.constant_part
= 12;
2008 cstate
->off_nl
= 0; /* raw IP/IP6 header */
2009 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2012 case DLT_BACNET_MS_TP
:
2013 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2014 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2015 cstate
->off_nl
= OFFSET_NOT_SET
;
2016 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2019 case DLT_JUNIPER_SERVICES
:
2020 cstate
->off_linktype
.constant_part
= 12;
2021 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2022 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2023 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2026 case DLT_JUNIPER_VP
:
2027 cstate
->off_linktype
.constant_part
= 18;
2028 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2029 cstate
->off_nl
= OFFSET_NOT_SET
;
2030 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2033 case DLT_JUNIPER_ST
:
2034 cstate
->off_linktype
.constant_part
= 18;
2035 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2036 cstate
->off_nl
= OFFSET_NOT_SET
;
2037 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2040 case DLT_JUNIPER_ISM
:
2041 cstate
->off_linktype
.constant_part
= 8;
2042 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2043 cstate
->off_nl
= OFFSET_NOT_SET
;
2044 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2047 case DLT_JUNIPER_VS
:
2048 case DLT_JUNIPER_SRX_E2E
:
2049 case DLT_JUNIPER_FIBRECHANNEL
:
2050 case DLT_JUNIPER_ATM_CEMIC
:
2051 cstate
->off_linktype
.constant_part
= 8;
2052 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2053 cstate
->off_nl
= OFFSET_NOT_SET
;
2054 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2059 cstate
->off_li_hsl
= 4;
2060 cstate
->off_sio
= 3;
2061 cstate
->off_opc
= 4;
2062 cstate
->off_dpc
= 4;
2063 cstate
->off_sls
= 7;
2064 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2065 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2066 cstate
->off_nl
= OFFSET_NOT_SET
;
2067 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2070 case DLT_MTP2_WITH_PHDR
:
2072 cstate
->off_li_hsl
= 8;
2073 cstate
->off_sio
= 7;
2074 cstate
->off_opc
= 8;
2075 cstate
->off_dpc
= 8;
2076 cstate
->off_sls
= 11;
2077 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2078 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2079 cstate
->off_nl
= OFFSET_NOT_SET
;
2080 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2084 cstate
->off_li
= 22;
2085 cstate
->off_li_hsl
= 24;
2086 cstate
->off_sio
= 23;
2087 cstate
->off_opc
= 24;
2088 cstate
->off_dpc
= 24;
2089 cstate
->off_sls
= 27;
2090 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2091 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2092 cstate
->off_nl
= OFFSET_NOT_SET
;
2093 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2097 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2098 cstate
->off_linkpl
.constant_part
= 4;
2100 cstate
->off_nl_nosnap
= 0;
2105 * Currently, only raw "link[N:M]" filtering is supported.
2107 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2108 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2109 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2110 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2114 cstate
->off_linktype
.constant_part
= 1;
2115 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2117 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2120 case DLT_NETANALYZER
:
2121 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2122 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2123 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2124 cstate
->off_nl
= 0; /* Ethernet II */
2125 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2128 case DLT_NETANALYZER_TRANSPARENT
:
2129 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2130 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2131 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2132 cstate
->off_nl
= 0; /* Ethernet II */
2133 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2138 * For values in the range in which we've assigned new
2139 * DLT_ values, only raw "link[N:M]" filtering is supported.
2141 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2142 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2143 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2144 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2145 cstate
->off_nl
= OFFSET_NOT_SET
;
2146 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2148 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2149 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2155 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2160 * Load a value relative to the specified absolute offset.
2162 static struct slist
*
2163 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2164 u_int offset
, u_int size
)
2166 struct slist
*s
, *s2
;
2168 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2171 * If "s" is non-null, it has code to arrange that the X register
2172 * contains the variable part of the absolute offset, so we
2173 * generate a load relative to that, with an offset of
2174 * abs_offset->constant_part + offset.
2176 * Otherwise, we can do an absolute load with an offset of
2177 * abs_offset->constant_part + offset.
2181 * "s" points to a list of statements that puts the
2182 * variable part of the absolute offset into the X register.
2183 * Do an indirect load, to use the X register as an offset.
2185 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2186 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2190 * There is no variable part of the absolute offset, so
2191 * just do an absolute load.
2193 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2194 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2200 * Load a value relative to the beginning of the specified header.
2202 static struct slist
*
2203 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2206 struct slist
*s
, *s2
;
2209 * Squelch warnings from compilers that *don't* assume that
2210 * offrel always has a valid enum value and therefore don't
2211 * assume that we'll always go through one of the case arms.
2213 * If we have a default case, compilers that *do* assume that
2214 * will then complain about the default case code being
2217 * Damned if you do, damned if you don't.
2224 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2229 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2232 case OR_PREVLINKHDR
:
2233 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2237 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2240 case OR_PREVMPLSHDR
:
2241 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2245 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2248 case OR_LINKPL_NOSNAP
:
2249 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2253 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2258 * Load the X register with the length of the IPv4 header
2259 * (plus the offset of the link-layer header, if it's
2260 * preceded by a variable-length header such as a radio
2261 * header), in bytes.
2263 s
= gen_loadx_iphdrlen(cstate
);
2266 * Load the item at {offset of the link-layer payload} +
2267 * {offset, relative to the start of the link-layer
2268 * payload, of the IPv4 header} + {length of the IPv4 header} +
2269 * {specified offset}.
2271 * If the offset of the link-layer payload is variable,
2272 * the variable part of that offset is included in the
2273 * value in the X register, and we include the constant
2274 * part in the offset of the load.
2276 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2277 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2282 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2289 * Generate code to load into the X register the sum of the length of
2290 * the IPv4 header and the variable part of the offset of the link-layer
2293 static struct slist
*
2294 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2296 struct slist
*s
, *s2
;
2298 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2301 * The offset of the link-layer payload has a variable
2302 * part. "s" points to a list of statements that put
2303 * the variable part of that offset into the X register.
2305 * The 4*([k]&0xf) addressing mode can't be used, as we
2306 * don't have a constant offset, so we have to load the
2307 * value in question into the A register and add to it
2308 * the value from the X register.
2310 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2311 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2313 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2316 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2321 * The A register now contains the length of the IP header.
2322 * We need to add to it the variable part of the offset of
2323 * the link-layer payload, which is still in the X
2324 * register, and move the result into the X register.
2326 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2327 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2330 * The offset of the link-layer payload is a constant,
2331 * so no code was generated to load the (nonexistent)
2332 * variable part of that offset.
2334 * This means we can use the 4*([k]&0xf) addressing
2335 * mode. Load the length of the IPv4 header, which
2336 * is at an offset of cstate->off_nl from the beginning of
2337 * the link-layer payload, and thus at an offset of
2338 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2339 * of the raw packet data, using that addressing mode.
2341 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2342 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2348 static struct block
*
2349 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2353 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2355 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2358 static inline struct block
*
2359 gen_true(compiler_state_t
*cstate
)
2361 return gen_uncond(cstate
, 1);
2364 static inline struct block
*
2365 gen_false(compiler_state_t
*cstate
)
2367 return gen_uncond(cstate
, 0);
2371 * Generate code to match a particular packet type.
2373 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2374 * value, if <= ETHERMTU. We use that to determine whether to
2375 * match the type/length field or to check the type/length field for
2376 * a value <= ETHERMTU to see whether it's a type field and then do
2377 * the appropriate test.
2379 static struct block
*
2380 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2382 struct block
*b0
, *b1
;
2388 case LLCSAP_NETBEUI
:
2390 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2391 * so we check the DSAP and SSAP.
2393 * LLCSAP_IP checks for IP-over-802.2, rather
2394 * than IP-over-Ethernet or IP-over-SNAP.
2396 * XXX - should we check both the DSAP and the
2397 * SSAP, like this, or should we check just the
2398 * DSAP, as we do for other types <= ETHERMTU
2399 * (i.e., other SAP values)?
2401 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2402 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2410 * Ethernet_II frames, which are Ethernet
2411 * frames with a frame type of ETHERTYPE_IPX;
2413 * Ethernet_802.3 frames, which are 802.3
2414 * frames (i.e., the type/length field is
2415 * a length field, <= ETHERMTU, rather than
2416 * a type field) with the first two bytes
2417 * after the Ethernet/802.3 header being
2420 * Ethernet_802.2 frames, which are 802.3
2421 * frames with an 802.2 LLC header and
2422 * with the IPX LSAP as the DSAP in the LLC
2425 * Ethernet_SNAP frames, which are 802.3
2426 * frames with an LLC header and a SNAP
2427 * header and with an OUI of 0x000000
2428 * (encapsulated Ethernet) and a protocol
2429 * ID of ETHERTYPE_IPX in the SNAP header.
2431 * XXX - should we generate the same code both
2432 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2436 * This generates code to check both for the
2437 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2439 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2440 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2444 * Now we add code to check for SNAP frames with
2445 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2447 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2451 * Now we generate code to check for 802.3
2452 * frames in general.
2454 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2457 * Now add the check for 802.3 frames before the
2458 * check for Ethernet_802.2 and Ethernet_802.3,
2459 * as those checks should only be done on 802.3
2460 * frames, not on Ethernet frames.
2465 * Now add the check for Ethernet_II frames, and
2466 * do that before checking for the other frame
2469 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2473 case ETHERTYPE_ATALK
:
2474 case ETHERTYPE_AARP
:
2476 * EtherTalk (AppleTalk protocols on Ethernet link
2477 * layer) may use 802.2 encapsulation.
2481 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2482 * we check for an Ethernet type field less or equal than
2483 * 1500, which means it's an 802.3 length field.
2485 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2488 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2489 * SNAP packets with an organization code of
2490 * 0x080007 (Apple, for Appletalk) and a protocol
2491 * type of ETHERTYPE_ATALK (Appletalk).
2493 * 802.2-encapsulated ETHERTYPE_AARP packets are
2494 * SNAP packets with an organization code of
2495 * 0x000000 (encapsulated Ethernet) and a protocol
2496 * type of ETHERTYPE_AARP (Appletalk ARP).
2498 if (ll_proto
== ETHERTYPE_ATALK
)
2499 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2500 else /* ll_proto == ETHERTYPE_AARP */
2501 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2505 * Check for Ethernet encapsulation (Ethertalk
2506 * phase 1?); we just check for the Ethernet
2509 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2515 if (ll_proto
<= ETHERMTU
) {
2516 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2518 * This is an LLC SAP value, so the frames
2519 * that match would be 802.2 frames.
2520 * Check that the frame is an 802.2 frame
2521 * (i.e., that the length/type field is
2522 * a length field, <= ETHERMTU) and
2523 * then check the DSAP.
2525 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2526 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2530 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2532 * This is an Ethernet type, so compare
2533 * the length/type field with it (if
2534 * the frame is an 802.2 frame, the length
2535 * field will be <= ETHERMTU, and, as
2536 * "ll_proto" is > ETHERMTU, this test
2537 * will fail and the frame won't match,
2538 * which is what we want).
2540 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2545 static struct block
*
2546 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2549 * For DLT_NULL, the link-layer header is a 32-bit word
2550 * containing an AF_ value in *host* byte order, and for
2551 * DLT_ENC, the link-layer header begins with a 32-bit
2552 * word containing an AF_ value in host byte order.
2554 * In addition, if we're reading a saved capture file,
2555 * the host byte order in the capture may not be the
2556 * same as the host byte order on this machine.
2558 * For DLT_LOOP, the link-layer header is a 32-bit
2559 * word containing an AF_ value in *network* byte order.
2561 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2563 * The AF_ value is in host byte order, but the BPF
2564 * interpreter will convert it to network byte order.
2566 * If this is a save file, and it's from a machine
2567 * with the opposite byte order to ours, we byte-swap
2570 * Then we run it through "htonl()", and generate
2571 * code to compare against the result.
2573 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2574 ll_proto
= SWAPLONG(ll_proto
);
2575 ll_proto
= htonl(ll_proto
);
2577 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2581 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2582 * or IPv6 then we have an error.
2584 static struct block
*
2585 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2590 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2593 case ETHERTYPE_IPV6
:
2594 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2601 return gen_false(cstate
);
2605 * Generate code to match a particular packet type.
2607 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2608 * value, if <= ETHERMTU. We use that to determine whether to
2609 * match the type field or to check the type field for the special
2610 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2612 static struct block
*
2613 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2615 struct block
*b0
, *b1
;
2621 case LLCSAP_NETBEUI
:
2623 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2624 * so we check the DSAP and SSAP.
2626 * LLCSAP_IP checks for IP-over-802.2, rather
2627 * than IP-over-Ethernet or IP-over-SNAP.
2629 * XXX - should we check both the DSAP and the
2630 * SSAP, like this, or should we check just the
2631 * DSAP, as we do for other types <= ETHERMTU
2632 * (i.e., other SAP values)?
2634 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2635 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2641 * Ethernet_II frames, which are Ethernet
2642 * frames with a frame type of ETHERTYPE_IPX;
2644 * Ethernet_802.3 frames, which have a frame
2645 * type of LINUX_SLL_P_802_3;
2647 * Ethernet_802.2 frames, which are 802.3
2648 * frames with an 802.2 LLC header (i.e, have
2649 * a frame type of LINUX_SLL_P_802_2) and
2650 * with the IPX LSAP as the DSAP in the LLC
2653 * Ethernet_SNAP frames, which are 802.3
2654 * frames with an LLC header and a SNAP
2655 * header and with an OUI of 0x000000
2656 * (encapsulated Ethernet) and a protocol
2657 * ID of ETHERTYPE_IPX in the SNAP header.
2659 * First, do the checks on LINUX_SLL_P_802_2
2660 * frames; generate the check for either
2661 * Ethernet_802.2 or Ethernet_SNAP frames, and
2662 * then put a check for LINUX_SLL_P_802_2 frames
2665 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2666 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2668 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2672 * Now check for 802.3 frames and OR that with
2673 * the previous test.
2675 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2679 * Now add the check for Ethernet_II frames, and
2680 * do that before checking for the other frame
2683 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2687 case ETHERTYPE_ATALK
:
2688 case ETHERTYPE_AARP
:
2690 * EtherTalk (AppleTalk protocols on Ethernet link
2691 * layer) may use 802.2 encapsulation.
2695 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2696 * we check for the 802.2 protocol type in the
2697 * "Ethernet type" field.
2699 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2702 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2703 * SNAP packets with an organization code of
2704 * 0x080007 (Apple, for Appletalk) and a protocol
2705 * type of ETHERTYPE_ATALK (Appletalk).
2707 * 802.2-encapsulated ETHERTYPE_AARP packets are
2708 * SNAP packets with an organization code of
2709 * 0x000000 (encapsulated Ethernet) and a protocol
2710 * type of ETHERTYPE_AARP (Appletalk ARP).
2712 if (ll_proto
== ETHERTYPE_ATALK
)
2713 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2714 else /* ll_proto == ETHERTYPE_AARP */
2715 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2719 * Check for Ethernet encapsulation (Ethertalk
2720 * phase 1?); we just check for the Ethernet
2723 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2729 if (ll_proto
<= ETHERMTU
) {
2730 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2732 * This is an LLC SAP value, so the frames
2733 * that match would be 802.2 frames.
2734 * Check for the 802.2 protocol type
2735 * in the "Ethernet type" field, and
2736 * then check the DSAP.
2738 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2739 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2744 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2746 * This is an Ethernet type, so compare
2747 * the length/type field with it (if
2748 * the frame is an 802.2 frame, the length
2749 * field will be <= ETHERMTU, and, as
2750 * "ll_proto" is > ETHERMTU, this test
2751 * will fail and the frame won't match,
2752 * which is what we want).
2754 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2760 * Load a value relative to the beginning of the link-layer header after the
2763 static struct slist
*
2764 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2766 struct slist
*s1
, *s2
;
2769 * Generate code to load the length of the pflog header into
2770 * the register assigned to hold that length, if one has been
2771 * assigned. (If one hasn't been assigned, no code we've
2772 * generated uses that prefix, so we don't need to generate any
2775 if (cstate
->off_linkpl
.reg
!= -1) {
2777 * The length is in the first byte of the header.
2779 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2783 * Round it up to a multiple of 4.
2784 * Add 3, and clear the lower 2 bits.
2786 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2789 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2790 s2
->s
.k
= 0xfffffffc;
2794 * Now allocate a register to hold that value and store
2797 s2
= new_stmt(cstate
, BPF_ST
);
2798 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2802 * Now move it into the X register.
2804 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2812 static struct slist
*
2813 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2815 struct slist
*s1
, *s2
;
2816 struct slist
*sjeq_avs_cookie
;
2817 struct slist
*sjcommon
;
2820 * This code is not compatible with the optimizer, as
2821 * we are generating jmp instructions within a normal
2822 * slist of instructions
2824 cstate
->no_optimize
= 1;
2827 * Generate code to load the length of the radio header into
2828 * the register assigned to hold that length, if one has been
2829 * assigned. (If one hasn't been assigned, no code we've
2830 * generated uses that prefix, so we don't need to generate any
2833 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2834 * or always use the AVS header rather than the Prism header.
2835 * We load a 4-byte big-endian value at the beginning of the
2836 * raw packet data, and see whether, when masked with 0xFFFFF000,
2837 * it's equal to 0x80211000. If so, that indicates that it's
2838 * an AVS header (the masked-out bits are the version number).
2839 * Otherwise, it's a Prism header.
2841 * XXX - the Prism header is also, in theory, variable-length,
2842 * but no known software generates headers that aren't 144
2845 if (cstate
->off_linkhdr
.reg
!= -1) {
2849 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2853 * AND it with 0xFFFFF000.
2855 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2856 s2
->s
.k
= 0xFFFFF000;
2860 * Compare with 0x80211000.
2862 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2863 sjeq_avs_cookie
->s
.k
= 0x80211000;
2864 sappend(s1
, sjeq_avs_cookie
);
2869 * The 4 bytes at an offset of 4 from the beginning of
2870 * the AVS header are the length of the AVS header.
2871 * That field is big-endian.
2873 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2876 sjeq_avs_cookie
->s
.jt
= s2
;
2879 * Now jump to the code to allocate a register
2880 * into which to save the header length and
2881 * store the length there. (The "jump always"
2882 * instruction needs to have the k field set;
2883 * it's added to the PC, so, as we're jumping
2884 * over a single instruction, it should be 1.)
2886 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2888 sappend(s1
, sjcommon
);
2891 * Now for the code that handles the Prism header.
2892 * Just load the length of the Prism header (144)
2893 * into the A register. Have the test for an AVS
2894 * header branch here if we don't have an AVS header.
2896 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2899 sjeq_avs_cookie
->s
.jf
= s2
;
2902 * Now allocate a register to hold that value and store
2903 * it. The code for the AVS header will jump here after
2904 * loading the length of the AVS header.
2906 s2
= new_stmt(cstate
, BPF_ST
);
2907 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2909 sjcommon
->s
.jf
= s2
;
2912 * Now move it into the X register.
2914 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2922 static struct slist
*
2923 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2925 struct slist
*s1
, *s2
;
2928 * Generate code to load the length of the AVS header into
2929 * the register assigned to hold that length, if one has been
2930 * assigned. (If one hasn't been assigned, no code we've
2931 * generated uses that prefix, so we don't need to generate any
2934 if (cstate
->off_linkhdr
.reg
!= -1) {
2936 * The 4 bytes at an offset of 4 from the beginning of
2937 * the AVS header are the length of the AVS header.
2938 * That field is big-endian.
2940 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2944 * Now allocate a register to hold that value and store
2947 s2
= new_stmt(cstate
, BPF_ST
);
2948 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2952 * Now move it into the X register.
2954 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2962 static struct slist
*
2963 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2965 struct slist
*s1
, *s2
;
2968 * Generate code to load the length of the radiotap header into
2969 * the register assigned to hold that length, if one has been
2970 * assigned. (If one hasn't been assigned, no code we've
2971 * generated uses that prefix, so we don't need to generate any
2974 if (cstate
->off_linkhdr
.reg
!= -1) {
2976 * The 2 bytes at offsets of 2 and 3 from the beginning
2977 * of the radiotap header are the length of the radiotap
2978 * header; unfortunately, it's little-endian, so we have
2979 * to load it a byte at a time and construct the value.
2983 * Load the high-order byte, at an offset of 3, shift it
2984 * left a byte, and put the result in the X register.
2986 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2988 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2991 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2995 * Load the next byte, at an offset of 2, and OR the
2996 * value from the X register into it.
2998 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3001 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3005 * Now allocate a register to hold that value and store
3008 s2
= new_stmt(cstate
, BPF_ST
);
3009 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3013 * Now move it into the X register.
3015 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3024 * At the moment we treat PPI as normal Radiotap encoded
3025 * packets. The difference is in the function that generates
3026 * the code at the beginning to compute the header length.
3027 * Since this code generator of PPI supports bare 802.11
3028 * encapsulation only (i.e. the encapsulated DLT should be
3029 * DLT_IEEE802_11) we generate code to check for this too;
3030 * that's done in finish_parse().
3032 static struct slist
*
3033 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3035 struct slist
*s1
, *s2
;
3038 * Generate code to load the length of the radiotap header
3039 * into the register assigned to hold that length, if one has
3042 if (cstate
->off_linkhdr
.reg
!= -1) {
3044 * The 2 bytes at offsets of 2 and 3 from the beginning
3045 * of the radiotap header are the length of the radiotap
3046 * header; unfortunately, it's little-endian, so we have
3047 * to load it a byte at a time and construct the value.
3051 * Load the high-order byte, at an offset of 3, shift it
3052 * left a byte, and put the result in the X register.
3054 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3056 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3059 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3063 * Load the next byte, at an offset of 2, and OR the
3064 * value from the X register into it.
3066 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3069 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3073 * Now allocate a register to hold that value and store
3076 s2
= new_stmt(cstate
, BPF_ST
);
3077 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3081 * Now move it into the X register.
3083 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3092 * Load a value relative to the beginning of the link-layer header after the 802.11
3093 * header, i.e. LLC_SNAP.
3094 * The link-layer header doesn't necessarily begin at the beginning
3095 * of the packet data; there might be a variable-length prefix containing
3096 * radio information.
3098 static struct slist
*
3099 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3102 struct slist
*sjset_data_frame_1
;
3103 struct slist
*sjset_data_frame_2
;
3104 struct slist
*sjset_qos
;
3105 struct slist
*sjset_radiotap_flags_present
;
3106 struct slist
*sjset_radiotap_ext_present
;
3107 struct slist
*sjset_radiotap_tsft_present
;
3108 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3109 struct slist
*s_roundup
;
3111 if (cstate
->off_linkpl
.reg
== -1) {
3113 * No register has been assigned to the offset of
3114 * the link-layer payload, which means nobody needs
3115 * it; don't bother computing it - just return
3116 * what we already have.
3122 * This code is not compatible with the optimizer, as
3123 * we are generating jmp instructions within a normal
3124 * slist of instructions
3126 cstate
->no_optimize
= 1;
3129 * If "s" is non-null, it has code to arrange that the X register
3130 * contains the length of the prefix preceding the link-layer
3133 * Otherwise, the length of the prefix preceding the link-layer
3134 * header is "off_outermostlinkhdr.constant_part".
3138 * There is no variable-length header preceding the
3139 * link-layer header.
3141 * Load the length of the fixed-length prefix preceding
3142 * the link-layer header (if any) into the X register,
3143 * and store it in the cstate->off_linkpl.reg register.
3144 * That length is off_outermostlinkhdr.constant_part.
3146 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3147 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3151 * The X register contains the offset of the beginning of the
3152 * link-layer header; add 24, which is the minimum length
3153 * of the MAC header for a data frame, to that, and store it
3154 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3155 * which is at the offset in the X register, with an indexed load.
3157 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3159 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3162 s2
= new_stmt(cstate
, BPF_ST
);
3163 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3166 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3171 * Check the Frame Control field to see if this is a data frame;
3172 * a data frame has the 0x08 bit (b3) in that field set and the
3173 * 0x04 bit (b2) clear.
3175 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3176 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3177 sappend(s
, sjset_data_frame_1
);
3180 * If b3 is set, test b2, otherwise go to the first statement of
3181 * the rest of the program.
3183 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3184 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3185 sappend(s
, sjset_data_frame_2
);
3186 sjset_data_frame_1
->s
.jf
= snext
;
3189 * If b2 is not set, this is a data frame; test the QoS bit.
3190 * Otherwise, go to the first statement of the rest of the
3193 sjset_data_frame_2
->s
.jt
= snext
;
3194 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3195 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3196 sappend(s
, sjset_qos
);
3199 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3201 * Otherwise, go to the first statement of the rest of the
3204 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3205 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3207 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3210 s2
= new_stmt(cstate
, BPF_ST
);
3211 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3215 * If we have a radiotap header, look at it to see whether
3216 * there's Atheros padding between the MAC-layer header
3219 * Note: all of the fields in the radiotap header are
3220 * little-endian, so we byte-swap all of the values
3221 * we test against, as they will be loaded as big-endian
3224 * XXX - in the general case, we would have to scan through
3225 * *all* the presence bits, if there's more than one word of
3226 * presence bits. That would require a loop, meaning that
3227 * we wouldn't be able to run the filter in the kernel.
3229 * We assume here that the Atheros adapters that insert the
3230 * annoying padding don't have multiple antennae and therefore
3231 * do not generate radiotap headers with multiple presence words.
3233 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3235 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3236 * in the first presence flag word?
3238 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3242 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3243 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3244 sappend(s
, sjset_radiotap_flags_present
);
3247 * If not, skip all of this.
3249 sjset_radiotap_flags_present
->s
.jf
= snext
;
3252 * Otherwise, is the "extension" bit set in that word?
3254 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3255 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3256 sappend(s
, sjset_radiotap_ext_present
);
3257 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3260 * If so, skip all of this.
3262 sjset_radiotap_ext_present
->s
.jt
= snext
;
3265 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3267 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3268 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3269 sappend(s
, sjset_radiotap_tsft_present
);
3270 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3273 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3274 * at an offset of 16 from the beginning of the raw packet
3275 * data (8 bytes for the radiotap header and 8 bytes for
3278 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3281 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3284 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3286 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3287 sjset_tsft_datapad
->s
.k
= 0x20;
3288 sappend(s
, sjset_tsft_datapad
);
3291 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3292 * at an offset of 8 from the beginning of the raw packet
3293 * data (8 bytes for the radiotap header).
3295 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3298 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3301 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3303 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3304 sjset_notsft_datapad
->s
.k
= 0x20;
3305 sappend(s
, sjset_notsft_datapad
);
3308 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3309 * set, round the length of the 802.11 header to
3310 * a multiple of 4. Do that by adding 3 and then
3311 * dividing by and multiplying by 4, which we do by
3314 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3315 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3316 sappend(s
, s_roundup
);
3317 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3320 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3321 s2
->s
.k
= (bpf_u_int32
)~3;
3323 s2
= new_stmt(cstate
, BPF_ST
);
3324 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3327 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3328 sjset_tsft_datapad
->s
.jf
= snext
;
3329 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3330 sjset_notsft_datapad
->s
.jf
= snext
;
3332 sjset_qos
->s
.jf
= snext
;
3338 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3342 /* There is an implicit dependency between the link
3343 * payload and link header since the payload computation
3344 * includes the variable part of the header. Therefore,
3345 * if nobody else has allocated a register for the link
3346 * header and we need it, do it now. */
3347 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3348 cstate
->off_linkhdr
.reg
== -1)
3349 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3352 * For link-layer types that have a variable-length header
3353 * preceding the link-layer header, generate code to load
3354 * the offset of the link-layer header into the register
3355 * assigned to that offset, if any.
3357 * XXX - this, and the next switch statement, won't handle
3358 * encapsulation of 802.11 or 802.11+radio information in
3359 * some other protocol stack. That's significantly more
3362 switch (cstate
->outermostlinktype
) {
3364 case DLT_PRISM_HEADER
:
3365 s
= gen_load_prism_llprefixlen(cstate
);
3368 case DLT_IEEE802_11_RADIO_AVS
:
3369 s
= gen_load_avs_llprefixlen(cstate
);
3372 case DLT_IEEE802_11_RADIO
:
3373 s
= gen_load_radiotap_llprefixlen(cstate
);
3377 s
= gen_load_ppi_llprefixlen(cstate
);
3386 * For link-layer types that have a variable-length link-layer
3387 * header, generate code to load the offset of the link-layer
3388 * payload into the register assigned to that offset, if any.
3390 switch (cstate
->outermostlinktype
) {
3392 case DLT_IEEE802_11
:
3393 case DLT_PRISM_HEADER
:
3394 case DLT_IEEE802_11_RADIO_AVS
:
3395 case DLT_IEEE802_11_RADIO
:
3397 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3401 s
= gen_load_pflog_llprefixlen(cstate
);
3406 * If there is no initialization yet and we need variable
3407 * length offsets for VLAN, initialize them to zero
3409 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3412 if (cstate
->off_linkpl
.reg
== -1)
3413 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3414 if (cstate
->off_linktype
.reg
== -1)
3415 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3417 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3419 s2
= new_stmt(cstate
, BPF_ST
);
3420 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3422 s2
= new_stmt(cstate
, BPF_ST
);
3423 s2
->s
.k
= cstate
->off_linktype
.reg
;
3428 * If we have any offset-loading code, append all the
3429 * existing statements in the block to those statements,
3430 * and make the resulting list the list of statements
3434 sappend(s
, b
->stmts
);
3440 * Take an absolute offset, and:
3442 * if it has no variable part, return NULL;
3444 * if it has a variable part, generate code to load the register
3445 * containing that variable part into the X register, returning
3446 * a pointer to that code - if no register for that offset has
3447 * been allocated, allocate it first.
3449 * (The code to set that register will be generated later, but will
3450 * be placed earlier in the code sequence.)
3452 static struct slist
*
3453 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3457 if (off
->is_variable
) {
3458 if (off
->reg
== -1) {
3460 * We haven't yet assigned a register for the
3461 * variable part of the offset of the link-layer
3462 * header; allocate one.
3464 off
->reg
= alloc_reg(cstate
);
3468 * Load the register containing the variable part of the
3469 * offset of the link-layer header into the X register.
3471 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3476 * That offset isn't variable, there's no variable part,
3477 * so we don't need to generate any code.
3484 * Map an Ethernet type to the equivalent PPP type.
3487 ethertype_to_ppptype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3494 case ETHERTYPE_IPV6
:
3500 case ETHERTYPE_ATALK
:
3511 * I'm assuming the "Bridging PDU"s that go
3512 * over PPP are Spanning Tree Protocol
3520 assert_maxval(cstate
, "PPP protocol", ll_proto
, UINT16_MAX
);
3521 return (uint16_t)ll_proto
;
3525 * Generate any tests that, for encapsulation of a link-layer packet
3526 * inside another protocol stack, need to be done to check for those
3527 * link-layer packets (and that haven't already been done by a check
3528 * for that encapsulation).
3530 static struct block
*
3531 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3533 if (cstate
->is_encap
)
3534 return gen_encap_ll_check(cstate
);
3536 switch (cstate
->prevlinktype
) {
3540 * This is LANE-encapsulated Ethernet; check that the LANE
3541 * packet doesn't begin with an LE Control marker, i.e.
3542 * that it's data, not a control message.
3544 * (We've already generated a test for LANE.)
3546 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3550 * No such tests are necessary.
3558 * The three different values we should check for when checking for an
3559 * IPv6 packet with DLT_NULL.
3561 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3562 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3563 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3566 * Generate code to match a particular packet type by matching the
3567 * link-layer type field or fields in the 802.2 LLC header.
3569 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3570 * value, if <= ETHERMTU.
3572 static struct block
*
3573 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3575 struct block
*b0
, *b1
, *b2
;
3577 /* are we checking MPLS-encapsulated packets? */
3578 if (cstate
->label_stack_depth
> 0)
3579 return gen_mpls_linktype(cstate
, ll_proto
);
3581 switch (cstate
->linktype
) {
3584 case DLT_NETANALYZER
:
3585 case DLT_NETANALYZER_TRANSPARENT
:
3586 /* Geneve has an EtherType regardless of whether there is an
3587 * L2 header. VXLAN always has an EtherType. */
3588 if (!cstate
->is_encap
)
3589 b0
= gen_prevlinkhdr_check(cstate
);
3593 b1
= gen_ether_linktype(cstate
, ll_proto
);
3601 assert_maxval(cstate
, "HDLC protocol", ll_proto
, UINT16_MAX
);
3605 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3609 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3613 case DLT_IEEE802_11
:
3614 case DLT_PRISM_HEADER
:
3615 case DLT_IEEE802_11_RADIO_AVS
:
3616 case DLT_IEEE802_11_RADIO
:
3619 * Check that we have a data frame.
3621 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3622 IEEE80211_FC0_TYPE_DATA
,
3623 IEEE80211_FC0_TYPE_MASK
);
3626 * Now check for the specified link-layer type.
3628 b1
= gen_llc_linktype(cstate
, ll_proto
);
3635 * XXX - check for LLC frames.
3637 return gen_llc_linktype(cstate
, ll_proto
);
3642 * XXX - check for LLC PDUs, as per IEEE 802.5.
3644 return gen_llc_linktype(cstate
, ll_proto
);
3647 case DLT_ATM_RFC1483
:
3649 case DLT_IP_OVER_FC
:
3650 return gen_llc_linktype(cstate
, ll_proto
);
3655 * Check for an LLC-encapsulated version of this protocol;
3656 * if we were checking for LANE, linktype would no longer
3659 * Check for LLC encapsulation and then check the protocol.
3661 b0
= gen_atm_prototype(cstate
, PT_LLC
);
3662 b1
= gen_llc_linktype(cstate
, ll_proto
);
3668 return gen_linux_sll_linktype(cstate
, ll_proto
);
3672 case DLT_SLIP_BSDOS
:
3675 * These types don't provide any type field; packets
3676 * are always IPv4 or IPv6.
3678 * XXX - for IPv4, check for a version number of 4, and,
3679 * for IPv6, check for a version number of 6?
3684 /* Check for a version number of 4. */
3685 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3687 case ETHERTYPE_IPV6
:
3688 /* Check for a version number of 6. */
3689 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3692 return gen_false(cstate
); /* always false */
3698 * Raw IPv4, so no type field.
3700 if (ll_proto
== ETHERTYPE_IP
)
3701 return gen_true(cstate
); /* always true */
3703 /* Checking for something other than IPv4; always false */
3704 return gen_false(cstate
);
3709 * Raw IPv6, so no type field.
3711 if (ll_proto
== ETHERTYPE_IPV6
)
3712 return gen_true(cstate
); /* always true */
3714 /* Checking for something other than IPv6; always false */
3715 return gen_false(cstate
);
3720 case DLT_PPP_SERIAL
:
3723 * We use Ethernet protocol types inside libpcap;
3724 * map them to the corresponding PPP protocol types.
3726 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3727 ethertype_to_ppptype(cstate
, ll_proto
));
3732 * We use Ethernet protocol types inside libpcap;
3733 * map them to the corresponding PPP protocol types.
3739 * Also check for Van Jacobson-compressed IP.
3740 * XXX - do this for other forms of PPP?
3742 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3743 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3745 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3750 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3751 ethertype_to_ppptype(cstate
, ll_proto
));
3761 return (gen_loopback_linktype(cstate
, AF_INET
));
3763 case ETHERTYPE_IPV6
:
3765 * AF_ values may, unfortunately, be platform-
3766 * dependent; AF_INET isn't, because everybody
3767 * used 4.2BSD's value, but AF_INET6 is, because
3768 * 4.2BSD didn't have a value for it (given that
3769 * IPv6 didn't exist back in the early 1980's),
3770 * and they all picked their own values.
3772 * This means that, if we're reading from a
3773 * savefile, we need to check for all the
3776 * If we're doing a live capture, we only need
3777 * to check for this platform's value; however,
3778 * Npcap uses 24, which isn't Windows's AF_INET6
3779 * value. (Given the multiple different values,
3780 * programs that read pcap files shouldn't be
3781 * checking for their platform's AF_INET6 value
3782 * anyway, they should check for all of the
3783 * possible values. and they might as well do
3784 * that even for live captures.)
3786 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3788 * Savefile - check for all three
3789 * possible IPv6 values.
3791 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3792 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3794 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3799 * Live capture, so we only need to
3800 * check for the value used on this
3805 * Npcap doesn't use Windows's AF_INET6,
3806 * as that collides with AF_IPX on
3807 * some BSDs (both have the value 23).
3808 * Instead, it uses 24.
3810 return (gen_loopback_linktype(cstate
, 24));
3813 return (gen_loopback_linktype(cstate
, AF_INET6
));
3814 #else /* AF_INET6 */
3816 * I guess this platform doesn't support
3817 * IPv6, so we just reject all packets.
3819 return gen_false(cstate
);
3820 #endif /* AF_INET6 */
3826 * Not a type on which we support filtering.
3827 * XXX - support those that have AF_ values
3828 * #defined on this platform, at least?
3830 return gen_false(cstate
);
3835 * af field is host byte order in contrast to the rest of
3838 if (ll_proto
== ETHERTYPE_IP
)
3839 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3841 else if (ll_proto
== ETHERTYPE_IPV6
)
3842 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3845 return gen_false(cstate
);
3849 case DLT_ARCNET_LINUX
:
3851 * XXX should we check for first fragment if the protocol
3857 return gen_false(cstate
);
3859 case ETHERTYPE_IPV6
:
3860 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3864 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3866 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3872 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3874 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3879 case ETHERTYPE_REVARP
:
3880 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3883 case ETHERTYPE_ATALK
:
3884 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3891 case ETHERTYPE_ATALK
:
3892 return gen_true(cstate
);
3894 return gen_false(cstate
);
3900 * XXX - assumes a 2-byte Frame Relay header with
3901 * DLCI and flags. What if the address is longer?
3907 * Check for the special NLPID for IP.
3909 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3911 case ETHERTYPE_IPV6
:
3913 * Check for the special NLPID for IPv6.
3915 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3919 * Check for several OSI protocols.
3921 * Frame Relay packets typically have an OSI
3922 * NLPID at the beginning; we check for each
3925 * What we check for is the NLPID and a frame
3926 * control field of UI, i.e. 0x03 followed
3929 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3930 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3931 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3937 return gen_false(cstate
);
3942 break; // not implemented
3944 case DLT_JUNIPER_MFR
:
3945 case DLT_JUNIPER_MLFR
:
3946 case DLT_JUNIPER_MLPPP
:
3947 case DLT_JUNIPER_ATM1
:
3948 case DLT_JUNIPER_ATM2
:
3949 case DLT_JUNIPER_PPPOE
:
3950 case DLT_JUNIPER_PPPOE_ATM
:
3951 case DLT_JUNIPER_GGSN
:
3952 case DLT_JUNIPER_ES
:
3953 case DLT_JUNIPER_MONITOR
:
3954 case DLT_JUNIPER_SERVICES
:
3955 case DLT_JUNIPER_ETHER
:
3956 case DLT_JUNIPER_PPP
:
3957 case DLT_JUNIPER_FRELAY
:
3958 case DLT_JUNIPER_CHDLC
:
3959 case DLT_JUNIPER_VP
:
3960 case DLT_JUNIPER_ST
:
3961 case DLT_JUNIPER_ISM
:
3962 case DLT_JUNIPER_VS
:
3963 case DLT_JUNIPER_SRX_E2E
:
3964 case DLT_JUNIPER_FIBRECHANNEL
:
3965 case DLT_JUNIPER_ATM_CEMIC
:
3967 /* just lets verify the magic number for now -
3968 * on ATM we may have up to 6 different encapsulations on the wire
3969 * and need a lot of heuristics to figure out that the payload
3972 * FIXME encapsulation specific BPF_ filters
3974 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3976 case DLT_BACNET_MS_TP
:
3977 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3980 return gen_ipnet_linktype(cstate
, ll_proto
);
3982 case DLT_LINUX_IRDA
:
3985 case DLT_MTP2_WITH_PHDR
:
3988 case DLT_LINUX_LAPD
:
3989 case DLT_USB_FREEBSD
:
3991 case DLT_USB_LINUX_MMAPPED
:
3993 case DLT_BLUETOOTH_HCI_H4
:
3994 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3996 case DLT_CAN_SOCKETCAN
:
3997 case DLT_IEEE802_15_4
:
3998 case DLT_IEEE802_15_4_LINUX
:
3999 case DLT_IEEE802_15_4_NONASK_PHY
:
4000 case DLT_IEEE802_15_4_NOFCS
:
4001 case DLT_IEEE802_15_4_TAP
:
4002 case DLT_IEEE802_16_MAC_CPS_RADIO
:
4005 case DLT_IPMB_KONTRON
:
4009 /* Using the fixed-size NFLOG header it is possible to tell only
4010 * the address family of the packet, other meaningful data is
4011 * either missing or behind TLVs.
4013 break; // not implemented
4017 * Does this link-layer header type have a field
4018 * indicating the type of the next protocol? If
4019 * so, off_linktype.constant_part will be the offset of that
4020 * field in the packet; if not, it will be OFFSET_NOT_SET.
4022 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4024 * Yes; assume it's an Ethernet type. (If
4025 * it's not, it needs to be handled specially
4028 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4029 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4033 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4034 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4038 * Check for an LLC SNAP packet with a given organization code and
4039 * protocol type; we check the entire contents of the 802.2 LLC and
4040 * snap headers, checking for DSAP and SSAP of SNAP and a control
4041 * field of 0x03 in the LLC header, and for the specified organization
4042 * code and protocol type in the SNAP header.
4044 static struct block
*
4045 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4047 u_char snapblock
[8];
4049 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4050 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4051 snapblock
[2] = 0x03; /* control = UI */
4052 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4053 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4054 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4055 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4056 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4057 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4061 * Generate code to match frames with an LLC header.
4063 static struct block
*
4064 gen_llc_internal(compiler_state_t
*cstate
)
4066 struct block
*b0
, *b1
;
4068 switch (cstate
->linktype
) {
4072 * We check for an Ethernet type field less or equal than
4073 * 1500, which means it's an 802.3 length field.
4075 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4078 * Now check for the purported DSAP and SSAP not being
4079 * 0xFF, to rule out NetWare-over-802.3.
4081 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4087 * We check for LLC traffic.
4089 return gen_atmtype_llc(cstate
);
4091 case DLT_IEEE802
: /* Token Ring */
4093 * XXX - check for LLC frames.
4095 return gen_true(cstate
);
4099 * XXX - check for LLC frames.
4101 return gen_true(cstate
);
4103 case DLT_ATM_RFC1483
:
4105 * For LLC encapsulation, these are defined to have an
4108 * For VC encapsulation, they don't, but there's no
4109 * way to check for that; the protocol used on the VC
4110 * is negotiated out of band.
4112 return gen_true(cstate
);
4114 case DLT_IEEE802_11
:
4115 case DLT_PRISM_HEADER
:
4116 case DLT_IEEE802_11_RADIO
:
4117 case DLT_IEEE802_11_RADIO_AVS
:
4120 * Check that we have a data frame.
4122 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4123 IEEE80211_FC0_TYPE_DATA
,
4124 IEEE80211_FC0_TYPE_MASK
);
4127 fail_kw_on_dlt(cstate
, "llc");
4133 gen_llc(compiler_state_t
*cstate
)
4136 * Catch errors reported by us and routines below us, and return NULL
4139 if (setjmp(cstate
->top_ctx
))
4142 return gen_llc_internal(cstate
);
4146 gen_llc_i(compiler_state_t
*cstate
)
4148 struct block
*b0
, *b1
;
4152 * Catch errors reported by us and routines below us, and return NULL
4155 if (setjmp(cstate
->top_ctx
))
4159 * Check whether this is an LLC frame.
4161 b0
= gen_llc_internal(cstate
);
4164 * Load the control byte and test the low-order bit; it must
4165 * be clear for I frames.
4167 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4168 b1
= gen_unset(cstate
, 0x01, s
);
4175 gen_llc_s(compiler_state_t
*cstate
)
4177 struct block
*b0
, *b1
;
4180 * Catch errors reported by us and routines below us, and return NULL
4183 if (setjmp(cstate
->top_ctx
))
4187 * Check whether this is an LLC frame.
4189 b0
= gen_llc_internal(cstate
);
4192 * Now compare the low-order 2 bit of the control byte against
4193 * the appropriate value for S frames.
4195 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4201 gen_llc_u(compiler_state_t
*cstate
)
4203 struct block
*b0
, *b1
;
4206 * Catch errors reported by us and routines below us, and return NULL
4209 if (setjmp(cstate
->top_ctx
))
4213 * Check whether this is an LLC frame.
4215 b0
= gen_llc_internal(cstate
);
4218 * Now compare the low-order 2 bit of the control byte against
4219 * the appropriate value for U frames.
4221 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4227 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4229 struct block
*b0
, *b1
;
4232 * Catch errors reported by us and routines below us, and return NULL
4235 if (setjmp(cstate
->top_ctx
))
4239 * Check whether this is an LLC frame.
4241 b0
= gen_llc_internal(cstate
);
4244 * Now check for an S frame with the appropriate type.
4246 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4252 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4254 struct block
*b0
, *b1
;
4257 * Catch errors reported by us and routines below us, and return NULL
4260 if (setjmp(cstate
->top_ctx
))
4264 * Check whether this is an LLC frame.
4266 b0
= gen_llc_internal(cstate
);
4269 * Now check for a U frame with the appropriate type.
4271 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4277 * Generate code to match a particular packet type, for link-layer types
4278 * using 802.2 LLC headers.
4280 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4281 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4283 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4284 * value, if <= ETHERMTU. We use that to determine whether to
4285 * match the DSAP or both DSAP and LSAP or to check the OUI and
4286 * protocol ID in a SNAP header.
4288 static struct block
*
4289 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4292 * XXX - handle token-ring variable-length header.
4298 case LLCSAP_NETBEUI
:
4300 * XXX - should we check both the DSAP and the
4301 * SSAP, like this, or should we check just the
4302 * DSAP, as we do for other SAP values?
4304 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4305 ((ll_proto
<< 8) | ll_proto
));
4309 * XXX - are there ever SNAP frames for IPX on
4310 * non-Ethernet 802.x networks?
4312 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4314 case ETHERTYPE_ATALK
:
4316 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4317 * SNAP packets with an organization code of
4318 * 0x080007 (Apple, for Appletalk) and a protocol
4319 * type of ETHERTYPE_ATALK (Appletalk).
4321 * XXX - check for an organization code of
4322 * encapsulated Ethernet as well?
4324 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4328 * XXX - we don't have to check for IPX 802.3
4329 * here, but should we check for the IPX Ethertype?
4331 if (ll_proto
<= ETHERMTU
) {
4332 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
4334 * This is an LLC SAP value, so check
4337 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4339 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4341 * This is an Ethernet type; we assume that it's
4342 * unlikely that it'll appear in the right place
4343 * at random, and therefore check only the
4344 * location that would hold the Ethernet type
4345 * in a SNAP frame with an organization code of
4346 * 0x000000 (encapsulated Ethernet).
4348 * XXX - if we were to check for the SNAP DSAP and
4349 * LSAP, as per XXX, and were also to check for an
4350 * organization code of 0x000000 (encapsulated
4351 * Ethernet), we'd do
4353 * return gen_snap(cstate, 0x000000, ll_proto);
4355 * here; for now, we don't, as per the above.
4356 * I don't know whether it's worth the extra CPU
4357 * time to do the right check or not.
4359 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4364 static struct block
*
4365 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4366 int dir
, u_int src_off
, u_int dst_off
)
4368 struct block
*b0
, *b1
;
4382 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4383 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4389 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4390 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4400 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4407 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4411 static struct block
*
4412 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4413 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4415 struct block
*b0
, *b1
;
4418 * Code below needs to access four separate 32-bit parts of the 128-bit
4419 * IPv6 address and mask. In some OSes this is as simple as using the
4420 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4421 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4422 * far as libpcap sees it. Hence copy the data before use to avoid
4423 * potential unaligned memory access and the associated compiler
4424 * warnings (whether genuine or not).
4426 bpf_u_int32 a
[4], m
[4];
4439 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4440 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4446 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4447 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4457 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4464 /* this order is important */
4465 memcpy(a
, addr
, sizeof(a
));
4466 memcpy(m
, mask
, sizeof(m
));
4468 for (int i
= 3; i
>= 0; i
--) {
4469 // Same as the Q_IP case in gen_host().
4470 if (m
[i
] == 0 && a
[i
] == 0)
4472 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4 * i
, BPF_W
,
4473 ntohl(a
[i
]), ntohl(m
[i
]));
4479 return b1
? b1
: gen_true(cstate
);
4484 * Like gen_mac48host(), but for DLT_IEEE802_11 (802.11 wireless LAN) and
4485 * various 802.11 + radio headers.
4487 static struct block
*
4488 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4490 register struct block
*b0
, *b1
, *b2
;
4491 register struct slist
*s
;
4493 #ifdef ENABLE_WLAN_FILTERING_PATCH
4496 * We need to disable the optimizer because the optimizer is buggy
4497 * and wipes out some LD instructions generated by the below
4498 * code to validate the Frame Control bits
4500 cstate
->no_optimize
= 1;
4501 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4508 * For control frames, there is no SA.
4510 * For management frames, SA is at an
4511 * offset of 10 from the beginning of
4514 * For data frames, SA is at an offset
4515 * of 10 from the beginning of the packet
4516 * if From DS is clear, at an offset of
4517 * 16 from the beginning of the packet
4518 * if From DS is set and To DS is clear,
4519 * and an offset of 24 from the beginning
4520 * of the packet if From DS is set and To DS
4525 * Generate the tests to be done for data frames
4528 * First, check for To DS set, i.e. check "link[1] & 0x01".
4530 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4531 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4534 * If To DS is set, the SA is at 24.
4536 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4540 * Now, check for To DS not set, i.e. check
4541 * "!(link[1] & 0x01)".
4543 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4544 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4547 * If To DS is not set, the SA is at 16.
4549 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4553 * Now OR together the last two checks. That gives
4554 * the complete set of checks for data frames with
4560 * Now check for From DS being set, and AND that with
4561 * the ORed-together checks.
4563 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4564 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4568 * Now check for data frames with From DS not set.
4570 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4571 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4574 * If From DS isn't set, the SA is at 10.
4576 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4580 * Now OR together the checks for data frames with
4581 * From DS not set and for data frames with From DS
4582 * set; that gives the checks done for data frames.
4587 * Now check for a data frame.
4588 * I.e, check "link[0] & 0x08".
4590 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4591 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4594 * AND that with the checks done for data frames.
4599 * If the high-order bit of the type value is 0, this
4600 * is a management frame.
4601 * I.e, check "!(link[0] & 0x08)".
4603 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4604 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4607 * For management frames, the SA is at 10.
4609 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4613 * OR that with the checks done for data frames.
4614 * That gives the checks done for management and
4620 * If the low-order bit of the type value is 1,
4621 * this is either a control frame or a frame
4622 * with a reserved type, and thus not a
4625 * I.e., check "!(link[0] & 0x04)".
4627 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4628 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4631 * AND that with the checks for data and management
4641 * For control frames, there is no DA.
4643 * For management frames, DA is at an
4644 * offset of 4 from the beginning of
4647 * For data frames, DA is at an offset
4648 * of 4 from the beginning of the packet
4649 * if To DS is clear and at an offset of
4650 * 16 from the beginning of the packet
4655 * Generate the tests to be done for data frames.
4657 * First, check for To DS set, i.e. "link[1] & 0x01".
4659 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4660 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4663 * If To DS is set, the DA is at 16.
4665 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4669 * Now, check for To DS not set, i.e. check
4670 * "!(link[1] & 0x01)".
4672 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4673 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4676 * If To DS is not set, the DA is at 4.
4678 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4682 * Now OR together the last two checks. That gives
4683 * the complete set of checks for data frames.
4688 * Now check for a data frame.
4689 * I.e, check "link[0] & 0x08".
4691 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4692 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4695 * AND that with the checks done for data frames.
4700 * If the high-order bit of the type value is 0, this
4701 * is a management frame.
4702 * I.e, check "!(link[0] & 0x08)".
4704 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4705 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4708 * For management frames, the DA is at 4.
4710 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4714 * OR that with the checks done for data frames.
4715 * That gives the checks done for management and
4721 * If the low-order bit of the type value is 1,
4722 * this is either a control frame or a frame
4723 * with a reserved type, and thus not a
4726 * I.e., check "!(link[0] & 0x04)".
4728 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4729 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4732 * AND that with the checks for data and management
4739 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4740 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4746 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4747 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4752 * XXX - add BSSID keyword?
4755 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4759 * Not present in CTS or ACK control frames.
4761 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4762 IEEE80211_FC0_TYPE_MASK
);
4763 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4764 IEEE80211_FC0_SUBTYPE_MASK
);
4765 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4766 IEEE80211_FC0_SUBTYPE_MASK
);
4769 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4775 * Not present in control frames.
4777 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4778 IEEE80211_FC0_TYPE_MASK
);
4779 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4785 * Present only if the direction mask has both "From DS"
4786 * and "To DS" set. Neither control frames nor management
4787 * frames should have both of those set, so we don't
4788 * check the frame type.
4790 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4791 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4792 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4798 * Not present in management frames; addr1 in other
4803 * If the high-order bit of the type value is 0, this
4804 * is a management frame.
4805 * I.e, check "(link[0] & 0x08)".
4807 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4808 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4813 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4816 * AND that with the check of addr1.
4823 * Not present in management frames; addr2, if present,
4828 * Not present in CTS or ACK control frames.
4830 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4831 IEEE80211_FC0_TYPE_MASK
);
4832 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4833 IEEE80211_FC0_SUBTYPE_MASK
);
4834 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4835 IEEE80211_FC0_SUBTYPE_MASK
);
4840 * If the high-order bit of the type value is 0, this
4841 * is a management frame.
4842 * I.e, check "(link[0] & 0x08)".
4844 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4845 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4848 * AND that with the check for frames other than
4849 * CTS and ACK frames.
4856 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4865 * This is quite tricky because there may be pad bytes in front of the
4866 * DECNET header, and then there are two possible data packet formats that
4867 * carry both src and dst addresses, plus 5 packet types in a format that
4868 * carries only the src node, plus 2 types that use a different format and
4869 * also carry just the src node.
4873 * Instead of doing those all right, we just look for data packets with
4874 * 0 or 1 bytes of padding. If you want to look at other packets, that
4875 * will require a lot more hacking.
4877 * To add support for filtering on DECNET "areas" (network numbers)
4878 * one would want to add a "mask" argument to this routine. That would
4879 * make the filter even more inefficient, although one could be clever
4880 * and not generate masking instructions if the mask is 0xFFFF.
4882 static struct block
*
4883 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4885 struct block
*b0
, *b1
, *b2
, *tmp
;
4886 u_int offset_lh
; /* offset if long header is received */
4887 u_int offset_sh
; /* offset if short header is received */
4892 offset_sh
= 1; /* follows flags */
4893 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4897 offset_sh
= 3; /* follows flags, dstnode */
4898 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4902 /* Inefficient because we do our Calvinball dance twice */
4903 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4904 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4910 /* Inefficient because we do our Calvinball dance twice */
4911 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4912 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4922 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4930 * In a DECnet message inside an Ethernet frame the first two bytes
4931 * immediately after EtherType are the [litle-endian] DECnet message
4932 * length, which is irrelevant in this context.
4934 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
4935 * 8-bit bitmap of the optional padding before the packet route header.
4936 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
4937 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
4938 * means there aren't any PAD bytes after the bitmap, so the header
4939 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
4940 * is set to 0, thus the header begins at the third byte.
4942 * The header can be in several (as mentioned above) formats, all of
4943 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
4944 * (PF, "pad field") set to 0 regardless of any padding present before
4945 * the header. "Short header" means bits 0-2 of the bitmap encode the
4946 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
4948 * To test PLENGTH and FLAGS, use multiple-byte constants with the
4949 * values and the masks, this maps to the required single bytes of
4950 * the message correctly on both big-endian and little-endian hosts.
4951 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
4952 * because the wire encoding is little-endian and BPF multiple-byte
4953 * loads are big-endian. When the destination address is near enough
4954 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
4957 /* Check for pad = 1, long header case */
4958 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
4959 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4960 BPF_H
, SWAPSHORT(addr
));
4962 /* Check for pad = 0, long header case */
4963 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
4964 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
4968 /* Check for pad = 1, short header case */
4970 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
4971 0x81020000U
| SWAPSHORT(addr
),
4974 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
4975 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
4980 /* Check for pad = 0, short header case */
4982 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
4983 0x02000000U
| SWAPSHORT(addr
) << 8,
4986 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
4987 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
4997 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4998 * test the bottom-of-stack bit, and then check the version number
4999 * field in the IP header.
5001 static struct block
*
5002 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5004 struct block
*b0
, *b1
;
5009 /* match the bottom-of-stack bit */
5010 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5011 /* match the IPv4 version number */
5012 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5016 case ETHERTYPE_IPV6
:
5017 /* match the bottom-of-stack bit */
5018 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5019 /* match the IPv6 version number */
5020 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5025 /* FIXME add other L3 proto IDs */
5026 bpf_error(cstate
, "unsupported protocol over mpls");
5031 static struct block
*
5032 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5033 int proto
, int dir
, int type
)
5035 struct block
*b0
, *b1
;
5040 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5042 * Only check for non-IPv4 addresses if we're not
5043 * checking MPLS-encapsulated packets.
5045 if (cstate
->label_stack_depth
== 0) {
5046 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5048 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5054 // "link net NETNAME" and variations thereof
5055 break; // invalid qualifier
5058 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5060 * Belt and braces: if other code works correctly, any host
5061 * bits are clear and mask == 0 means addr == 0. In this case
5062 * the call to gen_hostop() would produce an "always true"
5063 * instruction block and ANDing it with the link type check
5066 if (mask
== 0 && addr
== 0)
5068 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5073 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5074 // Same as for Q_IP above.
5075 if (mask
== 0 && addr
== 0)
5077 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5082 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5083 // Same as for Q_IP above.
5084 if (mask
== 0 && addr
== 0)
5086 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5097 break; // invalid qualifier
5100 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5101 b1
= gen_dnhostop(cstate
, addr
, dir
);
5132 break; // invalid qualifier
5137 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5138 type
== Q_NET
? "ip net" : "ip host");
5143 static struct block
*
5144 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5145 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5147 struct block
*b0
, *b1
;
5153 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5154 // Same as the Q_IP case in gen_host().
5156 ! memcmp(mask
, &in6addr_any
, sizeof(struct in6_addr
)) &&
5157 ! memcmp(addr
, &in6addr_any
, sizeof(struct in6_addr
))
5160 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5202 break; // invalid qualifier
5207 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5208 type
== Q_NET
? "ip6 net" : "ip6 host");
5213 static unsigned char
5214 is_mac48_linktype(const int linktype
)
5220 case DLT_IEEE802_11
:
5221 case DLT_IEEE802_11_RADIO
:
5222 case DLT_IEEE802_11_RADIO_AVS
:
5223 case DLT_IP_OVER_FC
:
5224 case DLT_NETANALYZER
:
5225 case DLT_NETANALYZER_TRANSPARENT
:
5227 case DLT_PRISM_HEADER
:
5234 static struct block
*
5235 gen_mac48host(compiler_state_t
*cstate
, const u_char
*eaddr
, const u_char dir
,
5236 const char *keyword
)
5238 struct block
*b1
= NULL
;
5239 u_int src_off
, dst_off
;
5241 switch (cstate
->linktype
) {
5243 case DLT_NETANALYZER
:
5244 case DLT_NETANALYZER_TRANSPARENT
:
5245 b1
= gen_prevlinkhdr_check(cstate
);
5250 src_off
= 6 + 1 + cstate
->pcap_fddipad
;
5251 dst_off
= 0 + 1 + cstate
->pcap_fddipad
;
5257 case DLT_IEEE802_11
:
5258 case DLT_PRISM_HEADER
:
5259 case DLT_IEEE802_11_RADIO_AVS
:
5260 case DLT_IEEE802_11_RADIO
:
5262 return gen_wlanhostop(cstate
, eaddr
, dir
);
5263 case DLT_IP_OVER_FC
:
5265 * Assume that the addresses are IEEE 48-bit MAC addresses,
5266 * as RFC 2625 states.
5273 * This is LLC-multiplexed traffic; if it were
5274 * LANE, cstate->linktype would have been set to
5279 fail_kw_on_dlt(cstate
, keyword
);
5282 struct block
*b0
, *tmp
;
5286 b0
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5289 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5292 tmp
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5293 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5298 tmp
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5299 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5303 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5312 * This primitive is non-directional by design, so the grammar does not allow
5313 * to qualify it with a direction.
5315 static struct block
*
5316 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5317 struct addrinfo
*alist
, int proto
)
5319 struct block
*b0
, *b1
, *tmp
;
5320 struct addrinfo
*ai
;
5321 struct sockaddr_in
*sin
;
5328 b0
= gen_mac48host(cstate
, eaddr
, Q_OR
, "gateway");
5330 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5332 * Does it have an address?
5334 if (ai
->ai_addr
!= NULL
) {
5336 * Yes. Is it an IPv4 address?
5338 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5340 * Generate an entry for it.
5342 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5343 tmp
= gen_host(cstate
,
5344 ntohl(sin
->sin_addr
.s_addr
),
5345 0xffffffff, proto
, Q_OR
, Q_HOST
);
5347 * Is it the *first* IPv4 address?
5351 * Yes, so start with it.
5356 * No, so OR it into the
5368 * No IPv4 addresses found.
5376 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5380 static struct block
*
5381 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5389 return gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5392 return gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5395 return gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5398 return gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5400 #ifndef IPPROTO_IGMP
5401 #define IPPROTO_IGMP 2
5405 return gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5407 #ifndef IPPROTO_IGRP
5408 #define IPPROTO_IGRP 9
5411 return gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5414 #define IPPROTO_PIM 103
5418 return gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5420 #ifndef IPPROTO_VRRP
5421 #define IPPROTO_VRRP 112
5425 return gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5427 #ifndef IPPROTO_CARP
5428 #define IPPROTO_CARP 112
5432 return gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5435 return gen_linktype(cstate
, ETHERTYPE_IP
);
5438 return gen_linktype(cstate
, ETHERTYPE_ARP
);
5441 return gen_linktype(cstate
, ETHERTYPE_REVARP
);
5444 break; // invalid syntax
5447 return gen_linktype(cstate
, ETHERTYPE_ATALK
);
5450 return gen_linktype(cstate
, ETHERTYPE_AARP
);
5453 return gen_linktype(cstate
, ETHERTYPE_DN
);
5456 return gen_linktype(cstate
, ETHERTYPE_SCA
);
5459 return gen_linktype(cstate
, ETHERTYPE_LAT
);
5462 return gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5465 return gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5468 return gen_linktype(cstate
, ETHERTYPE_IPV6
);
5470 #ifndef IPPROTO_ICMPV6
5471 #define IPPROTO_ICMPV6 58
5474 return gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5477 #define IPPROTO_AH 51
5480 return gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5483 #define IPPROTO_ESP 50
5486 return gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5489 return gen_linktype(cstate
, LLCSAP_ISONS
);
5492 return gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5495 return gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5497 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5498 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5499 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5501 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5503 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5505 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5509 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5510 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5511 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5513 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5515 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5517 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5521 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5522 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5523 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5525 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5530 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5531 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5536 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5537 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5539 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5541 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5546 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5547 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5552 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5553 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5558 return gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5561 return gen_linktype(cstate
, LLCSAP_8021D
);
5564 return gen_linktype(cstate
, LLCSAP_IPX
);
5567 return gen_linktype(cstate
, LLCSAP_NETBEUI
);
5570 break; // invalid syntax
5575 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5579 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5582 * Catch errors reported by us and routines below us, and return NULL
5585 if (setjmp(cstate
->top_ctx
))
5588 return gen_proto_abbrev_internal(cstate
, proto
);
5591 static struct block
*
5592 gen_ip_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5594 return gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5597 static struct block
*
5598 gen_ip6_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5600 return gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5603 static struct block
*
5604 gen_ipfrag(compiler_state_t
*cstate
)
5608 /* not IPv4 frag other than the first frag */
5609 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5610 return gen_unset(cstate
, 0x1fff, s
);
5614 * Generate a comparison to a port value in the transport-layer header
5615 * at the specified offset from the beginning of that header.
5617 * XXX - this handles a variable-length prefix preceding the link-layer
5618 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5619 * variable-length link-layer headers (such as Token Ring or 802.11
5622 static struct block
*
5623 gen_portatom(compiler_state_t
*cstate
, int off
, uint16_t v
)
5625 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5628 static struct block
*
5629 gen_portatom6(compiler_state_t
*cstate
, int off
, uint16_t v
)
5631 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5634 static struct block
*
5635 gen_port(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5637 struct block
*b1
, *tmp
;
5641 b1
= gen_portatom(cstate
, 0, port
);
5645 b1
= gen_portatom(cstate
, 2, port
);
5649 tmp
= gen_portatom(cstate
, 0, port
);
5650 b1
= gen_portatom(cstate
, 2, port
);
5656 tmp
= gen_portatom(cstate
, 0, port
);
5657 b1
= gen_portatom(cstate
, 2, port
);
5667 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5675 return gen_port_common(cstate
, proto
, b1
);
5678 static struct block
*
5679 gen_port_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5681 struct block
*b0
, *tmp
;
5686 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5687 * not LLC encapsulation with LLCSAP_IP.
5689 * For IEEE 802 networks - which includes 802.5 token ring
5690 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5691 * says that SNAP encapsulation is used, not LLC encapsulation
5694 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5695 * RFC 2225 say that SNAP encapsulation is used, not LLC
5696 * encapsulation with LLCSAP_IP.
5698 * So we always check for ETHERTYPE_IP.
5700 * At the time of this writing all three L4 protocols the "port" and
5701 * "portrange" primitives support (TCP, UDP and SCTP) have the source
5702 * and the destination ports identically encoded in the transport
5703 * protocol header. So without a proto qualifier the only difference
5704 * between the implemented cases is the protocol number and all other
5705 * checks need to be made exactly once.
5707 * If the expression syntax in future starts to support ports for
5708 * another L4 protocol that has unsigned integer ports encoded using a
5709 * different size and/or offset, this will require a different code.
5715 tmp
= gen_ip_proto(cstate
, (uint8_t)proto
);
5719 tmp
= gen_ip_proto(cstate
, IPPROTO_UDP
);
5720 gen_or(gen_ip_proto(cstate
, IPPROTO_TCP
), tmp
);
5721 gen_or(gen_ip_proto(cstate
, IPPROTO_SCTP
), tmp
);
5727 // Not a fragment other than the first fragment.
5728 b0
= gen_ipfrag(cstate
);
5732 gen_and(gen_linktype(cstate
, ETHERTYPE_IP
), b1
);
5736 static struct block
*
5737 gen_port6(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5739 struct block
*b1
, *tmp
;
5743 b1
= gen_portatom6(cstate
, 0, port
);
5747 b1
= gen_portatom6(cstate
, 2, port
);
5751 tmp
= gen_portatom6(cstate
, 0, port
);
5752 b1
= gen_portatom6(cstate
, 2, port
);
5758 tmp
= gen_portatom6(cstate
, 0, port
);
5759 b1
= gen_portatom6(cstate
, 2, port
);
5767 return gen_port6_common(cstate
, proto
, b1
);
5770 static struct block
*
5771 gen_port6_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5775 // "ip6 proto 'ip_proto'"
5780 tmp
= gen_ip6_proto(cstate
, (uint8_t)proto
);
5784 // Same as in gen_port_common().
5785 tmp
= gen_ip6_proto(cstate
, IPPROTO_UDP
);
5786 gen_or(gen_ip6_proto(cstate
, IPPROTO_TCP
), tmp
);
5787 gen_or(gen_ip6_proto(cstate
, IPPROTO_SCTP
), tmp
);
5793 // XXX - catch the first fragment of a fragmented packet?
5795 // "link proto \ip6"
5796 gen_and(gen_linktype(cstate
, ETHERTYPE_IPV6
), b1
);
5800 /* gen_portrange code */
5801 static struct block
*
5802 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5806 return gen_portatom(cstate
, off
, v1
);
5808 struct block
*b1
, *b2
;
5810 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5811 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5818 static struct block
*
5819 gen_portrange(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5822 struct block
*b1
, *tmp
;
5826 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5830 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5834 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5835 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5841 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5842 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5852 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5860 return gen_port_common(cstate
, proto
, b1
);
5863 static struct block
*
5864 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5868 return gen_portatom6(cstate
, off
, v1
);
5870 struct block
*b1
, *b2
;
5872 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
5873 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
5880 static struct block
*
5881 gen_portrange6(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5884 struct block
*b1
, *tmp
;
5888 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5892 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5896 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5897 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5903 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5904 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5912 return gen_port6_common(cstate
, proto
, b1
);
5916 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5925 v
= pcap_nametoproto(name
);
5926 if (v
== PROTO_UNDEF
)
5927 bpf_error(cstate
, "unknown ip proto '%s'", name
);
5931 /* XXX should look up h/w protocol type based on cstate->linktype */
5932 v
= pcap_nametoeproto(name
);
5933 if (v
== PROTO_UNDEF
) {
5934 v
= pcap_nametollc(name
);
5935 if (v
== PROTO_UNDEF
)
5936 bpf_error(cstate
, "unknown ether proto '%s'", name
);
5941 if (strcmp(name
, "esis") == 0)
5943 else if (strcmp(name
, "isis") == 0)
5945 else if (strcmp(name
, "clnp") == 0)
5948 bpf_error(cstate
, "unknown osi proto '%s'", name
);
5958 #if !defined(NO_PROTOCHAIN)
5960 * This primitive is non-directional by design, so the grammar does not allow
5961 * to qualify it with a direction.
5963 static struct block
*
5964 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
5966 struct block
*b0
, *b
;
5967 struct slist
*s
[100];
5968 int fix2
, fix3
, fix4
, fix5
;
5969 int ahcheck
, again
, end
;
5971 int reg2
= alloc_reg(cstate
);
5973 memset(s
, 0, sizeof(s
));
5974 fix3
= fix4
= fix5
= 0;
5979 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
5982 b0
= gen_protochain(cstate
, v
, Q_IP
);
5983 b
= gen_protochain(cstate
, v
, Q_IPV6
);
5987 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
5992 * We don't handle variable-length prefixes before the link-layer
5993 * header, or variable-length link-layer headers, here yet.
5994 * We might want to add BPF instructions to do the protochain
5995 * work, to simplify that and, on platforms that have a BPF
5996 * interpreter with the new instructions, let the filtering
5997 * be done in the kernel. (We already require a modified BPF
5998 * engine to do the protochain stuff, to support backward
5999 * branches, and backward branch support is unlikely to appear
6000 * in kernel BPF engines.)
6002 if (cstate
->off_linkpl
.is_variable
)
6003 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6006 * To quote a comment in optimize.c:
6008 * "These data structures are used in a Cocke and Schwartz style
6009 * value numbering scheme. Since the flowgraph is acyclic,
6010 * exit values can be propagated from a node's predecessors
6011 * provided it is uniquely defined."
6013 * "Acyclic" means "no backward branches", which means "no
6014 * loops", so we have to turn the optimizer off.
6016 cstate
->no_optimize
= 1;
6019 * s[0] is a dummy entry to protect other BPF insn from damage
6020 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6021 * hard to find interdependency made by jump table fixup.
6024 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6029 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6032 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6033 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6035 /* X = ip->ip_hl << 2 */
6036 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6037 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6042 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6044 /* A = ip6->ip_nxt */
6045 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6046 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6048 /* X = sizeof(struct ip6_hdr) */
6049 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6055 bpf_error(cstate
, "unsupported proto to gen_protochain");
6059 /* again: if (A == v) goto end; else fall through; */
6061 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6063 s
[i
]->s
.jt
= NULL
; /*later*/
6064 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6068 #ifndef IPPROTO_NONE
6069 #define IPPROTO_NONE 59
6071 /* if (A == IPPROTO_NONE) goto end */
6072 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6073 s
[i
]->s
.jt
= NULL
; /*later*/
6074 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6075 s
[i
]->s
.k
= IPPROTO_NONE
;
6076 s
[fix5
]->s
.jf
= s
[i
];
6080 if (proto
== Q_IPV6
) {
6081 int v6start
, v6end
, v6advance
, j
;
6084 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6085 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6086 s
[i
]->s
.jt
= NULL
; /*later*/
6087 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6088 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6089 s
[fix2
]->s
.jf
= s
[i
];
6091 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6092 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6093 s
[i
]->s
.jt
= NULL
; /*later*/
6094 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6095 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6097 /* if (A == IPPROTO_ROUTING) goto v6advance */
6098 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6099 s
[i
]->s
.jt
= NULL
; /*later*/
6100 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6101 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6103 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6104 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6105 s
[i
]->s
.jt
= NULL
; /*later*/
6106 s
[i
]->s
.jf
= NULL
; /*later*/
6107 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6117 * A = P[X + packet head];
6118 * X = X + (P[X + packet head + 1] + 1) * 8;
6120 /* A = P[X + packet head] */
6121 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6122 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6125 s
[i
] = new_stmt(cstate
, BPF_ST
);
6128 /* A = P[X + packet head + 1]; */
6129 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6130 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6133 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6137 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6141 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6145 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6148 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6152 /* goto again; (must use BPF_JA for backward jump) */
6153 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6154 s
[i
]->s
.k
= again
- i
- 1;
6155 s
[i
- 1]->s
.jf
= s
[i
];
6159 for (j
= v6start
; j
<= v6end
; j
++)
6160 s
[j
]->s
.jt
= s
[v6advance
];
6163 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6165 s
[fix2
]->s
.jf
= s
[i
];
6171 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6172 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6173 s
[i
]->s
.jt
= NULL
; /*later*/
6174 s
[i
]->s
.jf
= NULL
; /*later*/
6175 s
[i
]->s
.k
= IPPROTO_AH
;
6177 s
[fix3
]->s
.jf
= s
[ahcheck
];
6184 * X = X + (P[X + 1] + 2) * 4;
6186 /* A = P[X + packet head]; */
6187 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6188 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6189 s
[i
- 1]->s
.jt
= s
[i
];
6192 s
[i
] = new_stmt(cstate
, BPF_ST
);
6196 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6199 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6203 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6205 /* A = P[X + packet head] */
6206 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6207 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6210 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6214 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6218 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6221 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6225 /* goto again; (must use BPF_JA for backward jump) */
6226 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6227 s
[i
]->s
.k
= again
- i
- 1;
6232 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6234 s
[fix2
]->s
.jt
= s
[end
];
6235 s
[fix4
]->s
.jf
= s
[end
];
6236 s
[fix5
]->s
.jt
= s
[end
];
6243 for (i
= 0; i
< max
- 1; i
++)
6244 s
[i
]->next
= s
[i
+ 1];
6245 s
[max
- 1]->next
= NULL
;
6249 * Remember, s[0] is dummy.
6251 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6253 free_reg(cstate
, reg2
);
6258 #endif /* !defined(NO_PROTOCHAIN) */
6261 * Generate code that checks whether the packet is a packet for protocol
6262 * <proto> and whether the type field in that protocol's header has
6263 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6264 * IP packet and checks the protocol number in the IP header against <v>.
6266 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6267 * against Q_IP and Q_IPV6.
6269 * This primitive is non-directional by design, so the grammar does not allow
6270 * to qualify it with a direction.
6272 static struct block
*
6273 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6275 struct block
*b0
, *b1
;
6280 b0
= gen_proto(cstate
, v
, Q_IP
);
6281 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6286 return gen_linktype(cstate
, v
);
6289 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6291 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6292 * not LLC encapsulation with LLCSAP_IP.
6294 * For IEEE 802 networks - which includes 802.5 token ring
6295 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6296 * says that SNAP encapsulation is used, not LLC encapsulation
6299 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6300 * RFC 2225 say that SNAP encapsulation is used, not LLC
6301 * encapsulation with LLCSAP_IP.
6303 * So we always check for ETHERTYPE_IP.
6305 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6306 // 0 <= v <= UINT8_MAX
6307 b1
= gen_ip_proto(cstate
, (uint8_t)v
);
6325 break; // invalid qualifier
6328 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6329 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6331 * Also check for a fragment header before the final
6334 b2
= gen_ip6_proto(cstate
, IPPROTO_FRAGMENT
);
6335 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6337 // 0 <= v <= UINT8_MAX
6338 b2
= gen_ip6_proto(cstate
, (uint8_t)v
);
6349 break; // invalid qualifier
6352 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6353 switch (cstate
->linktype
) {
6357 * Frame Relay packets typically have an OSI
6358 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6359 * generates code to check for all the OSI
6360 * NLPIDs, so calling it and then adding a check
6361 * for the particular NLPID for which we're
6362 * looking is bogus, as we can just check for
6365 * What we check for is the NLPID and a frame
6366 * control field value of UI, i.e. 0x03 followed
6369 * XXX - assumes a 2-byte Frame Relay header with
6370 * DLCI and flags. What if the address is longer?
6372 * XXX - what about SNAP-encapsulated frames?
6374 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6380 * Cisco uses an Ethertype lookalike - for OSI,
6383 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6384 /* OSI in C-HDLC is stuffed with a fudge byte */
6385 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6390 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6391 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6397 break; // invalid qualifier
6400 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6401 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6403 * 4 is the offset of the PDU type relative to the IS-IS
6405 * Except when it is not, see above.
6407 unsigned pdu_type_offset
;
6408 switch (cstate
->linktype
) {
6411 pdu_type_offset
= 5;
6414 pdu_type_offset
= 4;
6416 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6417 v
, ISIS_PDU_TYPE_MAX
);
6434 break; // invalid qualifier
6440 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6445 * Convert a non-numeric name to a port number.
6448 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6450 struct addrinfo hints
, *res
, *ai
;
6452 struct sockaddr_in
*in4
;
6454 struct sockaddr_in6
*in6
;
6459 * We check for both TCP and UDP in case there are
6460 * ambiguous entries.
6462 memset(&hints
, 0, sizeof(hints
));
6463 hints
.ai_family
= PF_UNSPEC
;
6464 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6465 hints
.ai_protocol
= ipproto
;
6466 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6473 * No such port. Just return -1.
6480 * We don't use strerror() because it's not
6481 * guaranteed to be thread-safe on all platforms
6482 * (probably because it might use a non-thread-local
6483 * buffer into which to format an error message
6484 * if the error code isn't one for which it has
6485 * a canned string; three cheers for C string
6488 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6490 port
= -2; /* a real error */
6496 * This is a real error, not just "there's
6497 * no such service name".
6499 * We don't use gai_strerror() because it's not
6500 * guaranteed to be thread-safe on all platforms
6501 * (probably because it might use a non-thread-local
6502 * buffer into which to format an error message
6503 * if the error code isn't one for which it has
6504 * a canned string; three cheers for C string
6507 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6509 port
= -2; /* a real error */
6514 * OK, we found it. Did it find anything?
6516 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6518 * Does it have an address?
6520 if (ai
->ai_addr
!= NULL
) {
6522 * Yes. Get a port number; we're done.
6524 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6525 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6526 port
= ntohs(in4
->sin_port
);
6530 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6531 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6532 port
= ntohs(in6
->sin6_port
);
6544 * Convert a string to a port number.
6547 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6557 * See if it's a number.
6559 ret
= stoulen(string
, string_size
, &val
, cstate
);
6563 /* Unknown port type - it's just a number. */
6564 *proto
= PROTO_UNDEF
;
6567 case STOULEN_NOT_OCTAL_NUMBER
:
6568 case STOULEN_NOT_HEX_NUMBER
:
6569 case STOULEN_NOT_DECIMAL_NUMBER
:
6571 * Not a valid number; try looking it up as a port.
6573 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6574 memcpy(cpy
, string
, string_size
);
6575 cpy
[string_size
] = '\0';
6576 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6577 if (tcp_port
== -2) {
6579 * We got a hard error; the error string has
6583 longjmp(cstate
->top_ctx
, 1);
6586 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6587 if (udp_port
== -2) {
6589 * We got a hard error; the error string has
6593 longjmp(cstate
->top_ctx
, 1);
6598 * We need to check /etc/services for ambiguous entries.
6599 * If we find an ambiguous entry, and it has the
6600 * same port number, change the proto to PROTO_UNDEF
6601 * so both TCP and UDP will be checked.
6603 if (tcp_port
>= 0) {
6604 val
= (bpf_u_int32
)tcp_port
;
6605 *proto
= IPPROTO_TCP
;
6606 if (udp_port
>= 0) {
6607 if (udp_port
== tcp_port
)
6608 *proto
= PROTO_UNDEF
;
6611 /* Can't handle ambiguous names that refer
6612 to different port numbers. */
6613 warning("ambiguous port %s in /etc/services",
6620 if (udp_port
>= 0) {
6621 val
= (bpf_u_int32
)udp_port
;
6622 *proto
= IPPROTO_UDP
;
6626 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6628 longjmp(cstate
->top_ctx
, 1);
6635 /* Error already set. */
6636 longjmp(cstate
->top_ctx
, 1);
6643 /* Should not happen */
6644 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6645 longjmp(cstate
->top_ctx
, 1);
6652 * Convert a string in the form PPP-PPP, which correspond to ports, to
6653 * a starting and ending port in a port range.
6656 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6657 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6660 const char *first
, *second
;
6661 size_t first_size
, second_size
;
6664 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6665 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6668 * Make sure there are no other hyphens.
6670 * XXX - we support named ports, but there are some port names
6671 * in /etc/services that include hyphens, so this would rule
6674 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6675 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6679 * Get the length of the first port.
6682 first_size
= hyphen_off
- string
;
6683 if (first_size
== 0) {
6684 /* Range of "-port", which we don't support. */
6685 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6689 * Try to convert it to a port.
6691 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6692 save_proto
= *proto
;
6695 * Get the length of the second port.
6697 second
= hyphen_off
+ 1;
6698 second_size
= strlen(second
);
6699 if (second_size
== 0) {
6700 /* Range of "port-", which we don't support. */
6701 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6705 * Try to convert it to a port.
6707 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6708 if (*proto
!= save_proto
)
6709 *proto
= PROTO_UNDEF
;
6713 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6715 int proto
= q
.proto
;
6720 bpf_u_int32 mask
, addr
;
6721 struct addrinfo
*res
, *res0
;
6722 struct sockaddr_in
*sin4
;
6725 struct sockaddr_in6
*sin6
;
6726 struct in6_addr mask128
;
6728 struct block
*b
, *tmp
;
6729 int port
, real_proto
;
6730 bpf_u_int32 port1
, port2
;
6733 * Catch errors reported by us and routines below us, and return NULL
6736 if (setjmp(cstate
->top_ctx
))
6742 addr
= pcap_nametonetaddr(name
);
6744 bpf_error(cstate
, "unknown network '%s'", name
);
6745 /* Left justify network addr and calculate its network mask */
6747 while (addr
&& (addr
& 0xff000000) == 0) {
6751 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6755 if (proto
== Q_LINK
) {
6756 const char *context
= "link host NAME";
6757 if (! is_mac48_linktype(cstate
->linktype
))
6758 fail_kw_on_dlt(cstate
, context
);
6759 eaddrp
= pcap_ether_hostton(name
);
6761 bpf_error(cstate
, ERRSTR_UNKNOWN_MAC48HOST
, name
);
6762 memcpy(eaddr
, eaddrp
, sizeof(eaddr
));
6764 return gen_mac48host(cstate
, eaddr
, q
.dir
, context
);
6765 } else if (proto
== Q_DECNET
) {
6767 * A long time ago on Ultrix libpcap supported
6768 * translation of DECnet host names into DECnet
6769 * addresses, but this feature is history now.
6771 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
6774 memset(&mask128
, 0xff, sizeof(mask128
));
6776 res0
= res
= pcap_nametoaddrinfo(name
);
6778 bpf_error(cstate
, "unknown host '%s'", name
);
6785 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6786 tproto
== Q_DEFAULT
) {
6792 for (res
= res0
; res
; res
= res
->ai_next
) {
6793 switch (res
->ai_family
) {
6796 if (tproto
== Q_IPV6
)
6800 sin4
= (struct sockaddr_in
*)
6802 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6803 0xffffffff, tproto
, dir
, q
.addr
);
6807 if (tproto6
== Q_IP
)
6810 sin6
= (struct sockaddr_in6
*)
6812 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6813 &mask128
, tproto6
, dir
, q
.addr
);
6826 bpf_error(cstate
, "unknown host '%s'%s", name
,
6827 (proto
== Q_DEFAULT
)
6829 : " for specified address family");
6835 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
6836 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6837 bpf_error(cstate
, "unknown port '%s'", name
);
6838 if (proto
== Q_UDP
) {
6839 if (real_proto
== IPPROTO_TCP
)
6840 bpf_error(cstate
, "port '%s' is tcp", name
);
6841 else if (real_proto
== IPPROTO_SCTP
)
6842 bpf_error(cstate
, "port '%s' is sctp", name
);
6844 /* override PROTO_UNDEF */
6845 real_proto
= IPPROTO_UDP
;
6847 if (proto
== Q_TCP
) {
6848 if (real_proto
== IPPROTO_UDP
)
6849 bpf_error(cstate
, "port '%s' is udp", name
);
6851 else if (real_proto
== IPPROTO_SCTP
)
6852 bpf_error(cstate
, "port '%s' is sctp", name
);
6854 /* override PROTO_UNDEF */
6855 real_proto
= IPPROTO_TCP
;
6857 if (proto
== Q_SCTP
) {
6858 if (real_proto
== IPPROTO_UDP
)
6859 bpf_error(cstate
, "port '%s' is udp", name
);
6861 else if (real_proto
== IPPROTO_TCP
)
6862 bpf_error(cstate
, "port '%s' is tcp", name
);
6864 /* override PROTO_UNDEF */
6865 real_proto
= IPPROTO_SCTP
;
6868 bpf_error(cstate
, "illegal port number %d < 0", port
);
6870 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6871 // real_proto can be PROTO_UNDEF
6872 b
= gen_port(cstate
, (uint16_t)port
, real_proto
, dir
);
6873 gen_or(gen_port6(cstate
, (uint16_t)port
, real_proto
, dir
), b
);
6877 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
6878 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
6879 if (proto
== Q_UDP
) {
6880 if (real_proto
== IPPROTO_TCP
)
6881 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6882 else if (real_proto
== IPPROTO_SCTP
)
6883 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6885 /* override PROTO_UNDEF */
6886 real_proto
= IPPROTO_UDP
;
6888 if (proto
== Q_TCP
) {
6889 if (real_proto
== IPPROTO_UDP
)
6890 bpf_error(cstate
, "port in range '%s' is udp", name
);
6891 else if (real_proto
== IPPROTO_SCTP
)
6892 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6894 /* override PROTO_UNDEF */
6895 real_proto
= IPPROTO_TCP
;
6897 if (proto
== Q_SCTP
) {
6898 if (real_proto
== IPPROTO_UDP
)
6899 bpf_error(cstate
, "port in range '%s' is udp", name
);
6900 else if (real_proto
== IPPROTO_TCP
)
6901 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6903 /* override PROTO_UNDEF */
6904 real_proto
= IPPROTO_SCTP
;
6907 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6909 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6911 // real_proto can be PROTO_UNDEF
6912 b
= gen_portrange(cstate
, (uint16_t)port1
, (uint16_t)port2
,
6914 gen_or(gen_portrange6(cstate
, (uint16_t)port1
, (uint16_t)port2
,
6915 real_proto
, dir
), b
);
6919 if (! is_mac48_linktype(cstate
->linktype
))
6920 fail_kw_on_dlt(cstate
, "gateway");
6921 eaddrp
= pcap_ether_hostton(name
);
6923 bpf_error(cstate
, ERRSTR_UNKNOWN_MAC48HOST
, name
);
6924 memcpy(eaddr
, eaddrp
, sizeof(eaddr
));
6927 res
= pcap_nametoaddrinfo(name
);
6930 bpf_error(cstate
, "unknown host '%s'", name
);
6931 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
6935 bpf_error(cstate
, "unknown host '%s'", name
);
6939 real_proto
= lookup_proto(cstate
, name
, proto
);
6940 if (real_proto
>= 0)
6941 return gen_proto(cstate
, real_proto
, proto
);
6943 bpf_error(cstate
, "unknown protocol: %s", name
);
6945 #if !defined(NO_PROTOCHAIN)
6947 real_proto
= lookup_proto(cstate
, name
, proto
);
6948 if (real_proto
>= 0)
6949 return gen_protochain(cstate
, real_proto
, proto
);
6951 bpf_error(cstate
, "unknown protocol: %s", name
);
6952 #endif /* !defined(NO_PROTOCHAIN) */
6963 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6964 bpf_u_int32 masklen
, struct qual q
)
6966 register int nlen
, mlen
;
6971 * Catch errors reported by us and routines below us, and return NULL
6974 if (setjmp(cstate
->top_ctx
))
6977 nlen
= pcapint_atoin(s1
, &n
);
6979 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
6980 /* Promote short ipaddr */
6984 mlen
= pcapint_atoin(s2
, &m
);
6986 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
6987 /* Promote short ipaddr */
6990 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
6993 /* Convert mask len to mask */
6995 bpf_error(cstate
, "mask length must be <= 32");
6996 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
6997 m
= (bpf_u_int32
)m64
;
6999 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7006 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7009 // Q_HOST and Q_GATEWAY only (see the grammar)
7010 bpf_error(cstate
, "Mask syntax for networks only");
7017 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7025 * Catch errors reported by us and routines below us, and return NULL
7028 if (setjmp(cstate
->top_ctx
))
7035 * v contains a 32-bit unsigned parsed from a string of the
7036 * form {N}, which could be decimal, hexadecimal or octal.
7037 * Although it would be possible to use the value as a raw
7038 * 16-bit DECnet address when the value fits into 16 bits, this
7039 * would be a questionable feature: DECnet address wire
7040 * encoding is little-endian, so this would not work as
7041 * intuitively as the same works for [big-endian] IPv4
7042 * addresses (0x01020304 means 1.2.3.4).
7044 if (proto
== Q_DECNET
)
7045 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7047 } else if (proto
== Q_DECNET
) {
7049 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7050 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7051 * for a valid DECnet address.
7053 vlen
= pcapint_atodn(s
, &v
);
7055 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7058 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7059 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7062 vlen
= pcapint_atoin(s
, &v
);
7064 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7072 if (proto
== Q_DECNET
)
7073 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7074 else if (proto
== Q_LINK
) {
7075 // "link (host|net) IPV4ADDR" and variations thereof
7076 bpf_error(cstate
, "illegal link layer address");
7079 if (s
== NULL
&& q
.addr
== Q_NET
) {
7080 /* Promote short net number */
7081 while (v
&& (v
& 0xff000000) == 0) {
7086 /* Promote short ipaddr */
7088 mask
<<= 32 - vlen
;
7090 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7094 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7097 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7099 // proto can be PROTO_UNDEF
7102 b
= gen_port(cstate
, (uint16_t)v
, proto
, dir
);
7103 gen_or(gen_port6(cstate
, (uint16_t)v
, proto
, dir
), b
);
7108 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7111 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7113 // proto can be PROTO_UNDEF
7116 b
= gen_portrange(cstate
, (uint16_t)v
, (uint16_t)v
,
7118 gen_or(gen_portrange6(cstate
, (uint16_t)v
, (uint16_t)v
,
7124 bpf_error(cstate
, "'gateway' requires a name");
7128 return gen_proto(cstate
, v
, proto
);
7130 #if !defined(NO_PROTOCHAIN)
7132 return gen_protochain(cstate
, v
, proto
);
7148 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7151 struct addrinfo
*res
;
7152 struct in6_addr
*addr
;
7153 struct in6_addr mask
;
7155 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7158 * Catch errors reported by us and routines below us, and return NULL
7161 if (setjmp(cstate
->top_ctx
))
7164 res
= pcap_nametoaddrinfo(s
);
7166 bpf_error(cstate
, "invalid ip6 address %s", s
);
7169 bpf_error(cstate
, "%s resolved to multiple address", s
);
7170 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7172 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7173 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7174 memset(&mask
, 0, sizeof(mask
));
7175 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7177 mask
.s6_addr
[masklen
/ 8] =
7178 (0xff << (8 - masklen
% 8)) & 0xff;
7181 memcpy(a
, addr
, sizeof(a
));
7182 memcpy(m
, &mask
, sizeof(m
));
7183 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7184 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7185 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7193 bpf_error(cstate
, "Mask syntax for networks only");
7197 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7203 // Q_GATEWAY only (see the grammar)
7204 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7211 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7214 * Catch errors reported by us and routines below us, and return NULL
7217 if (setjmp(cstate
->top_ctx
))
7220 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7221 const char *context
= "link host XX:XX:XX:XX:XX:XX";
7222 if (! is_mac48_linktype(cstate
->linktype
))
7223 fail_kw_on_dlt(cstate
, context
);
7224 cstate
->e
= pcap_ether_aton(s
);
7225 if (cstate
->e
== NULL
)
7226 bpf_error(cstate
, "malloc");
7227 struct block
*b
= gen_mac48host(cstate
, cstate
->e
, q
.dir
, context
);
7232 bpf_error(cstate
, "ethernet address used in non-ether expression");
7237 sappend(struct slist
*s0
, struct slist
*s1
)
7240 * This is definitely not the best way to do this, but the
7241 * lists will rarely get long.
7248 static struct slist
*
7249 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7253 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7258 static struct slist
*
7259 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7263 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7269 * Modify "index" to use the value stored into its register as an
7270 * offset relative to the beginning of the header for the protocol
7271 * "proto", and allocate a register and put an item "size" bytes long
7272 * (1, 2, or 4) at that offset into that register, making it the register
7275 static struct arth
*
7276 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7280 struct slist
*s
, *tmp
;
7282 int regno
= alloc_reg(cstate
);
7284 free_reg(cstate
, inst
->regno
);
7288 bpf_error(cstate
, "data size must be 1, 2, or 4");
7305 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7309 * The offset is relative to the beginning of the packet
7310 * data, if we have a radio header. (If we don't, this
7313 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7314 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7315 cstate
->linktype
!= DLT_PRISM_HEADER
)
7316 bpf_error(cstate
, "radio information not present in capture");
7319 * Load into the X register the offset computed into the
7320 * register specified by "index".
7322 s
= xfer_to_x(cstate
, inst
);
7325 * Load the item at that offset.
7327 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7329 sappend(inst
->s
, s
);
7334 * The offset is relative to the beginning of
7335 * the link-layer header.
7337 * XXX - what about ATM LANE? Should the index be
7338 * relative to the beginning of the AAL5 frame, so
7339 * that 0 refers to the beginning of the LE Control
7340 * field, or relative to the beginning of the LAN
7341 * frame, so that 0 refers, for Ethernet LANE, to
7342 * the beginning of the destination address?
7344 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7347 * If "s" is non-null, it has code to arrange that the
7348 * X register contains the length of the prefix preceding
7349 * the link-layer header. Add to it the offset computed
7350 * into the register specified by "index", and move that
7351 * into the X register. Otherwise, just load into the X
7352 * register the offset computed into the register specified
7356 sappend(s
, xfer_to_a(cstate
, inst
));
7357 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7358 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7360 s
= xfer_to_x(cstate
, inst
);
7363 * Load the item at the sum of the offset we've put in the
7364 * X register and the offset of the start of the link
7365 * layer header (which is 0 if the radio header is
7366 * variable-length; that header length is what we put
7367 * into the X register and then added to the index).
7369 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7370 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7372 sappend(inst
->s
, s
);
7386 * The offset is relative to the beginning of
7387 * the network-layer header.
7388 * XXX - are there any cases where we want
7389 * cstate->off_nl_nosnap?
7391 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7394 * If "s" is non-null, it has code to arrange that the
7395 * X register contains the variable part of the offset
7396 * of the link-layer payload. Add to it the offset
7397 * computed into the register specified by "index",
7398 * and move that into the X register. Otherwise, just
7399 * load into the X register the offset computed into
7400 * the register specified by "index".
7403 sappend(s
, xfer_to_a(cstate
, inst
));
7404 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7405 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7407 s
= xfer_to_x(cstate
, inst
);
7410 * Load the item at the sum of the offset we've put in the
7411 * X register, the offset of the start of the network
7412 * layer header from the beginning of the link-layer
7413 * payload, and the constant part of the offset of the
7414 * start of the link-layer payload.
7416 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7417 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7419 sappend(inst
->s
, s
);
7422 * Do the computation only if the packet contains
7423 * the protocol in question.
7425 b
= gen_proto_abbrev_internal(cstate
, proto
);
7427 gen_and(inst
->b
, b
);
7441 * The offset is relative to the beginning of
7442 * the transport-layer header.
7444 * Load the X register with the length of the IPv4 header
7445 * (plus the offset of the link-layer header, if it's
7446 * a variable-length header), in bytes.
7448 * XXX - are there any cases where we want
7449 * cstate->off_nl_nosnap?
7450 * XXX - we should, if we're built with
7451 * IPv6 support, generate code to load either
7452 * IPv4, IPv6, or both, as appropriate.
7454 s
= gen_loadx_iphdrlen(cstate
);
7457 * The X register now contains the sum of the variable
7458 * part of the offset of the link-layer payload and the
7459 * length of the network-layer header.
7461 * Load into the A register the offset relative to
7462 * the beginning of the transport layer header,
7463 * add the X register to that, move that to the
7464 * X register, and load with an offset from the
7465 * X register equal to the sum of the constant part of
7466 * the offset of the link-layer payload and the offset,
7467 * relative to the beginning of the link-layer payload,
7468 * of the network-layer header.
7470 sappend(s
, xfer_to_a(cstate
, inst
));
7471 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7472 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7473 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7474 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7475 sappend(inst
->s
, s
);
7478 * Do the computation only if the packet contains
7479 * the protocol in question - which is true only
7480 * if this is an IP datagram and is the first or
7481 * only fragment of that datagram.
7483 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7485 gen_and(inst
->b
, b
);
7486 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7491 * Do the computation only if the packet contains
7492 * the protocol in question.
7494 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7496 gen_and(inst
->b
, b
);
7500 * Check if we have an icmp6 next header
7502 b
= gen_ip6_proto(cstate
, 58);
7504 gen_and(inst
->b
, b
);
7507 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7509 * If "s" is non-null, it has code to arrange that the
7510 * X register contains the variable part of the offset
7511 * of the link-layer payload. Add to it the offset
7512 * computed into the register specified by "index",
7513 * and move that into the X register. Otherwise, just
7514 * load into the X register the offset computed into
7515 * the register specified by "index".
7518 sappend(s
, xfer_to_a(cstate
, inst
));
7519 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7520 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7522 s
= xfer_to_x(cstate
, inst
);
7525 * Load the item at the sum of the offset we've put in the
7526 * X register, the offset of the start of the network
7527 * layer header from the beginning of the link-layer
7528 * payload, and the constant part of the offset of the
7529 * start of the link-layer payload.
7531 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7532 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7535 sappend(inst
->s
, s
);
7539 inst
->regno
= regno
;
7540 s
= new_stmt(cstate
, BPF_ST
);
7542 sappend(inst
->s
, s
);
7548 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7552 * Catch errors reported by us and routines below us, and return NULL
7555 if (setjmp(cstate
->top_ctx
))
7558 return gen_load_internal(cstate
, proto
, inst
, size
);
7561 static struct block
*
7562 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7563 struct arth
*a1
, int reversed
)
7565 struct slist
*s0
, *s1
, *s2
;
7566 struct block
*b
, *tmp
;
7568 s0
= xfer_to_x(cstate
, a1
);
7569 s1
= xfer_to_a(cstate
, a0
);
7570 if (code
== BPF_JEQ
) {
7571 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7572 b
= new_block(cstate
, JMP(code
));
7576 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7582 sappend(a0
->s
, a1
->s
);
7586 free_reg(cstate
, a0
->regno
);
7587 free_reg(cstate
, a1
->regno
);
7589 /* 'and' together protocol checks */
7592 gen_and(a0
->b
, tmp
= a1
->b
);
7606 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7607 struct arth
*a1
, int reversed
)
7610 * Catch errors reported by us and routines below us, and return NULL
7613 if (setjmp(cstate
->top_ctx
))
7616 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7620 gen_loadlen(compiler_state_t
*cstate
)
7627 * Catch errors reported by us and routines below us, and return NULL
7630 if (setjmp(cstate
->top_ctx
))
7633 regno
= alloc_reg(cstate
);
7634 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7635 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7636 s
->next
= new_stmt(cstate
, BPF_ST
);
7637 s
->next
->s
.k
= regno
;
7644 static struct arth
*
7645 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7651 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7653 reg
= alloc_reg(cstate
);
7655 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7657 s
->next
= new_stmt(cstate
, BPF_ST
);
7666 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7669 * Catch errors reported by us and routines below us, and return NULL
7672 if (setjmp(cstate
->top_ctx
))
7675 return gen_loadi_internal(cstate
, val
);
7679 * The a_arg dance is to avoid annoying whining by compilers that
7680 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7681 * It's not *used* after setjmp returns.
7684 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7686 struct arth
*a
= a_arg
;
7690 * Catch errors reported by us and routines below us, and return NULL
7693 if (setjmp(cstate
->top_ctx
))
7696 s
= xfer_to_a(cstate
, a
);
7698 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7701 s
= new_stmt(cstate
, BPF_ST
);
7709 * The a0_arg dance is to avoid annoying whining by compilers that
7710 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7711 * It's not *used* after setjmp returns.
7714 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7717 struct arth
*a0
= a0_arg
;
7718 struct slist
*s0
, *s1
, *s2
;
7721 * Catch errors reported by us and routines below us, and return NULL
7724 if (setjmp(cstate
->top_ctx
))
7728 * Disallow division by, or modulus by, zero; we do this here
7729 * so that it gets done even if the optimizer is disabled.
7731 * Also disallow shifts by a value greater than 31; we do this
7732 * here, for the same reason.
7734 if (code
== BPF_DIV
) {
7735 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7736 bpf_error(cstate
, "division by zero");
7737 } else if (code
== BPF_MOD
) {
7738 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7739 bpf_error(cstate
, "modulus by zero");
7740 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7741 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7742 bpf_error(cstate
, "shift by more than 31 bits");
7744 s0
= xfer_to_x(cstate
, a1
);
7745 s1
= xfer_to_a(cstate
, a0
);
7746 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7751 sappend(a0
->s
, a1
->s
);
7753 free_reg(cstate
, a0
->regno
);
7754 free_reg(cstate
, a1
->regno
);
7756 s0
= new_stmt(cstate
, BPF_ST
);
7757 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7764 * Initialize the table of used registers and the current register.
7767 init_regs(compiler_state_t
*cstate
)
7770 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7774 * Return the next free register.
7777 alloc_reg(compiler_state_t
*cstate
)
7779 int n
= BPF_MEMWORDS
;
7782 if (cstate
->regused
[cstate
->curreg
])
7783 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7785 cstate
->regused
[cstate
->curreg
] = 1;
7786 return cstate
->curreg
;
7789 bpf_error(cstate
, "too many registers needed to evaluate expression");
7794 * Return a register to the table so it can
7798 free_reg(compiler_state_t
*cstate
, int n
)
7800 cstate
->regused
[n
] = 0;
7803 static struct block
*
7804 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7808 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7809 return gen_jmp(cstate
, jmp
, n
, s
);
7813 gen_greater(compiler_state_t
*cstate
, int n
)
7816 * Catch errors reported by us and routines below us, and return NULL
7819 if (setjmp(cstate
->top_ctx
))
7822 return gen_len(cstate
, BPF_JGE
, n
);
7826 * Actually, this is less than or equal.
7829 gen_less(compiler_state_t
*cstate
, int n
)
7834 * Catch errors reported by us and routines below us, and return NULL
7837 if (setjmp(cstate
->top_ctx
))
7840 b
= gen_len(cstate
, BPF_JGT
, n
);
7847 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7848 * the beginning of the link-layer header.
7849 * XXX - that means you can't test values in the radiotap header, but
7850 * as that header is difficult if not impossible to parse generally
7851 * without a loop, that might not be a severe problem. A new keyword
7852 * "radio" could be added for that, although what you'd really want
7853 * would be a way of testing particular radio header values, which
7854 * would generate code appropriate to the radio header in question.
7857 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
7863 * Catch errors reported by us and routines below us, and return NULL
7866 if (setjmp(cstate
->top_ctx
))
7869 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
7876 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7879 return gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7882 return gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7885 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7889 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7893 // Load the required byte first.
7894 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
7896 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
7903 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7905 bpf_u_int32 hostmask
;
7906 struct block
*b0
, *b1
, *b2
;
7907 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7910 * Catch errors reported by us and routines below us, and return NULL
7913 if (setjmp(cstate
->top_ctx
))
7920 switch (cstate
->linktype
) {
7922 case DLT_ARCNET_LINUX
:
7923 // ARCnet broadcast is [8-bit] destination address 0.
7924 return gen_ahostop(cstate
, 0, Q_DST
);
7926 return gen_mac48host(cstate
, ebroadcast
, Q_DST
, "broadcast");
7931 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7932 * as an indication that we don't know the netmask, and fail
7935 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7936 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7937 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7938 hostmask
= ~cstate
->netmask
;
7939 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
7940 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
7945 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
7950 * Generate code to test the low-order bit of a MAC address (that's
7951 * the bottom bit of the *first* byte).
7953 static struct block
*
7954 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7956 register struct slist
*s
;
7958 /* link[offset] & 1 != 0 */
7959 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7960 return gen_set(cstate
, 1, s
);
7964 gen_multicast(compiler_state_t
*cstate
, int proto
)
7966 register struct block
*b0
, *b1
, *b2
;
7967 register struct slist
*s
;
7970 * Catch errors reported by us and routines below us, and return NULL
7973 if (setjmp(cstate
->top_ctx
))
7980 switch (cstate
->linktype
) {
7982 case DLT_ARCNET_LINUX
:
7983 // ARCnet multicast is the same as broadcast.
7984 return gen_ahostop(cstate
, 0, Q_DST
);
7986 case DLT_NETANALYZER
:
7987 case DLT_NETANALYZER_TRANSPARENT
:
7988 b1
= gen_prevlinkhdr_check(cstate
);
7989 /* ether[0] & 1 != 0 */
7990 b0
= gen_mac_multicast(cstate
, 0);
7996 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7998 * XXX - was that referring to bit-order issues?
8000 /* fddi[1] & 1 != 0 */
8001 return gen_mac_multicast(cstate
, 1);
8003 /* tr[2] & 1 != 0 */
8004 return gen_mac_multicast(cstate
, 2);
8005 case DLT_IEEE802_11
:
8006 case DLT_PRISM_HEADER
:
8007 case DLT_IEEE802_11_RADIO_AVS
:
8008 case DLT_IEEE802_11_RADIO
:
8013 * For control frames, there is no DA.
8015 * For management frames, DA is at an
8016 * offset of 4 from the beginning of
8019 * For data frames, DA is at an offset
8020 * of 4 from the beginning of the packet
8021 * if To DS is clear and at an offset of
8022 * 16 from the beginning of the packet
8027 * Generate the tests to be done for data frames.
8029 * First, check for To DS set, i.e. "link[1] & 0x01".
8031 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8032 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8035 * If To DS is set, the DA is at 16.
8037 b0
= gen_mac_multicast(cstate
, 16);
8041 * Now, check for To DS not set, i.e. check
8042 * "!(link[1] & 0x01)".
8044 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8045 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8048 * If To DS is not set, the DA is at 4.
8050 b1
= gen_mac_multicast(cstate
, 4);
8054 * Now OR together the last two checks. That gives
8055 * the complete set of checks for data frames.
8060 * Now check for a data frame.
8061 * I.e, check "link[0] & 0x08".
8063 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8064 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8067 * AND that with the checks done for data frames.
8072 * If the high-order bit of the type value is 0, this
8073 * is a management frame.
8074 * I.e, check "!(link[0] & 0x08)".
8076 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8077 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8080 * For management frames, the DA is at 4.
8082 b1
= gen_mac_multicast(cstate
, 4);
8086 * OR that with the checks done for data frames.
8087 * That gives the checks done for management and
8093 * If the low-order bit of the type value is 1,
8094 * this is either a control frame or a frame
8095 * with a reserved type, and thus not a
8098 * I.e., check "!(link[0] & 0x04)".
8100 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8101 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
8104 * AND that with the checks for data and management
8109 case DLT_IP_OVER_FC
:
8110 return gen_mac_multicast(cstate
, 2);
8114 fail_kw_on_dlt(cstate
, "multicast");
8118 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8119 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8124 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8125 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8129 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8135 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8136 * we can look at special meta-data in the filter expression; otherwise we
8137 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8138 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8139 * pcap_activate() conditionally sets.
8142 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8144 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8146 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8148 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8153 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8156 * Catch errors reported by us and routines below us, and return NULL
8159 if (setjmp(cstate
->top_ctx
))
8163 * Only some data link types support ifindex qualifiers.
8165 switch (cstate
->linktype
) {
8166 case DLT_LINUX_SLL2
:
8167 /* match packets on this interface */
8168 return gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8170 #if defined(__linux__)
8171 require_basic_bpf_extensions(cstate
, "ifindex");
8173 return gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8175 #else /* defined(__linux__) */
8176 fail_kw_on_dlt(cstate
, "ifindex");
8178 #endif /* defined(__linux__) */
8183 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8184 * Outbound traffic is sent by this machine, while inbound traffic is
8185 * sent by a remote machine (and may include packets destined for a
8186 * unicast or multicast link-layer address we are not subscribing to).
8187 * These are the same definitions implemented by pcap_setdirection().
8188 * Capturing only unicast traffic destined for this host is probably
8189 * better accomplished using a higher-layer filter.
8192 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8194 register struct block
*b0
;
8197 * Catch errors reported by us and routines below us, and return NULL
8200 if (setjmp(cstate
->top_ctx
))
8204 * Only some data link types support inbound/outbound qualifiers.
8206 switch (cstate
->linktype
) {
8208 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8209 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8212 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8213 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8216 /* match outgoing packets */
8217 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8219 /* to filter on inbound traffic, invert the match */
8224 case DLT_LINUX_SLL2
:
8225 /* match outgoing packets */
8226 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8228 /* to filter on inbound traffic, invert the match */
8234 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8235 outbound
? PF_OUT
: PF_IN
);
8238 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8240 case DLT_JUNIPER_MFR
:
8241 case DLT_JUNIPER_MLFR
:
8242 case DLT_JUNIPER_MLPPP
:
8243 case DLT_JUNIPER_ATM1
:
8244 case DLT_JUNIPER_ATM2
:
8245 case DLT_JUNIPER_PPPOE
:
8246 case DLT_JUNIPER_PPPOE_ATM
:
8247 case DLT_JUNIPER_GGSN
:
8248 case DLT_JUNIPER_ES
:
8249 case DLT_JUNIPER_MONITOR
:
8250 case DLT_JUNIPER_SERVICES
:
8251 case DLT_JUNIPER_ETHER
:
8252 case DLT_JUNIPER_PPP
:
8253 case DLT_JUNIPER_FRELAY
:
8254 case DLT_JUNIPER_CHDLC
:
8255 case DLT_JUNIPER_VP
:
8256 case DLT_JUNIPER_ST
:
8257 case DLT_JUNIPER_ISM
:
8258 case DLT_JUNIPER_VS
:
8259 case DLT_JUNIPER_SRX_E2E
:
8260 case DLT_JUNIPER_FIBRECHANNEL
:
8261 case DLT_JUNIPER_ATM_CEMIC
:
8262 /* juniper flags (including direction) are stored
8263 * the byte after the 3-byte magic number */
8264 return gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8268 * If we have packet meta-data indicating a direction,
8269 * and that metadata can be checked by BPF code, check
8270 * it. Otherwise, give up, as this link-layer type has
8271 * nothing in the packet data.
8273 * Currently, the only platform where a BPF filter can
8274 * check that metadata is Linux with the in-kernel
8275 * BPF interpreter. If other packet capture mechanisms
8276 * and BPF filters also supported this, it would be
8277 * nice. It would be even better if they made that
8278 * metadata available so that we could provide it
8279 * with newer capture APIs, allowing it to be saved
8282 #if defined(__linux__)
8283 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8284 /* match outgoing packets */
8285 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8288 /* to filter on inbound traffic, invert the match */
8292 #else /* defined(__linux__) */
8293 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8295 #endif /* defined(__linux__) */
8299 /* PF firewall log matched interface */
8301 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8306 * Catch errors reported by us and routines below us, and return NULL
8309 if (setjmp(cstate
->top_ctx
))
8312 assert_pflog(cstate
, "ifname");
8314 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8315 off
= offsetof(struct pfloghdr
, ifname
);
8316 if (strlen(ifname
) >= len
) {
8317 bpf_error(cstate
, "ifname interface names can only be %d characters",
8321 return gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8322 (const u_char
*)ifname
);
8325 /* PF firewall log ruleset name */
8327 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8330 * Catch errors reported by us and routines below us, and return NULL
8333 if (setjmp(cstate
->top_ctx
))
8336 assert_pflog(cstate
, "ruleset");
8338 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8339 bpf_error(cstate
, "ruleset names can only be %ld characters",
8340 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8344 return gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8345 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8348 /* PF firewall log rule number */
8350 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8353 * Catch errors reported by us and routines below us, and return NULL
8356 if (setjmp(cstate
->top_ctx
))
8359 assert_pflog(cstate
, "rnr");
8361 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8365 /* PF firewall log sub-rule number */
8367 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8370 * Catch errors reported by us and routines below us, and return NULL
8373 if (setjmp(cstate
->top_ctx
))
8376 assert_pflog(cstate
, "srnr");
8378 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8382 /* PF firewall log reason code */
8384 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8387 * Catch errors reported by us and routines below us, and return NULL
8390 if (setjmp(cstate
->top_ctx
))
8393 assert_pflog(cstate
, "reason");
8395 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8396 (bpf_u_int32
)reason
);
8399 /* PF firewall log action */
8401 gen_pf_action(compiler_state_t
*cstate
, int action
)
8404 * Catch errors reported by us and routines below us, and return NULL
8407 if (setjmp(cstate
->top_ctx
))
8410 assert_pflog(cstate
, "action");
8412 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8413 (bpf_u_int32
)action
);
8416 /* IEEE 802.11 wireless header */
8418 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8421 * Catch errors reported by us and routines below us, and return NULL
8424 if (setjmp(cstate
->top_ctx
))
8427 switch (cstate
->linktype
) {
8429 case DLT_IEEE802_11
:
8430 case DLT_PRISM_HEADER
:
8431 case DLT_IEEE802_11_RADIO_AVS
:
8432 case DLT_IEEE802_11_RADIO
:
8434 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8437 fail_kw_on_dlt(cstate
, "type/subtype");
8443 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8446 * Catch errors reported by us and routines below us, and return NULL
8449 if (setjmp(cstate
->top_ctx
))
8452 switch (cstate
->linktype
) {
8454 case DLT_IEEE802_11
:
8455 case DLT_PRISM_HEADER
:
8456 case DLT_IEEE802_11_RADIO_AVS
:
8457 case DLT_IEEE802_11_RADIO
:
8459 return gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8460 IEEE80211_FC1_DIR_MASK
);
8463 fail_kw_on_dlt(cstate
, "dir");
8468 // Process an ARCnet host address string.
8470 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8473 * Catch errors reported by us and routines below us, and return NULL
8476 if (setjmp(cstate
->top_ctx
))
8479 switch (cstate
->linktype
) {
8482 case DLT_ARCNET_LINUX
:
8483 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8484 q
.proto
== Q_LINK
) {
8487 * The lexer currently defines the address format in a
8488 * way that makes this error condition never true.
8489 * Let's check it anyway in case this part of the lexer
8490 * changes in future.
8492 if (! pcapint_atoan(s
, &addr
))
8493 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8494 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8496 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8500 bpf_error(cstate
, "aid supported only on ARCnet");
8505 // Compare an ARCnet host address with the given value.
8506 static struct block
*
8507 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8509 register struct block
*b0
, *b1
;
8513 * ARCnet is different from Ethernet: the source address comes before
8514 * the destination address, each is one byte long. This holds for all
8515 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8516 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8517 * by Datapoint (document number 61610-01).
8520 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8523 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8526 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8527 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8533 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8534 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8544 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8551 static struct block
*
8552 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8554 struct block
*b0
, *b1
;
8556 /* check for VLAN, including 802.1ad and QinQ */
8557 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8558 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8561 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8567 static struct block
*
8568 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8570 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8571 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8574 static struct block
*
8575 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8578 struct block
*b0
, *b1
;
8580 b0
= gen_vlan_tpid_test(cstate
);
8583 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8589 * Both payload and link header type follow the VLAN tags so that
8590 * both need to be updated.
8592 cstate
->off_linkpl
.constant_part
+= 4;
8593 cstate
->off_linktype
.constant_part
+= 4;
8598 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8599 /* add v to variable part of off */
8601 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8602 bpf_u_int32 v
, struct slist
*s
)
8606 if (!off
->is_variable
)
8607 off
->is_variable
= 1;
8609 off
->reg
= alloc_reg(cstate
);
8611 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8614 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8617 s2
= new_stmt(cstate
, BPF_ST
);
8623 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8624 * and link type offsets first
8627 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8631 /* offset determined at run time, shift variable part */
8633 cstate
->is_vlan_vloffset
= 1;
8634 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8635 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8637 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8638 sappend(s
.next
, b_tpid
->head
->stmts
);
8639 b_tpid
->head
->stmts
= s
.next
;
8643 * patch block b_vid (VLAN id test) to load VID value either from packet
8644 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8647 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8649 struct slist
*s
, *s2
, *sjeq
;
8652 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8653 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8655 /* true -> next instructions, false -> beginning of b_vid */
8656 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8658 sjeq
->s
.jf
= b_vid
->stmts
;
8661 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8662 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8666 /* Jump to the test in b_vid. We need to jump one instruction before
8667 * the end of the b_vid block so that we only skip loading the TCI
8668 * from packet data and not the 'and' instruction extracting VID.
8671 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8673 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8677 /* insert our statements at the beginning of b_vid */
8678 sappend(s
, b_vid
->stmts
);
8683 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8684 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8685 * tag can be either in metadata or in packet data; therefore if the
8686 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8687 * header for VLAN tag. As the decision is done at run time, we need
8688 * update variable part of the offsets
8690 static struct block
*
8691 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8694 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8697 /* generate new filter code based on extracting packet
8699 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8700 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8702 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
8705 * This is tricky. We need to insert the statements updating variable
8706 * parts of offsets before the traditional TPID and VID tests so
8707 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8708 * we do not want this update to affect those checks. That's why we
8709 * generate both test blocks first and insert the statements updating
8710 * variable parts of both offsets after that. This wouldn't work if
8711 * there already were variable length link header when entering this
8712 * function but gen_vlan_bpf_extensions() isn't called in that case.
8714 b_tpid
= gen_vlan_tpid_test(cstate
);
8716 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
8718 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
8723 gen_vlan_patch_vid_test(cstate
, b_vid
);
8733 * support IEEE 802.1Q VLAN trunk over ethernet
8736 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
8741 * Catch errors reported by us and routines below us, and return NULL
8744 if (setjmp(cstate
->top_ctx
))
8747 /* can't check for VLAN-encapsulated packets inside MPLS */
8748 if (cstate
->label_stack_depth
> 0)
8749 bpf_error(cstate
, "no VLAN match after MPLS");
8752 * Check for a VLAN packet, and then change the offsets to point
8753 * to the type and data fields within the VLAN packet. Just
8754 * increment the offsets, so that we can support a hierarchy, e.g.
8755 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
8758 * XXX - this is a bit of a kludge. If we were to split the
8759 * compiler into a parser that parses an expression and
8760 * generates an expression tree, and a code generator that
8761 * takes an expression tree (which could come from our
8762 * parser or from some other parser) and generates BPF code,
8763 * we could perhaps make the offsets parameters of routines
8764 * and, in the handler for an "AND" node, pass to subnodes
8765 * other than the VLAN node the adjusted offsets.
8767 * This would mean that "vlan" would, instead of changing the
8768 * behavior of *all* tests after it, change only the behavior
8769 * of tests ANDed with it. That would change the documented
8770 * semantics of "vlan", which might break some expressions.
8771 * However, it would mean that "(vlan and ip) or ip" would check
8772 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8773 * checking only for VLAN-encapsulated IP, so that could still
8774 * be considered worth doing; it wouldn't break expressions
8775 * that are of the form "vlan and ..." or "vlan N and ...",
8776 * which I suspect are the most common expressions involving
8777 * "vlan". "vlan or ..." doesn't necessarily do what the user
8778 * would really want, now, as all the "or ..." tests would
8779 * be done assuming a VLAN, even though the "or" could be viewed
8780 * as meaning "or, if this isn't a VLAN packet...".
8782 switch (cstate
->linktype
) {
8786 * Newer version of the Linux kernel pass around
8787 * packets in which the VLAN tag has been removed
8788 * from the packet data and put into metadata.
8790 * This requires special treatment.
8792 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8793 /* Verify that this is the outer part of the packet and
8794 * not encapsulated somehow. */
8795 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8796 cstate
->off_linkhdr
.constant_part
==
8797 cstate
->off_outermostlinkhdr
.constant_part
) {
8799 * Do we need special VLAN handling?
8801 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8802 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
8805 b0
= gen_vlan_no_bpf_extensions(cstate
,
8806 vlan_num
, has_vlan_tag
);
8809 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
8813 case DLT_NETANALYZER
:
8814 case DLT_NETANALYZER_TRANSPARENT
:
8815 case DLT_IEEE802_11
:
8816 case DLT_PRISM_HEADER
:
8817 case DLT_IEEE802_11_RADIO_AVS
:
8818 case DLT_IEEE802_11_RADIO
:
8820 * These are either Ethernet packets with an additional
8821 * metadata header (the NetAnalyzer types), or 802.11
8822 * packets, possibly with an additional metadata header.
8824 * For the first of those, the VLAN tag is in the normal
8825 * place, so the special-case handling above isn't
8828 * For the second of those, we don't do the special-case
8831 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
8835 bpf_error(cstate
, "no VLAN support for %s",
8836 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8840 cstate
->vlan_stack_depth
++;
8848 * The label_num_arg dance is to avoid annoying whining by compilers that
8849 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8850 * It's not *used* after setjmp returns.
8852 static struct block
*
8853 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
8856 struct block
*b0
, *b1
;
8858 if (cstate
->label_stack_depth
> 0) {
8859 /* just match the bottom-of-stack bit clear */
8860 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
8863 * We're not in an MPLS stack yet, so check the link-layer
8864 * type against MPLS.
8866 switch (cstate
->linktype
) {
8868 case DLT_C_HDLC
: /* fall through */
8871 case DLT_NETANALYZER
:
8872 case DLT_NETANALYZER_TRANSPARENT
:
8873 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
8877 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
8880 /* FIXME add other DLT_s ...
8881 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8882 * leave it for now */
8885 bpf_error(cstate
, "no MPLS support for %s",
8886 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8891 /* If a specific MPLS label is requested, check it */
8892 if (has_label_num
) {
8893 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
8894 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8895 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
8896 0xfffff000); /* only compare the first 20 bits */
8902 * Change the offsets to point to the type and data fields within
8903 * the MPLS packet. Just increment the offsets, so that we
8904 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8905 * capture packets with an outer label of 100000 and an inner
8908 * Increment the MPLS stack depth as well; this indicates that
8909 * we're checking MPLS-encapsulated headers, to make sure higher
8910 * level code generators don't try to match against IP-related
8911 * protocols such as Q_ARP, Q_RARP etc.
8913 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8915 cstate
->off_nl_nosnap
+= 4;
8916 cstate
->off_nl
+= 4;
8917 cstate
->label_stack_depth
++;
8922 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
8925 * Catch errors reported by us and routines below us, and return NULL
8928 if (setjmp(cstate
->top_ctx
))
8931 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
8935 * Support PPPOE discovery and session.
8938 gen_pppoed(compiler_state_t
*cstate
)
8941 * Catch errors reported by us and routines below us, and return NULL
8944 if (setjmp(cstate
->top_ctx
))
8947 /* check for PPPoE discovery */
8948 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
8952 * RFC 2516 Section 4:
8954 * The Ethernet payload for PPPoE is as follows:
8957 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
8958 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8959 * | VER | TYPE | CODE | SESSION_ID |
8960 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8961 * | LENGTH | payload ~
8962 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8965 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
8967 struct block
*b0
, *b1
;
8970 * Catch errors reported by us and routines below us, and return NULL
8973 if (setjmp(cstate
->top_ctx
))
8977 * Test against the PPPoE session link-layer type.
8979 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
8981 /* If a specific session is requested, check PPPoE session id */
8983 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
8984 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
8990 * Change the offsets to point to the type and data fields within
8991 * the PPP packet, and note that this is PPPoE rather than
8994 * XXX - this is a bit of a kludge. See the comments in
8997 * The "network-layer" protocol is PPPoE, which has a 6-byte
8998 * PPPoE header, followed by a PPP packet.
9000 * There is no HDLC encapsulation for the PPP packet (it's
9001 * encapsulated in PPPoES instead), so the link-layer type
9002 * starts at the first byte of the PPP packet. For PPPoE,
9003 * that offset is relative to the beginning of the total
9004 * link-layer payload, including any 802.2 LLC header, so
9005 * it's 6 bytes past cstate->off_nl.
9007 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9008 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9009 cstate
->off_linkpl
.reg
);
9011 cstate
->off_linktype
= cstate
->off_linkhdr
;
9012 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9015 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9020 /* Check that this is Geneve and the VNI is correct if
9021 * specified. Parameterized to handle both IPv4 and IPv6. */
9022 static struct block
*
9023 gen_geneve_check(compiler_state_t
*cstate
,
9024 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9025 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9027 struct block
*b0
, *b1
;
9029 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9031 /* Check that we are operating on version 0. Otherwise, we
9032 * can't decode the rest of the fields. The version is 2 bits
9033 * in the first byte of the Geneve header. */
9034 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9039 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9040 vni
<<= 8; /* VNI is in the upper 3 bytes */
9041 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9049 /* The IPv4 and IPv6 Geneve checks need to do two things:
9050 * - Verify that this actually is Geneve with the right VNI.
9051 * - Place the IP header length (plus variable link prefix if
9052 * needed) into register A to be used later to compute
9053 * the inner packet offsets. */
9054 static struct block
*
9055 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9057 struct block
*b0
, *b1
;
9058 struct slist
*s
, *s1
;
9060 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9062 /* Load the IP header length into A. */
9063 s
= gen_loadx_iphdrlen(cstate
);
9065 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9068 /* Forcibly append these statements to the true condition
9069 * of the protocol check by creating a new block that is
9070 * always true and ANDing them. */
9071 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9078 static struct block
*
9079 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9081 struct block
*b0
, *b1
;
9082 struct slist
*s
, *s1
;
9084 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9086 /* Load the IP header length. We need to account for a
9087 * variable length link prefix if there is one. */
9088 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9090 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9094 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9098 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9102 /* Forcibly append these statements to the true condition
9103 * of the protocol check by creating a new block that is
9104 * always true and ANDing them. */
9105 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9108 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9115 /* We need to store three values based on the Geneve header::
9116 * - The offset of the linktype.
9117 * - The offset of the end of the Geneve header.
9118 * - The offset of the end of the encapsulated MAC header. */
9119 static struct slist
*
9120 gen_geneve_offsets(compiler_state_t
*cstate
)
9122 struct slist
*s
, *s1
, *s_proto
;
9124 /* First we need to calculate the offset of the Geneve header
9125 * itself. This is composed of the IP header previously calculated
9126 * (include any variable link prefix) and stored in A plus the
9127 * fixed sized headers (fixed link prefix, MAC length, and UDP
9129 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9130 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9132 /* Stash this in X since we'll need it later. */
9133 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9136 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9138 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9142 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9143 cstate
->off_linktype
.is_variable
= 1;
9144 cstate
->off_linktype
.constant_part
= 0;
9146 s1
= new_stmt(cstate
, BPF_ST
);
9147 s1
->s
.k
= cstate
->off_linktype
.reg
;
9150 /* Load the Geneve option length and mask and shift to get the
9151 * number of bytes. It is stored in the first byte of the Geneve
9153 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9157 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9161 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9165 /* Add in the rest of the Geneve base header. */
9166 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9170 /* Add the Geneve header length to its offset and store. */
9171 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9175 /* Set the encapsulated type as Ethernet. Even though we may
9176 * not actually have Ethernet inside there are two reasons this
9178 * - The linktype field is always in EtherType format regardless
9179 * of whether it is in Geneve or an inner Ethernet frame.
9180 * - The only link layer that we have specific support for is
9181 * Ethernet. We will confirm that the packet actually is
9182 * Ethernet at runtime before executing these checks. */
9183 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9185 s1
= new_stmt(cstate
, BPF_ST
);
9186 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9189 /* Calculate whether we have an Ethernet header or just raw IP/
9190 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9191 * and linktype by 14 bytes so that the network header can be found
9192 * seamlessly. Otherwise, keep what we've calculated already. */
9194 /* We have a bare jmp so we can't use the optimizer. */
9195 cstate
->no_optimize
= 1;
9197 /* Load the EtherType in the Geneve header, 2 bytes in. */
9198 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9202 /* Load X with the end of the Geneve header. */
9203 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9204 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9207 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9208 * end of this check, we should have the total length in X. In
9209 * the non-Ethernet case, it's already there. */
9210 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9211 s_proto
->s
.k
= ETHERTYPE_TEB
;
9212 sappend(s
, s_proto
);
9214 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9218 /* Since this is Ethernet, use the EtherType of the payload
9219 * directly as the linktype. Overwrite what we already have. */
9220 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9224 s1
= new_stmt(cstate
, BPF_ST
);
9225 s1
->s
.k
= cstate
->off_linktype
.reg
;
9228 /* Advance two bytes further to get the end of the Ethernet
9230 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9234 /* Move the result to X. */
9235 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9238 /* Store the final result of our linkpl calculation. */
9239 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9240 cstate
->off_linkpl
.is_variable
= 1;
9241 cstate
->off_linkpl
.constant_part
= 0;
9243 s1
= new_stmt(cstate
, BPF_STX
);
9244 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9253 /* Check to see if this is a Geneve packet. */
9255 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9257 struct block
*b0
, *b1
;
9261 * Catch errors reported by us and routines below us, and return NULL
9264 if (setjmp(cstate
->top_ctx
))
9267 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9268 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9273 /* Later filters should act on the payload of the Geneve frame,
9274 * update all of the header pointers. Attach this code so that
9275 * it gets executed in the event that the Geneve filter matches. */
9276 s
= gen_geneve_offsets(cstate
);
9278 b1
= gen_true(cstate
);
9279 sappend(s
, b1
->stmts
);
9284 cstate
->is_encap
= 1;
9289 /* Check that this is VXLAN and the VNI is correct if
9290 * specified. Parameterized to handle both IPv4 and IPv6. */
9291 static struct block
*
9292 gen_vxlan_check(compiler_state_t
*cstate
,
9293 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9294 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9296 struct block
*b0
, *b1
;
9298 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9300 /* Check that the VXLAN header has the flag bits set
9302 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9307 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9308 vni
<<= 8; /* VNI is in the upper 3 bytes */
9309 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9317 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9318 * - Verify that this actually is VXLAN with the right VNI.
9319 * - Place the IP header length (plus variable link prefix if
9320 * needed) into register A to be used later to compute
9321 * the inner packet offsets. */
9322 static struct block
*
9323 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9325 struct block
*b0
, *b1
;
9326 struct slist
*s
, *s1
;
9328 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9330 /* Load the IP header length into A. */
9331 s
= gen_loadx_iphdrlen(cstate
);
9333 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9336 /* Forcibly append these statements to the true condition
9337 * of the protocol check by creating a new block that is
9338 * always true and ANDing them. */
9339 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9346 static struct block
*
9347 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9349 struct block
*b0
, *b1
;
9350 struct slist
*s
, *s1
;
9352 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9354 /* Load the IP header length. We need to account for a
9355 * variable length link prefix if there is one. */
9356 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9358 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9362 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9366 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9370 /* Forcibly append these statements to the true condition
9371 * of the protocol check by creating a new block that is
9372 * always true and ANDing them. */
9373 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9376 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9383 /* We need to store three values based on the VXLAN header:
9384 * - The offset of the linktype.
9385 * - The offset of the end of the VXLAN header.
9386 * - The offset of the end of the encapsulated MAC header. */
9387 static struct slist
*
9388 gen_vxlan_offsets(compiler_state_t
*cstate
)
9390 struct slist
*s
, *s1
;
9392 /* Calculate the offset of the VXLAN header itself. This
9393 * includes the IP header computed previously (including any
9394 * variable link prefix) and stored in A plus the fixed size
9395 * headers (fixed link prefix, MAC length, UDP header). */
9396 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9397 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9399 /* Add the VXLAN header length to its offset and store */
9400 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9404 /* Push the link header. VXLAN packets always contain Ethernet
9406 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9408 s1
= new_stmt(cstate
, BPF_ST
);
9409 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9412 /* As the payload is an Ethernet packet, we can use the
9413 * EtherType of the payload directly as the linktype. */
9414 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9418 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9419 cstate
->off_linktype
.is_variable
= 1;
9420 cstate
->off_linktype
.constant_part
= 0;
9422 s1
= new_stmt(cstate
, BPF_ST
);
9423 s1
->s
.k
= cstate
->off_linktype
.reg
;
9426 /* Two bytes further is the end of the Ethernet header and the
9427 * start of the payload. */
9428 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9432 /* Move the result to X. */
9433 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9436 /* Store the final result of our linkpl calculation. */
9437 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9438 cstate
->off_linkpl
.is_variable
= 1;
9439 cstate
->off_linkpl
.constant_part
= 0;
9441 s1
= new_stmt(cstate
, BPF_STX
);
9442 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9450 /* Check to see if this is a VXLAN packet. */
9452 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9454 struct block
*b0
, *b1
;
9458 * Catch errors reported by us and routines below us, and return NULL
9461 if (setjmp(cstate
->top_ctx
))
9464 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9465 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9470 /* Later filters should act on the payload of the VXLAN frame,
9471 * update all of the header pointers. Attach this code so that
9472 * it gets executed in the event that the VXLAN filter matches. */
9473 s
= gen_vxlan_offsets(cstate
);
9475 b1
= gen_true(cstate
);
9476 sappend(s
, b1
->stmts
);
9481 cstate
->is_encap
= 1;
9486 /* Check that the encapsulated frame has a link layer header
9487 * for Ethernet filters. */
9488 static struct block
*
9489 gen_encap_ll_check(compiler_state_t
*cstate
)
9492 struct slist
*s
, *s1
;
9494 /* The easiest way to see if there is a link layer present
9495 * is to check if the link layer header and payload are not
9498 /* Geneve always generates pure variable offsets so we can
9499 * compare only the registers. */
9500 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9501 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9503 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9504 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9507 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9513 static struct block
*
9514 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9515 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9517 assert_atm(cstate
, atmkw(atmfield
));
9522 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9523 return gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9524 0xffffffffU
, jtype
, reverse
, jvalue
);
9527 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9528 return gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9529 0xffffffffU
, jtype
, reverse
, jvalue
);
9536 static struct block
*
9537 gen_atm_vpi(compiler_state_t
*cstate
, const uint8_t v
)
9539 return gen_atmfield_code_internal(cstate
, A_VPI
, v
, BPF_JEQ
, 0);
9542 static struct block
*
9543 gen_atm_vci(compiler_state_t
*cstate
, const uint16_t v
)
9545 return gen_atmfield_code_internal(cstate
, A_VCI
, v
, BPF_JEQ
, 0);
9548 static struct block
*
9549 gen_atm_prototype(compiler_state_t
*cstate
, const uint8_t v
)
9551 return gen_mcmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, v
, 0x0fU
);
9554 static struct block
*
9555 gen_atmtype_llc(compiler_state_t
*cstate
)
9559 b0
= gen_atm_prototype(cstate
, PT_LLC
);
9560 cstate
->linktype
= cstate
->prevlinktype
;
9565 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9566 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9569 * Catch errors reported by us and routines below us, and return NULL
9572 if (setjmp(cstate
->top_ctx
))
9575 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9580 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9582 struct block
*b0
, *b1
;
9585 * Catch errors reported by us and routines below us, and return NULL
9588 if (setjmp(cstate
->top_ctx
))
9591 assert_atm(cstate
, atmkw(type
));
9596 /* Get all packets in Meta signalling Circuit */
9597 b0
= gen_atm_vpi(cstate
, 0);
9598 b1
= gen_atm_vci(cstate
, 1);
9603 /* Get all packets in Broadcast Circuit*/
9604 b0
= gen_atm_vpi(cstate
, 0);
9605 b1
= gen_atm_vci(cstate
, 2);
9610 /* Get all cells in Segment OAM F4 circuit*/
9611 b0
= gen_atm_vpi(cstate
, 0);
9612 b1
= gen_atm_vci(cstate
, 3);
9617 /* Get all cells in End-to-End OAM F4 Circuit*/
9618 b0
= gen_atm_vpi(cstate
, 0);
9619 b1
= gen_atm_vci(cstate
, 4);
9624 /* Get all packets in connection Signalling Circuit */
9625 b0
= gen_atm_vpi(cstate
, 0);
9626 b1
= gen_atm_vci(cstate
, 5);
9631 /* Get all packets in ILMI Circuit */
9632 b0
= gen_atm_vpi(cstate
, 0);
9633 b1
= gen_atm_vci(cstate
, 16);
9638 /* Get all LANE packets */
9639 b1
= gen_atm_prototype(cstate
, PT_LANE
);
9642 * Arrange that all subsequent tests assume LANE
9643 * rather than LLC-encapsulated packets, and set
9644 * the offsets appropriately for LANE-encapsulated
9647 * We assume LANE means Ethernet, not Token Ring.
9649 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9650 cstate
->off_payload
+ 2, /* Ethernet header */
9652 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9653 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9654 cstate
->off_nl
= 0; /* Ethernet II */
9655 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9664 * Filtering for MTP2 messages based on li value
9665 * FISU, length is null
9666 * LSSU, length is 1 or 2
9667 * MSU, length is 3 or more
9668 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9671 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9673 struct block
*b0
, *b1
;
9676 * Catch errors reported by us and routines below us, and return NULL
9679 if (setjmp(cstate
->top_ctx
))
9682 assert_ss7(cstate
, ss7kw(type
));
9687 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9688 0x3fU
, BPF_JEQ
, 0, 0U);
9691 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9692 0x3fU
, BPF_JGT
, 1, 2U);
9693 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9694 0x3fU
, BPF_JGT
, 0, 0U);
9699 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9700 0x3fU
, BPF_JGT
, 0, 2U);
9703 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9704 0xff80U
, BPF_JEQ
, 0, 0U);
9707 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9708 0xff80U
, BPF_JGT
, 1, 0x0100U
);
9709 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9710 0xff80U
, BPF_JGT
, 0, 0U);
9715 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9716 0xff80U
, BPF_JGT
, 0, 0x0100U
);
9724 * These maximum valid values are all-ones, so they double as the bitmasks
9725 * before any bitwise shifting.
9727 #define MTP2_SIO_MAXVAL UINT8_MAX
9728 #define MTP3_PC_MAXVAL 0x3fffU
9729 #define MTP3_SLS_MAXVAL 0xfU
9731 static struct block
*
9732 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
9733 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9740 newoff_sio
= cstate
->off_sio
;
9741 newoff_opc
= cstate
->off_opc
;
9742 newoff_dpc
= cstate
->off_dpc
;
9743 newoff_sls
= cstate
->off_sls
;
9745 assert_ss7(cstate
, ss7kw(mtp3field
));
9747 switch (mtp3field
) {
9750 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
9752 * SIO is the simplest field: the size is one byte and the offset is a
9753 * multiple of bytes, so the only detail to get right is the value of
9754 * the [right-to-left] field offset.
9757 newoff_sio
+= 3; /* offset for MTP2_HSL */
9761 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
9762 // Here the bitmask means "do not apply a bitmask".
9763 return gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
9764 jtype
, reverse
, jvalue
);
9767 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
9769 * SLS, OPC and DPC are more complicated: none of these is sized in a
9770 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
9771 * diagrams are meant to be read right-to-left. This means in the
9772 * diagrams within individual fields and concatenations thereof
9773 * bitwise shifts and masks can be noted in the common left-to-right
9774 * manner until each final value is ready to be byte-swapped and
9775 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
9776 * similar problem in a similar way.
9778 * Offsets of fields within the packet header always have the
9779 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
9780 * DLTs the offset does not include the F (Flag) field at the
9781 * beginning of each message.
9783 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
9784 * 32-bit standard routing header has a 4 byte [RTL] offset and could
9785 * be tested entirely using a single BPF_W comparison. In this case
9786 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
9787 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
9788 * [LTR] bitmask would be (0xF << 28), all of which conveniently
9789 * correlates with the [RTL] packet diagram until the byte-swapping is
9792 * The code below uses this approach for OPC, which spans 3 bytes.
9793 * DPC and SLS use shorter loads, SLS also uses a different offset.
9800 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
9801 return gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
9802 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
9803 SWAPLONG(jvalue
<< 14));
9810 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
9811 return gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
9812 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
9820 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
9821 return gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
9822 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
9831 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
9832 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9835 * Catch errors reported by us and routines below us, and return NULL
9838 if (setjmp(cstate
->top_ctx
))
9841 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
9845 static struct block
*
9846 gen_msg_abbrev(compiler_state_t
*cstate
, const uint8_t type
)
9849 * Q.2931 signalling protocol messages for handling virtual circuits
9850 * establishment and teardown
9852 return gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
,
9857 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
9859 struct block
*b0
, *b1
;
9862 * Catch errors reported by us and routines below us, and return NULL
9865 if (setjmp(cstate
->top_ctx
))
9868 assert_atm(cstate
, atmkw(type
));
9874 b0
= gen_atm_vci(cstate
, 3);
9875 b1
= gen_atm_vci(cstate
, 4);
9877 b0
= gen_atm_vpi(cstate
, 0);
9883 b0
= gen_atm_vci(cstate
, 3);
9884 b1
= gen_atm_vci(cstate
, 4);
9886 b0
= gen_atm_vpi(cstate
, 0);
9892 * Get Q.2931 signalling messages for switched
9893 * virtual connection
9895 b0
= gen_msg_abbrev(cstate
, SETUP
);
9896 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
9898 b0
= gen_msg_abbrev(cstate
, CONNECT
);
9900 b0
= gen_msg_abbrev(cstate
, CONNECT_ACK
);
9902 b0
= gen_msg_abbrev(cstate
, RELEASE
);
9904 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
9906 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
9911 b0
= gen_msg_abbrev(cstate
, SETUP
);
9912 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
9914 b0
= gen_msg_abbrev(cstate
, CONNECT
);
9916 b0
= gen_msg_abbrev(cstate
, RELEASE
);
9918 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
9920 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);