2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
43 #ifdef HAVE_OS_PROTO_H
49 * The internal "debug printout" flag for the filter expression optimizer.
50 * The code to print that stuff is present only if BDEBUG is defined, so
51 * the flag, and the routine to set it, are defined only if BDEBUG is
54 static int pcap_optimizer_debug
;
57 * Routine to set that flag.
59 * This is intended for libpcap developers, not for general use.
60 * If you want to set these in a program, you'll have to declare this
61 * routine yourself, with the appropriate DLL import attribute on Windows;
62 * it's not declared in any header file, and won't be declared in any
63 * header file provided by libpcap.
65 PCAP_API
void pcap_set_optimizer_debug(int value
);
68 pcap_set_optimizer_debug(int value
)
70 pcap_optimizer_debug
= value
;
74 * The internal "print dot graph" flag for the filter expression optimizer.
75 * The code to print that stuff is present only if BDEBUG is defined, so
76 * the flag, and the routine to set it, are defined only if BDEBUG is
79 static int pcap_print_dot_graph
;
82 * Routine to set that flag.
84 * This is intended for libpcap developers, not for general use.
85 * If you want to set these in a program, you'll have to declare this
86 * routine yourself, with the appropriate DLL import attribute on Windows;
87 * it's not declared in any header file, and won't be declared in any
88 * header file provided by libpcap.
90 PCAP_API
void pcap_set_print_dot_graph(int value
);
93 pcap_set_print_dot_graph(int value
)
95 pcap_print_dot_graph
= value
;
103 * Takes a 32-bit integer as an argument.
105 * If handed a non-zero value, returns the index of the lowest set bit,
106 * counting upwards fro zero.
108 * If handed zero, the results are platform- and compiler-dependent.
109 * Keep it out of the light, don't give it any water, don't feed it
110 * after midnight, and don't pass zero to it.
112 * This is the same as the count of trailing zeroes in the word.
114 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116 * GCC 3.4 and later; we have __builtin_ctz().
118 #define lowest_set_bit(mask) __builtin_ctz(mask)
119 #elif defined(_MSC_VER)
121 * Visual Studio; we support only 2005 and later, so use
127 #pragma intrinsic(_BitScanForward)
130 static __forceinline
int
131 lowest_set_bit(int mask
)
136 * Don't sign-extend mask if long is longer than int.
137 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
140 return -1; /* mask is zero */
143 #elif defined(MSDOS) && defined(__DJGPP__)
145 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146 * we've already included.
148 #define lowest_set_bit(mask) (ffs((mask)) - 1)
149 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152 * or some other platform (UN*X conforming to a sufficient recent version
153 * of the Single UNIX Specification).
156 #define lowest_set_bit(mask) (ffs((mask)) - 1)
160 * Use a perfect-hash-function-based function.
163 lowest_set_bit(int mask
)
165 unsigned int v
= (unsigned int)mask
;
167 static const int MultiplyDeBruijnBitPosition
[32] = {
168 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
173 * We strip off all but the lowermost set bit (v & ~v),
174 * and perform a minimal perfect hash on it to look up the
175 * number of low-order zero bits in a table.
179 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181 * http://supertech.csail.mit.edu/papers/debruijn.pdf
183 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
188 * Represents a deleted instruction.
193 * Register numbers for use-def values.
194 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195 * location. A_ATOM is the accumulator and X_ATOM is the index
198 #define A_ATOM BPF_MEMWORDS
199 #define X_ATOM (BPF_MEMWORDS+1)
202 * This define is used to represent *both* the accumulator and
203 * x register in use-def computations.
204 * Currently, the use-def code assumes only one definition per instruction.
206 #define AX_ATOM N_ATOMS
209 * These data structures are used in a Cocke and Shwarz style
210 * value numbering scheme. Since the flowgraph is acyclic,
211 * exit values can be propagated from a node's predecessors
212 * provided it is uniquely defined.
217 int val
; /* the value number */
218 struct valnode
*next
;
221 /* Integer constants mapped with the load immediate opcode. */
222 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
226 bpf_u_int32 const_val
;
231 * Place to longjmp to on an error.
236 * The buffer into which to put error message.
241 * A flag to indicate that further optimization is needed.
242 * Iterative passes are continued until a given pass yields no
248 struct block
**blocks
;
253 * A bit vector set representation of the dominators.
254 * We round up the set size to the next power of two.
258 struct block
**levels
;
261 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
263 * True if a is in uset {p}
265 #define SET_MEMBER(p, a) \
266 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
271 #define SET_INSERT(p, a) \
272 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
275 * Delete 'a' from uset p.
277 #define SET_DELETE(p, a) \
278 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
283 #define SET_INTERSECT(a, b, n)\
285 register bpf_u_int32 *_x = a, *_y = b;\
286 register int _n = n;\
287 while (--_n >= 0) *_x++ &= *_y++;\
293 #define SET_SUBTRACT(a, b, n)\
295 register bpf_u_int32 *_x = a, *_y = b;\
296 register int _n = n;\
297 while (--_n >= 0) *_x++ &=~ *_y++;\
303 #define SET_UNION(a, b, n)\
305 register bpf_u_int32 *_x = a, *_y = b;\
306 register int _n = n;\
307 while (--_n >= 0) *_x++ |= *_y++;\
311 uset all_closure_sets
;
315 struct valnode
*hashtbl
[MODULUS
];
319 struct vmapinfo
*vmap
;
320 struct valnode
*vnode_base
;
321 struct valnode
*next_vnode
;
326 * Place to longjmp to on an error.
331 * The buffer into which to put error message.
336 * Some pointers used to convert the basic block form of the code,
337 * into the array form that BPF requires. 'fstart' will point to
338 * the malloc'd array while 'ftail' is used during the recursive
341 struct bpf_insn
*fstart
;
342 struct bpf_insn
*ftail
;
345 static void opt_init(opt_state_t
*, struct icode
*);
346 static void opt_cleanup(opt_state_t
*);
347 static void PCAP_NORETURN
opt_error(opt_state_t
*, const char *, ...)
348 PCAP_PRINTFLIKE(2, 3);
350 static void intern_blocks(opt_state_t
*, struct icode
*);
352 static void find_inedges(opt_state_t
*, struct block
*);
354 static void opt_dump(opt_state_t
*, struct icode
*);
358 #define MAX(a,b) ((a)>(b)?(a):(b))
362 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
373 find_levels_r(opt_state
, ic
, JT(b
));
374 find_levels_r(opt_state
, ic
, JF(b
));
375 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
379 b
->link
= opt_state
->levels
[level
];
380 opt_state
->levels
[level
] = b
;
384 * Level graph. The levels go from 0 at the leaves to
385 * N_LEVELS at the root. The opt_state->levels[] array points to the
386 * first node of the level list, whose elements are linked
387 * with the 'link' field of the struct block.
390 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
392 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
394 find_levels_r(opt_state
, ic
, ic
->root
);
398 * Find dominator relationships.
399 * Assumes graph has been leveled.
402 find_dom(opt_state_t
*opt_state
, struct block
*root
)
409 * Initialize sets to contain all nodes.
411 x
= opt_state
->all_dom_sets
;
412 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
415 /* Root starts off empty. */
416 for (i
= opt_state
->nodewords
; --i
>= 0;)
419 /* root->level is the highest level no found. */
420 for (i
= root
->level
; i
>= 0; --i
) {
421 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
422 SET_INSERT(b
->dom
, b
->id
);
425 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
426 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
432 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
434 SET_INSERT(ep
->edom
, ep
->id
);
436 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
437 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
442 * Compute edge dominators.
443 * Assumes graph has been leveled and predecessors established.
446 find_edom(opt_state_t
*opt_state
, struct block
*root
)
452 x
= opt_state
->all_edge_sets
;
453 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
456 /* root->level is the highest level no found. */
457 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
458 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
459 for (i
= root
->level
; i
>= 0; --i
) {
460 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
461 propedom(opt_state
, &b
->et
);
462 propedom(opt_state
, &b
->ef
);
468 * Find the backwards transitive closure of the flow graph. These sets
469 * are backwards in the sense that we find the set of nodes that reach
470 * a given node, not the set of nodes that can be reached by a node.
472 * Assumes graph has been leveled.
475 find_closure(opt_state_t
*opt_state
, struct block
*root
)
481 * Initialize sets to contain no nodes.
483 memset((char *)opt_state
->all_closure_sets
, 0,
484 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
486 /* root->level is the highest level no found. */
487 for (i
= root
->level
; i
>= 0; --i
) {
488 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
489 SET_INSERT(b
->closure
, b
->id
);
492 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
493 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
499 * Return the register number that is used by s.
501 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
502 * are used, the scratch memory location's number if a scratch memory
503 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
505 * The implementation should probably change to an array access.
508 atomuse(struct stmt
*s
)
510 register int c
= s
->code
;
515 switch (BPF_CLASS(c
)) {
518 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
519 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
524 * As there are fewer than 2^31 memory locations,
525 * s->k should be convertable to int without problems.
527 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
528 (BPF_MODE(c
) == BPF_MEM
) ? (int)s
->k
: -1;
538 if (BPF_SRC(c
) == BPF_X
)
543 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
550 * Return the register number that is defined by 's'. We assume that
551 * a single stmt cannot define more than one register. If no register
552 * is defined, return -1.
554 * The implementation should probably change to an array access.
557 atomdef(struct stmt
*s
)
562 switch (BPF_CLASS(s
->code
)) {
576 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
582 * Compute the sets of registers used, defined, and killed by 'b'.
584 * "Used" means that a statement in 'b' uses the register before any
585 * statement in 'b' defines it, i.e. it uses the value left in
586 * that register by a predecessor block of this block.
587 * "Defined" means that a statement in 'b' defines it.
588 * "Killed" means that a statement in 'b' defines it before any
589 * statement in 'b' uses it, i.e. it kills the value left in that
590 * register by a predecessor block of this block.
593 compute_local_ud(struct block
*b
)
596 atomset def
= 0, use
= 0, killed
= 0;
599 for (s
= b
->stmts
; s
; s
= s
->next
) {
600 if (s
->s
.code
== NOP
)
602 atom
= atomuse(&s
->s
);
604 if (atom
== AX_ATOM
) {
605 if (!ATOMELEM(def
, X_ATOM
))
606 use
|= ATOMMASK(X_ATOM
);
607 if (!ATOMELEM(def
, A_ATOM
))
608 use
|= ATOMMASK(A_ATOM
);
610 else if (atom
< N_ATOMS
) {
611 if (!ATOMELEM(def
, atom
))
612 use
|= ATOMMASK(atom
);
617 atom
= atomdef(&s
->s
);
619 if (!ATOMELEM(use
, atom
))
620 killed
|= ATOMMASK(atom
);
621 def
|= ATOMMASK(atom
);
624 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
626 * XXX - what about RET?
628 atom
= atomuse(&b
->s
);
630 if (atom
== AX_ATOM
) {
631 if (!ATOMELEM(def
, X_ATOM
))
632 use
|= ATOMMASK(X_ATOM
);
633 if (!ATOMELEM(def
, A_ATOM
))
634 use
|= ATOMMASK(A_ATOM
);
636 else if (atom
< N_ATOMS
) {
637 if (!ATOMELEM(def
, atom
))
638 use
|= ATOMMASK(atom
);
651 * Assume graph is already leveled.
654 find_ud(opt_state_t
*opt_state
, struct block
*root
)
660 * root->level is the highest level no found;
661 * count down from there.
663 maxlevel
= root
->level
;
664 for (i
= maxlevel
; i
>= 0; --i
)
665 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
670 for (i
= 1; i
<= maxlevel
; ++i
) {
671 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
672 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
673 p
->in_use
|= p
->out_use
&~ p
->kill
;
678 init_val(opt_state_t
*opt_state
)
680 opt_state
->curval
= 0;
681 opt_state
->next_vnode
= opt_state
->vnode_base
;
682 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
683 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
687 * Because we really don't have an IR, this stuff is a little messy.
689 * This routine looks in the table of existing value number for a value
690 * with generated from an operation with the specified opcode and
691 * the specified values. If it finds it, it returns its value number,
692 * otherwise it makes a new entry in the table and returns the
693 * value number of that entry.
696 F(opt_state_t
*opt_state
, int code
, bpf_u_int32 v0
, bpf_u_int32 v1
)
702 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
705 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
706 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
710 * Not found. Allocate a new value, and assign it a new
713 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
714 * increment it before using it as the new value number, which
715 * means we never assign VAL_UNKNOWN.
717 * XXX - unless we overflow, but we probably won't have 2^32-1
718 * values; we treat 32 bits as effectively infinite.
720 val
= ++opt_state
->curval
;
721 if (BPF_MODE(code
) == BPF_IMM
&&
722 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
723 opt_state
->vmap
[val
].const_val
= v0
;
724 opt_state
->vmap
[val
].is_const
= 1;
726 p
= opt_state
->next_vnode
++;
731 p
->next
= opt_state
->hashtbl
[hash
];
732 opt_state
->hashtbl
[hash
] = p
;
738 vstore(struct stmt
*s
, bpf_u_int32
*valp
, bpf_u_int32 newval
, int alter
)
740 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
747 * Do constant-folding on binary operators.
748 * (Unary operators are handled elsewhere.)
751 fold_op(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 v0
, bpf_u_int32 v1
)
755 a
= opt_state
->vmap
[v0
].const_val
;
756 b
= opt_state
->vmap
[v1
].const_val
;
758 switch (BPF_OP(s
->code
)) {
773 opt_error(opt_state
, "division by zero");
779 opt_error(opt_state
, "modulus by zero");
797 * A left shift of more than the width of the type
798 * is undefined in C; we'll just treat it as shifting
801 * XXX - the BPF interpreter doesn't check for this,
802 * so its behavior is dependent on the behavior of
803 * the processor on which it's running. There are
804 * processors on which it shifts all the bits out
805 * and processors on which it does no shift.
815 * A right shift of more than the width of the type
816 * is undefined in C; we'll just treat it as shifting
819 * XXX - the BPF interpreter doesn't check for this,
820 * so its behavior is dependent on the behavior of
821 * the processor on which it's running. There are
822 * processors on which it shifts all the bits out
823 * and processors on which it does no shift.
835 s
->code
= BPF_LD
|BPF_IMM
;
839 static inline struct slist
*
840 this_op(struct slist
*s
)
842 while (s
!= 0 && s
->s
.code
== NOP
)
848 opt_not(struct block
*b
)
850 struct block
*tmp
= JT(b
);
857 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
860 struct slist
*next
, *last
;
868 for (/*empty*/; /*empty*/; s
= next
) {
874 break; /* nothing left in the block */
877 * Find the next real instruction after that one
880 next
= this_op(s
->next
);
882 break; /* no next instruction */
886 * st M[k] --> st M[k]
889 if (s
->s
.code
== BPF_ST
&&
890 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
891 s
->s
.k
== next
->s
.k
) {
893 next
->s
.code
= BPF_MISC
|BPF_TAX
;
899 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
900 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
901 s
->s
.code
= BPF_LDX
|BPF_IMM
;
902 next
->s
.code
= BPF_MISC
|BPF_TXA
;
906 * This is an ugly special case, but it happens
907 * when you say tcp[k] or udp[k] where k is a constant.
909 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
910 struct slist
*add
, *tax
, *ild
;
913 * Check that X isn't used on exit from this
914 * block (which the optimizer might cause).
915 * We know the code generator won't generate
916 * any local dependencies.
918 if (ATOMELEM(b
->out_use
, X_ATOM
))
922 * Check that the instruction following the ldi
923 * is an addx, or it's an ldxms with an addx
924 * following it (with 0 or more nops between the
927 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
930 add
= this_op(next
->next
);
931 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
935 * Check that a tax follows that (with 0 or more
936 * nops between them).
938 tax
= this_op(add
->next
);
939 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
943 * Check that an ild follows that (with 0 or more
944 * nops between them).
946 ild
= this_op(tax
->next
);
947 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
948 BPF_MODE(ild
->s
.code
) != BPF_IND
)
951 * We want to turn this sequence:
954 * (005) ldxms [14] {next} -- optional
957 * (008) ild [x+0] {ild}
959 * into this sequence:
967 * XXX We need to check that X is not
968 * subsequently used, because we want to change
969 * what'll be in it after this sequence.
971 * We know we can eliminate the accumulator
972 * modifications earlier in the sequence since
973 * it is defined by the last stmt of this sequence
974 * (i.e., the last statement of the sequence loads
975 * a value into the accumulator, so we can eliminate
976 * earlier operations on the accumulator).
986 * If the comparison at the end of a block is an equality
987 * comparison against a constant, and nobody uses the value
988 * we leave in the A register at the end of a block, and
989 * the operation preceding the comparison is an arithmetic
990 * operation, we can sometime optimize it away.
992 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
993 !ATOMELEM(b
->out_use
, A_ATOM
)) {
995 * We can optimize away certain subtractions of the
998 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
999 val
= b
->val
[X_ATOM
];
1000 if (opt_state
->vmap
[val
].is_const
) {
1002 * If we have a subtract to do a comparison,
1003 * and the X register is a known constant,
1004 * we can merge this value into the
1010 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
1012 opt_state
->done
= 0;
1013 } else if (b
->s
.k
== 0) {
1015 * If the X register isn't a constant,
1016 * and the comparison in the test is
1017 * against 0, we can compare with the
1018 * X register, instead:
1024 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
1025 opt_state
->done
= 0;
1029 * Likewise, a constant subtract can be simplified:
1032 * jeq #y -> jeq #(x+y)
1034 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
1036 b
->s
.k
+= last
->s
.k
;
1037 opt_state
->done
= 0;
1040 * And, similarly, a constant AND can be simplified
1041 * if we're testing against 0, i.e.:
1046 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1049 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1051 opt_state
->done
= 0;
1057 * jset #ffffffff -> always
1059 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1062 if (b
->s
.k
== 0xffffffffU
)
1066 * If we're comparing against the index register, and the index
1067 * register is a known constant, we can just compare against that
1070 val
= b
->val
[X_ATOM
];
1071 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1072 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1073 b
->s
.code
&= ~BPF_X
;
1077 * If the accumulator is a known constant, we can compute the
1078 * comparison result.
1080 val
= b
->val
[A_ATOM
];
1081 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1082 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1083 switch (BPF_OP(b
->s
.code
)) {
1105 opt_state
->done
= 0;
1114 * Compute the symbolic value of expression of 's', and update
1115 * anything it defines in the value table 'val'. If 'alter' is true,
1116 * do various optimizations. This code would be cleaner if symbolic
1117 * evaluation and code transformations weren't folded together.
1120 opt_stmt(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 val
[], int alter
)
1127 case BPF_LD
|BPF_ABS
|BPF_W
:
1128 case BPF_LD
|BPF_ABS
|BPF_H
:
1129 case BPF_LD
|BPF_ABS
|BPF_B
:
1130 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1131 vstore(s
, &val
[A_ATOM
], v
, alter
);
1134 case BPF_LD
|BPF_IND
|BPF_W
:
1135 case BPF_LD
|BPF_IND
|BPF_H
:
1136 case BPF_LD
|BPF_IND
|BPF_B
:
1138 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1139 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1140 s
->k
+= opt_state
->vmap
[v
].const_val
;
1141 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1142 opt_state
->done
= 0;
1145 v
= F(opt_state
, s
->code
, s
->k
, v
);
1146 vstore(s
, &val
[A_ATOM
], v
, alter
);
1149 case BPF_LD
|BPF_LEN
:
1150 v
= F(opt_state
, s
->code
, 0L, 0L);
1151 vstore(s
, &val
[A_ATOM
], v
, alter
);
1154 case BPF_LD
|BPF_IMM
:
1156 vstore(s
, &val
[A_ATOM
], v
, alter
);
1159 case BPF_LDX
|BPF_IMM
:
1161 vstore(s
, &val
[X_ATOM
], v
, alter
);
1164 case BPF_LDX
|BPF_MSH
|BPF_B
:
1165 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1166 vstore(s
, &val
[X_ATOM
], v
, alter
);
1169 case BPF_ALU
|BPF_NEG
:
1170 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1171 s
->code
= BPF_LD
|BPF_IMM
;
1173 * Do this negation as unsigned arithmetic; that's
1174 * what modern BPF engines do, and it guarantees
1175 * that all possible values can be negated. (Yeah,
1176 * negating 0x80000000, the minimum signed 32-bit
1177 * two's-complement value, results in 0x80000000,
1178 * so it's still negative, but we *should* be doing
1179 * all unsigned arithmetic here, to match what
1180 * modern BPF engines do.)
1182 * Express it as 0U - (unsigned value) so that we
1183 * don't get compiler warnings about negating an
1184 * unsigned value and don't get UBSan warnings
1185 * about the result of negating 0x80000000 being
1188 s
->k
= 0U - opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1189 val
[A_ATOM
] = K(s
->k
);
1192 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1195 case BPF_ALU
|BPF_ADD
|BPF_K
:
1196 case BPF_ALU
|BPF_SUB
|BPF_K
:
1197 case BPF_ALU
|BPF_MUL
|BPF_K
:
1198 case BPF_ALU
|BPF_DIV
|BPF_K
:
1199 case BPF_ALU
|BPF_MOD
|BPF_K
:
1200 case BPF_ALU
|BPF_AND
|BPF_K
:
1201 case BPF_ALU
|BPF_OR
|BPF_K
:
1202 case BPF_ALU
|BPF_XOR
|BPF_K
:
1203 case BPF_ALU
|BPF_LSH
|BPF_K
:
1204 case BPF_ALU
|BPF_RSH
|BPF_K
:
1205 op
= BPF_OP(s
->code
);
1209 * Optimize operations where the constant
1212 * Don't optimize away "sub #0"
1213 * as it may be needed later to
1214 * fixup the generated math code.
1216 * Fail if we're dividing by zero or taking
1217 * a modulus by zero.
1219 if (op
== BPF_ADD
||
1220 op
== BPF_LSH
|| op
== BPF_RSH
||
1221 op
== BPF_OR
|| op
== BPF_XOR
) {
1225 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1226 s
->code
= BPF_LD
|BPF_IMM
;
1227 val
[A_ATOM
] = K(s
->k
);
1231 opt_error(opt_state
,
1232 "division by zero");
1234 opt_error(opt_state
,
1237 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1238 fold_op(opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1239 val
[A_ATOM
] = K(s
->k
);
1243 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1246 case BPF_ALU
|BPF_ADD
|BPF_X
:
1247 case BPF_ALU
|BPF_SUB
|BPF_X
:
1248 case BPF_ALU
|BPF_MUL
|BPF_X
:
1249 case BPF_ALU
|BPF_DIV
|BPF_X
:
1250 case BPF_ALU
|BPF_MOD
|BPF_X
:
1251 case BPF_ALU
|BPF_AND
|BPF_X
:
1252 case BPF_ALU
|BPF_OR
|BPF_X
:
1253 case BPF_ALU
|BPF_XOR
|BPF_X
:
1254 case BPF_ALU
|BPF_LSH
|BPF_X
:
1255 case BPF_ALU
|BPF_RSH
|BPF_X
:
1256 op
= BPF_OP(s
->code
);
1257 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1258 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1259 fold_op(opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1260 val
[A_ATOM
] = K(s
->k
);
1263 s
->code
= BPF_ALU
|BPF_K
|op
;
1264 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1265 if ((op
== BPF_LSH
|| op
== BPF_RSH
) &&
1267 opt_error(opt_state
,
1268 "shift by more than 31 bits");
1269 opt_state
->done
= 0;
1271 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1276 * Check if we're doing something to an accumulator
1277 * that is 0, and simplify. This may not seem like
1278 * much of a simplification but it could open up further
1280 * XXX We could also check for mul by 1, etc.
1282 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1283 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1284 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1285 s
->code
= BPF_MISC
|BPF_TXA
;
1286 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1289 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1290 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1291 s
->code
= BPF_LD
|BPF_IMM
;
1293 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1296 else if (op
== BPF_NEG
) {
1301 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1304 case BPF_MISC
|BPF_TXA
:
1305 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1308 case BPF_LD
|BPF_MEM
:
1310 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1311 s
->code
= BPF_LD
|BPF_IMM
;
1312 s
->k
= opt_state
->vmap
[v
].const_val
;
1313 opt_state
->done
= 0;
1315 vstore(s
, &val
[A_ATOM
], v
, alter
);
1318 case BPF_MISC
|BPF_TAX
:
1319 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1322 case BPF_LDX
|BPF_MEM
:
1324 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1325 s
->code
= BPF_LDX
|BPF_IMM
;
1326 s
->k
= opt_state
->vmap
[v
].const_val
;
1327 opt_state
->done
= 0;
1329 vstore(s
, &val
[X_ATOM
], v
, alter
);
1333 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1337 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1343 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1349 if (atom
== AX_ATOM
) {
1359 opt_state
->done
= 0;
1360 last
[atom
]->code
= NOP
;
1367 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1369 register struct slist
*s
;
1371 struct stmt
*last
[N_ATOMS
];
1373 memset((char *)last
, 0, sizeof last
);
1375 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1376 deadstmt(opt_state
, &s
->s
, last
);
1377 deadstmt(opt_state
, &b
->s
, last
);
1379 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1380 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1381 last
[atom
]->code
= NOP
;
1382 opt_state
->done
= 0;
1387 opt_blk(opt_state_t
*opt_state
, struct block
*b
, int do_stmts
)
1392 bpf_u_int32 aval
, xval
;
1395 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1396 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1403 * Initialize the atom values.
1408 * We have no predecessors, so everything is undefined
1409 * upon entry to this block.
1411 memset((char *)b
->val
, 0, sizeof(b
->val
));
1414 * Inherit values from our predecessors.
1416 * First, get the values from the predecessor along the
1417 * first edge leading to this node.
1419 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1421 * Now look at all the other nodes leading to this node.
1422 * If, for the predecessor along that edge, a register
1423 * has a different value from the one we have (i.e.,
1424 * control paths are merging, and the merging paths
1425 * assign different values to that register), give the
1426 * register the undefined value of 0.
1428 while ((p
= p
->next
) != NULL
) {
1429 for (i
= 0; i
< N_ATOMS
; ++i
)
1430 if (b
->val
[i
] != p
->pred
->val
[i
])
1434 aval
= b
->val
[A_ATOM
];
1435 xval
= b
->val
[X_ATOM
];
1436 for (s
= b
->stmts
; s
; s
= s
->next
)
1437 opt_stmt(opt_state
, &s
->s
, b
->val
, do_stmts
);
1440 * This is a special case: if we don't use anything from this
1441 * block, and we load the accumulator or index register with a
1442 * value that is already there, or if this block is a return,
1443 * eliminate all the statements.
1445 * XXX - what if it does a store?
1447 * XXX - why does it matter whether we use anything from this
1448 * block? If the accumulator or index register doesn't change
1449 * its value, isn't that OK even if we use that value?
1451 * XXX - if we load the accumulator with a different value,
1452 * and the block ends with a conditional branch, we obviously
1453 * can't eliminate it, as the branch depends on that value.
1454 * For the index register, the conditional branch only depends
1455 * on the index register value if the test is against the index
1456 * register value rather than a constant; if nothing uses the
1457 * value we put into the index register, and we're not testing
1458 * against the index register's value, and there aren't any
1459 * other problems that would keep us from eliminating this
1460 * block, can we eliminate it?
1463 ((b
->out_use
== 0 &&
1464 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1465 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1466 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1467 if (b
->stmts
!= 0) {
1469 opt_state
->done
= 0;
1472 opt_peep(opt_state
, b
);
1473 opt_deadstores(opt_state
, b
);
1476 * Set up values for branch optimizer.
1478 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1479 b
->oval
= K(b
->s
.k
);
1481 b
->oval
= b
->val
[X_ATOM
];
1482 b
->et
.code
= b
->s
.code
;
1483 b
->ef
.code
= -b
->s
.code
;
1487 * Return true if any register that is used on exit from 'succ', has
1488 * an exit value that is different from the corresponding exit value
1492 use_conflict(struct block
*b
, struct block
*succ
)
1495 atomset use
= succ
->out_use
;
1500 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1501 if (ATOMELEM(use
, atom
))
1502 if (b
->val
[atom
] != succ
->val
[atom
])
1507 static struct block
*
1508 fold_edge(struct block
*child
, struct edge
*ep
)
1511 bpf_u_int32 aval0
, aval1
, oval0
, oval1
;
1512 int code
= ep
->code
;
1520 if (child
->s
.code
!= code
)
1523 aval0
= child
->val
[A_ATOM
];
1524 oval0
= child
->oval
;
1525 aval1
= ep
->pred
->val
[A_ATOM
];
1526 oval1
= ep
->pred
->oval
;
1533 * The operands of the branch instructions are
1534 * identical, so the result is true if a true
1535 * branch was taken to get here, otherwise false.
1537 return sense
? JT(child
) : JF(child
);
1539 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1541 * At this point, we only know the comparison if we
1542 * came down the true branch, and it was an equality
1543 * comparison with a constant.
1545 * I.e., if we came down the true branch, and the branch
1546 * was an equality comparison with a constant, we know the
1547 * accumulator contains that constant. If we came down
1548 * the false branch, or the comparison wasn't with a
1549 * constant, we don't know what was in the accumulator.
1551 * We rely on the fact that distinct constants have distinct
1560 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1563 register struct block
*target
;
1565 if (JT(ep
->succ
) == 0)
1568 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1570 * Common branch targets can be eliminated, provided
1571 * there is no data dependency.
1573 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1574 opt_state
->done
= 0;
1575 ep
->succ
= JT(ep
->succ
);
1579 * For each edge dominator that matches the successor of this
1580 * edge, promote the edge successor to the its grandchild.
1582 * XXX We violate the set abstraction here in favor a reasonably
1586 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1587 register bpf_u_int32 x
= ep
->edom
[i
];
1590 k
= lowest_set_bit(x
);
1591 x
&=~ ((bpf_u_int32
)1 << k
);
1592 k
+= i
* BITS_PER_WORD
;
1594 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1596 * Check that there is no data dependency between
1597 * nodes that will be violated if we move the edge.
1599 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1600 opt_state
->done
= 0;
1602 if (JT(target
) != 0)
1604 * Start over unless we hit a leaf.
1615 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1620 struct block
**diffp
, **samep
;
1628 * Make sure each predecessor loads the same value.
1631 val
= ep
->pred
->val
[A_ATOM
];
1632 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1633 if (val
!= ep
->pred
->val
[A_ATOM
])
1636 if (JT(b
->in_edges
->pred
) == b
)
1637 diffp
= &JT(b
->in_edges
->pred
);
1639 diffp
= &JF(b
->in_edges
->pred
);
1646 if (JT(*diffp
) != JT(b
))
1649 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1652 if ((*diffp
)->val
[A_ATOM
] != val
)
1655 diffp
= &JF(*diffp
);
1658 samep
= &JF(*diffp
);
1663 if (JT(*samep
) != JT(b
))
1666 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1669 if ((*samep
)->val
[A_ATOM
] == val
)
1672 /* XXX Need to check that there are no data dependencies
1673 between dp0 and dp1. Currently, the code generator
1674 will not produce such dependencies. */
1675 samep
= &JF(*samep
);
1678 /* XXX This doesn't cover everything. */
1679 for (i
= 0; i
< N_ATOMS
; ++i
)
1680 if ((*samep
)->val
[i
] != pred
->val
[i
])
1683 /* Pull up the node. */
1689 * At the top of the chain, each predecessor needs to point at the
1690 * pulled up node. Inside the chain, there is only one predecessor
1694 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1695 if (JT(ep
->pred
) == b
)
1696 JT(ep
->pred
) = pull
;
1698 JF(ep
->pred
) = pull
;
1704 opt_state
->done
= 0;
1708 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1713 struct block
**diffp
, **samep
;
1721 * Make sure each predecessor loads the same value.
1723 val
= ep
->pred
->val
[A_ATOM
];
1724 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1725 if (val
!= ep
->pred
->val
[A_ATOM
])
1728 if (JT(b
->in_edges
->pred
) == b
)
1729 diffp
= &JT(b
->in_edges
->pred
);
1731 diffp
= &JF(b
->in_edges
->pred
);
1738 if (JF(*diffp
) != JF(b
))
1741 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1744 if ((*diffp
)->val
[A_ATOM
] != val
)
1747 diffp
= &JT(*diffp
);
1750 samep
= &JT(*diffp
);
1755 if (JF(*samep
) != JF(b
))
1758 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1761 if ((*samep
)->val
[A_ATOM
] == val
)
1764 /* XXX Need to check that there are no data dependencies
1765 between diffp and samep. Currently, the code generator
1766 will not produce such dependencies. */
1767 samep
= &JT(*samep
);
1770 /* XXX This doesn't cover everything. */
1771 for (i
= 0; i
< N_ATOMS
; ++i
)
1772 if ((*samep
)->val
[i
] != pred
->val
[i
])
1775 /* Pull up the node. */
1781 * At the top of the chain, each predecessor needs to point at the
1782 * pulled up node. Inside the chain, there is only one predecessor
1786 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1787 if (JT(ep
->pred
) == b
)
1788 JT(ep
->pred
) = pull
;
1790 JF(ep
->pred
) = pull
;
1796 opt_state
->done
= 0;
1800 opt_blks(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
1805 init_val(opt_state
);
1806 maxlevel
= ic
->root
->level
;
1808 find_inedges(opt_state
, ic
->root
);
1809 for (i
= maxlevel
; i
>= 0; --i
)
1810 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1811 opt_blk(opt_state
, p
, do_stmts
);
1815 * No point trying to move branches; it can't possibly
1816 * make a difference at this point.
1820 for (i
= 1; i
<= maxlevel
; ++i
) {
1821 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1822 opt_j(opt_state
, &p
->et
);
1823 opt_j(opt_state
, &p
->ef
);
1827 find_inedges(opt_state
, ic
->root
);
1828 for (i
= 1; i
<= maxlevel
; ++i
) {
1829 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1830 or_pullup(opt_state
, p
);
1831 and_pullup(opt_state
, p
);
1837 link_inedge(struct edge
*parent
, struct block
*child
)
1839 parent
->next
= child
->in_edges
;
1840 child
->in_edges
= parent
;
1844 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1849 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1850 opt_state
->blocks
[i
]->in_edges
= 0;
1853 * Traverse the graph, adding each edge to the predecessor
1854 * list of its successors. Skip the leaves (i.e. level 0).
1856 for (i
= root
->level
; i
> 0; --i
) {
1857 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1858 link_inedge(&b
->et
, JT(b
));
1859 link_inedge(&b
->ef
, JF(b
));
1865 opt_root(struct block
**b
)
1867 struct slist
*tmp
, *s
;
1871 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1880 * If the root node is a return, then there is no
1881 * point executing any statements (since the bpf machine
1882 * has no side effects).
1884 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1889 opt_loop(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
1893 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1894 printf("opt_loop(root, %d) begin\n", do_stmts
);
1895 opt_dump(opt_state
, ic
);
1899 opt_state
->done
= 1;
1900 find_levels(opt_state
, ic
);
1901 find_dom(opt_state
, ic
->root
);
1902 find_closure(opt_state
, ic
->root
);
1903 find_ud(opt_state
, ic
->root
);
1904 find_edom(opt_state
, ic
->root
);
1905 opt_blks(opt_state
, ic
, do_stmts
);
1907 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1908 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1909 opt_dump(opt_state
, ic
);
1912 } while (!opt_state
->done
);
1916 * Optimize the filter code in its dag representation.
1917 * Return 0 on success, -1 on error.
1920 bpf_optimize(struct icode
*ic
, char *errbuf
)
1922 opt_state_t opt_state
;
1924 memset(&opt_state
, 0, sizeof(opt_state
));
1925 opt_state
.errbuf
= errbuf
;
1926 if (setjmp(opt_state
.top_ctx
)) {
1927 opt_cleanup(&opt_state
);
1930 opt_init(&opt_state
, ic
);
1931 opt_loop(&opt_state
, ic
, 0);
1932 opt_loop(&opt_state
, ic
, 1);
1933 intern_blocks(&opt_state
, ic
);
1935 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1936 printf("after intern_blocks()\n");
1937 opt_dump(&opt_state
, ic
);
1940 opt_root(&ic
->root
);
1942 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1943 printf("after opt_root()\n");
1944 opt_dump(&opt_state
, ic
);
1947 opt_cleanup(&opt_state
);
1952 make_marks(struct icode
*ic
, struct block
*p
)
1954 if (!isMarked(ic
, p
)) {
1956 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1957 make_marks(ic
, JT(p
));
1958 make_marks(ic
, JF(p
));
1964 * Mark code array such that isMarked(ic->cur_mark, i) is true
1965 * only for nodes that are alive.
1968 mark_code(struct icode
*ic
)
1971 make_marks(ic
, ic
->root
);
1975 * True iff the two stmt lists load the same value from the packet into
1979 eq_slist(struct slist
*x
, struct slist
*y
)
1982 while (x
&& x
->s
.code
== NOP
)
1984 while (y
&& y
->s
.code
== NOP
)
1990 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1998 eq_blk(struct block
*b0
, struct block
*b1
)
2000 if (b0
->s
.code
== b1
->s
.code
&&
2001 b0
->s
.k
== b1
->s
.k
&&
2002 b0
->et
.succ
== b1
->et
.succ
&&
2003 b0
->ef
.succ
== b1
->ef
.succ
)
2004 return eq_slist(b0
->stmts
, b1
->stmts
);
2009 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
2013 int done1
; /* don't shadow global */
2016 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
2017 opt_state
->blocks
[i
]->link
= 0;
2021 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
2022 if (!isMarked(ic
, opt_state
->blocks
[i
]))
2024 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
2025 if (!isMarked(ic
, opt_state
->blocks
[j
]))
2027 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
2028 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
2029 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
2034 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
2035 p
= opt_state
->blocks
[i
];
2040 JT(p
) = JT(p
)->link
;
2044 JF(p
) = JF(p
)->link
;
2052 opt_cleanup(opt_state_t
*opt_state
)
2054 free((void *)opt_state
->vnode_base
);
2055 free((void *)opt_state
->vmap
);
2056 free((void *)opt_state
->edges
);
2057 free((void *)opt_state
->space
);
2058 free((void *)opt_state
->levels
);
2059 free((void *)opt_state
->blocks
);
2063 * For optimizer errors.
2065 static void PCAP_NORETURN
2066 opt_error(opt_state_t
*opt_state
, const char *fmt
, ...)
2070 if (opt_state
->errbuf
!= NULL
) {
2072 (void)pcap_vsnprintf(opt_state
->errbuf
,
2073 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2076 longjmp(opt_state
->top_ctx
, 1);
2081 * Return the number of stmts in 's'.
2084 slength(struct slist
*s
)
2088 for (; s
; s
= s
->next
)
2089 if (s
->s
.code
!= NOP
)
2095 * Return the number of nodes reachable by 'p'.
2096 * All nodes should be initially unmarked.
2099 count_blocks(struct icode
*ic
, struct block
*p
)
2101 if (p
== 0 || isMarked(ic
, p
))
2104 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2108 * Do a depth first search on the flow graph, numbering the
2109 * the basic blocks, and entering them into the 'blocks' array.`
2112 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2116 if (p
== 0 || isMarked(ic
, p
))
2120 n
= opt_state
->n_blocks
++;
2122 opt_state
->blocks
[n
] = p
;
2124 number_blks_r(opt_state
, ic
, JT(p
));
2125 number_blks_r(opt_state
, ic
, JF(p
));
2129 * Return the number of stmts in the flowgraph reachable by 'p'.
2130 * The nodes should be unmarked before calling.
2132 * Note that "stmts" means "instructions", and that this includes
2134 * side-effect statements in 'p' (slength(p->stmts));
2136 * statements in the true branch from 'p' (count_stmts(JT(p)));
2138 * statements in the false branch from 'p' (count_stmts(JF(p)));
2140 * the conditional jump itself (1);
2142 * an extra long jump if the true branch requires it (p->longjt);
2144 * an extra long jump if the false branch requires it (p->longjf).
2147 count_stmts(struct icode
*ic
, struct block
*p
)
2151 if (p
== 0 || isMarked(ic
, p
))
2154 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2155 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2159 * Allocate memory. All allocation is done before optimization
2160 * is begun. A linear bound on the size of all data structures is computed
2161 * from the total number of blocks and/or statements.
2164 opt_init(opt_state_t
*opt_state
, struct icode
*ic
)
2167 int i
, n
, max_stmts
;
2170 * First, count the blocks, so we can malloc an array to map
2171 * block number to block. Then, put the blocks into the array.
2174 n
= count_blocks(ic
, ic
->root
);
2175 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2176 if (opt_state
->blocks
== NULL
)
2177 opt_error(opt_state
, "malloc");
2179 opt_state
->n_blocks
= 0;
2180 number_blks_r(opt_state
, ic
, ic
->root
);
2182 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2183 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2184 if (opt_state
->edges
== NULL
) {
2185 opt_error(opt_state
, "malloc");
2189 * The number of levels is bounded by the number of nodes.
2191 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2192 if (opt_state
->levels
== NULL
) {
2193 opt_error(opt_state
, "malloc");
2196 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
2197 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
2200 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
2201 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
2202 if (opt_state
->space
== NULL
) {
2203 opt_error(opt_state
, "malloc");
2205 p
= opt_state
->space
;
2206 opt_state
->all_dom_sets
= p
;
2207 for (i
= 0; i
< n
; ++i
) {
2208 opt_state
->blocks
[i
]->dom
= p
;
2209 p
+= opt_state
->nodewords
;
2211 opt_state
->all_closure_sets
= p
;
2212 for (i
= 0; i
< n
; ++i
) {
2213 opt_state
->blocks
[i
]->closure
= p
;
2214 p
+= opt_state
->nodewords
;
2216 opt_state
->all_edge_sets
= p
;
2217 for (i
= 0; i
< n
; ++i
) {
2218 register struct block
*b
= opt_state
->blocks
[i
];
2221 p
+= opt_state
->edgewords
;
2223 p
+= opt_state
->edgewords
;
2225 opt_state
->edges
[i
] = &b
->et
;
2226 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2227 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2232 for (i
= 0; i
< n
; ++i
)
2233 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2235 * We allocate at most 3 value numbers per statement,
2236 * so this is an upper bound on the number of valnodes
2239 opt_state
->maxval
= 3 * max_stmts
;
2240 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2241 if (opt_state
->vmap
== NULL
) {
2242 opt_error(opt_state
, "malloc");
2244 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2245 if (opt_state
->vnode_base
== NULL
) {
2246 opt_error(opt_state
, "malloc");
2251 * This is only used when supporting optimizer debugging. It is
2252 * global state, so do *not* do more than one compile in parallel
2253 * and expect it to provide meaningful information.
2259 static void PCAP_NORETURN
conv_error(conv_state_t
*, const char *, ...)
2260 PCAP_PRINTFLIKE(2, 3);
2263 * Returns true if successful. Returns false if a branch has
2264 * an offset that is too large. If so, we have marked that
2265 * branch so that on a subsequent iteration, it will be treated
2269 convert_code_r(conv_state_t
*conv_state
, struct icode
*ic
, struct block
*p
)
2271 struct bpf_insn
*dst
;
2275 u_int extrajmps
; /* number of extra jumps inserted */
2276 struct slist
**offset
= NULL
;
2278 if (p
== 0 || isMarked(ic
, p
))
2282 if (convert_code_r(conv_state
, ic
, JF(p
)) == 0)
2284 if (convert_code_r(conv_state
, ic
, JT(p
)) == 0)
2287 slen
= slength(p
->stmts
);
2288 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2289 /* inflate length by any extra jumps */
2291 p
->offset
= (int)(dst
- conv_state
->fstart
);
2293 /* generate offset[] for convenience */
2295 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2297 conv_error(conv_state
, "not enough core");
2302 for (off
= 0; off
< slen
&& src
; off
++) {
2304 printf("off=%d src=%x\n", off
, src
);
2311 for (src
= p
->stmts
; src
; src
= src
->next
) {
2312 if (src
->s
.code
== NOP
)
2314 dst
->code
= (u_short
)src
->s
.code
;
2317 /* fill block-local relative jump */
2318 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2320 if (src
->s
.jt
|| src
->s
.jf
) {
2322 conv_error(conv_state
, "illegal jmp destination");
2328 if (off
== slen
- 2) /*???*/
2334 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2337 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2338 off
, src
->s
.jt
, src
->s
.jf
);
2341 if (!src
->s
.jt
|| !src
->s
.jf
) {
2343 conv_error(conv_state
, ljerr
, "no jmp destination", off
);
2348 for (i
= 0; i
< slen
; i
++) {
2349 if (offset
[i
] == src
->s
.jt
) {
2352 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2356 if (i
- off
- 1 >= 256) {
2358 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2361 dst
->jt
= (u_char
)(i
- off
- 1);
2364 if (offset
[i
] == src
->s
.jf
) {
2367 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2370 if (i
- off
- 1 >= 256) {
2372 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2375 dst
->jf
= (u_char
)(i
- off
- 1);
2381 conv_error(conv_state
, ljerr
, "no destination found", off
);
2393 if (dst
- conv_state
->fstart
< NBIDS
)
2394 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2396 dst
->code
= (u_short
)p
->s
.code
;
2400 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2402 /* offset too large for branch, must add a jump */
2403 if (p
->longjt
== 0) {
2404 /* mark this instruction and retry */
2408 /* branch if T to following jump */
2409 if (extrajmps
>= 256) {
2410 conv_error(conv_state
, "too many extra jumps");
2413 dst
->jt
= (u_char
)extrajmps
;
2415 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2416 dst
[extrajmps
].k
= off
- extrajmps
;
2419 dst
->jt
= (u_char
)off
;
2420 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2422 /* offset too large for branch, must add a jump */
2423 if (p
->longjf
== 0) {
2424 /* mark this instruction and retry */
2428 /* branch if F to following jump */
2429 /* if two jumps are inserted, F goes to second one */
2430 if (extrajmps
>= 256) {
2431 conv_error(conv_state
, "too many extra jumps");
2434 dst
->jf
= (u_char
)extrajmps
;
2436 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2437 dst
[extrajmps
].k
= off
- extrajmps
;
2440 dst
->jf
= (u_char
)off
;
2447 * Convert flowgraph intermediate representation to the
2448 * BPF array representation. Set *lenp to the number of instructions.
2450 * This routine does *NOT* leak the memory pointed to by fp. It *must
2451 * not* do free(fp) before returning fp; doing so would make no sense,
2452 * as the BPF array pointed to by the return value of icode_to_fcode()
2453 * must be valid - it's being returned for use in a bpf_program structure.
2455 * If it appears that icode_to_fcode() is leaking, the problem is that
2456 * the program using pcap_compile() is failing to free the memory in
2457 * the BPF program when it's done - the leak is in the program, not in
2458 * the routine that happens to be allocating the memory. (By analogy, if
2459 * a program calls fopen() without ever calling fclose() on the FILE *,
2460 * it will leak the FILE structure; the leak is not in fopen(), it's in
2461 * the program.) Change the program to use pcap_freecode() when it's
2462 * done with the filter program. See the pcap man page.
2465 icode_to_fcode(struct icode
*ic
, struct block
*root
, u_int
*lenp
,
2469 struct bpf_insn
*fp
;
2470 conv_state_t conv_state
;
2472 conv_state
.fstart
= NULL
;
2473 conv_state
.errbuf
= errbuf
;
2474 if (setjmp(conv_state
.top_ctx
) != 0) {
2475 free(conv_state
.fstart
);
2480 * Loop doing convert_code_r() until no branches remain
2481 * with too-large offsets.
2485 n
= *lenp
= count_stmts(ic
, root
);
2487 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2489 (void)pcap_snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
2494 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2495 conv_state
.fstart
= fp
;
2496 conv_state
.ftail
= fp
+ n
;
2499 if (convert_code_r(&conv_state
, ic
, root
))
2508 * For iconv_to_fconv() errors.
2510 static void PCAP_NORETURN
2511 conv_error(conv_state_t
*conv_state
, const char *fmt
, ...)
2516 (void)pcap_vsnprintf(conv_state
->errbuf
,
2517 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2519 longjmp(conv_state
->top_ctx
, 1);
2524 * Make a copy of a BPF program and put it in the "fcode" member of
2527 * If we fail to allocate memory for the copy, fill in the "errbuf"
2528 * member of the "pcap_t" with an error message, and return -1;
2529 * otherwise, return 0.
2532 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2537 * Validate the program.
2539 if (!pcap_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2540 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2541 "BPF program is not valid");
2546 * Free up any already installed program.
2548 pcap_freecode(&p
->fcode
);
2550 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2551 p
->fcode
.bf_len
= fp
->bf_len
;
2552 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2553 if (p
->fcode
.bf_insns
== NULL
) {
2554 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2558 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2564 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2567 int icount
, noffset
;
2570 if (block
== NULL
|| isMarked(ic
, block
))
2574 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2575 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2577 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2578 for (i
= block
->offset
; i
< noffset
; i
++) {
2579 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2581 fprintf(out
, "\" tooltip=\"");
2582 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2583 if (block
->val
[i
] != VAL_UNKNOWN
)
2584 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2585 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2586 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2588 if (JT(block
) == NULL
)
2589 fprintf(out
, ", peripheries=2");
2590 fprintf(out
, "];\n");
2592 dot_dump_node(ic
, JT(block
), prog
, out
);
2593 dot_dump_node(ic
, JF(block
), prog
, out
);
2597 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2599 if (block
== NULL
|| isMarked(ic
, block
))
2604 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2605 block
->id
, JT(block
)->id
);
2606 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2607 block
->id
, JF(block
)->id
);
2609 dot_dump_edge(ic
, JT(block
), out
);
2610 dot_dump_edge(ic
, JF(block
), out
);
2613 /* Output the block CFG using graphviz/DOT language
2614 * In the CFG, block's code, value index for each registers at EXIT,
2615 * and the jump relationship is show.
2617 * example DOT for BPF `ip src host 1.1.1.1' is:
2619 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2620 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2621 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2622 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2623 "block0":se -> "block1":n [label="T"];
2624 "block0":sw -> "block3":n [label="F"];
2625 "block1":se -> "block2":n [label="T"];
2626 "block1":sw -> "block3":n [label="F"];
2629 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2630 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2633 dot_dump(struct icode
*ic
, char *errbuf
)
2635 struct bpf_program f
;
2638 memset(bids
, 0, sizeof bids
);
2639 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
2640 if (f
.bf_insns
== NULL
)
2643 fprintf(out
, "digraph BPF {\n");
2645 dot_dump_node(ic
, ic
->root
, &f
, out
);
2647 dot_dump_edge(ic
, ic
->root
, out
);
2648 fprintf(out
, "}\n");
2650 free((char *)f
.bf_insns
);
2655 plain_dump(struct icode
*ic
, char *errbuf
)
2657 struct bpf_program f
;
2659 memset(bids
, 0, sizeof bids
);
2660 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
2661 if (f
.bf_insns
== NULL
)
2665 free((char *)f
.bf_insns
);
2670 opt_dump(opt_state_t
*opt_state
, struct icode
*ic
)
2673 char errbuf
[PCAP_ERRBUF_SIZE
];
2676 * If the CFG, in DOT format, is requested, output it rather than
2677 * the code that would be generated from that graph.
2679 if (pcap_print_dot_graph
)
2680 status
= dot_dump(ic
, errbuf
);
2682 status
= plain_dump(ic
, errbuf
);
2684 opt_error(opt_state
, "opt_dump: icode_to_fcode failed: %s", errbuf
);