]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Mind all-zeroes mask in gen_mcmp().
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #include <config.h>
23
24 #ifdef _WIN32
25 #include <ws2tcpip.h>
26 #else
27 #include <netinet/in.h>
28 #endif /* _WIN32 */
29
30 #include <stdlib.h>
31 #include <string.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <stdarg.h>
35 #include <stdio.h>
36 #include <stdint.h>
37 #include <stddef.h>
38
39 #include "pcap-int.h"
40
41 #include "extract.h"
42
43 #include "ethertype.h"
44 #include "llc.h"
45 #include "gencode.h"
46 #include "ieee80211.h"
47 #include "pflog.h"
48 #include "ppp.h"
49 #include "pcap/sll.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
53
54 #include "scanner.h"
55
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
60 #endif
61
62 #ifdef _WIN32
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
66 #endif
67 #ifdef INET6
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
69 /* IPv6 address */
70 struct in6_addr
71 {
72 union
73 {
74 uint8_t u6_addr8[16];
75 uint16_t u6_addr16[8];
76 uint32_t u6_addr32[4];
77 } in6_u;
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
82 };
83
84 typedef unsigned short sa_family_t;
85
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
88
89 /* Ditto, for IPv6. */
90 struct sockaddr_in6
91 {
92 __SOCKADDR_COMMON (sin6_);
93 uint16_t sin6_port; /* Transport layer port # */
94 uint32_t sin6_flowinfo; /* IPv6 flow information */
95 struct in6_addr sin6_addr; /* IPv6 address */
96 };
97
98 #ifndef EAI_ADDRFAMILY
99 struct addrinfo {
100 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family; /* PF_xxx */
102 int ai_socktype; /* SOCK_xxx */
103 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen; /* length of ai_addr */
105 char *ai_canonname; /* canonical name for hostname */
106 struct sockaddr *ai_addr; /* binary address */
107 struct addrinfo *ai_next; /* next structure in linked list */
108 };
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
111 #endif /* INET6 */
112 #else /* _WIN32 */
113 #include <netdb.h> /* for "struct addrinfo" */
114 #endif /* _WIN32 */
115 #include <pcap/namedb.h>
116
117 #include "nametoaddr.h"
118
119 #define ETHERMTU 1500
120
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
123 #endif
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
126 #endif
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
129 #endif
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
132 #endif
133 #ifndef IPPROTO_SCTP
134 #define IPPROTO_SCTP 132
135 #endif
136
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
139
140
141 /*
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
143 */
144
145 /* RFC 1051 */
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
148
149 /* RFC 1201 */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
153
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
157
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
160
161
162 /* Based on UNI3.1 standard by ATM Forum */
163
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
171
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
188
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
201
202 #define Q2931 0x09
203
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
210
211 /* format of signalling messages */
212 #define TYPE_POS 0
213 #define LEN_POS 2
214 #define FIELD_BEGIN_POS 4
215
216
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
222
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
228
229
230 /* Types missing from some systems */
231
232 /*
233 * Network layer protocol identifiers
234 */
235 #ifndef ISO8473_CLNP
236 #define ISO8473_CLNP 0x81
237 #endif
238 #ifndef ISO9542_ESIS
239 #define ISO9542_ESIS 0x82
240 #endif
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
243 #endif
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
246 #endif
247
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
257 /*
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
261 */
262 #define ISIS_PDU_TYPE_MAX 0x1FU
263
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
266 #endif
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
269 #endif
270
271 // Same as in tcpdump/print-sl.c.
272 #define SLIPDIR_IN 0
273 #define SLIPDIR_OUT 1
274
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
277 #endif
278
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
280
281 /*
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
285 */
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
287 { \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
295 }
296
297 /*
298 * Offset "not set" value.
299 */
300 #define OFFSET_NOT_SET 0xffffffffU
301
302 /*
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
308 *
309 * bpf_abs_offset is a structure containing all that information:
310 *
311 * is_variable is 1 if there's a variable part.
312 *
313 * constant_part is the constant part of the value, possibly zero;
314 *
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
317 * and -1 otherwise.
318 */
319 typedef struct {
320 int is_variable;
321 u_int constant_part;
322 int reg;
323 } bpf_abs_offset;
324
325 /*
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
328 */
329 enum e_offrel {
330 OR_PACKET, /* full packet data */
331 OR_LINKHDR, /* link-layer header */
332 OR_PREVLINKHDR, /* previous link-layer header */
333 OR_LLC, /* 802.2 LLC header */
334 OR_PREVMPLSHDR, /* previous MPLS header */
335 OR_LINKTYPE, /* link-layer type */
336 OR_LINKPL, /* link-layer payload */
337 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
340 };
341
342 /*
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
347 *
348 * XXX - this *is* in a library....
349 */
350 #define NCHUNKS 16
351 #define CHUNK0SIZE 1024
352 struct chunk {
353 size_t n_left;
354 void *m;
355 };
356
357 /*
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
360 * - a block
361 * - an slist
362 * - an arth
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
365 */
366 struct chunk_align {
367 char dummy;
368 union {
369 char c;
370 struct block b;
371 struct slist s;
372 struct arth a;
373 } u;
374 };
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
376
377 /* Code generator state */
378
379 struct _compiler_state {
380 jmp_buf top_ctx;
381 pcap_t *bpf_pcap;
382 int error_set;
383
384 struct icode ic;
385
386 int snaplen;
387
388 int linktype;
389 int prevlinktype;
390 int outermostlinktype;
391
392 bpf_u_int32 netmask;
393 int no_optimize;
394
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth;
397 u_int vlan_stack_depth;
398
399 /* XXX */
400 u_int pcap_fddipad;
401
402 /*
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
405 * from that handler.
406 *
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
410 */
411 struct addrinfo *ai;
412
413 /*
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
417 */
418 u_char *e;
419
420 /*
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
424 */
425
426 /*
427 * Absolute offset of the beginning of the link-layer header.
428 */
429 bpf_abs_offset off_linkhdr;
430
431 /*
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
436 */
437 bpf_abs_offset off_prevlinkhdr;
438
439 /*
440 * This is the equivalent information for the outermost layers'
441 * link-layer header.
442 */
443 bpf_abs_offset off_outermostlinkhdr;
444
445 /*
446 * Absolute offset of the beginning of the link-layer payload.
447 */
448 bpf_abs_offset off_linkpl;
449
450 /*
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
454 *
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
457 *
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
461 *
462 * For PPP, it's the offset of the PPP type field.
463 *
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
465 *
466 * For BSD loopback, it's the offset of the AF_ value.
467 *
468 * For Linux cooked sockets, it's the offset of the type field.
469 *
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
472 */
473 bpf_abs_offset off_linktype;
474
475 /*
476 * TRUE if the link layer includes an ATM pseudo-header.
477 */
478 int is_atm;
479
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
484 */
485 int is_encap;
486
487 /*
488 * TRUE if we need variable length part of VLAN offset
489 */
490 int is_vlan_vloffset;
491
492 /*
493 * These are offsets for the ATM pseudo-header.
494 */
495 u_int off_vpi;
496 u_int off_vci;
497 u_int off_proto;
498
499 /*
500 * These are offsets for the MTP2 fields.
501 */
502 u_int off_li;
503 u_int off_li_hsl;
504
505 /*
506 * These are offsets for the MTP3 fields.
507 */
508 u_int off_sio;
509 u_int off_opc;
510 u_int off_dpc;
511 u_int off_sls;
512
513 /*
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
516 */
517 u_int off_payload;
518
519 /*
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
524 *
525 * If the link layer never uses 802.2 LLC:
526 *
527 * "off_nl" and "off_nl_nosnap" are the same.
528 *
529 * If the link layer always uses 802.2 LLC:
530 *
531 * "off_nl" is the offset if there's a SNAP header following
532 * the 802.2 header;
533 *
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
535 *
536 * If the link layer is Ethernet:
537 *
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
540 *
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
543 */
544 u_int off_nl;
545 u_int off_nl_nosnap;
546
547 /*
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
550 */
551 int regused[BPF_MEMWORDS];
552 int curreg;
553
554 /*
555 * Memory chunks.
556 */
557 struct chunk chunks[NCHUNKS];
558 int cur_chunk;
559 };
560
561 /*
562 * For use by routines outside this file.
563 */
564 /* VARARGS */
565 void
566 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
567 {
568 va_list ap;
569
570 /*
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
577 * error.
578 */
579 if (!cstate->error_set) {
580 va_start(ap, fmt);
581 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
582 fmt, ap);
583 va_end(ap);
584 cstate->error_set = 1;
585 }
586 }
587
588 /*
589 * For use *ONLY* in routines in this file.
590 */
591 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
593
594 /* VARARGS */
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
597 {
598 va_list ap;
599
600 va_start(ap, fmt);
601 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
602 fmt, ap);
603 va_end(ap);
604 longjmp(cstate->top_ctx, 1);
605 /*NOTREACHED*/
606 #ifdef _AIX
607 PCAP_UNREACHABLE
608 #endif /* _AIX */
609 }
610
611 static int init_linktype(compiler_state_t *, pcap_t *);
612
613 static void init_regs(compiler_state_t *);
614 static int alloc_reg(compiler_state_t *);
615 static void free_reg(compiler_state_t *, int);
616
617 static void initchunks(compiler_state_t *cstate);
618 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
619 static void *newchunk(compiler_state_t *cstate, size_t);
620 static void freechunks(compiler_state_t *cstate);
621 static inline struct block *new_block(compiler_state_t *cstate, int);
622 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
623 static struct block *gen_retblk(compiler_state_t *cstate, int);
624 static inline void syntax(compiler_state_t *cstate);
625
626 static void backpatch(struct block *, struct block *);
627 static void merge(struct block *, struct block *);
628 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
629 u_int, bpf_u_int32);
630 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
631 u_int, bpf_u_int32);
632 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
633 u_int, bpf_u_int32);
634 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
635 u_int, bpf_u_int32);
636 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
637 u_int, bpf_u_int32);
638 static struct block *gen_cmp_ne(compiler_state_t *, enum e_offrel, u_int,
639 u_int size, bpf_u_int32);
640 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
641 u_int, bpf_u_int32, bpf_u_int32);
642 static struct block *gen_mcmp_ne(compiler_state_t *, enum e_offrel, u_int,
643 u_int, bpf_u_int32, bpf_u_int32);
644 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
645 u_int, const u_char *);
646 static struct block *gen_jmp(compiler_state_t *, int, bpf_u_int32,
647 struct slist *);
648 static struct block *gen_set(compiler_state_t *, bpf_u_int32, struct slist *);
649 static struct block *gen_unset(compiler_state_t *, bpf_u_int32, struct slist *);
650 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
651 u_int, bpf_u_int32, int, int, bpf_u_int32);
652 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
653 u_int, u_int);
654 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
655 u_int);
656 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
657 static struct block *gen_uncond(compiler_state_t *, int);
658 static inline struct block *gen_true(compiler_state_t *);
659 static inline struct block *gen_false(compiler_state_t *);
660 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
661 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
662 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
663 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
664 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
665 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
666 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
667 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
668 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
669 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
670 bpf_abs_offset *);
671 static uint16_t ethertype_to_ppptype(compiler_state_t *, bpf_u_int32);
672 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
673 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
674 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
675 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
676 int, u_int, u_int);
677 #ifdef INET6
678 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
679 struct in6_addr *, int, u_int, u_int);
680 #endif
681 static struct block *gen_ahostop(compiler_state_t *, const uint8_t, int);
682 static struct block *gen_mac48hostop(compiler_state_t *, const u_char *,
683 const int, const u_int, const u_int);
684 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
685 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
686 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
687 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
688 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
689 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
690 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
691 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
692 int, int, int);
693 #ifdef INET6
694 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
695 struct in6_addr *, int, int, int);
696 #endif
697 #ifndef INET6
698 static struct block *gen_gateway(compiler_state_t *, const u_char *,
699 struct addrinfo *, int);
700 #endif
701 static struct block *gen_ip_proto(compiler_state_t *, const uint8_t);
702 static struct block *gen_ip6_proto(compiler_state_t *, const uint8_t);
703 static struct block *gen_ipfrag(compiler_state_t *);
704 static struct block *gen_portatom(compiler_state_t *, int, uint16_t);
705 static struct block *gen_portrangeatom(compiler_state_t *, u_int, uint16_t,
706 uint16_t);
707 static struct block *gen_portatom6(compiler_state_t *, int, uint16_t);
708 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, uint16_t,
709 uint16_t);
710 static struct block *gen_port(compiler_state_t *, uint16_t, int, int);
711 static struct block *gen_port_common(compiler_state_t *, int, struct block *);
712 static struct block *gen_portrange(compiler_state_t *, uint16_t, uint16_t,
713 int, int);
714 static struct block *gen_port6(compiler_state_t *, uint16_t, int, int);
715 static struct block *gen_port6_common(compiler_state_t *, int, struct block *);
716 static struct block *gen_portrange6(compiler_state_t *, uint16_t, uint16_t,
717 int, int);
718 static int lookup_proto(compiler_state_t *, const char *, int);
719 #if !defined(NO_PROTOCHAIN)
720 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
721 #endif /* !defined(NO_PROTOCHAIN) */
722 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int);
723 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
724 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
725 static struct block *gen_mac_multicast(compiler_state_t *, int);
726 static struct block *gen_len(compiler_state_t *, int, int);
727 static struct block *gen_encap_ll_check(compiler_state_t *cstate);
728
729 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
730 bpf_u_int32, int, int);
731 static struct block *gen_atmtype_llc(compiler_state_t *);
732 static struct block *gen_msg_abbrev(compiler_state_t *, const uint8_t);
733 static struct block *gen_atm_prototype(compiler_state_t *, const uint8_t);
734 static struct block *gen_atm_vpi(compiler_state_t *, const uint8_t);
735 static struct block *gen_atm_vci(compiler_state_t *, const uint16_t);
736
737 static void
738 initchunks(compiler_state_t *cstate)
739 {
740 int i;
741
742 for (i = 0; i < NCHUNKS; i++) {
743 cstate->chunks[i].n_left = 0;
744 cstate->chunks[i].m = NULL;
745 }
746 cstate->cur_chunk = 0;
747 }
748
749 static void *
750 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
751 {
752 struct chunk *cp;
753 int k;
754 size_t size;
755
756 /* Round up to chunk alignment. */
757 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
758
759 cp = &cstate->chunks[cstate->cur_chunk];
760 if (n > cp->n_left) {
761 ++cp;
762 k = ++cstate->cur_chunk;
763 if (k >= NCHUNKS) {
764 bpf_set_error(cstate, "out of memory");
765 return (NULL);
766 }
767 size = CHUNK0SIZE << k;
768 cp->m = (void *)malloc(size);
769 if (cp->m == NULL) {
770 bpf_set_error(cstate, "out of memory");
771 return (NULL);
772 }
773 memset((char *)cp->m, 0, size);
774 cp->n_left = size;
775 if (n > size) {
776 bpf_set_error(cstate, "out of memory");
777 return (NULL);
778 }
779 }
780 cp->n_left -= n;
781 return (void *)((char *)cp->m + cp->n_left);
782 }
783
784 static void *
785 newchunk(compiler_state_t *cstate, size_t n)
786 {
787 void *p;
788
789 p = newchunk_nolongjmp(cstate, n);
790 if (p == NULL) {
791 longjmp(cstate->top_ctx, 1);
792 /*NOTREACHED*/
793 }
794 return (p);
795 }
796
797 static void
798 freechunks(compiler_state_t *cstate)
799 {
800 int i;
801
802 for (i = 0; i < NCHUNKS; ++i)
803 if (cstate->chunks[i].m != NULL)
804 free(cstate->chunks[i].m);
805 }
806
807 /*
808 * A strdup whose allocations are freed after code generation is over.
809 * This is used by the lexical analyzer, so it can't longjmp; it just
810 * returns NULL on an allocation error, and the callers must check
811 * for it.
812 */
813 char *
814 sdup(compiler_state_t *cstate, const char *s)
815 {
816 size_t n = strlen(s) + 1;
817 char *cp = newchunk_nolongjmp(cstate, n);
818
819 if (cp == NULL)
820 return (NULL);
821 pcapint_strlcpy(cp, s, n);
822 return (cp);
823 }
824
825 static inline struct block *
826 new_block(compiler_state_t *cstate, int code)
827 {
828 struct block *p;
829
830 p = (struct block *)newchunk(cstate, sizeof(*p));
831 p->s.code = code;
832 p->head = p;
833
834 return p;
835 }
836
837 static inline struct slist *
838 new_stmt(compiler_state_t *cstate, int code)
839 {
840 struct slist *p;
841
842 p = (struct slist *)newchunk(cstate, sizeof(*p));
843 p->s.code = code;
844
845 return p;
846 }
847
848 static struct block *
849 gen_retblk_internal(compiler_state_t *cstate, int v)
850 {
851 struct block *b = new_block(cstate, BPF_RET|BPF_K);
852
853 b->s.k = v;
854 return b;
855 }
856
857 static struct block *
858 gen_retblk(compiler_state_t *cstate, int v)
859 {
860 if (setjmp(cstate->top_ctx)) {
861 /*
862 * gen_retblk() only fails because a memory
863 * allocation failed in newchunk(), meaning
864 * that it can't return a pointer.
865 *
866 * Return NULL.
867 */
868 return NULL;
869 }
870 return gen_retblk_internal(cstate, v);
871 }
872
873 static inline PCAP_NORETURN_DEF void
874 syntax(compiler_state_t *cstate)
875 {
876 bpf_error(cstate, "syntax error in filter expression");
877 }
878
879 /*
880 * For the given integer return a string with the keyword (or the nominal
881 * keyword if there is more than one). This is a simpler version of tok2str()
882 * in tcpdump because in this problem space a valid integer value is not
883 * greater than 71.
884 */
885 static const char *
886 qual2kw(const char *kind, const unsigned id, const char *tokens[],
887 const size_t size)
888 {
889 static char buf[4][64];
890 static int idx = 0;
891
892 if (id < size && tokens[id])
893 return tokens[id];
894
895 char *ret = buf[idx];
896 idx = (idx + 1) % (sizeof(buf) / sizeof(buf[0]));
897 ret[0] = '\0'; // just in case
898 snprintf(ret, sizeof(buf[0]), "<invalid %s %u>", kind, id);
899 return ret;
900 }
901
902 // protocol qualifier keywords
903 static const char *
904 pqkw(const unsigned id)
905 {
906 const char * tokens[] = {
907 [Q_LINK] = "link",
908 [Q_IP] = "ip",
909 [Q_ARP] = "arp",
910 [Q_RARP] = "rarp",
911 [Q_SCTP] = "sctp",
912 [Q_TCP] = "tcp",
913 [Q_UDP] = "udp",
914 [Q_ICMP] = "icmp",
915 [Q_IGMP] = "igmp",
916 [Q_IGRP] = "igrp",
917 [Q_ATALK] = "atalk",
918 [Q_DECNET] = "decnet",
919 [Q_LAT] = "lat",
920 [Q_SCA] = "sca",
921 [Q_MOPRC] = "moprc",
922 [Q_MOPDL] = "mopdl",
923 [Q_IPV6] = "ip6",
924 [Q_ICMPV6] = "icmp6",
925 [Q_AH] = "ah",
926 [Q_ESP] = "esp",
927 [Q_PIM] = "pim",
928 [Q_VRRP] = "vrrp",
929 [Q_AARP] = "aarp",
930 [Q_ISO] = "iso",
931 [Q_ESIS] = "esis",
932 [Q_ISIS] = "isis",
933 [Q_CLNP] = "clnp",
934 [Q_STP] = "stp",
935 [Q_IPX] = "ipx",
936 [Q_NETBEUI] = "netbeui",
937 [Q_ISIS_L1] = "l1",
938 [Q_ISIS_L2] = "l2",
939 [Q_ISIS_IIH] = "iih",
940 [Q_ISIS_SNP] = "snp",
941 [Q_ISIS_CSNP] = "csnp",
942 [Q_ISIS_PSNP] = "psnp",
943 [Q_ISIS_LSP] = "lsp",
944 [Q_RADIO] = "radio",
945 [Q_CARP] = "carp",
946 };
947 return qual2kw("proto", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
948 }
949
950 // direction qualifier keywords
951 static const char *
952 dqkw(const unsigned id)
953 {
954 const char * map[] = {
955 [Q_SRC] = "src",
956 [Q_DST] = "dst",
957 [Q_OR] = "src or dst",
958 [Q_AND] = "src and dst",
959 [Q_ADDR1] = "addr1",
960 [Q_ADDR2] = "addr2",
961 [Q_ADDR3] = "addr3",
962 [Q_ADDR4] = "addr4",
963 [Q_RA] = "ra",
964 [Q_TA] = "ta",
965 };
966 return qual2kw("dir", id, map, sizeof(map) / sizeof(map[0]));
967 }
968
969 // ATM keywords
970 static const char *
971 atmkw(const unsigned id)
972 {
973 const char * tokens[] = {
974 [A_METAC] = "metac",
975 [A_BCC] = "bcc",
976 [A_OAMF4SC] = "oamf4sc",
977 [A_OAMF4EC] = "oamf4ec",
978 [A_SC] = "sc",
979 [A_ILMIC] = "ilmic",
980 [A_OAM] = "oam",
981 [A_OAMF4] = "oamf4",
982 [A_LANE] = "lane",
983 [A_VPI] = "vpi",
984 [A_VCI] = "vci",
985 [A_CONNECTMSG] = "connectmsg",
986 [A_METACONNECT] = "metaconnect",
987 };
988 return qual2kw("ATM keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
989 }
990
991 // SS7 keywords
992 static const char *
993 ss7kw(const unsigned id)
994 {
995 const char * tokens[] = {
996 [M_FISU] = "fisu",
997 [M_LSSU] = "lssu",
998 [M_MSU] = "msu",
999 [MH_FISU] = "hfisu",
1000 [MH_LSSU] = "hlssu",
1001 [MH_MSU] = "hmsu",
1002 [M_SIO] = "sio",
1003 [M_OPC] = "opc",
1004 [M_DPC] = "dpc",
1005 [M_SLS] = "sls",
1006 [MH_SIO] = "hsio",
1007 [MH_OPC] = "hopc",
1008 [MH_DPC] = "hdpc",
1009 [MH_SLS] = "hsls",
1010 };
1011 return qual2kw("MTP keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
1012 }
1013
1014 static PCAP_NORETURN_DEF void
1015 fail_kw_on_dlt(compiler_state_t *cstate, const char *keyword)
1016 {
1017 bpf_error(cstate, "'%s' not supported on %s", keyword,
1018 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
1019 }
1020
1021 static void
1022 assert_pflog(compiler_state_t *cstate, const char *kw)
1023 {
1024 if (cstate->linktype != DLT_PFLOG)
1025 bpf_error(cstate, "'%s' supported only on PFLOG linktype", kw);
1026 }
1027
1028 static void
1029 assert_atm(compiler_state_t *cstate, const char *kw)
1030 {
1031 /*
1032 * Belt and braces: init_linktype() sets either all of these struct
1033 * members (for DLT_SUNATM) or none (otherwise).
1034 */
1035 if (cstate->linktype != DLT_SUNATM ||
1036 ! cstate->is_atm ||
1037 cstate->off_vpi == OFFSET_NOT_SET ||
1038 cstate->off_vci == OFFSET_NOT_SET ||
1039 cstate->off_proto == OFFSET_NOT_SET ||
1040 cstate->off_payload == OFFSET_NOT_SET)
1041 bpf_error(cstate, "'%s' supported only on SUNATM", kw);
1042 }
1043
1044 static void
1045 assert_ss7(compiler_state_t *cstate, const char *kw)
1046 {
1047 switch (cstate->linktype) {
1048 case DLT_MTP2:
1049 case DLT_ERF:
1050 case DLT_MTP2_WITH_PHDR:
1051 // Belt and braces, same as in assert_atm().
1052 if (cstate->off_sio != OFFSET_NOT_SET &&
1053 cstate->off_opc != OFFSET_NOT_SET &&
1054 cstate->off_dpc != OFFSET_NOT_SET &&
1055 cstate->off_sls != OFFSET_NOT_SET)
1056 return;
1057 }
1058 bpf_error(cstate, "'%s' supported only on SS7", kw);
1059 }
1060
1061 static void
1062 assert_maxval(compiler_state_t *cstate, const char *name,
1063 const bpf_u_int32 val, const bpf_u_int32 maxval)
1064 {
1065 if (val > maxval)
1066 bpf_error(cstate, "%s %u greater than maximum %u",
1067 name, val, maxval);
1068 }
1069
1070 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1071 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1072
1073 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1074 static int
1075 port_pq_to_ipproto(compiler_state_t *cstate, const int proto, const char *kw)
1076 {
1077 switch (proto) {
1078 case Q_UDP:
1079 return IPPROTO_UDP;
1080 case Q_TCP:
1081 return IPPROTO_TCP;
1082 case Q_SCTP:
1083 return IPPROTO_SCTP;
1084 case Q_DEFAULT:
1085 return PROTO_UNDEF;
1086 }
1087 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), kw);
1088 }
1089
1090 int
1091 pcap_compile(pcap_t *p, struct bpf_program *program,
1092 const char *buf, int optimize, bpf_u_int32 mask)
1093 {
1094 #ifdef _WIN32
1095 int err;
1096 WSADATA wsaData;
1097 #endif
1098 compiler_state_t cstate;
1099 yyscan_t scanner = NULL;
1100 YY_BUFFER_STATE in_buffer = NULL;
1101 u_int len;
1102 int rc;
1103
1104 /*
1105 * If this pcap_t hasn't been activated, it doesn't have a
1106 * link-layer type, so we can't use it.
1107 */
1108 if (!p->activated) {
1109 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1110 "not-yet-activated pcap_t passed to pcap_compile");
1111 return (PCAP_ERROR);
1112 }
1113
1114 #ifdef _WIN32
1115 /*
1116 * Initialize Winsock, asking for the latest version (2.2),
1117 * as we may be calling Winsock routines to translate
1118 * host names to addresses.
1119 */
1120 err = WSAStartup(MAKEWORD(2, 2), &wsaData);
1121 if (err != 0) {
1122 pcapint_fmt_errmsg_for_win32_err(p->errbuf, PCAP_ERRBUF_SIZE,
1123 err, "Error calling WSAStartup()");
1124 return (PCAP_ERROR);
1125 }
1126 #endif
1127
1128 #ifdef ENABLE_REMOTE
1129 /*
1130 * If the device on which we're capturing need to be notified
1131 * that a new filter is being compiled, do so.
1132 *
1133 * This allows them to save a copy of it, in case, for example,
1134 * they're implementing a form of remote packet capture, and
1135 * want the remote machine to filter out the packets in which
1136 * it's sending the packets it's captured.
1137 *
1138 * XXX - the fact that we happen to be compiling a filter
1139 * doesn't necessarily mean we'll be installing it as the
1140 * filter for this pcap_t; we might be running it from userland
1141 * on captured packets to do packet classification. We really
1142 * need a better way of handling this, but this is all that
1143 * the WinPcap remote capture code did.
1144 */
1145 if (p->save_current_filter_op != NULL)
1146 (p->save_current_filter_op)(p, buf);
1147 #endif
1148
1149 initchunks(&cstate);
1150 cstate.no_optimize = 0;
1151 #ifdef INET6
1152 cstate.ai = NULL;
1153 #endif
1154 cstate.e = NULL;
1155 cstate.ic.root = NULL;
1156 cstate.ic.cur_mark = 0;
1157 cstate.bpf_pcap = p;
1158 cstate.error_set = 0;
1159 init_regs(&cstate);
1160
1161 cstate.netmask = mask;
1162
1163 cstate.snaplen = pcap_snapshot(p);
1164 if (cstate.snaplen == 0) {
1165 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1166 "snaplen of 0 rejects all packets");
1167 rc = PCAP_ERROR;
1168 goto quit;
1169 }
1170
1171 if (pcap_lex_init(&scanner) != 0) {
1172 pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
1173 errno, "can't initialize scanner");
1174 rc = PCAP_ERROR;
1175 goto quit;
1176 }
1177 in_buffer = pcap__scan_string(buf ? buf : "", scanner);
1178
1179 /*
1180 * Associate the compiler state with the lexical analyzer
1181 * state.
1182 */
1183 pcap_set_extra(&cstate, scanner);
1184
1185 if (init_linktype(&cstate, p) == -1) {
1186 rc = PCAP_ERROR;
1187 goto quit;
1188 }
1189 if (pcap_parse(scanner, &cstate) != 0) {
1190 #ifdef INET6
1191 if (cstate.ai != NULL)
1192 freeaddrinfo(cstate.ai);
1193 #endif
1194 if (cstate.e != NULL)
1195 free(cstate.e);
1196 rc = PCAP_ERROR;
1197 goto quit;
1198 }
1199
1200 if (cstate.ic.root == NULL) {
1201 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
1202
1203 /*
1204 * Catch errors reported by gen_retblk().
1205 */
1206 if (cstate.ic.root== NULL) {
1207 rc = PCAP_ERROR;
1208 goto quit;
1209 }
1210 }
1211
1212 if (optimize && !cstate.no_optimize) {
1213 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
1214 /* Failure */
1215 rc = PCAP_ERROR;
1216 goto quit;
1217 }
1218 if (cstate.ic.root == NULL ||
1219 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
1220 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1221 "expression rejects all packets");
1222 rc = PCAP_ERROR;
1223 goto quit;
1224 }
1225 }
1226 program->bf_insns = icode_to_fcode(&cstate.ic,
1227 cstate.ic.root, &len, p->errbuf);
1228 if (program->bf_insns == NULL) {
1229 /* Failure */
1230 rc = PCAP_ERROR;
1231 goto quit;
1232 }
1233 program->bf_len = len;
1234
1235 rc = 0; /* We're all okay */
1236
1237 quit:
1238 /*
1239 * Clean up everything for the lexical analyzer.
1240 */
1241 if (in_buffer != NULL)
1242 pcap__delete_buffer(in_buffer, scanner);
1243 if (scanner != NULL)
1244 pcap_lex_destroy(scanner);
1245
1246 /*
1247 * Clean up our own allocated memory.
1248 */
1249 freechunks(&cstate);
1250
1251 #ifdef _WIN32
1252 WSACleanup();
1253 #endif
1254
1255 return (rc);
1256 }
1257
1258 /*
1259 * entry point for using the compiler with no pcap open
1260 * pass in all the stuff that is needed explicitly instead.
1261 */
1262 int
1263 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
1264 struct bpf_program *program,
1265 const char *buf, int optimize, bpf_u_int32 mask)
1266 {
1267 pcap_t *p;
1268 int ret;
1269
1270 p = pcap_open_dead(linktype_arg, snaplen_arg);
1271 if (p == NULL)
1272 return (PCAP_ERROR);
1273 ret = pcap_compile(p, program, buf, optimize, mask);
1274 pcap_close(p);
1275 return (ret);
1276 }
1277
1278 /*
1279 * Clean up a "struct bpf_program" by freeing all the memory allocated
1280 * in it.
1281 */
1282 void
1283 pcap_freecode(struct bpf_program *program)
1284 {
1285 program->bf_len = 0;
1286 if (program->bf_insns != NULL) {
1287 free((char *)program->bf_insns);
1288 program->bf_insns = NULL;
1289 }
1290 }
1291
1292 /*
1293 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1294 * which of the jt and jf fields has been resolved and which is a pointer
1295 * back to another unresolved block (or nil). At least one of the fields
1296 * in each block is already resolved.
1297 */
1298 static void
1299 backpatch(struct block *list, struct block *target)
1300 {
1301 struct block *next;
1302
1303 while (list) {
1304 if (!list->sense) {
1305 next = JT(list);
1306 JT(list) = target;
1307 } else {
1308 next = JF(list);
1309 JF(list) = target;
1310 }
1311 list = next;
1312 }
1313 }
1314
1315 /*
1316 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1317 * which of jt and jf is the link.
1318 */
1319 static void
1320 merge(struct block *b0, struct block *b1)
1321 {
1322 register struct block **p = &b0;
1323
1324 /* Find end of list. */
1325 while (*p)
1326 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
1327
1328 /* Concatenate the lists. */
1329 *p = b1;
1330 }
1331
1332 int
1333 finish_parse(compiler_state_t *cstate, struct block *p)
1334 {
1335 /*
1336 * Catch errors reported by us and routines below us, and return -1
1337 * on an error.
1338 */
1339 if (setjmp(cstate->top_ctx))
1340 return (-1);
1341
1342 /*
1343 * Insert before the statements of the first (root) block any
1344 * statements needed to load the lengths of any variable-length
1345 * headers into registers.
1346 *
1347 * XXX - a fancier strategy would be to insert those before the
1348 * statements of all blocks that use those lengths and that
1349 * have no predecessors that use them, so that we only compute
1350 * the lengths if we need them. There might be even better
1351 * approaches than that.
1352 *
1353 * However, those strategies would be more complicated, and
1354 * as we don't generate code to compute a length if the
1355 * program has no tests that use the length, and as most
1356 * tests will probably use those lengths, we would just
1357 * postpone computing the lengths so that it's not done
1358 * for tests that fail early, and it's not clear that's
1359 * worth the effort.
1360 */
1361 insert_compute_vloffsets(cstate, p->head);
1362
1363 /*
1364 * For DLT_PPI captures, generate a check of the per-packet
1365 * DLT value to make sure it's DLT_IEEE802_11.
1366 *
1367 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1368 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1369 * with appropriate Ethernet information and use that rather
1370 * than using something such as DLT_PPI where you don't know
1371 * the link-layer header type until runtime, which, in the
1372 * general case, would force us to generate both Ethernet *and*
1373 * 802.11 code (*and* anything else for which PPI is used)
1374 * and choose between them early in the BPF program?
1375 */
1376 if (cstate->linktype == DLT_PPI) {
1377 struct block *ppi_dlt_check = gen_cmp(cstate, OR_PACKET,
1378 4, BPF_W, SWAPLONG(DLT_IEEE802_11));
1379 gen_and(ppi_dlt_check, p);
1380 }
1381
1382 backpatch(p, gen_retblk_internal(cstate, cstate->snaplen));
1383 p->sense = !p->sense;
1384 backpatch(p, gen_retblk_internal(cstate, 0));
1385 cstate->ic.root = p->head;
1386 return (0);
1387 }
1388
1389 void
1390 gen_and(struct block *b0, struct block *b1)
1391 {
1392 backpatch(b0, b1->head);
1393 b0->sense = !b0->sense;
1394 b1->sense = !b1->sense;
1395 merge(b1, b0);
1396 b1->sense = !b1->sense;
1397 b1->head = b0->head;
1398 }
1399
1400 void
1401 gen_or(struct block *b0, struct block *b1)
1402 {
1403 b0->sense = !b0->sense;
1404 backpatch(b0, b1->head);
1405 b0->sense = !b0->sense;
1406 merge(b1, b0);
1407 b1->head = b0->head;
1408 }
1409
1410 void
1411 gen_not(struct block *b)
1412 {
1413 b->sense = !b->sense;
1414 }
1415
1416 static struct block *
1417 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1418 u_int size, bpf_u_int32 v)
1419 {
1420 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1421 }
1422
1423 static struct block *
1424 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1425 u_int size, bpf_u_int32 v)
1426 {
1427 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1428 }
1429
1430 static struct block *
1431 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1432 u_int size, bpf_u_int32 v)
1433 {
1434 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1435 }
1436
1437 static struct block *
1438 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1439 u_int size, bpf_u_int32 v)
1440 {
1441 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1442 }
1443
1444 static struct block *
1445 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1446 u_int size, bpf_u_int32 v)
1447 {
1448 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1449 }
1450
1451 static struct block *
1452 gen_cmp_ne(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1453 u_int size, bpf_u_int32 v)
1454 {
1455 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 1, v);
1456 }
1457
1458 static struct block *
1459 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1460 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1461 {
1462 /*
1463 * For any A: if mask == 0, it means A & mask == 0, so the result is
1464 * true iff v == 0. In this case ideally the caller should have
1465 * skipped this invocation and have fewer statement blocks to juggle.
1466 * If the caller could have skipped, but has not, produce a block with
1467 * fewer statements.
1468 *
1469 * This could be done in gen_ncmp() in a more generic way, but this
1470 * function is the only code path that can have mask == 0.
1471 */
1472 if (mask == 0)
1473 return v ? gen_false(cstate) : gen_true(cstate);
1474
1475 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1476 }
1477
1478 static struct block *
1479 gen_mcmp_ne(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1480 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1481 {
1482 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 1, v);
1483 }
1484
1485 static struct block *
1486 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1487 u_int size, const u_char *v)
1488 {
1489 register struct block *b, *tmp;
1490
1491 b = NULL;
1492 while (size >= 4) {
1493 register const u_char *p = &v[size - 4];
1494
1495 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1496 EXTRACT_BE_U_4(p));
1497 if (b != NULL)
1498 gen_and(b, tmp);
1499 b = tmp;
1500 size -= 4;
1501 }
1502 while (size >= 2) {
1503 register const u_char *p = &v[size - 2];
1504
1505 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1506 EXTRACT_BE_U_2(p));
1507 if (b != NULL)
1508 gen_and(b, tmp);
1509 b = tmp;
1510 size -= 2;
1511 }
1512 if (size > 0) {
1513 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1514 if (b != NULL)
1515 gen_and(b, tmp);
1516 b = tmp;
1517 }
1518 return b;
1519 }
1520
1521 static struct block *
1522 gen_jmp(compiler_state_t *cstate, int jtype, bpf_u_int32 v, struct slist *stmts)
1523 {
1524 struct block *b = new_block(cstate, JMP(jtype));
1525 b->s.k = v;
1526 b->stmts = stmts;
1527 return b;
1528 }
1529
1530 static struct block *
1531 gen_set(compiler_state_t *cstate, bpf_u_int32 v, struct slist *stmts)
1532 {
1533 return gen_jmp(cstate, BPF_JSET, v, stmts);
1534 }
1535
1536 static struct block *
1537 gen_unset(compiler_state_t *cstate, bpf_u_int32 v, struct slist *stmts)
1538 {
1539 struct block *b = gen_set(cstate, v, stmts);
1540 gen_not(b);
1541 return b;
1542 }
1543
1544 /*
1545 * AND the field of size "size" at offset "offset" relative to the header
1546 * specified by "offrel" with "mask", and compare it with the value "v"
1547 * with the test specified by "jtype"; if "reverse" is true, the test
1548 * should test the opposite of "jtype".
1549 */
1550 static struct block *
1551 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1552 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1553 bpf_u_int32 v)
1554 {
1555 struct slist *s, *s2;
1556 struct block *b;
1557
1558 s = gen_load_a(cstate, offrel, offset, size);
1559
1560 if (mask != 0xffffffff) {
1561 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1562 s2->s.k = mask;
1563 sappend(s, s2);
1564 }
1565
1566 b = gen_jmp(cstate, jtype, v, s);
1567 if (reverse)
1568 gen_not(b);
1569 return b;
1570 }
1571
1572 static int
1573 init_linktype(compiler_state_t *cstate, pcap_t *p)
1574 {
1575 cstate->pcap_fddipad = p->fddipad;
1576
1577 /*
1578 * We start out with only one link-layer header.
1579 */
1580 cstate->outermostlinktype = pcap_datalink(p);
1581 cstate->off_outermostlinkhdr.constant_part = 0;
1582 cstate->off_outermostlinkhdr.is_variable = 0;
1583 cstate->off_outermostlinkhdr.reg = -1;
1584
1585 cstate->prevlinktype = cstate->outermostlinktype;
1586 cstate->off_prevlinkhdr.constant_part = 0;
1587 cstate->off_prevlinkhdr.is_variable = 0;
1588 cstate->off_prevlinkhdr.reg = -1;
1589
1590 cstate->linktype = cstate->outermostlinktype;
1591 cstate->off_linkhdr.constant_part = 0;
1592 cstate->off_linkhdr.is_variable = 0;
1593 cstate->off_linkhdr.reg = -1;
1594
1595 /*
1596 * XXX
1597 */
1598 cstate->off_linkpl.constant_part = 0;
1599 cstate->off_linkpl.is_variable = 0;
1600 cstate->off_linkpl.reg = -1;
1601
1602 cstate->off_linktype.constant_part = 0;
1603 cstate->off_linktype.is_variable = 0;
1604 cstate->off_linktype.reg = -1;
1605
1606 /*
1607 * Assume it's not raw ATM with a pseudo-header, for now.
1608 */
1609 cstate->is_atm = 0;
1610 cstate->off_vpi = OFFSET_NOT_SET;
1611 cstate->off_vci = OFFSET_NOT_SET;
1612 cstate->off_proto = OFFSET_NOT_SET;
1613 cstate->off_payload = OFFSET_NOT_SET;
1614
1615 /*
1616 * And not encapsulated with either Geneve or VXLAN.
1617 */
1618 cstate->is_encap = 0;
1619
1620 /*
1621 * No variable length VLAN offset by default
1622 */
1623 cstate->is_vlan_vloffset = 0;
1624
1625 /*
1626 * And assume we're not doing SS7.
1627 */
1628 cstate->off_li = OFFSET_NOT_SET;
1629 cstate->off_li_hsl = OFFSET_NOT_SET;
1630 cstate->off_sio = OFFSET_NOT_SET;
1631 cstate->off_opc = OFFSET_NOT_SET;
1632 cstate->off_dpc = OFFSET_NOT_SET;
1633 cstate->off_sls = OFFSET_NOT_SET;
1634
1635 cstate->label_stack_depth = 0;
1636 cstate->vlan_stack_depth = 0;
1637
1638 switch (cstate->linktype) {
1639
1640 case DLT_ARCNET:
1641 cstate->off_linktype.constant_part = 2;
1642 cstate->off_linkpl.constant_part = 6;
1643 cstate->off_nl = 0; /* XXX in reality, variable! */
1644 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1645 break;
1646
1647 case DLT_ARCNET_LINUX:
1648 cstate->off_linktype.constant_part = 4;
1649 cstate->off_linkpl.constant_part = 8;
1650 cstate->off_nl = 0; /* XXX in reality, variable! */
1651 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1652 break;
1653
1654 case DLT_EN10MB:
1655 cstate->off_linktype.constant_part = 12;
1656 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1657 cstate->off_nl = 0; /* Ethernet II */
1658 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1659 break;
1660
1661 case DLT_SLIP:
1662 /*
1663 * SLIP doesn't have a link level type. The 16 byte
1664 * header is hacked into our SLIP driver.
1665 */
1666 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1667 cstate->off_linkpl.constant_part = 16;
1668 cstate->off_nl = 0;
1669 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1670 break;
1671
1672 case DLT_SLIP_BSDOS:
1673 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1674 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1675 /* XXX end */
1676 cstate->off_linkpl.constant_part = 24;
1677 cstate->off_nl = 0;
1678 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1679 break;
1680
1681 case DLT_NULL:
1682 case DLT_LOOP:
1683 cstate->off_linktype.constant_part = 0;
1684 cstate->off_linkpl.constant_part = 4;
1685 cstate->off_nl = 0;
1686 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1687 break;
1688
1689 case DLT_ENC:
1690 cstate->off_linktype.constant_part = 0;
1691 cstate->off_linkpl.constant_part = 12;
1692 cstate->off_nl = 0;
1693 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1694 break;
1695
1696 case DLT_PPP:
1697 case DLT_PPP_PPPD:
1698 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1699 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1700 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1701 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1702 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1703 cstate->off_nl = 0;
1704 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1705 break;
1706
1707 case DLT_PPP_ETHER:
1708 /*
1709 * This does not include the Ethernet header, and
1710 * only covers session state.
1711 */
1712 cstate->off_linktype.constant_part = 6;
1713 cstate->off_linkpl.constant_part = 8;
1714 cstate->off_nl = 0;
1715 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1716 break;
1717
1718 case DLT_PPP_BSDOS:
1719 cstate->off_linktype.constant_part = 5;
1720 cstate->off_linkpl.constant_part = 24;
1721 cstate->off_nl = 0;
1722 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1723 break;
1724
1725 case DLT_FDDI:
1726 /*
1727 * FDDI doesn't really have a link-level type field.
1728 * We set "off_linktype" to the offset of the LLC header.
1729 *
1730 * To check for Ethernet types, we assume that SSAP = SNAP
1731 * is being used and pick out the encapsulated Ethernet type.
1732 * XXX - should we generate code to check for SNAP?
1733 */
1734 cstate->off_linktype.constant_part = 13;
1735 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1736 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1737 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1738 cstate->off_nl = 8; /* 802.2+SNAP */
1739 cstate->off_nl_nosnap = 3; /* 802.2 */
1740 break;
1741
1742 case DLT_IEEE802:
1743 /*
1744 * Token Ring doesn't really have a link-level type field.
1745 * We set "off_linktype" to the offset of the LLC header.
1746 *
1747 * To check for Ethernet types, we assume that SSAP = SNAP
1748 * is being used and pick out the encapsulated Ethernet type.
1749 * XXX - should we generate code to check for SNAP?
1750 *
1751 * XXX - the header is actually variable-length.
1752 * Some various Linux patched versions gave 38
1753 * as "off_linktype" and 40 as "off_nl"; however,
1754 * if a token ring packet has *no* routing
1755 * information, i.e. is not source-routed, the correct
1756 * values are 20 and 22, as they are in the vanilla code.
1757 *
1758 * A packet is source-routed iff the uppermost bit
1759 * of the first byte of the source address, at an
1760 * offset of 8, has the uppermost bit set. If the
1761 * packet is source-routed, the total number of bytes
1762 * of routing information is 2 plus bits 0x1F00 of
1763 * the 16-bit value at an offset of 14 (shifted right
1764 * 8 - figure out which byte that is).
1765 */
1766 cstate->off_linktype.constant_part = 14;
1767 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1768 cstate->off_nl = 8; /* 802.2+SNAP */
1769 cstate->off_nl_nosnap = 3; /* 802.2 */
1770 break;
1771
1772 case DLT_PRISM_HEADER:
1773 case DLT_IEEE802_11_RADIO_AVS:
1774 case DLT_IEEE802_11_RADIO:
1775 cstate->off_linkhdr.is_variable = 1;
1776 /* Fall through, 802.11 doesn't have a variable link
1777 * prefix but is otherwise the same. */
1778 /* FALLTHROUGH */
1779
1780 case DLT_IEEE802_11:
1781 /*
1782 * 802.11 doesn't really have a link-level type field.
1783 * We set "off_linktype.constant_part" to the offset of
1784 * the LLC header.
1785 *
1786 * To check for Ethernet types, we assume that SSAP = SNAP
1787 * is being used and pick out the encapsulated Ethernet type.
1788 * XXX - should we generate code to check for SNAP?
1789 *
1790 * We also handle variable-length radio headers here.
1791 * The Prism header is in theory variable-length, but in
1792 * practice it's always 144 bytes long. However, some
1793 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1794 * sometimes or always supply an AVS header, so we
1795 * have to check whether the radio header is a Prism
1796 * header or an AVS header, so, in practice, it's
1797 * variable-length.
1798 */
1799 cstate->off_linktype.constant_part = 24;
1800 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1801 cstate->off_linkpl.is_variable = 1;
1802 cstate->off_nl = 8; /* 802.2+SNAP */
1803 cstate->off_nl_nosnap = 3; /* 802.2 */
1804 break;
1805
1806 case DLT_PPI:
1807 /*
1808 * At the moment we treat PPI the same way that we treat
1809 * normal Radiotap encoded packets. The difference is in
1810 * the function that generates the code at the beginning
1811 * to compute the header length. Since this code generator
1812 * of PPI supports bare 802.11 encapsulation only (i.e.
1813 * the encapsulated DLT should be DLT_IEEE802_11) we
1814 * generate code to check for this too.
1815 */
1816 cstate->off_linktype.constant_part = 24;
1817 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1818 cstate->off_linkpl.is_variable = 1;
1819 cstate->off_linkhdr.is_variable = 1;
1820 cstate->off_nl = 8; /* 802.2+SNAP */
1821 cstate->off_nl_nosnap = 3; /* 802.2 */
1822 break;
1823
1824 case DLT_ATM_RFC1483:
1825 case DLT_ATM_CLIP: /* Linux ATM defines this */
1826 /*
1827 * assume routed, non-ISO PDUs
1828 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1829 *
1830 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1831 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1832 * latter would presumably be treated the way PPPoE
1833 * should be, so you can do "pppoe and udp port 2049"
1834 * or "pppoa and tcp port 80" and have it check for
1835 * PPPo{A,E} and a PPP protocol of IP and....
1836 */
1837 cstate->off_linktype.constant_part = 0;
1838 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1839 cstate->off_nl = 8; /* 802.2+SNAP */
1840 cstate->off_nl_nosnap = 3; /* 802.2 */
1841 break;
1842
1843 case DLT_SUNATM:
1844 /*
1845 * Full Frontal ATM; you get AALn PDUs with an ATM
1846 * pseudo-header.
1847 */
1848 cstate->is_atm = 1;
1849 cstate->off_vpi = SUNATM_VPI_POS;
1850 cstate->off_vci = SUNATM_VCI_POS;
1851 cstate->off_proto = PROTO_POS;
1852 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1853 cstate->off_linktype.constant_part = cstate->off_payload;
1854 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1855 cstate->off_nl = 8; /* 802.2+SNAP */
1856 cstate->off_nl_nosnap = 3; /* 802.2 */
1857 break;
1858
1859 case DLT_RAW:
1860 case DLT_IPV4:
1861 case DLT_IPV6:
1862 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1863 cstate->off_linkpl.constant_part = 0;
1864 cstate->off_nl = 0;
1865 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1866 break;
1867
1868 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1869 cstate->off_linktype.constant_part = 14;
1870 cstate->off_linkpl.constant_part = 16;
1871 cstate->off_nl = 0;
1872 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1873 break;
1874
1875 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1876 cstate->off_linktype.constant_part = 0;
1877 cstate->off_linkpl.constant_part = 20;
1878 cstate->off_nl = 0;
1879 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1880 break;
1881
1882 case DLT_LTALK:
1883 /*
1884 * LocalTalk does have a 1-byte type field in the LLAP header,
1885 * but really it just indicates whether there is a "short" or
1886 * "long" DDP packet following.
1887 */
1888 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1889 cstate->off_linkpl.constant_part = 0;
1890 cstate->off_nl = 0;
1891 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1892 break;
1893
1894 case DLT_IP_OVER_FC:
1895 /*
1896 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1897 * link-level type field. We set "off_linktype" to the
1898 * offset of the LLC header.
1899 *
1900 * To check for Ethernet types, we assume that SSAP = SNAP
1901 * is being used and pick out the encapsulated Ethernet type.
1902 * XXX - should we generate code to check for SNAP? RFC
1903 * 2625 says SNAP should be used.
1904 */
1905 cstate->off_linktype.constant_part = 16;
1906 cstate->off_linkpl.constant_part = 16;
1907 cstate->off_nl = 8; /* 802.2+SNAP */
1908 cstate->off_nl_nosnap = 3; /* 802.2 */
1909 break;
1910
1911 case DLT_FRELAY:
1912 /*
1913 * XXX - we should set this to handle SNAP-encapsulated
1914 * frames (NLPID of 0x80).
1915 */
1916 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1917 cstate->off_linkpl.constant_part = 0;
1918 cstate->off_nl = 0;
1919 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1920 break;
1921
1922 /*
1923 * the only BPF-interesting FRF.16 frames are non-control frames;
1924 * Frame Relay has a variable length link-layer
1925 * so lets start with offset 4 for now and increments later on (FIXME);
1926 */
1927 case DLT_MFR:
1928 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1929 cstate->off_linkpl.constant_part = 0;
1930 cstate->off_nl = 4;
1931 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1932 break;
1933
1934 case DLT_APPLE_IP_OVER_IEEE1394:
1935 cstate->off_linktype.constant_part = 16;
1936 cstate->off_linkpl.constant_part = 18;
1937 cstate->off_nl = 0;
1938 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1939 break;
1940
1941 case DLT_SYMANTEC_FIREWALL:
1942 cstate->off_linktype.constant_part = 6;
1943 cstate->off_linkpl.constant_part = 44;
1944 cstate->off_nl = 0; /* Ethernet II */
1945 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1946 break;
1947
1948 case DLT_PFLOG:
1949 cstate->off_linktype.constant_part = 0;
1950 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1951 cstate->off_linkpl.is_variable = 1;
1952 cstate->off_nl = 0;
1953 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1954 break;
1955
1956 case DLT_JUNIPER_MFR:
1957 case DLT_JUNIPER_MLFR:
1958 case DLT_JUNIPER_MLPPP:
1959 case DLT_JUNIPER_PPP:
1960 case DLT_JUNIPER_CHDLC:
1961 case DLT_JUNIPER_FRELAY:
1962 cstate->off_linktype.constant_part = 4;
1963 cstate->off_linkpl.constant_part = 4;
1964 cstate->off_nl = 0;
1965 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1966 break;
1967
1968 case DLT_JUNIPER_ATM1:
1969 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1970 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1971 cstate->off_nl = 0;
1972 cstate->off_nl_nosnap = 10;
1973 break;
1974
1975 case DLT_JUNIPER_ATM2:
1976 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1977 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1978 cstate->off_nl = 0;
1979 cstate->off_nl_nosnap = 10;
1980 break;
1981
1982 /* frames captured on a Juniper PPPoE service PIC
1983 * contain raw ethernet frames */
1984 case DLT_JUNIPER_PPPOE:
1985 case DLT_JUNIPER_ETHER:
1986 cstate->off_linkpl.constant_part = 14;
1987 cstate->off_linktype.constant_part = 16;
1988 cstate->off_nl = 18; /* Ethernet II */
1989 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1990 break;
1991
1992 case DLT_JUNIPER_PPPOE_ATM:
1993 cstate->off_linktype.constant_part = 4;
1994 cstate->off_linkpl.constant_part = 6;
1995 cstate->off_nl = 0;
1996 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1997 break;
1998
1999 case DLT_JUNIPER_GGSN:
2000 cstate->off_linktype.constant_part = 6;
2001 cstate->off_linkpl.constant_part = 12;
2002 cstate->off_nl = 0;
2003 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2004 break;
2005
2006 case DLT_JUNIPER_ES:
2007 cstate->off_linktype.constant_part = 6;
2008 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
2009 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
2010 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2011 break;
2012
2013 case DLT_JUNIPER_MONITOR:
2014 cstate->off_linktype.constant_part = 12;
2015 cstate->off_linkpl.constant_part = 12;
2016 cstate->off_nl = 0; /* raw IP/IP6 header */
2017 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2018 break;
2019
2020 case DLT_BACNET_MS_TP:
2021 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2022 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2023 cstate->off_nl = OFFSET_NOT_SET;
2024 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2025 break;
2026
2027 case DLT_JUNIPER_SERVICES:
2028 cstate->off_linktype.constant_part = 12;
2029 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
2030 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
2031 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2032 break;
2033
2034 case DLT_JUNIPER_VP:
2035 cstate->off_linktype.constant_part = 18;
2036 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2037 cstate->off_nl = OFFSET_NOT_SET;
2038 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2039 break;
2040
2041 case DLT_JUNIPER_ST:
2042 cstate->off_linktype.constant_part = 18;
2043 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2044 cstate->off_nl = OFFSET_NOT_SET;
2045 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2046 break;
2047
2048 case DLT_JUNIPER_ISM:
2049 cstate->off_linktype.constant_part = 8;
2050 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2051 cstate->off_nl = OFFSET_NOT_SET;
2052 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2053 break;
2054
2055 case DLT_JUNIPER_VS:
2056 case DLT_JUNIPER_SRX_E2E:
2057 case DLT_JUNIPER_FIBRECHANNEL:
2058 case DLT_JUNIPER_ATM_CEMIC:
2059 cstate->off_linktype.constant_part = 8;
2060 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2061 cstate->off_nl = OFFSET_NOT_SET;
2062 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2063 break;
2064
2065 case DLT_MTP2:
2066 cstate->off_li = 2;
2067 cstate->off_li_hsl = 4;
2068 cstate->off_sio = 3;
2069 cstate->off_opc = 4;
2070 cstate->off_dpc = 4;
2071 cstate->off_sls = 7;
2072 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2073 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2074 cstate->off_nl = OFFSET_NOT_SET;
2075 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2076 break;
2077
2078 case DLT_MTP2_WITH_PHDR:
2079 cstate->off_li = 6;
2080 cstate->off_li_hsl = 8;
2081 cstate->off_sio = 7;
2082 cstate->off_opc = 8;
2083 cstate->off_dpc = 8;
2084 cstate->off_sls = 11;
2085 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2086 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2087 cstate->off_nl = OFFSET_NOT_SET;
2088 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2089 break;
2090
2091 case DLT_ERF:
2092 cstate->off_li = 22;
2093 cstate->off_li_hsl = 24;
2094 cstate->off_sio = 23;
2095 cstate->off_opc = 24;
2096 cstate->off_dpc = 24;
2097 cstate->off_sls = 27;
2098 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2099 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2100 cstate->off_nl = OFFSET_NOT_SET;
2101 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2102 break;
2103
2104 case DLT_PFSYNC:
2105 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2106 cstate->off_linkpl.constant_part = 4;
2107 cstate->off_nl = 0;
2108 cstate->off_nl_nosnap = 0;
2109 break;
2110
2111 case DLT_AX25_KISS:
2112 /*
2113 * Currently, only raw "link[N:M]" filtering is supported.
2114 */
2115 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
2116 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2117 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
2118 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2119 break;
2120
2121 case DLT_IPNET:
2122 cstate->off_linktype.constant_part = 1;
2123 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
2124 cstate->off_nl = 0;
2125 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2126 break;
2127
2128 case DLT_NETANALYZER:
2129 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
2130 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2131 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
2132 cstate->off_nl = 0; /* Ethernet II */
2133 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2134 break;
2135
2136 case DLT_NETANALYZER_TRANSPARENT:
2137 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2138 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2139 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2140 cstate->off_nl = 0; /* Ethernet II */
2141 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2142 break;
2143
2144 default:
2145 /*
2146 * For values in the range in which we've assigned new
2147 * DLT_ values, only raw "link[N:M]" filtering is supported.
2148 */
2149 if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
2150 cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
2151 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2152 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2153 cstate->off_nl = OFFSET_NOT_SET;
2154 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2155 } else {
2156 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
2157 cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
2158 return (-1);
2159 }
2160 break;
2161 }
2162
2163 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
2164 return (0);
2165 }
2166
2167 /*
2168 * Load a value relative to the specified absolute offset.
2169 */
2170 static struct slist *
2171 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
2172 u_int offset, u_int size)
2173 {
2174 struct slist *s, *s2;
2175
2176 s = gen_abs_offset_varpart(cstate, abs_offset);
2177
2178 /*
2179 * If "s" is non-null, it has code to arrange that the X register
2180 * contains the variable part of the absolute offset, so we
2181 * generate a load relative to that, with an offset of
2182 * abs_offset->constant_part + offset.
2183 *
2184 * Otherwise, we can do an absolute load with an offset of
2185 * abs_offset->constant_part + offset.
2186 */
2187 if (s != NULL) {
2188 /*
2189 * "s" points to a list of statements that puts the
2190 * variable part of the absolute offset into the X register.
2191 * Do an indirect load, to use the X register as an offset.
2192 */
2193 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2194 s2->s.k = abs_offset->constant_part + offset;
2195 sappend(s, s2);
2196 } else {
2197 /*
2198 * There is no variable part of the absolute offset, so
2199 * just do an absolute load.
2200 */
2201 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2202 s->s.k = abs_offset->constant_part + offset;
2203 }
2204 return s;
2205 }
2206
2207 /*
2208 * Load a value relative to the beginning of the specified header.
2209 */
2210 static struct slist *
2211 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
2212 u_int size)
2213 {
2214 struct slist *s, *s2;
2215
2216 /*
2217 * Squelch warnings from compilers that *don't* assume that
2218 * offrel always has a valid enum value and therefore don't
2219 * assume that we'll always go through one of the case arms.
2220 *
2221 * If we have a default case, compilers that *do* assume that
2222 * will then complain about the default case code being
2223 * unreachable.
2224 *
2225 * Damned if you do, damned if you don't.
2226 */
2227 s = NULL;
2228
2229 switch (offrel) {
2230
2231 case OR_PACKET:
2232 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2233 s->s.k = offset;
2234 break;
2235
2236 case OR_LINKHDR:
2237 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
2238 break;
2239
2240 case OR_PREVLINKHDR:
2241 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
2242 break;
2243
2244 case OR_LLC:
2245 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
2246 break;
2247
2248 case OR_PREVMPLSHDR:
2249 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
2250 break;
2251
2252 case OR_LINKPL:
2253 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
2254 break;
2255
2256 case OR_LINKPL_NOSNAP:
2257 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
2258 break;
2259
2260 case OR_LINKTYPE:
2261 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
2262 break;
2263
2264 case OR_TRAN_IPV4:
2265 /*
2266 * Load the X register with the length of the IPv4 header
2267 * (plus the offset of the link-layer header, if it's
2268 * preceded by a variable-length header such as a radio
2269 * header), in bytes.
2270 */
2271 s = gen_loadx_iphdrlen(cstate);
2272
2273 /*
2274 * Load the item at {offset of the link-layer payload} +
2275 * {offset, relative to the start of the link-layer
2276 * payload, of the IPv4 header} + {length of the IPv4 header} +
2277 * {specified offset}.
2278 *
2279 * If the offset of the link-layer payload is variable,
2280 * the variable part of that offset is included in the
2281 * value in the X register, and we include the constant
2282 * part in the offset of the load.
2283 */
2284 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2285 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
2286 sappend(s, s2);
2287 break;
2288
2289 case OR_TRAN_IPV6:
2290 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
2291 break;
2292 }
2293 return s;
2294 }
2295
2296 /*
2297 * Generate code to load into the X register the sum of the length of
2298 * the IPv4 header and the variable part of the offset of the link-layer
2299 * payload.
2300 */
2301 static struct slist *
2302 gen_loadx_iphdrlen(compiler_state_t *cstate)
2303 {
2304 struct slist *s, *s2;
2305
2306 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
2307 if (s != NULL) {
2308 /*
2309 * The offset of the link-layer payload has a variable
2310 * part. "s" points to a list of statements that put
2311 * the variable part of that offset into the X register.
2312 *
2313 * The 4*([k]&0xf) addressing mode can't be used, as we
2314 * don't have a constant offset, so we have to load the
2315 * value in question into the A register and add to it
2316 * the value from the X register.
2317 */
2318 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2319 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2320 sappend(s, s2);
2321 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2322 s2->s.k = 0xf;
2323 sappend(s, s2);
2324 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2325 s2->s.k = 2;
2326 sappend(s, s2);
2327
2328 /*
2329 * The A register now contains the length of the IP header.
2330 * We need to add to it the variable part of the offset of
2331 * the link-layer payload, which is still in the X
2332 * register, and move the result into the X register.
2333 */
2334 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
2335 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
2336 } else {
2337 /*
2338 * The offset of the link-layer payload is a constant,
2339 * so no code was generated to load the (nonexistent)
2340 * variable part of that offset.
2341 *
2342 * This means we can use the 4*([k]&0xf) addressing
2343 * mode. Load the length of the IPv4 header, which
2344 * is at an offset of cstate->off_nl from the beginning of
2345 * the link-layer payload, and thus at an offset of
2346 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2347 * of the raw packet data, using that addressing mode.
2348 */
2349 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
2350 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2351 }
2352 return s;
2353 }
2354
2355
2356 static struct block *
2357 gen_uncond(compiler_state_t *cstate, int rsense)
2358 {
2359 struct slist *s;
2360
2361 s = new_stmt(cstate, BPF_LD|BPF_IMM);
2362 s->s.k = !rsense;
2363 return gen_jmp(cstate, BPF_JEQ, 0, s);
2364 }
2365
2366 static inline struct block *
2367 gen_true(compiler_state_t *cstate)
2368 {
2369 return gen_uncond(cstate, 1);
2370 }
2371
2372 static inline struct block *
2373 gen_false(compiler_state_t *cstate)
2374 {
2375 return gen_uncond(cstate, 0);
2376 }
2377
2378 /*
2379 * Generate code to match a particular packet type.
2380 *
2381 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2382 * value, if <= ETHERMTU. We use that to determine whether to
2383 * match the type/length field or to check the type/length field for
2384 * a value <= ETHERMTU to see whether it's a type field and then do
2385 * the appropriate test.
2386 */
2387 static struct block *
2388 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2389 {
2390 struct block *b0, *b1;
2391
2392 switch (ll_proto) {
2393
2394 case LLCSAP_ISONS:
2395 case LLCSAP_IP:
2396 case LLCSAP_NETBEUI:
2397 /*
2398 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2399 * so we check the DSAP and SSAP.
2400 *
2401 * LLCSAP_IP checks for IP-over-802.2, rather
2402 * than IP-over-Ethernet or IP-over-SNAP.
2403 *
2404 * XXX - should we check both the DSAP and the
2405 * SSAP, like this, or should we check just the
2406 * DSAP, as we do for other types <= ETHERMTU
2407 * (i.e., other SAP values)?
2408 */
2409 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2410 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2411 gen_and(b0, b1);
2412 return b1;
2413
2414 case LLCSAP_IPX:
2415 /*
2416 * Check for;
2417 *
2418 * Ethernet_II frames, which are Ethernet
2419 * frames with a frame type of ETHERTYPE_IPX;
2420 *
2421 * Ethernet_802.3 frames, which are 802.3
2422 * frames (i.e., the type/length field is
2423 * a length field, <= ETHERMTU, rather than
2424 * a type field) with the first two bytes
2425 * after the Ethernet/802.3 header being
2426 * 0xFFFF;
2427 *
2428 * Ethernet_802.2 frames, which are 802.3
2429 * frames with an 802.2 LLC header and
2430 * with the IPX LSAP as the DSAP in the LLC
2431 * header;
2432 *
2433 * Ethernet_SNAP frames, which are 802.3
2434 * frames with an LLC header and a SNAP
2435 * header and with an OUI of 0x000000
2436 * (encapsulated Ethernet) and a protocol
2437 * ID of ETHERTYPE_IPX in the SNAP header.
2438 *
2439 * XXX - should we generate the same code both
2440 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2441 */
2442
2443 /*
2444 * This generates code to check both for the
2445 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2446 */
2447 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2448 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2449 gen_or(b0, b1);
2450
2451 /*
2452 * Now we add code to check for SNAP frames with
2453 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2454 */
2455 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2456 gen_or(b0, b1);
2457
2458 /*
2459 * Now we generate code to check for 802.3
2460 * frames in general.
2461 */
2462 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2463
2464 /*
2465 * Now add the check for 802.3 frames before the
2466 * check for Ethernet_802.2 and Ethernet_802.3,
2467 * as those checks should only be done on 802.3
2468 * frames, not on Ethernet frames.
2469 */
2470 gen_and(b0, b1);
2471
2472 /*
2473 * Now add the check for Ethernet_II frames, and
2474 * do that before checking for the other frame
2475 * types.
2476 */
2477 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2478 gen_or(b0, b1);
2479 return b1;
2480
2481 case ETHERTYPE_ATALK:
2482 case ETHERTYPE_AARP:
2483 /*
2484 * EtherTalk (AppleTalk protocols on Ethernet link
2485 * layer) may use 802.2 encapsulation.
2486 */
2487
2488 /*
2489 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2490 * we check for an Ethernet type field less or equal than
2491 * 1500, which means it's an 802.3 length field.
2492 */
2493 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2494
2495 /*
2496 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2497 * SNAP packets with an organization code of
2498 * 0x080007 (Apple, for Appletalk) and a protocol
2499 * type of ETHERTYPE_ATALK (Appletalk).
2500 *
2501 * 802.2-encapsulated ETHERTYPE_AARP packets are
2502 * SNAP packets with an organization code of
2503 * 0x000000 (encapsulated Ethernet) and a protocol
2504 * type of ETHERTYPE_AARP (Appletalk ARP).
2505 */
2506 if (ll_proto == ETHERTYPE_ATALK)
2507 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2508 else /* ll_proto == ETHERTYPE_AARP */
2509 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2510 gen_and(b0, b1);
2511
2512 /*
2513 * Check for Ethernet encapsulation (Ethertalk
2514 * phase 1?); we just check for the Ethernet
2515 * protocol type.
2516 */
2517 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2518
2519 gen_or(b0, b1);
2520 return b1;
2521
2522 default:
2523 if (ll_proto <= ETHERMTU) {
2524 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
2525 /*
2526 * This is an LLC SAP value, so the frames
2527 * that match would be 802.2 frames.
2528 * Check that the frame is an 802.2 frame
2529 * (i.e., that the length/type field is
2530 * a length field, <= ETHERMTU) and
2531 * then check the DSAP.
2532 */
2533 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2534 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2535 gen_and(b0, b1);
2536 return b1;
2537 } else {
2538 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
2539 /*
2540 * This is an Ethernet type, so compare
2541 * the length/type field with it (if
2542 * the frame is an 802.2 frame, the length
2543 * field will be <= ETHERMTU, and, as
2544 * "ll_proto" is > ETHERMTU, this test
2545 * will fail and the frame won't match,
2546 * which is what we want).
2547 */
2548 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2549 }
2550 }
2551 }
2552
2553 static struct block *
2554 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2555 {
2556 /*
2557 * For DLT_NULL, the link-layer header is a 32-bit word
2558 * containing an AF_ value in *host* byte order, and for
2559 * DLT_ENC, the link-layer header begins with a 32-bit
2560 * word containing an AF_ value in host byte order.
2561 *
2562 * In addition, if we're reading a saved capture file,
2563 * the host byte order in the capture may not be the
2564 * same as the host byte order on this machine.
2565 *
2566 * For DLT_LOOP, the link-layer header is a 32-bit
2567 * word containing an AF_ value in *network* byte order.
2568 */
2569 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2570 /*
2571 * The AF_ value is in host byte order, but the BPF
2572 * interpreter will convert it to network byte order.
2573 *
2574 * If this is a save file, and it's from a machine
2575 * with the opposite byte order to ours, we byte-swap
2576 * the AF_ value.
2577 *
2578 * Then we run it through "htonl()", and generate
2579 * code to compare against the result.
2580 */
2581 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2582 ll_proto = SWAPLONG(ll_proto);
2583 ll_proto = htonl(ll_proto);
2584 }
2585 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2586 }
2587
2588 /*
2589 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2590 * or IPv6 then we have an error.
2591 */
2592 static struct block *
2593 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2594 {
2595 switch (ll_proto) {
2596
2597 case ETHERTYPE_IP:
2598 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2599 /*NOTREACHED*/
2600
2601 case ETHERTYPE_IPV6:
2602 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2603 /*NOTREACHED*/
2604
2605 default:
2606 break;
2607 }
2608
2609 return gen_false(cstate);
2610 }
2611
2612 /*
2613 * Generate code to match a particular packet type.
2614 *
2615 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2616 * value, if <= ETHERMTU. We use that to determine whether to
2617 * match the type field or to check the type field for the special
2618 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2619 */
2620 static struct block *
2621 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2622 {
2623 struct block *b0, *b1;
2624
2625 switch (ll_proto) {
2626
2627 case LLCSAP_ISONS:
2628 case LLCSAP_IP:
2629 case LLCSAP_NETBEUI:
2630 /*
2631 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2632 * so we check the DSAP and SSAP.
2633 *
2634 * LLCSAP_IP checks for IP-over-802.2, rather
2635 * than IP-over-Ethernet or IP-over-SNAP.
2636 *
2637 * XXX - should we check both the DSAP and the
2638 * SSAP, like this, or should we check just the
2639 * DSAP, as we do for other types <= ETHERMTU
2640 * (i.e., other SAP values)?
2641 */
2642 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2643 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2644 gen_and(b0, b1);
2645 return b1;
2646
2647 case LLCSAP_IPX:
2648 /*
2649 * Ethernet_II frames, which are Ethernet
2650 * frames with a frame type of ETHERTYPE_IPX;
2651 *
2652 * Ethernet_802.3 frames, which have a frame
2653 * type of LINUX_SLL_P_802_3;
2654 *
2655 * Ethernet_802.2 frames, which are 802.3
2656 * frames with an 802.2 LLC header (i.e, have
2657 * a frame type of LINUX_SLL_P_802_2) and
2658 * with the IPX LSAP as the DSAP in the LLC
2659 * header;
2660 *
2661 * Ethernet_SNAP frames, which are 802.3
2662 * frames with an LLC header and a SNAP
2663 * header and with an OUI of 0x000000
2664 * (encapsulated Ethernet) and a protocol
2665 * ID of ETHERTYPE_IPX in the SNAP header.
2666 *
2667 * First, do the checks on LINUX_SLL_P_802_2
2668 * frames; generate the check for either
2669 * Ethernet_802.2 or Ethernet_SNAP frames, and
2670 * then put a check for LINUX_SLL_P_802_2 frames
2671 * before it.
2672 */
2673 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2674 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2675 gen_or(b0, b1);
2676 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2677 gen_and(b0, b1);
2678
2679 /*
2680 * Now check for 802.3 frames and OR that with
2681 * the previous test.
2682 */
2683 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2684 gen_or(b0, b1);
2685
2686 /*
2687 * Now add the check for Ethernet_II frames, and
2688 * do that before checking for the other frame
2689 * types.
2690 */
2691 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2692 gen_or(b0, b1);
2693 return b1;
2694
2695 case ETHERTYPE_ATALK:
2696 case ETHERTYPE_AARP:
2697 /*
2698 * EtherTalk (AppleTalk protocols on Ethernet link
2699 * layer) may use 802.2 encapsulation.
2700 */
2701
2702 /*
2703 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2704 * we check for the 802.2 protocol type in the
2705 * "Ethernet type" field.
2706 */
2707 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2708
2709 /*
2710 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2711 * SNAP packets with an organization code of
2712 * 0x080007 (Apple, for Appletalk) and a protocol
2713 * type of ETHERTYPE_ATALK (Appletalk).
2714 *
2715 * 802.2-encapsulated ETHERTYPE_AARP packets are
2716 * SNAP packets with an organization code of
2717 * 0x000000 (encapsulated Ethernet) and a protocol
2718 * type of ETHERTYPE_AARP (Appletalk ARP).
2719 */
2720 if (ll_proto == ETHERTYPE_ATALK)
2721 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2722 else /* ll_proto == ETHERTYPE_AARP */
2723 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2724 gen_and(b0, b1);
2725
2726 /*
2727 * Check for Ethernet encapsulation (Ethertalk
2728 * phase 1?); we just check for the Ethernet
2729 * protocol type.
2730 */
2731 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2732
2733 gen_or(b0, b1);
2734 return b1;
2735
2736 default:
2737 if (ll_proto <= ETHERMTU) {
2738 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
2739 /*
2740 * This is an LLC SAP value, so the frames
2741 * that match would be 802.2 frames.
2742 * Check for the 802.2 protocol type
2743 * in the "Ethernet type" field, and
2744 * then check the DSAP.
2745 */
2746 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2747 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2748 ll_proto);
2749 gen_and(b0, b1);
2750 return b1;
2751 } else {
2752 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
2753 /*
2754 * This is an Ethernet type, so compare
2755 * the length/type field with it (if
2756 * the frame is an 802.2 frame, the length
2757 * field will be <= ETHERMTU, and, as
2758 * "ll_proto" is > ETHERMTU, this test
2759 * will fail and the frame won't match,
2760 * which is what we want).
2761 */
2762 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2763 }
2764 }
2765 }
2766
2767 /*
2768 * Load a value relative to the beginning of the link-layer header after the
2769 * pflog header.
2770 */
2771 static struct slist *
2772 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2773 {
2774 struct slist *s1, *s2;
2775
2776 /*
2777 * Generate code to load the length of the pflog header into
2778 * the register assigned to hold that length, if one has been
2779 * assigned. (If one hasn't been assigned, no code we've
2780 * generated uses that prefix, so we don't need to generate any
2781 * code to load it.)
2782 */
2783 if (cstate->off_linkpl.reg != -1) {
2784 /*
2785 * The length is in the first byte of the header.
2786 */
2787 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2788 s1->s.k = 0;
2789
2790 /*
2791 * Round it up to a multiple of 4.
2792 * Add 3, and clear the lower 2 bits.
2793 */
2794 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2795 s2->s.k = 3;
2796 sappend(s1, s2);
2797 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2798 s2->s.k = 0xfffffffc;
2799 sappend(s1, s2);
2800
2801 /*
2802 * Now allocate a register to hold that value and store
2803 * it.
2804 */
2805 s2 = new_stmt(cstate, BPF_ST);
2806 s2->s.k = cstate->off_linkpl.reg;
2807 sappend(s1, s2);
2808
2809 /*
2810 * Now move it into the X register.
2811 */
2812 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2813 sappend(s1, s2);
2814
2815 return (s1);
2816 } else
2817 return (NULL);
2818 }
2819
2820 static struct slist *
2821 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2822 {
2823 struct slist *s1, *s2;
2824 struct slist *sjeq_avs_cookie;
2825 struct slist *sjcommon;
2826
2827 /*
2828 * This code is not compatible with the optimizer, as
2829 * we are generating jmp instructions within a normal
2830 * slist of instructions
2831 */
2832 cstate->no_optimize = 1;
2833
2834 /*
2835 * Generate code to load the length of the radio header into
2836 * the register assigned to hold that length, if one has been
2837 * assigned. (If one hasn't been assigned, no code we've
2838 * generated uses that prefix, so we don't need to generate any
2839 * code to load it.)
2840 *
2841 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2842 * or always use the AVS header rather than the Prism header.
2843 * We load a 4-byte big-endian value at the beginning of the
2844 * raw packet data, and see whether, when masked with 0xFFFFF000,
2845 * it's equal to 0x80211000. If so, that indicates that it's
2846 * an AVS header (the masked-out bits are the version number).
2847 * Otherwise, it's a Prism header.
2848 *
2849 * XXX - the Prism header is also, in theory, variable-length,
2850 * but no known software generates headers that aren't 144
2851 * bytes long.
2852 */
2853 if (cstate->off_linkhdr.reg != -1) {
2854 /*
2855 * Load the cookie.
2856 */
2857 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2858 s1->s.k = 0;
2859
2860 /*
2861 * AND it with 0xFFFFF000.
2862 */
2863 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2864 s2->s.k = 0xFFFFF000;
2865 sappend(s1, s2);
2866
2867 /*
2868 * Compare with 0x80211000.
2869 */
2870 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2871 sjeq_avs_cookie->s.k = 0x80211000;
2872 sappend(s1, sjeq_avs_cookie);
2873
2874 /*
2875 * If it's AVS:
2876 *
2877 * The 4 bytes at an offset of 4 from the beginning of
2878 * the AVS header are the length of the AVS header.
2879 * That field is big-endian.
2880 */
2881 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2882 s2->s.k = 4;
2883 sappend(s1, s2);
2884 sjeq_avs_cookie->s.jt = s2;
2885
2886 /*
2887 * Now jump to the code to allocate a register
2888 * into which to save the header length and
2889 * store the length there. (The "jump always"
2890 * instruction needs to have the k field set;
2891 * it's added to the PC, so, as we're jumping
2892 * over a single instruction, it should be 1.)
2893 */
2894 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2895 sjcommon->s.k = 1;
2896 sappend(s1, sjcommon);
2897
2898 /*
2899 * Now for the code that handles the Prism header.
2900 * Just load the length of the Prism header (144)
2901 * into the A register. Have the test for an AVS
2902 * header branch here if we don't have an AVS header.
2903 */
2904 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2905 s2->s.k = 144;
2906 sappend(s1, s2);
2907 sjeq_avs_cookie->s.jf = s2;
2908
2909 /*
2910 * Now allocate a register to hold that value and store
2911 * it. The code for the AVS header will jump here after
2912 * loading the length of the AVS header.
2913 */
2914 s2 = new_stmt(cstate, BPF_ST);
2915 s2->s.k = cstate->off_linkhdr.reg;
2916 sappend(s1, s2);
2917 sjcommon->s.jf = s2;
2918
2919 /*
2920 * Now move it into the X register.
2921 */
2922 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2923 sappend(s1, s2);
2924
2925 return (s1);
2926 } else
2927 return (NULL);
2928 }
2929
2930 static struct slist *
2931 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2932 {
2933 struct slist *s1, *s2;
2934
2935 /*
2936 * Generate code to load the length of the AVS header into
2937 * the register assigned to hold that length, if one has been
2938 * assigned. (If one hasn't been assigned, no code we've
2939 * generated uses that prefix, so we don't need to generate any
2940 * code to load it.)
2941 */
2942 if (cstate->off_linkhdr.reg != -1) {
2943 /*
2944 * The 4 bytes at an offset of 4 from the beginning of
2945 * the AVS header are the length of the AVS header.
2946 * That field is big-endian.
2947 */
2948 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2949 s1->s.k = 4;
2950
2951 /*
2952 * Now allocate a register to hold that value and store
2953 * it.
2954 */
2955 s2 = new_stmt(cstate, BPF_ST);
2956 s2->s.k = cstate->off_linkhdr.reg;
2957 sappend(s1, s2);
2958
2959 /*
2960 * Now move it into the X register.
2961 */
2962 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2963 sappend(s1, s2);
2964
2965 return (s1);
2966 } else
2967 return (NULL);
2968 }
2969
2970 static struct slist *
2971 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2972 {
2973 struct slist *s1, *s2;
2974
2975 /*
2976 * Generate code to load the length of the radiotap header into
2977 * the register assigned to hold that length, if one has been
2978 * assigned. (If one hasn't been assigned, no code we've
2979 * generated uses that prefix, so we don't need to generate any
2980 * code to load it.)
2981 */
2982 if (cstate->off_linkhdr.reg != -1) {
2983 /*
2984 * The 2 bytes at offsets of 2 and 3 from the beginning
2985 * of the radiotap header are the length of the radiotap
2986 * header; unfortunately, it's little-endian, so we have
2987 * to load it a byte at a time and construct the value.
2988 */
2989
2990 /*
2991 * Load the high-order byte, at an offset of 3, shift it
2992 * left a byte, and put the result in the X register.
2993 */
2994 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2995 s1->s.k = 3;
2996 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2997 sappend(s1, s2);
2998 s2->s.k = 8;
2999 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3000 sappend(s1, s2);
3001
3002 /*
3003 * Load the next byte, at an offset of 2, and OR the
3004 * value from the X register into it.
3005 */
3006 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3007 sappend(s1, s2);
3008 s2->s.k = 2;
3009 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
3010 sappend(s1, s2);
3011
3012 /*
3013 * Now allocate a register to hold that value and store
3014 * it.
3015 */
3016 s2 = new_stmt(cstate, BPF_ST);
3017 s2->s.k = cstate->off_linkhdr.reg;
3018 sappend(s1, s2);
3019
3020 /*
3021 * Now move it into the X register.
3022 */
3023 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3024 sappend(s1, s2);
3025
3026 return (s1);
3027 } else
3028 return (NULL);
3029 }
3030
3031 /*
3032 * At the moment we treat PPI as normal Radiotap encoded
3033 * packets. The difference is in the function that generates
3034 * the code at the beginning to compute the header length.
3035 * Since this code generator of PPI supports bare 802.11
3036 * encapsulation only (i.e. the encapsulated DLT should be
3037 * DLT_IEEE802_11) we generate code to check for this too;
3038 * that's done in finish_parse().
3039 */
3040 static struct slist *
3041 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
3042 {
3043 struct slist *s1, *s2;
3044
3045 /*
3046 * Generate code to load the length of the radiotap header
3047 * into the register assigned to hold that length, if one has
3048 * been assigned.
3049 */
3050 if (cstate->off_linkhdr.reg != -1) {
3051 /*
3052 * The 2 bytes at offsets of 2 and 3 from the beginning
3053 * of the radiotap header are the length of the radiotap
3054 * header; unfortunately, it's little-endian, so we have
3055 * to load it a byte at a time and construct the value.
3056 */
3057
3058 /*
3059 * Load the high-order byte, at an offset of 3, shift it
3060 * left a byte, and put the result in the X register.
3061 */
3062 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3063 s1->s.k = 3;
3064 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
3065 sappend(s1, s2);
3066 s2->s.k = 8;
3067 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3068 sappend(s1, s2);
3069
3070 /*
3071 * Load the next byte, at an offset of 2, and OR the
3072 * value from the X register into it.
3073 */
3074 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3075 sappend(s1, s2);
3076 s2->s.k = 2;
3077 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
3078 sappend(s1, s2);
3079
3080 /*
3081 * Now allocate a register to hold that value and store
3082 * it.
3083 */
3084 s2 = new_stmt(cstate, BPF_ST);
3085 s2->s.k = cstate->off_linkhdr.reg;
3086 sappend(s1, s2);
3087
3088 /*
3089 * Now move it into the X register.
3090 */
3091 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3092 sappend(s1, s2);
3093
3094 return (s1);
3095 } else
3096 return (NULL);
3097 }
3098
3099 /*
3100 * Load a value relative to the beginning of the link-layer header after the 802.11
3101 * header, i.e. LLC_SNAP.
3102 * The link-layer header doesn't necessarily begin at the beginning
3103 * of the packet data; there might be a variable-length prefix containing
3104 * radio information.
3105 */
3106 static struct slist *
3107 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
3108 {
3109 struct slist *s2;
3110 struct slist *sjset_data_frame_1;
3111 struct slist *sjset_data_frame_2;
3112 struct slist *sjset_qos;
3113 struct slist *sjset_radiotap_flags_present;
3114 struct slist *sjset_radiotap_ext_present;
3115 struct slist *sjset_radiotap_tsft_present;
3116 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
3117 struct slist *s_roundup;
3118
3119 if (cstate->off_linkpl.reg == -1) {
3120 /*
3121 * No register has been assigned to the offset of
3122 * the link-layer payload, which means nobody needs
3123 * it; don't bother computing it - just return
3124 * what we already have.
3125 */
3126 return (s);
3127 }
3128
3129 /*
3130 * This code is not compatible with the optimizer, as
3131 * we are generating jmp instructions within a normal
3132 * slist of instructions
3133 */
3134 cstate->no_optimize = 1;
3135
3136 /*
3137 * If "s" is non-null, it has code to arrange that the X register
3138 * contains the length of the prefix preceding the link-layer
3139 * header.
3140 *
3141 * Otherwise, the length of the prefix preceding the link-layer
3142 * header is "off_outermostlinkhdr.constant_part".
3143 */
3144 if (s == NULL) {
3145 /*
3146 * There is no variable-length header preceding the
3147 * link-layer header.
3148 *
3149 * Load the length of the fixed-length prefix preceding
3150 * the link-layer header (if any) into the X register,
3151 * and store it in the cstate->off_linkpl.reg register.
3152 * That length is off_outermostlinkhdr.constant_part.
3153 */
3154 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
3155 s->s.k = cstate->off_outermostlinkhdr.constant_part;
3156 }
3157
3158 /*
3159 * The X register contains the offset of the beginning of the
3160 * link-layer header; add 24, which is the minimum length
3161 * of the MAC header for a data frame, to that, and store it
3162 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3163 * which is at the offset in the X register, with an indexed load.
3164 */
3165 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
3166 sappend(s, s2);
3167 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
3168 s2->s.k = 24;
3169 sappend(s, s2);
3170 s2 = new_stmt(cstate, BPF_ST);
3171 s2->s.k = cstate->off_linkpl.reg;
3172 sappend(s, s2);
3173
3174 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
3175 s2->s.k = 0;
3176 sappend(s, s2);
3177
3178 /*
3179 * Check the Frame Control field to see if this is a data frame;
3180 * a data frame has the 0x08 bit (b3) in that field set and the
3181 * 0x04 bit (b2) clear.
3182 */
3183 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
3184 sjset_data_frame_1->s.k = IEEE80211_FC0_TYPE_DATA;
3185 sappend(s, sjset_data_frame_1);
3186
3187 /*
3188 * If b3 is set, test b2, otherwise go to the first statement of
3189 * the rest of the program.
3190 */
3191 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
3192 sjset_data_frame_2->s.k = IEEE80211_FC0_TYPE_CTL;
3193 sappend(s, sjset_data_frame_2);
3194 sjset_data_frame_1->s.jf = snext;
3195
3196 /*
3197 * If b2 is not set, this is a data frame; test the QoS bit.
3198 * Otherwise, go to the first statement of the rest of the
3199 * program.
3200 */
3201 sjset_data_frame_2->s.jt = snext;
3202 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
3203 sjset_qos->s.k = IEEE80211_FC0_SUBTYPE_QOS;
3204 sappend(s, sjset_qos);
3205
3206 /*
3207 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3208 * field.
3209 * Otherwise, go to the first statement of the rest of the
3210 * program.
3211 */
3212 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
3213 s2->s.k = cstate->off_linkpl.reg;
3214 sappend(s, s2);
3215 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3216 s2->s.k = 2;
3217 sappend(s, s2);
3218 s2 = new_stmt(cstate, BPF_ST);
3219 s2->s.k = cstate->off_linkpl.reg;
3220 sappend(s, s2);
3221
3222 /*
3223 * If we have a radiotap header, look at it to see whether
3224 * there's Atheros padding between the MAC-layer header
3225 * and the payload.
3226 *
3227 * Note: all of the fields in the radiotap header are
3228 * little-endian, so we byte-swap all of the values
3229 * we test against, as they will be loaded as big-endian
3230 * values.
3231 *
3232 * XXX - in the general case, we would have to scan through
3233 * *all* the presence bits, if there's more than one word of
3234 * presence bits. That would require a loop, meaning that
3235 * we wouldn't be able to run the filter in the kernel.
3236 *
3237 * We assume here that the Atheros adapters that insert the
3238 * annoying padding don't have multiple antennae and therefore
3239 * do not generate radiotap headers with multiple presence words.
3240 */
3241 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
3242 /*
3243 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3244 * in the first presence flag word?
3245 */
3246 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
3247 s2->s.k = 4;
3248 sappend(s, s2);
3249
3250 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
3251 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
3252 sappend(s, sjset_radiotap_flags_present);
3253
3254 /*
3255 * If not, skip all of this.
3256 */
3257 sjset_radiotap_flags_present->s.jf = snext;
3258
3259 /*
3260 * Otherwise, is the "extension" bit set in that word?
3261 */
3262 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
3263 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
3264 sappend(s, sjset_radiotap_ext_present);
3265 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
3266
3267 /*
3268 * If so, skip all of this.
3269 */
3270 sjset_radiotap_ext_present->s.jt = snext;
3271
3272 /*
3273 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3274 */
3275 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
3276 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
3277 sappend(s, sjset_radiotap_tsft_present);
3278 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
3279
3280 /*
3281 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3282 * at an offset of 16 from the beginning of the raw packet
3283 * data (8 bytes for the radiotap header and 8 bytes for
3284 * the TSFT field).
3285 *
3286 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3287 * is set.
3288 */
3289 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3290 s2->s.k = 16;
3291 sappend(s, s2);
3292 sjset_radiotap_tsft_present->s.jt = s2;
3293
3294 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3295 sjset_tsft_datapad->s.k = 0x20;
3296 sappend(s, sjset_tsft_datapad);
3297
3298 /*
3299 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3300 * at an offset of 8 from the beginning of the raw packet
3301 * data (8 bytes for the radiotap header).
3302 *
3303 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3304 * is set.
3305 */
3306 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3307 s2->s.k = 8;
3308 sappend(s, s2);
3309 sjset_radiotap_tsft_present->s.jf = s2;
3310
3311 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3312 sjset_notsft_datapad->s.k = 0x20;
3313 sappend(s, sjset_notsft_datapad);
3314
3315 /*
3316 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3317 * set, round the length of the 802.11 header to
3318 * a multiple of 4. Do that by adding 3 and then
3319 * dividing by and multiplying by 4, which we do by
3320 * ANDing with ~3.
3321 */
3322 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
3323 s_roundup->s.k = cstate->off_linkpl.reg;
3324 sappend(s, s_roundup);
3325 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3326 s2->s.k = 3;
3327 sappend(s, s2);
3328 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
3329 s2->s.k = (bpf_u_int32)~3;
3330 sappend(s, s2);
3331 s2 = new_stmt(cstate, BPF_ST);
3332 s2->s.k = cstate->off_linkpl.reg;
3333 sappend(s, s2);
3334
3335 sjset_tsft_datapad->s.jt = s_roundup;
3336 sjset_tsft_datapad->s.jf = snext;
3337 sjset_notsft_datapad->s.jt = s_roundup;
3338 sjset_notsft_datapad->s.jf = snext;
3339 } else
3340 sjset_qos->s.jf = snext;
3341
3342 return s;
3343 }
3344
3345 static void
3346 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
3347 {
3348 struct slist *s;
3349
3350 /* There is an implicit dependency between the link
3351 * payload and link header since the payload computation
3352 * includes the variable part of the header. Therefore,
3353 * if nobody else has allocated a register for the link
3354 * header and we need it, do it now. */
3355 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
3356 cstate->off_linkhdr.reg == -1)
3357 cstate->off_linkhdr.reg = alloc_reg(cstate);
3358
3359 /*
3360 * For link-layer types that have a variable-length header
3361 * preceding the link-layer header, generate code to load
3362 * the offset of the link-layer header into the register
3363 * assigned to that offset, if any.
3364 *
3365 * XXX - this, and the next switch statement, won't handle
3366 * encapsulation of 802.11 or 802.11+radio information in
3367 * some other protocol stack. That's significantly more
3368 * complicated.
3369 */
3370 switch (cstate->outermostlinktype) {
3371
3372 case DLT_PRISM_HEADER:
3373 s = gen_load_prism_llprefixlen(cstate);
3374 break;
3375
3376 case DLT_IEEE802_11_RADIO_AVS:
3377 s = gen_load_avs_llprefixlen(cstate);
3378 break;
3379
3380 case DLT_IEEE802_11_RADIO:
3381 s = gen_load_radiotap_llprefixlen(cstate);
3382 break;
3383
3384 case DLT_PPI:
3385 s = gen_load_ppi_llprefixlen(cstate);
3386 break;
3387
3388 default:
3389 s = NULL;
3390 break;
3391 }
3392
3393 /*
3394 * For link-layer types that have a variable-length link-layer
3395 * header, generate code to load the offset of the link-layer
3396 * payload into the register assigned to that offset, if any.
3397 */
3398 switch (cstate->outermostlinktype) {
3399
3400 case DLT_IEEE802_11:
3401 case DLT_PRISM_HEADER:
3402 case DLT_IEEE802_11_RADIO_AVS:
3403 case DLT_IEEE802_11_RADIO:
3404 case DLT_PPI:
3405 s = gen_load_802_11_header_len(cstate, s, b->stmts);
3406 break;
3407
3408 case DLT_PFLOG:
3409 s = gen_load_pflog_llprefixlen(cstate);
3410 break;
3411 }
3412
3413 /*
3414 * If there is no initialization yet and we need variable
3415 * length offsets for VLAN, initialize them to zero
3416 */
3417 if (s == NULL && cstate->is_vlan_vloffset) {
3418 struct slist *s2;
3419
3420 if (cstate->off_linkpl.reg == -1)
3421 cstate->off_linkpl.reg = alloc_reg(cstate);
3422 if (cstate->off_linktype.reg == -1)
3423 cstate->off_linktype.reg = alloc_reg(cstate);
3424
3425 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3426 s->s.k = 0;
3427 s2 = new_stmt(cstate, BPF_ST);
3428 s2->s.k = cstate->off_linkpl.reg;
3429 sappend(s, s2);
3430 s2 = new_stmt(cstate, BPF_ST);
3431 s2->s.k = cstate->off_linktype.reg;
3432 sappend(s, s2);
3433 }
3434
3435 /*
3436 * If we have any offset-loading code, append all the
3437 * existing statements in the block to those statements,
3438 * and make the resulting list the list of statements
3439 * for the block.
3440 */
3441 if (s != NULL) {
3442 sappend(s, b->stmts);
3443 b->stmts = s;
3444 }
3445 }
3446
3447 /*
3448 * Take an absolute offset, and:
3449 *
3450 * if it has no variable part, return NULL;
3451 *
3452 * if it has a variable part, generate code to load the register
3453 * containing that variable part into the X register, returning
3454 * a pointer to that code - if no register for that offset has
3455 * been allocated, allocate it first.
3456 *
3457 * (The code to set that register will be generated later, but will
3458 * be placed earlier in the code sequence.)
3459 */
3460 static struct slist *
3461 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3462 {
3463 struct slist *s;
3464
3465 if (off->is_variable) {
3466 if (off->reg == -1) {
3467 /*
3468 * We haven't yet assigned a register for the
3469 * variable part of the offset of the link-layer
3470 * header; allocate one.
3471 */
3472 off->reg = alloc_reg(cstate);
3473 }
3474
3475 /*
3476 * Load the register containing the variable part of the
3477 * offset of the link-layer header into the X register.
3478 */
3479 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3480 s->s.k = off->reg;
3481 return s;
3482 } else {
3483 /*
3484 * That offset isn't variable, there's no variable part,
3485 * so we don't need to generate any code.
3486 */
3487 return NULL;
3488 }
3489 }
3490
3491 /*
3492 * Map an Ethernet type to the equivalent PPP type.
3493 */
3494 static uint16_t
3495 ethertype_to_ppptype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3496 {
3497 switch (ll_proto) {
3498
3499 case ETHERTYPE_IP:
3500 return PPP_IP;
3501
3502 case ETHERTYPE_IPV6:
3503 return PPP_IPV6;
3504
3505 case ETHERTYPE_DN:
3506 return PPP_DECNET;
3507
3508 case ETHERTYPE_ATALK:
3509 return PPP_APPLE;
3510
3511 case ETHERTYPE_NS:
3512 return PPP_NS;
3513
3514 case LLCSAP_ISONS:
3515 return PPP_OSI;
3516
3517 case LLCSAP_8021D:
3518 /*
3519 * I'm assuming the "Bridging PDU"s that go
3520 * over PPP are Spanning Tree Protocol
3521 * Bridging PDUs.
3522 */
3523 return PPP_BRPDU;
3524
3525 case LLCSAP_IPX:
3526 return PPP_IPX;
3527 }
3528 assert_maxval(cstate, "PPP protocol", ll_proto, UINT16_MAX);
3529 return (uint16_t)ll_proto;
3530 }
3531
3532 /*
3533 * Generate any tests that, for encapsulation of a link-layer packet
3534 * inside another protocol stack, need to be done to check for those
3535 * link-layer packets (and that haven't already been done by a check
3536 * for that encapsulation).
3537 */
3538 static struct block *
3539 gen_prevlinkhdr_check(compiler_state_t *cstate)
3540 {
3541 if (cstate->is_encap)
3542 return gen_encap_ll_check(cstate);
3543
3544 switch (cstate->prevlinktype) {
3545
3546 case DLT_SUNATM:
3547 /*
3548 * This is LANE-encapsulated Ethernet; check that the LANE
3549 * packet doesn't begin with an LE Control marker, i.e.
3550 * that it's data, not a control message.
3551 *
3552 * (We've already generated a test for LANE.)
3553 */
3554 return gen_cmp_ne(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3555
3556 default:
3557 /*
3558 * No such tests are necessary.
3559 */
3560 return NULL;
3561 }
3562 /*NOTREACHED*/
3563 }
3564
3565 /*
3566 * The three different values we should check for when checking for an
3567 * IPv6 packet with DLT_NULL.
3568 */
3569 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3570 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3571 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3572
3573 /*
3574 * Generate code to match a particular packet type by matching the
3575 * link-layer type field or fields in the 802.2 LLC header.
3576 *
3577 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3578 * value, if <= ETHERMTU.
3579 */
3580 static struct block *
3581 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3582 {
3583 struct block *b0, *b1, *b2;
3584
3585 /* are we checking MPLS-encapsulated packets? */
3586 if (cstate->label_stack_depth > 0)
3587 return gen_mpls_linktype(cstate, ll_proto);
3588
3589 switch (cstate->linktype) {
3590
3591 case DLT_EN10MB:
3592 case DLT_NETANALYZER:
3593 case DLT_NETANALYZER_TRANSPARENT:
3594 /* Geneve has an EtherType regardless of whether there is an
3595 * L2 header. VXLAN always has an EtherType. */
3596 if (!cstate->is_encap)
3597 b0 = gen_prevlinkhdr_check(cstate);
3598 else
3599 b0 = NULL;
3600
3601 b1 = gen_ether_linktype(cstate, ll_proto);
3602 if (b0 != NULL)
3603 gen_and(b0, b1);
3604 return b1;
3605 /*NOTREACHED*/
3606
3607 case DLT_C_HDLC:
3608 case DLT_HDLC:
3609 assert_maxval(cstate, "HDLC protocol", ll_proto, UINT16_MAX);
3610 switch (ll_proto) {
3611
3612 case LLCSAP_ISONS:
3613 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3614 /* fall through */
3615
3616 default:
3617 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3618 /*NOTREACHED*/
3619 }
3620
3621 case DLT_IEEE802_11:
3622 case DLT_PRISM_HEADER:
3623 case DLT_IEEE802_11_RADIO_AVS:
3624 case DLT_IEEE802_11_RADIO:
3625 case DLT_PPI:
3626 /*
3627 * Check that we have a data frame.
3628 */
3629 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
3630 IEEE80211_FC0_TYPE_DATA,
3631 IEEE80211_FC0_TYPE_MASK);
3632
3633 /*
3634 * Now check for the specified link-layer type.
3635 */
3636 b1 = gen_llc_linktype(cstate, ll_proto);
3637 gen_and(b0, b1);
3638 return b1;
3639 /*NOTREACHED*/
3640
3641 case DLT_FDDI:
3642 /*
3643 * XXX - check for LLC frames.
3644 */
3645 return gen_llc_linktype(cstate, ll_proto);
3646 /*NOTREACHED*/
3647
3648 case DLT_IEEE802:
3649 /*
3650 * XXX - check for LLC PDUs, as per IEEE 802.5.
3651 */
3652 return gen_llc_linktype(cstate, ll_proto);
3653 /*NOTREACHED*/
3654
3655 case DLT_ATM_RFC1483:
3656 case DLT_ATM_CLIP:
3657 case DLT_IP_OVER_FC:
3658 return gen_llc_linktype(cstate, ll_proto);
3659 /*NOTREACHED*/
3660
3661 case DLT_SUNATM:
3662 /*
3663 * Check for an LLC-encapsulated version of this protocol;
3664 * if we were checking for LANE, linktype would no longer
3665 * be DLT_SUNATM.
3666 *
3667 * Check for LLC encapsulation and then check the protocol.
3668 */
3669 b0 = gen_atm_prototype(cstate, PT_LLC);
3670 b1 = gen_llc_linktype(cstate, ll_proto);
3671 gen_and(b0, b1);
3672 return b1;
3673 /*NOTREACHED*/
3674
3675 case DLT_LINUX_SLL:
3676 return gen_linux_sll_linktype(cstate, ll_proto);
3677 /*NOTREACHED*/
3678
3679 case DLT_SLIP:
3680 case DLT_SLIP_BSDOS:
3681 case DLT_RAW:
3682 /*
3683 * These types don't provide any type field; packets
3684 * are always IPv4 or IPv6.
3685 *
3686 * XXX - for IPv4, check for a version number of 4, and,
3687 * for IPv6, check for a version number of 6?
3688 */
3689 switch (ll_proto) {
3690
3691 case ETHERTYPE_IP:
3692 /* Check for a version number of 4. */
3693 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3694
3695 case ETHERTYPE_IPV6:
3696 /* Check for a version number of 6. */
3697 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3698
3699 default:
3700 return gen_false(cstate); /* always false */
3701 }
3702 /*NOTREACHED*/
3703
3704 case DLT_IPV4:
3705 /*
3706 * Raw IPv4, so no type field.
3707 */
3708 if (ll_proto == ETHERTYPE_IP)
3709 return gen_true(cstate); /* always true */
3710
3711 /* Checking for something other than IPv4; always false */
3712 return gen_false(cstate);
3713 /*NOTREACHED*/
3714
3715 case DLT_IPV6:
3716 /*
3717 * Raw IPv6, so no type field.
3718 */
3719 if (ll_proto == ETHERTYPE_IPV6)
3720 return gen_true(cstate); /* always true */
3721
3722 /* Checking for something other than IPv6; always false */
3723 return gen_false(cstate);
3724 /*NOTREACHED*/
3725
3726 case DLT_PPP:
3727 case DLT_PPP_PPPD:
3728 case DLT_PPP_SERIAL:
3729 case DLT_PPP_ETHER:
3730 /*
3731 * We use Ethernet protocol types inside libpcap;
3732 * map them to the corresponding PPP protocol types.
3733 */
3734 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3735 ethertype_to_ppptype(cstate, ll_proto));
3736 /*NOTREACHED*/
3737
3738 case DLT_PPP_BSDOS:
3739 /*
3740 * We use Ethernet protocol types inside libpcap;
3741 * map them to the corresponding PPP protocol types.
3742 */
3743 switch (ll_proto) {
3744
3745 case ETHERTYPE_IP:
3746 /*
3747 * Also check for Van Jacobson-compressed IP.
3748 * XXX - do this for other forms of PPP?
3749 */
3750 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3751 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3752 gen_or(b0, b1);
3753 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3754 gen_or(b1, b0);
3755 return b0;
3756
3757 default:
3758 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3759 ethertype_to_ppptype(cstate, ll_proto));
3760 }
3761 /*NOTREACHED*/
3762
3763 case DLT_NULL:
3764 case DLT_LOOP:
3765 case DLT_ENC:
3766 switch (ll_proto) {
3767
3768 case ETHERTYPE_IP:
3769 return (gen_loopback_linktype(cstate, AF_INET));
3770
3771 case ETHERTYPE_IPV6:
3772 /*
3773 * AF_ values may, unfortunately, be platform-
3774 * dependent; AF_INET isn't, because everybody
3775 * used 4.2BSD's value, but AF_INET6 is, because
3776 * 4.2BSD didn't have a value for it (given that
3777 * IPv6 didn't exist back in the early 1980's),
3778 * and they all picked their own values.
3779 *
3780 * This means that, if we're reading from a
3781 * savefile, we need to check for all the
3782 * possible values.
3783 *
3784 * If we're doing a live capture, we only need
3785 * to check for this platform's value; however,
3786 * Npcap uses 24, which isn't Windows's AF_INET6
3787 * value. (Given the multiple different values,
3788 * programs that read pcap files shouldn't be
3789 * checking for their platform's AF_INET6 value
3790 * anyway, they should check for all of the
3791 * possible values. and they might as well do
3792 * that even for live captures.)
3793 */
3794 if (cstate->bpf_pcap->rfile != NULL) {
3795 /*
3796 * Savefile - check for all three
3797 * possible IPv6 values.
3798 */
3799 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3800 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3801 gen_or(b0, b1);
3802 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3803 gen_or(b0, b1);
3804 return (b1);
3805 } else {
3806 /*
3807 * Live capture, so we only need to
3808 * check for the value used on this
3809 * platform.
3810 */
3811 #ifdef _WIN32
3812 /*
3813 * Npcap doesn't use Windows's AF_INET6,
3814 * as that collides with AF_IPX on
3815 * some BSDs (both have the value 23).
3816 * Instead, it uses 24.
3817 */
3818 return (gen_loopback_linktype(cstate, 24));
3819 #else /* _WIN32 */
3820 #ifdef AF_INET6
3821 return (gen_loopback_linktype(cstate, AF_INET6));
3822 #else /* AF_INET6 */
3823 /*
3824 * I guess this platform doesn't support
3825 * IPv6, so we just reject all packets.
3826 */
3827 return gen_false(cstate);
3828 #endif /* AF_INET6 */
3829 #endif /* _WIN32 */
3830 }
3831
3832 default:
3833 /*
3834 * Not a type on which we support filtering.
3835 * XXX - support those that have AF_ values
3836 * #defined on this platform, at least?
3837 */
3838 return gen_false(cstate);
3839 }
3840
3841 case DLT_PFLOG:
3842 /*
3843 * af field is host byte order in contrast to the rest of
3844 * the packet.
3845 */
3846 if (ll_proto == ETHERTYPE_IP)
3847 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3848 BPF_B, AF_INET));
3849 else if (ll_proto == ETHERTYPE_IPV6)
3850 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3851 BPF_B, AF_INET6));
3852 else
3853 return gen_false(cstate);
3854 /*NOTREACHED*/
3855
3856 case DLT_ARCNET:
3857 case DLT_ARCNET_LINUX:
3858 /*
3859 * XXX should we check for first fragment if the protocol
3860 * uses PHDS?
3861 */
3862 switch (ll_proto) {
3863
3864 default:
3865 return gen_false(cstate);
3866
3867 case ETHERTYPE_IPV6:
3868 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3869 ARCTYPE_INET6));
3870
3871 case ETHERTYPE_IP:
3872 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3873 ARCTYPE_IP);
3874 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3875 ARCTYPE_IP_OLD);
3876 gen_or(b0, b1);
3877 return (b1);
3878
3879 case ETHERTYPE_ARP:
3880 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3881 ARCTYPE_ARP);
3882 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3883 ARCTYPE_ARP_OLD);
3884 gen_or(b0, b1);
3885 return (b1);
3886
3887 case ETHERTYPE_REVARP:
3888 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3889 ARCTYPE_REVARP));
3890
3891 case ETHERTYPE_ATALK:
3892 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3893 ARCTYPE_ATALK));
3894 }
3895 /*NOTREACHED*/
3896
3897 case DLT_LTALK:
3898 switch (ll_proto) {
3899 case ETHERTYPE_ATALK:
3900 return gen_true(cstate);
3901 default:
3902 return gen_false(cstate);
3903 }
3904 /*NOTREACHED*/
3905
3906 case DLT_FRELAY:
3907 /*
3908 * XXX - assumes a 2-byte Frame Relay header with
3909 * DLCI and flags. What if the address is longer?
3910 */
3911 switch (ll_proto) {
3912
3913 case ETHERTYPE_IP:
3914 /*
3915 * Check for the special NLPID for IP.
3916 */
3917 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3918
3919 case ETHERTYPE_IPV6:
3920 /*
3921 * Check for the special NLPID for IPv6.
3922 */
3923 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3924
3925 case LLCSAP_ISONS:
3926 /*
3927 * Check for several OSI protocols.
3928 *
3929 * Frame Relay packets typically have an OSI
3930 * NLPID at the beginning; we check for each
3931 * of them.
3932 *
3933 * What we check for is the NLPID and a frame
3934 * control field of UI, i.e. 0x03 followed
3935 * by the NLPID.
3936 */
3937 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3938 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3939 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3940 gen_or(b1, b2);
3941 gen_or(b0, b2);
3942 return b2;
3943
3944 default:
3945 return gen_false(cstate);
3946 }
3947 /*NOTREACHED*/
3948
3949 case DLT_MFR:
3950 break; // not implemented
3951
3952 case DLT_JUNIPER_MFR:
3953 case DLT_JUNIPER_MLFR:
3954 case DLT_JUNIPER_MLPPP:
3955 case DLT_JUNIPER_ATM1:
3956 case DLT_JUNIPER_ATM2:
3957 case DLT_JUNIPER_PPPOE:
3958 case DLT_JUNIPER_PPPOE_ATM:
3959 case DLT_JUNIPER_GGSN:
3960 case DLT_JUNIPER_ES:
3961 case DLT_JUNIPER_MONITOR:
3962 case DLT_JUNIPER_SERVICES:
3963 case DLT_JUNIPER_ETHER:
3964 case DLT_JUNIPER_PPP:
3965 case DLT_JUNIPER_FRELAY:
3966 case DLT_JUNIPER_CHDLC:
3967 case DLT_JUNIPER_VP:
3968 case DLT_JUNIPER_ST:
3969 case DLT_JUNIPER_ISM:
3970 case DLT_JUNIPER_VS:
3971 case DLT_JUNIPER_SRX_E2E:
3972 case DLT_JUNIPER_FIBRECHANNEL:
3973 case DLT_JUNIPER_ATM_CEMIC:
3974
3975 /* just lets verify the magic number for now -
3976 * on ATM we may have up to 6 different encapsulations on the wire
3977 * and need a lot of heuristics to figure out that the payload
3978 * might be;
3979 *
3980 * FIXME encapsulation specific BPF_ filters
3981 */
3982 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3983
3984 case DLT_BACNET_MS_TP:
3985 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3986
3987 case DLT_IPNET:
3988 return gen_ipnet_linktype(cstate, ll_proto);
3989
3990 case DLT_LINUX_IRDA:
3991 case DLT_DOCSIS:
3992 case DLT_MTP2:
3993 case DLT_MTP2_WITH_PHDR:
3994 case DLT_ERF:
3995 case DLT_PFSYNC:
3996 case DLT_LINUX_LAPD:
3997 case DLT_USB_FREEBSD:
3998 case DLT_USB_LINUX:
3999 case DLT_USB_LINUX_MMAPPED:
4000 case DLT_USBPCAP:
4001 case DLT_BLUETOOTH_HCI_H4:
4002 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
4003 case DLT_CAN20B:
4004 case DLT_CAN_SOCKETCAN:
4005 case DLT_IEEE802_15_4:
4006 case DLT_IEEE802_15_4_LINUX:
4007 case DLT_IEEE802_15_4_NONASK_PHY:
4008 case DLT_IEEE802_15_4_NOFCS:
4009 case DLT_IEEE802_15_4_TAP:
4010 case DLT_IEEE802_16_MAC_CPS_RADIO:
4011 case DLT_SITA:
4012 case DLT_RAIF1:
4013 case DLT_IPMB_KONTRON:
4014 case DLT_I2C_LINUX:
4015 case DLT_AX25_KISS:
4016 case DLT_NFLOG:
4017 /* Using the fixed-size NFLOG header it is possible to tell only
4018 * the address family of the packet, other meaningful data is
4019 * either missing or behind TLVs.
4020 */
4021 break; // not implemented
4022
4023 default:
4024 /*
4025 * Does this link-layer header type have a field
4026 * indicating the type of the next protocol? If
4027 * so, off_linktype.constant_part will be the offset of that
4028 * field in the packet; if not, it will be OFFSET_NOT_SET.
4029 */
4030 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
4031 /*
4032 * Yes; assume it's an Ethernet type. (If
4033 * it's not, it needs to be handled specially
4034 * above.)
4035 */
4036 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
4037 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
4038 /*NOTREACHED */
4039 }
4040 }
4041 bpf_error(cstate, "link-layer type filtering not implemented for %s",
4042 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
4043 }
4044
4045 /*
4046 * Check for an LLC SNAP packet with a given organization code and
4047 * protocol type; we check the entire contents of the 802.2 LLC and
4048 * snap headers, checking for DSAP and SSAP of SNAP and a control
4049 * field of 0x03 in the LLC header, and for the specified organization
4050 * code and protocol type in the SNAP header.
4051 */
4052 static struct block *
4053 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
4054 {
4055 u_char snapblock[8];
4056
4057 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
4058 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
4059 snapblock[2] = 0x03; /* control = UI */
4060 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
4061 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
4062 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
4063 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
4064 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
4065 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
4066 }
4067
4068 /*
4069 * Generate code to match frames with an LLC header.
4070 */
4071 static struct block *
4072 gen_llc_internal(compiler_state_t *cstate)
4073 {
4074 struct block *b0, *b1;
4075
4076 switch (cstate->linktype) {
4077
4078 case DLT_EN10MB:
4079 /*
4080 * We check for an Ethernet type field less or equal than
4081 * 1500, which means it's an 802.3 length field.
4082 */
4083 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
4084
4085 /*
4086 * Now check for the purported DSAP and SSAP not being
4087 * 0xFF, to rule out NetWare-over-802.3.
4088 */
4089 b1 = gen_cmp_ne(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
4090 gen_and(b0, b1);
4091 return b1;
4092
4093 case DLT_SUNATM:
4094 /*
4095 * We check for LLC traffic.
4096 */
4097 return gen_atmtype_llc(cstate);
4098
4099 case DLT_IEEE802: /* Token Ring */
4100 /*
4101 * XXX - check for LLC frames.
4102 */
4103 return gen_true(cstate);
4104
4105 case DLT_FDDI:
4106 /*
4107 * XXX - check for LLC frames.
4108 */
4109 return gen_true(cstate);
4110
4111 case DLT_ATM_RFC1483:
4112 /*
4113 * For LLC encapsulation, these are defined to have an
4114 * 802.2 LLC header.
4115 *
4116 * For VC encapsulation, they don't, but there's no
4117 * way to check for that; the protocol used on the VC
4118 * is negotiated out of band.
4119 */
4120 return gen_true(cstate);
4121
4122 case DLT_IEEE802_11:
4123 case DLT_PRISM_HEADER:
4124 case DLT_IEEE802_11_RADIO:
4125 case DLT_IEEE802_11_RADIO_AVS:
4126 case DLT_PPI:
4127 /*
4128 * Check that we have a data frame.
4129 */
4130 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
4131 IEEE80211_FC0_TYPE_DATA,
4132 IEEE80211_FC0_TYPE_MASK);
4133
4134 default:
4135 fail_kw_on_dlt(cstate, "llc");
4136 /*NOTREACHED*/
4137 }
4138 }
4139
4140 struct block *
4141 gen_llc(compiler_state_t *cstate)
4142 {
4143 /*
4144 * Catch errors reported by us and routines below us, and return NULL
4145 * on an error.
4146 */
4147 if (setjmp(cstate->top_ctx))
4148 return (NULL);
4149
4150 return gen_llc_internal(cstate);
4151 }
4152
4153 struct block *
4154 gen_llc_i(compiler_state_t *cstate)
4155 {
4156 struct block *b0, *b1;
4157 struct slist *s;
4158
4159 /*
4160 * Catch errors reported by us and routines below us, and return NULL
4161 * on an error.
4162 */
4163 if (setjmp(cstate->top_ctx))
4164 return (NULL);
4165
4166 /*
4167 * Check whether this is an LLC frame.
4168 */
4169 b0 = gen_llc_internal(cstate);
4170
4171 /*
4172 * Load the control byte and test the low-order bit; it must
4173 * be clear for I frames.
4174 */
4175 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
4176 b1 = gen_unset(cstate, 0x01, s);
4177
4178 gen_and(b0, b1);
4179 return b1;
4180 }
4181
4182 struct block *
4183 gen_llc_s(compiler_state_t *cstate)
4184 {
4185 struct block *b0, *b1;
4186
4187 /*
4188 * Catch errors reported by us and routines below us, and return NULL
4189 * on an error.
4190 */
4191 if (setjmp(cstate->top_ctx))
4192 return (NULL);
4193
4194 /*
4195 * Check whether this is an LLC frame.
4196 */
4197 b0 = gen_llc_internal(cstate);
4198
4199 /*
4200 * Now compare the low-order 2 bit of the control byte against
4201 * the appropriate value for S frames.
4202 */
4203 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
4204 gen_and(b0, b1);
4205 return b1;
4206 }
4207
4208 struct block *
4209 gen_llc_u(compiler_state_t *cstate)
4210 {
4211 struct block *b0, *b1;
4212
4213 /*
4214 * Catch errors reported by us and routines below us, and return NULL
4215 * on an error.
4216 */
4217 if (setjmp(cstate->top_ctx))
4218 return (NULL);
4219
4220 /*
4221 * Check whether this is an LLC frame.
4222 */
4223 b0 = gen_llc_internal(cstate);
4224
4225 /*
4226 * Now compare the low-order 2 bit of the control byte against
4227 * the appropriate value for U frames.
4228 */
4229 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
4230 gen_and(b0, b1);
4231 return b1;
4232 }
4233
4234 struct block *
4235 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4236 {
4237 struct block *b0, *b1;
4238
4239 /*
4240 * Catch errors reported by us and routines below us, and return NULL
4241 * on an error.
4242 */
4243 if (setjmp(cstate->top_ctx))
4244 return (NULL);
4245
4246 /*
4247 * Check whether this is an LLC frame.
4248 */
4249 b0 = gen_llc_internal(cstate);
4250
4251 /*
4252 * Now check for an S frame with the appropriate type.
4253 */
4254 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
4255 gen_and(b0, b1);
4256 return b1;
4257 }
4258
4259 struct block *
4260 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4261 {
4262 struct block *b0, *b1;
4263
4264 /*
4265 * Catch errors reported by us and routines below us, and return NULL
4266 * on an error.
4267 */
4268 if (setjmp(cstate->top_ctx))
4269 return (NULL);
4270
4271 /*
4272 * Check whether this is an LLC frame.
4273 */
4274 b0 = gen_llc_internal(cstate);
4275
4276 /*
4277 * Now check for a U frame with the appropriate type.
4278 */
4279 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
4280 gen_and(b0, b1);
4281 return b1;
4282 }
4283
4284 /*
4285 * Generate code to match a particular packet type, for link-layer types
4286 * using 802.2 LLC headers.
4287 *
4288 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4289 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4290 *
4291 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4292 * value, if <= ETHERMTU. We use that to determine whether to
4293 * match the DSAP or both DSAP and LSAP or to check the OUI and
4294 * protocol ID in a SNAP header.
4295 */
4296 static struct block *
4297 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4298 {
4299 /*
4300 * XXX - handle token-ring variable-length header.
4301 */
4302 switch (ll_proto) {
4303
4304 case LLCSAP_IP:
4305 case LLCSAP_ISONS:
4306 case LLCSAP_NETBEUI:
4307 /*
4308 * XXX - should we check both the DSAP and the
4309 * SSAP, like this, or should we check just the
4310 * DSAP, as we do for other SAP values?
4311 */
4312 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
4313 ((ll_proto << 8) | ll_proto));
4314
4315 case LLCSAP_IPX:
4316 /*
4317 * XXX - are there ever SNAP frames for IPX on
4318 * non-Ethernet 802.x networks?
4319 */
4320 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
4321
4322 case ETHERTYPE_ATALK:
4323 /*
4324 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4325 * SNAP packets with an organization code of
4326 * 0x080007 (Apple, for Appletalk) and a protocol
4327 * type of ETHERTYPE_ATALK (Appletalk).
4328 *
4329 * XXX - check for an organization code of
4330 * encapsulated Ethernet as well?
4331 */
4332 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
4333
4334 default:
4335 /*
4336 * XXX - we don't have to check for IPX 802.3
4337 * here, but should we check for the IPX Ethertype?
4338 */
4339 if (ll_proto <= ETHERMTU) {
4340 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
4341 /*
4342 * This is an LLC SAP value, so check
4343 * the DSAP.
4344 */
4345 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4346 } else {
4347 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
4348 /*
4349 * This is an Ethernet type; we assume that it's
4350 * unlikely that it'll appear in the right place
4351 * at random, and therefore check only the
4352 * location that would hold the Ethernet type
4353 * in a SNAP frame with an organization code of
4354 * 0x000000 (encapsulated Ethernet).
4355 *
4356 * XXX - if we were to check for the SNAP DSAP and
4357 * LSAP, as per XXX, and were also to check for an
4358 * organization code of 0x000000 (encapsulated
4359 * Ethernet), we'd do
4360 *
4361 * return gen_snap(cstate, 0x000000, ll_proto);
4362 *
4363 * here; for now, we don't, as per the above.
4364 * I don't know whether it's worth the extra CPU
4365 * time to do the right check or not.
4366 */
4367 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4368 }
4369 }
4370 }
4371
4372 static struct block *
4373 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4374 int dir, u_int src_off, u_int dst_off)
4375 {
4376 struct block *b0, *b1;
4377 u_int offset;
4378
4379 switch (dir) {
4380
4381 case Q_SRC:
4382 offset = src_off;
4383 break;
4384
4385 case Q_DST:
4386 offset = dst_off;
4387 break;
4388
4389 case Q_AND:
4390 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4391 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4392 gen_and(b0, b1);
4393 return b1;
4394
4395 case Q_DEFAULT:
4396 case Q_OR:
4397 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4398 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4399 gen_or(b0, b1);
4400 return b1;
4401
4402 case Q_ADDR1:
4403 case Q_ADDR2:
4404 case Q_ADDR3:
4405 case Q_ADDR4:
4406 case Q_RA:
4407 case Q_TA:
4408 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4409 /*NOTREACHED*/
4410
4411 default:
4412 abort();
4413 /*NOTREACHED*/
4414 }
4415 return gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4416 }
4417
4418 #ifdef INET6
4419 static struct block *
4420 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4421 struct in6_addr *mask, int dir, u_int src_off, u_int dst_off)
4422 {
4423 struct block *b0, *b1;
4424 u_int offset;
4425 /*
4426 * Code below needs to access four separate 32-bit parts of the 128-bit
4427 * IPv6 address and mask. In some OSes this is as simple as using the
4428 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4429 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4430 * far as libpcap sees it. Hence copy the data before use to avoid
4431 * potential unaligned memory access and the associated compiler
4432 * warnings (whether genuine or not).
4433 */
4434 bpf_u_int32 a[4], m[4];
4435
4436 switch (dir) {
4437
4438 case Q_SRC:
4439 offset = src_off;
4440 break;
4441
4442 case Q_DST:
4443 offset = dst_off;
4444 break;
4445
4446 case Q_AND:
4447 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4448 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4449 gen_and(b0, b1);
4450 return b1;
4451
4452 case Q_DEFAULT:
4453 case Q_OR:
4454 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4455 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4456 gen_or(b0, b1);
4457 return b1;
4458
4459 case Q_ADDR1:
4460 case Q_ADDR2:
4461 case Q_ADDR3:
4462 case Q_ADDR4:
4463 case Q_RA:
4464 case Q_TA:
4465 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4466 /*NOTREACHED*/
4467
4468 default:
4469 abort();
4470 /*NOTREACHED*/
4471 }
4472 /* this order is important */
4473 memcpy(a, addr, sizeof(a));
4474 memcpy(m, mask, sizeof(m));
4475 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4476 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4477 gen_and(b0, b1);
4478 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4479 gen_and(b0, b1);
4480 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4481 gen_and(b0, b1);
4482 return b1;
4483 }
4484 #endif
4485
4486 // MAC-48 address matching with the address offsets parametrised.
4487 static struct block *
4488 gen_mac48hostop(compiler_state_t *cstate, const u_char *addr, const int dir,
4489 const u_int src_off, const u_int dst_off)
4490 {
4491 struct block *b0, *b1;
4492
4493 switch (dir) {
4494 case Q_SRC:
4495 return gen_bcmp(cstate, OR_LINKHDR, src_off, 6, addr);
4496
4497 case Q_DST:
4498 return gen_bcmp(cstate, OR_LINKHDR, dst_off, 6, addr);
4499
4500 case Q_AND:
4501 b0 = gen_mac48hostop(cstate, addr, Q_SRC, src_off, dst_off);
4502 b1 = gen_mac48hostop(cstate, addr, Q_DST, src_off, dst_off);
4503 gen_and(b0, b1);
4504 return b1;
4505
4506 case Q_DEFAULT:
4507 case Q_OR:
4508 b0 = gen_mac48hostop(cstate, addr, Q_SRC, src_off, dst_off);
4509 b1 = gen_mac48hostop(cstate, addr, Q_DST, src_off, dst_off);
4510 gen_or(b0, b1);
4511 return b1;
4512
4513 case Q_ADDR1:
4514 case Q_ADDR2:
4515 case Q_ADDR3:
4516 case Q_ADDR4:
4517 case Q_RA:
4518 case Q_TA:
4519 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4520 /*NOTREACHED*/
4521 }
4522 abort();
4523 /*NOTREACHED*/
4524 }
4525
4526 static struct block *
4527 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4528 {
4529 return gen_mac48hostop(cstate, eaddr, dir, 6, 0);
4530 }
4531
4532 /*
4533 * Like gen_ehostop, but for DLT_FDDI
4534 */
4535 static struct block *
4536 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4537 {
4538 return gen_mac48hostop(cstate, eaddr, dir,
4539 6 + 1 + cstate->pcap_fddipad,
4540 0 + 1 + cstate->pcap_fddipad);
4541 }
4542
4543 /*
4544 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4545 */
4546 static struct block *
4547 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4548 {
4549 return gen_mac48hostop(cstate, eaddr, dir, 8, 2);
4550 }
4551
4552 /*
4553 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4554 * various 802.11 + radio headers.
4555 */
4556 static struct block *
4557 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4558 {
4559 register struct block *b0, *b1, *b2;
4560 register struct slist *s;
4561
4562 #ifdef ENABLE_WLAN_FILTERING_PATCH
4563 /*
4564 * TODO GV 20070613
4565 * We need to disable the optimizer because the optimizer is buggy
4566 * and wipes out some LD instructions generated by the below
4567 * code to validate the Frame Control bits
4568 */
4569 cstate->no_optimize = 1;
4570 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4571
4572 switch (dir) {
4573 case Q_SRC:
4574 /*
4575 * Oh, yuk.
4576 *
4577 * For control frames, there is no SA.
4578 *
4579 * For management frames, SA is at an
4580 * offset of 10 from the beginning of
4581 * the packet.
4582 *
4583 * For data frames, SA is at an offset
4584 * of 10 from the beginning of the packet
4585 * if From DS is clear, at an offset of
4586 * 16 from the beginning of the packet
4587 * if From DS is set and To DS is clear,
4588 * and an offset of 24 from the beginning
4589 * of the packet if From DS is set and To DS
4590 * is set.
4591 */
4592
4593 /*
4594 * Generate the tests to be done for data frames
4595 * with From DS set.
4596 *
4597 * First, check for To DS set, i.e. check "link[1] & 0x01".
4598 */
4599 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4600 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
4601
4602 /*
4603 * If To DS is set, the SA is at 24.
4604 */
4605 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4606 gen_and(b1, b0);
4607
4608 /*
4609 * Now, check for To DS not set, i.e. check
4610 * "!(link[1] & 0x01)".
4611 */
4612 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4613 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
4614
4615 /*
4616 * If To DS is not set, the SA is at 16.
4617 */
4618 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4619 gen_and(b2, b1);
4620
4621 /*
4622 * Now OR together the last two checks. That gives
4623 * the complete set of checks for data frames with
4624 * From DS set.
4625 */
4626 gen_or(b1, b0);
4627
4628 /*
4629 * Now check for From DS being set, and AND that with
4630 * the ORed-together checks.
4631 */
4632 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4633 b1 = gen_set(cstate, IEEE80211_FC1_DIR_FROMDS, s);
4634 gen_and(b1, b0);
4635
4636 /*
4637 * Now check for data frames with From DS not set.
4638 */
4639 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4640 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_FROMDS, s);
4641
4642 /*
4643 * If From DS isn't set, the SA is at 10.
4644 */
4645 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4646 gen_and(b2, b1);
4647
4648 /*
4649 * Now OR together the checks for data frames with
4650 * From DS not set and for data frames with From DS
4651 * set; that gives the checks done for data frames.
4652 */
4653 gen_or(b1, b0);
4654
4655 /*
4656 * Now check for a data frame.
4657 * I.e, check "link[0] & 0x08".
4658 */
4659 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4660 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4661
4662 /*
4663 * AND that with the checks done for data frames.
4664 */
4665 gen_and(b1, b0);
4666
4667 /*
4668 * If the high-order bit of the type value is 0, this
4669 * is a management frame.
4670 * I.e, check "!(link[0] & 0x08)".
4671 */
4672 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4673 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
4674
4675 /*
4676 * For management frames, the SA is at 10.
4677 */
4678 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4679 gen_and(b2, b1);
4680
4681 /*
4682 * OR that with the checks done for data frames.
4683 * That gives the checks done for management and
4684 * data frames.
4685 */
4686 gen_or(b1, b0);
4687
4688 /*
4689 * If the low-order bit of the type value is 1,
4690 * this is either a control frame or a frame
4691 * with a reserved type, and thus not a
4692 * frame with an SA.
4693 *
4694 * I.e., check "!(link[0] & 0x04)".
4695 */
4696 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4697 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
4698
4699 /*
4700 * AND that with the checks for data and management
4701 * frames.
4702 */
4703 gen_and(b1, b0);
4704 return b0;
4705
4706 case Q_DST:
4707 /*
4708 * Oh, yuk.
4709 *
4710 * For control frames, there is no DA.
4711 *
4712 * For management frames, DA is at an
4713 * offset of 4 from the beginning of
4714 * the packet.
4715 *
4716 * For data frames, DA is at an offset
4717 * of 4 from the beginning of the packet
4718 * if To DS is clear and at an offset of
4719 * 16 from the beginning of the packet
4720 * if To DS is set.
4721 */
4722
4723 /*
4724 * Generate the tests to be done for data frames.
4725 *
4726 * First, check for To DS set, i.e. "link[1] & 0x01".
4727 */
4728 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4729 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
4730
4731 /*
4732 * If To DS is set, the DA is at 16.
4733 */
4734 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4735 gen_and(b1, b0);
4736
4737 /*
4738 * Now, check for To DS not set, i.e. check
4739 * "!(link[1] & 0x01)".
4740 */
4741 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4742 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
4743
4744 /*
4745 * If To DS is not set, the DA is at 4.
4746 */
4747 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4748 gen_and(b2, b1);
4749
4750 /*
4751 * Now OR together the last two checks. That gives
4752 * the complete set of checks for data frames.
4753 */
4754 gen_or(b1, b0);
4755
4756 /*
4757 * Now check for a data frame.
4758 * I.e, check "link[0] & 0x08".
4759 */
4760 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4761 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4762
4763 /*
4764 * AND that with the checks done for data frames.
4765 */
4766 gen_and(b1, b0);
4767
4768 /*
4769 * If the high-order bit of the type value is 0, this
4770 * is a management frame.
4771 * I.e, check "!(link[0] & 0x08)".
4772 */
4773 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4774 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
4775
4776 /*
4777 * For management frames, the DA is at 4.
4778 */
4779 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4780 gen_and(b2, b1);
4781
4782 /*
4783 * OR that with the checks done for data frames.
4784 * That gives the checks done for management and
4785 * data frames.
4786 */
4787 gen_or(b1, b0);
4788
4789 /*
4790 * If the low-order bit of the type value is 1,
4791 * this is either a control frame or a frame
4792 * with a reserved type, and thus not a
4793 * frame with an SA.
4794 *
4795 * I.e., check "!(link[0] & 0x04)".
4796 */
4797 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4798 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
4799
4800 /*
4801 * AND that with the checks for data and management
4802 * frames.
4803 */
4804 gen_and(b1, b0);
4805 return b0;
4806
4807 case Q_AND:
4808 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4809 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4810 gen_and(b0, b1);
4811 return b1;
4812
4813 case Q_DEFAULT:
4814 case Q_OR:
4815 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4816 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4817 gen_or(b0, b1);
4818 return b1;
4819
4820 /*
4821 * XXX - add BSSID keyword?
4822 */
4823 case Q_ADDR1:
4824 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4825
4826 case Q_ADDR2:
4827 /*
4828 * Not present in CTS or ACK control frames.
4829 */
4830 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4831 IEEE80211_FC0_TYPE_MASK);
4832 b1 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4833 IEEE80211_FC0_SUBTYPE_MASK);
4834 b2 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4835 IEEE80211_FC0_SUBTYPE_MASK);
4836 gen_and(b1, b2);
4837 gen_or(b0, b2);
4838 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4839 gen_and(b2, b1);
4840 return b1;
4841
4842 case Q_ADDR3:
4843 /*
4844 * Not present in control frames.
4845 */
4846 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4847 IEEE80211_FC0_TYPE_MASK);
4848 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4849 gen_and(b0, b1);
4850 return b1;
4851
4852 case Q_ADDR4:
4853 /*
4854 * Present only if the direction mask has both "From DS"
4855 * and "To DS" set. Neither control frames nor management
4856 * frames should have both of those set, so we don't
4857 * check the frame type.
4858 */
4859 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4860 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4861 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4862 gen_and(b0, b1);
4863 return b1;
4864
4865 case Q_RA:
4866 /*
4867 * Not present in management frames; addr1 in other
4868 * frames.
4869 */
4870
4871 /*
4872 * If the high-order bit of the type value is 0, this
4873 * is a management frame.
4874 * I.e, check "(link[0] & 0x08)".
4875 */
4876 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4877 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4878
4879 /*
4880 * Check addr1.
4881 */
4882 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4883
4884 /*
4885 * AND that with the check of addr1.
4886 */
4887 gen_and(b1, b0);
4888 return (b0);
4889
4890 case Q_TA:
4891 /*
4892 * Not present in management frames; addr2, if present,
4893 * in other frames.
4894 */
4895
4896 /*
4897 * Not present in CTS or ACK control frames.
4898 */
4899 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4900 IEEE80211_FC0_TYPE_MASK);
4901 b1 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4902 IEEE80211_FC0_SUBTYPE_MASK);
4903 b2 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4904 IEEE80211_FC0_SUBTYPE_MASK);
4905 gen_and(b1, b2);
4906 gen_or(b0, b2);
4907
4908 /*
4909 * If the high-order bit of the type value is 0, this
4910 * is a management frame.
4911 * I.e, check "(link[0] & 0x08)".
4912 */
4913 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4914 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4915
4916 /*
4917 * AND that with the check for frames other than
4918 * CTS and ACK frames.
4919 */
4920 gen_and(b1, b2);
4921
4922 /*
4923 * Check addr2.
4924 */
4925 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4926 gen_and(b2, b1);
4927 return b1;
4928 }
4929 abort();
4930 /*NOTREACHED*/
4931 }
4932
4933 /*
4934 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4935 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4936 * as the RFC states.)
4937 */
4938 static struct block *
4939 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4940 {
4941 return gen_mac48hostop(cstate, eaddr, dir, 10, 2);
4942 }
4943
4944 /*
4945 * This is quite tricky because there may be pad bytes in front of the
4946 * DECNET header, and then there are two possible data packet formats that
4947 * carry both src and dst addresses, plus 5 packet types in a format that
4948 * carries only the src node, plus 2 types that use a different format and
4949 * also carry just the src node.
4950 *
4951 * Yuck.
4952 *
4953 * Instead of doing those all right, we just look for data packets with
4954 * 0 or 1 bytes of padding. If you want to look at other packets, that
4955 * will require a lot more hacking.
4956 *
4957 * To add support for filtering on DECNET "areas" (network numbers)
4958 * one would want to add a "mask" argument to this routine. That would
4959 * make the filter even more inefficient, although one could be clever
4960 * and not generate masking instructions if the mask is 0xFFFF.
4961 */
4962 static struct block *
4963 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4964 {
4965 struct block *b0, *b1, *b2, *tmp;
4966 u_int offset_lh; /* offset if long header is received */
4967 u_int offset_sh; /* offset if short header is received */
4968
4969 switch (dir) {
4970
4971 case Q_DST:
4972 offset_sh = 1; /* follows flags */
4973 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4974 break;
4975
4976 case Q_SRC:
4977 offset_sh = 3; /* follows flags, dstnode */
4978 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4979 break;
4980
4981 case Q_AND:
4982 /* Inefficient because we do our Calvinball dance twice */
4983 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4984 b1 = gen_dnhostop(cstate, addr, Q_DST);
4985 gen_and(b0, b1);
4986 return b1;
4987
4988 case Q_DEFAULT:
4989 case Q_OR:
4990 /* Inefficient because we do our Calvinball dance twice */
4991 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4992 b1 = gen_dnhostop(cstate, addr, Q_DST);
4993 gen_or(b0, b1);
4994 return b1;
4995
4996 case Q_ADDR1:
4997 case Q_ADDR2:
4998 case Q_ADDR3:
4999 case Q_ADDR4:
5000 case Q_RA:
5001 case Q_TA:
5002 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
5003 /*NOTREACHED*/
5004
5005 default:
5006 abort();
5007 /*NOTREACHED*/
5008 }
5009 /*
5010 * In a DECnet message inside an Ethernet frame the first two bytes
5011 * immediately after EtherType are the [litle-endian] DECnet message
5012 * length, which is irrelevant in this context.
5013 *
5014 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5015 * 8-bit bitmap of the optional padding before the packet route header.
5016 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5017 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5018 * means there aren't any PAD bytes after the bitmap, so the header
5019 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5020 * is set to 0, thus the header begins at the third byte.
5021 *
5022 * The header can be in several (as mentioned above) formats, all of
5023 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5024 * (PF, "pad field") set to 0 regardless of any padding present before
5025 * the header. "Short header" means bits 0-2 of the bitmap encode the
5026 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5027 *
5028 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5029 * values and the masks, this maps to the required single bytes of
5030 * the message correctly on both big-endian and little-endian hosts.
5031 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5032 * because the wire encoding is little-endian and BPF multiple-byte
5033 * loads are big-endian. When the destination address is near enough
5034 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5035 * smaller ones.
5036 */
5037 /* Check for pad = 1, long header case */
5038 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8106U, 0xFF07U);
5039 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
5040 BPF_H, SWAPSHORT(addr));
5041 gen_and(tmp, b1);
5042 /* Check for pad = 0, long header case */
5043 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x06U, 0x07U);
5044 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
5045 SWAPSHORT(addr));
5046 gen_and(tmp, b2);
5047 gen_or(b2, b1);
5048 /* Check for pad = 1, short header case */
5049 if (dir == Q_DST) {
5050 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
5051 0x81020000U | SWAPSHORT(addr),
5052 0xFF07FFFFU);
5053 } else {
5054 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8102U, 0xFF07U);
5055 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
5056 SWAPSHORT(addr));
5057 gen_and(tmp, b2);
5058 }
5059 gen_or(b2, b1);
5060 /* Check for pad = 0, short header case */
5061 if (dir == Q_DST) {
5062 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
5063 0x02000000U | SWAPSHORT(addr) << 8,
5064 0x07FFFF00U);
5065 } else {
5066 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x02U, 0x07U);
5067 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
5068 SWAPSHORT(addr));
5069 gen_and(tmp, b2);
5070 }
5071 gen_or(b2, b1);
5072
5073 return b1;
5074 }
5075
5076 /*
5077 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5078 * test the bottom-of-stack bit, and then check the version number
5079 * field in the IP header.
5080 */
5081 static struct block *
5082 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
5083 {
5084 struct block *b0, *b1;
5085
5086 switch (ll_proto) {
5087
5088 case ETHERTYPE_IP:
5089 /* match the bottom-of-stack bit */
5090 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5091 /* match the IPv4 version number */
5092 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
5093 gen_and(b0, b1);
5094 return b1;
5095
5096 case ETHERTYPE_IPV6:
5097 /* match the bottom-of-stack bit */
5098 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5099 /* match the IPv6 version number */
5100 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
5101 gen_and(b0, b1);
5102 return b1;
5103
5104 default:
5105 /* FIXME add other L3 proto IDs */
5106 bpf_error(cstate, "unsupported protocol over mpls");
5107 /*NOTREACHED*/
5108 }
5109 }
5110
5111 static struct block *
5112 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
5113 int proto, int dir, int type)
5114 {
5115 struct block *b0, *b1;
5116
5117 switch (proto) {
5118
5119 case Q_DEFAULT:
5120 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
5121 /*
5122 * Only check for non-IPv4 addresses if we're not
5123 * checking MPLS-encapsulated packets.
5124 */
5125 if (cstate->label_stack_depth == 0) {
5126 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
5127 gen_or(b0, b1);
5128 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
5129 gen_or(b1, b0);
5130 }
5131 return b0;
5132
5133 case Q_LINK:
5134 // "link net NETNAME" and variations thereof
5135 break; // invalid qualifier
5136
5137 case Q_IP:
5138 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5139 b1 = gen_hostop(cstate, addr, mask, dir, 12, 16);
5140 gen_and(b0, b1);
5141 return b1;
5142
5143 case Q_RARP:
5144 b0 = gen_linktype(cstate, ETHERTYPE_REVARP);
5145 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5146 gen_and(b0, b1);
5147 return b1;
5148
5149 case Q_ARP:
5150 b0 = gen_linktype(cstate, ETHERTYPE_ARP);
5151 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5152 gen_and(b0, b1);
5153 return b1;
5154
5155 case Q_SCTP:
5156 case Q_TCP:
5157 case Q_UDP:
5158 case Q_ICMP:
5159 case Q_IGMP:
5160 case Q_IGRP:
5161 case Q_ATALK:
5162 break; // invalid qualifier
5163
5164 case Q_DECNET:
5165 b0 = gen_linktype(cstate, ETHERTYPE_DN);
5166 b1 = gen_dnhostop(cstate, addr, dir);
5167 gen_and(b0, b1);
5168 return b1;
5169
5170 case Q_LAT:
5171 case Q_SCA:
5172 case Q_MOPRC:
5173 case Q_MOPDL:
5174 case Q_IPV6:
5175 case Q_ICMPV6:
5176 case Q_AH:
5177 case Q_ESP:
5178 case Q_PIM:
5179 case Q_VRRP:
5180 case Q_AARP:
5181 case Q_ISO:
5182 case Q_ESIS:
5183 case Q_ISIS:
5184 case Q_CLNP:
5185 case Q_STP:
5186 case Q_IPX:
5187 case Q_NETBEUI:
5188 case Q_ISIS_L1:
5189 case Q_ISIS_L2:
5190 case Q_ISIS_IIH:
5191 case Q_ISIS_SNP:
5192 case Q_ISIS_CSNP:
5193 case Q_ISIS_PSNP:
5194 case Q_ISIS_LSP:
5195 case Q_RADIO:
5196 case Q_CARP:
5197 break; // invalid qualifier
5198
5199 default:
5200 abort();
5201 }
5202 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5203 type == Q_NET ? "ip net" : "ip host");
5204 /*NOTREACHED*/
5205 }
5206
5207 #ifdef INET6
5208 static struct block *
5209 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5210 struct in6_addr *mask, int proto, int dir, int type)
5211 {
5212 struct block *b0, *b1;
5213
5214 switch (proto) {
5215
5216 case Q_DEFAULT:
5217 case Q_IPV6:
5218 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5219 b1 = gen_hostop6(cstate, addr, mask, dir, 8, 24);
5220 gen_and(b0, b1);
5221 return b1;
5222
5223 case Q_LINK:
5224 case Q_IP:
5225 case Q_RARP:
5226 case Q_ARP:
5227 case Q_SCTP:
5228 case Q_TCP:
5229 case Q_UDP:
5230 case Q_ICMP:
5231 case Q_IGMP:
5232 case Q_IGRP:
5233 case Q_ATALK:
5234 case Q_DECNET:
5235 case Q_LAT:
5236 case Q_SCA:
5237 case Q_MOPRC:
5238 case Q_MOPDL:
5239 case Q_ICMPV6:
5240 case Q_AH:
5241 case Q_ESP:
5242 case Q_PIM:
5243 case Q_VRRP:
5244 case Q_AARP:
5245 case Q_ISO:
5246 case Q_ESIS:
5247 case Q_ISIS:
5248 case Q_CLNP:
5249 case Q_STP:
5250 case Q_IPX:
5251 case Q_NETBEUI:
5252 case Q_ISIS_L1:
5253 case Q_ISIS_L2:
5254 case Q_ISIS_IIH:
5255 case Q_ISIS_SNP:
5256 case Q_ISIS_CSNP:
5257 case Q_ISIS_PSNP:
5258 case Q_ISIS_LSP:
5259 case Q_RADIO:
5260 case Q_CARP:
5261 break; // invalid qualifier
5262
5263 default:
5264 abort();
5265 }
5266 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5267 type == Q_NET ? "ip6 net" : "ip6 host");
5268 /*NOTREACHED*/
5269 }
5270 #endif
5271
5272 #ifndef INET6
5273 /*
5274 * This primitive is non-directional by design, so the grammar does not allow
5275 * to qualify it with a direction.
5276 */
5277 static struct block *
5278 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5279 struct addrinfo *alist, int proto)
5280 {
5281 struct block *b0, *b1, *tmp;
5282 struct addrinfo *ai;
5283 struct sockaddr_in *sin;
5284
5285 switch (proto) {
5286 case Q_DEFAULT:
5287 case Q_IP:
5288 case Q_ARP:
5289 case Q_RARP:
5290 switch (cstate->linktype) {
5291 case DLT_EN10MB:
5292 case DLT_NETANALYZER:
5293 case DLT_NETANALYZER_TRANSPARENT:
5294 b1 = gen_prevlinkhdr_check(cstate);
5295 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5296 if (b1 != NULL)
5297 gen_and(b1, b0);
5298 break;
5299 case DLT_FDDI:
5300 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5301 break;
5302 case DLT_IEEE802:
5303 b0 = gen_thostop(cstate, eaddr, Q_OR);
5304 break;
5305 case DLT_IEEE802_11:
5306 case DLT_PRISM_HEADER:
5307 case DLT_IEEE802_11_RADIO_AVS:
5308 case DLT_IEEE802_11_RADIO:
5309 case DLT_PPI:
5310 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5311 break;
5312 case DLT_IP_OVER_FC:
5313 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5314 break;
5315 case DLT_SUNATM:
5316 /*
5317 * This is LLC-multiplexed traffic; if it were
5318 * LANE, cstate->linktype would have been set to
5319 * DLT_EN10MB.
5320 */
5321 /* FALLTHROUGH */
5322 default:
5323 bpf_error(cstate,
5324 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5325 }
5326 b1 = NULL;
5327 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5328 /*
5329 * Does it have an address?
5330 */
5331 if (ai->ai_addr != NULL) {
5332 /*
5333 * Yes. Is it an IPv4 address?
5334 */
5335 if (ai->ai_addr->sa_family == AF_INET) {
5336 /*
5337 * Generate an entry for it.
5338 */
5339 sin = (struct sockaddr_in *)ai->ai_addr;
5340 tmp = gen_host(cstate,
5341 ntohl(sin->sin_addr.s_addr),
5342 0xffffffff, proto, Q_OR, Q_HOST);
5343 /*
5344 * Is it the *first* IPv4 address?
5345 */
5346 if (b1 == NULL) {
5347 /*
5348 * Yes, so start with it.
5349 */
5350 b1 = tmp;
5351 } else {
5352 /*
5353 * No, so OR it into the
5354 * existing set of
5355 * addresses.
5356 */
5357 gen_or(b1, tmp);
5358 b1 = tmp;
5359 }
5360 }
5361 }
5362 }
5363 if (b1 == NULL) {
5364 /*
5365 * No IPv4 addresses found.
5366 */
5367 return (NULL);
5368 }
5369 gen_not(b1);
5370 gen_and(b0, b1);
5371 return b1;
5372 }
5373 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "gateway");
5374 /*NOTREACHED*/
5375 }
5376 #endif
5377
5378 static struct block *
5379 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5380 {
5381 struct block *b0;
5382 struct block *b1;
5383
5384 switch (proto) {
5385
5386 case Q_SCTP:
5387 return gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT);
5388
5389 case Q_TCP:
5390 return gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT);
5391
5392 case Q_UDP:
5393 return gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT);
5394
5395 case Q_ICMP:
5396 return gen_proto(cstate, IPPROTO_ICMP, Q_IP);
5397
5398 #ifndef IPPROTO_IGMP
5399 #define IPPROTO_IGMP 2
5400 #endif
5401
5402 case Q_IGMP:
5403 return gen_proto(cstate, IPPROTO_IGMP, Q_IP);
5404
5405 #ifndef IPPROTO_IGRP
5406 #define IPPROTO_IGRP 9
5407 #endif
5408 case Q_IGRP:
5409 return gen_proto(cstate, IPPROTO_IGRP, Q_IP);
5410
5411 #ifndef IPPROTO_PIM
5412 #define IPPROTO_PIM 103
5413 #endif
5414
5415 case Q_PIM:
5416 return gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT);
5417
5418 #ifndef IPPROTO_VRRP
5419 #define IPPROTO_VRRP 112
5420 #endif
5421
5422 case Q_VRRP:
5423 return gen_proto(cstate, IPPROTO_VRRP, Q_IP);
5424
5425 #ifndef IPPROTO_CARP
5426 #define IPPROTO_CARP 112
5427 #endif
5428
5429 case Q_CARP:
5430 return gen_proto(cstate, IPPROTO_CARP, Q_IP);
5431
5432 case Q_IP:
5433 return gen_linktype(cstate, ETHERTYPE_IP);
5434
5435 case Q_ARP:
5436 return gen_linktype(cstate, ETHERTYPE_ARP);
5437
5438 case Q_RARP:
5439 return gen_linktype(cstate, ETHERTYPE_REVARP);
5440
5441 case Q_LINK:
5442 break; // invalid syntax
5443
5444 case Q_ATALK:
5445 return gen_linktype(cstate, ETHERTYPE_ATALK);
5446
5447 case Q_AARP:
5448 return gen_linktype(cstate, ETHERTYPE_AARP);
5449
5450 case Q_DECNET:
5451 return gen_linktype(cstate, ETHERTYPE_DN);
5452
5453 case Q_SCA:
5454 return gen_linktype(cstate, ETHERTYPE_SCA);
5455
5456 case Q_LAT:
5457 return gen_linktype(cstate, ETHERTYPE_LAT);
5458
5459 case Q_MOPDL:
5460 return gen_linktype(cstate, ETHERTYPE_MOPDL);
5461
5462 case Q_MOPRC:
5463 return gen_linktype(cstate, ETHERTYPE_MOPRC);
5464
5465 case Q_IPV6:
5466 return gen_linktype(cstate, ETHERTYPE_IPV6);
5467
5468 #ifndef IPPROTO_ICMPV6
5469 #define IPPROTO_ICMPV6 58
5470 #endif
5471 case Q_ICMPV6:
5472 return gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6);
5473
5474 #ifndef IPPROTO_AH
5475 #define IPPROTO_AH 51
5476 #endif
5477 case Q_AH:
5478 return gen_proto(cstate, IPPROTO_AH, Q_DEFAULT);
5479
5480 #ifndef IPPROTO_ESP
5481 #define IPPROTO_ESP 50
5482 #endif
5483 case Q_ESP:
5484 return gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT);
5485
5486 case Q_ISO:
5487 return gen_linktype(cstate, LLCSAP_ISONS);
5488
5489 case Q_ESIS:
5490 return gen_proto(cstate, ISO9542_ESIS, Q_ISO);
5491
5492 case Q_ISIS:
5493 return gen_proto(cstate, ISO10589_ISIS, Q_ISO);
5494
5495 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5496 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS);
5497 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS); /* FIXME extract the circuit-type bits */
5498 gen_or(b0, b1);
5499 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS);
5500 gen_or(b0, b1);
5501 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5502 gen_or(b0, b1);
5503 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5504 gen_or(b0, b1);
5505 return b1;
5506
5507 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5508 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS);
5509 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS); /* FIXME extract the circuit-type bits */
5510 gen_or(b0, b1);
5511 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS);
5512 gen_or(b0, b1);
5513 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5514 gen_or(b0, b1);
5515 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5516 gen_or(b0, b1);
5517 return b1;
5518
5519 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5520 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS);
5521 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS);
5522 gen_or(b0, b1);
5523 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS);
5524 gen_or(b0, b1);
5525 return b1;
5526
5527 case Q_ISIS_LSP:
5528 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS);
5529 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS);
5530 gen_or(b0, b1);
5531 return b1;
5532
5533 case Q_ISIS_SNP:
5534 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5535 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5536 gen_or(b0, b1);
5537 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5538 gen_or(b0, b1);
5539 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5540 gen_or(b0, b1);
5541 return b1;
5542
5543 case Q_ISIS_CSNP:
5544 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5545 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5546 gen_or(b0, b1);
5547 return b1;
5548
5549 case Q_ISIS_PSNP:
5550 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5551 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5552 gen_or(b0, b1);
5553 return b1;
5554
5555 case Q_CLNP:
5556 return gen_proto(cstate, ISO8473_CLNP, Q_ISO);
5557
5558 case Q_STP:
5559 return gen_linktype(cstate, LLCSAP_8021D);
5560
5561 case Q_IPX:
5562 return gen_linktype(cstate, LLCSAP_IPX);
5563
5564 case Q_NETBEUI:
5565 return gen_linktype(cstate, LLCSAP_NETBEUI);
5566
5567 case Q_RADIO:
5568 break; // invalid syntax
5569
5570 default:
5571 abort();
5572 }
5573 bpf_error(cstate, "'%s' cannot be used as an abbreviation", pqkw(proto));
5574 }
5575
5576 struct block *
5577 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5578 {
5579 /*
5580 * Catch errors reported by us and routines below us, and return NULL
5581 * on an error.
5582 */
5583 if (setjmp(cstate->top_ctx))
5584 return (NULL);
5585
5586 return gen_proto_abbrev_internal(cstate, proto);
5587 }
5588
5589 static struct block *
5590 gen_ip_proto(compiler_state_t *cstate, const uint8_t proto)
5591 {
5592 return gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5593 }
5594
5595 static struct block *
5596 gen_ip6_proto(compiler_state_t *cstate, const uint8_t proto)
5597 {
5598 return gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5599 }
5600
5601 static struct block *
5602 gen_ipfrag(compiler_state_t *cstate)
5603 {
5604 struct slist *s;
5605
5606 /* not IPv4 frag other than the first frag */
5607 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5608 return gen_unset(cstate, 0x1fff, s);
5609 }
5610
5611 /*
5612 * Generate a comparison to a port value in the transport-layer header
5613 * at the specified offset from the beginning of that header.
5614 *
5615 * XXX - this handles a variable-length prefix preceding the link-layer
5616 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5617 * variable-length link-layer headers (such as Token Ring or 802.11
5618 * headers).
5619 */
5620 static struct block *
5621 gen_portatom(compiler_state_t *cstate, int off, uint16_t v)
5622 {
5623 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5624 }
5625
5626 static struct block *
5627 gen_portatom6(compiler_state_t *cstate, int off, uint16_t v)
5628 {
5629 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5630 }
5631
5632 static struct block *
5633 gen_port(compiler_state_t *cstate, uint16_t port, int proto, int dir)
5634 {
5635 struct block *b1, *tmp;
5636
5637 switch (dir) {
5638 case Q_SRC:
5639 b1 = gen_portatom(cstate, 0, port);
5640 break;
5641
5642 case Q_DST:
5643 b1 = gen_portatom(cstate, 2, port);
5644 break;
5645
5646 case Q_AND:
5647 tmp = gen_portatom(cstate, 0, port);
5648 b1 = gen_portatom(cstate, 2, port);
5649 gen_and(tmp, b1);
5650 break;
5651
5652 case Q_DEFAULT:
5653 case Q_OR:
5654 tmp = gen_portatom(cstate, 0, port);
5655 b1 = gen_portatom(cstate, 2, port);
5656 gen_or(tmp, b1);
5657 break;
5658
5659 case Q_ADDR1:
5660 case Q_ADDR2:
5661 case Q_ADDR3:
5662 case Q_ADDR4:
5663 case Q_RA:
5664 case Q_TA:
5665 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "port");
5666 /*NOTREACHED*/
5667
5668 default:
5669 abort();
5670 /*NOTREACHED*/
5671 }
5672
5673 return gen_port_common(cstate, proto, b1);
5674 }
5675
5676 static struct block *
5677 gen_port_common(compiler_state_t *cstate, int proto, struct block *b1)
5678 {
5679 struct block *b0, *tmp;
5680
5681 /*
5682 * ether proto ip
5683 *
5684 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5685 * not LLC encapsulation with LLCSAP_IP.
5686 *
5687 * For IEEE 802 networks - which includes 802.5 token ring
5688 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5689 * says that SNAP encapsulation is used, not LLC encapsulation
5690 * with LLCSAP_IP.
5691 *
5692 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5693 * RFC 2225 say that SNAP encapsulation is used, not LLC
5694 * encapsulation with LLCSAP_IP.
5695 *
5696 * So we always check for ETHERTYPE_IP.
5697 *
5698 * At the time of this writing all three L4 protocols the "port" and
5699 * "portrange" primitives support (TCP, UDP and SCTP) have the source
5700 * and the destination ports identically encoded in the transport
5701 * protocol header. So without a proto qualifier the only difference
5702 * between the implemented cases is the protocol number and all other
5703 * checks need to be made exactly once.
5704 *
5705 * If the expression syntax in future starts to support ports for
5706 * another L4 protocol that has unsigned integer ports encoded using a
5707 * different size and/or offset, this will require a different code.
5708 */
5709 switch (proto) {
5710 case IPPROTO_UDP:
5711 case IPPROTO_TCP:
5712 case IPPROTO_SCTP:
5713 tmp = gen_ip_proto(cstate, (uint8_t)proto);
5714 break;
5715
5716 case PROTO_UNDEF:
5717 tmp = gen_ip_proto(cstate, IPPROTO_UDP);
5718 gen_or(gen_ip_proto(cstate, IPPROTO_TCP), tmp);
5719 gen_or(gen_ip_proto(cstate, IPPROTO_SCTP), tmp);
5720 break;
5721
5722 default:
5723 abort();
5724 }
5725 // Not a fragment other than the first fragment.
5726 b0 = gen_ipfrag(cstate);
5727 gen_and(tmp, b0);
5728 gen_and(b0, b1);
5729 // "link proto \ip"
5730 gen_and(gen_linktype(cstate, ETHERTYPE_IP), b1);
5731 return b1;
5732 }
5733
5734 static struct block *
5735 gen_port6(compiler_state_t *cstate, uint16_t port, int proto, int dir)
5736 {
5737 struct block *b1, *tmp;
5738
5739 switch (dir) {
5740 case Q_SRC:
5741 b1 = gen_portatom6(cstate, 0, port);
5742 break;
5743
5744 case Q_DST:
5745 b1 = gen_portatom6(cstate, 2, port);
5746 break;
5747
5748 case Q_AND:
5749 tmp = gen_portatom6(cstate, 0, port);
5750 b1 = gen_portatom6(cstate, 2, port);
5751 gen_and(tmp, b1);
5752 break;
5753
5754 case Q_DEFAULT:
5755 case Q_OR:
5756 tmp = gen_portatom6(cstate, 0, port);
5757 b1 = gen_portatom6(cstate, 2, port);
5758 gen_or(tmp, b1);
5759 break;
5760
5761 default:
5762 abort();
5763 }
5764
5765 return gen_port6_common(cstate, proto, b1);
5766 }
5767
5768 static struct block *
5769 gen_port6_common(compiler_state_t *cstate, int proto, struct block *b1)
5770 {
5771 struct block *tmp;
5772
5773 // "ip6 proto 'ip_proto'"
5774 switch (proto) {
5775 case IPPROTO_UDP:
5776 case IPPROTO_TCP:
5777 case IPPROTO_SCTP:
5778 tmp = gen_ip6_proto(cstate, (uint8_t)proto);
5779 break;
5780
5781 case PROTO_UNDEF:
5782 // Same as in gen_port_common().
5783 tmp = gen_ip6_proto(cstate, IPPROTO_UDP);
5784 gen_or(gen_ip6_proto(cstate, IPPROTO_TCP), tmp);
5785 gen_or(gen_ip6_proto(cstate, IPPROTO_SCTP), tmp);
5786 break;
5787
5788 default:
5789 abort();
5790 }
5791 // XXX - catch the first fragment of a fragmented packet?
5792 gen_and(tmp, b1);
5793 // "link proto \ip6"
5794 gen_and(gen_linktype(cstate, ETHERTYPE_IPV6), b1);
5795 return b1;
5796 }
5797
5798 /* gen_portrange code */
5799 static struct block *
5800 gen_portrangeatom(compiler_state_t *cstate, u_int off, uint16_t v1,
5801 uint16_t v2)
5802 {
5803 if (v1 == v2)
5804 return gen_portatom(cstate, off, v1);
5805
5806 struct block *b1, *b2;
5807
5808 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, min(v1, v2));
5809 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, max(v1, v2));
5810
5811 gen_and(b1, b2);
5812
5813 return b2;
5814 }
5815
5816 static struct block *
5817 gen_portrange(compiler_state_t *cstate, uint16_t port1, uint16_t port2,
5818 int proto, int dir)
5819 {
5820 struct block *b1, *tmp;
5821
5822 switch (dir) {
5823 case Q_SRC:
5824 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5825 break;
5826
5827 case Q_DST:
5828 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5829 break;
5830
5831 case Q_AND:
5832 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5833 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5834 gen_and(tmp, b1);
5835 break;
5836
5837 case Q_DEFAULT:
5838 case Q_OR:
5839 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5840 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5841 gen_or(tmp, b1);
5842 break;
5843
5844 case Q_ADDR1:
5845 case Q_ADDR2:
5846 case Q_ADDR3:
5847 case Q_ADDR4:
5848 case Q_RA:
5849 case Q_TA:
5850 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "portrange");
5851 /*NOTREACHED*/
5852
5853 default:
5854 abort();
5855 /*NOTREACHED*/
5856 }
5857
5858 return gen_port_common(cstate, proto, b1);
5859 }
5860
5861 static struct block *
5862 gen_portrangeatom6(compiler_state_t *cstate, u_int off, uint16_t v1,
5863 uint16_t v2)
5864 {
5865 if (v1 == v2)
5866 return gen_portatom6(cstate, off, v1);
5867
5868 struct block *b1, *b2;
5869
5870 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, min(v1, v2));
5871 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, max(v1, v2));
5872
5873 gen_and(b1, b2);
5874
5875 return b2;
5876 }
5877
5878 static struct block *
5879 gen_portrange6(compiler_state_t *cstate, uint16_t port1, uint16_t port2,
5880 int proto, int dir)
5881 {
5882 struct block *b1, *tmp;
5883
5884 switch (dir) {
5885 case Q_SRC:
5886 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5887 break;
5888
5889 case Q_DST:
5890 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5891 break;
5892
5893 case Q_AND:
5894 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5895 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5896 gen_and(tmp, b1);
5897 break;
5898
5899 case Q_DEFAULT:
5900 case Q_OR:
5901 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5902 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5903 gen_or(tmp, b1);
5904 break;
5905
5906 default:
5907 abort();
5908 }
5909
5910 return gen_port6_common(cstate, proto, b1);
5911 }
5912
5913 static int
5914 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5915 {
5916 register int v;
5917
5918 switch (proto) {
5919
5920 case Q_DEFAULT:
5921 case Q_IP:
5922 case Q_IPV6:
5923 v = pcap_nametoproto(name);
5924 if (v == PROTO_UNDEF)
5925 bpf_error(cstate, "unknown ip proto '%s'", name);
5926 break;
5927
5928 case Q_LINK:
5929 /* XXX should look up h/w protocol type based on cstate->linktype */
5930 v = pcap_nametoeproto(name);
5931 if (v == PROTO_UNDEF) {
5932 v = pcap_nametollc(name);
5933 if (v == PROTO_UNDEF)
5934 bpf_error(cstate, "unknown ether proto '%s'", name);
5935 }
5936 break;
5937
5938 case Q_ISO:
5939 if (strcmp(name, "esis") == 0)
5940 v = ISO9542_ESIS;
5941 else if (strcmp(name, "isis") == 0)
5942 v = ISO10589_ISIS;
5943 else if (strcmp(name, "clnp") == 0)
5944 v = ISO8473_CLNP;
5945 else
5946 bpf_error(cstate, "unknown osi proto '%s'", name);
5947 break;
5948
5949 default:
5950 v = PROTO_UNDEF;
5951 break;
5952 }
5953 return v;
5954 }
5955
5956 #if !defined(NO_PROTOCHAIN)
5957 /*
5958 * This primitive is non-directional by design, so the grammar does not allow
5959 * to qualify it with a direction.
5960 */
5961 static struct block *
5962 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
5963 {
5964 struct block *b0, *b;
5965 struct slist *s[100];
5966 int fix2, fix3, fix4, fix5;
5967 int ahcheck, again, end;
5968 int i, max;
5969 int reg2 = alloc_reg(cstate);
5970
5971 memset(s, 0, sizeof(s));
5972 fix3 = fix4 = fix5 = 0;
5973
5974 switch (proto) {
5975 case Q_IP:
5976 case Q_IPV6:
5977 break;
5978 case Q_DEFAULT:
5979 b0 = gen_protochain(cstate, v, Q_IP);
5980 b = gen_protochain(cstate, v, Q_IPV6);
5981 gen_or(b0, b);
5982 return b;
5983 default:
5984 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "protochain");
5985 /*NOTREACHED*/
5986 }
5987
5988 /*
5989 * We don't handle variable-length prefixes before the link-layer
5990 * header, or variable-length link-layer headers, here yet.
5991 * We might want to add BPF instructions to do the protochain
5992 * work, to simplify that and, on platforms that have a BPF
5993 * interpreter with the new instructions, let the filtering
5994 * be done in the kernel. (We already require a modified BPF
5995 * engine to do the protochain stuff, to support backward
5996 * branches, and backward branch support is unlikely to appear
5997 * in kernel BPF engines.)
5998 */
5999 if (cstate->off_linkpl.is_variable)
6000 bpf_error(cstate, "'protochain' not supported with variable length headers");
6001
6002 /*
6003 * To quote a comment in optimize.c:
6004 *
6005 * "These data structures are used in a Cocke and Schwartz style
6006 * value numbering scheme. Since the flowgraph is acyclic,
6007 * exit values can be propagated from a node's predecessors
6008 * provided it is uniquely defined."
6009 *
6010 * "Acyclic" means "no backward branches", which means "no
6011 * loops", so we have to turn the optimizer off.
6012 */
6013 cstate->no_optimize = 1;
6014
6015 /*
6016 * s[0] is a dummy entry to protect other BPF insn from damage
6017 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6018 * hard to find interdependency made by jump table fixup.
6019 */
6020 i = 0;
6021 s[i] = new_stmt(cstate, 0); /*dummy*/
6022 i++;
6023
6024 switch (proto) {
6025 case Q_IP:
6026 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6027
6028 /* A = ip->ip_p */
6029 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6030 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6031 i++;
6032 /* X = ip->ip_hl << 2 */
6033 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6034 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6035 i++;
6036 break;
6037
6038 case Q_IPV6:
6039 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6040
6041 /* A = ip6->ip_nxt */
6042 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6043 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6044 i++;
6045 /* X = sizeof(struct ip6_hdr) */
6046 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6047 s[i]->s.k = 40;
6048 i++;
6049 break;
6050
6051 default:
6052 bpf_error(cstate, "unsupported proto to gen_protochain");
6053 /*NOTREACHED*/
6054 }
6055
6056 /* again: if (A == v) goto end; else fall through; */
6057 again = i;
6058 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6059 s[i]->s.k = v;
6060 s[i]->s.jt = NULL; /*later*/
6061 s[i]->s.jf = NULL; /*update in next stmt*/
6062 fix5 = i;
6063 i++;
6064
6065 #ifndef IPPROTO_NONE
6066 #define IPPROTO_NONE 59
6067 #endif
6068 /* if (A == IPPROTO_NONE) goto end */
6069 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6070 s[i]->s.jt = NULL; /*later*/
6071 s[i]->s.jf = NULL; /*update in next stmt*/
6072 s[i]->s.k = IPPROTO_NONE;
6073 s[fix5]->s.jf = s[i];
6074 fix2 = i;
6075 i++;
6076
6077 if (proto == Q_IPV6) {
6078 int v6start, v6end, v6advance, j;
6079
6080 v6start = i;
6081 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6082 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6083 s[i]->s.jt = NULL; /*later*/
6084 s[i]->s.jf = NULL; /*update in next stmt*/
6085 s[i]->s.k = IPPROTO_HOPOPTS;
6086 s[fix2]->s.jf = s[i];
6087 i++;
6088 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6089 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6090 s[i]->s.jt = NULL; /*later*/
6091 s[i]->s.jf = NULL; /*update in next stmt*/
6092 s[i]->s.k = IPPROTO_DSTOPTS;
6093 i++;
6094 /* if (A == IPPROTO_ROUTING) goto v6advance */
6095 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6096 s[i]->s.jt = NULL; /*later*/
6097 s[i]->s.jf = NULL; /*update in next stmt*/
6098 s[i]->s.k = IPPROTO_ROUTING;
6099 i++;
6100 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6101 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6102 s[i]->s.jt = NULL; /*later*/
6103 s[i]->s.jf = NULL; /*later*/
6104 s[i]->s.k = IPPROTO_FRAGMENT;
6105 fix3 = i;
6106 v6end = i;
6107 i++;
6108
6109 /* v6advance: */
6110 v6advance = i;
6111
6112 /*
6113 * in short,
6114 * A = P[X + packet head];
6115 * X = X + (P[X + packet head + 1] + 1) * 8;
6116 */
6117 /* A = P[X + packet head] */
6118 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6119 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6120 i++;
6121 /* MEM[reg2] = A */
6122 s[i] = new_stmt(cstate, BPF_ST);
6123 s[i]->s.k = reg2;
6124 i++;
6125 /* A = P[X + packet head + 1]; */
6126 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6127 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6128 i++;
6129 /* A += 1 */
6130 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6131 s[i]->s.k = 1;
6132 i++;
6133 /* A *= 8 */
6134 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6135 s[i]->s.k = 8;
6136 i++;
6137 /* A += X */
6138 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6139 s[i]->s.k = 0;
6140 i++;
6141 /* X = A; */
6142 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6143 i++;
6144 /* A = MEM[reg2] */
6145 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6146 s[i]->s.k = reg2;
6147 i++;
6148
6149 /* goto again; (must use BPF_JA for backward jump) */
6150 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6151 s[i]->s.k = again - i - 1;
6152 s[i - 1]->s.jf = s[i];
6153 i++;
6154
6155 /* fixup */
6156 for (j = v6start; j <= v6end; j++)
6157 s[j]->s.jt = s[v6advance];
6158 } else {
6159 /* nop */
6160 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6161 s[i]->s.k = 0;
6162 s[fix2]->s.jf = s[i];
6163 i++;
6164 }
6165
6166 /* ahcheck: */
6167 ahcheck = i;
6168 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6169 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6170 s[i]->s.jt = NULL; /*later*/
6171 s[i]->s.jf = NULL; /*later*/
6172 s[i]->s.k = IPPROTO_AH;
6173 if (fix3)
6174 s[fix3]->s.jf = s[ahcheck];
6175 fix4 = i;
6176 i++;
6177
6178 /*
6179 * in short,
6180 * A = P[X];
6181 * X = X + (P[X + 1] + 2) * 4;
6182 */
6183 /* A = X */
6184 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6185 i++;
6186 /* A = P[X + packet head]; */
6187 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6188 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6189 i++;
6190 /* MEM[reg2] = A */
6191 s[i] = new_stmt(cstate, BPF_ST);
6192 s[i]->s.k = reg2;
6193 i++;
6194 /* A = X */
6195 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6196 i++;
6197 /* A += 1 */
6198 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6199 s[i]->s.k = 1;
6200 i++;
6201 /* X = A */
6202 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6203 i++;
6204 /* A = P[X + packet head] */
6205 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6206 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6207 i++;
6208 /* A += 2 */
6209 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6210 s[i]->s.k = 2;
6211 i++;
6212 /* A *= 4 */
6213 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6214 s[i]->s.k = 4;
6215 i++;
6216 /* X = A; */
6217 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6218 i++;
6219 /* A = MEM[reg2] */
6220 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6221 s[i]->s.k = reg2;
6222 i++;
6223
6224 /* goto again; (must use BPF_JA for backward jump) */
6225 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6226 s[i]->s.k = again - i - 1;
6227 i++;
6228
6229 /* end: nop */
6230 end = i;
6231 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6232 s[i]->s.k = 0;
6233 s[fix2]->s.jt = s[end];
6234 s[fix4]->s.jf = s[end];
6235 s[fix5]->s.jt = s[end];
6236 i++;
6237
6238 /*
6239 * make slist chain
6240 */
6241 max = i;
6242 for (i = 0; i < max - 1; i++)
6243 s[i]->next = s[i + 1];
6244 s[max - 1]->next = NULL;
6245
6246 /*
6247 * emit final check
6248 * Remember, s[0] is dummy.
6249 */
6250 b = gen_jmp(cstate, BPF_JEQ, v, s[1]);
6251
6252 free_reg(cstate, reg2);
6253
6254 gen_and(b0, b);
6255 return b;
6256 }
6257 #endif /* !defined(NO_PROTOCHAIN) */
6258
6259 /*
6260 * Generate code that checks whether the packet is a packet for protocol
6261 * <proto> and whether the type field in that protocol's header has
6262 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6263 * IP packet and checks the protocol number in the IP header against <v>.
6264 *
6265 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6266 * against Q_IP and Q_IPV6.
6267 *
6268 * This primitive is non-directional by design, so the grammar does not allow
6269 * to qualify it with a direction.
6270 */
6271 static struct block *
6272 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6273 {
6274 struct block *b0, *b1;
6275 struct block *b2;
6276
6277 switch (proto) {
6278 case Q_DEFAULT:
6279 b0 = gen_proto(cstate, v, Q_IP);
6280 b1 = gen_proto(cstate, v, Q_IPV6);
6281 gen_or(b0, b1);
6282 return b1;
6283
6284 case Q_LINK:
6285 return gen_linktype(cstate, v);
6286
6287 case Q_IP:
6288 assert_maxval(cstate, "protocol number", v, UINT8_MAX);
6289 /*
6290 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6291 * not LLC encapsulation with LLCSAP_IP.
6292 *
6293 * For IEEE 802 networks - which includes 802.5 token ring
6294 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6295 * says that SNAP encapsulation is used, not LLC encapsulation
6296 * with LLCSAP_IP.
6297 *
6298 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6299 * RFC 2225 say that SNAP encapsulation is used, not LLC
6300 * encapsulation with LLCSAP_IP.
6301 *
6302 * So we always check for ETHERTYPE_IP.
6303 */
6304 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6305 // 0 <= v <= UINT8_MAX
6306 b1 = gen_ip_proto(cstate, (uint8_t)v);
6307 gen_and(b0, b1);
6308 return b1;
6309
6310 case Q_ARP:
6311 case Q_RARP:
6312 case Q_SCTP:
6313 case Q_TCP:
6314 case Q_UDP:
6315 case Q_ICMP:
6316 case Q_IGMP:
6317 case Q_IGRP:
6318 case Q_ATALK:
6319 case Q_DECNET:
6320 case Q_LAT:
6321 case Q_SCA:
6322 case Q_MOPRC:
6323 case Q_MOPDL:
6324 break; // invalid qualifier
6325
6326 case Q_IPV6:
6327 assert_maxval(cstate, "protocol number", v, UINT8_MAX);
6328 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6329 /*
6330 * Also check for a fragment header before the final
6331 * header.
6332 */
6333 b2 = gen_ip6_proto(cstate, IPPROTO_FRAGMENT);
6334 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6335 gen_and(b2, b1);
6336 // 0 <= v <= UINT8_MAX
6337 b2 = gen_ip6_proto(cstate, (uint8_t)v);
6338 gen_or(b2, b1);
6339 gen_and(b0, b1);
6340 return b1;
6341
6342 case Q_ICMPV6:
6343 case Q_AH:
6344 case Q_ESP:
6345 case Q_PIM:
6346 case Q_VRRP:
6347 case Q_AARP:
6348 break; // invalid qualifier
6349
6350 case Q_ISO:
6351 assert_maxval(cstate, "ISO protocol", v, UINT8_MAX);
6352 switch (cstate->linktype) {
6353
6354 case DLT_FRELAY:
6355 /*
6356 * Frame Relay packets typically have an OSI
6357 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6358 * generates code to check for all the OSI
6359 * NLPIDs, so calling it and then adding a check
6360 * for the particular NLPID for which we're
6361 * looking is bogus, as we can just check for
6362 * the NLPID.
6363 *
6364 * What we check for is the NLPID and a frame
6365 * control field value of UI, i.e. 0x03 followed
6366 * by the NLPID.
6367 *
6368 * XXX - assumes a 2-byte Frame Relay header with
6369 * DLCI and flags. What if the address is longer?
6370 *
6371 * XXX - what about SNAP-encapsulated frames?
6372 */
6373 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6374 /*NOTREACHED*/
6375
6376 case DLT_C_HDLC:
6377 case DLT_HDLC:
6378 /*
6379 * Cisco uses an Ethertype lookalike - for OSI,
6380 * it's 0xfefe.
6381 */
6382 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6383 /* OSI in C-HDLC is stuffed with a fudge byte */
6384 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6385 gen_and(b0, b1);
6386 return b1;
6387
6388 default:
6389 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6390 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6391 gen_and(b0, b1);
6392 return b1;
6393 }
6394
6395 case Q_ESIS:
6396 break; // invalid qualifier
6397
6398 case Q_ISIS:
6399 assert_maxval(cstate, "IS-IS PDU type", v, ISIS_PDU_TYPE_MAX);
6400 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO);
6401 /*
6402 * 4 is the offset of the PDU type relative to the IS-IS
6403 * header.
6404 * Except when it is not, see above.
6405 */
6406 unsigned pdu_type_offset;
6407 switch (cstate->linktype) {
6408 case DLT_C_HDLC:
6409 case DLT_HDLC:
6410 pdu_type_offset = 5;
6411 break;
6412 default:
6413 pdu_type_offset = 4;
6414 }
6415 b1 = gen_mcmp(cstate, OR_LINKPL_NOSNAP, pdu_type_offset, BPF_B,
6416 v, ISIS_PDU_TYPE_MAX);
6417 gen_and(b0, b1);
6418 return b1;
6419
6420 case Q_CLNP:
6421 case Q_STP:
6422 case Q_IPX:
6423 case Q_NETBEUI:
6424 case Q_ISIS_L1:
6425 case Q_ISIS_L2:
6426 case Q_ISIS_IIH:
6427 case Q_ISIS_SNP:
6428 case Q_ISIS_CSNP:
6429 case Q_ISIS_PSNP:
6430 case Q_ISIS_LSP:
6431 case Q_RADIO:
6432 case Q_CARP:
6433 break; // invalid qualifier
6434
6435 default:
6436 abort();
6437 /*NOTREACHED*/
6438 }
6439 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "proto");
6440 /*NOTREACHED*/
6441 }
6442
6443 /*
6444 * Convert a non-numeric name to a port number.
6445 */
6446 static int
6447 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6448 {
6449 struct addrinfo hints, *res, *ai;
6450 int error;
6451 struct sockaddr_in *in4;
6452 #ifdef INET6
6453 struct sockaddr_in6 *in6;
6454 #endif
6455 int port = -1;
6456
6457 /*
6458 * We check for both TCP and UDP in case there are
6459 * ambiguous entries.
6460 */
6461 memset(&hints, 0, sizeof(hints));
6462 hints.ai_family = PF_UNSPEC;
6463 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6464 hints.ai_protocol = ipproto;
6465 error = getaddrinfo(NULL, name, &hints, &res);
6466 if (error != 0) {
6467 switch (error) {
6468
6469 case EAI_NONAME:
6470 case EAI_SERVICE:
6471 /*
6472 * No such port. Just return -1.
6473 */
6474 break;
6475
6476 #ifdef EAI_SYSTEM
6477 case EAI_SYSTEM:
6478 /*
6479 * We don't use strerror() because it's not
6480 * guaranteed to be thread-safe on all platforms
6481 * (probably because it might use a non-thread-local
6482 * buffer into which to format an error message
6483 * if the error code isn't one for which it has
6484 * a canned string; three cheers for C string
6485 * handling).
6486 */
6487 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6488 name, errno);
6489 port = -2; /* a real error */
6490 break;
6491 #endif
6492
6493 default:
6494 /*
6495 * This is a real error, not just "there's
6496 * no such service name".
6497 *
6498 * We don't use gai_strerror() because it's not
6499 * guaranteed to be thread-safe on all platforms
6500 * (probably because it might use a non-thread-local
6501 * buffer into which to format an error message
6502 * if the error code isn't one for which it has
6503 * a canned string; three cheers for C string
6504 * handling).
6505 */
6506 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6507 name, error);
6508 port = -2; /* a real error */
6509 break;
6510 }
6511 } else {
6512 /*
6513 * OK, we found it. Did it find anything?
6514 */
6515 for (ai = res; ai != NULL; ai = ai->ai_next) {
6516 /*
6517 * Does it have an address?
6518 */
6519 if (ai->ai_addr != NULL) {
6520 /*
6521 * Yes. Get a port number; we're done.
6522 */
6523 if (ai->ai_addr->sa_family == AF_INET) {
6524 in4 = (struct sockaddr_in *)ai->ai_addr;
6525 port = ntohs(in4->sin_port);
6526 break;
6527 }
6528 #ifdef INET6
6529 if (ai->ai_addr->sa_family == AF_INET6) {
6530 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6531 port = ntohs(in6->sin6_port);
6532 break;
6533 }
6534 #endif
6535 }
6536 }
6537 freeaddrinfo(res);
6538 }
6539 return port;
6540 }
6541
6542 /*
6543 * Convert a string to a port number.
6544 */
6545 static bpf_u_int32
6546 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6547 int *proto)
6548 {
6549 stoulen_ret ret;
6550 char *cpy;
6551 bpf_u_int32 val;
6552 int tcp_port = -1;
6553 int udp_port = -1;
6554
6555 /*
6556 * See if it's a number.
6557 */
6558 ret = stoulen(string, string_size, &val, cstate);
6559 switch (ret) {
6560
6561 case STOULEN_OK:
6562 /* Unknown port type - it's just a number. */
6563 *proto = PROTO_UNDEF;
6564 break;
6565
6566 case STOULEN_NOT_OCTAL_NUMBER:
6567 case STOULEN_NOT_HEX_NUMBER:
6568 case STOULEN_NOT_DECIMAL_NUMBER:
6569 /*
6570 * Not a valid number; try looking it up as a port.
6571 */
6572 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6573 memcpy(cpy, string, string_size);
6574 cpy[string_size] = '\0';
6575 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6576 if (tcp_port == -2) {
6577 /*
6578 * We got a hard error; the error string has
6579 * already been set.
6580 */
6581 free(cpy);
6582 longjmp(cstate->top_ctx, 1);
6583 /*NOTREACHED*/
6584 }
6585 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6586 if (udp_port == -2) {
6587 /*
6588 * We got a hard error; the error string has
6589 * already been set.
6590 */
6591 free(cpy);
6592 longjmp(cstate->top_ctx, 1);
6593 /*NOTREACHED*/
6594 }
6595
6596 /*
6597 * We need to check /etc/services for ambiguous entries.
6598 * If we find an ambiguous entry, and it has the
6599 * same port number, change the proto to PROTO_UNDEF
6600 * so both TCP and UDP will be checked.
6601 */
6602 if (tcp_port >= 0) {
6603 val = (bpf_u_int32)tcp_port;
6604 *proto = IPPROTO_TCP;
6605 if (udp_port >= 0) {
6606 if (udp_port == tcp_port)
6607 *proto = PROTO_UNDEF;
6608 #ifdef notdef
6609 else
6610 /* Can't handle ambiguous names that refer
6611 to different port numbers. */
6612 warning("ambiguous port %s in /etc/services",
6613 cpy);
6614 #endif
6615 }
6616 free(cpy);
6617 break;
6618 }
6619 if (udp_port >= 0) {
6620 val = (bpf_u_int32)udp_port;
6621 *proto = IPPROTO_UDP;
6622 free(cpy);
6623 break;
6624 }
6625 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6626 free(cpy);
6627 longjmp(cstate->top_ctx, 1);
6628 /*NOTREACHED*/
6629 #ifdef _AIX
6630 PCAP_UNREACHABLE
6631 #endif /* _AIX */
6632
6633 case STOULEN_ERROR:
6634 /* Error already set. */
6635 longjmp(cstate->top_ctx, 1);
6636 /*NOTREACHED*/
6637 #ifdef _AIX
6638 PCAP_UNREACHABLE
6639 #endif /* _AIX */
6640
6641 default:
6642 /* Should not happen */
6643 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6644 longjmp(cstate->top_ctx, 1);
6645 /*NOTREACHED*/
6646 }
6647 return (val);
6648 }
6649
6650 /*
6651 * Convert a string in the form PPP-PPP, which correspond to ports, to
6652 * a starting and ending port in a port range.
6653 */
6654 static void
6655 stringtoportrange(compiler_state_t *cstate, const char *string,
6656 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6657 {
6658 char *hyphen_off;
6659 const char *first, *second;
6660 size_t first_size, second_size;
6661 int save_proto;
6662
6663 if ((hyphen_off = strchr(string, '-')) == NULL)
6664 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6665
6666 /*
6667 * Make sure there are no other hyphens.
6668 *
6669 * XXX - we support named ports, but there are some port names
6670 * in /etc/services that include hyphens, so this would rule
6671 * that out.
6672 */
6673 if (strchr(hyphen_off + 1, '-') != NULL)
6674 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6675 string);
6676
6677 /*
6678 * Get the length of the first port.
6679 */
6680 first = string;
6681 first_size = hyphen_off - string;
6682 if (first_size == 0) {
6683 /* Range of "-port", which we don't support. */
6684 bpf_error(cstate, "port range '%s' has no starting port", string);
6685 }
6686
6687 /*
6688 * Try to convert it to a port.
6689 */
6690 *port1 = stringtoport(cstate, first, first_size, proto);
6691 save_proto = *proto;
6692
6693 /*
6694 * Get the length of the second port.
6695 */
6696 second = hyphen_off + 1;
6697 second_size = strlen(second);
6698 if (second_size == 0) {
6699 /* Range of "port-", which we don't support. */
6700 bpf_error(cstate, "port range '%s' has no ending port", string);
6701 }
6702
6703 /*
6704 * Try to convert it to a port.
6705 */
6706 *port2 = stringtoport(cstate, second, second_size, proto);
6707 if (*proto != save_proto)
6708 *proto = PROTO_UNDEF;
6709 }
6710
6711 struct block *
6712 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6713 {
6714 int proto = q.proto;
6715 int dir = q.dir;
6716 int tproto;
6717 u_char *eaddr;
6718 bpf_u_int32 mask, addr;
6719 struct addrinfo *res, *res0;
6720 struct sockaddr_in *sin4;
6721 #ifdef INET6
6722 int tproto6;
6723 struct sockaddr_in6 *sin6;
6724 struct in6_addr mask128;
6725 #endif /*INET6*/
6726 struct block *b, *tmp;
6727 int port, real_proto;
6728 bpf_u_int32 port1, port2;
6729
6730 /*
6731 * Catch errors reported by us and routines below us, and return NULL
6732 * on an error.
6733 */
6734 if (setjmp(cstate->top_ctx))
6735 return (NULL);
6736
6737 switch (q.addr) {
6738
6739 case Q_NET:
6740 addr = pcap_nametonetaddr(name);
6741 if (addr == 0)
6742 bpf_error(cstate, "unknown network '%s'", name);
6743 /* Left justify network addr and calculate its network mask */
6744 mask = 0xffffffff;
6745 while (addr && (addr & 0xff000000) == 0) {
6746 addr <<= 8;
6747 mask <<= 8;
6748 }
6749 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6750
6751 case Q_DEFAULT:
6752 case Q_HOST:
6753 if (proto == Q_LINK) {
6754 switch (cstate->linktype) {
6755
6756 case DLT_EN10MB:
6757 case DLT_NETANALYZER:
6758 case DLT_NETANALYZER_TRANSPARENT:
6759 eaddr = pcap_ether_hostton(name);
6760 if (eaddr == NULL)
6761 bpf_error(cstate,
6762 "unknown ether host '%s'", name);
6763 tmp = gen_prevlinkhdr_check(cstate);
6764 b = gen_ehostop(cstate, eaddr, dir);
6765 if (tmp != NULL)
6766 gen_and(tmp, b);
6767 free(eaddr);
6768 return b;
6769
6770 case DLT_FDDI:
6771 eaddr = pcap_ether_hostton(name);
6772 if (eaddr == NULL)
6773 bpf_error(cstate,
6774 "unknown FDDI host '%s'", name);
6775 b = gen_fhostop(cstate, eaddr, dir);
6776 free(eaddr);
6777 return b;
6778
6779 case DLT_IEEE802:
6780 eaddr = pcap_ether_hostton(name);
6781 if (eaddr == NULL)
6782 bpf_error(cstate,
6783 "unknown token ring host '%s'", name);
6784 b = gen_thostop(cstate, eaddr, dir);
6785 free(eaddr);
6786 return b;
6787
6788 case DLT_IEEE802_11:
6789 case DLT_PRISM_HEADER:
6790 case DLT_IEEE802_11_RADIO_AVS:
6791 case DLT_IEEE802_11_RADIO:
6792 case DLT_PPI:
6793 eaddr = pcap_ether_hostton(name);
6794 if (eaddr == NULL)
6795 bpf_error(cstate,
6796 "unknown 802.11 host '%s'", name);
6797 b = gen_wlanhostop(cstate, eaddr, dir);
6798 free(eaddr);
6799 return b;
6800
6801 case DLT_IP_OVER_FC:
6802 eaddr = pcap_ether_hostton(name);
6803 if (eaddr == NULL)
6804 bpf_error(cstate,
6805 "unknown Fibre Channel host '%s'", name);
6806 b = gen_ipfchostop(cstate, eaddr, dir);
6807 free(eaddr);
6808 return b;
6809 }
6810
6811 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6812 } else if (proto == Q_DECNET) {
6813 /*
6814 * A long time ago on Ultrix libpcap supported
6815 * translation of DECnet host names into DECnet
6816 * addresses, but this feature is history now.
6817 */
6818 bpf_error(cstate, "invalid DECnet address '%s'", name);
6819 } else {
6820 #ifdef INET6
6821 memset(&mask128, 0xff, sizeof(mask128));
6822 #endif
6823 res0 = res = pcap_nametoaddrinfo(name);
6824 if (res == NULL)
6825 bpf_error(cstate, "unknown host '%s'", name);
6826 cstate->ai = res;
6827 b = tmp = NULL;
6828 tproto = proto;
6829 #ifdef INET6
6830 tproto6 = proto;
6831 #endif
6832 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6833 tproto == Q_DEFAULT) {
6834 tproto = Q_IP;
6835 #ifdef INET6
6836 tproto6 = Q_IPV6;
6837 #endif
6838 }
6839 for (res = res0; res; res = res->ai_next) {
6840 switch (res->ai_family) {
6841 case AF_INET:
6842 #ifdef INET6
6843 if (tproto == Q_IPV6)
6844 continue;
6845 #endif
6846
6847 sin4 = (struct sockaddr_in *)
6848 res->ai_addr;
6849 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6850 0xffffffff, tproto, dir, q.addr);
6851 break;
6852 #ifdef INET6
6853 case AF_INET6:
6854 if (tproto6 == Q_IP)
6855 continue;
6856
6857 sin6 = (struct sockaddr_in6 *)
6858 res->ai_addr;
6859 tmp = gen_host6(cstate, &sin6->sin6_addr,
6860 &mask128, tproto6, dir, q.addr);
6861 break;
6862 #endif
6863 default:
6864 continue;
6865 }
6866 if (b)
6867 gen_or(b, tmp);
6868 b = tmp;
6869 }
6870 cstate->ai = NULL;
6871 freeaddrinfo(res0);
6872 if (b == NULL) {
6873 bpf_error(cstate, "unknown host '%s'%s", name,
6874 (proto == Q_DEFAULT)
6875 ? ""
6876 : " for specified address family");
6877 }
6878 return b;
6879 }
6880
6881 case Q_PORT:
6882 (void)port_pq_to_ipproto(cstate, proto, "port"); // validate only
6883 if (pcap_nametoport(name, &port, &real_proto) == 0)
6884 bpf_error(cstate, "unknown port '%s'", name);
6885 if (proto == Q_UDP) {
6886 if (real_proto == IPPROTO_TCP)
6887 bpf_error(cstate, "port '%s' is tcp", name);
6888 else if (real_proto == IPPROTO_SCTP)
6889 bpf_error(cstate, "port '%s' is sctp", name);
6890 else
6891 /* override PROTO_UNDEF */
6892 real_proto = IPPROTO_UDP;
6893 }
6894 if (proto == Q_TCP) {
6895 if (real_proto == IPPROTO_UDP)
6896 bpf_error(cstate, "port '%s' is udp", name);
6897
6898 else if (real_proto == IPPROTO_SCTP)
6899 bpf_error(cstate, "port '%s' is sctp", name);
6900 else
6901 /* override PROTO_UNDEF */
6902 real_proto = IPPROTO_TCP;
6903 }
6904 if (proto == Q_SCTP) {
6905 if (real_proto == IPPROTO_UDP)
6906 bpf_error(cstate, "port '%s' is udp", name);
6907
6908 else if (real_proto == IPPROTO_TCP)
6909 bpf_error(cstate, "port '%s' is tcp", name);
6910 else
6911 /* override PROTO_UNDEF */
6912 real_proto = IPPROTO_SCTP;
6913 }
6914 if (port < 0)
6915 bpf_error(cstate, "illegal port number %d < 0", port);
6916 if (port > 65535)
6917 bpf_error(cstate, "illegal port number %d > 65535", port);
6918 // real_proto can be PROTO_UNDEF
6919 b = gen_port(cstate, (uint16_t)port, real_proto, dir);
6920 gen_or(gen_port6(cstate, (uint16_t)port, real_proto, dir), b);
6921 return b;
6922
6923 case Q_PORTRANGE:
6924 (void)port_pq_to_ipproto(cstate, proto, "portrange"); // validate only
6925 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
6926 if (proto == Q_UDP) {
6927 if (real_proto == IPPROTO_TCP)
6928 bpf_error(cstate, "port in range '%s' is tcp", name);
6929 else if (real_proto == IPPROTO_SCTP)
6930 bpf_error(cstate, "port in range '%s' is sctp", name);
6931 else
6932 /* override PROTO_UNDEF */
6933 real_proto = IPPROTO_UDP;
6934 }
6935 if (proto == Q_TCP) {
6936 if (real_proto == IPPROTO_UDP)
6937 bpf_error(cstate, "port in range '%s' is udp", name);
6938 else if (real_proto == IPPROTO_SCTP)
6939 bpf_error(cstate, "port in range '%s' is sctp", name);
6940 else
6941 /* override PROTO_UNDEF */
6942 real_proto = IPPROTO_TCP;
6943 }
6944 if (proto == Q_SCTP) {
6945 if (real_proto == IPPROTO_UDP)
6946 bpf_error(cstate, "port in range '%s' is udp", name);
6947 else if (real_proto == IPPROTO_TCP)
6948 bpf_error(cstate, "port in range '%s' is tcp", name);
6949 else
6950 /* override PROTO_UNDEF */
6951 real_proto = IPPROTO_SCTP;
6952 }
6953 if (port1 > 65535)
6954 bpf_error(cstate, "illegal port number %d > 65535", port1);
6955 if (port2 > 65535)
6956 bpf_error(cstate, "illegal port number %d > 65535", port2);
6957
6958 // real_proto can be PROTO_UNDEF
6959 b = gen_portrange(cstate, (uint16_t)port1, (uint16_t)port2,
6960 real_proto, dir);
6961 gen_or(gen_portrange6(cstate, (uint16_t)port1, (uint16_t)port2,
6962 real_proto, dir), b);
6963 return b;
6964
6965 case Q_GATEWAY:
6966 #ifndef INET6
6967 eaddr = pcap_ether_hostton(name);
6968 if (eaddr == NULL)
6969 bpf_error(cstate, "unknown ether host: %s", name);
6970
6971 res = pcap_nametoaddrinfo(name);
6972 cstate->ai = res;
6973 if (res == NULL)
6974 bpf_error(cstate, "unknown host '%s'", name);
6975 b = gen_gateway(cstate, eaddr, res, proto);
6976 cstate->ai = NULL;
6977 freeaddrinfo(res);
6978 free(eaddr);
6979 if (b == NULL)
6980 bpf_error(cstate, "unknown host '%s'", name);
6981 return b;
6982 #else
6983 bpf_error(cstate, "'gateway' not supported in this configuration");
6984 #endif /*INET6*/
6985
6986 case Q_PROTO:
6987 real_proto = lookup_proto(cstate, name, proto);
6988 if (real_proto >= 0)
6989 return gen_proto(cstate, real_proto, proto);
6990 else
6991 bpf_error(cstate, "unknown protocol: %s", name);
6992
6993 #if !defined(NO_PROTOCHAIN)
6994 case Q_PROTOCHAIN:
6995 real_proto = lookup_proto(cstate, name, proto);
6996 if (real_proto >= 0)
6997 return gen_protochain(cstate, real_proto, proto);
6998 else
6999 bpf_error(cstate, "unknown protocol: %s", name);
7000 #endif /* !defined(NO_PROTOCHAIN) */
7001
7002 case Q_UNDEF:
7003 syntax(cstate);
7004 /*NOTREACHED*/
7005 }
7006 abort();
7007 /*NOTREACHED*/
7008 }
7009
7010 struct block *
7011 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7012 bpf_u_int32 masklen, struct qual q)
7013 {
7014 register int nlen, mlen;
7015 bpf_u_int32 n, m;
7016 uint64_t m64;
7017
7018 /*
7019 * Catch errors reported by us and routines below us, and return NULL
7020 * on an error.
7021 */
7022 if (setjmp(cstate->top_ctx))
7023 return (NULL);
7024
7025 nlen = pcapint_atoin(s1, &n);
7026 if (nlen < 0)
7027 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7028 /* Promote short ipaddr */
7029 n <<= 32 - nlen;
7030
7031 if (s2 != NULL) {
7032 mlen = pcapint_atoin(s2, &m);
7033 if (mlen < 0)
7034 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7035 /* Promote short ipaddr */
7036 m <<= 32 - mlen;
7037 if ((n & ~m) != 0)
7038 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7039 s1, s2);
7040 } else {
7041 /* Convert mask len to mask */
7042 if (masklen > 32)
7043 bpf_error(cstate, "mask length must be <= 32");
7044 m64 = UINT64_C(0xffffffff) << (32 - masklen);
7045 m = (bpf_u_int32)m64;
7046 if ((n & ~m) != 0)
7047 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7048 s1, masklen);
7049 }
7050
7051 switch (q.addr) {
7052
7053 case Q_NET:
7054 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7055
7056 default:
7057 // Q_HOST and Q_GATEWAY only (see the grammar)
7058 bpf_error(cstate, "Mask syntax for networks only");
7059 /*NOTREACHED*/
7060 }
7061 /*NOTREACHED*/
7062 }
7063
7064 struct block *
7065 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7066 {
7067 bpf_u_int32 mask;
7068 int proto;
7069 int dir;
7070 register int vlen;
7071
7072 /*
7073 * Catch errors reported by us and routines below us, and return NULL
7074 * on an error.
7075 */
7076 if (setjmp(cstate->top_ctx))
7077 return (NULL);
7078
7079 proto = q.proto;
7080 dir = q.dir;
7081 if (s == NULL) {
7082 /*
7083 * v contains a 32-bit unsigned parsed from a string of the
7084 * form {N}, which could be decimal, hexadecimal or octal.
7085 * Although it would be possible to use the value as a raw
7086 * 16-bit DECnet address when the value fits into 16 bits, this
7087 * would be a questionable feature: DECnet address wire
7088 * encoding is little-endian, so this would not work as
7089 * intuitively as the same works for [big-endian] IPv4
7090 * addresses (0x01020304 means 1.2.3.4).
7091 */
7092 if (proto == Q_DECNET)
7093 bpf_error(cstate, "invalid DECnet address '%u'", v);
7094 vlen = 32;
7095 } else if (proto == Q_DECNET) {
7096 /*
7097 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7098 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7099 * for a valid DECnet address.
7100 */
7101 vlen = pcapint_atodn(s, &v);
7102 if (vlen == 0)
7103 bpf_error(cstate, "invalid DECnet address '%s'", s);
7104 } else {
7105 /*
7106 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7107 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7108 * IPv4 address.
7109 */
7110 vlen = pcapint_atoin(s, &v);
7111 if (vlen < 0)
7112 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7113 }
7114
7115 switch (q.addr) {
7116
7117 case Q_DEFAULT:
7118 case Q_HOST:
7119 case Q_NET:
7120 if (proto == Q_DECNET)
7121 return gen_host(cstate, v, 0, proto, dir, q.addr);
7122 else if (proto == Q_LINK) {
7123 // "link (host|net) IPV4ADDR" and variations thereof
7124 bpf_error(cstate, "illegal link layer address");
7125 } else {
7126 mask = 0xffffffff;
7127 if (s == NULL && q.addr == Q_NET) {
7128 /* Promote short net number */
7129 while (v && (v & 0xff000000) == 0) {
7130 v <<= 8;
7131 mask <<= 8;
7132 }
7133 } else {
7134 /* Promote short ipaddr */
7135 v <<= 32 - vlen;
7136 mask <<= 32 - vlen ;
7137 }
7138 return gen_host(cstate, v, mask, proto, dir, q.addr);
7139 }
7140
7141 case Q_PORT:
7142 proto = port_pq_to_ipproto(cstate, proto, "port");
7143
7144 if (v > 65535)
7145 bpf_error(cstate, "illegal port number %u > 65535", v);
7146
7147 // proto can be PROTO_UNDEF
7148 {
7149 struct block *b;
7150 b = gen_port(cstate, (uint16_t)v, proto, dir);
7151 gen_or(gen_port6(cstate, (uint16_t)v, proto, dir), b);
7152 return b;
7153 }
7154
7155 case Q_PORTRANGE:
7156 proto = port_pq_to_ipproto(cstate, proto, "portrange");
7157
7158 if (v > 65535)
7159 bpf_error(cstate, "illegal port number %u > 65535", v);
7160
7161 // proto can be PROTO_UNDEF
7162 {
7163 struct block *b;
7164 b = gen_portrange(cstate, (uint16_t)v, (uint16_t)v,
7165 proto, dir);
7166 gen_or(gen_portrange6(cstate, (uint16_t)v, (uint16_t)v,
7167 proto, dir), b);
7168 return b;
7169 }
7170
7171 case Q_GATEWAY:
7172 bpf_error(cstate, "'gateway' requires a name");
7173 /*NOTREACHED*/
7174
7175 case Q_PROTO:
7176 return gen_proto(cstate, v, proto);
7177
7178 #if !defined(NO_PROTOCHAIN)
7179 case Q_PROTOCHAIN:
7180 return gen_protochain(cstate, v, proto);
7181 #endif
7182
7183 case Q_UNDEF:
7184 syntax(cstate);
7185 /*NOTREACHED*/
7186
7187 default:
7188 abort();
7189 /*NOTREACHED*/
7190 }
7191 /*NOTREACHED*/
7192 }
7193
7194 #ifdef INET6
7195 struct block *
7196 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7197 struct qual q)
7198 {
7199 struct addrinfo *res;
7200 struct in6_addr *addr;
7201 struct in6_addr mask;
7202 struct block *b;
7203 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7204
7205 /*
7206 * Catch errors reported by us and routines below us, and return NULL
7207 * on an error.
7208 */
7209 if (setjmp(cstate->top_ctx))
7210 return (NULL);
7211
7212 res = pcap_nametoaddrinfo(s);
7213 if (!res)
7214 bpf_error(cstate, "invalid ip6 address %s", s);
7215 cstate->ai = res;
7216 if (res->ai_next)
7217 bpf_error(cstate, "%s resolved to multiple address", s);
7218 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7219
7220 if (masklen > sizeof(mask.s6_addr) * 8)
7221 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7222 memset(&mask, 0, sizeof(mask));
7223 memset(&mask.s6_addr, 0xff, masklen / 8);
7224 if (masklen % 8) {
7225 mask.s6_addr[masklen / 8] =
7226 (0xff << (8 - masklen % 8)) & 0xff;
7227 }
7228
7229 memcpy(a, addr, sizeof(a));
7230 memcpy(m, &mask, sizeof(m));
7231 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7232 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7233 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7234 }
7235
7236 switch (q.addr) {
7237
7238 case Q_DEFAULT:
7239 case Q_HOST:
7240 if (masklen != 128)
7241 bpf_error(cstate, "Mask syntax for networks only");
7242 /* FALLTHROUGH */
7243
7244 case Q_NET:
7245 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7246 cstate->ai = NULL;
7247 freeaddrinfo(res);
7248 return b;
7249
7250 default:
7251 // Q_GATEWAY only (see the grammar)
7252 bpf_error(cstate, "invalid qualifier against IPv6 address");
7253 /*NOTREACHED*/
7254 }
7255 }
7256 #endif /*INET6*/
7257
7258 struct block *
7259 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7260 {
7261 struct block *b, *tmp;
7262
7263 /*
7264 * Catch errors reported by us and routines below us, and return NULL
7265 * on an error.
7266 */
7267 if (setjmp(cstate->top_ctx))
7268 return (NULL);
7269
7270 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7271 cstate->e = pcap_ether_aton(s);
7272 if (cstate->e == NULL)
7273 bpf_error(cstate, "malloc");
7274 switch (cstate->linktype) {
7275 case DLT_EN10MB:
7276 case DLT_NETANALYZER:
7277 case DLT_NETANALYZER_TRANSPARENT:
7278 tmp = gen_prevlinkhdr_check(cstate);
7279 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7280 if (tmp != NULL)
7281 gen_and(tmp, b);
7282 break;
7283 case DLT_FDDI:
7284 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7285 break;
7286 case DLT_IEEE802:
7287 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7288 break;
7289 case DLT_IEEE802_11:
7290 case DLT_PRISM_HEADER:
7291 case DLT_IEEE802_11_RADIO_AVS:
7292 case DLT_IEEE802_11_RADIO:
7293 case DLT_PPI:
7294 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7295 break;
7296 case DLT_IP_OVER_FC:
7297 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7298 break;
7299 default:
7300 free(cstate->e);
7301 cstate->e = NULL;
7302 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7303 /*NOTREACHED*/
7304 }
7305 free(cstate->e);
7306 cstate->e = NULL;
7307 return (b);
7308 }
7309 bpf_error(cstate, "ethernet address used in non-ether expression");
7310 /*NOTREACHED*/
7311 }
7312
7313 void
7314 sappend(struct slist *s0, struct slist *s1)
7315 {
7316 /*
7317 * This is definitely not the best way to do this, but the
7318 * lists will rarely get long.
7319 */
7320 while (s0->next)
7321 s0 = s0->next;
7322 s0->next = s1;
7323 }
7324
7325 static struct slist *
7326 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7327 {
7328 struct slist *s;
7329
7330 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7331 s->s.k = a->regno;
7332 return s;
7333 }
7334
7335 static struct slist *
7336 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7337 {
7338 struct slist *s;
7339
7340 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7341 s->s.k = a->regno;
7342 return s;
7343 }
7344
7345 /*
7346 * Modify "index" to use the value stored into its register as an
7347 * offset relative to the beginning of the header for the protocol
7348 * "proto", and allocate a register and put an item "size" bytes long
7349 * (1, 2, or 4) at that offset into that register, making it the register
7350 * for "index".
7351 */
7352 static struct arth *
7353 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7354 bpf_u_int32 size)
7355 {
7356 int size_code;
7357 struct slist *s, *tmp;
7358 struct block *b;
7359 int regno = alloc_reg(cstate);
7360
7361 free_reg(cstate, inst->regno);
7362 switch (size) {
7363
7364 default:
7365 bpf_error(cstate, "data size must be 1, 2, or 4");
7366 /*NOTREACHED*/
7367
7368 case 1:
7369 size_code = BPF_B;
7370 break;
7371
7372 case 2:
7373 size_code = BPF_H;
7374 break;
7375
7376 case 4:
7377 size_code = BPF_W;
7378 break;
7379 }
7380 switch (proto) {
7381 default:
7382 bpf_error(cstate, "'%s' does not support the index operation", pqkw(proto));
7383
7384 case Q_RADIO:
7385 /*
7386 * The offset is relative to the beginning of the packet
7387 * data, if we have a radio header. (If we don't, this
7388 * is an error.)
7389 */
7390 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7391 cstate->linktype != DLT_IEEE802_11_RADIO &&
7392 cstate->linktype != DLT_PRISM_HEADER)
7393 bpf_error(cstate, "radio information not present in capture");
7394
7395 /*
7396 * Load into the X register the offset computed into the
7397 * register specified by "index".
7398 */
7399 s = xfer_to_x(cstate, inst);
7400
7401 /*
7402 * Load the item at that offset.
7403 */
7404 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7405 sappend(s, tmp);
7406 sappend(inst->s, s);
7407 break;
7408
7409 case Q_LINK:
7410 /*
7411 * The offset is relative to the beginning of
7412 * the link-layer header.
7413 *
7414 * XXX - what about ATM LANE? Should the index be
7415 * relative to the beginning of the AAL5 frame, so
7416 * that 0 refers to the beginning of the LE Control
7417 * field, or relative to the beginning of the LAN
7418 * frame, so that 0 refers, for Ethernet LANE, to
7419 * the beginning of the destination address?
7420 */
7421 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7422
7423 /*
7424 * If "s" is non-null, it has code to arrange that the
7425 * X register contains the length of the prefix preceding
7426 * the link-layer header. Add to it the offset computed
7427 * into the register specified by "index", and move that
7428 * into the X register. Otherwise, just load into the X
7429 * register the offset computed into the register specified
7430 * by "index".
7431 */
7432 if (s != NULL) {
7433 sappend(s, xfer_to_a(cstate, inst));
7434 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7435 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7436 } else
7437 s = xfer_to_x(cstate, inst);
7438
7439 /*
7440 * Load the item at the sum of the offset we've put in the
7441 * X register and the offset of the start of the link
7442 * layer header (which is 0 if the radio header is
7443 * variable-length; that header length is what we put
7444 * into the X register and then added to the index).
7445 */
7446 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7447 tmp->s.k = cstate->off_linkhdr.constant_part;
7448 sappend(s, tmp);
7449 sappend(inst->s, s);
7450 break;
7451
7452 case Q_IP:
7453 case Q_ARP:
7454 case Q_RARP:
7455 case Q_ATALK:
7456 case Q_DECNET:
7457 case Q_SCA:
7458 case Q_LAT:
7459 case Q_MOPRC:
7460 case Q_MOPDL:
7461 case Q_IPV6:
7462 /*
7463 * The offset is relative to the beginning of
7464 * the network-layer header.
7465 * XXX - are there any cases where we want
7466 * cstate->off_nl_nosnap?
7467 */
7468 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7469
7470 /*
7471 * If "s" is non-null, it has code to arrange that the
7472 * X register contains the variable part of the offset
7473 * of the link-layer payload. Add to it the offset
7474 * computed into the register specified by "index",
7475 * and move that into the X register. Otherwise, just
7476 * load into the X register the offset computed into
7477 * the register specified by "index".
7478 */
7479 if (s != NULL) {
7480 sappend(s, xfer_to_a(cstate, inst));
7481 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7482 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7483 } else
7484 s = xfer_to_x(cstate, inst);
7485
7486 /*
7487 * Load the item at the sum of the offset we've put in the
7488 * X register, the offset of the start of the network
7489 * layer header from the beginning of the link-layer
7490 * payload, and the constant part of the offset of the
7491 * start of the link-layer payload.
7492 */
7493 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7494 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7495 sappend(s, tmp);
7496 sappend(inst->s, s);
7497
7498 /*
7499 * Do the computation only if the packet contains
7500 * the protocol in question.
7501 */
7502 b = gen_proto_abbrev_internal(cstate, proto);
7503 if (inst->b)
7504 gen_and(inst->b, b);
7505 inst->b = b;
7506 break;
7507
7508 case Q_SCTP:
7509 case Q_TCP:
7510 case Q_UDP:
7511 case Q_ICMP:
7512 case Q_IGMP:
7513 case Q_IGRP:
7514 case Q_PIM:
7515 case Q_VRRP:
7516 case Q_CARP:
7517 /*
7518 * The offset is relative to the beginning of
7519 * the transport-layer header.
7520 *
7521 * Load the X register with the length of the IPv4 header
7522 * (plus the offset of the link-layer header, if it's
7523 * a variable-length header), in bytes.
7524 *
7525 * XXX - are there any cases where we want
7526 * cstate->off_nl_nosnap?
7527 * XXX - we should, if we're built with
7528 * IPv6 support, generate code to load either
7529 * IPv4, IPv6, or both, as appropriate.
7530 */
7531 s = gen_loadx_iphdrlen(cstate);
7532
7533 /*
7534 * The X register now contains the sum of the variable
7535 * part of the offset of the link-layer payload and the
7536 * length of the network-layer header.
7537 *
7538 * Load into the A register the offset relative to
7539 * the beginning of the transport layer header,
7540 * add the X register to that, move that to the
7541 * X register, and load with an offset from the
7542 * X register equal to the sum of the constant part of
7543 * the offset of the link-layer payload and the offset,
7544 * relative to the beginning of the link-layer payload,
7545 * of the network-layer header.
7546 */
7547 sappend(s, xfer_to_a(cstate, inst));
7548 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7549 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7550 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7551 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7552 sappend(inst->s, s);
7553
7554 /*
7555 * Do the computation only if the packet contains
7556 * the protocol in question - which is true only
7557 * if this is an IP datagram and is the first or
7558 * only fragment of that datagram.
7559 */
7560 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7561 if (inst->b)
7562 gen_and(inst->b, b);
7563 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7564 inst->b = b;
7565 break;
7566 case Q_ICMPV6:
7567 /*
7568 * Do the computation only if the packet contains
7569 * the protocol in question.
7570 */
7571 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7572 if (inst->b)
7573 gen_and(inst->b, b);
7574 inst->b = b;
7575
7576 /*
7577 * Check if we have an icmp6 next header
7578 */
7579 b = gen_ip6_proto(cstate, 58);
7580 if (inst->b)
7581 gen_and(inst->b, b);
7582 inst->b = b;
7583
7584 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7585 /*
7586 * If "s" is non-null, it has code to arrange that the
7587 * X register contains the variable part of the offset
7588 * of the link-layer payload. Add to it the offset
7589 * computed into the register specified by "index",
7590 * and move that into the X register. Otherwise, just
7591 * load into the X register the offset computed into
7592 * the register specified by "index".
7593 */
7594 if (s != NULL) {
7595 sappend(s, xfer_to_a(cstate, inst));
7596 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7597 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7598 } else
7599 s = xfer_to_x(cstate, inst);
7600
7601 /*
7602 * Load the item at the sum of the offset we've put in the
7603 * X register, the offset of the start of the network
7604 * layer header from the beginning of the link-layer
7605 * payload, and the constant part of the offset of the
7606 * start of the link-layer payload.
7607 */
7608 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7609 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7610
7611 sappend(s, tmp);
7612 sappend(inst->s, s);
7613
7614 break;
7615 }
7616 inst->regno = regno;
7617 s = new_stmt(cstate, BPF_ST);
7618 s->s.k = regno;
7619 sappend(inst->s, s);
7620
7621 return inst;
7622 }
7623
7624 struct arth *
7625 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7626 bpf_u_int32 size)
7627 {
7628 /*
7629 * Catch errors reported by us and routines below us, and return NULL
7630 * on an error.
7631 */
7632 if (setjmp(cstate->top_ctx))
7633 return (NULL);
7634
7635 return gen_load_internal(cstate, proto, inst, size);
7636 }
7637
7638 static struct block *
7639 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7640 struct arth *a1, int reversed)
7641 {
7642 struct slist *s0, *s1, *s2;
7643 struct block *b, *tmp;
7644
7645 s0 = xfer_to_x(cstate, a1);
7646 s1 = xfer_to_a(cstate, a0);
7647 if (code == BPF_JEQ) {
7648 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7649 b = new_block(cstate, JMP(code));
7650 sappend(s1, s2);
7651 }
7652 else
7653 b = new_block(cstate, BPF_JMP|code|BPF_X);
7654 if (reversed)
7655 gen_not(b);
7656
7657 sappend(s0, s1);
7658 sappend(a1->s, s0);
7659 sappend(a0->s, a1->s);
7660
7661 b->stmts = a0->s;
7662
7663 free_reg(cstate, a0->regno);
7664 free_reg(cstate, a1->regno);
7665
7666 /* 'and' together protocol checks */
7667 if (a0->b) {
7668 if (a1->b) {
7669 gen_and(a0->b, tmp = a1->b);
7670 }
7671 else
7672 tmp = a0->b;
7673 } else
7674 tmp = a1->b;
7675
7676 if (tmp)
7677 gen_and(tmp, b);
7678
7679 return b;
7680 }
7681
7682 struct block *
7683 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7684 struct arth *a1, int reversed)
7685 {
7686 /*
7687 * Catch errors reported by us and routines below us, and return NULL
7688 * on an error.
7689 */
7690 if (setjmp(cstate->top_ctx))
7691 return (NULL);
7692
7693 return gen_relation_internal(cstate, code, a0, a1, reversed);
7694 }
7695
7696 struct arth *
7697 gen_loadlen(compiler_state_t *cstate)
7698 {
7699 int regno;
7700 struct arth *a;
7701 struct slist *s;
7702
7703 /*
7704 * Catch errors reported by us and routines below us, and return NULL
7705 * on an error.
7706 */
7707 if (setjmp(cstate->top_ctx))
7708 return (NULL);
7709
7710 regno = alloc_reg(cstate);
7711 a = (struct arth *)newchunk(cstate, sizeof(*a));
7712 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7713 s->next = new_stmt(cstate, BPF_ST);
7714 s->next->s.k = regno;
7715 a->s = s;
7716 a->regno = regno;
7717
7718 return a;
7719 }
7720
7721 static struct arth *
7722 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7723 {
7724 struct arth *a;
7725 struct slist *s;
7726 int reg;
7727
7728 a = (struct arth *)newchunk(cstate, sizeof(*a));
7729
7730 reg = alloc_reg(cstate);
7731
7732 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7733 s->s.k = val;
7734 s->next = new_stmt(cstate, BPF_ST);
7735 s->next->s.k = reg;
7736 a->s = s;
7737 a->regno = reg;
7738
7739 return a;
7740 }
7741
7742 struct arth *
7743 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7744 {
7745 /*
7746 * Catch errors reported by us and routines below us, and return NULL
7747 * on an error.
7748 */
7749 if (setjmp(cstate->top_ctx))
7750 return (NULL);
7751
7752 return gen_loadi_internal(cstate, val);
7753 }
7754
7755 /*
7756 * The a_arg dance is to avoid annoying whining by compilers that
7757 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7758 * It's not *used* after setjmp returns.
7759 */
7760 struct arth *
7761 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7762 {
7763 struct arth *a = a_arg;
7764 struct slist *s;
7765
7766 /*
7767 * Catch errors reported by us and routines below us, and return NULL
7768 * on an error.
7769 */
7770 if (setjmp(cstate->top_ctx))
7771 return (NULL);
7772
7773 s = xfer_to_a(cstate, a);
7774 sappend(a->s, s);
7775 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7776 s->s.k = 0;
7777 sappend(a->s, s);
7778 s = new_stmt(cstate, BPF_ST);
7779 s->s.k = a->regno;
7780 sappend(a->s, s);
7781
7782 return a;
7783 }
7784
7785 /*
7786 * The a0_arg dance is to avoid annoying whining by compilers that
7787 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7788 * It's not *used* after setjmp returns.
7789 */
7790 struct arth *
7791 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7792 struct arth *a1)
7793 {
7794 struct arth *a0 = a0_arg;
7795 struct slist *s0, *s1, *s2;
7796
7797 /*
7798 * Catch errors reported by us and routines below us, and return NULL
7799 * on an error.
7800 */
7801 if (setjmp(cstate->top_ctx))
7802 return (NULL);
7803
7804 /*
7805 * Disallow division by, or modulus by, zero; we do this here
7806 * so that it gets done even if the optimizer is disabled.
7807 *
7808 * Also disallow shifts by a value greater than 31; we do this
7809 * here, for the same reason.
7810 */
7811 if (code == BPF_DIV) {
7812 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7813 bpf_error(cstate, "division by zero");
7814 } else if (code == BPF_MOD) {
7815 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7816 bpf_error(cstate, "modulus by zero");
7817 } else if (code == BPF_LSH || code == BPF_RSH) {
7818 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7819 bpf_error(cstate, "shift by more than 31 bits");
7820 }
7821 s0 = xfer_to_x(cstate, a1);
7822 s1 = xfer_to_a(cstate, a0);
7823 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7824
7825 sappend(s1, s2);
7826 sappend(s0, s1);
7827 sappend(a1->s, s0);
7828 sappend(a0->s, a1->s);
7829
7830 free_reg(cstate, a0->regno);
7831 free_reg(cstate, a1->regno);
7832
7833 s0 = new_stmt(cstate, BPF_ST);
7834 a0->regno = s0->s.k = alloc_reg(cstate);
7835 sappend(a0->s, s0);
7836
7837 return a0;
7838 }
7839
7840 /*
7841 * Initialize the table of used registers and the current register.
7842 */
7843 static void
7844 init_regs(compiler_state_t *cstate)
7845 {
7846 cstate->curreg = 0;
7847 memset(cstate->regused, 0, sizeof cstate->regused);
7848 }
7849
7850 /*
7851 * Return the next free register.
7852 */
7853 static int
7854 alloc_reg(compiler_state_t *cstate)
7855 {
7856 int n = BPF_MEMWORDS;
7857
7858 while (--n >= 0) {
7859 if (cstate->regused[cstate->curreg])
7860 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7861 else {
7862 cstate->regused[cstate->curreg] = 1;
7863 return cstate->curreg;
7864 }
7865 }
7866 bpf_error(cstate, "too many registers needed to evaluate expression");
7867 /*NOTREACHED*/
7868 }
7869
7870 /*
7871 * Return a register to the table so it can
7872 * be used later.
7873 */
7874 static void
7875 free_reg(compiler_state_t *cstate, int n)
7876 {
7877 cstate->regused[n] = 0;
7878 }
7879
7880 static struct block *
7881 gen_len(compiler_state_t *cstate, int jmp, int n)
7882 {
7883 struct slist *s;
7884
7885 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7886 return gen_jmp(cstate, jmp, n, s);
7887 }
7888
7889 struct block *
7890 gen_greater(compiler_state_t *cstate, int n)
7891 {
7892 /*
7893 * Catch errors reported by us and routines below us, and return NULL
7894 * on an error.
7895 */
7896 if (setjmp(cstate->top_ctx))
7897 return (NULL);
7898
7899 return gen_len(cstate, BPF_JGE, n);
7900 }
7901
7902 /*
7903 * Actually, this is less than or equal.
7904 */
7905 struct block *
7906 gen_less(compiler_state_t *cstate, int n)
7907 {
7908 struct block *b;
7909
7910 /*
7911 * Catch errors reported by us and routines below us, and return NULL
7912 * on an error.
7913 */
7914 if (setjmp(cstate->top_ctx))
7915 return (NULL);
7916
7917 b = gen_len(cstate, BPF_JGT, n);
7918 gen_not(b);
7919
7920 return b;
7921 }
7922
7923 /*
7924 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7925 * the beginning of the link-layer header.
7926 * XXX - that means you can't test values in the radiotap header, but
7927 * as that header is difficult if not impossible to parse generally
7928 * without a loop, that might not be a severe problem. A new keyword
7929 * "radio" could be added for that, although what you'd really want
7930 * would be a way of testing particular radio header values, which
7931 * would generate code appropriate to the radio header in question.
7932 */
7933 struct block *
7934 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7935 {
7936 struct block *b;
7937 struct slist *s;
7938
7939 /*
7940 * Catch errors reported by us and routines below us, and return NULL
7941 * on an error.
7942 */
7943 if (setjmp(cstate->top_ctx))
7944 return (NULL);
7945
7946 assert_maxval(cstate, "byte argument", val, UINT8_MAX);
7947
7948 switch (op) {
7949 default:
7950 abort();
7951
7952 case '=':
7953 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7954
7955 case '<':
7956 return gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7957
7958 case '>':
7959 return gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7960
7961 case '|':
7962 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7963 break;
7964
7965 case '&':
7966 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7967 break;
7968 }
7969 s->s.k = val;
7970 // Load the required byte first.
7971 struct slist *s0 = gen_load_a(cstate, OR_LINKHDR, idx, BPF_B);
7972 sappend(s0, s);
7973 b = gen_jmp(cstate, BPF_JEQ, 0, s0);
7974 gen_not(b);
7975
7976 return b;
7977 }
7978
7979 struct block *
7980 gen_broadcast(compiler_state_t *cstate, int proto)
7981 {
7982 bpf_u_int32 hostmask;
7983 struct block *b0, *b1, *b2;
7984 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7985
7986 /*
7987 * Catch errors reported by us and routines below us, and return NULL
7988 * on an error.
7989 */
7990 if (setjmp(cstate->top_ctx))
7991 return (NULL);
7992
7993 switch (proto) {
7994
7995 case Q_DEFAULT:
7996 case Q_LINK:
7997 switch (cstate->linktype) {
7998 case DLT_ARCNET:
7999 case DLT_ARCNET_LINUX:
8000 // ARCnet broadcast is [8-bit] destination address 0.
8001 return gen_ahostop(cstate, 0, Q_DST);
8002 case DLT_EN10MB:
8003 case DLT_NETANALYZER:
8004 case DLT_NETANALYZER_TRANSPARENT:
8005 b1 = gen_prevlinkhdr_check(cstate);
8006 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8007 if (b1 != NULL)
8008 gen_and(b1, b0);
8009 return b0;
8010 case DLT_FDDI:
8011 return gen_fhostop(cstate, ebroadcast, Q_DST);
8012 case DLT_IEEE802:
8013 return gen_thostop(cstate, ebroadcast, Q_DST);
8014 case DLT_IEEE802_11:
8015 case DLT_PRISM_HEADER:
8016 case DLT_IEEE802_11_RADIO_AVS:
8017 case DLT_IEEE802_11_RADIO:
8018 case DLT_PPI:
8019 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8020 case DLT_IP_OVER_FC:
8021 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8022 }
8023 fail_kw_on_dlt(cstate, "broadcast");
8024 /*NOTREACHED*/
8025
8026 case Q_IP:
8027 /*
8028 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8029 * as an indication that we don't know the netmask, and fail
8030 * in that case.
8031 */
8032 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8033 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8034 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8035 hostmask = ~cstate->netmask;
8036 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8037 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, hostmask, hostmask);
8038 gen_or(b1, b2);
8039 gen_and(b0, b2);
8040 return b2;
8041 }
8042 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "broadcast");
8043 /*NOTREACHED*/
8044 }
8045
8046 /*
8047 * Generate code to test the low-order bit of a MAC address (that's
8048 * the bottom bit of the *first* byte).
8049 */
8050 static struct block *
8051 gen_mac_multicast(compiler_state_t *cstate, int offset)
8052 {
8053 register struct slist *s;
8054
8055 /* link[offset] & 1 != 0 */
8056 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8057 return gen_set(cstate, 1, s);
8058 }
8059
8060 struct block *
8061 gen_multicast(compiler_state_t *cstate, int proto)
8062 {
8063 register struct block *b0, *b1, *b2;
8064 register struct slist *s;
8065
8066 /*
8067 * Catch errors reported by us and routines below us, and return NULL
8068 * on an error.
8069 */
8070 if (setjmp(cstate->top_ctx))
8071 return (NULL);
8072
8073 switch (proto) {
8074
8075 case Q_DEFAULT:
8076 case Q_LINK:
8077 switch (cstate->linktype) {
8078 case DLT_ARCNET:
8079 case DLT_ARCNET_LINUX:
8080 // ARCnet multicast is the same as broadcast.
8081 return gen_ahostop(cstate, 0, Q_DST);
8082 case DLT_EN10MB:
8083 case DLT_NETANALYZER:
8084 case DLT_NETANALYZER_TRANSPARENT:
8085 b1 = gen_prevlinkhdr_check(cstate);
8086 /* ether[0] & 1 != 0 */
8087 b0 = gen_mac_multicast(cstate, 0);
8088 if (b1 != NULL)
8089 gen_and(b1, b0);
8090 return b0;
8091 case DLT_FDDI:
8092 /*
8093 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8094 *
8095 * XXX - was that referring to bit-order issues?
8096 */
8097 /* fddi[1] & 1 != 0 */
8098 return gen_mac_multicast(cstate, 1);
8099 case DLT_IEEE802:
8100 /* tr[2] & 1 != 0 */
8101 return gen_mac_multicast(cstate, 2);
8102 case DLT_IEEE802_11:
8103 case DLT_PRISM_HEADER:
8104 case DLT_IEEE802_11_RADIO_AVS:
8105 case DLT_IEEE802_11_RADIO:
8106 case DLT_PPI:
8107 /*
8108 * Oh, yuk.
8109 *
8110 * For control frames, there is no DA.
8111 *
8112 * For management frames, DA is at an
8113 * offset of 4 from the beginning of
8114 * the packet.
8115 *
8116 * For data frames, DA is at an offset
8117 * of 4 from the beginning of the packet
8118 * if To DS is clear and at an offset of
8119 * 16 from the beginning of the packet
8120 * if To DS is set.
8121 */
8122
8123 /*
8124 * Generate the tests to be done for data frames.
8125 *
8126 * First, check for To DS set, i.e. "link[1] & 0x01".
8127 */
8128 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8129 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
8130
8131 /*
8132 * If To DS is set, the DA is at 16.
8133 */
8134 b0 = gen_mac_multicast(cstate, 16);
8135 gen_and(b1, b0);
8136
8137 /*
8138 * Now, check for To DS not set, i.e. check
8139 * "!(link[1] & 0x01)".
8140 */
8141 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8142 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
8143
8144 /*
8145 * If To DS is not set, the DA is at 4.
8146 */
8147 b1 = gen_mac_multicast(cstate, 4);
8148 gen_and(b2, b1);
8149
8150 /*
8151 * Now OR together the last two checks. That gives
8152 * the complete set of checks for data frames.
8153 */
8154 gen_or(b1, b0);
8155
8156 /*
8157 * Now check for a data frame.
8158 * I.e, check "link[0] & 0x08".
8159 */
8160 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8161 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
8162
8163 /*
8164 * AND that with the checks done for data frames.
8165 */
8166 gen_and(b1, b0);
8167
8168 /*
8169 * If the high-order bit of the type value is 0, this
8170 * is a management frame.
8171 * I.e, check "!(link[0] & 0x08)".
8172 */
8173 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8174 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
8175
8176 /*
8177 * For management frames, the DA is at 4.
8178 */
8179 b1 = gen_mac_multicast(cstate, 4);
8180 gen_and(b2, b1);
8181
8182 /*
8183 * OR that with the checks done for data frames.
8184 * That gives the checks done for management and
8185 * data frames.
8186 */
8187 gen_or(b1, b0);
8188
8189 /*
8190 * If the low-order bit of the type value is 1,
8191 * this is either a control frame or a frame
8192 * with a reserved type, and thus not a
8193 * frame with an SA.
8194 *
8195 * I.e., check "!(link[0] & 0x04)".
8196 */
8197 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8198 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
8199
8200 /*
8201 * AND that with the checks for data and management
8202 * frames.
8203 */
8204 gen_and(b1, b0);
8205 return b0;
8206 case DLT_IP_OVER_FC:
8207 return gen_mac_multicast(cstate, 2);
8208 default:
8209 break;
8210 }
8211 fail_kw_on_dlt(cstate, "multicast");
8212 /*NOTREACHED*/
8213
8214 case Q_IP:
8215 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8216 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8217 gen_and(b0, b1);
8218 return b1;
8219
8220 case Q_IPV6:
8221 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8222 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8223 gen_and(b0, b1);
8224 return b1;
8225 }
8226 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "multicast");
8227 /*NOTREACHED*/
8228 }
8229
8230 #ifdef __linux__
8231 /*
8232 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8233 * we can look at special meta-data in the filter expression; otherwise we
8234 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8235 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8236 * pcap_activate() conditionally sets.
8237 */
8238 static void
8239 require_basic_bpf_extensions(compiler_state_t *cstate, const char *keyword)
8240 {
8241 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_BASIC_HANDLING)
8242 return;
8243 bpf_error(cstate, "%s not supported on %s (not a live capture)",
8244 keyword,
8245 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8246 }
8247 #endif // __linux__
8248
8249 struct block *
8250 gen_ifindex(compiler_state_t *cstate, int ifindex)
8251 {
8252 /*
8253 * Catch errors reported by us and routines below us, and return NULL
8254 * on an error.
8255 */
8256 if (setjmp(cstate->top_ctx))
8257 return (NULL);
8258
8259 /*
8260 * Only some data link types support ifindex qualifiers.
8261 */
8262 switch (cstate->linktype) {
8263 case DLT_LINUX_SLL2:
8264 /* match packets on this interface */
8265 return gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8266 default:
8267 #if defined(__linux__)
8268 require_basic_bpf_extensions(cstate, "ifindex");
8269 /* match ifindex */
8270 return gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8271 ifindex);
8272 #else /* defined(__linux__) */
8273 fail_kw_on_dlt(cstate, "ifindex");
8274 /*NOTREACHED*/
8275 #endif /* defined(__linux__) */
8276 }
8277 }
8278
8279 /*
8280 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8281 * Outbound traffic is sent by this machine, while inbound traffic is
8282 * sent by a remote machine (and may include packets destined for a
8283 * unicast or multicast link-layer address we are not subscribing to).
8284 * These are the same definitions implemented by pcap_setdirection().
8285 * Capturing only unicast traffic destined for this host is probably
8286 * better accomplished using a higher-layer filter.
8287 */
8288 struct block *
8289 gen_inbound_outbound(compiler_state_t *cstate, const int outbound)
8290 {
8291 register struct block *b0;
8292
8293 /*
8294 * Catch errors reported by us and routines below us, and return NULL
8295 * on an error.
8296 */
8297 if (setjmp(cstate->top_ctx))
8298 return (NULL);
8299
8300 /*
8301 * Only some data link types support inbound/outbound qualifiers.
8302 */
8303 switch (cstate->linktype) {
8304 case DLT_SLIP:
8305 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B,
8306 outbound ? SLIPDIR_OUT : SLIPDIR_IN);
8307
8308 case DLT_IPNET:
8309 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H,
8310 outbound ? IPNET_OUTBOUND : IPNET_INBOUND);
8311
8312 case DLT_LINUX_SLL:
8313 /* match outgoing packets */
8314 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8315 if (! outbound) {
8316 /* to filter on inbound traffic, invert the match */
8317 gen_not(b0);
8318 }
8319 return b0;
8320
8321 case DLT_LINUX_SLL2:
8322 /* match outgoing packets */
8323 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8324 if (! outbound) {
8325 /* to filter on inbound traffic, invert the match */
8326 gen_not(b0);
8327 }
8328 return b0;
8329
8330 case DLT_PFLOG:
8331 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8332 outbound ? PF_OUT : PF_IN);
8333
8334 case DLT_PPP_PPPD:
8335 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, outbound ? PPP_PPPD_OUT : PPP_PPPD_IN);
8336
8337 case DLT_JUNIPER_MFR:
8338 case DLT_JUNIPER_MLFR:
8339 case DLT_JUNIPER_MLPPP:
8340 case DLT_JUNIPER_ATM1:
8341 case DLT_JUNIPER_ATM2:
8342 case DLT_JUNIPER_PPPOE:
8343 case DLT_JUNIPER_PPPOE_ATM:
8344 case DLT_JUNIPER_GGSN:
8345 case DLT_JUNIPER_ES:
8346 case DLT_JUNIPER_MONITOR:
8347 case DLT_JUNIPER_SERVICES:
8348 case DLT_JUNIPER_ETHER:
8349 case DLT_JUNIPER_PPP:
8350 case DLT_JUNIPER_FRELAY:
8351 case DLT_JUNIPER_CHDLC:
8352 case DLT_JUNIPER_VP:
8353 case DLT_JUNIPER_ST:
8354 case DLT_JUNIPER_ISM:
8355 case DLT_JUNIPER_VS:
8356 case DLT_JUNIPER_SRX_E2E:
8357 case DLT_JUNIPER_FIBRECHANNEL:
8358 case DLT_JUNIPER_ATM_CEMIC:
8359 /* juniper flags (including direction) are stored
8360 * the byte after the 3-byte magic number */
8361 return gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, outbound ? 0 : 1, 0x01);
8362
8363 default:
8364 /*
8365 * If we have packet meta-data indicating a direction,
8366 * and that metadata can be checked by BPF code, check
8367 * it. Otherwise, give up, as this link-layer type has
8368 * nothing in the packet data.
8369 *
8370 * Currently, the only platform where a BPF filter can
8371 * check that metadata is Linux with the in-kernel
8372 * BPF interpreter. If other packet capture mechanisms
8373 * and BPF filters also supported this, it would be
8374 * nice. It would be even better if they made that
8375 * metadata available so that we could provide it
8376 * with newer capture APIs, allowing it to be saved
8377 * in pcapng files.
8378 */
8379 #if defined(__linux__)
8380 require_basic_bpf_extensions(cstate, outbound ? "outbound" : "inbound");
8381 /* match outgoing packets */
8382 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8383 PACKET_OUTGOING);
8384 if (! outbound) {
8385 /* to filter on inbound traffic, invert the match */
8386 gen_not(b0);
8387 }
8388 return b0;
8389 #else /* defined(__linux__) */
8390 fail_kw_on_dlt(cstate, outbound ? "outbound" : "inbound");
8391 /*NOTREACHED*/
8392 #endif /* defined(__linux__) */
8393 }
8394 }
8395
8396 /* PF firewall log matched interface */
8397 struct block *
8398 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8399 {
8400 u_int len, off;
8401
8402 /*
8403 * Catch errors reported by us and routines below us, and return NULL
8404 * on an error.
8405 */
8406 if (setjmp(cstate->top_ctx))
8407 return (NULL);
8408
8409 assert_pflog(cstate, "ifname");
8410
8411 len = sizeof(((struct pfloghdr *)0)->ifname);
8412 off = offsetof(struct pfloghdr, ifname);
8413 if (strlen(ifname) >= len) {
8414 bpf_error(cstate, "ifname interface names can only be %d characters",
8415 len-1);
8416 /*NOTREACHED*/
8417 }
8418 return gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8419 (const u_char *)ifname);
8420 }
8421
8422 /* PF firewall log ruleset name */
8423 struct block *
8424 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8425 {
8426 /*
8427 * Catch errors reported by us and routines below us, and return NULL
8428 * on an error.
8429 */
8430 if (setjmp(cstate->top_ctx))
8431 return (NULL);
8432
8433 assert_pflog(cstate, "ruleset");
8434
8435 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8436 bpf_error(cstate, "ruleset names can only be %ld characters",
8437 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8438 /*NOTREACHED*/
8439 }
8440
8441 return gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8442 (u_int)strlen(ruleset), (const u_char *)ruleset);
8443 }
8444
8445 /* PF firewall log rule number */
8446 struct block *
8447 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8448 {
8449 /*
8450 * Catch errors reported by us and routines below us, and return NULL
8451 * on an error.
8452 */
8453 if (setjmp(cstate->top_ctx))
8454 return (NULL);
8455
8456 assert_pflog(cstate, "rnr");
8457
8458 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8459 (bpf_u_int32)rnr);
8460 }
8461
8462 /* PF firewall log sub-rule number */
8463 struct block *
8464 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8465 {
8466 /*
8467 * Catch errors reported by us and routines below us, and return NULL
8468 * on an error.
8469 */
8470 if (setjmp(cstate->top_ctx))
8471 return (NULL);
8472
8473 assert_pflog(cstate, "srnr");
8474
8475 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8476 (bpf_u_int32)srnr);
8477 }
8478
8479 /* PF firewall log reason code */
8480 struct block *
8481 gen_pf_reason(compiler_state_t *cstate, int reason)
8482 {
8483 /*
8484 * Catch errors reported by us and routines below us, and return NULL
8485 * on an error.
8486 */
8487 if (setjmp(cstate->top_ctx))
8488 return (NULL);
8489
8490 assert_pflog(cstate, "reason");
8491
8492 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8493 (bpf_u_int32)reason);
8494 }
8495
8496 /* PF firewall log action */
8497 struct block *
8498 gen_pf_action(compiler_state_t *cstate, int action)
8499 {
8500 /*
8501 * Catch errors reported by us and routines below us, and return NULL
8502 * on an error.
8503 */
8504 if (setjmp(cstate->top_ctx))
8505 return (NULL);
8506
8507 assert_pflog(cstate, "action");
8508
8509 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8510 (bpf_u_int32)action);
8511 }
8512
8513 /* IEEE 802.11 wireless header */
8514 struct block *
8515 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8516 {
8517 /*
8518 * Catch errors reported by us and routines below us, and return NULL
8519 * on an error.
8520 */
8521 if (setjmp(cstate->top_ctx))
8522 return (NULL);
8523
8524 switch (cstate->linktype) {
8525
8526 case DLT_IEEE802_11:
8527 case DLT_PRISM_HEADER:
8528 case DLT_IEEE802_11_RADIO_AVS:
8529 case DLT_IEEE802_11_RADIO:
8530 case DLT_PPI:
8531 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8532
8533 default:
8534 fail_kw_on_dlt(cstate, "type/subtype");
8535 /*NOTREACHED*/
8536 }
8537 }
8538
8539 struct block *
8540 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8541 {
8542 /*
8543 * Catch errors reported by us and routines below us, and return NULL
8544 * on an error.
8545 */
8546 if (setjmp(cstate->top_ctx))
8547 return (NULL);
8548
8549 switch (cstate->linktype) {
8550
8551 case DLT_IEEE802_11:
8552 case DLT_PRISM_HEADER:
8553 case DLT_IEEE802_11_RADIO_AVS:
8554 case DLT_IEEE802_11_RADIO:
8555 case DLT_PPI:
8556 return gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8557 IEEE80211_FC1_DIR_MASK);
8558
8559 default:
8560 fail_kw_on_dlt(cstate, "dir");
8561 /*NOTREACHED*/
8562 }
8563 }
8564
8565 // Process an ARCnet host address string.
8566 struct block *
8567 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8568 {
8569 /*
8570 * Catch errors reported by us and routines below us, and return NULL
8571 * on an error.
8572 */
8573 if (setjmp(cstate->top_ctx))
8574 return (NULL);
8575
8576 switch (cstate->linktype) {
8577
8578 case DLT_ARCNET:
8579 case DLT_ARCNET_LINUX:
8580 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8581 q.proto == Q_LINK) {
8582 uint8_t addr;
8583 /*
8584 * The lexer currently defines the address format in a
8585 * way that makes this error condition never true.
8586 * Let's check it anyway in case this part of the lexer
8587 * changes in future.
8588 */
8589 if (! pcapint_atoan(s, &addr))
8590 bpf_error(cstate, "invalid ARCnet address '%s'", s);
8591 return gen_ahostop(cstate, addr, (int)q.dir);
8592 } else
8593 bpf_error(cstate, "ARCnet address used in non-arc expression");
8594 /*NOTREACHED*/
8595
8596 default:
8597 bpf_error(cstate, "aid supported only on ARCnet");
8598 /*NOTREACHED*/
8599 }
8600 }
8601
8602 // Compare an ARCnet host address with the given value.
8603 static struct block *
8604 gen_ahostop(compiler_state_t *cstate, const uint8_t eaddr, int dir)
8605 {
8606 register struct block *b0, *b1;
8607
8608 switch (dir) {
8609 /*
8610 * ARCnet is different from Ethernet: the source address comes before
8611 * the destination address, each is one byte long. This holds for all
8612 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8613 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8614 * by Datapoint (document number 61610-01).
8615 */
8616 case Q_SRC:
8617 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, eaddr);
8618
8619 case Q_DST:
8620 return gen_cmp(cstate, OR_LINKHDR, 1, BPF_B, eaddr);
8621
8622 case Q_AND:
8623 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8624 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8625 gen_and(b0, b1);
8626 return b1;
8627
8628 case Q_DEFAULT:
8629 case Q_OR:
8630 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8631 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8632 gen_or(b0, b1);
8633 return b1;
8634
8635 case Q_ADDR1:
8636 case Q_ADDR2:
8637 case Q_ADDR3:
8638 case Q_ADDR4:
8639 case Q_RA:
8640 case Q_TA:
8641 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
8642 /*NOTREACHED*/
8643 }
8644 abort();
8645 /*NOTREACHED*/
8646 }
8647
8648 static struct block *
8649 gen_vlan_tpid_test(compiler_state_t *cstate)
8650 {
8651 struct block *b0, *b1;
8652
8653 /* check for VLAN, including 802.1ad and QinQ */
8654 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8655 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8656 gen_or(b0,b1);
8657 b0 = b1;
8658 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8659 gen_or(b0,b1);
8660
8661 return b1;
8662 }
8663
8664 static struct block *
8665 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8666 {
8667 assert_maxval(cstate, "VLAN tag", vlan_num, 0x0fff);
8668 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8669 }
8670
8671 static struct block *
8672 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8673 int has_vlan_tag)
8674 {
8675 struct block *b0, *b1;
8676
8677 b0 = gen_vlan_tpid_test(cstate);
8678
8679 if (has_vlan_tag) {
8680 b1 = gen_vlan_vid_test(cstate, vlan_num);
8681 gen_and(b0, b1);
8682 b0 = b1;
8683 }
8684
8685 /*
8686 * Both payload and link header type follow the VLAN tags so that
8687 * both need to be updated.
8688 */
8689 cstate->off_linkpl.constant_part += 4;
8690 cstate->off_linktype.constant_part += 4;
8691
8692 return b0;
8693 }
8694
8695 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8696 /* add v to variable part of off */
8697 static void
8698 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8699 bpf_u_int32 v, struct slist *s)
8700 {
8701 struct slist *s2;
8702
8703 if (!off->is_variable)
8704 off->is_variable = 1;
8705 if (off->reg == -1)
8706 off->reg = alloc_reg(cstate);
8707
8708 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8709 s2->s.k = off->reg;
8710 sappend(s, s2);
8711 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8712 s2->s.k = v;
8713 sappend(s, s2);
8714 s2 = new_stmt(cstate, BPF_ST);
8715 s2->s.k = off->reg;
8716 sappend(s, s2);
8717 }
8718
8719 /*
8720 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8721 * and link type offsets first
8722 */
8723 static void
8724 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8725 {
8726 struct slist s;
8727
8728 /* offset determined at run time, shift variable part */
8729 s.next = NULL;
8730 cstate->is_vlan_vloffset = 1;
8731 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8732 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8733
8734 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8735 sappend(s.next, b_tpid->head->stmts);
8736 b_tpid->head->stmts = s.next;
8737 }
8738
8739 /*
8740 * patch block b_vid (VLAN id test) to load VID value either from packet
8741 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8742 */
8743 static void
8744 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8745 {
8746 struct slist *s, *s2, *sjeq;
8747 unsigned cnt;
8748
8749 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8750 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
8751
8752 /* true -> next instructions, false -> beginning of b_vid */
8753 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8754 sjeq->s.k = 1;
8755 sjeq->s.jf = b_vid->stmts;
8756 sappend(s, sjeq);
8757
8758 s2 = new_stmt(cstate, BPF_LD|BPF_H|BPF_ABS);
8759 s2->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG);
8760 sappend(s, s2);
8761 sjeq->s.jt = s2;
8762
8763 /* Jump to the test in b_vid. We need to jump one instruction before
8764 * the end of the b_vid block so that we only skip loading the TCI
8765 * from packet data and not the 'and' instruction extracting VID.
8766 */
8767 cnt = 0;
8768 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8769 cnt++;
8770 s2 = new_stmt(cstate, JMP(BPF_JA));
8771 s2->s.k = cnt - 1;
8772 sappend(s, s2);
8773
8774 /* insert our statements at the beginning of b_vid */
8775 sappend(s, b_vid->stmts);
8776 b_vid->stmts = s;
8777 }
8778
8779 /*
8780 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8781 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8782 * tag can be either in metadata or in packet data; therefore if the
8783 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8784 * header for VLAN tag. As the decision is done at run time, we need
8785 * update variable part of the offsets
8786 */
8787 static struct block *
8788 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8789 int has_vlan_tag)
8790 {
8791 struct block *b0, *b_tpid, *b_vid = NULL;
8792 struct slist *s;
8793
8794 /* generate new filter code based on extracting packet
8795 * metadata */
8796 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8797 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
8798
8799 b0 = gen_jmp(cstate, BPF_JEQ, 1, s);
8800
8801 /*
8802 * This is tricky. We need to insert the statements updating variable
8803 * parts of offsets before the traditional TPID and VID tests so
8804 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8805 * we do not want this update to affect those checks. That's why we
8806 * generate both test blocks first and insert the statements updating
8807 * variable parts of both offsets after that. This wouldn't work if
8808 * there already were variable length link header when entering this
8809 * function but gen_vlan_bpf_extensions() isn't called in that case.
8810 */
8811 b_tpid = gen_vlan_tpid_test(cstate);
8812 if (has_vlan_tag)
8813 b_vid = gen_vlan_vid_test(cstate, vlan_num);
8814
8815 gen_vlan_patch_tpid_test(cstate, b_tpid);
8816 gen_or(b0, b_tpid);
8817 b0 = b_tpid;
8818
8819 if (has_vlan_tag) {
8820 gen_vlan_patch_vid_test(cstate, b_vid);
8821 gen_and(b0, b_vid);
8822 b0 = b_vid;
8823 }
8824
8825 return b0;
8826 }
8827 #endif
8828
8829 /*
8830 * support IEEE 802.1Q VLAN trunk over ethernet
8831 */
8832 struct block *
8833 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8834 {
8835 struct block *b0;
8836
8837 /*
8838 * Catch errors reported by us and routines below us, and return NULL
8839 * on an error.
8840 */
8841 if (setjmp(cstate->top_ctx))
8842 return (NULL);
8843
8844 /* can't check for VLAN-encapsulated packets inside MPLS */
8845 if (cstate->label_stack_depth > 0)
8846 bpf_error(cstate, "no VLAN match after MPLS");
8847
8848 /*
8849 * Check for a VLAN packet, and then change the offsets to point
8850 * to the type and data fields within the VLAN packet. Just
8851 * increment the offsets, so that we can support a hierarchy, e.g.
8852 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
8853 * VLAN 100.
8854 *
8855 * XXX - this is a bit of a kludge. If we were to split the
8856 * compiler into a parser that parses an expression and
8857 * generates an expression tree, and a code generator that
8858 * takes an expression tree (which could come from our
8859 * parser or from some other parser) and generates BPF code,
8860 * we could perhaps make the offsets parameters of routines
8861 * and, in the handler for an "AND" node, pass to subnodes
8862 * other than the VLAN node the adjusted offsets.
8863 *
8864 * This would mean that "vlan" would, instead of changing the
8865 * behavior of *all* tests after it, change only the behavior
8866 * of tests ANDed with it. That would change the documented
8867 * semantics of "vlan", which might break some expressions.
8868 * However, it would mean that "(vlan and ip) or ip" would check
8869 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8870 * checking only for VLAN-encapsulated IP, so that could still
8871 * be considered worth doing; it wouldn't break expressions
8872 * that are of the form "vlan and ..." or "vlan N and ...",
8873 * which I suspect are the most common expressions involving
8874 * "vlan". "vlan or ..." doesn't necessarily do what the user
8875 * would really want, now, as all the "or ..." tests would
8876 * be done assuming a VLAN, even though the "or" could be viewed
8877 * as meaning "or, if this isn't a VLAN packet...".
8878 */
8879 switch (cstate->linktype) {
8880
8881 case DLT_EN10MB:
8882 /*
8883 * Newer version of the Linux kernel pass around
8884 * packets in which the VLAN tag has been removed
8885 * from the packet data and put into metadata.
8886 *
8887 * This requires special treatment.
8888 */
8889 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8890 /* Verify that this is the outer part of the packet and
8891 * not encapsulated somehow. */
8892 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8893 cstate->off_linkhdr.constant_part ==
8894 cstate->off_outermostlinkhdr.constant_part) {
8895 /*
8896 * Do we need special VLAN handling?
8897 */
8898 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8899 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8900 has_vlan_tag);
8901 else
8902 b0 = gen_vlan_no_bpf_extensions(cstate,
8903 vlan_num, has_vlan_tag);
8904 } else
8905 #endif
8906 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8907 has_vlan_tag);
8908 break;
8909
8910 case DLT_NETANALYZER:
8911 case DLT_NETANALYZER_TRANSPARENT:
8912 case DLT_IEEE802_11:
8913 case DLT_PRISM_HEADER:
8914 case DLT_IEEE802_11_RADIO_AVS:
8915 case DLT_IEEE802_11_RADIO:
8916 /*
8917 * These are either Ethernet packets with an additional
8918 * metadata header (the NetAnalyzer types), or 802.11
8919 * packets, possibly with an additional metadata header.
8920 *
8921 * For the first of those, the VLAN tag is in the normal
8922 * place, so the special-case handling above isn't
8923 * necessary.
8924 *
8925 * For the second of those, we don't do the special-case
8926 * handling for now.
8927 */
8928 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8929 break;
8930
8931 default:
8932 bpf_error(cstate, "no VLAN support for %s",
8933 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8934 /*NOTREACHED*/
8935 }
8936
8937 cstate->vlan_stack_depth++;
8938
8939 return (b0);
8940 }
8941
8942 /*
8943 * support for MPLS
8944 *
8945 * The label_num_arg dance is to avoid annoying whining by compilers that
8946 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8947 * It's not *used* after setjmp returns.
8948 */
8949 static struct block *
8950 gen_mpls_internal(compiler_state_t *cstate, bpf_u_int32 label_num,
8951 int has_label_num)
8952 {
8953 struct block *b0, *b1;
8954
8955 if (cstate->label_stack_depth > 0) {
8956 /* just match the bottom-of-stack bit clear */
8957 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8958 } else {
8959 /*
8960 * We're not in an MPLS stack yet, so check the link-layer
8961 * type against MPLS.
8962 */
8963 switch (cstate->linktype) {
8964
8965 case DLT_C_HDLC: /* fall through */
8966 case DLT_HDLC:
8967 case DLT_EN10MB:
8968 case DLT_NETANALYZER:
8969 case DLT_NETANALYZER_TRANSPARENT:
8970 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8971 break;
8972
8973 case DLT_PPP:
8974 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8975 break;
8976
8977 /* FIXME add other DLT_s ...
8978 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8979 * leave it for now */
8980
8981 default:
8982 bpf_error(cstate, "no MPLS support for %s",
8983 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8984 /*NOTREACHED*/
8985 }
8986 }
8987
8988 /* If a specific MPLS label is requested, check it */
8989 if (has_label_num) {
8990 assert_maxval(cstate, "MPLS label", label_num, 0xFFFFF);
8991 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8992 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
8993 0xfffff000); /* only compare the first 20 bits */
8994 gen_and(b0, b1);
8995 b0 = b1;
8996 }
8997
8998 /*
8999 * Change the offsets to point to the type and data fields within
9000 * the MPLS packet. Just increment the offsets, so that we
9001 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9002 * capture packets with an outer label of 100000 and an inner
9003 * label of 1024.
9004 *
9005 * Increment the MPLS stack depth as well; this indicates that
9006 * we're checking MPLS-encapsulated headers, to make sure higher
9007 * level code generators don't try to match against IP-related
9008 * protocols such as Q_ARP, Q_RARP etc.
9009 *
9010 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9011 */
9012 cstate->off_nl_nosnap += 4;
9013 cstate->off_nl += 4;
9014 cstate->label_stack_depth++;
9015 return (b0);
9016 }
9017
9018 struct block *
9019 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num, int has_label_num)
9020 {
9021 /*
9022 * Catch errors reported by us and routines below us, and return NULL
9023 * on an error.
9024 */
9025 if (setjmp(cstate->top_ctx))
9026 return (NULL);
9027
9028 return gen_mpls_internal(cstate, label_num, has_label_num);
9029 }
9030
9031 /*
9032 * Support PPPOE discovery and session.
9033 */
9034 struct block *
9035 gen_pppoed(compiler_state_t *cstate)
9036 {
9037 /*
9038 * Catch errors reported by us and routines below us, and return NULL
9039 * on an error.
9040 */
9041 if (setjmp(cstate->top_ctx))
9042 return (NULL);
9043
9044 /* check for PPPoE discovery */
9045 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9046 }
9047
9048 /*
9049 * RFC 2516 Section 4:
9050 *
9051 * The Ethernet payload for PPPoE is as follows:
9052 *
9053 * 1 2 3
9054 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9055 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9056 * | VER | TYPE | CODE | SESSION_ID |
9057 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9058 * | LENGTH | payload ~
9059 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9060 */
9061 struct block *
9062 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9063 {
9064 struct block *b0, *b1;
9065
9066 /*
9067 * Catch errors reported by us and routines below us, and return NULL
9068 * on an error.
9069 */
9070 if (setjmp(cstate->top_ctx))
9071 return (NULL);
9072
9073 /*
9074 * Test against the PPPoE session link-layer type.
9075 */
9076 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9077
9078 /* If a specific session is requested, check PPPoE session id */
9079 if (has_sess_num) {
9080 assert_maxval(cstate, "PPPoE session number", sess_num, UINT16_MAX);
9081 b1 = gen_cmp(cstate, OR_LINKPL, 2, BPF_H, sess_num);
9082 gen_and(b0, b1);
9083 b0 = b1;
9084 }
9085
9086 /*
9087 * Change the offsets to point to the type and data fields within
9088 * the PPP packet, and note that this is PPPoE rather than
9089 * raw PPP.
9090 *
9091 * XXX - this is a bit of a kludge. See the comments in
9092 * gen_vlan().
9093 *
9094 * The "network-layer" protocol is PPPoE, which has a 6-byte
9095 * PPPoE header, followed by a PPP packet.
9096 *
9097 * There is no HDLC encapsulation for the PPP packet (it's
9098 * encapsulated in PPPoES instead), so the link-layer type
9099 * starts at the first byte of the PPP packet. For PPPoE,
9100 * that offset is relative to the beginning of the total
9101 * link-layer payload, including any 802.2 LLC header, so
9102 * it's 6 bytes past cstate->off_nl.
9103 */
9104 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9105 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9106 cstate->off_linkpl.reg);
9107
9108 cstate->off_linktype = cstate->off_linkhdr;
9109 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9110
9111 cstate->off_nl = 0;
9112 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9113
9114 return b0;
9115 }
9116
9117 /* Check that this is Geneve and the VNI is correct if
9118 * specified. Parameterized to handle both IPv4 and IPv6. */
9119 static struct block *
9120 gen_geneve_check(compiler_state_t *cstate,
9121 struct block *(*gen_portfn)(compiler_state_t *, uint16_t, int, int),
9122 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9123 {
9124 struct block *b0, *b1;
9125
9126 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9127
9128 /* Check that we are operating on version 0. Otherwise, we
9129 * can't decode the rest of the fields. The version is 2 bits
9130 * in the first byte of the Geneve header. */
9131 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9132 gen_and(b0, b1);
9133 b0 = b1;
9134
9135 if (has_vni) {
9136 assert_maxval(cstate, "Geneve VNI", vni, 0xffffff);
9137 vni <<= 8; /* VNI is in the upper 3 bytes */
9138 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9139 gen_and(b0, b1);
9140 b0 = b1;
9141 }
9142
9143 return b0;
9144 }
9145
9146 /* The IPv4 and IPv6 Geneve checks need to do two things:
9147 * - Verify that this actually is Geneve with the right VNI.
9148 * - Place the IP header length (plus variable link prefix if
9149 * needed) into register A to be used later to compute
9150 * the inner packet offsets. */
9151 static struct block *
9152 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9153 {
9154 struct block *b0, *b1;
9155 struct slist *s, *s1;
9156
9157 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9158
9159 /* Load the IP header length into A. */
9160 s = gen_loadx_iphdrlen(cstate);
9161
9162 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9163 sappend(s, s1);
9164
9165 /* Forcibly append these statements to the true condition
9166 * of the protocol check by creating a new block that is
9167 * always true and ANDing them. */
9168 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9169
9170 gen_and(b0, b1);
9171
9172 return b1;
9173 }
9174
9175 static struct block *
9176 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9177 {
9178 struct block *b0, *b1;
9179 struct slist *s, *s1;
9180
9181 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9182
9183 /* Load the IP header length. We need to account for a
9184 * variable length link prefix if there is one. */
9185 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9186 if (s) {
9187 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9188 s1->s.k = 40;
9189 sappend(s, s1);
9190
9191 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9192 s1->s.k = 0;
9193 sappend(s, s1);
9194 } else {
9195 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9196 s->s.k = 40;
9197 }
9198
9199 /* Forcibly append these statements to the true condition
9200 * of the protocol check by creating a new block that is
9201 * always true and ANDing them. */
9202 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9203 sappend(s, s1);
9204
9205 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9206
9207 gen_and(b0, b1);
9208
9209 return b1;
9210 }
9211
9212 /* We need to store three values based on the Geneve header::
9213 * - The offset of the linktype.
9214 * - The offset of the end of the Geneve header.
9215 * - The offset of the end of the encapsulated MAC header. */
9216 static struct slist *
9217 gen_geneve_offsets(compiler_state_t *cstate)
9218 {
9219 struct slist *s, *s1, *s_proto;
9220
9221 /* First we need to calculate the offset of the Geneve header
9222 * itself. This is composed of the IP header previously calculated
9223 * (include any variable link prefix) and stored in A plus the
9224 * fixed sized headers (fixed link prefix, MAC length, and UDP
9225 * header). */
9226 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9227 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9228
9229 /* Stash this in X since we'll need it later. */
9230 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9231 sappend(s, s1);
9232
9233 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9234 * store it. */
9235 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9236 s1->s.k = 2;
9237 sappend(s, s1);
9238
9239 cstate->off_linktype.reg = alloc_reg(cstate);
9240 cstate->off_linktype.is_variable = 1;
9241 cstate->off_linktype.constant_part = 0;
9242
9243 s1 = new_stmt(cstate, BPF_ST);
9244 s1->s.k = cstate->off_linktype.reg;
9245 sappend(s, s1);
9246
9247 /* Load the Geneve option length and mask and shift to get the
9248 * number of bytes. It is stored in the first byte of the Geneve
9249 * header. */
9250 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9251 s1->s.k = 0;
9252 sappend(s, s1);
9253
9254 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9255 s1->s.k = 0x3f;
9256 sappend(s, s1);
9257
9258 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9259 s1->s.k = 4;
9260 sappend(s, s1);
9261
9262 /* Add in the rest of the Geneve base header. */
9263 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9264 s1->s.k = 8;
9265 sappend(s, s1);
9266
9267 /* Add the Geneve header length to its offset and store. */
9268 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9269 s1->s.k = 0;
9270 sappend(s, s1);
9271
9272 /* Set the encapsulated type as Ethernet. Even though we may
9273 * not actually have Ethernet inside there are two reasons this
9274 * is useful:
9275 * - The linktype field is always in EtherType format regardless
9276 * of whether it is in Geneve or an inner Ethernet frame.
9277 * - The only link layer that we have specific support for is
9278 * Ethernet. We will confirm that the packet actually is
9279 * Ethernet at runtime before executing these checks. */
9280 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9281
9282 s1 = new_stmt(cstate, BPF_ST);
9283 s1->s.k = cstate->off_linkhdr.reg;
9284 sappend(s, s1);
9285
9286 /* Calculate whether we have an Ethernet header or just raw IP/
9287 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9288 * and linktype by 14 bytes so that the network header can be found
9289 * seamlessly. Otherwise, keep what we've calculated already. */
9290
9291 /* We have a bare jmp so we can't use the optimizer. */
9292 cstate->no_optimize = 1;
9293
9294 /* Load the EtherType in the Geneve header, 2 bytes in. */
9295 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9296 s1->s.k = 2;
9297 sappend(s, s1);
9298
9299 /* Load X with the end of the Geneve header. */
9300 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9301 s1->s.k = cstate->off_linkhdr.reg;
9302 sappend(s, s1);
9303
9304 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9305 * end of this check, we should have the total length in X. In
9306 * the non-Ethernet case, it's already there. */
9307 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9308 s_proto->s.k = ETHERTYPE_TEB;
9309 sappend(s, s_proto);
9310
9311 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9312 sappend(s, s1);
9313 s_proto->s.jt = s1;
9314
9315 /* Since this is Ethernet, use the EtherType of the payload
9316 * directly as the linktype. Overwrite what we already have. */
9317 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9318 s1->s.k = 12;
9319 sappend(s, s1);
9320
9321 s1 = new_stmt(cstate, BPF_ST);
9322 s1->s.k = cstate->off_linktype.reg;
9323 sappend(s, s1);
9324
9325 /* Advance two bytes further to get the end of the Ethernet
9326 * header. */
9327 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9328 s1->s.k = 2;
9329 sappend(s, s1);
9330
9331 /* Move the result to X. */
9332 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9333 sappend(s, s1);
9334
9335 /* Store the final result of our linkpl calculation. */
9336 cstate->off_linkpl.reg = alloc_reg(cstate);
9337 cstate->off_linkpl.is_variable = 1;
9338 cstate->off_linkpl.constant_part = 0;
9339
9340 s1 = new_stmt(cstate, BPF_STX);
9341 s1->s.k = cstate->off_linkpl.reg;
9342 sappend(s, s1);
9343 s_proto->s.jf = s1;
9344
9345 cstate->off_nl = 0;
9346
9347 return s;
9348 }
9349
9350 /* Check to see if this is a Geneve packet. */
9351 struct block *
9352 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9353 {
9354 struct block *b0, *b1;
9355 struct slist *s;
9356
9357 /*
9358 * Catch errors reported by us and routines below us, and return NULL
9359 * on an error.
9360 */
9361 if (setjmp(cstate->top_ctx))
9362 return (NULL);
9363
9364 b0 = gen_geneve4(cstate, vni, has_vni);
9365 b1 = gen_geneve6(cstate, vni, has_vni);
9366
9367 gen_or(b0, b1);
9368 b0 = b1;
9369
9370 /* Later filters should act on the payload of the Geneve frame,
9371 * update all of the header pointers. Attach this code so that
9372 * it gets executed in the event that the Geneve filter matches. */
9373 s = gen_geneve_offsets(cstate);
9374
9375 b1 = gen_true(cstate);
9376 sappend(s, b1->stmts);
9377 b1->stmts = s;
9378
9379 gen_and(b0, b1);
9380
9381 cstate->is_encap = 1;
9382
9383 return b1;
9384 }
9385
9386 /* Check that this is VXLAN and the VNI is correct if
9387 * specified. Parameterized to handle both IPv4 and IPv6. */
9388 static struct block *
9389 gen_vxlan_check(compiler_state_t *cstate,
9390 struct block *(*gen_portfn)(compiler_state_t *, uint16_t, int, int),
9391 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9392 {
9393 struct block *b0, *b1;
9394
9395 b0 = gen_portfn(cstate, VXLAN_PORT, IPPROTO_UDP, Q_DST);
9396
9397 /* Check that the VXLAN header has the flag bits set
9398 * correctly. */
9399 b1 = gen_cmp(cstate, offrel, 8, BPF_B, 0x08);
9400 gen_and(b0, b1);
9401 b0 = b1;
9402
9403 if (has_vni) {
9404 assert_maxval(cstate, "VXLAN VNI", vni, 0xffffff);
9405 vni <<= 8; /* VNI is in the upper 3 bytes */
9406 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9407 gen_and(b0, b1);
9408 b0 = b1;
9409 }
9410
9411 return b0;
9412 }
9413
9414 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9415 * - Verify that this actually is VXLAN with the right VNI.
9416 * - Place the IP header length (plus variable link prefix if
9417 * needed) into register A to be used later to compute
9418 * the inner packet offsets. */
9419 static struct block *
9420 gen_vxlan4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9421 {
9422 struct block *b0, *b1;
9423 struct slist *s, *s1;
9424
9425 b0 = gen_vxlan_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9426
9427 /* Load the IP header length into A. */
9428 s = gen_loadx_iphdrlen(cstate);
9429
9430 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9431 sappend(s, s1);
9432
9433 /* Forcibly append these statements to the true condition
9434 * of the protocol check by creating a new block that is
9435 * always true and ANDing them. */
9436 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9437
9438 gen_and(b0, b1);
9439
9440 return b1;
9441 }
9442
9443 static struct block *
9444 gen_vxlan6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9445 {
9446 struct block *b0, *b1;
9447 struct slist *s, *s1;
9448
9449 b0 = gen_vxlan_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9450
9451 /* Load the IP header length. We need to account for a
9452 * variable length link prefix if there is one. */
9453 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9454 if (s) {
9455 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9456 s1->s.k = 40;
9457 sappend(s, s1);
9458
9459 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9460 s1->s.k = 0;
9461 sappend(s, s1);
9462 } else {
9463 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9464 s->s.k = 40;
9465 }
9466
9467 /* Forcibly append these statements to the true condition
9468 * of the protocol check by creating a new block that is
9469 * always true and ANDing them. */
9470 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9471 sappend(s, s1);
9472
9473 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9474
9475 gen_and(b0, b1);
9476
9477 return b1;
9478 }
9479
9480 /* We need to store three values based on the VXLAN header:
9481 * - The offset of the linktype.
9482 * - The offset of the end of the VXLAN header.
9483 * - The offset of the end of the encapsulated MAC header. */
9484 static struct slist *
9485 gen_vxlan_offsets(compiler_state_t *cstate)
9486 {
9487 struct slist *s, *s1;
9488
9489 /* Calculate the offset of the VXLAN header itself. This
9490 * includes the IP header computed previously (including any
9491 * variable link prefix) and stored in A plus the fixed size
9492 * headers (fixed link prefix, MAC length, UDP header). */
9493 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9494 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9495
9496 /* Add the VXLAN header length to its offset and store */
9497 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9498 s1->s.k = 8;
9499 sappend(s, s1);
9500
9501 /* Push the link header. VXLAN packets always contain Ethernet
9502 * frames. */
9503 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9504
9505 s1 = new_stmt(cstate, BPF_ST);
9506 s1->s.k = cstate->off_linkhdr.reg;
9507 sappend(s, s1);
9508
9509 /* As the payload is an Ethernet packet, we can use the
9510 * EtherType of the payload directly as the linktype. */
9511 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9512 s1->s.k = 12;
9513 sappend(s, s1);
9514
9515 cstate->off_linktype.reg = alloc_reg(cstate);
9516 cstate->off_linktype.is_variable = 1;
9517 cstate->off_linktype.constant_part = 0;
9518
9519 s1 = new_stmt(cstate, BPF_ST);
9520 s1->s.k = cstate->off_linktype.reg;
9521 sappend(s, s1);
9522
9523 /* Two bytes further is the end of the Ethernet header and the
9524 * start of the payload. */
9525 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9526 s1->s.k = 2;
9527 sappend(s, s1);
9528
9529 /* Move the result to X. */
9530 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9531 sappend(s, s1);
9532
9533 /* Store the final result of our linkpl calculation. */
9534 cstate->off_linkpl.reg = alloc_reg(cstate);
9535 cstate->off_linkpl.is_variable = 1;
9536 cstate->off_linkpl.constant_part = 0;
9537
9538 s1 = new_stmt(cstate, BPF_STX);
9539 s1->s.k = cstate->off_linkpl.reg;
9540 sappend(s, s1);
9541
9542 cstate->off_nl = 0;
9543
9544 return s;
9545 }
9546
9547 /* Check to see if this is a VXLAN packet. */
9548 struct block *
9549 gen_vxlan(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9550 {
9551 struct block *b0, *b1;
9552 struct slist *s;
9553
9554 /*
9555 * Catch errors reported by us and routines below us, and return NULL
9556 * on an error.
9557 */
9558 if (setjmp(cstate->top_ctx))
9559 return (NULL);
9560
9561 b0 = gen_vxlan4(cstate, vni, has_vni);
9562 b1 = gen_vxlan6(cstate, vni, has_vni);
9563
9564 gen_or(b0, b1);
9565 b0 = b1;
9566
9567 /* Later filters should act on the payload of the VXLAN frame,
9568 * update all of the header pointers. Attach this code so that
9569 * it gets executed in the event that the VXLAN filter matches. */
9570 s = gen_vxlan_offsets(cstate);
9571
9572 b1 = gen_true(cstate);
9573 sappend(s, b1->stmts);
9574 b1->stmts = s;
9575
9576 gen_and(b0, b1);
9577
9578 cstate->is_encap = 1;
9579
9580 return b1;
9581 }
9582
9583 /* Check that the encapsulated frame has a link layer header
9584 * for Ethernet filters. */
9585 static struct block *
9586 gen_encap_ll_check(compiler_state_t *cstate)
9587 {
9588 struct block *b0;
9589 struct slist *s, *s1;
9590
9591 /* The easiest way to see if there is a link layer present
9592 * is to check if the link layer header and payload are not
9593 * the same. */
9594
9595 /* Geneve always generates pure variable offsets so we can
9596 * compare only the registers. */
9597 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9598 s->s.k = cstate->off_linkhdr.reg;
9599
9600 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9601 s1->s.k = cstate->off_linkpl.reg;
9602 sappend(s, s1);
9603
9604 b0 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9605 gen_not(b0);
9606
9607 return b0;
9608 }
9609
9610 static struct block *
9611 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9612 bpf_u_int32 jvalue, int jtype, int reverse)
9613 {
9614 assert_atm(cstate, atmkw(atmfield));
9615
9616 switch (atmfield) {
9617
9618 case A_VPI:
9619 assert_maxval(cstate, "VPI", jvalue, UINT8_MAX);
9620 return gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9621 0xffffffffU, jtype, reverse, jvalue);
9622
9623 case A_VCI:
9624 assert_maxval(cstate, "VCI", jvalue, UINT16_MAX);
9625 return gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9626 0xffffffffU, jtype, reverse, jvalue);
9627
9628 default:
9629 abort();
9630 }
9631 }
9632
9633 static struct block *
9634 gen_atm_vpi(compiler_state_t *cstate, const uint8_t v)
9635 {
9636 return gen_atmfield_code_internal(cstate, A_VPI, v, BPF_JEQ, 0);
9637 }
9638
9639 static struct block *
9640 gen_atm_vci(compiler_state_t *cstate, const uint16_t v)
9641 {
9642 return gen_atmfield_code_internal(cstate, A_VCI, v, BPF_JEQ, 0);
9643 }
9644
9645 static struct block *
9646 gen_atm_prototype(compiler_state_t *cstate, const uint8_t v)
9647 {
9648 return gen_mcmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, v, 0x0fU);
9649 }
9650
9651 static struct block *
9652 gen_atmtype_llc(compiler_state_t *cstate)
9653 {
9654 struct block *b0;
9655
9656 b0 = gen_atm_prototype(cstate, PT_LLC);
9657 cstate->linktype = cstate->prevlinktype;
9658 return b0;
9659 }
9660
9661 struct block *
9662 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9663 bpf_u_int32 jvalue, int jtype, int reverse)
9664 {
9665 /*
9666 * Catch errors reported by us and routines below us, and return NULL
9667 * on an error.
9668 */
9669 if (setjmp(cstate->top_ctx))
9670 return (NULL);
9671
9672 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9673 reverse);
9674 }
9675
9676 struct block *
9677 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9678 {
9679 struct block *b0, *b1;
9680
9681 /*
9682 * Catch errors reported by us and routines below us, and return NULL
9683 * on an error.
9684 */
9685 if (setjmp(cstate->top_ctx))
9686 return (NULL);
9687
9688 assert_atm(cstate, atmkw(type));
9689
9690 switch (type) {
9691
9692 case A_METAC:
9693 /* Get all packets in Meta signalling Circuit */
9694 b0 = gen_atm_vpi(cstate, 0);
9695 b1 = gen_atm_vci(cstate, 1);
9696 gen_and(b0, b1);
9697 return b1;
9698
9699 case A_BCC:
9700 /* Get all packets in Broadcast Circuit*/
9701 b0 = gen_atm_vpi(cstate, 0);
9702 b1 = gen_atm_vci(cstate, 2);
9703 gen_and(b0, b1);
9704 return b1;
9705
9706 case A_OAMF4SC:
9707 /* Get all cells in Segment OAM F4 circuit*/
9708 b0 = gen_atm_vpi(cstate, 0);
9709 b1 = gen_atm_vci(cstate, 3);
9710 gen_and(b0, b1);
9711 return b1;
9712
9713 case A_OAMF4EC:
9714 /* Get all cells in End-to-End OAM F4 Circuit*/
9715 b0 = gen_atm_vpi(cstate, 0);
9716 b1 = gen_atm_vci(cstate, 4);
9717 gen_and(b0, b1);
9718 return b1;
9719
9720 case A_SC:
9721 /* Get all packets in connection Signalling Circuit */
9722 b0 = gen_atm_vpi(cstate, 0);
9723 b1 = gen_atm_vci(cstate, 5);
9724 gen_and(b0, b1);
9725 return b1;
9726
9727 case A_ILMIC:
9728 /* Get all packets in ILMI Circuit */
9729 b0 = gen_atm_vpi(cstate, 0);
9730 b1 = gen_atm_vci(cstate, 16);
9731 gen_and(b0, b1);
9732 return b1;
9733
9734 case A_LANE:
9735 /* Get all LANE packets */
9736 b1 = gen_atm_prototype(cstate, PT_LANE);
9737
9738 /*
9739 * Arrange that all subsequent tests assume LANE
9740 * rather than LLC-encapsulated packets, and set
9741 * the offsets appropriately for LANE-encapsulated
9742 * Ethernet.
9743 *
9744 * We assume LANE means Ethernet, not Token Ring.
9745 */
9746 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9747 cstate->off_payload + 2, /* Ethernet header */
9748 -1);
9749 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9750 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9751 cstate->off_nl = 0; /* Ethernet II */
9752 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9753 return b1;
9754
9755 default:
9756 abort();
9757 }
9758 }
9759
9760 /*
9761 * Filtering for MTP2 messages based on li value
9762 * FISU, length is null
9763 * LSSU, length is 1 or 2
9764 * MSU, length is 3 or more
9765 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9766 */
9767 struct block *
9768 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9769 {
9770 struct block *b0, *b1;
9771
9772 /*
9773 * Catch errors reported by us and routines below us, and return NULL
9774 * on an error.
9775 */
9776 if (setjmp(cstate->top_ctx))
9777 return (NULL);
9778
9779 assert_ss7(cstate, ss7kw(type));
9780
9781 switch (type) {
9782
9783 case M_FISU:
9784 return gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9785 0x3fU, BPF_JEQ, 0, 0U);
9786
9787 case M_LSSU:
9788 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9789 0x3fU, BPF_JGT, 1, 2U);
9790 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9791 0x3fU, BPF_JGT, 0, 0U);
9792 gen_and(b1, b0);
9793 return b0;
9794
9795 case M_MSU:
9796 return gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9797 0x3fU, BPF_JGT, 0, 2U);
9798
9799 case MH_FISU:
9800 return gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9801 0xff80U, BPF_JEQ, 0, 0U);
9802
9803 case MH_LSSU:
9804 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9805 0xff80U, BPF_JGT, 1, 0x0100U);
9806 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9807 0xff80U, BPF_JGT, 0, 0U);
9808 gen_and(b1, b0);
9809 return b0;
9810
9811 case MH_MSU:
9812 return gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9813 0xff80U, BPF_JGT, 0, 0x0100U);
9814
9815 default:
9816 abort();
9817 }
9818 }
9819
9820 /*
9821 * These maximum valid values are all-ones, so they double as the bitmasks
9822 * before any bitwise shifting.
9823 */
9824 #define MTP2_SIO_MAXVAL UINT8_MAX
9825 #define MTP3_PC_MAXVAL 0x3fffU
9826 #define MTP3_SLS_MAXVAL 0xfU
9827
9828 static struct block *
9829 gen_mtp3field_code_internal(compiler_state_t *cstate, int mtp3field,
9830 bpf_u_int32 jvalue, int jtype, int reverse)
9831 {
9832 u_int newoff_sio;
9833 u_int newoff_opc;
9834 u_int newoff_dpc;
9835 u_int newoff_sls;
9836
9837 newoff_sio = cstate->off_sio;
9838 newoff_opc = cstate->off_opc;
9839 newoff_dpc = cstate->off_dpc;
9840 newoff_sls = cstate->off_sls;
9841
9842 assert_ss7(cstate, ss7kw(mtp3field));
9843
9844 switch (mtp3field) {
9845
9846 /*
9847 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
9848 *
9849 * SIO is the simplest field: the size is one byte and the offset is a
9850 * multiple of bytes, so the only detail to get right is the value of
9851 * the [right-to-left] field offset.
9852 */
9853 case MH_SIO:
9854 newoff_sio += 3; /* offset for MTP2_HSL */
9855 /* FALLTHROUGH */
9856
9857 case M_SIO:
9858 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP2_SIO_MAXVAL);
9859 // Here the bitmask means "do not apply a bitmask".
9860 return gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, UINT32_MAX,
9861 jtype, reverse, jvalue);
9862
9863 /*
9864 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
9865 *
9866 * SLS, OPC and DPC are more complicated: none of these is sized in a
9867 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
9868 * diagrams are meant to be read right-to-left. This means in the
9869 * diagrams within individual fields and concatenations thereof
9870 * bitwise shifts and masks can be noted in the common left-to-right
9871 * manner until each final value is ready to be byte-swapped and
9872 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
9873 * similar problem in a similar way.
9874 *
9875 * Offsets of fields within the packet header always have the
9876 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
9877 * DLTs the offset does not include the F (Flag) field at the
9878 * beginning of each message.
9879 *
9880 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
9881 * 32-bit standard routing header has a 4 byte [RTL] offset and could
9882 * be tested entirely using a single BPF_W comparison. In this case
9883 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
9884 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
9885 * [LTR] bitmask would be (0xF << 28), all of which conveniently
9886 * correlates with the [RTL] packet diagram until the byte-swapping is
9887 * done before use.
9888 *
9889 * The code below uses this approach for OPC, which spans 3 bytes.
9890 * DPC and SLS use shorter loads, SLS also uses a different offset.
9891 */
9892 case MH_OPC:
9893 newoff_opc += 3;
9894
9895 /* FALLTHROUGH */
9896 case M_OPC:
9897 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
9898 return gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W,
9899 SWAPLONG(MTP3_PC_MAXVAL << 14), jtype, reverse,
9900 SWAPLONG(jvalue << 14));
9901
9902 case MH_DPC:
9903 newoff_dpc += 3;
9904 /* FALLTHROUGH */
9905
9906 case M_DPC:
9907 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
9908 return gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_H,
9909 SWAPSHORT(MTP3_PC_MAXVAL), jtype, reverse,
9910 SWAPSHORT(jvalue));
9911
9912 case MH_SLS:
9913 newoff_sls += 3;
9914 /* FALLTHROUGH */
9915
9916 case M_SLS:
9917 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_SLS_MAXVAL);
9918 return gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B,
9919 MTP3_SLS_MAXVAL << 4, jtype, reverse,
9920 jvalue << 4);
9921
9922 default:
9923 abort();
9924 }
9925 }
9926
9927 struct block *
9928 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9929 bpf_u_int32 jvalue, int jtype, int reverse)
9930 {
9931 /*
9932 * Catch errors reported by us and routines below us, and return NULL
9933 * on an error.
9934 */
9935 if (setjmp(cstate->top_ctx))
9936 return (NULL);
9937
9938 return gen_mtp3field_code_internal(cstate, mtp3field, jvalue, jtype,
9939 reverse);
9940 }
9941
9942 static struct block *
9943 gen_msg_abbrev(compiler_state_t *cstate, const uint8_t type)
9944 {
9945 /*
9946 * Q.2931 signalling protocol messages for handling virtual circuits
9947 * establishment and teardown
9948 */
9949 return gen_cmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS,
9950 BPF_B, type);
9951 }
9952
9953 struct block *
9954 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9955 {
9956 struct block *b0, *b1;
9957
9958 /*
9959 * Catch errors reported by us and routines below us, and return NULL
9960 * on an error.
9961 */
9962 if (setjmp(cstate->top_ctx))
9963 return (NULL);
9964
9965 assert_atm(cstate, atmkw(type));
9966
9967 switch (type) {
9968
9969 case A_OAM:
9970 /* OAM F4 type */
9971 b0 = gen_atm_vci(cstate, 3);
9972 b1 = gen_atm_vci(cstate, 4);
9973 gen_or(b0, b1);
9974 b0 = gen_atm_vpi(cstate, 0);
9975 gen_and(b0, b1);
9976 return b1;
9977
9978 case A_OAMF4:
9979 /* OAM F4 type */
9980 b0 = gen_atm_vci(cstate, 3);
9981 b1 = gen_atm_vci(cstate, 4);
9982 gen_or(b0, b1);
9983 b0 = gen_atm_vpi(cstate, 0);
9984 gen_and(b0, b1);
9985 return b1;
9986
9987 case A_CONNECTMSG:
9988 /*
9989 * Get Q.2931 signalling messages for switched
9990 * virtual connection
9991 */
9992 b0 = gen_msg_abbrev(cstate, SETUP);
9993 b1 = gen_msg_abbrev(cstate, CALL_PROCEED);
9994 gen_or(b0, b1);
9995 b0 = gen_msg_abbrev(cstate, CONNECT);
9996 gen_or(b0, b1);
9997 b0 = gen_msg_abbrev(cstate, CONNECT_ACK);
9998 gen_or(b0, b1);
9999 b0 = gen_msg_abbrev(cstate, RELEASE);
10000 gen_or(b0, b1);
10001 b0 = gen_msg_abbrev(cstate, RELEASE_DONE);
10002 gen_or(b0, b1);
10003 b0 = gen_atmtype_abbrev(cstate, A_SC);
10004 gen_and(b0, b1);
10005 return b1;
10006
10007 case A_METACONNECT:
10008 b0 = gen_msg_abbrev(cstate, SETUP);
10009 b1 = gen_msg_abbrev(cstate, CALL_PROCEED);
10010 gen_or(b0, b1);
10011 b0 = gen_msg_abbrev(cstate, CONNECT);
10012 gen_or(b0, b1);
10013 b0 = gen_msg_abbrev(cstate, RELEASE);
10014 gen_or(b0, b1);
10015 b0 = gen_msg_abbrev(cstate, RELEASE_DONE);
10016 gen_or(b0, b1);
10017 b0 = gen_atmtype_abbrev(cstate, A_METAC);
10018 gen_and(b0, b1);
10019 return b1;
10020
10021 default:
10022 abort();
10023 }
10024 }