]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
CI: Call print_so_deps() on rpcapd in remote enabled build
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 * Modifications: Added PACKET_MMAP support
28 * Paolo Abeni <paolo.abeni@email.it>
29 * Added TPACKET_V3 support
30 * Gabor Tatarka <gabor.tatarka@ericsson.com>
31 *
32 * based on previous works of:
33 * Simon Patarin <patarin@cs.unibo.it>
34 * Phil Wood <cpw@lanl.gov>
35 *
36 * Monitor-mode support for mac80211 includes code taken from the iw
37 * command; the copyright notice for that code is
38 *
39 * Copyright (c) 2007, 2008 Johannes Berg
40 * Copyright (c) 2007 Andy Lutomirski
41 * Copyright (c) 2007 Mike Kershaw
42 * Copyright (c) 2008 Gábor Stefanik
43 *
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 */
69
70
71 #ifndef _GNU_SOURCE
72 #define _GNU_SOURCE
73 #endif
74
75 #include <config.h>
76
77 #include <errno.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <unistd.h>
81 #include <fcntl.h>
82 #include <string.h>
83 #include <limits.h>
84 #include <endian.h>
85 #include <sys/stat.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/utsname.h>
89 #include <sys/mman.h>
90 #include <linux/if.h>
91 #include <linux/if_packet.h>
92 #include <linux/sockios.h>
93 #include <linux/ethtool.h>
94 #include <netinet/in.h>
95 #include <linux/if_ether.h>
96 #include <linux/netlink.h>
97
98 #include <linux/if_arp.h>
99 #ifndef ARPHRD_IEEE802154
100 // Linux before 2.6.31
101 #define ARPHRD_IEEE802154 804
102 #endif
103 #ifndef ARPHRD_IEEE802154_MONITOR
104 // Linux before 3.5
105 #define ARPHRD_IEEE802154_MONITOR 805
106 #endif
107 #ifndef ARPHRD_NETLINK
108 // Linux before 3.11
109 #define ARPHRD_NETLINK 824
110 #endif
111 #ifndef ARPHRD_6LOWPAN
112 // Linux before 3.14
113 #define ARPHRD_6LOWPAN 825
114 #endif
115 #ifndef ARPHRD_VSOCKMON
116 // Linux before 4.12
117 #define ARPHRD_VSOCKMON 826
118 #endif
119 #ifndef ARPHRD_LAPD
120 /*
121 * ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
122 * is needed, please report it to <daniele@orlandi.com>
123 */
124 #define ARPHRD_LAPD 8445
125 #endif
126
127 #include <poll.h>
128 #include <dirent.h>
129 #include <sys/eventfd.h>
130
131 #include "pcap-int.h"
132 #include "pcap-util.h"
133 #include "pcap-snf.h"
134 #include "pcap/sll.h"
135 #include "pcap/vlan.h"
136 #include "pcap/can_socketcan.h"
137
138 #include "diag-control.h"
139
140 /*
141 * We require TPACKET_V2 support.
142 */
143 #ifndef TPACKET2_HDRLEN
144 #error "Libpcap will only work if TPACKET_V2 is supported; you must build for a 2.6.27 or later kernel"
145 #endif
146
147 /* check for memory mapped access availability. We assume every needed
148 * struct is defined if the macro TPACKET_HDRLEN is defined, because it
149 * uses many ring related structs and macros */
150 #ifdef TPACKET3_HDRLEN
151 # define HAVE_TPACKET3
152 #endif /* TPACKET3_HDRLEN */
153
154 /*
155 * Not all compilers that are used to compile code to run on Linux have
156 * these builtins. For example, older versions of GCC don't, and at
157 * least some people are doing cross-builds for MIPS with older versions
158 * of GCC.
159 */
160 #ifndef HAVE___ATOMIC_LOAD_N
161 #define __atomic_load_n(ptr, memory_model) (*(ptr))
162 #endif
163 #ifndef HAVE___ATOMIC_STORE_N
164 #define __atomic_store_n(ptr, val, memory_model) *(ptr) = (val)
165 #endif
166
167 #define packet_mmap_acquire(pkt) \
168 (__atomic_load_n(&pkt->tp_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
169 #define packet_mmap_release(pkt) \
170 (__atomic_store_n(&pkt->tp_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
171 #define packet_mmap_v3_acquire(pkt) \
172 (__atomic_load_n(&pkt->hdr.bh1.block_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
173 #define packet_mmap_v3_release(pkt) \
174 (__atomic_store_n(&pkt->hdr.bh1.block_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
175
176 #include <linux/types.h>
177 #include <linux/filter.h>
178
179 #ifdef HAVE_LINUX_NET_TSTAMP_H
180 #include <linux/net_tstamp.h>
181 #endif
182
183 /*
184 * For checking whether a device is a bonding device.
185 */
186 #include <linux/if_bonding.h>
187
188 /*
189 * Got libnl?
190 */
191 #ifdef HAVE_LIBNL
192 #include <linux/nl80211.h>
193
194 #include <netlink/genl/genl.h>
195 #include <netlink/genl/family.h>
196 #include <netlink/genl/ctrl.h>
197 #include <netlink/msg.h>
198 #include <netlink/attr.h>
199 #endif /* HAVE_LIBNL */
200
201 #ifndef HAVE_SOCKLEN_T
202 typedef int socklen_t;
203 #endif
204
205 #define MAX_LINKHEADER_SIZE 256
206
207 /*
208 * When capturing on all interfaces we use this as the buffer size.
209 * Should be bigger then all MTUs that occur in real life.
210 * 64kB should be enough for now.
211 */
212 #define BIGGER_THAN_ALL_MTUS (64*1024)
213
214 /*
215 * Private data for capturing on Linux PF_PACKET sockets.
216 */
217 struct pcap_linux {
218 long long sysfs_dropped; /* packets reported dropped by /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors */
219 struct pcap_stat stat;
220
221 char *device; /* device name */
222 int filter_in_userland; /* must filter in userland */
223 u_int blocks_to_filter_in_userland;
224 int must_do_on_close; /* stuff we must do when we close */
225 int timeout; /* timeout for buffering */
226 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */
227 int ifindex; /* interface index of device we're bound to */
228 int lo_ifindex; /* interface index of the loopback device */
229 int netdown; /* we got an ENETDOWN and haven't resolved it */
230 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */
231 char *mondevice; /* mac80211 monitor device we created */
232 u_char *mmapbuf; /* memory-mapped region pointer */
233 size_t mmapbuflen; /* size of region */
234 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */
235 u_int tp_version; /* version of tpacket_hdr for mmaped ring */
236 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */
237 u_char *oneshot_buffer; /* buffer for copy of packet */
238 int poll_timeout; /* timeout to use in poll() */
239 #ifdef HAVE_TPACKET3
240 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */
241 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */
242 #endif
243 int poll_breakloop_fd; /* fd to an eventfd to break from blocking operations */
244 };
245
246 /*
247 * Stuff to do when we close.
248 */
249 #define MUST_DELETE_MONIF 0x00000001 /* delete monitor-mode interface */
250
251 /*
252 * Prototypes for internal functions and methods.
253 */
254 static int is_wifi(const char *);
255 static int pcap_activate_linux(pcap_t *);
256 static int setup_socket(pcap_t *, int);
257 static int setup_mmapped(pcap_t *);
258 static int pcap_can_set_rfmon_linux(pcap_t *);
259 static int pcap_inject_linux(pcap_t *, const void *, int);
260 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
261 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
262 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
263 static int pcap_set_datalink_linux(pcap_t *, int);
264
265 union thdr {
266 struct tpacket2_hdr *h2;
267 #ifdef HAVE_TPACKET3
268 struct tpacket_block_desc *h3;
269 #endif
270 u_char *raw;
271 };
272
273 #define RING_GET_FRAME_AT(h, offset) (((u_char **)h->buffer)[(offset)])
274 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset)
275
276 static void destroy_ring(pcap_t *handle);
277 static int create_ring(pcap_t *handle);
278 static int prepare_tpacket_socket(pcap_t *handle);
279 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *);
280 #ifdef HAVE_TPACKET3
281 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *);
282 #endif
283 static int pcap_setnonblock_linux(pcap_t *p, int nonblock);
284 static int pcap_getnonblock_linux(pcap_t *p);
285 static void pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
286 const u_char *bytes);
287
288 /*
289 * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the
290 * vlan_tci field in the skbuff is. 0 can either mean "not on a VLAN"
291 * or "on VLAN 0". There is no flag set in the tp_status field to
292 * distinguish between them.
293 *
294 * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci
295 * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set
296 * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and
297 * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field.
298 *
299 * With a pre-3.0 kernel, we cannot distinguish between packets with no
300 * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and
301 * there's nothing we can do about that.
302 *
303 * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we
304 * continue the behavior of earlier libpcaps, wherein we treated packets
305 * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets
306 * on VLAN 0. We do this by treating packets with a tp_vlan_tci of 0 and
307 * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having
308 * VLAN tags. This does the right thing on 3.0 and later kernels, and
309 * continues the old unfixably-imperfect behavior on pre-3.0 kernels.
310 *
311 * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it
312 * has that value in 3.0 and later kernels.
313 */
314 #ifdef TP_STATUS_VLAN_VALID
315 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID))
316 #else
317 /*
318 * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID,
319 * so we test with the value it has in the 3.0 and later kernels, so
320 * we can test it if we're running on a system that has it. (If we're
321 * running on a system that doesn't have it, it won't be set in the
322 * tp_status field, so the tests of it will always fail; that means
323 * we behave the way we did before we introduced this macro.)
324 */
325 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10))
326 #endif
327
328 #ifdef TP_STATUS_VLAN_TPID_VALID
329 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q)
330 #else
331 # define VLAN_TPID(hdr, hv) ETH_P_8021Q
332 #endif
333
334 /*
335 * Required select timeout if we're polling for an "interface disappeared"
336 * indication - 1 millisecond.
337 */
338 static const struct timeval netdown_timeout = {
339 0, 1000 /* 1000 microseconds = 1 millisecond */
340 };
341
342 /*
343 * Wrap some ioctl calls
344 */
345 static int iface_get_id(int fd, const char *device, char *ebuf);
346 static int iface_get_mtu(int fd, const char *device, char *ebuf);
347 static int iface_get_arptype(int fd, const char *device, char *ebuf);
348 static int iface_bind(int fd, int ifindex, char *ebuf, int protocol);
349 static int enter_rfmon_mode(pcap_t *handle, int sock_fd,
350 const char *device);
351 static int iface_get_ts_types(const char *device, pcap_t *handle,
352 char *ebuf);
353 static int iface_get_offload(pcap_t *handle);
354
355 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
356 static int fix_offset(pcap_t *handle, struct bpf_insn *p);
357 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
358 static int reset_kernel_filter(pcap_t *handle);
359
360 static struct sock_filter total_insn
361 = BPF_STMT(BPF_RET | BPF_K, 0);
362 static struct sock_fprog total_fcode
363 = { 1, &total_insn };
364
365 static int iface_dsa_get_proto_info(const char *device, pcap_t *handle);
366
367 pcap_t *
368 pcapint_create_interface(const char *device, char *ebuf)
369 {
370 pcap_t *handle;
371
372 handle = PCAP_CREATE_COMMON(ebuf, struct pcap_linux);
373 if (handle == NULL)
374 return NULL;
375
376 handle->activate_op = pcap_activate_linux;
377 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
378
379 /*
380 * See what time stamp types we support.
381 */
382 if (iface_get_ts_types(device, handle, ebuf) == -1) {
383 pcap_close(handle);
384 return NULL;
385 }
386
387 /*
388 * We claim that we support microsecond and nanosecond time
389 * stamps.
390 *
391 * XXX - with adapter-supplied time stamps, can we choose
392 * microsecond or nanosecond time stamps on arbitrary
393 * adapters?
394 */
395 handle->tstamp_precision_list = malloc(2 * sizeof(u_int));
396 if (handle->tstamp_precision_list == NULL) {
397 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
398 errno, "malloc");
399 pcap_close(handle);
400 return NULL;
401 }
402 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO;
403 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO;
404 handle->tstamp_precision_count = 2;
405
406 /*
407 * Start out with the breakloop handle not open; we don't
408 * need it until we're activated and ready to capture.
409 */
410 struct pcap_linux *handlep = handle->priv;
411 handlep->poll_breakloop_fd = -1;
412
413 return handle;
414 }
415
416 #ifdef HAVE_LIBNL
417 /*
418 * If interface {if_name} is a mac80211 driver, the file
419 * /sys/class/net/{if_name}/phy80211 is a symlink to
420 * /sys/class/ieee80211/{phydev_name}, for some {phydev_name}.
421 *
422 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
423 * least, has a "wmaster0" device and a "wlan0" device; the
424 * latter is the one with the IP address. Both show up in
425 * "tcpdump -D" output. Capturing on the wmaster0 device
426 * captures with 802.11 headers.
427 *
428 * airmon-ng searches through /sys/class/net for devices named
429 * monN, starting with mon0; as soon as one *doesn't* exist,
430 * it chooses that as the monitor device name. If the "iw"
431 * command exists, it does
432 *
433 * iw dev {if_name} interface add {monif_name} type monitor
434 *
435 * where {monif_name} is the monitor device. It then (sigh) sleeps
436 * .1 second, and then configures the device up. Otherwise, if
437 * /sys/class/ieee80211/{phydev_name}/add_iface is a file, it writes
438 * {mondev_name}, without a newline, to that file, and again (sigh)
439 * sleeps .1 second, and then iwconfig's that device into monitor
440 * mode and configures it up. Otherwise, you can't do monitor mode.
441 *
442 * All these devices are "glued" together by having the
443 * /sys/class/net/{if_name}/phy80211 links pointing to the same
444 * place, so, given a wmaster, wlan, or mon device, you can
445 * find the other devices by looking for devices with
446 * the same phy80211 link.
447 *
448 * To turn monitor mode off, delete the monitor interface,
449 * either with
450 *
451 * iw dev {monif_name} interface del
452 *
453 * or by sending {monif_name}, with no NL, down
454 * /sys/class/ieee80211/{phydev_name}/remove_iface
455 *
456 * Note: if you try to create a monitor device named "monN", and
457 * there's already a "monN" device, it fails, as least with
458 * the netlink interface (which is what iw uses), with a return
459 * value of -ENFILE. (Return values are negative errnos.) We
460 * could probably use that to find an unused device.
461 *
462 * Yes, you can have multiple monitor devices for a given
463 * physical device.
464 */
465
466 /*
467 * Is this a mac80211 device? If so, fill in the physical device path and
468 * return 1; if not, return 0. On an error, fill in handle->errbuf and
469 * return PCAP_ERROR.
470 */
471 static int
472 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path,
473 size_t phydev_max_pathlen)
474 {
475 char *pathstr;
476 ssize_t bytes_read;
477
478 /*
479 * Generate the path string for the symlink to the physical device.
480 */
481 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) {
482 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
483 "%s: Can't generate path name string for /sys/class/net device",
484 device);
485 return PCAP_ERROR;
486 }
487 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen);
488 if (bytes_read == -1) {
489 if (errno == ENOENT) {
490 /*
491 * This either means that the directory
492 * /sys/class/net/{device} exists but doesn't
493 * have anything named "phy80211" in it,
494 * in which case it's not a mac80211 device,
495 * or that the directory doesn't exist,
496 * in which case the device doesn't exist.
497 *
498 * Directly check whether the directory
499 * exists.
500 */
501 struct stat statb;
502
503 free(pathstr);
504 if (asprintf(&pathstr, "/sys/class/net/%s", device) == -1) {
505 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
506 "%s: Can't generate path name string for /sys/class/net device",
507 device);
508 return PCAP_ERROR;
509 }
510 if (stat(pathstr, &statb) == -1) {
511 if (errno == ENOENT) {
512 /*
513 * No such device.
514 */
515 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
516 "%s: %s doesn't exist",
517 device, pathstr);
518 free(pathstr);
519 return PCAP_ERROR_NO_SUCH_DEVICE;
520 }
521 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
522 "%s: Can't stat %s: %s",
523 device, pathstr, strerror(errno));
524 free(pathstr);
525 return PCAP_ERROR;
526 }
527
528 /*
529 * Path to the directory that would contain
530 * "phy80211" exists, but "phy80211" doesn't
531 * exist; that means it's not a mac80211
532 * device.
533 */
534 free(pathstr);
535 return 0;
536 }
537 if (errno == EINVAL) {
538 /*
539 * Exists, but it's not a symlink; assume that
540 * means it's not a mac80211 device.
541 */
542 free(pathstr);
543 return 0;
544 }
545 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
546 errno, "%s: Can't readlink %s", device, pathstr);
547 free(pathstr);
548 return PCAP_ERROR;
549 }
550 free(pathstr);
551 phydev_path[bytes_read] = '\0';
552 return 1;
553 }
554
555 struct nl80211_state {
556 struct nl_sock *nl_sock;
557 struct nl_cache *nl_cache;
558 struct genl_family *nl80211;
559 };
560
561 static int
562 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device)
563 {
564 int err;
565
566 state->nl_sock = nl_socket_alloc();
567 if (!state->nl_sock) {
568 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
569 "%s: failed to allocate netlink handle", device);
570 return PCAP_ERROR;
571 }
572
573 if (genl_connect(state->nl_sock)) {
574 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
575 "%s: failed to connect to generic netlink", device);
576 goto out_handle_destroy;
577 }
578
579 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache);
580 if (err < 0) {
581 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
582 "%s: failed to allocate generic netlink cache: %s",
583 device, nl_geterror(-err));
584 goto out_handle_destroy;
585 }
586
587 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211");
588 if (!state->nl80211) {
589 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
590 "%s: nl80211 not found", device);
591 goto out_cache_free;
592 }
593
594 return 0;
595
596 out_cache_free:
597 nl_cache_free(state->nl_cache);
598 out_handle_destroy:
599 nl_socket_free(state->nl_sock);
600 return PCAP_ERROR;
601 }
602
603 static void
604 nl80211_cleanup(struct nl80211_state *state)
605 {
606 genl_family_put(state->nl80211);
607 nl_cache_free(state->nl_cache);
608 nl_socket_free(state->nl_sock);
609 }
610
611 static int
612 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
613 const char *device, const char *mondevice);
614
615 static int
616 if_type_cb(struct nl_msg *msg, void* arg)
617 {
618 struct nlmsghdr* ret_hdr = nlmsg_hdr(msg);
619 struct nlattr *tb_msg[NL80211_ATTR_MAX + 1];
620 int *type = (int*)arg;
621
622 struct genlmsghdr *gnlh = (struct genlmsghdr*) nlmsg_data(ret_hdr);
623
624 nla_parse(tb_msg, NL80211_ATTR_MAX, genlmsg_attrdata(gnlh, 0),
625 genlmsg_attrlen(gnlh, 0), NULL);
626
627 if (!tb_msg[NL80211_ATTR_IFTYPE]) {
628 return NL_SKIP;
629 }
630
631 *type = nla_get_u32(tb_msg[NL80211_ATTR_IFTYPE]);
632 return NL_STOP;
633 }
634
635 static int
636 get_if_type(pcap_t *handle, int sock_fd, struct nl80211_state *state,
637 const char *device, int *type)
638 {
639 int ifindex;
640 struct nl_msg *msg;
641 int err;
642
643 ifindex = iface_get_id(sock_fd, device, handle->errbuf);
644 if (ifindex == -1)
645 return PCAP_ERROR;
646
647 struct nl_cb *cb = nl_cb_alloc(NL_CB_DEFAULT);
648 nl_cb_set(cb, NL_CB_VALID, NL_CB_CUSTOM, if_type_cb, (void*)type);
649
650 msg = nlmsg_alloc();
651 if (!msg) {
652 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
653 "%s: failed to allocate netlink msg", device);
654 return PCAP_ERROR;
655 }
656
657 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
658 0, NL80211_CMD_GET_INTERFACE, 0);
659 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
660
661 err = nl_send_auto_complete(state->nl_sock, msg);
662 if (err < 0) {
663 if (err == -NLE_FAILURE) {
664 /*
665 * Device not available; our caller should just
666 * keep trying. (libnl 2.x maps ENFILE to
667 * NLE_FAILURE; it can also map other errors
668 * to that, but there's not much we can do
669 * about that.)
670 */
671 nlmsg_free(msg);
672 return 0;
673 } else {
674 /*
675 * Real failure, not just "that device is not
676 * available.
677 */
678 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
679 "%s: nl_send_auto_complete failed getting interface type: %s",
680 device, nl_geterror(-err));
681 nlmsg_free(msg);
682 return PCAP_ERROR;
683 }
684 }
685
686 nl_recvmsgs(state->nl_sock, cb);
687
688 /*
689 * Success.
690 */
691 nlmsg_free(msg);
692
693 return 1;
694
695 nla_put_failure:
696 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
697 "%s: nl_put failed getting interface type",
698 device);
699 nlmsg_free(msg);
700 return PCAP_ERROR;
701 }
702
703 static int
704 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
705 const char *device, const char *mondevice)
706 {
707 struct pcap_linux *handlep = handle->priv;
708 int ifindex;
709 struct nl_msg *msg;
710 int err;
711
712 ifindex = iface_get_id(sock_fd, device, handle->errbuf);
713 if (ifindex == -1)
714 return PCAP_ERROR;
715
716 msg = nlmsg_alloc();
717 if (!msg) {
718 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
719 "%s: failed to allocate netlink msg", device);
720 return PCAP_ERROR;
721 }
722
723 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
724 0, NL80211_CMD_NEW_INTERFACE, 0);
725 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
726 DIAG_OFF_NARROWING
727 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice);
728 DIAG_ON_NARROWING
729 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR);
730
731 err = nl_send_auto_complete(state->nl_sock, msg);
732 if (err < 0) {
733 if (err == -NLE_FAILURE) {
734 /*
735 * Device not available; our caller should just
736 * keep trying. (libnl 2.x maps ENFILE to
737 * NLE_FAILURE; it can also map other errors
738 * to that, but there's not much we can do
739 * about that.)
740 */
741 nlmsg_free(msg);
742 return 0;
743 } else {
744 /*
745 * Real failure, not just "that device is not
746 * available.
747 */
748 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
749 "%s: nl_send_auto_complete failed adding %s interface: %s",
750 device, mondevice, nl_geterror(-err));
751 nlmsg_free(msg);
752 return PCAP_ERROR;
753 }
754 }
755 err = nl_wait_for_ack(state->nl_sock);
756 if (err < 0) {
757 if (err == -NLE_FAILURE) {
758 /*
759 * Device not available; our caller should just
760 * keep trying. (libnl 2.x maps ENFILE to
761 * NLE_FAILURE; it can also map other errors
762 * to that, but there's not much we can do
763 * about that.)
764 */
765 nlmsg_free(msg);
766 return 0;
767 } else {
768 /*
769 * Real failure, not just "that device is not
770 * available.
771 */
772 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
773 "%s: nl_wait_for_ack failed adding %s interface: %s",
774 device, mondevice, nl_geterror(-err));
775 nlmsg_free(msg);
776 return PCAP_ERROR;
777 }
778 }
779
780 /*
781 * Success.
782 */
783 nlmsg_free(msg);
784
785 /*
786 * Try to remember the monitor device.
787 */
788 handlep->mondevice = strdup(mondevice);
789 if (handlep->mondevice == NULL) {
790 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
791 errno, "strdup");
792 /*
793 * Get rid of the monitor device.
794 */
795 del_mon_if(handle, sock_fd, state, device, mondevice);
796 return PCAP_ERROR;
797 }
798 return 1;
799
800 nla_put_failure:
801 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
802 "%s: nl_put failed adding %s interface",
803 device, mondevice);
804 nlmsg_free(msg);
805 return PCAP_ERROR;
806 }
807
808 static int
809 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
810 const char *device, const char *mondevice)
811 {
812 int ifindex;
813 struct nl_msg *msg;
814 int err;
815
816 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf);
817 if (ifindex == -1)
818 return PCAP_ERROR;
819
820 msg = nlmsg_alloc();
821 if (!msg) {
822 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
823 "%s: failed to allocate netlink msg", device);
824 return PCAP_ERROR;
825 }
826
827 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
828 0, NL80211_CMD_DEL_INTERFACE, 0);
829 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
830
831 err = nl_send_auto_complete(state->nl_sock, msg);
832 if (err < 0) {
833 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
834 "%s: nl_send_auto_complete failed deleting %s interface: %s",
835 device, mondevice, nl_geterror(-err));
836 nlmsg_free(msg);
837 return PCAP_ERROR;
838 }
839 err = nl_wait_for_ack(state->nl_sock);
840 if (err < 0) {
841 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
842 "%s: nl_wait_for_ack failed deleting %s interface: %s",
843 device, mondevice, nl_geterror(-err));
844 nlmsg_free(msg);
845 return PCAP_ERROR;
846 }
847
848 /*
849 * Success.
850 */
851 nlmsg_free(msg);
852 return 1;
853
854 nla_put_failure:
855 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
856 "%s: nl_put failed deleting %s interface",
857 device, mondevice);
858 nlmsg_free(msg);
859 return PCAP_ERROR;
860 }
861 #endif /* HAVE_LIBNL */
862
863 static int pcap_protocol(pcap_t *handle)
864 {
865 int protocol;
866
867 protocol = handle->opt.protocol;
868 if (protocol == 0)
869 protocol = ETH_P_ALL;
870
871 return htons(protocol);
872 }
873
874 static int
875 pcap_can_set_rfmon_linux(pcap_t *handle)
876 {
877 #ifdef HAVE_LIBNL
878 char phydev_path[PATH_MAX+1];
879 int ret;
880 #endif
881
882 if (strcmp(handle->opt.device, "any") == 0) {
883 /*
884 * Monitor mode makes no sense on the "any" device.
885 */
886 return 0;
887 }
888
889 #ifdef HAVE_LIBNL
890 /*
891 * Bleah. There doesn't seem to be a way to ask a mac80211
892 * device, through libnl, whether it supports monitor mode;
893 * we'll just check whether the device appears to be a
894 * mac80211 device and, if so, assume the device supports
895 * monitor mode.
896 */
897 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path,
898 PATH_MAX);
899 if (ret < 0)
900 return ret; /* error */
901 if (ret == 1)
902 return 1; /* mac80211 device */
903 #endif
904
905 return 0;
906 }
907
908 /*
909 * Grabs the number of missed packets by the interface from
910 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors.
911 *
912 * Compared to /proc/net/dev this avoids counting software drops,
913 * but may be unimplemented and just return 0.
914 * The author has found no straightforward way to check for support.
915 */
916 static long long int
917 linux_get_stat(const char * if_name, const char * stat) {
918 ssize_t bytes_read;
919 int fd;
920 char buffer[PATH_MAX];
921
922 snprintf(buffer, sizeof(buffer), "/sys/class/net/%s/statistics/%s", if_name, stat);
923 fd = open(buffer, O_RDONLY);
924 if (fd == -1)
925 return 0;
926
927 bytes_read = read(fd, buffer, sizeof(buffer) - 1);
928 close(fd);
929 if (bytes_read == -1)
930 return 0;
931 buffer[bytes_read] = '\0';
932
933 return strtoll(buffer, NULL, 10);
934 }
935
936 static long long int
937 linux_if_drops(const char * if_name)
938 {
939 long long int missed = linux_get_stat(if_name, "rx_missed_errors");
940 long long int fifo = linux_get_stat(if_name, "rx_fifo_errors");
941 return missed + fifo;
942 }
943
944
945 /*
946 * Monitor mode is kind of interesting because we have to reset the
947 * interface before exiting. The problem can't really be solved without
948 * some daemon taking care of managing usage counts. If we put the
949 * interface into monitor mode, we set a flag indicating that we must
950 * take it out of that mode when the interface is closed, and, when
951 * closing the interface, if that flag is set we take it out of monitor
952 * mode.
953 */
954
955 static void pcap_cleanup_linux( pcap_t *handle )
956 {
957 struct pcap_linux *handlep = handle->priv;
958 #ifdef HAVE_LIBNL
959 struct nl80211_state nlstate;
960 int ret;
961 #endif /* HAVE_LIBNL */
962
963 if (handlep->must_do_on_close != 0) {
964 /*
965 * There's something we have to do when closing this
966 * pcap_t.
967 */
968 #ifdef HAVE_LIBNL
969 if (handlep->must_do_on_close & MUST_DELETE_MONIF) {
970 ret = nl80211_init(handle, &nlstate, handlep->device);
971 if (ret >= 0) {
972 ret = del_mon_if(handle, handle->fd, &nlstate,
973 handlep->device, handlep->mondevice);
974 nl80211_cleanup(&nlstate);
975 }
976 if (ret < 0) {
977 fprintf(stderr,
978 "Can't delete monitor interface %s (%s).\n"
979 "Please delete manually.\n",
980 handlep->mondevice, handle->errbuf);
981 }
982 }
983 #endif /* HAVE_LIBNL */
984
985 /*
986 * Take this pcap out of the list of pcaps for which we
987 * have to take the interface out of some mode.
988 */
989 pcapint_remove_from_pcaps_to_close(handle);
990 }
991
992 if (handle->fd != -1) {
993 /*
994 * Destroy the ring buffer (assuming we've set it up),
995 * and unmap it if it's mapped.
996 */
997 destroy_ring(handle);
998 }
999
1000 if (handlep->oneshot_buffer != NULL) {
1001 munmap(handlep->oneshot_buffer, handle->snapshot);
1002 handlep->oneshot_buffer = NULL;
1003 }
1004
1005 if (handlep->mondevice != NULL) {
1006 free(handlep->mondevice);
1007 handlep->mondevice = NULL;
1008 }
1009 if (handlep->device != NULL) {
1010 free(handlep->device);
1011 handlep->device = NULL;
1012 }
1013
1014 if (handlep->poll_breakloop_fd != -1) {
1015 close(handlep->poll_breakloop_fd);
1016 handlep->poll_breakloop_fd = -1;
1017 }
1018 pcapint_cleanup_live_common(handle);
1019 }
1020
1021 #ifdef HAVE_TPACKET3
1022 /*
1023 * Some versions of TPACKET_V3 have annoying bugs/misfeatures
1024 * around which we have to work. Determine if we have those
1025 * problems or not.
1026 * 3.19 is the first release with a fixed version of
1027 * TPACKET_V3. We treat anything before that as
1028 * not having a fixed version; that may really mean
1029 * it has *no* version.
1030 */
1031 static int has_broken_tpacket_v3(void)
1032 {
1033 struct utsname utsname;
1034 const char *release;
1035 long major, minor;
1036 int matches, verlen;
1037
1038 /* No version information, assume broken. */
1039 if (uname(&utsname) == -1)
1040 return 1;
1041 release = utsname.release;
1042
1043 /* A malformed version, ditto. */
1044 matches = sscanf(release, "%ld.%ld%n", &major, &minor, &verlen);
1045 if (matches != 2)
1046 return 1;
1047 if (release[verlen] != '.' && release[verlen] != '\0')
1048 return 1;
1049
1050 /* OK, a fixed version. */
1051 if (major > 3 || (major == 3 && minor >= 19))
1052 return 0;
1053
1054 /* Too old :( */
1055 return 1;
1056 }
1057 #endif
1058
1059 /*
1060 * Set the timeout to be used in poll() with memory-mapped packet capture.
1061 */
1062 static void
1063 set_poll_timeout(struct pcap_linux *handlep)
1064 {
1065 #ifdef HAVE_TPACKET3
1066 int broken_tpacket_v3 = has_broken_tpacket_v3();
1067 #endif
1068 if (handlep->timeout == 0) {
1069 #ifdef HAVE_TPACKET3
1070 /*
1071 * XXX - due to a set of (mis)features in the TPACKET_V3
1072 * kernel code prior to the 3.19 kernel, blocking forever
1073 * with a TPACKET_V3 socket can, if few packets are
1074 * arriving and passing the socket filter, cause most
1075 * packets to be dropped. See libpcap issue #335 for the
1076 * full painful story.
1077 *
1078 * The workaround is to have poll() time out very quickly,
1079 * so we grab the frames handed to us, and return them to
1080 * the kernel, ASAP.
1081 */
1082 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3)
1083 handlep->poll_timeout = 1; /* don't block for very long */
1084 else
1085 #endif
1086 handlep->poll_timeout = -1; /* block forever */
1087 } else if (handlep->timeout > 0) {
1088 #ifdef HAVE_TPACKET3
1089 /*
1090 * For TPACKET_V3, the timeout is handled by the kernel,
1091 * so block forever; that way, we don't get extra timeouts.
1092 * Don't do that if we have a broken TPACKET_V3, though.
1093 */
1094 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3)
1095 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */
1096 else
1097 #endif
1098 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */
1099 } else {
1100 /*
1101 * Non-blocking mode; we call poll() to pick up error
1102 * indications, but we don't want it to wait for
1103 * anything.
1104 */
1105 handlep->poll_timeout = 0;
1106 }
1107 }
1108
1109 static void pcap_breakloop_linux(pcap_t *handle)
1110 {
1111 pcapint_breakloop_common(handle);
1112 struct pcap_linux *handlep = handle->priv;
1113
1114 uint64_t value = 1;
1115
1116 if (handlep->poll_breakloop_fd != -1) {
1117 /*
1118 * XXX - pcap_breakloop() doesn't have a return value,
1119 * so we can't indicate an error.
1120 */
1121 DIAG_OFF_WARN_UNUSED_RESULT
1122 (void)write(handlep->poll_breakloop_fd, &value, sizeof(value));
1123 DIAG_ON_WARN_UNUSED_RESULT
1124 }
1125 }
1126
1127 /*
1128 * Set the offset at which to insert VLAN tags.
1129 * That should be the offset of the type field.
1130 */
1131 static void
1132 set_vlan_offset(pcap_t *handle)
1133 {
1134 struct pcap_linux *handlep = handle->priv;
1135
1136 switch (handle->linktype) {
1137
1138 case DLT_EN10MB:
1139 /*
1140 * The type field is after the destination and source
1141 * MAC address.
1142 */
1143 handlep->vlan_offset = 2 * ETH_ALEN;
1144 break;
1145
1146 case DLT_LINUX_SLL:
1147 /*
1148 * The type field is in the last 2 bytes of the
1149 * DLT_LINUX_SLL header.
1150 */
1151 handlep->vlan_offset = SLL_HDR_LEN - 2;
1152 break;
1153
1154 default:
1155 handlep->vlan_offset = -1; /* unknown */
1156 break;
1157 }
1158 }
1159
1160 static int
1161 pcap_activate_linux(pcap_t *handle)
1162 {
1163 struct pcap_linux *handlep = handle->priv;
1164 const char *device;
1165 int is_any_device;
1166 struct ifreq ifr;
1167 int status;
1168 int ret;
1169
1170 device = handle->opt.device;
1171
1172 /*
1173 * Start out assuming no warnings.
1174 */
1175 status = 0;
1176
1177 /*
1178 * Make sure the name we were handed will fit into the ioctls we
1179 * might perform on the device; if not, return a "No such device"
1180 * indication, as the Linux kernel shouldn't support creating
1181 * a device whose name won't fit into those ioctls.
1182 *
1183 * "Will fit" means "will fit, complete with a null terminator",
1184 * so if the length, which does *not* include the null terminator,
1185 * is greater than *or equal to* the size of the field into which
1186 * we'll be copying it, that won't fit.
1187 */
1188 if (strlen(device) >= sizeof(ifr.ifr_name)) {
1189 /*
1190 * There's nothing more to say, so clear the error
1191 * message.
1192 */
1193 handle->errbuf[0] = '\0';
1194 status = PCAP_ERROR_NO_SUCH_DEVICE;
1195 goto fail;
1196 }
1197
1198 /*
1199 * Turn a negative snapshot value (invalid), a snapshot value of
1200 * 0 (unspecified), or a value bigger than the normal maximum
1201 * value, into the maximum allowed value.
1202 *
1203 * If some application really *needs* a bigger snapshot
1204 * length, we should just increase MAXIMUM_SNAPLEN.
1205 */
1206 if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN)
1207 handle->snapshot = MAXIMUM_SNAPLEN;
1208
1209 handlep->device = strdup(device);
1210 if (handlep->device == NULL) {
1211 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1212 errno, "strdup");
1213 status = PCAP_ERROR;
1214 goto fail;
1215 }
1216
1217 /*
1218 * The "any" device is a special device which causes us not
1219 * to bind to a particular device and thus to look at all
1220 * devices.
1221 */
1222 is_any_device = (strcmp(device, "any") == 0);
1223 if (is_any_device) {
1224 if (handle->opt.promisc) {
1225 handle->opt.promisc = 0;
1226 /* Just a warning. */
1227 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1228 "Promiscuous mode not supported on the \"any\" device");
1229 status = PCAP_WARNING_PROMISC_NOTSUP;
1230 }
1231 }
1232
1233 /* copy timeout value */
1234 handlep->timeout = handle->opt.timeout;
1235
1236 /*
1237 * If we're in promiscuous mode, then we probably want
1238 * to see when the interface drops packets too, so get an
1239 * initial count from
1240 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1241 */
1242 if (handle->opt.promisc)
1243 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1244
1245 /*
1246 * If the "any" device is specified, try to open a SOCK_DGRAM.
1247 * Otherwise, open a SOCK_RAW.
1248 */
1249 ret = setup_socket(handle, is_any_device);
1250 if (ret < 0) {
1251 /*
1252 * Fatal error; the return value is the error code,
1253 * and handle->errbuf has been set to an appropriate
1254 * error message.
1255 */
1256 status = ret;
1257 goto fail;
1258 }
1259 if (ret > 0) {
1260 /*
1261 * We got a warning; return that, as handle->errbuf
1262 * might have been overwritten by this warning.
1263 */
1264 status = ret;
1265 }
1266
1267 /*
1268 * Success (possibly with a warning).
1269 *
1270 * First, try to allocate an event FD for breakloop, if
1271 * we're not going to start in non-blocking mode.
1272 */
1273 if (!handle->opt.nonblock) {
1274 handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK);
1275 if (handlep->poll_breakloop_fd == -1) {
1276 /*
1277 * Failed.
1278 */
1279 pcapint_fmt_errmsg_for_errno(handle->errbuf,
1280 PCAP_ERRBUF_SIZE, errno, "could not open eventfd");
1281 status = PCAP_ERROR;
1282 goto fail;
1283 }
1284 }
1285
1286 /*
1287 * Succeeded.
1288 * Try to set up memory-mapped access.
1289 */
1290 ret = setup_mmapped(handle);
1291 if (ret < 0) {
1292 /*
1293 * We failed to set up to use it, or the
1294 * kernel supports it, but we failed to
1295 * enable it. The return value is the
1296 * error status to return and, if it's
1297 * PCAP_ERROR, handle->errbuf contains
1298 * the error message.
1299 */
1300 status = ret;
1301 goto fail;
1302 }
1303 if (ret > 0) {
1304 /*
1305 * We got a warning; return that, as handle->errbuf
1306 * might have been overwritten by this warning.
1307 */
1308 status = ret;
1309 }
1310
1311 /*
1312 * We succeeded. status has been set to the status to return,
1313 * which might be 0, or might be a PCAP_WARNING_ value.
1314 */
1315 /*
1316 * Now that we have activated the mmap ring, we can
1317 * set the correct protocol.
1318 */
1319 if ((ret = iface_bind(handle->fd, handlep->ifindex,
1320 handle->errbuf, pcap_protocol(handle))) != 0) {
1321 status = ret;
1322 goto fail;
1323 }
1324
1325 handle->inject_op = pcap_inject_linux;
1326 handle->setfilter_op = pcap_setfilter_linux;
1327 handle->setdirection_op = pcap_setdirection_linux;
1328 handle->set_datalink_op = pcap_set_datalink_linux;
1329 handle->setnonblock_op = pcap_setnonblock_linux;
1330 handle->getnonblock_op = pcap_getnonblock_linux;
1331 handle->cleanup_op = pcap_cleanup_linux;
1332 handle->stats_op = pcap_stats_linux;
1333 handle->breakloop_op = pcap_breakloop_linux;
1334
1335 switch (handlep->tp_version) {
1336
1337 case TPACKET_V2:
1338 handle->read_op = pcap_read_linux_mmap_v2;
1339 break;
1340 #ifdef HAVE_TPACKET3
1341 case TPACKET_V3:
1342 handle->read_op = pcap_read_linux_mmap_v3;
1343 break;
1344 #endif
1345 }
1346 handle->oneshot_callback = pcapint_oneshot_linux;
1347 handle->selectable_fd = handle->fd;
1348
1349 return status;
1350
1351 fail:
1352 pcap_cleanup_linux(handle);
1353 return status;
1354 }
1355
1356 static int
1357 pcap_set_datalink_linux(pcap_t *handle, int dlt)
1358 {
1359 handle->linktype = dlt;
1360
1361 /*
1362 * Update the offset at which to insert VLAN tags for the
1363 * new link-layer type.
1364 */
1365 set_vlan_offset(handle);
1366
1367 return 0;
1368 }
1369
1370 /*
1371 * linux_check_direction()
1372 *
1373 * Do checks based on packet direction.
1374 */
1375 static inline int
1376 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll)
1377 {
1378 struct pcap_linux *handlep = handle->priv;
1379
1380 if (sll->sll_pkttype == PACKET_OUTGOING) {
1381 /*
1382 * Outgoing packet.
1383 * If this is from the loopback device, reject it;
1384 * we'll see the packet as an incoming packet as well,
1385 * and we don't want to see it twice.
1386 */
1387 if (sll->sll_ifindex == handlep->lo_ifindex)
1388 return 0;
1389
1390 /*
1391 * If this is an outgoing CAN frame, and the user doesn't
1392 * want only outgoing packets, reject it; CAN devices
1393 * and drivers, and the CAN stack, always arrange to
1394 * loop back transmitted packets, so they also appear
1395 * as incoming packets. We don't want duplicate packets,
1396 * and we can't easily distinguish packets looped back
1397 * by the CAN layer than those received by the CAN layer,
1398 * so we eliminate this packet instead.
1399 *
1400 * We check whether this is a CAN frame by checking whether
1401 * the device's hardware type is ARPHRD_CAN.
1402 */
1403 if (sll->sll_hatype == ARPHRD_CAN &&
1404 handle->direction != PCAP_D_OUT)
1405 return 0;
1406
1407 /*
1408 * If the user only wants incoming packets, reject it.
1409 */
1410 if (handle->direction == PCAP_D_IN)
1411 return 0;
1412 } else {
1413 /*
1414 * Incoming packet.
1415 * If the user only wants outgoing packets, reject it.
1416 */
1417 if (handle->direction == PCAP_D_OUT)
1418 return 0;
1419 }
1420 return 1;
1421 }
1422
1423 /*
1424 * Check whether the device to which the pcap_t is bound still exists.
1425 * We do so by asking what address the socket is bound to, and checking
1426 * whether the ifindex in the address is -1, meaning "that device is gone",
1427 * or some other value, meaning "that device still exists".
1428 */
1429 static int
1430 device_still_exists(pcap_t *handle)
1431 {
1432 struct pcap_linux *handlep = handle->priv;
1433 struct sockaddr_ll addr;
1434 socklen_t addr_len;
1435
1436 /*
1437 * If handlep->ifindex is -1, the socket isn't bound, meaning
1438 * we're capturing on the "any" device; that device never
1439 * disappears. (It should also never be configured down, so
1440 * we shouldn't even get here, but let's make sure.)
1441 */
1442 if (handlep->ifindex == -1)
1443 return (1); /* it's still here */
1444
1445 /*
1446 * OK, now try to get the address for the socket.
1447 */
1448 addr_len = sizeof (addr);
1449 if (getsockname(handle->fd, (struct sockaddr *) &addr, &addr_len) == -1) {
1450 /*
1451 * Error - report an error and return -1.
1452 */
1453 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1454 errno, "getsockname failed");
1455 return (-1);
1456 }
1457 if (addr.sll_ifindex == -1) {
1458 /*
1459 * This means the device went away.
1460 */
1461 return (0);
1462 }
1463
1464 /*
1465 * The device presumably just went down.
1466 */
1467 return (1);
1468 }
1469
1470 static int
1471 pcap_inject_linux(pcap_t *handle, const void *buf, int size)
1472 {
1473 struct pcap_linux *handlep = handle->priv;
1474 int ret;
1475
1476 if (handlep->ifindex == -1) {
1477 /*
1478 * We don't support sending on the "any" device.
1479 */
1480 pcapint_strlcpy(handle->errbuf,
1481 "Sending packets isn't supported on the \"any\" device",
1482 PCAP_ERRBUF_SIZE);
1483 return (-1);
1484 }
1485
1486 if (handlep->cooked) {
1487 /*
1488 * We don't support sending on cooked-mode sockets.
1489 *
1490 * XXX - how do you send on a bound cooked-mode
1491 * socket?
1492 * Is a "sendto()" required there?
1493 */
1494 pcapint_strlcpy(handle->errbuf,
1495 "Sending packets isn't supported in cooked mode",
1496 PCAP_ERRBUF_SIZE);
1497 return (-1);
1498 }
1499
1500 ret = (int)send(handle->fd, buf, size, 0);
1501 if (ret == -1) {
1502 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1503 errno, "send");
1504 return (-1);
1505 }
1506 return (ret);
1507 }
1508
1509 /*
1510 * Get the statistics for the given packet capture handle.
1511 */
1512 static int
1513 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1514 {
1515 struct pcap_linux *handlep = handle->priv;
1516 #ifdef HAVE_TPACKET3
1517 /*
1518 * For sockets using TPACKET_V2, the extra stuff at the end
1519 * of a struct tpacket_stats_v3 will not be filled in, and
1520 * we don't look at it so this is OK even for those sockets.
1521 * In addition, the PF_PACKET socket code in the kernel only
1522 * uses the length parameter to compute how much data to
1523 * copy out and to indicate how much data was copied out, so
1524 * it's OK to base it on the size of a struct tpacket_stats.
1525 *
1526 * XXX - it's probably OK, in fact, to just use a
1527 * struct tpacket_stats for V3 sockets, as we don't
1528 * care about the tp_freeze_q_cnt stat.
1529 */
1530 struct tpacket_stats_v3 kstats;
1531 #else /* HAVE_TPACKET3 */
1532 struct tpacket_stats kstats;
1533 #endif /* HAVE_TPACKET3 */
1534 socklen_t len = sizeof (struct tpacket_stats);
1535
1536 long long if_dropped = 0;
1537
1538 /*
1539 * To fill in ps_ifdrop, we parse
1540 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1541 * for the numbers
1542 */
1543 if (handle->opt.promisc)
1544 {
1545 /*
1546 * XXX - is there any reason to do this by remembering
1547 * the last counts value, subtracting it from the
1548 * current counts value, and adding that to stat.ps_ifdrop,
1549 * maintaining stat.ps_ifdrop as a count, rather than just
1550 * saving the *initial* counts value and setting
1551 * stat.ps_ifdrop to the difference between the current
1552 * value and the initial value?
1553 *
1554 * One reason might be to handle the count wrapping
1555 * around, on platforms where the count is 32 bits
1556 * and where you might get more than 2^32 dropped
1557 * packets; is there any other reason?
1558 *
1559 * (We maintain the count as a long long int so that,
1560 * if the kernel maintains the counts as 64-bit even
1561 * on 32-bit platforms, we can handle the real count.
1562 *
1563 * Unfortunately, we can't report 64-bit counts; we
1564 * need a better API for reporting statistics, such as
1565 * one that reports them in a style similar to the
1566 * pcapng Interface Statistics Block, so that 1) the
1567 * counts are 64-bit, 2) it's easier to add new statistics
1568 * without breaking the ABI, and 3) it's easier to
1569 * indicate to a caller that wants one particular
1570 * statistic that it's not available by just not supplying
1571 * it.)
1572 */
1573 if_dropped = handlep->sysfs_dropped;
1574 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1575 handlep->stat.ps_ifdrop += (u_int)(handlep->sysfs_dropped - if_dropped);
1576 }
1577
1578 /*
1579 * Try to get the packet counts from the kernel.
1580 */
1581 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1582 &kstats, &len) > -1) {
1583 /*
1584 * "ps_recv" counts only packets that *passed* the
1585 * filter, not packets that didn't pass the filter.
1586 * This includes packets later dropped because we
1587 * ran out of buffer space.
1588 *
1589 * "ps_drop" counts packets dropped because we ran
1590 * out of buffer space. It doesn't count packets
1591 * dropped by the interface driver. It counts only
1592 * packets that passed the filter.
1593 *
1594 * See above for ps_ifdrop.
1595 *
1596 * Both statistics include packets not yet read from
1597 * the kernel by libpcap, and thus not yet seen by
1598 * the application.
1599 *
1600 * In "linux/net/packet/af_packet.c", at least in 2.6.27
1601 * through 5.6 kernels, "tp_packets" is incremented for
1602 * every packet that passes the packet filter *and* is
1603 * successfully copied to the ring buffer; "tp_drops" is
1604 * incremented for every packet dropped because there's
1605 * not enough free space in the ring buffer.
1606 *
1607 * When the statistics are returned for a PACKET_STATISTICS
1608 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1609 * so that "tp_packets" counts all packets handed to
1610 * the PF_PACKET socket, including packets dropped because
1611 * there wasn't room on the socket buffer - but not
1612 * including packets that didn't pass the filter.
1613 *
1614 * In the BSD BPF, the count of received packets is
1615 * incremented for every packet handed to BPF, regardless
1616 * of whether it passed the filter.
1617 *
1618 * We can't make "pcap_stats()" work the same on both
1619 * platforms, but the best approximation is to return
1620 * "tp_packets" as the count of packets and "tp_drops"
1621 * as the count of drops.
1622 *
1623 * Keep a running total because each call to
1624 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1625 * resets the counters to zero.
1626 */
1627 handlep->stat.ps_recv += kstats.tp_packets;
1628 handlep->stat.ps_drop += kstats.tp_drops;
1629 *stats = handlep->stat;
1630 return 0;
1631 }
1632
1633 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, errno,
1634 "failed to get statistics from socket");
1635 return -1;
1636 }
1637
1638 /*
1639 * A PF_PACKET socket can be bound to any network interface.
1640 */
1641 static int
1642 can_be_bound(const char *name _U_)
1643 {
1644 return (1);
1645 }
1646
1647 /*
1648 * Get a socket to use with various interface ioctls.
1649 */
1650 static int
1651 get_if_ioctl_socket(void)
1652 {
1653 int fd;
1654
1655 /*
1656 * This is a bit ugly.
1657 *
1658 * There isn't a socket type that's guaranteed to work.
1659 *
1660 * AF_NETLINK will work *if* you have Netlink configured into the
1661 * kernel (can it be configured out if you have any networking
1662 * support at all?) *and* if you're running a sufficiently recent
1663 * kernel, but not all the kernels we support are sufficiently
1664 * recent - that feature was introduced in Linux 4.6.
1665 *
1666 * AF_UNIX will work *if* you have UNIX-domain sockets configured
1667 * into the kernel and *if* you're not on a system that doesn't
1668 * allow them - some SELinux systems don't allow you create them.
1669 * Most systems probably have them configured in, but not all systems
1670 * have them configured in and allow them to be created.
1671 *
1672 * AF_INET will work *if* you have IPv4 configured into the kernel,
1673 * but, apparently, some systems have network adapters but have
1674 * kernels without IPv4 support.
1675 *
1676 * AF_INET6 will work *if* you have IPv6 configured into the
1677 * kernel, but if you don't have AF_INET, you might not have
1678 * AF_INET6, either (that is, independently on its own grounds).
1679 *
1680 * AF_PACKET would work, except that some of these calls should
1681 * work even if you *don't* have capture permission (you should be
1682 * able to enumerate interfaces and get information about them
1683 * without capture permission; you shouldn't get a failure until
1684 * you try pcap_activate()). (If you don't allow programs to
1685 * get as much information as possible about interfaces if you
1686 * don't have permission to capture, you run the risk of users
1687 * asking "why isn't it showing XXX" - or, worse, if you don't
1688 * show interfaces *at all* if you don't have permission to
1689 * capture on them, "why do no interfaces show up?" - when the
1690 * real problem is a permissions problem. Error reports of that
1691 * type require a lot more back-and-forth to debug, as evidenced
1692 * by many Wireshark bugs/mailing list questions/Q&A questions.)
1693 *
1694 * So:
1695 *
1696 * we first try an AF_NETLINK socket, where "try" includes
1697 * "try to do a device ioctl on it", as, in the future, once
1698 * pre-4.6 kernels are sufficiently rare, that will probably
1699 * be the mechanism most likely to work;
1700 *
1701 * if that fails, we try an AF_UNIX socket, as that's less
1702 * likely to be configured out on a networking-capable system
1703 * than is IP;
1704 *
1705 * if that fails, we try an AF_INET6 socket;
1706 *
1707 * if that fails, we try an AF_INET socket.
1708 */
1709 fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
1710 if (fd != -1) {
1711 /*
1712 * OK, let's make sure we can do an SIOCGIFNAME
1713 * ioctl.
1714 */
1715 struct ifreq ifr;
1716
1717 memset(&ifr, 0, sizeof(ifr));
1718 if (ioctl(fd, SIOCGIFNAME, &ifr) == 0 ||
1719 errno != EOPNOTSUPP) {
1720 /*
1721 * It succeeded, or failed for some reason
1722 * other than "netlink sockets don't support
1723 * device ioctls". Go with the AF_NETLINK
1724 * socket.
1725 */
1726 return (fd);
1727 }
1728
1729 /*
1730 * OK, that didn't work, so it's as bad as "netlink
1731 * sockets aren't available". Close the socket and
1732 * drive on.
1733 */
1734 close(fd);
1735 }
1736
1737 /*
1738 * Now try an AF_UNIX socket.
1739 */
1740 fd = socket(AF_UNIX, SOCK_RAW, 0);
1741 if (fd != -1) {
1742 /*
1743 * OK, we got it!
1744 */
1745 return (fd);
1746 }
1747
1748 /*
1749 * Now try an AF_INET6 socket.
1750 */
1751 fd = socket(AF_INET6, SOCK_DGRAM, 0);
1752 if (fd != -1) {
1753 return (fd);
1754 }
1755
1756 /*
1757 * Now try an AF_INET socket.
1758 *
1759 * XXX - if that fails, is there anything else we should try?
1760 * AF_CAN, for embedded systems in vehicles, in case they're
1761 * built without Internet protocol support? Any other socket
1762 * types popular in non-Internet embedded systems?
1763 */
1764 return (socket(AF_INET, SOCK_DGRAM, 0));
1765 }
1766
1767 /*
1768 * Get additional flags for a device, using SIOCETHTOOL.
1769 */
1770 static int
1771 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf)
1772 {
1773 int sock;
1774 FILE *fh;
1775 unsigned int arptype = ARPHRD_VOID;
1776 struct ifreq ifr;
1777 struct ethtool_value info;
1778
1779 if (*flags & PCAP_IF_LOOPBACK) {
1780 /*
1781 * Loopback devices aren't wireless, and "connected"/
1782 * "disconnected" doesn't apply to them.
1783 */
1784 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1785 return 0;
1786 }
1787
1788 sock = get_if_ioctl_socket();
1789 if (sock == -1) {
1790 pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno,
1791 "Can't create socket to get ethtool information for %s",
1792 name);
1793 return -1;
1794 }
1795
1796 /*
1797 * OK, what type of network is this?
1798 * In particular, is it wired or wireless?
1799 */
1800 if (is_wifi(name)) {
1801 /*
1802 * Wi-Fi, hence wireless.
1803 */
1804 *flags |= PCAP_IF_WIRELESS;
1805 } else {
1806 /*
1807 * OK, what does /sys/class/net/{if_name}/type contain?
1808 * (We don't use that for Wi-Fi, as it'll report
1809 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor-
1810 * mode devices.)
1811 */
1812 char *pathstr;
1813
1814 if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) {
1815 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1816 "%s: Can't generate path name string for /sys/class/net device",
1817 name);
1818 close(sock);
1819 return -1;
1820 }
1821 fh = fopen(pathstr, "r");
1822 if (fh != NULL) {
1823 if (fscanf(fh, "%u", &arptype) == 1) {
1824 /*
1825 * OK, we got an ARPHRD_ type; what is it?
1826 */
1827 switch (arptype) {
1828
1829 case ARPHRD_LOOPBACK:
1830 /*
1831 * These are types to which
1832 * "connected" and "disconnected"
1833 * don't apply, so don't bother
1834 * asking about it.
1835 *
1836 * XXX - add other types?
1837 */
1838 close(sock);
1839 fclose(fh);
1840 free(pathstr);
1841 return 0;
1842
1843 case ARPHRD_IRDA:
1844 case ARPHRD_IEEE80211:
1845 case ARPHRD_IEEE80211_PRISM:
1846 case ARPHRD_IEEE80211_RADIOTAP:
1847 case ARPHRD_IEEE802154:
1848 case ARPHRD_IEEE802154_MONITOR:
1849 case ARPHRD_6LOWPAN:
1850 /*
1851 * Various wireless types.
1852 */
1853 *flags |= PCAP_IF_WIRELESS;
1854 break;
1855 }
1856 }
1857 fclose(fh);
1858 }
1859 free(pathstr);
1860 }
1861
1862 #ifdef ETHTOOL_GLINK
1863 memset(&ifr, 0, sizeof(ifr));
1864 pcapint_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
1865 info.cmd = ETHTOOL_GLINK;
1866 /*
1867 * XXX - while Valgrind handles SIOCETHTOOL and knows that
1868 * the ETHTOOL_GLINK command sets the .data member of the
1869 * structure, Memory Sanitizer doesn't yet do so:
1870 *
1871 * https://bugs.llvm.org/show_bug.cgi?id=45814
1872 *
1873 * For now, we zero it out to squelch warnings; if the bug
1874 * in question is fixed, we can remove this.
1875 */
1876 info.data = 0;
1877 ifr.ifr_data = (caddr_t)&info;
1878 if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) {
1879 int save_errno = errno;
1880
1881 switch (save_errno) {
1882
1883 case EOPNOTSUPP:
1884 case EINVAL:
1885 /*
1886 * OK, this OS version or driver doesn't support
1887 * asking for this information.
1888 * XXX - distinguish between "this doesn't
1889 * support ethtool at all because it's not
1890 * that type of device" vs. "this doesn't
1891 * support ethtool even though it's that
1892 * type of device", and return "unknown".
1893 */
1894 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1895 close(sock);
1896 return 0;
1897
1898 case ENODEV:
1899 /*
1900 * OK, no such device.
1901 * The user will find that out when they try to
1902 * activate the device; just say "OK" and
1903 * don't set anything.
1904 */
1905 close(sock);
1906 return 0;
1907
1908 default:
1909 /*
1910 * Other error.
1911 */
1912 pcapint_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE,
1913 save_errno,
1914 "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed",
1915 name);
1916 close(sock);
1917 return -1;
1918 }
1919 }
1920
1921 /*
1922 * Is it connected?
1923 */
1924 if (info.data) {
1925 /*
1926 * It's connected.
1927 */
1928 *flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED;
1929 } else {
1930 /*
1931 * It's disconnected.
1932 */
1933 *flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
1934 }
1935 #endif
1936
1937 close(sock);
1938
1939 #ifdef HAVE_SNF_API
1940 // For "down" SNF devices the SNF API makes the flags more relevant.
1941 if (arptype == ARPHRD_ETHER &&
1942 ! (*flags & PCAP_IF_UP) &&
1943 snf_get_if_flags(name, flags, errbuf) < 0)
1944 return PCAP_ERROR;
1945 #endif // HAVE_SNF_API
1946
1947 return 0;
1948 }
1949
1950 int
1951 pcapint_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf)
1952 {
1953 /*
1954 * Get the list of regular interfaces first.
1955 */
1956 if (pcapint_findalldevs_interfaces(devlistp, errbuf, can_be_bound,
1957 get_if_flags) == -1)
1958 return (-1); /* failure */
1959
1960 /*
1961 * Add the "any" device.
1962 */
1963 if (pcapint_add_any_dev(devlistp, errbuf) == NULL)
1964 return (-1);
1965
1966 return (0);
1967 }
1968
1969 /*
1970 * Set direction flag: Which packets do we accept on a forwarding
1971 * single device? IN, OUT or both?
1972 */
1973 static int
1974 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1975 {
1976 /*
1977 * It's guaranteed, at this point, that d is a valid
1978 * direction value.
1979 */
1980 handle->direction = d;
1981 return 0;
1982 }
1983
1984 static int
1985 is_wifi(const char *device)
1986 {
1987 char *pathstr;
1988 struct stat statb;
1989
1990 /*
1991 * See if there's a sysfs wireless directory for it.
1992 * If so, it's a wireless interface.
1993 */
1994 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) {
1995 /*
1996 * Just give up here.
1997 */
1998 return 0;
1999 }
2000 if (stat(pathstr, &statb) == 0) {
2001 free(pathstr);
2002 return 1;
2003 }
2004 free(pathstr);
2005
2006 return 0;
2007 }
2008
2009 /*
2010 * Linux uses the ARP hardware type to identify the type of an
2011 * interface. pcap uses the DLT_xxx constants for this. This
2012 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
2013 * constant, as arguments, and sets "handle->linktype" to the
2014 * appropriate DLT_XXX constant and sets "handle->offset" to
2015 * the appropriate value (to make "handle->offset" plus link-layer
2016 * header length be a multiple of 4, so that the link-layer payload
2017 * will be aligned on a 4-byte boundary when capturing packets).
2018 * (If the offset isn't set here, it'll be 0; add code as appropriate
2019 * for cases where it shouldn't be 0.)
2020 *
2021 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
2022 * in cooked mode; otherwise, we can't use cooked mode, so we have
2023 * to pick some type that works in raw mode, or fail.
2024 *
2025 * Sets the link type to -1 if unable to map the type.
2026 *
2027 * Returns 0 on success or a PCAP_ERROR_ value on error.
2028 */
2029 static int map_arphrd_to_dlt(pcap_t *handle, int arptype,
2030 const char *device, int cooked_ok)
2031 {
2032 static const char cdma_rmnet[] = "cdma_rmnet";
2033
2034 switch (arptype) {
2035
2036 case ARPHRD_ETHER:
2037 /*
2038 * For various annoying reasons having to do with DHCP
2039 * software, some versions of Android give the mobile-
2040 * phone-network interface an ARPHRD_ value of
2041 * ARPHRD_ETHER, even though the packets supplied by
2042 * that interface have no link-layer header, and begin
2043 * with an IP header, so that the ARPHRD_ value should
2044 * be ARPHRD_NONE.
2045 *
2046 * Detect those devices by checking the device name, and
2047 * use DLT_RAW for them.
2048 */
2049 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) {
2050 handle->linktype = DLT_RAW;
2051 return 0;
2052 }
2053
2054 /*
2055 * Is this a real Ethernet device? If so, give it a
2056 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
2057 * that an application can let you choose it, in case you're
2058 * capturing DOCSIS traffic that a Cisco Cable Modem
2059 * Termination System is putting out onto an Ethernet (it
2060 * doesn't put an Ethernet header onto the wire, it puts raw
2061 * DOCSIS frames out on the wire inside the low-level
2062 * Ethernet framing).
2063 *
2064 * XXX - are there any other sorts of "fake Ethernet" that
2065 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as
2066 * a Cisco CMTS won't put traffic onto it or get traffic
2067 * bridged onto it? ISDN is handled in "setup_socket()",
2068 * as we fall back on cooked mode there, and we use
2069 * is_wifi() to check for 802.11 devices; are there any
2070 * others?
2071 */
2072 if (!is_wifi(device)) {
2073 int ret;
2074
2075 /*
2076 * This is not a Wi-Fi device but it could be
2077 * a DSA master/management network device.
2078 */
2079 ret = iface_dsa_get_proto_info(device, handle);
2080 if (ret < 0)
2081 return ret;
2082
2083 if (ret == 1) {
2084 /*
2085 * This is a DSA master/management network
2086 * device, linktype is already set by
2087 * iface_dsa_get_proto_info(), set an
2088 * appropriate offset here.
2089 */
2090 handle->offset = 2;
2091 break;
2092 }
2093
2094 /*
2095 * It's not a Wi-Fi device; offer DOCSIS.
2096 */
2097 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2098 if (handle->dlt_list == NULL) {
2099 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2100 PCAP_ERRBUF_SIZE, errno, "malloc");
2101 return (PCAP_ERROR);
2102 }
2103 handle->dlt_list[0] = DLT_EN10MB;
2104 handle->dlt_list[1] = DLT_DOCSIS;
2105 handle->dlt_count = 2;
2106 }
2107 /* FALLTHROUGH */
2108
2109 case ARPHRD_METRICOM:
2110 case ARPHRD_LOOPBACK:
2111 handle->linktype = DLT_EN10MB;
2112 handle->offset = 2;
2113 break;
2114
2115 case ARPHRD_EETHER:
2116 handle->linktype = DLT_EN3MB;
2117 break;
2118
2119 case ARPHRD_AX25:
2120 handle->linktype = DLT_AX25_KISS;
2121 break;
2122
2123 case ARPHRD_PRONET:
2124 handle->linktype = DLT_PRONET;
2125 break;
2126
2127 case ARPHRD_CHAOS:
2128 handle->linktype = DLT_CHAOS;
2129 break;
2130
2131 case ARPHRD_CAN:
2132 handle->linktype = DLT_CAN_SOCKETCAN;
2133 break;
2134
2135 case ARPHRD_IEEE802_TR:
2136 case ARPHRD_IEEE802:
2137 handle->linktype = DLT_IEEE802;
2138 handle->offset = 2;
2139 break;
2140
2141 case ARPHRD_ARCNET:
2142 handle->linktype = DLT_ARCNET_LINUX;
2143 break;
2144
2145 case ARPHRD_FDDI:
2146 handle->linktype = DLT_FDDI;
2147 handle->offset = 3;
2148 break;
2149
2150 case ARPHRD_ATM:
2151 /*
2152 * The Classical IP implementation in ATM for Linux
2153 * supports both what RFC 1483 calls "LLC Encapsulation",
2154 * in which each packet has an LLC header, possibly
2155 * with a SNAP header as well, prepended to it, and
2156 * what RFC 1483 calls "VC Based Multiplexing", in which
2157 * different virtual circuits carry different network
2158 * layer protocols, and no header is prepended to packets.
2159 *
2160 * They both have an ARPHRD_ type of ARPHRD_ATM, so
2161 * you can't use the ARPHRD_ type to find out whether
2162 * captured packets will have an LLC header, and,
2163 * while there's a socket ioctl to *set* the encapsulation
2164 * type, there's no ioctl to *get* the encapsulation type.
2165 *
2166 * This means that
2167 *
2168 * programs that dissect Linux Classical IP frames
2169 * would have to check for an LLC header and,
2170 * depending on whether they see one or not, dissect
2171 * the frame as LLC-encapsulated or as raw IP (I
2172 * don't know whether there's any traffic other than
2173 * IP that would show up on the socket, or whether
2174 * there's any support for IPv6 in the Linux
2175 * Classical IP code);
2176 *
2177 * filter expressions would have to compile into
2178 * code that checks for an LLC header and does
2179 * the right thing.
2180 *
2181 * Both of those are a nuisance - and, at least on systems
2182 * that support PF_PACKET sockets, we don't have to put
2183 * up with those nuisances; instead, we can just capture
2184 * in cooked mode. That's what we'll do, if we can.
2185 * Otherwise, we'll just fail.
2186 */
2187 if (cooked_ok)
2188 handle->linktype = DLT_LINUX_SLL;
2189 else
2190 handle->linktype = -1;
2191 break;
2192
2193 case ARPHRD_IEEE80211:
2194 handle->linktype = DLT_IEEE802_11;
2195 break;
2196
2197 case ARPHRD_IEEE80211_PRISM:
2198 handle->linktype = DLT_PRISM_HEADER;
2199 break;
2200
2201 case ARPHRD_IEEE80211_RADIOTAP:
2202 handle->linktype = DLT_IEEE802_11_RADIO;
2203 break;
2204
2205 case ARPHRD_PPP:
2206 /*
2207 * Some PPP code in the kernel supplies no link-layer
2208 * header whatsoever to PF_PACKET sockets; other PPP
2209 * code supplies PPP link-layer headers ("syncppp.c");
2210 * some PPP code might supply random link-layer
2211 * headers (PPP over ISDN - there's code in Ethereal,
2212 * for example, to cope with PPP-over-ISDN captures
2213 * with which the Ethereal developers have had to cope,
2214 * heuristically trying to determine which of the
2215 * oddball link-layer headers particular packets have).
2216 *
2217 * As such, we just punt, and run all PPP interfaces
2218 * in cooked mode, if we can; otherwise, we just treat
2219 * it as DLT_RAW, for now - if somebody needs to capture,
2220 * on a 2.0[.x] kernel, on PPP devices that supply a
2221 * link-layer header, they'll have to add code here to
2222 * map to the appropriate DLT_ type (possibly adding a
2223 * new DLT_ type, if necessary).
2224 */
2225 if (cooked_ok)
2226 handle->linktype = DLT_LINUX_SLL;
2227 else {
2228 /*
2229 * XXX - handle ISDN types here? We can't fall
2230 * back on cooked sockets, so we'd have to
2231 * figure out from the device name what type of
2232 * link-layer encapsulation it's using, and map
2233 * that to an appropriate DLT_ value, meaning
2234 * we'd map "isdnN" devices to DLT_RAW (they
2235 * supply raw IP packets with no link-layer
2236 * header) and "isdY" devices to a new DLT_I4L_IP
2237 * type that has only an Ethernet packet type as
2238 * a link-layer header.
2239 *
2240 * But sometimes we seem to get random crap
2241 * in the link-layer header when capturing on
2242 * ISDN devices....
2243 */
2244 handle->linktype = DLT_RAW;
2245 }
2246 break;
2247
2248 case ARPHRD_CISCO:
2249 handle->linktype = DLT_C_HDLC;
2250 break;
2251
2252 /* Not sure if this is correct for all tunnels, but it
2253 * works for CIPE */
2254 case ARPHRD_TUNNEL:
2255 case ARPHRD_SIT:
2256 case ARPHRD_CSLIP:
2257 case ARPHRD_SLIP6:
2258 case ARPHRD_CSLIP6:
2259 case ARPHRD_ADAPT:
2260 case ARPHRD_SLIP:
2261 case ARPHRD_RAWHDLC:
2262 case ARPHRD_DLCI:
2263 /*
2264 * XXX - should some of those be mapped to DLT_LINUX_SLL
2265 * instead? Should we just map all of them to DLT_LINUX_SLL?
2266 */
2267 handle->linktype = DLT_RAW;
2268 break;
2269
2270 case ARPHRD_FRAD:
2271 handle->linktype = DLT_FRELAY;
2272 break;
2273
2274 case ARPHRD_LOCALTLK:
2275 handle->linktype = DLT_LTALK;
2276 break;
2277
2278 case 18:
2279 /*
2280 * RFC 4338 defines an encapsulation for IP and ARP
2281 * packets that's compatible with the RFC 2625
2282 * encapsulation, but that uses a different ARP
2283 * hardware type and hardware addresses. That
2284 * ARP hardware type is 18; Linux doesn't define
2285 * any ARPHRD_ value as 18, but if it ever officially
2286 * supports RFC 4338-style IP-over-FC, it should define
2287 * one.
2288 *
2289 * For now, we map it to DLT_IP_OVER_FC, in the hopes
2290 * that this will encourage its use in the future,
2291 * should Linux ever officially support RFC 4338-style
2292 * IP-over-FC.
2293 */
2294 handle->linktype = DLT_IP_OVER_FC;
2295 break;
2296
2297 case ARPHRD_FCPP:
2298 case ARPHRD_FCAL:
2299 case ARPHRD_FCPL:
2300 case ARPHRD_FCFABRIC:
2301 /*
2302 * Back in 2002, Donald Lee at Cray wanted a DLT_ for
2303 * IP-over-FC:
2304 *
2305 * https://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html
2306 *
2307 * and one was assigned.
2308 *
2309 * In a later private discussion (spun off from a message
2310 * on the ethereal-users list) on how to get that DLT_
2311 * value in libpcap on Linux, I ended up deciding that
2312 * the best thing to do would be to have him tweak the
2313 * driver to set the ARPHRD_ value to some ARPHRD_FCxx
2314 * type, and map all those types to DLT_IP_OVER_FC:
2315 *
2316 * I've checked into the libpcap and tcpdump CVS tree
2317 * support for DLT_IP_OVER_FC. In order to use that,
2318 * you'd have to modify your modified driver to return
2319 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" -
2320 * change it to set "dev->type" to ARPHRD_FCFABRIC, for
2321 * example (the exact value doesn't matter, it can be
2322 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or
2323 * ARPHRD_FCFABRIC).
2324 *
2325 * 11 years later, Christian Svensson wanted to map
2326 * various ARPHRD_ values to DLT_FC_2 and
2327 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel
2328 * frames:
2329 *
2330 * https://github.com/mcr/libpcap/pull/29
2331 *
2332 * There doesn't seem to be any network drivers that uses
2333 * any of the ARPHRD_FC* values for IP-over-FC, and
2334 * it's not exactly clear what the "Dummy types for non
2335 * ARP hardware" are supposed to mean (link-layer
2336 * header type? Physical network type?), so it's
2337 * not exactly clear why the ARPHRD_FC* types exist
2338 * in the first place.
2339 *
2340 * For now, we map them to DLT_FC_2, and provide an
2341 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as
2342 * DLT_IP_OVER_FC just in case there's some old
2343 * driver out there that uses one of those types for
2344 * IP-over-FC on which somebody wants to capture
2345 * packets.
2346 */
2347 handle->linktype = DLT_FC_2;
2348 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3);
2349 if (handle->dlt_list == NULL) {
2350 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2351 PCAP_ERRBUF_SIZE, errno, "malloc");
2352 return (PCAP_ERROR);
2353 }
2354 handle->dlt_list[0] = DLT_FC_2;
2355 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS;
2356 handle->dlt_list[2] = DLT_IP_OVER_FC;
2357 handle->dlt_count = 3;
2358 break;
2359
2360 case ARPHRD_IRDA:
2361 /* Don't expect IP packet out of this interfaces... */
2362 handle->linktype = DLT_LINUX_IRDA;
2363 /* We need to save packet direction for IrDA decoding,
2364 * so let's use "Linux-cooked" mode. Jean II
2365 *
2366 * XXX - this is handled in setup_socket(). */
2367 /* handlep->cooked = 1; */
2368 break;
2369
2370 case ARPHRD_LAPD:
2371 /* Don't expect IP packet out of this interfaces... */
2372 handle->linktype = DLT_LINUX_LAPD;
2373 break;
2374
2375 case ARPHRD_NONE:
2376 /*
2377 * No link-layer header; packets are just IP
2378 * packets, so use DLT_RAW.
2379 */
2380 handle->linktype = DLT_RAW;
2381 break;
2382
2383 case ARPHRD_IEEE802154:
2384 handle->linktype = DLT_IEEE802_15_4_NOFCS;
2385 break;
2386
2387 case ARPHRD_NETLINK:
2388 handle->linktype = DLT_NETLINK;
2389 /*
2390 * We need to use cooked mode, so that in sll_protocol we
2391 * pick up the netlink protocol type such as NETLINK_ROUTE,
2392 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc.
2393 *
2394 * XXX - this is handled in setup_socket().
2395 */
2396 /* handlep->cooked = 1; */
2397 break;
2398
2399 case ARPHRD_VSOCKMON:
2400 handle->linktype = DLT_VSOCK;
2401 break;
2402
2403 default:
2404 handle->linktype = -1;
2405 break;
2406 }
2407 return (0);
2408 }
2409
2410 /*
2411 * Try to set up a PF_PACKET socket.
2412 * Returns 0 or a PCAP_WARNING_ value on success and a PCAP_ERROR_ value
2413 * on failure.
2414 */
2415 static int
2416 setup_socket(pcap_t *handle, int is_any_device)
2417 {
2418 struct pcap_linux *handlep = handle->priv;
2419 const char *device = handle->opt.device;
2420 int status = 0;
2421 int sock_fd, arptype;
2422 int val;
2423 int err = 0;
2424 struct packet_mreq mr;
2425
2426 /*
2427 * Open a socket with protocol family packet. If cooked is true,
2428 * we open a SOCK_DGRAM socket for the cooked interface, otherwise
2429 * we open a SOCK_RAW socket for the raw interface.
2430 *
2431 * The protocol is set to 0. This means we will receive no
2432 * packets until we "bind" the socket with a non-zero
2433 * protocol. This allows us to setup the ring buffers without
2434 * dropping any packets.
2435 */
2436 sock_fd = is_any_device ?
2437 socket(PF_PACKET, SOCK_DGRAM, 0) :
2438 socket(PF_PACKET, SOCK_RAW, 0);
2439
2440 if (sock_fd == -1) {
2441 if (errno == EPERM || errno == EACCES) {
2442 /*
2443 * You don't have permission to open the
2444 * socket.
2445 */
2446 status = PCAP_ERROR_PERM_DENIED;
2447 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2448 "Attempt to create packet socket failed - CAP_NET_RAW may be required");
2449 } else if (errno == EAFNOSUPPORT) {
2450 /*
2451 * PF_PACKET sockets not supported.
2452 * Perhaps we're running on the WSL1 module
2453 * in the Windows NT kernel rather than on
2454 * a real Linux kernel.
2455 */
2456 status = PCAP_ERROR_CAPTURE_NOTSUP;
2457 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2458 "PF_PACKET sockets not supported - is this WSL1?");
2459 } else {
2460 /*
2461 * Other error.
2462 */
2463 status = PCAP_ERROR;
2464 }
2465 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2466 errno, "socket");
2467 return status;
2468 }
2469
2470 /*
2471 * Get the interface index of the loopback device.
2472 * If the attempt fails, don't fail, just set the
2473 * "handlep->lo_ifindex" to -1.
2474 *
2475 * XXX - can there be more than one device that loops
2476 * packets back, i.e. devices other than "lo"? If so,
2477 * we'd need to find them all, and have an array of
2478 * indices for them, and check all of them in
2479 * "pcap_read_packet()".
2480 */
2481 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
2482
2483 /*
2484 * Default value for offset to align link-layer payload
2485 * on a 4-byte boundary.
2486 */
2487 handle->offset = 0;
2488
2489 /*
2490 * What kind of frames do we have to deal with? Fall back
2491 * to cooked mode if we have an unknown interface type
2492 * or a type we know doesn't work well in raw mode.
2493 */
2494 if (!is_any_device) {
2495 /* Assume for now we don't need cooked mode. */
2496 handlep->cooked = 0;
2497
2498 if (handle->opt.rfmon) {
2499 /*
2500 * We were asked to turn on monitor mode.
2501 * Do so before we get the link-layer type,
2502 * because entering monitor mode could change
2503 * the link-layer type.
2504 */
2505 err = enter_rfmon_mode(handle, sock_fd, device);
2506 if (err < 0) {
2507 /* Hard failure */
2508 close(sock_fd);
2509 return err;
2510 }
2511 if (err == 0) {
2512 /*
2513 * Nothing worked for turning monitor mode
2514 * on.
2515 */
2516 close(sock_fd);
2517
2518 return PCAP_ERROR_RFMON_NOTSUP;
2519 }
2520
2521 /*
2522 * Either monitor mode has been turned on for
2523 * the device, or we've been given a different
2524 * device to open for monitor mode. If we've
2525 * been given a different device, use it.
2526 */
2527 if (handlep->mondevice != NULL)
2528 device = handlep->mondevice;
2529 }
2530 arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
2531 if (arptype < 0) {
2532 close(sock_fd);
2533 return arptype;
2534 }
2535 status = map_arphrd_to_dlt(handle, arptype, device, 1);
2536 if (status < 0) {
2537 close(sock_fd);
2538 return status;
2539 }
2540 if (handle->linktype == -1 ||
2541 handle->linktype == DLT_LINUX_SLL ||
2542 handle->linktype == DLT_LINUX_IRDA ||
2543 handle->linktype == DLT_LINUX_LAPD ||
2544 handle->linktype == DLT_NETLINK ||
2545 (handle->linktype == DLT_EN10MB &&
2546 (strncmp("isdn", device, 4) == 0 ||
2547 strncmp("isdY", device, 4) == 0))) {
2548 /*
2549 * Unknown interface type (-1), or a
2550 * device we explicitly chose to run
2551 * in cooked mode (e.g., PPP devices),
2552 * or an ISDN device (whose link-layer
2553 * type we can only determine by using
2554 * APIs that may be different on different
2555 * kernels) - reopen in cooked mode.
2556 *
2557 * If the type is unknown, return a warning;
2558 * map_arphrd_to_dlt() has already set the
2559 * warning message.
2560 */
2561 if (close(sock_fd) == -1) {
2562 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2563 PCAP_ERRBUF_SIZE, errno, "close");
2564 return PCAP_ERROR;
2565 }
2566 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 0);
2567 if (sock_fd < 0) {
2568 /*
2569 * Fatal error. We treat this as
2570 * a generic error; we already know
2571 * that we were able to open a
2572 * PF_PACKET/SOCK_RAW socket, so
2573 * any failure is a "this shouldn't
2574 * happen" case.
2575 */
2576 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2577 PCAP_ERRBUF_SIZE, errno, "socket");
2578 return PCAP_ERROR;
2579 }
2580 handlep->cooked = 1;
2581
2582 /*
2583 * Get rid of any link-layer type list
2584 * we allocated - this only supports cooked
2585 * capture.
2586 */
2587 if (handle->dlt_list != NULL) {
2588 free(handle->dlt_list);
2589 handle->dlt_list = NULL;
2590 handle->dlt_count = 0;
2591 }
2592
2593 if (handle->linktype == -1) {
2594 /*
2595 * Warn that we're falling back on
2596 * cooked mode; we may want to
2597 * update "map_arphrd_to_dlt()"
2598 * to handle the new type.
2599 */
2600 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2601 "arptype %d not "
2602 "supported by libpcap - "
2603 "falling back to cooked "
2604 "socket",
2605 arptype);
2606 status = PCAP_WARNING;
2607 }
2608
2609 /*
2610 * IrDA capture is not a real "cooked" capture,
2611 * it's IrLAP frames, not IP packets. The
2612 * same applies to LAPD capture.
2613 */
2614 if (handle->linktype != DLT_LINUX_IRDA &&
2615 handle->linktype != DLT_LINUX_LAPD &&
2616 handle->linktype != DLT_NETLINK)
2617 handle->linktype = DLT_LINUX_SLL;
2618 }
2619
2620 handlep->ifindex = iface_get_id(sock_fd, device,
2621 handle->errbuf);
2622 if (handlep->ifindex == -1) {
2623 close(sock_fd);
2624 return PCAP_ERROR;
2625 }
2626
2627 if ((err = iface_bind(sock_fd, handlep->ifindex,
2628 handle->errbuf, 0)) != 0) {
2629 close(sock_fd);
2630 return err;
2631 }
2632 } else {
2633 /*
2634 * The "any" device.
2635 */
2636 if (handle->opt.rfmon) {
2637 /*
2638 * It doesn't support monitor mode.
2639 */
2640 close(sock_fd);
2641 return PCAP_ERROR_RFMON_NOTSUP;
2642 }
2643
2644 /*
2645 * It uses cooked mode.
2646 * Support both DLT_LINUX_SLL and DLT_LINUX_SLL2.
2647 */
2648 handlep->cooked = 1;
2649 handle->linktype = DLT_LINUX_SLL;
2650 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2651 if (handle->dlt_list == NULL) {
2652 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2653 PCAP_ERRBUF_SIZE, errno, "malloc");
2654 return (PCAP_ERROR);
2655 }
2656 handle->dlt_list[0] = DLT_LINUX_SLL;
2657 handle->dlt_list[1] = DLT_LINUX_SLL2;
2658 handle->dlt_count = 2;
2659
2660 /*
2661 * We're not bound to a device.
2662 * For now, we're using this as an indication
2663 * that we can't transmit; stop doing that only
2664 * if we figure out how to transmit in cooked
2665 * mode.
2666 */
2667 handlep->ifindex = -1;
2668 }
2669
2670 /*
2671 * Select promiscuous mode on if "promisc" is set.
2672 *
2673 * Do not turn allmulti mode on if we don't select
2674 * promiscuous mode - on some devices (e.g., Orinoco
2675 * wireless interfaces), allmulti mode isn't supported
2676 * and the driver implements it by turning promiscuous
2677 * mode on, and that screws up the operation of the
2678 * card as a normal networking interface, and on no
2679 * other platform I know of does starting a non-
2680 * promiscuous capture affect which multicast packets
2681 * are received by the interface.
2682 */
2683
2684 /*
2685 * Hmm, how can we set promiscuous mode on all interfaces?
2686 * I am not sure if that is possible at all. For now, we
2687 * silently ignore attempts to turn promiscuous mode on
2688 * for the "any" device (so you don't have to explicitly
2689 * disable it in programs such as tcpdump).
2690 */
2691
2692 if (!is_any_device && handle->opt.promisc) {
2693 memset(&mr, 0, sizeof(mr));
2694 mr.mr_ifindex = handlep->ifindex;
2695 mr.mr_type = PACKET_MR_PROMISC;
2696 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
2697 &mr, sizeof(mr)) == -1) {
2698 pcapint_fmt_errmsg_for_errno(handle->errbuf,
2699 PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)");
2700 close(sock_fd);
2701 return PCAP_ERROR;
2702 }
2703 }
2704
2705 /*
2706 * Enable auxiliary data and reserve room for reconstructing
2707 * VLAN headers.
2708 *
2709 * XXX - is enabling auxiliary data necessary, now that we
2710 * only support memory-mapped capture? The kernel's memory-mapped
2711 * capture code doesn't seem to check whether auxiliary data
2712 * is enabled, it seems to provide it whether it is or not.
2713 */
2714 val = 1;
2715 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
2716 sizeof(val)) == -1 && errno != ENOPROTOOPT) {
2717 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2718 errno, "setsockopt (PACKET_AUXDATA)");
2719 close(sock_fd);
2720 return PCAP_ERROR;
2721 }
2722 handle->offset += VLAN_TAG_LEN;
2723
2724 /*
2725 * If we're in cooked mode, make the snapshot length
2726 * large enough to hold a "cooked mode" header plus
2727 * 1 byte of packet data (so we don't pass a byte
2728 * count of 0 to "recvfrom()").
2729 * XXX - we don't know whether this will be DLT_LINUX_SLL
2730 * or DLT_LINUX_SLL2, so make sure it's big enough for
2731 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length
2732 * that small is silly anyway.
2733 */
2734 if (handlep->cooked) {
2735 if (handle->snapshot < SLL2_HDR_LEN + 1)
2736 handle->snapshot = SLL2_HDR_LEN + 1;
2737 }
2738 handle->bufsize = handle->snapshot;
2739
2740 /*
2741 * Set the offset at which to insert VLAN tags.
2742 */
2743 set_vlan_offset(handle);
2744
2745 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) {
2746 int nsec_tstamps = 1;
2747
2748 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) {
2749 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS");
2750 close(sock_fd);
2751 return PCAP_ERROR;
2752 }
2753 }
2754
2755 /*
2756 * We've succeeded. Save the socket FD in the pcap structure.
2757 */
2758 handle->fd = sock_fd;
2759
2760 /*
2761 * Any supported Linux version implements at least four auxiliary
2762 * data items (SKF_AD_PROTOCOL, SKF_AD_PKTTYPE, SKF_AD_IFINDEX and
2763 * SKF_AD_NLATTR). Set a flag so the code generator can use these
2764 * items if necessary.
2765 */
2766 handle->bpf_codegen_flags |= BPF_SPECIAL_BASIC_HANDLING;
2767
2768 /*
2769 * Can we generate special code for VLAN checks?
2770 * (XXX - what if we need the special code but it's not supported
2771 * by the OS? Is that possible?)
2772 *
2773 * This depends on both a runtime condition (the running Linux kernel
2774 * must support at least SKF_AD_VLAN_TAG_PRESENT in the auxiliary data
2775 * and must support SO_BPF_EXTENSIONS in order to tell the userland
2776 * process what it supports) and a compile-time condition (the OS
2777 * headers must define both constants in order to compile libpcap code
2778 * that asks the kernel about the support).
2779 */
2780 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2781 int bpf_extensions;
2782 socklen_t len = sizeof(bpf_extensions);
2783 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS,
2784 &bpf_extensions, &len) == 0) {
2785 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) {
2786 /*
2787 * Yes, we can. Request that we do so.
2788 */
2789 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING;
2790 }
2791 }
2792 #endif // defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2793
2794 return status;
2795 }
2796
2797 /*
2798 * Attempt to setup memory-mapped access.
2799 *
2800 * On success, returns 0 if there are no warnings or a PCAP_WARNING_ code
2801 * if there is a warning.
2802 *
2803 * On error, returns the appropriate error code; if that is PCAP_ERROR,
2804 * sets handle->errbuf to the appropriate message.
2805 */
2806 static int
2807 setup_mmapped(pcap_t *handle)
2808 {
2809 struct pcap_linux *handlep = handle->priv;
2810 int flags = MAP_ANONYMOUS | MAP_PRIVATE;
2811 int status;
2812
2813 /*
2814 * Attempt to allocate a buffer to hold the contents of one
2815 * packet, for use by the oneshot callback.
2816 */
2817 #ifdef MAP_32BIT
2818 if (pcapint_mmap_32bit) flags |= MAP_32BIT;
2819 #endif
2820 handlep->oneshot_buffer = mmap(0, handle->snapshot, PROT_READ | PROT_WRITE, flags, -1, 0);
2821 if (handlep->oneshot_buffer == MAP_FAILED) {
2822 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2823 errno, "can't allocate oneshot buffer");
2824 return PCAP_ERROR;
2825 }
2826
2827 if (handle->opt.buffer_size == 0) {
2828 /* by default request 2M for the ring buffer */
2829 handle->opt.buffer_size = 2*1024*1024;
2830 }
2831 status = prepare_tpacket_socket(handle);
2832 if (status == -1) {
2833 munmap(handlep->oneshot_buffer, handle->snapshot);
2834 handlep->oneshot_buffer = NULL;
2835 return PCAP_ERROR;
2836 }
2837 status = create_ring(handle);
2838 if (status < 0) {
2839 /*
2840 * Error attempting to enable memory-mapped capture;
2841 * fail. The return value is the status to return.
2842 */
2843 munmap(handlep->oneshot_buffer, handle->snapshot);
2844 handlep->oneshot_buffer = NULL;
2845 return status;
2846 }
2847
2848 /*
2849 * Success. status has been set either to 0 if there are no
2850 * warnings or to a PCAP_WARNING_ value if there is a warning.
2851 *
2852 * handle->offset is used to get the current position into the rx ring.
2853 * handle->cc is used to store the ring size.
2854 */
2855
2856 /*
2857 * Set the timeout to use in poll() before returning.
2858 */
2859 set_poll_timeout(handlep);
2860
2861 return status;
2862 }
2863
2864 /*
2865 * Attempt to set the socket to the specified version of the memory-mapped
2866 * header.
2867 *
2868 * Return 0 if we succeed; return 1 if we fail because that version isn't
2869 * supported; return -1 on any other error, and set handle->errbuf.
2870 */
2871 static int
2872 init_tpacket(pcap_t *handle, int version, const char *version_str)
2873 {
2874 struct pcap_linux *handlep = handle->priv;
2875 int val = version;
2876 socklen_t len = sizeof(val);
2877
2878 /*
2879 * Probe whether kernel supports the specified TPACKET version;
2880 * this also gets the length of the header for that version.
2881 *
2882 * This socket option was introduced in 2.6.27, which was
2883 * also the first release with TPACKET_V2 support.
2884 */
2885 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
2886 if (errno == EINVAL) {
2887 /*
2888 * EINVAL means this specific version of TPACKET
2889 * is not supported. Tell the caller they can try
2890 * with a different one; if they've run out of
2891 * others to try, let them set the error message
2892 * appropriately.
2893 */
2894 return 1;
2895 }
2896
2897 /*
2898 * All other errors are fatal.
2899 */
2900 if (errno == ENOPROTOOPT) {
2901 /*
2902 * PACKET_HDRLEN isn't supported, which means
2903 * that memory-mapped capture isn't supported.
2904 * Indicate that in the message.
2905 */
2906 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2907 "Kernel doesn't support memory-mapped capture; a 2.6.27 or later 2.x kernel is required, with CONFIG_PACKET_MMAP specified for 2.x kernels");
2908 } else {
2909 /*
2910 * Some unexpected error.
2911 */
2912 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2913 errno, "can't get %s header len on packet socket",
2914 version_str);
2915 }
2916 return -1;
2917 }
2918 handlep->tp_hdrlen = val;
2919
2920 val = version;
2921 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
2922 sizeof(val)) < 0) {
2923 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2924 errno, "can't activate %s on packet socket", version_str);
2925 return -1;
2926 }
2927 handlep->tp_version = version;
2928
2929 return 0;
2930 }
2931
2932 /*
2933 * Attempt to set the socket to version 3 of the memory-mapped header and,
2934 * if that fails because version 3 isn't supported, attempt to fall
2935 * back to version 2. If version 2 isn't supported, just fail.
2936 *
2937 * Return 0 if we succeed and -1 on any other error, and set handle->errbuf.
2938 */
2939 static int
2940 prepare_tpacket_socket(pcap_t *handle)
2941 {
2942 int ret;
2943
2944 #ifdef HAVE_TPACKET3
2945 /*
2946 * Try setting the version to TPACKET_V3.
2947 *
2948 * The only mode in which buffering is done on PF_PACKET
2949 * sockets, so that packets might not be delivered
2950 * immediately, is TPACKET_V3 mode.
2951 *
2952 * The buffering cannot be disabled in that mode, so
2953 * if the user has requested immediate mode, we don't
2954 * use TPACKET_V3.
2955 */
2956 if (!handle->opt.immediate) {
2957 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3");
2958 if (ret == 0) {
2959 /*
2960 * Success.
2961 */
2962 return 0;
2963 }
2964 if (ret == -1) {
2965 /*
2966 * We failed for some reason other than "the
2967 * kernel doesn't support TPACKET_V3".
2968 */
2969 return -1;
2970 }
2971
2972 /*
2973 * This means it returned 1, which means "the kernel
2974 * doesn't support TPACKET_V3"; try TPACKET_V2.
2975 */
2976 }
2977 #endif /* HAVE_TPACKET3 */
2978
2979 /*
2980 * Try setting the version to TPACKET_V2.
2981 */
2982 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2");
2983 if (ret == 0) {
2984 /*
2985 * Success.
2986 */
2987 return 0;
2988 }
2989
2990 if (ret == 1) {
2991 /*
2992 * OK, the kernel supports memory-mapped capture, but
2993 * not TPACKET_V2. Set the error message appropriately.
2994 */
2995 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2996 "Kernel doesn't support TPACKET_V2; a 2.6.27 or later kernel is required");
2997 }
2998
2999 /*
3000 * We failed.
3001 */
3002 return -1;
3003 }
3004
3005 /*
3006 * Attempt to set up memory-mapped access.
3007 *
3008 * On success, returns 0 if there are no warnings or to a PCAP_WARNING_ code
3009 * if there is a warning.
3010 *
3011 * On error, returns the appropriate error code; if that is PCAP_ERROR,
3012 * sets handle->errbuf to the appropriate message.
3013 */
3014 static int
3015 create_ring(pcap_t *handle)
3016 {
3017 struct pcap_linux *handlep = handle->priv;
3018 unsigned i, j, frames_per_block;
3019 int flags = MAP_SHARED;
3020 #ifdef HAVE_TPACKET3
3021 /*
3022 * For sockets using TPACKET_V2, the extra stuff at the end of a
3023 * struct tpacket_req3 will be ignored, so this is OK even for
3024 * those sockets.
3025 */
3026 struct tpacket_req3 req;
3027 #else
3028 struct tpacket_req req;
3029 #endif
3030 socklen_t len;
3031 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff;
3032 unsigned int frame_size;
3033 int status;
3034
3035 /*
3036 * Start out assuming no warnings.
3037 */
3038 status = 0;
3039
3040 /*
3041 * Reserve space for VLAN tag reconstruction.
3042 */
3043 tp_reserve = VLAN_TAG_LEN;
3044
3045 /*
3046 * If we're capturing in cooked mode, reserve space for
3047 * a DLT_LINUX_SLL2 header; we don't know yet whether
3048 * we'll be using DLT_LINUX_SLL or DLT_LINUX_SLL2, as
3049 * that can be changed on an open device, so we reserve
3050 * space for the larger of the two.
3051 *
3052 * XXX - we assume that the kernel is still adding
3053 * 16 bytes of extra space, so we subtract 16 from
3054 * SLL2_HDR_LEN to get the additional space needed.
3055 * (Are they doing that for DLT_LINUX_SLL, the link-
3056 * layer header for which is 16 bytes?)
3057 *
3058 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - 16)?
3059 */
3060 if (handlep->cooked)
3061 tp_reserve += SLL2_HDR_LEN - 16;
3062
3063 /*
3064 * Try to request that amount of reserve space.
3065 * This must be done before creating the ring buffer.
3066 */
3067 len = sizeof(tp_reserve);
3068 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE,
3069 &tp_reserve, len) < 0) {
3070 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3071 PCAP_ERRBUF_SIZE, errno,
3072 "setsockopt (PACKET_RESERVE)");
3073 return PCAP_ERROR;
3074 }
3075
3076 switch (handlep->tp_version) {
3077
3078 case TPACKET_V2:
3079 /* Note that with large snapshot length (say 256K, which is
3080 * the default for recent versions of tcpdump, Wireshark,
3081 * TShark, dumpcap or 64K, the value that "-s 0" has given for
3082 * a long time with tcpdump), if we use the snapshot
3083 * length to calculate the frame length, only a few frames
3084 * will be available in the ring even with pretty
3085 * large ring size (and a lot of memory will be unused).
3086 *
3087 * Ideally, we should choose a frame length based on the
3088 * minimum of the specified snapshot length and the maximum
3089 * packet size. That's not as easy as it sounds; consider,
3090 * for example, an 802.11 interface in monitor mode, where
3091 * the frame would include a radiotap header, where the
3092 * maximum radiotap header length is device-dependent.
3093 *
3094 * So, for now, we just do this for Ethernet devices, where
3095 * there's no metadata header, and the link-layer header is
3096 * fixed length. We can get the maximum packet size by
3097 * adding 18, the Ethernet header length plus the CRC length
3098 * (just in case we happen to get the CRC in the packet), to
3099 * the MTU of the interface; we fetch the MTU in the hopes
3100 * that it reflects support for jumbo frames. (Even if the
3101 * interface is just being used for passive snooping, the
3102 * driver might set the size of buffers in the receive ring
3103 * based on the MTU, so that the MTU limits the maximum size
3104 * of packets that we can receive.)
3105 *
3106 * If segmentation/fragmentation or receive offload are
3107 * enabled, we can get reassembled/aggregated packets larger
3108 * than MTU, but bounded to 65535 plus the Ethernet overhead,
3109 * due to kernel and protocol constraints */
3110 frame_size = handle->snapshot;
3111 if (handle->linktype == DLT_EN10MB) {
3112 unsigned int max_frame_len;
3113 int mtu;
3114 int offload;
3115
3116 mtu = iface_get_mtu(handle->fd, handle->opt.device,
3117 handle->errbuf);
3118 if (mtu == -1)
3119 return PCAP_ERROR;
3120 offload = iface_get_offload(handle);
3121 if (offload == -1)
3122 return PCAP_ERROR;
3123 if (offload)
3124 max_frame_len = max(mtu, 65535);
3125 else
3126 max_frame_len = mtu;
3127 max_frame_len += 18;
3128
3129 if (frame_size > max_frame_len)
3130 frame_size = max_frame_len;
3131 }
3132
3133 /* NOTE: calculus matching those in tpacket_rcv()
3134 * in linux-2.6/net/packet/af_packet.c
3135 */
3136 len = sizeof(sk_type);
3137 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type,
3138 &len) < 0) {
3139 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3140 PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)");
3141 return PCAP_ERROR;
3142 }
3143 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE;
3144 /* XXX: in the kernel maclen is calculated from
3145 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len
3146 * in: packet_snd() in linux-2.6/net/packet/af_packet.c
3147 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c
3148 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c
3149 * but I see no way to get those sizes in userspace,
3150 * like for instance with an ifreq ioctl();
3151 * the best thing I've found so far is MAX_HEADER in
3152 * the kernel part of linux-2.6/include/linux/netdevice.h
3153 * which goes up to 128+48=176; since pcap-linux.c
3154 * defines a MAX_LINKHEADER_SIZE of 256 which is
3155 * greater than that, let's use it.. maybe is it even
3156 * large enough to directly replace macoff..
3157 */
3158 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ;
3159 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve;
3160 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN
3161 * of netoff, which contradicts
3162 * linux-2.6/Documentation/networking/packet_mmap.txt
3163 * documenting that:
3164 * "- Gap, chosen so that packet data (Start+tp_net)
3165 * aligns to TPACKET_ALIGNMENT=16"
3166 */
3167 /* NOTE: in linux-2.6/include/linux/skbuff.h:
3168 * "CPUs often take a performance hit
3169 * when accessing unaligned memory locations"
3170 */
3171 macoff = netoff - maclen;
3172 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size);
3173 /*
3174 * Round the buffer size up to a multiple of the
3175 * frame size (rather than rounding down, which
3176 * would give a buffer smaller than our caller asked
3177 * for, and possibly give zero frames if the requested
3178 * buffer size is too small for one frame).
3179 */
3180 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3181 break;
3182
3183 #ifdef HAVE_TPACKET3
3184 case TPACKET_V3:
3185 /* The "frames" for this are actually buffers that
3186 * contain multiple variable-sized frames.
3187 *
3188 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave
3189 * enough room for at least one reasonably-sized packet
3190 * in the "frame". */
3191 req.tp_frame_size = MAXIMUM_SNAPLEN;
3192 /*
3193 * Round the buffer size up to a multiple of the
3194 * "frame" size (rather than rounding down, which
3195 * would give a buffer smaller than our caller asked
3196 * for, and possibly give zero "frames" if the requested
3197 * buffer size is too small for one "frame").
3198 */
3199 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3200 break;
3201 #endif
3202 default:
3203 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3204 "Internal error: unknown TPACKET_ value %u",
3205 handlep->tp_version);
3206 return PCAP_ERROR;
3207 }
3208
3209 /* compute the minimum block size that will handle this frame.
3210 * The block has to be page size aligned.
3211 * The max block size allowed by the kernel is arch-dependent and
3212 * it's not explicitly checked here. */
3213 req.tp_block_size = getpagesize();
3214 while (req.tp_block_size < req.tp_frame_size)
3215 req.tp_block_size <<= 1;
3216
3217 frames_per_block = req.tp_block_size/req.tp_frame_size;
3218
3219 /*
3220 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was,
3221 * so we check for PACKET_TIMESTAMP. We check for
3222 * linux/net_tstamp.h just in case a system somehow has
3223 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might
3224 * be unnecessary.
3225 *
3226 * SIOCSHWTSTAMP was introduced in the patch that introduced
3227 * linux/net_tstamp.h, so we don't bother checking whether
3228 * SIOCSHWTSTAMP is defined (if your Linux system has
3229 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your
3230 * Linux system is badly broken).
3231 */
3232 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
3233 /*
3234 * If we were told to do so, ask the kernel and the driver
3235 * to use hardware timestamps.
3236 *
3237 * Hardware timestamps are only supported with mmapped
3238 * captures.
3239 */
3240 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER ||
3241 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) {
3242 struct hwtstamp_config hwconfig;
3243 struct ifreq ifr;
3244 int timesource;
3245
3246 /*
3247 * Ask for hardware time stamps on all packets,
3248 * including transmitted packets.
3249 */
3250 memset(&hwconfig, 0, sizeof(hwconfig));
3251 hwconfig.tx_type = HWTSTAMP_TX_ON;
3252 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
3253
3254 memset(&ifr, 0, sizeof(ifr));
3255 pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
3256 ifr.ifr_data = (void *)&hwconfig;
3257
3258 /*
3259 * This may require CAP_NET_ADMIN.
3260 */
3261 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) {
3262 switch (errno) {
3263
3264 case EPERM:
3265 /*
3266 * Treat this as an error, as the
3267 * user should try to run this
3268 * with the appropriate privileges -
3269 * and, if they can't, shouldn't
3270 * try requesting hardware time stamps.
3271 */
3272 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3273 "Attempt to set hardware timestamp failed - CAP_NET_ADMIN may be required");
3274 return PCAP_ERROR_PERM_DENIED;
3275
3276 case EOPNOTSUPP:
3277 case ERANGE:
3278 /*
3279 * Treat this as a warning, as the
3280 * only way to fix the warning is to
3281 * get an adapter that supports hardware
3282 * time stamps for *all* packets.
3283 * (ERANGE means "we support hardware
3284 * time stamps, but for packets matching
3285 * that particular filter", so it means
3286 * "we don't support hardware time stamps
3287 * for all incoming packets" here.)
3288 *
3289 * We'll just fall back on the standard
3290 * host time stamps.
3291 */
3292 status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP;
3293 break;
3294
3295 default:
3296 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3297 PCAP_ERRBUF_SIZE, errno,
3298 "SIOCSHWTSTAMP failed");
3299 return PCAP_ERROR;
3300 }
3301 } else {
3302 /*
3303 * Well, that worked. Now specify the type of
3304 * hardware time stamp we want for this
3305 * socket.
3306 */
3307 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) {
3308 /*
3309 * Hardware timestamp, synchronized
3310 * with the system clock.
3311 */
3312 timesource = SOF_TIMESTAMPING_SYS_HARDWARE;
3313 } else {
3314 /*
3315 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware
3316 * timestamp, not synchronized with the
3317 * system clock.
3318 */
3319 timesource = SOF_TIMESTAMPING_RAW_HARDWARE;
3320 }
3321 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP,
3322 (void *)&timesource, sizeof(timesource))) {
3323 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3324 PCAP_ERRBUF_SIZE, errno,
3325 "can't set PACKET_TIMESTAMP");
3326 return PCAP_ERROR;
3327 }
3328 }
3329 }
3330 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */
3331
3332 /* ask the kernel to create the ring */
3333 retry:
3334 req.tp_block_nr = req.tp_frame_nr / frames_per_block;
3335
3336 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
3337 req.tp_frame_nr = req.tp_block_nr * frames_per_block;
3338
3339 #ifdef HAVE_TPACKET3
3340 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */
3341 if (handlep->timeout > 0) {
3342 /* Use the user specified timeout as the block timeout */
3343 req.tp_retire_blk_tov = handlep->timeout;
3344 } else if (handlep->timeout == 0) {
3345 /*
3346 * In pcap, this means "infinite timeout"; TPACKET_V3
3347 * doesn't support that, so just set it to UINT_MAX
3348 * milliseconds. In the TPACKET_V3 loop, if the
3349 * timeout is 0, and we haven't yet seen any packets,
3350 * and we block and still don't have any packets, we
3351 * keep blocking until we do.
3352 */
3353 req.tp_retire_blk_tov = UINT_MAX;
3354 } else {
3355 /*
3356 * XXX - this is not valid; use 0, meaning "have the
3357 * kernel pick a default", for now.
3358 */
3359 req.tp_retire_blk_tov = 0;
3360 }
3361 /* private data not used */
3362 req.tp_sizeof_priv = 0;
3363 /* Rx ring - feature request bits - none (rxhash will not be filled) */
3364 req.tp_feature_req_word = 0;
3365 #endif
3366
3367 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3368 (void *) &req, sizeof(req))) {
3369 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
3370 /*
3371 * Memory failure; try to reduce the requested ring
3372 * size.
3373 *
3374 * We used to reduce this by half -- do 5% instead.
3375 * That may result in more iterations and a longer
3376 * startup, but the user will be much happier with
3377 * the resulting buffer size.
3378 */
3379 if (req.tp_frame_nr < 20)
3380 req.tp_frame_nr -= 1;
3381 else
3382 req.tp_frame_nr -= req.tp_frame_nr/20;
3383 goto retry;
3384 }
3385 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3386 errno, "can't create rx ring on packet socket");
3387 return PCAP_ERROR;
3388 }
3389
3390 /* memory map the rx ring */
3391 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size;
3392 #ifdef MAP_32BIT
3393 if (pcapint_mmap_32bit) flags |= MAP_32BIT;
3394 #endif
3395 handlep->mmapbuf = mmap(0, handlep->mmapbuflen, PROT_READ | PROT_WRITE, flags, handle->fd, 0);
3396 if (handlep->mmapbuf == MAP_FAILED) {
3397 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3398 errno, "can't mmap rx ring");
3399
3400 /* clear the allocated ring on error*/
3401 destroy_ring(handle);
3402 return PCAP_ERROR;
3403 }
3404
3405 /* allocate a ring for each frame header pointer*/
3406 handle->cc = req.tp_frame_nr;
3407 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
3408 if (!handle->buffer) {
3409 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3410 errno, "can't allocate ring of frame headers");
3411
3412 destroy_ring(handle);
3413 return PCAP_ERROR;
3414 }
3415
3416 /* fill the header ring with proper frame ptr*/
3417 handle->offset = 0;
3418 for (i=0; i<req.tp_block_nr; ++i) {
3419 u_char *base = &handlep->mmapbuf[i*req.tp_block_size];
3420 for (j=0; j<frames_per_block; ++j, ++handle->offset) {
3421 RING_GET_CURRENT_FRAME(handle) = base;
3422 base += req.tp_frame_size;
3423 }
3424 }
3425
3426 handle->bufsize = req.tp_frame_size;
3427 handle->offset = 0;
3428 return status;
3429 }
3430
3431 /* free all ring related resources*/
3432 static void
3433 destroy_ring(pcap_t *handle)
3434 {
3435 struct pcap_linux *handlep = handle->priv;
3436
3437 /*
3438 * Tell the kernel to destroy the ring.
3439 * We don't check for setsockopt failure, as 1) we can't recover
3440 * from an error and 2) we might not yet have set it up in the
3441 * first place.
3442 */
3443 struct tpacket_req req;
3444 memset(&req, 0, sizeof(req));
3445 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3446 (void *) &req, sizeof(req));
3447
3448 /* if ring is mapped, unmap it*/
3449 if (handlep->mmapbuf) {
3450 /* do not test for mmap failure, as we can't recover from any error */
3451 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen);
3452 handlep->mmapbuf = NULL;
3453 }
3454 }
3455
3456 /*
3457 * Special one-shot callback, used for pcap_next() and pcap_next_ex(),
3458 * for Linux mmapped capture.
3459 *
3460 * The problem is that pcap_next() and pcap_next_ex() expect the packet
3461 * data handed to the callback to be valid after the callback returns,
3462 * but pcap_read_linux_mmap() has to release that packet as soon as
3463 * the callback returns (otherwise, the kernel thinks there's still
3464 * at least one unprocessed packet available in the ring, so a select()
3465 * will immediately return indicating that there's data to process), so,
3466 * in the callback, we have to make a copy of the packet.
3467 *
3468 * Yes, this means that, if the capture is using the ring buffer, using
3469 * pcap_next() or pcap_next_ex() requires more copies than using
3470 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use
3471 * pcap_next() or pcap_next_ex().
3472 */
3473 static void
3474 pcapint_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
3475 const u_char *bytes)
3476 {
3477 struct oneshot_userdata *sp = (struct oneshot_userdata *)user;
3478 pcap_t *handle = sp->pd;
3479 struct pcap_linux *handlep = handle->priv;
3480
3481 *sp->hdr = *h;
3482 memcpy(handlep->oneshot_buffer, bytes, h->caplen);
3483 *sp->pkt = handlep->oneshot_buffer;
3484 }
3485
3486 static int
3487 pcap_getnonblock_linux(pcap_t *handle)
3488 {
3489 struct pcap_linux *handlep = handle->priv;
3490
3491 /* use negative value of timeout to indicate non blocking ops */
3492 return (handlep->timeout<0);
3493 }
3494
3495 static int
3496 pcap_setnonblock_linux(pcap_t *handle, int nonblock)
3497 {
3498 struct pcap_linux *handlep = handle->priv;
3499
3500 /*
3501 * Set the file descriptor to the requested mode, as we use
3502 * it for sending packets.
3503 */
3504 if (pcapint_setnonblock_fd(handle, nonblock) == -1)
3505 return -1;
3506
3507 /*
3508 * Map each value to their corresponding negation to
3509 * preserve the timeout value provided with pcap_set_timeout.
3510 */
3511 if (nonblock) {
3512 /*
3513 * We're setting the mode to non-blocking mode.
3514 */
3515 if (handlep->timeout >= 0) {
3516 /*
3517 * Indicate that we're switching to
3518 * non-blocking mode.
3519 */
3520 handlep->timeout = ~handlep->timeout;
3521 }
3522 if (handlep->poll_breakloop_fd != -1) {
3523 /* Close the eventfd; we do not need it in nonblock mode. */
3524 close(handlep->poll_breakloop_fd);
3525 handlep->poll_breakloop_fd = -1;
3526 }
3527 } else {
3528 /*
3529 * We're setting the mode to blocking mode.
3530 */
3531 if (handlep->poll_breakloop_fd == -1) {
3532 /* If we did not have an eventfd, open one now that we are blocking. */
3533 if ( ( handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK) ) == -1 ) {
3534 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3535 PCAP_ERRBUF_SIZE, errno,
3536 "could not open eventfd");
3537 return -1;
3538 }
3539 }
3540 if (handlep->timeout < 0) {
3541 handlep->timeout = ~handlep->timeout;
3542 }
3543 }
3544 /* Update the timeout to use in poll(). */
3545 set_poll_timeout(handlep);
3546 return 0;
3547 }
3548
3549 /*
3550 * Get the status field of the ring buffer frame at a specified offset.
3551 */
3552 static inline u_int
3553 pcap_get_ring_frame_status(pcap_t *handle, u_int offset)
3554 {
3555 struct pcap_linux *handlep = handle->priv;
3556 union thdr h;
3557
3558 h.raw = RING_GET_FRAME_AT(handle, offset);
3559 switch (handlep->tp_version) {
3560 case TPACKET_V2:
3561 return __atomic_load_n(&h.h2->tp_status, __ATOMIC_ACQUIRE);
3562 #ifdef HAVE_TPACKET3
3563 case TPACKET_V3:
3564 return __atomic_load_n(&h.h3->hdr.bh1.block_status, __ATOMIC_ACQUIRE);
3565 #endif
3566 }
3567 /* This should not happen. */
3568 return 0;
3569 }
3570
3571 /*
3572 * Block waiting for frames to be available.
3573 */
3574 static int pcap_wait_for_frames_mmap(pcap_t *handle)
3575 {
3576 struct pcap_linux *handlep = handle->priv;
3577 int timeout;
3578 struct ifreq ifr;
3579 int ret;
3580 struct pollfd pollinfo[2];
3581 int numpollinfo;
3582 pollinfo[0].fd = handle->fd;
3583 pollinfo[0].events = POLLIN;
3584 if ( handlep->poll_breakloop_fd == -1 ) {
3585 numpollinfo = 1;
3586 pollinfo[1].revents = 0;
3587 /*
3588 * We set pollinfo[1].revents to zero, even though
3589 * numpollinfo = 1 meaning that poll() doesn't see
3590 * pollinfo[1], so that we do not have to add a
3591 * conditional of numpollinfo > 1 below when we
3592 * test pollinfo[1].revents.
3593 */
3594 } else {
3595 pollinfo[1].fd = handlep->poll_breakloop_fd;
3596 pollinfo[1].events = POLLIN;
3597 numpollinfo = 2;
3598 }
3599
3600 /*
3601 * Keep polling until we either get some packets to read, see
3602 * that we got told to break out of the loop, get a fatal error,
3603 * or discover that the device went away.
3604 *
3605 * In non-blocking mode, we must still do one poll() to catch
3606 * any pending error indications, but the poll() has a timeout
3607 * of 0, so that it doesn't block, and we quit after that one
3608 * poll().
3609 *
3610 * If we've seen an ENETDOWN, it might be the first indication
3611 * that the device went away, or it might just be that it was
3612 * configured down. Unfortunately, there's no guarantee that
3613 * the device has actually been removed as an interface, because:
3614 *
3615 * 1) if, as appears to be the case at least some of the time,
3616 * the PF_PACKET socket code first gets a NETDEV_DOWN indication
3617 * for the device and then gets a NETDEV_UNREGISTER indication
3618 * for it, the first indication will cause a wakeup with ENETDOWN
3619 * but won't set the packet socket's field for the interface index
3620 * to -1, and the second indication won't cause a wakeup (because
3621 * the first indication also caused the protocol hook to be
3622 * unregistered) but will set the packet socket's field for the
3623 * interface index to -1;
3624 *
3625 * 2) even if just a NETDEV_UNREGISTER indication is registered,
3626 * the packet socket's field for the interface index only gets
3627 * set to -1 after the wakeup, so there's a small but non-zero
3628 * risk that a thread blocked waiting for the wakeup will get
3629 * to the "fetch the socket name" code before the interface index
3630 * gets set to -1, so it'll get the old interface index.
3631 *
3632 * Therefore, if we got an ENETDOWN and haven't seen a packet
3633 * since then, we assume that we might be waiting for the interface
3634 * to disappear, and poll with a timeout to try again in a short
3635 * period of time. If we *do* see a packet, the interface has
3636 * come back up again, and is *definitely* still there, so we
3637 * don't need to poll.
3638 */
3639 for (;;) {
3640 /*
3641 * Yes, we do this even in non-blocking mode, as it's
3642 * the only way to get error indications from a
3643 * tpacket socket.
3644 *
3645 * The timeout is 0 in non-blocking mode, so poll()
3646 * returns immediately.
3647 */
3648 timeout = handlep->poll_timeout;
3649
3650 /*
3651 * If we got an ENETDOWN and haven't gotten an indication
3652 * that the device has gone away or that the device is up,
3653 * we don't yet know for certain whether the device has
3654 * gone away or not, do a poll() with a 1-millisecond timeout,
3655 * as we have to poll indefinitely for "device went away"
3656 * indications until we either get one or see that the
3657 * device is up.
3658 */
3659 if (handlep->netdown) {
3660 if (timeout != 0)
3661 timeout = 1;
3662 }
3663 ret = poll(pollinfo, numpollinfo, timeout);
3664 if (ret < 0) {
3665 /*
3666 * Error. If it's not EINTR, report it.
3667 */
3668 if (errno != EINTR) {
3669 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3670 PCAP_ERRBUF_SIZE, errno,
3671 "can't poll on packet socket");
3672 return PCAP_ERROR;
3673 }
3674
3675 /*
3676 * It's EINTR; if we were told to break out of
3677 * the loop, do so.
3678 */
3679 if (handle->break_loop) {
3680 handle->break_loop = 0;
3681 return PCAP_ERROR_BREAK;
3682 }
3683 } else if (ret > 0) {
3684 /*
3685 * OK, some descriptor is ready.
3686 * Check the socket descriptor first.
3687 *
3688 * As I read the Linux man page, pollinfo[0].revents
3689 * will either be POLLIN, POLLERR, POLLHUP, or POLLNVAL.
3690 */
3691 if (pollinfo[0].revents == POLLIN) {
3692 /*
3693 * OK, we may have packets to
3694 * read.
3695 */
3696 break;
3697 }
3698 if (pollinfo[0].revents != 0) {
3699 /*
3700 * There's some indication other than
3701 * "you can read on this descriptor" on
3702 * the descriptor.
3703 */
3704 if (pollinfo[0].revents & POLLNVAL) {
3705 snprintf(handle->errbuf,
3706 PCAP_ERRBUF_SIZE,
3707 "Invalid polling request on packet socket");
3708 return PCAP_ERROR;
3709 }
3710 if (pollinfo[0].revents & (POLLHUP | POLLRDHUP)) {
3711 snprintf(handle->errbuf,
3712 PCAP_ERRBUF_SIZE,
3713 "Hangup on packet socket");
3714 return PCAP_ERROR;
3715 }
3716 if (pollinfo[0].revents & POLLERR) {
3717 /*
3718 * Get the error.
3719 */
3720 int err;
3721 socklen_t errlen;
3722
3723 errlen = sizeof(err);
3724 if (getsockopt(handle->fd, SOL_SOCKET,
3725 SO_ERROR, &err, &errlen) == -1) {
3726 /*
3727 * The call *itself* returned
3728 * an error; make *that*
3729 * the error.
3730 */
3731 err = errno;
3732 }
3733
3734 /*
3735 * OK, we have the error.
3736 */
3737 if (err == ENETDOWN) {
3738 /*
3739 * The device on which we're
3740 * capturing went away or the
3741 * interface was taken down.
3742 *
3743 * We don't know for certain
3744 * which happened, and the
3745 * next poll() may indicate
3746 * that there are packets
3747 * to be read, so just set
3748 * a flag to get us to do
3749 * checks later, and set
3750 * the required select
3751 * timeout to 1 millisecond
3752 * so that event loops that
3753 * check our socket descriptor
3754 * also time out so that
3755 * they can call us and we
3756 * can do the checks.
3757 */
3758 handlep->netdown = 1;
3759 handle->required_select_timeout = &netdown_timeout;
3760 } else if (err == 0) {
3761 /*
3762 * This shouldn't happen, so
3763 * report a special indication
3764 * that it did.
3765 */
3766 snprintf(handle->errbuf,
3767 PCAP_ERRBUF_SIZE,
3768 "Error condition on packet socket: Reported error was 0");
3769 return PCAP_ERROR;
3770 } else {
3771 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3772 PCAP_ERRBUF_SIZE,
3773 err,
3774 "Error condition on packet socket");
3775 return PCAP_ERROR;
3776 }
3777 }
3778 }
3779 /*
3780 * Now check the event device.
3781 */
3782 if (pollinfo[1].revents & POLLIN) {
3783 ssize_t nread;
3784 uint64_t value;
3785
3786 /*
3787 * This should never fail, but, just
3788 * in case....
3789 */
3790 nread = read(handlep->poll_breakloop_fd, &value,
3791 sizeof(value));
3792 if (nread == -1) {
3793 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3794 PCAP_ERRBUF_SIZE,
3795 errno,
3796 "Error reading from event FD");
3797 return PCAP_ERROR;
3798 }
3799
3800 /*
3801 * According to the Linux read(2) man
3802 * page, read() will transfer at most
3803 * 2^31-1 bytes, so the return value is
3804 * either -1 or a value between 0
3805 * and 2^31-1, so it's non-negative.
3806 *
3807 * Cast it to size_t to squelch
3808 * warnings from the compiler; add this
3809 * comment to squelch warnings from
3810 * humans reading the code. :-)
3811 *
3812 * Don't treat an EOF as an error, but
3813 * *do* treat a short read as an error;
3814 * that "shouldn't happen", but....
3815 */
3816 if (nread != 0 &&
3817 (size_t)nread < sizeof(value)) {
3818 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3819 "Short read from event FD: expected %zu, got %zd",
3820 sizeof(value), nread);
3821 return PCAP_ERROR;
3822 }
3823
3824 /*
3825 * This event gets signaled by a
3826 * pcap_breakloop() call; if we were told
3827 * to break out of the loop, do so.
3828 */
3829 if (handle->break_loop) {
3830 handle->break_loop = 0;
3831 return PCAP_ERROR_BREAK;
3832 }
3833 }
3834 }
3835
3836 /*
3837 * Either:
3838 *
3839 * 1) we got neither an error from poll() nor any
3840 * readable descriptors, in which case there
3841 * are no packets waiting to read
3842 *
3843 * or
3844 *
3845 * 2) We got readable descriptors but the PF_PACKET
3846 * socket wasn't one of them, in which case there
3847 * are no packets waiting to read
3848 *
3849 * so, if we got an ENETDOWN, we've drained whatever
3850 * packets were available to read at the point of the
3851 * ENETDOWN.
3852 *
3853 * So, if we got an ENETDOWN and haven't gotten an indication
3854 * that the device has gone away or that the device is up,
3855 * we don't yet know for certain whether the device has
3856 * gone away or not, check whether the device exists and is
3857 * up.
3858 */
3859 if (handlep->netdown) {
3860 if (!device_still_exists(handle)) {
3861 /*
3862 * The device doesn't exist any more;
3863 * report that.
3864 *
3865 * XXX - we should really return an
3866 * appropriate error for that, but
3867 * pcap_dispatch() etc. aren't documented
3868 * as having error returns other than
3869 * PCAP_ERROR or PCAP_ERROR_BREAK.
3870 */
3871 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3872 "The interface disappeared");
3873 return PCAP_ERROR;
3874 }
3875
3876 /*
3877 * The device still exists; try to see if it's up.
3878 */
3879 memset(&ifr, 0, sizeof(ifr));
3880 pcapint_strlcpy(ifr.ifr_name, handlep->device,
3881 sizeof(ifr.ifr_name));
3882 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3883 if (errno == ENXIO || errno == ENODEV) {
3884 /*
3885 * OK, *now* it's gone.
3886 *
3887 * XXX - see above comment.
3888 */
3889 snprintf(handle->errbuf,
3890 PCAP_ERRBUF_SIZE,
3891 "The interface disappeared");
3892 return PCAP_ERROR;
3893 } else {
3894 pcapint_fmt_errmsg_for_errno(handle->errbuf,
3895 PCAP_ERRBUF_SIZE, errno,
3896 "%s: Can't get flags",
3897 handlep->device);
3898 return PCAP_ERROR;
3899 }
3900 }
3901 if (ifr.ifr_flags & IFF_UP) {
3902 /*
3903 * It's up, so it definitely still exists.
3904 * Cancel the ENETDOWN indication - we
3905 * presumably got it due to the interface
3906 * going down rather than the device going
3907 * away - and revert to "no required select
3908 * timeout.
3909 */
3910 handlep->netdown = 0;
3911 handle->required_select_timeout = NULL;
3912 }
3913 }
3914
3915 /*
3916 * If we're in non-blocking mode, just quit now, rather
3917 * than spinning in a loop doing poll()s that immediately
3918 * time out if there's no indication on any descriptor.
3919 */
3920 if (handlep->poll_timeout == 0)
3921 break;
3922 }
3923 return 0;
3924 }
3925
3926 /* handle a single memory mapped packet */
3927 static int pcap_handle_packet_mmap(
3928 pcap_t *handle,
3929 pcap_handler callback,
3930 u_char *user,
3931 unsigned char *frame,
3932 unsigned int tp_len,
3933 unsigned int tp_mac,
3934 unsigned int tp_snaplen,
3935 unsigned int tp_sec,
3936 unsigned int tp_usec,
3937 int tp_vlan_tci_valid,
3938 __u16 tp_vlan_tci,
3939 __u16 tp_vlan_tpid)
3940 {
3941 struct pcap_linux *handlep = handle->priv;
3942 unsigned char *bp;
3943 struct sockaddr_ll *sll;
3944 struct pcap_pkthdr pcaphdr;
3945 unsigned int snaplen = tp_snaplen;
3946 struct utsname utsname;
3947
3948 /* perform sanity check on internal offset. */
3949 if (tp_mac + tp_snaplen > handle->bufsize) {
3950 /*
3951 * Report some system information as a debugging aid.
3952 */
3953 if (uname(&utsname) != -1) {
3954 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3955 "corrupted frame on kernel ring mac "
3956 "offset %u + caplen %u > frame len %d "
3957 "(kernel %.32s version %s, machine %.16s)",
3958 tp_mac, tp_snaplen, handle->bufsize,
3959 utsname.release, utsname.version,
3960 utsname.machine);
3961 } else {
3962 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3963 "corrupted frame on kernel ring mac "
3964 "offset %u + caplen %u > frame len %d",
3965 tp_mac, tp_snaplen, handle->bufsize);
3966 }
3967 return -1;
3968 }
3969
3970 /* run filter on received packet
3971 * If the kernel filtering is enabled we need to run the
3972 * filter until all the frames present into the ring
3973 * at filter creation time are processed.
3974 * In this case, blocks_to_filter_in_userland is used
3975 * as a counter for the packet we need to filter.
3976 * Note: alternatively it could be possible to stop applying
3977 * the filter when the ring became empty, but it can possibly
3978 * happen a lot later... */
3979 bp = frame + tp_mac;
3980
3981 /* if required build in place the sll header*/
3982 sll = (void *)(frame + TPACKET_ALIGN(handlep->tp_hdrlen));
3983 if (handlep->cooked) {
3984 if (handle->linktype == DLT_LINUX_SLL2) {
3985 struct sll2_header *hdrp;
3986
3987 /*
3988 * The kernel should have left us with enough
3989 * space for an sll header; back up the packet
3990 * data pointer into that space, as that'll be
3991 * the beginning of the packet we pass to the
3992 * callback.
3993 */
3994 bp -= SLL2_HDR_LEN;
3995
3996 /*
3997 * Let's make sure that's past the end of
3998 * the tpacket header, i.e. >=
3999 * ((u_char *)thdr + TPACKET_HDRLEN), so we
4000 * don't step on the header when we construct
4001 * the sll header.
4002 */
4003 if (bp < (u_char *)frame +
4004 TPACKET_ALIGN(handlep->tp_hdrlen) +
4005 sizeof(struct sockaddr_ll)) {
4006 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4007 "cooked-mode frame doesn't have room for sll header");
4008 return -1;
4009 }
4010
4011 /*
4012 * OK, that worked; construct the sll header.
4013 */
4014 hdrp = (struct sll2_header *)bp;
4015 hdrp->sll2_protocol = sll->sll_protocol;
4016 hdrp->sll2_reserved_mbz = 0;
4017 hdrp->sll2_if_index = htonl(sll->sll_ifindex);
4018 hdrp->sll2_hatype = htons(sll->sll_hatype);
4019 hdrp->sll2_pkttype = sll->sll_pkttype;
4020 hdrp->sll2_halen = sll->sll_halen;
4021 memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN);
4022
4023 snaplen += sizeof(struct sll2_header);
4024 } else {
4025 struct sll_header *hdrp;
4026
4027 /*
4028 * The kernel should have left us with enough
4029 * space for an sll header; back up the packet
4030 * data pointer into that space, as that'll be
4031 * the beginning of the packet we pass to the
4032 * callback.
4033 */
4034 bp -= SLL_HDR_LEN;
4035
4036 /*
4037 * Let's make sure that's past the end of
4038 * the tpacket header, i.e. >=
4039 * ((u_char *)thdr + TPACKET_HDRLEN), so we
4040 * don't step on the header when we construct
4041 * the sll header.
4042 */
4043 if (bp < (u_char *)frame +
4044 TPACKET_ALIGN(handlep->tp_hdrlen) +
4045 sizeof(struct sockaddr_ll)) {
4046 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4047 "cooked-mode frame doesn't have room for sll header");
4048 return -1;
4049 }
4050
4051 /*
4052 * OK, that worked; construct the sll header.
4053 */
4054 hdrp = (struct sll_header *)bp;
4055 hdrp->sll_pkttype = htons(sll->sll_pkttype);
4056 hdrp->sll_hatype = htons(sll->sll_hatype);
4057 hdrp->sll_halen = htons(sll->sll_halen);
4058 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
4059 hdrp->sll_protocol = sll->sll_protocol;
4060
4061 snaplen += sizeof(struct sll_header);
4062 }
4063 } else {
4064 /*
4065 * If this is a packet from a CAN device, so that
4066 * sll->sll_hatype is ARPHRD_CAN, then, as we're
4067 * not capturing in cooked mode, its link-layer
4068 * type is DLT_CAN_SOCKETCAN. Fix up the header
4069 * provided by the code below us to match what
4070 * DLT_CAN_SOCKETCAN is expected to provide.
4071 */
4072 if (sll->sll_hatype == ARPHRD_CAN) {
4073 pcap_can_socketcan_hdr *canhdr = (pcap_can_socketcan_hdr *)bp;
4074 pcap_can_socketcan_xl_hdr *canxl_hdr = (pcap_can_socketcan_xl_hdr *)bp;
4075 uint16_t protocol = ntohs(sll->sll_protocol);
4076
4077 /*
4078 * Check the protocol field from the sll header.
4079 * If it's one of the known CAN protocol types,
4080 * make sure the appropriate flags are set, so
4081 * that a program can tell what type of frame
4082 * it is.
4083 *
4084 * These operations should not have any effect
4085 * when reading proper CAN frames from Linux
4086 * CAN interfaces. Enforcing these bit values
4087 * ensures proper DLT_CAN_SOCKETCAN data even
4088 * with malformed PF_PACKET content.
4089 *
4090 * The two flags are:
4091 *
4092 * CANFD_FDF, which is in the fd_flags field
4093 * of the CAN CC/CAN FD header;
4094 *
4095 * CANXL_XLF, which is in the flags field
4096 * of the CAN XL header, which overlaps
4097 * the payload_length field of the CAN CC/
4098 * CAN FD header. Setting CANXL_XLF in the
4099 * payload_length of CAN CC/FD frames would
4100 * intentionally break the payload length.
4101 */
4102 switch (protocol) {
4103
4104 case LINUX_SLL_P_CAN:
4105 /*
4106 * CAN CC frame (aka Classical CAN, CAN 2.0B)
4107 *
4108 * Zero out the CAN FD and CAN XL flags
4109 * so that this frame will be identified
4110 * as a CAN CC frame.
4111 */
4112 canxl_hdr->flags &= ~CANXL_XLF;
4113 canhdr->fd_flags &= ~CANFD_FDF;
4114 break;
4115
4116 case LINUX_SLL_P_CANFD:
4117 /*
4118 * CAN FD frame
4119 *
4120 * Set CANFD_FDF in the fd_flags field,
4121 * and clear the CANXL_XLF bit in the
4122 * CAN XL flags field, so that this frame
4123 * will be identified as a CAN FD frame.
4124 *
4125 * The CANFD_FDF bit is not reliably
4126 * set by the Linux kernel. But setting
4127 * that bit for CAN FD is recommended.
4128 */
4129 canxl_hdr->flags &= ~CANXL_XLF;
4130 canhdr->fd_flags |= CANFD_FDF;
4131 break;
4132
4133 case LINUX_SLL_P_CANXL:
4134 /*
4135 * CAN XL frame
4136 *
4137 * Set CANXL_XLF bit in the CAN XL flags
4138 * field, so that this frame will appear
4139 * to be a CAN XL frame.
4140 */
4141 canxl_hdr->flags |= CANXL_XLF;
4142 break;
4143 }
4144
4145 /*
4146 * Put multi-byte header fields in a byte-order
4147 * -independent format.
4148 */
4149 if (canxl_hdr->flags & CANXL_XLF) {
4150 /*
4151 * This is a CAN XL frame.
4152 *
4153 * DLT_CAN_SOCKETCAN is specified as having
4154 * the Priority ID/VCID field in big-
4155 * endian byte order, and the payload length
4156 * and Acceptance Field in little-endian byte
4157 * order, but capturing on a CAN device
4158 * provides them in host byte order.
4159 * Convert them to the appropriate byte
4160 * orders.
4161 *
4162 * The reason we put the first field
4163 * into big-endian byte order is that
4164 * older libpcap code, ignorant of
4165 * CAN XL, treated it as the CAN ID
4166 * field and put it into big-endian
4167 * byte order, and we don't want to
4168 * break code that understands CAN XL
4169 * headers, and treats that field as
4170 * being big-endian.
4171 *
4172 * The reason other fields are put in little-
4173 * endian byte order is that older
4174 * libpcap code, ignorant of CAN XL,
4175 * left those fields alone, and the
4176 * processors on which the CAN XL
4177 * frames were captured are likely
4178 * to be little-endian processors.
4179 */
4180
4181 #if __BYTE_ORDER == __LITTLE_ENDIAN
4182 /*
4183 * We're capturing on a little-endian
4184 * machine, so we put the priority/VCID
4185 * field into big-endian byte order, and
4186 * leave the payload length and acceptance
4187 * field in little-endian byte order.
4188 */
4189 /* Byte-swap priority/VCID. */
4190 canxl_hdr->priority_vcid = SWAPLONG(canxl_hdr->priority_vcid);
4191 #elif __BYTE_ORDER == __BIG_ENDIAN
4192 /*
4193 * We're capturing on a big-endian
4194 * machine, so we want to leave the
4195 * priority/VCID field alone, and byte-swap
4196 * the payload length and acceptance
4197 * fields to little-endian.
4198 */
4199 /* Byte-swap the payload length */
4200 canxl_hdr->payload_length = SWAPSHORT(canxl_hdr->payload_length);
4201
4202 /*
4203 * Byte-swap the acceptance field.
4204 *
4205 * XXX - is it just a 4-octet string,
4206 * not in any byte order?
4207 */
4208 canxl_hdr->acceptance_field = SWAPLONG(canxl_hdr->acceptance_field);
4209 #else
4210 #error "Unknown byte order"
4211 #endif
4212 } else {
4213 /*
4214 * CAN CC or CAN FD frame.
4215 *
4216 * DLT_CAN_SOCKETCAN is specified as having
4217 * the CAN ID and flags in network byte
4218 * order, but capturing on a CAN device
4219 * provides it in host byte order. Convert
4220 * it to network byte order.
4221 */
4222 canhdr->can_id = htonl(canhdr->can_id);
4223 }
4224 }
4225 }
4226
4227 if (handlep->filter_in_userland && handle->fcode.bf_insns) {
4228 struct pcap_bpf_aux_data aux_data;
4229
4230 aux_data.vlan_tag_present = tp_vlan_tci_valid;
4231 aux_data.vlan_tag = tp_vlan_tci & 0x0fff;
4232
4233 if (pcapint_filter_with_aux_data(handle->fcode.bf_insns,
4234 bp,
4235 tp_len,
4236 snaplen,
4237 &aux_data) == 0)
4238 return 0;
4239 }
4240
4241 if (!linux_check_direction(handle, sll))
4242 return 0;
4243
4244 /*
4245 * Get required packet info from ring header.
4246 *
4247 * The seconds part of the time stamp is a 32-bit
4248 * unsigned integer; this will have a problem in 2106,
4249 * but not in 2038.
4250 *
4251 * ts.tv_sec is a time_t, which is signed, and which
4252 * may be 32-bit or 64-bit. Pass it through; if we
4253 * have a 32-bit signed time_t, in which values >
4254 * 2^31-1 won't fit, then:
4255 *
4256 * Writing the packet to a file will pass the bits
4257 * through. If the program reading the file can
4258 * handle 32-bit unsigned time stamps, including
4259 * any conversion to local time or UTC, it will
4260 * properly handle the time stamps.
4261 *
4262 * Reporting the packet time stamp may give
4263 * an error or a pre-1970 time stamp on platforms
4264 * with signed 32-bit time stamps, but that
4265 * will happen even if it's captured on a
4266 * platform with a 64-bit time_t.
4267 */
4268 pcaphdr.ts.tv_sec = tp_sec;
4269 pcaphdr.ts.tv_usec = tp_usec;
4270 pcaphdr.caplen = tp_snaplen;
4271 pcaphdr.len = tp_len;
4272
4273 /* if required build in place the sll header*/
4274 if (handlep->cooked) {
4275 /* update packet len */
4276 if (handle->linktype == DLT_LINUX_SLL2) {
4277 pcaphdr.caplen += SLL2_HDR_LEN;
4278 pcaphdr.len += SLL2_HDR_LEN;
4279 } else {
4280 pcaphdr.caplen += SLL_HDR_LEN;
4281 pcaphdr.len += SLL_HDR_LEN;
4282 }
4283 }
4284
4285 if (tp_vlan_tci_valid &&
4286 handlep->vlan_offset != -1 &&
4287 tp_snaplen >= (unsigned int) handlep->vlan_offset)
4288 {
4289 struct vlan_tag *tag;
4290
4291 /*
4292 * Move everything in the header, except the type field,
4293 * down VLAN_TAG_LEN bytes, to allow us to insert the
4294 * VLAN tag between that stuff and the type field.
4295 */
4296 bp -= VLAN_TAG_LEN;
4297 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset);
4298
4299 /*
4300 * Now insert the tag.
4301 */
4302 tag = (struct vlan_tag *)(bp + handlep->vlan_offset);
4303 tag->vlan_tpid = htons(tp_vlan_tpid);
4304 tag->vlan_tci = htons(tp_vlan_tci);
4305
4306 /*
4307 * Add the tag to the packet lengths.
4308 */
4309 pcaphdr.caplen += VLAN_TAG_LEN;
4310 pcaphdr.len += VLAN_TAG_LEN;
4311 }
4312
4313 /*
4314 * The only way to tell the kernel to cut off the
4315 * packet at a snapshot length is with a filter program;
4316 * if there's no filter program, the kernel won't cut
4317 * the packet off.
4318 *
4319 * Trim the snapshot length to be no longer than the
4320 * specified snapshot length.
4321 *
4322 * XXX - an alternative is to put a filter, consisting
4323 * of a "ret <snaplen>" instruction, on the socket
4324 * in the activate routine, so that the truncation is
4325 * done in the kernel even if nobody specified a filter;
4326 * that means that less buffer space is consumed in
4327 * the memory-mapped buffer.
4328 */
4329 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot)
4330 pcaphdr.caplen = handle->snapshot;
4331
4332 /* pass the packet to the user */
4333 callback(user, &pcaphdr, bp);
4334
4335 return 1;
4336 }
4337
4338 static int
4339 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback,
4340 u_char *user)
4341 {
4342 struct pcap_linux *handlep = handle->priv;
4343 union thdr h;
4344 int pkts = 0;
4345 int ret;
4346
4347 /* wait for frames availability.*/
4348 h.raw = RING_GET_CURRENT_FRAME(handle);
4349 if (!packet_mmap_acquire(h.h2)) {
4350 /*
4351 * The current frame is owned by the kernel; wait for
4352 * a frame to be handed to us.
4353 */
4354 ret = pcap_wait_for_frames_mmap(handle);
4355 if (ret) {
4356 return ret;
4357 }
4358 }
4359
4360 /*
4361 * This can conceivably process more than INT_MAX packets,
4362 * which would overflow the packet count, causing it either
4363 * to look like a negative number, and thus cause us to
4364 * return a value that looks like an error, or overflow
4365 * back into positive territory, and thus cause us to
4366 * return a too-low count.
4367 *
4368 * Therefore, if the packet count is unlimited, we clip
4369 * it at INT_MAX; this routine is not expected to
4370 * process packets indefinitely, so that's not an issue.
4371 */
4372 if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4373 max_packets = INT_MAX;
4374
4375 while (pkts < max_packets) {
4376 /*
4377 * Get the current ring buffer frame, and break if
4378 * it's still owned by the kernel.
4379 */
4380 h.raw = RING_GET_CURRENT_FRAME(handle);
4381 if (!packet_mmap_acquire(h.h2))
4382 break;
4383
4384 ret = pcap_handle_packet_mmap(
4385 handle,
4386 callback,
4387 user,
4388 h.raw,
4389 h.h2->tp_len,
4390 h.h2->tp_mac,
4391 h.h2->tp_snaplen,
4392 h.h2->tp_sec,
4393 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000,
4394 VLAN_VALID(h.h2, h.h2),
4395 h.h2->tp_vlan_tci,
4396 VLAN_TPID(h.h2, h.h2));
4397 if (ret == 1) {
4398 pkts++;
4399 } else if (ret < 0) {
4400 return ret;
4401 }
4402
4403 /*
4404 * Hand this block back to the kernel, and, if we're
4405 * counting blocks that need to be filtered in userland
4406 * after having been filtered by the kernel, count
4407 * the one we've just processed.
4408 */
4409 packet_mmap_release(h.h2);
4410 if (handlep->blocks_to_filter_in_userland != 0) {
4411 handlep->blocks_to_filter_in_userland--;
4412 if (handlep->blocks_to_filter_in_userland == 0) {
4413 /*
4414 * No more blocks need to be filtered
4415 * in userland.
4416 */
4417 handlep->filter_in_userland = 0;
4418 }
4419 }
4420
4421 /* next block */
4422 if (++handle->offset >= handle->cc)
4423 handle->offset = 0;
4424
4425 /* check for break loop condition*/
4426 if (handle->break_loop) {
4427 handle->break_loop = 0;
4428 return PCAP_ERROR_BREAK;
4429 }
4430 }
4431 return pkts;
4432 }
4433
4434 #ifdef HAVE_TPACKET3
4435 static int
4436 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback,
4437 u_char *user)
4438 {
4439 struct pcap_linux *handlep = handle->priv;
4440 union thdr h;
4441 int pkts = 0;
4442 int ret;
4443
4444 again:
4445 if (handlep->current_packet == NULL) {
4446 /* wait for frames availability.*/
4447 h.raw = RING_GET_CURRENT_FRAME(handle);
4448 if (!packet_mmap_v3_acquire(h.h3)) {
4449 /*
4450 * The current frame is owned by the kernel; wait
4451 * for a frame to be handed to us.
4452 */
4453 ret = pcap_wait_for_frames_mmap(handle);
4454 if (ret) {
4455 return ret;
4456 }
4457 }
4458 }
4459 h.raw = RING_GET_CURRENT_FRAME(handle);
4460 if (!packet_mmap_v3_acquire(h.h3)) {
4461 if (pkts == 0 && handlep->timeout == 0) {
4462 /* Block until we see a packet. */
4463 goto again;
4464 }
4465 return pkts;
4466 }
4467
4468 /*
4469 * This can conceivably process more than INT_MAX packets,
4470 * which would overflow the packet count, causing it either
4471 * to look like a negative number, and thus cause us to
4472 * return a value that looks like an error, or overflow
4473 * back into positive territory, and thus cause us to
4474 * return a too-low count.
4475 *
4476 * Therefore, if the packet count is unlimited, we clip
4477 * it at INT_MAX; this routine is not expected to
4478 * process packets indefinitely, so that's not an issue.
4479 */
4480 if (PACKET_COUNT_IS_UNLIMITED(max_packets))
4481 max_packets = INT_MAX;
4482
4483 while (pkts < max_packets) {
4484 int packets_to_read;
4485
4486 if (handlep->current_packet == NULL) {
4487 h.raw = RING_GET_CURRENT_FRAME(handle);
4488 if (!packet_mmap_v3_acquire(h.h3))
4489 break;
4490
4491 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt;
4492 handlep->packets_left = h.h3->hdr.bh1.num_pkts;
4493 }
4494 packets_to_read = handlep->packets_left;
4495
4496 if (packets_to_read > (max_packets - pkts)) {
4497 /*
4498 * There are more packets in the buffer than
4499 * the number of packets we have left to
4500 * process to get up to the maximum number
4501 * of packets to process. Only process enough
4502 * of them to get us up to that maximum.
4503 */
4504 packets_to_read = max_packets - pkts;
4505 }
4506
4507 while (packets_to_read-- && !handle->break_loop) {
4508 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet;
4509 ret = pcap_handle_packet_mmap(
4510 handle,
4511 callback,
4512 user,
4513 handlep->current_packet,
4514 tp3_hdr->tp_len,
4515 tp3_hdr->tp_mac,
4516 tp3_hdr->tp_snaplen,
4517 tp3_hdr->tp_sec,
4518 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000,
4519 VLAN_VALID(tp3_hdr, &tp3_hdr->hv1),
4520 tp3_hdr->hv1.tp_vlan_tci,
4521 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1));
4522 if (ret == 1) {
4523 pkts++;
4524 } else if (ret < 0) {
4525 handlep->current_packet = NULL;
4526 return ret;
4527 }
4528 handlep->current_packet += tp3_hdr->tp_next_offset;
4529 handlep->packets_left--;
4530 }
4531
4532 if (handlep->packets_left <= 0) {
4533 /*
4534 * Hand this block back to the kernel, and, if
4535 * we're counting blocks that need to be
4536 * filtered in userland after having been
4537 * filtered by the kernel, count the one we've
4538 * just processed.
4539 */
4540 packet_mmap_v3_release(h.h3);
4541 if (handlep->blocks_to_filter_in_userland != 0) {
4542 handlep->blocks_to_filter_in_userland--;
4543 if (handlep->blocks_to_filter_in_userland == 0) {
4544 /*
4545 * No more blocks need to be filtered
4546 * in userland.
4547 */
4548 handlep->filter_in_userland = 0;
4549 }
4550 }
4551
4552 /* next block */
4553 if (++handle->offset >= handle->cc)
4554 handle->offset = 0;
4555
4556 handlep->current_packet = NULL;
4557 }
4558
4559 /* check for break loop condition*/
4560 if (handle->break_loop) {
4561 handle->break_loop = 0;
4562 return PCAP_ERROR_BREAK;
4563 }
4564 }
4565 if (pkts == 0 && handlep->timeout == 0) {
4566 /* Block until we see a packet. */
4567 goto again;
4568 }
4569 return pkts;
4570 }
4571 #endif /* HAVE_TPACKET3 */
4572
4573 /*
4574 * Attach the given BPF code to the packet capture device.
4575 */
4576 static int
4577 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
4578 {
4579 struct pcap_linux *handlep;
4580 struct sock_fprog fcode;
4581 int can_filter_in_kernel;
4582 int err = 0;
4583 u_int n, offset;
4584
4585 if (!handle)
4586 return -1;
4587 if (!filter) {
4588 pcapint_strlcpy(handle->errbuf, "setfilter: No filter specified",
4589 PCAP_ERRBUF_SIZE);
4590 return -1;
4591 }
4592
4593 handlep = handle->priv;
4594
4595 /* Make our private copy of the filter */
4596
4597 if (pcapint_install_bpf_program(handle, filter) < 0)
4598 /* pcapint_install_bpf_program() filled in errbuf */
4599 return -1;
4600
4601 /*
4602 * Run user level packet filter by default. Will be overridden if
4603 * installing a kernel filter succeeds.
4604 */
4605 handlep->filter_in_userland = 1;
4606
4607 /* Install kernel level filter if possible */
4608
4609 if (handle->fcode.bf_len > USHRT_MAX) {
4610 /*
4611 * fcode.len is an unsigned short for current kernel.
4612 * I have yet to see BPF-Code with that much
4613 * instructions but still it is possible. So for the
4614 * sake of correctness I added this check.
4615 */
4616 fprintf(stderr, "Warning: Filter too complex for kernel\n");
4617 fcode.len = 0;
4618 fcode.filter = NULL;
4619 can_filter_in_kernel = 0;
4620 } else {
4621 /*
4622 * Oh joy, the Linux kernel uses struct sock_fprog instead
4623 * of struct bpf_program and of course the length field is
4624 * of different size. Pointed out by Sebastian
4625 *
4626 * Oh, and we also need to fix it up so that all "ret"
4627 * instructions with non-zero operands have MAXIMUM_SNAPLEN
4628 * as the operand if we're not capturing in memory-mapped
4629 * mode, and so that, if we're in cooked mode, all memory-
4630 * reference instructions use special magic offsets in
4631 * references to the link-layer header and assume that the
4632 * link-layer payload begins at 0; "fix_program()" will do
4633 * that.
4634 */
4635 switch (fix_program(handle, &fcode)) {
4636
4637 case -1:
4638 default:
4639 /*
4640 * Fatal error; just quit.
4641 * (The "default" case shouldn't happen; we
4642 * return -1 for that reason.)
4643 */
4644 return -1;
4645
4646 case 0:
4647 /*
4648 * The program performed checks that we can't make
4649 * work in the kernel.
4650 */
4651 can_filter_in_kernel = 0;
4652 break;
4653
4654 case 1:
4655 /*
4656 * We have a filter that'll work in the kernel.
4657 */
4658 can_filter_in_kernel = 1;
4659 break;
4660 }
4661 }
4662
4663 /*
4664 * NOTE: at this point, we've set both the "len" and "filter"
4665 * fields of "fcode". As of the 2.6.32.4 kernel, at least,
4666 * those are the only members of the "sock_fprog" structure,
4667 * so we initialize every member of that structure.
4668 *
4669 * If there is anything in "fcode" that is not initialized,
4670 * it is either a field added in a later kernel, or it's
4671 * padding.
4672 *
4673 * If a new field is added, this code needs to be updated
4674 * to set it correctly.
4675 *
4676 * If there are no other fields, then:
4677 *
4678 * if the Linux kernel looks at the padding, it's
4679 * buggy;
4680 *
4681 * if the Linux kernel doesn't look at the padding,
4682 * then if some tool complains that we're passing
4683 * uninitialized data to the kernel, then the tool
4684 * is buggy and needs to understand that it's just
4685 * padding.
4686 */
4687 if (can_filter_in_kernel) {
4688 if ((err = set_kernel_filter(handle, &fcode)) == 0)
4689 {
4690 /*
4691 * Installation succeeded - using kernel filter,
4692 * so userland filtering not needed.
4693 */
4694 handlep->filter_in_userland = 0;
4695 }
4696 else if (err == -1) /* Non-fatal error */
4697 {
4698 /*
4699 * Print a warning if we weren't able to install
4700 * the filter for a reason other than "this kernel
4701 * isn't configured to support socket filters.
4702 */
4703 if (errno == ENOMEM) {
4704 /*
4705 * Either a kernel memory allocation
4706 * failure occurred, or there's too
4707 * much "other/option memory" allocated
4708 * for this socket. Suggest that they
4709 * increase the "other/option memory"
4710 * limit.
4711 */
4712 fprintf(stderr,
4713 "Warning: Couldn't allocate kernel memory for filter: try increasing net.core.optmem_max with sysctl\n");
4714 } else if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
4715 fprintf(stderr,
4716 "Warning: Kernel filter failed: %s\n",
4717 pcap_strerror(errno));
4718 }
4719 }
4720 }
4721
4722 /*
4723 * If we're not using the kernel filter, get rid of any kernel
4724 * filter that might've been there before, e.g. because the
4725 * previous filter could work in the kernel, or because some other
4726 * code attached a filter to the socket by some means other than
4727 * calling "pcap_setfilter()". Otherwise, the kernel filter may
4728 * filter out packets that would pass the new userland filter.
4729 */
4730 if (handlep->filter_in_userland) {
4731 if (reset_kernel_filter(handle) == -1) {
4732 pcapint_fmt_errmsg_for_errno(handle->errbuf,
4733 PCAP_ERRBUF_SIZE, errno,
4734 "can't remove kernel filter");
4735 err = -2; /* fatal error */
4736 }
4737 }
4738
4739 /*
4740 * Free up the copy of the filter that was made by "fix_program()".
4741 */
4742 if (fcode.filter != NULL)
4743 free(fcode.filter);
4744
4745 if (err == -2)
4746 /* Fatal error */
4747 return -1;
4748
4749 /*
4750 * If we're filtering in userland, there's nothing to do;
4751 * the new filter will be used for the next packet.
4752 */
4753 if (handlep->filter_in_userland)
4754 return 0;
4755
4756 /*
4757 * We're filtering in the kernel; the packets present in
4758 * all blocks currently in the ring were already filtered
4759 * by the old filter, and so will need to be filtered in
4760 * userland by the new filter.
4761 *
4762 * Get an upper bound for the number of such blocks; first,
4763 * walk the ring backward and count the free blocks.
4764 */
4765 offset = handle->offset;
4766 if (offset == 0)
4767 offset = handle->cc;
4768 offset--;
4769 for (n=0; n < handle->cc; ++n) {
4770 if (offset == 0)
4771 offset = handle->cc;
4772 offset--;
4773 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL)
4774 break;
4775 }
4776
4777 /*
4778 * If we found free blocks, decrement the count of free
4779 * blocks by 1, just in case we lost a race with another
4780 * thread of control that was adding a packet while
4781 * we were counting and that had run the filter before
4782 * we changed it.
4783 *
4784 * XXX - could there be more than one block added in
4785 * this fashion?
4786 *
4787 * XXX - is there a way to avoid that race, e.g. somehow
4788 * wait for all packets that passed the old filter to
4789 * be added to the ring?
4790 */
4791 if (n != 0)
4792 n--;
4793
4794 /*
4795 * Set the count of blocks worth of packets to filter
4796 * in userland to the total number of blocks in the
4797 * ring minus the number of free blocks we found, and
4798 * turn on userland filtering. (The count of blocks
4799 * worth of packets to filter in userland is guaranteed
4800 * not to be zero - n, above, couldn't be set to a
4801 * value > handle->cc, and if it were equal to
4802 * handle->cc, it wouldn't be zero, and thus would
4803 * be decremented to handle->cc - 1.)
4804 */
4805 handlep->blocks_to_filter_in_userland = handle->cc - n;
4806 handlep->filter_in_userland = 1;
4807
4808 return 0;
4809 }
4810
4811 /*
4812 * Return the index of the given device name. Fill ebuf and return
4813 * -1 on failure.
4814 */
4815 static int
4816 iface_get_id(int fd, const char *device, char *ebuf)
4817 {
4818 struct ifreq ifr;
4819
4820 memset(&ifr, 0, sizeof(ifr));
4821 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4822
4823 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
4824 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4825 errno, "SIOCGIFINDEX");
4826 return -1;
4827 }
4828
4829 return ifr.ifr_ifindex;
4830 }
4831
4832 /*
4833 * Bind the socket associated with FD to the given device.
4834 * Return 0 on success or a PCAP_ERROR_ value on a hard error.
4835 */
4836 static int
4837 iface_bind(int fd, int ifindex, char *ebuf, int protocol)
4838 {
4839 struct sockaddr_ll sll;
4840 int ret, err;
4841 socklen_t errlen = sizeof(err);
4842
4843 memset(&sll, 0, sizeof(sll));
4844 sll.sll_family = AF_PACKET;
4845 sll.sll_ifindex = ifindex < 0 ? 0 : ifindex;
4846 sll.sll_protocol = protocol;
4847
4848 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
4849 if (errno == ENETDOWN) {
4850 /*
4851 * Return a "network down" indication, so that
4852 * the application can report that rather than
4853 * saying we had a mysterious failure and
4854 * suggest that they report a problem to the
4855 * libpcap developers.
4856 */
4857 return PCAP_ERROR_IFACE_NOT_UP;
4858 }
4859 if (errno == ENODEV) {
4860 /*
4861 * There's nothing more to say, so clear the
4862 * error message.
4863 */
4864 ebuf[0] = '\0';
4865 ret = PCAP_ERROR_NO_SUCH_DEVICE;
4866 } else {
4867 ret = PCAP_ERROR;
4868 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4869 errno, "bind");
4870 }
4871 return ret;
4872 }
4873
4874 /* Any pending errors, e.g., network is down? */
4875
4876 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
4877 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4878 errno, "getsockopt (SO_ERROR)");
4879 return PCAP_ERROR;
4880 }
4881
4882 if (err == ENETDOWN) {
4883 /*
4884 * Return a "network down" indication, so that
4885 * the application can report that rather than
4886 * saying we had a mysterious failure and
4887 * suggest that they report a problem to the
4888 * libpcap developers.
4889 */
4890 return PCAP_ERROR_IFACE_NOT_UP;
4891 } else if (err > 0) {
4892 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4893 err, "bind");
4894 return PCAP_ERROR;
4895 }
4896
4897 return 0;
4898 }
4899
4900 /*
4901 * Try to enter monitor mode.
4902 * If we have libnl, try to create a new monitor-mode device and
4903 * capture on that; otherwise, just say "not supported".
4904 */
4905 #ifdef HAVE_LIBNL
4906 static int
4907 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device)
4908 {
4909 struct pcap_linux *handlep = handle->priv;
4910 int ret;
4911 char phydev_path[PATH_MAX+1];
4912 struct nl80211_state nlstate;
4913 struct ifreq ifr;
4914 u_int n;
4915
4916 /*
4917 * Is this a mac80211 device?
4918 */
4919 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX);
4920 if (ret < 0)
4921 return ret; /* error */
4922 if (ret == 0)
4923 return 0; /* no error, but not mac80211 device */
4924
4925 ret = nl80211_init(handle, &nlstate, device);
4926 if (ret != 0)
4927 return ret;
4928
4929 /*
4930 * Is this already a monN device?
4931 * If so, we're done.
4932 */
4933 int type;
4934 ret = get_if_type(handle, sock_fd, &nlstate, device, &type);
4935 if (ret <= 0) {
4936 /*
4937 * < 0 is a Hard failure. Just return ret; handle->errbuf
4938 * has already been set.
4939 *
4940 * 0 is "device not available"; the caller should retry later.
4941 */
4942 nl80211_cleanup(&nlstate);
4943 return ret;
4944 }
4945 if (type == NL80211_IFTYPE_MONITOR) {
4946 /*
4947 * OK, it's already a monitor mode device; just use it.
4948 * There's no point in creating another monitor device
4949 * that will have to be cleaned up.
4950 */
4951 nl80211_cleanup(&nlstate);
4952 return ret;
4953 }
4954
4955 /*
4956 * OK, it's apparently a mac80211 device but not a monitor device.
4957 * Try to find an unused monN device for it.
4958 */
4959 for (n = 0; n < UINT_MAX; n++) {
4960 /*
4961 * Try mon{n}.
4962 */
4963 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */
4964
4965 snprintf(mondevice, sizeof mondevice, "mon%u", n);
4966 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice);
4967 if (ret == 1) {
4968 /*
4969 * Success. We don't clean up the libnl state
4970 * yet, as we'll be using it later.
4971 */
4972 goto added;
4973 }
4974 if (ret < 0) {
4975 /*
4976 * Hard failure. Just return ret; handle->errbuf
4977 * has already been set.
4978 */
4979 nl80211_cleanup(&nlstate);
4980 return ret;
4981 }
4982 }
4983
4984 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4985 "%s: No free monN interfaces", device);
4986 nl80211_cleanup(&nlstate);
4987 return PCAP_ERROR;
4988
4989 added:
4990
4991 #if 0
4992 /*
4993 * Sleep for .1 seconds.
4994 */
4995 delay.tv_sec = 0;
4996 delay.tv_nsec = 500000000;
4997 nanosleep(&delay, NULL);
4998 #endif
4999
5000 /*
5001 * If we haven't already done so, arrange to have
5002 * "pcap_close_all()" called when we exit.
5003 */
5004 if (!pcapint_do_addexit(handle)) {
5005 /*
5006 * "atexit()" failed; don't put the interface
5007 * in rfmon mode, just give up.
5008 * handle->errbuf has already been filled.
5009 */
5010 del_mon_if(handle, sock_fd, &nlstate, device,
5011 handlep->mondevice);
5012 nl80211_cleanup(&nlstate);
5013 return PCAP_ERROR;
5014 }
5015
5016 /*
5017 * Now configure the monitor interface up.
5018 */
5019 memset(&ifr, 0, sizeof(ifr));
5020 pcapint_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name));
5021 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
5022 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5023 errno, "%s: Can't get flags for %s", device,
5024 handlep->mondevice);
5025 del_mon_if(handle, sock_fd, &nlstate, device,
5026 handlep->mondevice);
5027 nl80211_cleanup(&nlstate);
5028 return PCAP_ERROR;
5029 }
5030 ifr.ifr_flags |= IFF_UP|IFF_RUNNING;
5031 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
5032 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5033 errno, "%s: Can't set flags for %s", device,
5034 handlep->mondevice);
5035 del_mon_if(handle, sock_fd, &nlstate, device,
5036 handlep->mondevice);
5037 nl80211_cleanup(&nlstate);
5038 return PCAP_ERROR;
5039 }
5040
5041 /*
5042 * Success. Clean up the libnl state.
5043 */
5044 nl80211_cleanup(&nlstate);
5045
5046 /*
5047 * Note that we have to delete the monitor device when we close
5048 * the handle.
5049 */
5050 handlep->must_do_on_close |= MUST_DELETE_MONIF;
5051
5052 /*
5053 * Add this to the list of pcaps to close when we exit.
5054 */
5055 pcapint_add_to_pcaps_to_close(handle);
5056
5057 return 1;
5058 }
5059 #else /* HAVE_LIBNL */
5060 static int
5061 enter_rfmon_mode(pcap_t *handle _U_, int sock_fd _U_, const char *device _U_)
5062 {
5063 /*
5064 * We don't have libnl, so we can't do monitor mode.
5065 */
5066 return 0;
5067 }
5068 #endif /* HAVE_LIBNL */
5069
5070 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
5071 /*
5072 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values.
5073 */
5074 static const struct {
5075 int soft_timestamping_val;
5076 int pcap_tstamp_val;
5077 } sof_ts_type_map[3] = {
5078 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST },
5079 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER },
5080 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED }
5081 };
5082 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0])
5083
5084 /*
5085 * Set the list of time stamping types to include all types.
5086 */
5087 static int
5088 iface_set_all_ts_types(pcap_t *handle, char *ebuf)
5089 {
5090 u_int i;
5091
5092 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int));
5093 if (handle->tstamp_type_list == NULL) {
5094 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5095 errno, "malloc");
5096 return -1;
5097 }
5098 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++)
5099 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val;
5100 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES;
5101 return 0;
5102 }
5103
5104 /*
5105 * Get a list of time stamp types.
5106 */
5107 #ifdef ETHTOOL_GET_TS_INFO
5108 static int
5109 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
5110 {
5111 int fd;
5112 struct ifreq ifr;
5113 struct ethtool_ts_info info;
5114 int num_ts_types;
5115 u_int i, j;
5116
5117 /*
5118 * This doesn't apply to the "any" device; you can't say "turn on
5119 * hardware time stamping for all devices that exist now and arrange
5120 * that it be turned on for any device that appears in the future",
5121 * and not all devices even necessarily *support* hardware time
5122 * stamping, so don't report any time stamp types.
5123 */
5124 if (strcmp(device, "any") == 0) {
5125 handle->tstamp_type_list = NULL;
5126 return 0;
5127 }
5128
5129 /*
5130 * Create a socket from which to fetch time stamping capabilities.
5131 */
5132 fd = get_if_ioctl_socket();
5133 if (fd < 0) {
5134 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5135 errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)");
5136 return -1;
5137 }
5138
5139 memset(&ifr, 0, sizeof(ifr));
5140 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5141 memset(&info, 0, sizeof(info));
5142 info.cmd = ETHTOOL_GET_TS_INFO;
5143 ifr.ifr_data = (caddr_t)&info;
5144 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) {
5145 int save_errno = errno;
5146
5147 close(fd);
5148 switch (save_errno) {
5149
5150 case EOPNOTSUPP:
5151 case EINVAL:
5152 /*
5153 * OK, this OS version or driver doesn't support
5154 * asking for the time stamping types, so let's
5155 * just return all the possible types.
5156 */
5157 if (iface_set_all_ts_types(handle, ebuf) == -1)
5158 return -1;
5159 return 0;
5160
5161 case ENODEV:
5162 /*
5163 * OK, no such device.
5164 * The user will find that out when they try to
5165 * activate the device; just return an empty
5166 * list of time stamp types.
5167 */
5168 handle->tstamp_type_list = NULL;
5169 return 0;
5170
5171 default:
5172 /*
5173 * Other error.
5174 */
5175 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5176 save_errno,
5177 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed",
5178 device);
5179 return -1;
5180 }
5181 }
5182 close(fd);
5183
5184 /*
5185 * Do we support hardware time stamping of *all* packets?
5186 */
5187 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) {
5188 /*
5189 * No, so don't report any time stamp types.
5190 *
5191 * XXX - some devices either don't report
5192 * HWTSTAMP_FILTER_ALL when they do support it, or
5193 * report HWTSTAMP_FILTER_ALL but map it to only
5194 * time stamping a few PTP packets. See
5195 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2
5196 *
5197 * Maybe that got fixed later.
5198 */
5199 handle->tstamp_type_list = NULL;
5200 return 0;
5201 }
5202
5203 num_ts_types = 0;
5204 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5205 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val)
5206 num_ts_types++;
5207 }
5208 if (num_ts_types != 0) {
5209 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int));
5210 if (handle->tstamp_type_list == NULL) {
5211 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5212 errno, "malloc");
5213 return -1;
5214 }
5215 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
5216 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) {
5217 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val;
5218 j++;
5219 }
5220 }
5221 handle->tstamp_type_count = num_ts_types;
5222 } else
5223 handle->tstamp_type_list = NULL;
5224
5225 return 0;
5226 }
5227 #else /* ETHTOOL_GET_TS_INFO */
5228 static int
5229 iface_get_ts_types(const char *device, pcap_t *handle, char *ebuf)
5230 {
5231 /*
5232 * This doesn't apply to the "any" device; you can't say "turn on
5233 * hardware time stamping for all devices that exist now and arrange
5234 * that it be turned on for any device that appears in the future",
5235 * and not all devices even necessarily *support* hardware time
5236 * stamping, so don't report any time stamp types.
5237 */
5238 if (strcmp(device, "any") == 0) {
5239 handle->tstamp_type_list = NULL;
5240 return 0;
5241 }
5242
5243 /*
5244 * We don't have an ioctl to use to ask what's supported,
5245 * so say we support everything.
5246 */
5247 if (iface_set_all_ts_types(handle, ebuf) == -1)
5248 return -1;
5249 return 0;
5250 }
5251 #endif /* ETHTOOL_GET_TS_INFO */
5252 #else /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5253 static int
5254 iface_get_ts_types(const char *device _U_, pcap_t *p _U_, char *ebuf _U_)
5255 {
5256 /*
5257 * Nothing to fetch, so it always "succeeds".
5258 */
5259 return 0;
5260 }
5261 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
5262
5263 /*
5264 * Find out if we have any form of fragmentation/reassembly offloading.
5265 *
5266 * We do so using SIOCETHTOOL checking for various types of offloading;
5267 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any
5268 * of the types of offloading, there's nothing we can do to check, so
5269 * we just say "no, we don't".
5270 *
5271 * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as
5272 * indications that the operation isn't supported. We do EPERM
5273 * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't
5274 * support ETHTOOL_GUFO, 2) also doesn't include it in the list
5275 * of ethtool operations that don't require CAP_NET_ADMIN privileges,
5276 * and 3) does the "is this permitted" check before doing the "is
5277 * this even supported" check, so it fails with "this is not permitted"
5278 * rather than "this is not even supported". To work around this
5279 * annoyance, we only treat EPERM as an error for the first feature,
5280 * and assume that they all do the same permission checks, so if the
5281 * first one is allowed all the others are allowed if supported.
5282 */
5283 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO))
5284 static int
5285 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname,
5286 int eperm_ok)
5287 {
5288 struct ifreq ifr;
5289 struct ethtool_value eval;
5290
5291 memset(&ifr, 0, sizeof(ifr));
5292 pcapint_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
5293 eval.cmd = cmd;
5294 eval.data = 0;
5295 ifr.ifr_data = (caddr_t)&eval;
5296 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) {
5297 if (errno == EOPNOTSUPP || errno == EINVAL ||
5298 (errno == EPERM && eperm_ok)) {
5299 /*
5300 * OK, let's just return 0, which, in our
5301 * case, either means "no, what we're asking
5302 * about is not enabled" or "all the flags
5303 * are clear (i.e., nothing is enabled)".
5304 */
5305 return 0;
5306 }
5307 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5308 errno, "%s: SIOCETHTOOL(%s) ioctl failed",
5309 handle->opt.device, cmdname);
5310 return -1;
5311 }
5312 return eval.data;
5313 }
5314
5315 /*
5316 * XXX - it's annoying that we have to check for offloading at all, but,
5317 * given that we have to, it's still annoying that we have to check for
5318 * particular types of offloading, especially that shiny new types of
5319 * offloading may be added - and, worse, may not be checkable with
5320 * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in
5321 * theory, give those to you, but the actual flags being used are
5322 * opaque (defined in a non-uapi header), and there doesn't seem to
5323 * be any obvious way to ask the kernel what all the offloading flags
5324 * are - at best, you can ask for a set of strings(!) to get *names*
5325 * for various flags. (That whole mechanism appears to have been
5326 * designed for the sole purpose of letting ethtool report flags
5327 * by name and set flags by name, with the names having no semantics
5328 * ethtool understands.)
5329 */
5330 static int
5331 iface_get_offload(pcap_t *handle)
5332 {
5333 int ret;
5334
5335 #ifdef ETHTOOL_GTSO
5336 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0);
5337 if (ret == -1)
5338 return -1;
5339 if (ret)
5340 return 1; /* TCP segmentation offloading on */
5341 #endif
5342
5343 #ifdef ETHTOOL_GGSO
5344 /*
5345 * XXX - will this cause large unsegmented packets to be
5346 * handed to PF_PACKET sockets on transmission? If not,
5347 * this need not be checked.
5348 */
5349 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0);
5350 if (ret == -1)
5351 return -1;
5352 if (ret)
5353 return 1; /* generic segmentation offloading on */
5354 #endif
5355
5356 #ifdef ETHTOOL_GFLAGS
5357 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0);
5358 if (ret == -1)
5359 return -1;
5360 if (ret & ETH_FLAG_LRO)
5361 return 1; /* large receive offloading on */
5362 #endif
5363
5364 #ifdef ETHTOOL_GGRO
5365 /*
5366 * XXX - will this cause large reassembled packets to be
5367 * handed to PF_PACKET sockets on receipt? If not,
5368 * this need not be checked.
5369 */
5370 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0);
5371 if (ret == -1)
5372 return -1;
5373 if (ret)
5374 return 1; /* generic (large) receive offloading on */
5375 #endif
5376
5377 #ifdef ETHTOOL_GUFO
5378 /*
5379 * Do this one last, as support for it was removed in later
5380 * kernels, and it fails with EPERM on those kernels rather
5381 * than with EOPNOTSUPP (see explanation in comment for
5382 * iface_ethtool_flag_ioctl()).
5383 */
5384 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1);
5385 if (ret == -1)
5386 return -1;
5387 if (ret)
5388 return 1; /* UDP fragmentation offloading on */
5389 #endif
5390
5391 return 0;
5392 }
5393 #else /* SIOCETHTOOL */
5394 static int
5395 iface_get_offload(pcap_t *handle _U_)
5396 {
5397 /*
5398 * XXX - do we need to get this information if we don't
5399 * have the ethtool ioctls? If so, how do we do that?
5400 */
5401 return 0;
5402 }
5403 #endif /* SIOCETHTOOL */
5404
5405 /*
5406 * As per
5407 *
5408 * https://www.kernel.org/doc/html/latest/networking/dsa/dsa.html#switch-tagging-protocols
5409 *
5410 * Type 1 means that the tag is prepended to the Ethernet packet.
5411 * LINKTYPE_ETHERNET/DLT_EN10MB doesn't work, as it would try to
5412 * dissect the tag data as the Ethernet header. These should get
5413 * their own LINKTYPE_DLT_ values.
5414 *
5415 * Type 2 means that the tag is inserted into the Ethernet header
5416 * after the source address and before the type/length field.
5417 *
5418 * Type 3 means that tag is a packet trailer. LINKTYPE_ETHERNET/DLT_EN10MB
5419 * works, unless the next-layer protocol has no length field of its own,
5420 * so that the tag might be treated as part of the payload. These should
5421 * get their own LINKTYPE_/DLT_ values.
5422 *
5423 * If you get an "unsupported DSA tag" error, please add the tag to here,
5424 * complete with a full comment indicating whether it's type 1, 2, or 3,
5425 * and, for type 2, indicating whether it has an Ethertype and, if so
5426 * what that type is, and whether it's registered with the IEEE or is
5427 * self-assigned. Also, point to *something* that indicates the format
5428 * of the tag.
5429 */
5430 static struct dsa_proto {
5431 const char *name;
5432 bpf_u_int32 linktype;
5433 } dsa_protos[] = {
5434 /*
5435 * Type 1. See
5436 *
5437 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ar9331.c
5438 */
5439 { "ar9331", DLT_EN10MB },
5440
5441 /*
5442 * Type 2, without an EtherType at the beginning,
5443 * assigned a LINKTYPE_/DLT_ value.
5444 */
5445 { "brcm", DLT_DSA_TAG_BRCM },
5446
5447 /*
5448 * Type 2, with EtherType 0x8874, assigned to Broadcom.
5449 *
5450 * This does not require a LINKTYPE_/DLT_ value, it
5451 * just requires that Ethertype 0x8874 be dissected
5452 * properly.
5453 */
5454 { "brcm-legacy", DLT_EN10MB },
5455
5456 /*
5457 * Type 1.
5458 */
5459 { "brcm-prepend", DLT_DSA_TAG_BRCM_PREPEND },
5460
5461 /*
5462 * Type 2, without an EtherType at the beginning,
5463 * assigned a LINKTYPE_/DLT_ value.
5464 */
5465 { "dsa", DLT_DSA_TAG_DSA },
5466
5467 /*
5468 * Type 2, with an Ethertype field, but without
5469 * an assigned EtherType value that can be relied
5470 * on; assigned a LINKTYPE_/DLT_ value.
5471 */
5472 { "edsa", DLT_DSA_TAG_EDSA },
5473
5474 /*
5475 * Type 1, with different transmit and receive headers,
5476 * so can't really be handled well with the current
5477 * libpcap API and with pcap files. Use DLT_LINUX_SLL,
5478 * to get the direction?
5479 *
5480 * See
5481 *
5482 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_gswip.c
5483 */
5484 { "gswip", DLT_EN10MB },
5485
5486 /*
5487 * Type 3. See
5488 *
5489 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_hellcreek.c
5490 */
5491 { "hellcreek", DLT_EN10MB },
5492
5493 /*
5494 * Type 3, with different transmit and receive headers,
5495 * so can't really be handled well with the current
5496 * libpcap API and with pcap files. Use DLT_LINUX_SLL,
5497 * to get the direction?
5498 *
5499 * See
5500 *
5501 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ksz.c#L102
5502 */
5503 { "ksz8795", DLT_EN10MB },
5504
5505 /*
5506 * Type 3, with different transmit and receive headers,
5507 * so can't really be handled well with the current
5508 * libpcap API and with pcap files. Use DLT_LINUX_SLL,
5509 * to get the direction?
5510 *
5511 * See
5512 *
5513 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ksz.c#L160
5514 */
5515 { "ksz9477", DLT_EN10MB },
5516
5517 /*
5518 * Type 3, with different transmit and receive headers,
5519 * so can't really be handled well with the current
5520 * libpcap API and with pcap files. Use DLT_LINUX_SLL,
5521 * to get the direction?
5522 *
5523 * See
5524 *
5525 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ksz.c#L341
5526 */
5527 { "ksz9893", DLT_EN10MB },
5528
5529 /*
5530 * Type 3, with different transmit and receive headers,
5531 * so can't really be handled well with the current
5532 * libpcap API and with pcap files. Use DLT_LINUX_SLL,
5533 * to get the direction?
5534 *
5535 * See
5536 *
5537 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ksz.c#L386
5538 */
5539 { "lan937x", DLT_EN10MB },
5540
5541 /*
5542 * Type 2, with EtherType 0x8100; the VID can be interpreted
5543 * as per
5544 *
5545 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_lan9303.c#L24
5546 *
5547 * so giving its own LINKTYPE_/DLT_ value would allow a
5548 * dissector to do so.
5549 */
5550 { "lan9303", DLT_EN10MB },
5551
5552 /*
5553 * Type 2, without an EtherType at the beginning,
5554 * should be assigned a LINKTYPE_/DLT_ value.
5555 *
5556 * See
5557 *
5558 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_mtk.c#L15
5559 */
5560 { "mtk", DLT_EN10MB },
5561
5562 /*
5563 * The string "none" indicates that the interface does not have
5564 * any tagging protocol configured, and is therefore a standard
5565 * Ethernet interface.
5566 */
5567 { "none", DLT_EN10MB },
5568
5569 /*
5570 * Type 1.
5571 *
5572 * See
5573 *
5574 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ocelot.c
5575 */
5576 { "ocelot", DLT_EN10MB },
5577
5578 /*
5579 * Type 1.
5580 *
5581 * See
5582 *
5583 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_ocelot.c
5584 */
5585 { "seville", DLT_EN10MB },
5586
5587 /*
5588 * Type 2, with EtherType 0x8100; the VID can be interpreted
5589 * as per
5590 *
5591 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_8021q.c#L15
5592 *
5593 * so giving its own LINKTYPE_/DLT_ value would allow a
5594 * dissector to do so.
5595 */
5596 { "ocelot-8021q", DLT_EN10MB },
5597
5598 /*
5599 * Type 2, without an EtherType at the beginning,
5600 * should be assigned a LINKTYPE_/DLT_ value.
5601 *
5602 * See
5603 *
5604 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_qca.c
5605 */
5606 { "qca", DLT_EN10MB },
5607
5608 /*
5609 * Type 2, with EtherType 0x8899, assigned to Realtek;
5610 * they use it for several on-the-Ethernet protocols
5611 * as well, but there are fields that allow the two
5612 * tag formats, and all the protocols in question,
5613 * to be distinguiished from one another.
5614 *
5615 * This does not require a LINKTYPE_/DLT_ value, it
5616 * just requires that EtherType 0x8899 be dissected
5617 * properly.
5618 *
5619 * See
5620 *
5621 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_rtl4_a.c
5622 *
5623 * http://realtek.info/pdf/rtl8306sd%28m%29_datasheet_1.1.pdf
5624 *
5625 * and various pages in tcpdump's print-realtek.c and Wireshark's
5626 * epan/dissectors/packet-realtek.c for the other protocols.
5627 */
5628 { "rtl4a", DLT_EN10MB },
5629
5630 /*
5631 * Type 2, with EtherType 0x8899, assigned to Realtek;
5632 * see above.
5633 */
5634 { "rtl8_4", DLT_EN10MB },
5635
5636 /*
5637 * Type 3, with the same tag format as rtl8_4.
5638 */
5639 { "rtl8_4t", DLT_EN10MB },
5640
5641 /*
5642 * Type 2, with EtherType 0xe001; that's probably
5643 * self-assigned, so this really should have its
5644 * own LINKTYPE_/DLT_ value.
5645 *
5646 * See
5647 *
5648 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_rzn1_a5psw.c
5649 */
5650 { "a5psw", DLT_EN10MB },
5651
5652 /*
5653 * Type 2, with EtherType 0x8100 or the self-assigned
5654 * 0xdadb, so this really should have its own
5655 * LINKTYPE_/DLT_ value; that would also allow the
5656 * VID of the tag to be dissected as per
5657 *
5658 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_8021q.c#L15
5659 */
5660 { "sja1105", DLT_EN10MB },
5661
5662 /*
5663 * Type "none of the above", with both a header and trailer,
5664 * with different transmit and receive tags. Has
5665 * EtherType 0xdadc, which is probably self-assigned.
5666 * This should really have its own LINKTYPE_/DLT_ value.
5667 */
5668 { "sja1110", DLT_EN10MB },
5669
5670 /*
5671 * Type 3, as the name suggests.
5672 *
5673 * See
5674 *
5675 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_trailer.c
5676 */
5677 { "trailer", DLT_EN10MB },
5678
5679 /*
5680 * Type 2, with EtherType 0x8100; the VID can be interpreted
5681 * as per
5682 *
5683 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_8021q.c#L15
5684 *
5685 * so giving its own LINKTYPE_/DLT_ value would allow a
5686 * dissector to do so.
5687 */
5688 { "vsc73xx-8021q", DLT_EN10MB },
5689
5690 /*
5691 * Type 3.
5692 *
5693 * See
5694 *
5695 * https://elixir.bootlin.com/linux/v6.13.2/source/net/dsa/tag_xrs700x.c
5696 */
5697 { "xrs700x", DLT_EN10MB },
5698 };
5699
5700 static int
5701 iface_dsa_get_proto_info(const char *device, pcap_t *handle)
5702 {
5703 char *pathstr;
5704 unsigned int i;
5705 /*
5706 * Make this significantly smaller than PCAP_ERRBUF_SIZE;
5707 * the tag *shouldn't* have some huge long name, and making
5708 * it smaller keeps newer versions of GCC from whining that
5709 * the error message if we don't support the tag could
5710 * overflow the error message buffer.
5711 */
5712 char buf[128];
5713 ssize_t r;
5714 int fd;
5715
5716 fd = asprintf(&pathstr, "/sys/class/net/%s/dsa/tagging", device);
5717 if (fd < 0) {
5718 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5719 fd, "asprintf");
5720 return PCAP_ERROR;
5721 }
5722
5723 fd = open(pathstr, O_RDONLY);
5724 free(pathstr);
5725 /*
5726 * This is not fatal, kernel >= 4.20 *might* expose this attribute
5727 */
5728 if (fd < 0)
5729 return 0;
5730
5731 r = read(fd, buf, sizeof(buf) - 1);
5732 if (r <= 0) {
5733 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5734 errno, "read");
5735 close(fd);
5736 return PCAP_ERROR;
5737 }
5738 close(fd);
5739
5740 /*
5741 * Buffer should be LF terminated.
5742 */
5743 if (buf[r - 1] == '\n')
5744 r--;
5745 buf[r] = '\0';
5746
5747 for (i = 0; i < sizeof(dsa_protos) / sizeof(dsa_protos[0]); i++) {
5748 if (strlen(dsa_protos[i].name) == (size_t)r &&
5749 strcmp(buf, dsa_protos[i].name) == 0) {
5750 handle->linktype = dsa_protos[i].linktype;
5751 switch (dsa_protos[i].linktype) {
5752 case DLT_EN10MB:
5753 return 0;
5754 default:
5755 return 1;
5756 }
5757 }
5758 }
5759
5760 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
5761 "unsupported DSA tag: %s", buf);
5762
5763 return PCAP_ERROR;
5764 }
5765
5766 /*
5767 * Query the kernel for the MTU of the given interface.
5768 */
5769 static int
5770 iface_get_mtu(int fd, const char *device, char *ebuf)
5771 {
5772 struct ifreq ifr;
5773
5774 if (!device)
5775 return BIGGER_THAN_ALL_MTUS;
5776
5777 memset(&ifr, 0, sizeof(ifr));
5778 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5779
5780 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
5781 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5782 errno, "SIOCGIFMTU");
5783 return -1;
5784 }
5785
5786 return ifr.ifr_mtu;
5787 }
5788
5789 /*
5790 * Get the hardware type of the given interface as ARPHRD_xxx constant.
5791 */
5792 static int
5793 iface_get_arptype(int fd, const char *device, char *ebuf)
5794 {
5795 struct ifreq ifr;
5796 int ret;
5797
5798 memset(&ifr, 0, sizeof(ifr));
5799 pcapint_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5800
5801 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
5802 if (errno == ENODEV) {
5803 /*
5804 * No such device.
5805 *
5806 * There's nothing more to say, so clear
5807 * the error message.
5808 */
5809 ret = PCAP_ERROR_NO_SUCH_DEVICE;
5810 ebuf[0] = '\0';
5811 } else {
5812 ret = PCAP_ERROR;
5813 pcapint_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5814 errno, "SIOCGIFHWADDR");
5815 }
5816 return ret;
5817 }
5818
5819 return ifr.ifr_hwaddr.sa_family;
5820 }
5821
5822 /*
5823 * In a DLT_CAN_SOCKETCAN frame the first four bytes are a 32-bit integer
5824 * value in host byte order if the filter program is running in the kernel and
5825 * in network byte order if in userland. This applies to both CC, FD and XL
5826 * frames, see pcap_handle_packet_mmap() for the rationale. Return 1 iff the
5827 * [possibly modified] filter program can work correctly in the kernel.
5828 */
5829 #if __BYTE_ORDER == __LITTLE_ENDIAN
5830 static int
5831 fix_dlt_can_socketcan(const u_int len, struct bpf_insn insn[])
5832 {
5833 for (u_int i = 0; i < len; ++i) {
5834 switch (insn[i].code) {
5835 case BPF_LD|BPF_B|BPF_ABS: // ldb [k]
5836 case BPF_LDX|BPF_MSH|BPF_B: // ldxb 4*([k]&0xf)
5837 if (insn[i].k < 4)
5838 insn[i].k = 3 - insn[i].k; // Fixed now.
5839 break;
5840 case BPF_LD|BPF_H|BPF_ABS: // ldh [k]
5841 case BPF_LD|BPF_W|BPF_ABS: // ld [k]
5842 /*
5843 * A halfword or a word load cannot be fixed by just
5844 * changing k, even if every required byte is within
5845 * the byte-swapped part of the frame, even if the
5846 * load is aligned. The fix would require either
5847 * rewriting the filter program extensively or
5848 * generating it differently in the first place.
5849 */
5850 case BPF_LD|BPF_B|BPF_IND: // ldb [x + k]
5851 case BPF_LD|BPF_H|BPF_IND: // ldh [x + k]
5852 case BPF_LD|BPF_W|BPF_IND: // ld [x + k]
5853 /*
5854 * In addition to the above, a variable offset load
5855 * cannot be fixed because x can have any value, thus
5856 * x + k can have any value, but only the first four
5857 * bytes are swapped. An easy way to demonstrate it
5858 * is to compile "link[link[4]] == 0", which will use
5859 * "ldb [x + 0]" to access one of the first four bytes
5860 * of the frame iff CAN CC/FD payload length is less
5861 * than 4.
5862 */
5863 if (insn[i].k < 4)
5864 return 0; // Userland filtering only.
5865 break;
5866 }
5867 }
5868 return 1;
5869 }
5870 #else
5871 static int
5872 fix_dlt_can_socketcan(const u_int len _U_, struct bpf_insn insn[] _U_)
5873 {
5874 return 1;
5875 }
5876 #endif // __BYTE_ORDER == __LITTLE_ENDIAN
5877
5878 static int
5879 fix_program(pcap_t *handle, struct sock_fprog *fcode)
5880 {
5881 struct pcap_linux *handlep = handle->priv;
5882 size_t prog_size;
5883 register int i;
5884 register struct bpf_insn *p;
5885 struct bpf_insn *f;
5886 int len;
5887
5888 /*
5889 * Make a copy of the filter, and modify that copy if
5890 * necessary.
5891 */
5892 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
5893 len = handle->fcode.bf_len;
5894 f = (struct bpf_insn *)malloc(prog_size);
5895 if (f == NULL) {
5896 pcapint_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5897 errno, "malloc");
5898 return -1;
5899 }
5900 memcpy(f, handle->fcode.bf_insns, prog_size);
5901 fcode->len = len;
5902 fcode->filter = (struct sock_filter *) f;
5903
5904 switch (handle->linktype) {
5905 case DLT_CAN_SOCKETCAN:
5906 /*
5907 * If a similar fix needs to be done for CAN frames that
5908 * appear on the "any" pseudo-interface, it needs to be done
5909 * differently because that would be within DLT_LINUX_SLL or
5910 * DLT_LINUX_SLL2.
5911 */
5912 return fix_dlt_can_socketcan(len, f);
5913 }
5914
5915 for (i = 0; i < len; ++i) {
5916 p = &f[i];
5917 /*
5918 * What type of instruction is this?
5919 */
5920 switch (BPF_CLASS(p->code)) {
5921
5922 case BPF_LD:
5923 case BPF_LDX:
5924 /*
5925 * It's a load instruction; is it loading
5926 * from the packet?
5927 */
5928 switch (BPF_MODE(p->code)) {
5929
5930 case BPF_ABS:
5931 case BPF_IND:
5932 case BPF_MSH:
5933 /*
5934 * Yes; are we in cooked mode?
5935 */
5936 if (handlep->cooked) {
5937 /*
5938 * Yes, so we need to fix this
5939 * instruction.
5940 */
5941 if (fix_offset(handle, p) < 0) {
5942 /*
5943 * We failed to do so.
5944 * Return 0, so our caller
5945 * knows to punt to userland.
5946 */
5947 return 0;
5948 }
5949 }
5950 break;
5951 }
5952 break;
5953 }
5954 }
5955 return 1; /* we succeeded */
5956 }
5957
5958 static int
5959 fix_offset(pcap_t *handle, struct bpf_insn *p)
5960 {
5961 /*
5962 * Existing references to auxiliary data shouldn't be adjusted.
5963 *
5964 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so
5965 * we use >= and cast SKF_AD_OFF to unsigned.
5966 */
5967 if (p->k >= (bpf_u_int32)SKF_AD_OFF)
5968 return 0;
5969 if (handle->linktype == DLT_LINUX_SLL2) {
5970 /*
5971 * What's the offset?
5972 */
5973 if (p->k >= SLL2_HDR_LEN) {
5974 /*
5975 * It's within the link-layer payload; that starts
5976 * at an offset of 0, as far as the kernel packet
5977 * filter is concerned, so subtract the length of
5978 * the link-layer header.
5979 */
5980 p->k -= SLL2_HDR_LEN;
5981 } else if (p->k == 0) {
5982 /*
5983 * It's the protocol field; map it to the
5984 * special magic kernel offset for that field.
5985 */
5986 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5987 } else if (p->k == 4) {
5988 /*
5989 * It's the ifindex field; map it to the
5990 * special magic kernel offset for that field.
5991 */
5992 p->k = SKF_AD_OFF + SKF_AD_IFINDEX;
5993 } else if (p->k == 10) {
5994 /*
5995 * It's the packet type field; map it to the
5996 * special magic kernel offset for that field.
5997 */
5998 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5999 } else if ((bpf_int32)(p->k) > 0) {
6000 /*
6001 * It's within the header, but it's not one of
6002 * those fields; we can't do that in the kernel,
6003 * so punt to userland.
6004 */
6005 return -1;
6006 }
6007 } else {
6008 /*
6009 * What's the offset?
6010 */
6011 if (p->k >= SLL_HDR_LEN) {
6012 /*
6013 * It's within the link-layer payload; that starts
6014 * at an offset of 0, as far as the kernel packet
6015 * filter is concerned, so subtract the length of
6016 * the link-layer header.
6017 */
6018 p->k -= SLL_HDR_LEN;
6019 } else if (p->k == 0) {
6020 /*
6021 * It's the packet type field; map it to the
6022 * special magic kernel offset for that field.
6023 */
6024 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
6025 } else if (p->k == 14) {
6026 /*
6027 * It's the protocol field; map it to the
6028 * special magic kernel offset for that field.
6029 */
6030 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
6031 } else if ((bpf_int32)(p->k) > 0) {
6032 /*
6033 * It's within the header, but it's not one of
6034 * those fields; we can't do that in the kernel,
6035 * so punt to userland.
6036 */
6037 return -1;
6038 }
6039 }
6040 return 0;
6041 }
6042
6043 static int
6044 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
6045 {
6046 int total_filter_on = 0;
6047 int save_mode;
6048 int ret;
6049 int save_errno;
6050
6051 /*
6052 * The socket filter code doesn't discard all packets queued
6053 * up on the socket when the filter is changed; this means
6054 * that packets that don't match the new filter may show up
6055 * after the new filter is put onto the socket, if those
6056 * packets haven't yet been read.
6057 *
6058 * This means, for example, that if you do a tcpdump capture
6059 * with a filter, the first few packets in the capture might
6060 * be packets that wouldn't have passed the filter.
6061 *
6062 * We therefore discard all packets queued up on the socket
6063 * when setting a kernel filter. (This isn't an issue for
6064 * userland filters, as the userland filtering is done after
6065 * packets are queued up.)
6066 *
6067 * To flush those packets, we put the socket in read-only mode,
6068 * and read packets from the socket until there are no more to
6069 * read.
6070 *
6071 * In order to keep that from being an infinite loop - i.e.,
6072 * to keep more packets from arriving while we're draining
6073 * the queue - we put the "total filter", which is a filter
6074 * that rejects all packets, onto the socket before draining
6075 * the queue.
6076 *
6077 * This code deliberately ignores any errors, so that you may
6078 * get bogus packets if an error occurs, rather than having
6079 * the filtering done in userland even if it could have been
6080 * done in the kernel.
6081 */
6082 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
6083 &total_fcode, sizeof(total_fcode)) == 0) {
6084 char drain[1];
6085
6086 /*
6087 * Note that we've put the total filter onto the socket.
6088 */
6089 total_filter_on = 1;
6090
6091 /*
6092 * Save the socket's current mode, and put it in
6093 * non-blocking mode; we drain it by reading packets
6094 * until we get an error (which is normally a
6095 * "nothing more to be read" error).
6096 */
6097 save_mode = fcntl(handle->fd, F_GETFL, 0);
6098 if (save_mode == -1) {
6099 pcapint_fmt_errmsg_for_errno(handle->errbuf,
6100 PCAP_ERRBUF_SIZE, errno,
6101 "can't get FD flags when changing filter");
6102 return -2;
6103 }
6104 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) {
6105 pcapint_fmt_errmsg_for_errno(handle->errbuf,
6106 PCAP_ERRBUF_SIZE, errno,
6107 "can't set nonblocking mode when changing filter");
6108 return -2;
6109 }
6110 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)
6111 ;
6112 save_errno = errno;
6113 if (save_errno != EAGAIN) {
6114 /*
6115 * Fatal error.
6116 *
6117 * If we can't restore the mode or reset the
6118 * kernel filter, there's nothing we can do.
6119 */
6120 (void)fcntl(handle->fd, F_SETFL, save_mode);
6121 (void)reset_kernel_filter(handle);
6122 pcapint_fmt_errmsg_for_errno(handle->errbuf,
6123 PCAP_ERRBUF_SIZE, save_errno,
6124 "recv failed when changing filter");
6125 return -2;
6126 }
6127 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) {
6128 pcapint_fmt_errmsg_for_errno(handle->errbuf,
6129 PCAP_ERRBUF_SIZE, errno,
6130 "can't restore FD flags when changing filter");
6131 return -2;
6132 }
6133 }
6134
6135 /*
6136 * Now attach the new filter.
6137 */
6138 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
6139 fcode, sizeof(*fcode));
6140 if (ret == -1 && total_filter_on) {
6141 /*
6142 * Well, we couldn't set that filter on the socket,
6143 * but we could set the total filter on the socket.
6144 *
6145 * This could, for example, mean that the filter was
6146 * too big to put into the kernel, so we'll have to
6147 * filter in userland; in any case, we'll be doing
6148 * filtering in userland, so we need to remove the
6149 * total filter so we see packets.
6150 */
6151 save_errno = errno;
6152
6153 /*
6154 * If this fails, we're really screwed; we have the
6155 * total filter on the socket, and it won't come off.
6156 * Report it as a fatal error.
6157 */
6158 if (reset_kernel_filter(handle) == -1) {
6159 pcapint_fmt_errmsg_for_errno(handle->errbuf,
6160 PCAP_ERRBUF_SIZE, errno,
6161 "can't remove kernel total filter");
6162 return -2; /* fatal error */
6163 }
6164
6165 errno = save_errno;
6166 }
6167 return ret;
6168 }
6169
6170 static int
6171 reset_kernel_filter(pcap_t *handle)
6172 {
6173 int ret;
6174 /*
6175 * setsockopt() barfs unless it get a dummy parameter.
6176 * valgrind whines unless the value is initialized,
6177 * as it has no idea that setsockopt() ignores its
6178 * parameter.
6179 */
6180 int dummy = 0;
6181
6182 ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
6183 &dummy, sizeof(dummy));
6184 /*
6185 * Ignore ENOENT - it means "we don't have a filter", so there
6186 * was no filter to remove, and there's still no filter.
6187 *
6188 * Also ignore ENONET, as a lot of kernel versions had a
6189 * typo where ENONET, rather than ENOENT, was returned.
6190 */
6191 if (ret == -1 && errno != ENOENT && errno != ENONET)
6192 return -1;
6193 return 0;
6194 }
6195
6196 int
6197 pcap_set_protocol_linux(pcap_t *p, int protocol)
6198 {
6199 if (pcapint_check_activated(p))
6200 return (PCAP_ERROR_ACTIVATED);
6201 p->opt.protocol = protocol;
6202 return (0);
6203 }
6204
6205 /*
6206 * Libpcap version string.
6207 */
6208 const char *
6209 pcap_lib_version(void)
6210 {
6211 return (PCAP_VERSION_STRING
6212 #if defined(HAVE_TPACKET3) && defined(PCAP_SUPPORT_NETMAP)
6213 " (with TPACKET_V3 and netmap)"
6214 #elif defined(HAVE_TPACKET3)
6215 " (with TPACKET_V3)"
6216 #elif defined(PCAP_SUPPORT_NETMAP)
6217 " (with TPACKET_V2 and netmap)"
6218 #else
6219 " (with TPACKET_V2)"
6220 #endif
6221 );
6222 }