]> The Tcpdump Group git mirrors - libpcap/blob - optimize.c
Plug some memory leaks.
[libpcap] / optimize.c
1 /*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 * Optimization module for BPF code intermediate representation.
22 */
23
24 #ifdef HAVE_CONFIG_H
25 #include <config.h>
26 #endif
27
28 #include <pcap-types.h>
29
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <memory.h>
33 #include <string.h>
34
35 #include <errno.h>
36
37 #include "pcap-int.h"
38
39 #include "gencode.h"
40 #include "optimize.h"
41
42 #ifdef HAVE_OS_PROTO_H
43 #include "os-proto.h"
44 #endif
45
46 #ifdef BDEBUG
47 /*
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
51 * defined.
52 */
53 static int pcap_optimizer_debug;
54
55 /*
56 * Routine to set that flag.
57 *
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
63 */
64 PCAP_API void pcap_set_optimizer_debug(int value);
65
66 PCAP_API_DEF void
67 pcap_set_optimizer_debug(int value)
68 {
69 pcap_optimizer_debug = value;
70 }
71
72 /*
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
76 * defined.
77 */
78 static int pcap_print_dot_graph;
79
80 /*
81 * Routine to set that flag.
82 *
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
88 */
89 PCAP_API void pcap_set_print_dot_graph(int value);
90
91 PCAP_API_DEF void
92 pcap_set_print_dot_graph(int value)
93 {
94 pcap_print_dot_graph = value;
95 }
96
97 #endif
98
99 /*
100 * lowest_set_bit().
101 *
102 * Takes a 32-bit integer as an argument.
103 *
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards fro zero.
106 *
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
110 *
111 * This is the same as the count of trailing zeroes in the word.
112 */
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
114 /*
115 * GCC 3.4 and later; we have __builtin_ctz().
116 */
117 #define lowest_set_bit(mask) __builtin_ctz(mask)
118 #elif defined(_MSC_VER)
119 /*
120 * Visual Studio; we support only 2005 and later, so use
121 * _BitScanForward().
122 */
123 #include <intrin.h>
124
125 #ifndef __clang__
126 #pragma intrinsic(_BitScanForward)
127 #endif
128
129 static __forceinline int
130 lowest_set_bit(int mask)
131 {
132 unsigned long bit;
133
134 /*
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
137 */
138 if (_BitScanForward(&bit, (unsigned int)mask) == 0)
139 return -1; /* mask is zero */
140 return (int)bit;
141 }
142 #elif defined(MSDOS) && defined(__DJGPP__)
143 /*
144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
145 * we've already included.
146 */
147 #define lowest_set_bit(mask) (ffs((mask)) - 1)
148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
149 /*
150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
151 * or some other platform (UN*X conforming to a sufficient recent version
152 * of the Single UNIX Specification).
153 */
154 #include <strings.h>
155 #define lowest_set_bit(mask) (ffs((mask)) - 1)
156 #else
157 /*
158 * None of the above.
159 * Use a perfect-hash-function-based function.
160 */
161 static int
162 lowest_set_bit(int mask)
163 {
164 unsigned int v = (unsigned int)mask;
165
166 static const int MultiplyDeBruijnBitPosition[32] = {
167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
169 };
170
171 /*
172 * We strip off all but the lowermost set bit (v & ~v),
173 * and perform a minimal perfect hash on it to look up the
174 * number of low-order zero bits in a table.
175 *
176 * See:
177 *
178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
179 *
180 * http://supertech.csail.mit.edu/papers/debruijn.pdf
181 */
182 return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
183 }
184 #endif
185
186 /*
187 * Represents a deleted instruction.
188 */
189 #define NOP -1
190
191 /*
192 * Register numbers for use-def values.
193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
194 * location. A_ATOM is the accumulator and X_ATOM is the index
195 * register.
196 */
197 #define A_ATOM BPF_MEMWORDS
198 #define X_ATOM (BPF_MEMWORDS+1)
199
200 /*
201 * This define is used to represent *both* the accumulator and
202 * x register in use-def computations.
203 * Currently, the use-def code assumes only one definition per instruction.
204 */
205 #define AX_ATOM N_ATOMS
206
207 /*
208 * These data structures are used in a Cocke and Shwarz style
209 * value numbering scheme. Since the flowgraph is acyclic,
210 * exit values can be propagated from a node's predecessors
211 * provided it is uniquely defined.
212 */
213 struct valnode {
214 int code;
215 int v0, v1;
216 int val;
217 struct valnode *next;
218 };
219
220 /* Integer constants mapped with the load immediate opcode. */
221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
222
223 struct vmapinfo {
224 int is_const;
225 bpf_int32 const_val;
226 };
227
228 typedef struct {
229 /*
230 * A flag to indicate that further optimization is needed.
231 * Iterative passes are continued until a given pass yields no
232 * branch movement.
233 */
234 int done;
235
236 int n_blocks;
237 struct block **blocks;
238 int n_edges;
239 struct edge **edges;
240
241 /*
242 * A bit vector set representation of the dominators.
243 * We round up the set size to the next power of two.
244 */
245 int nodewords;
246 int edgewords;
247 struct block **levels;
248 bpf_u_int32 *space;
249
250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
251 /*
252 * True if a is in uset {p}
253 */
254 #define SET_MEMBER(p, a) \
255 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
256
257 /*
258 * Add 'a' to uset p.
259 */
260 #define SET_INSERT(p, a) \
261 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
262
263 /*
264 * Delete 'a' from uset p.
265 */
266 #define SET_DELETE(p, a) \
267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
268
269 /*
270 * a := a intersect b
271 */
272 #define SET_INTERSECT(a, b, n)\
273 {\
274 register bpf_u_int32 *_x = a, *_y = b;\
275 register int _n = n;\
276 while (--_n >= 0) *_x++ &= *_y++;\
277 }
278
279 /*
280 * a := a - b
281 */
282 #define SET_SUBTRACT(a, b, n)\
283 {\
284 register bpf_u_int32 *_x = a, *_y = b;\
285 register int _n = n;\
286 while (--_n >= 0) *_x++ &=~ *_y++;\
287 }
288
289 /*
290 * a := a union b
291 */
292 #define SET_UNION(a, b, n)\
293 {\
294 register bpf_u_int32 *_x = a, *_y = b;\
295 register int _n = n;\
296 while (--_n >= 0) *_x++ |= *_y++;\
297 }
298
299 uset all_dom_sets;
300 uset all_closure_sets;
301 uset all_edge_sets;
302
303 #define MODULUS 213
304 struct valnode *hashtbl[MODULUS];
305 int curval;
306 int maxval;
307
308 struct vmapinfo *vmap;
309 struct valnode *vnode_base;
310 struct valnode *next_vnode;
311 } opt_state_t;
312
313 typedef struct {
314 /*
315 * Some pointers used to convert the basic block form of the code,
316 * into the array form that BPF requires. 'fstart' will point to
317 * the malloc'd array while 'ftail' is used during the recursive
318 * traversal.
319 */
320 struct bpf_insn *fstart;
321 struct bpf_insn *ftail;
322 } conv_state_t;
323
324 static void opt_init(compiler_state_t *, opt_state_t *, struct icode *);
325 static void opt_cleanup(opt_state_t *);
326 static void PCAP_NORETURN opt_error(compiler_state_t *, opt_state_t *, const char *, ...)
327 PCAP_PRINTFLIKE(3, 4);
328
329 static void intern_blocks(opt_state_t *, struct icode *);
330
331 static void find_inedges(opt_state_t *, struct block *);
332 #ifdef BDEBUG
333 static void opt_dump(compiler_state_t *, struct icode *);
334 #endif
335
336 #ifndef MAX
337 #define MAX(a,b) ((a)>(b)?(a):(b))
338 #endif
339
340 static void
341 find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
342 {
343 int level;
344
345 if (isMarked(ic, b))
346 return;
347
348 Mark(ic, b);
349 b->link = 0;
350
351 if (JT(b)) {
352 find_levels_r(opt_state, ic, JT(b));
353 find_levels_r(opt_state, ic, JF(b));
354 level = MAX(JT(b)->level, JF(b)->level) + 1;
355 } else
356 level = 0;
357 b->level = level;
358 b->link = opt_state->levels[level];
359 opt_state->levels[level] = b;
360 }
361
362 /*
363 * Level graph. The levels go from 0 at the leaves to
364 * N_LEVELS at the root. The opt_state->levels[] array points to the
365 * first node of the level list, whose elements are linked
366 * with the 'link' field of the struct block.
367 */
368 static void
369 find_levels(opt_state_t *opt_state, struct icode *ic)
370 {
371 memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
372 unMarkAll(ic);
373 find_levels_r(opt_state, ic, ic->root);
374 }
375
376 /*
377 * Find dominator relationships.
378 * Assumes graph has been leveled.
379 */
380 static void
381 find_dom(opt_state_t *opt_state, struct block *root)
382 {
383 int i;
384 struct block *b;
385 bpf_u_int32 *x;
386
387 /*
388 * Initialize sets to contain all nodes.
389 */
390 x = opt_state->all_dom_sets;
391 i = opt_state->n_blocks * opt_state->nodewords;
392 while (--i >= 0)
393 *x++ = 0xFFFFFFFFU;
394 /* Root starts off empty. */
395 for (i = opt_state->nodewords; --i >= 0;)
396 root->dom[i] = 0;
397
398 /* root->level is the highest level no found. */
399 for (i = root->level; i >= 0; --i) {
400 for (b = opt_state->levels[i]; b; b = b->link) {
401 SET_INSERT(b->dom, b->id);
402 if (JT(b) == 0)
403 continue;
404 SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
405 SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
406 }
407 }
408 }
409
410 static void
411 propedom(opt_state_t *opt_state, struct edge *ep)
412 {
413 SET_INSERT(ep->edom, ep->id);
414 if (ep->succ) {
415 SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
416 SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
417 }
418 }
419
420 /*
421 * Compute edge dominators.
422 * Assumes graph has been leveled and predecessors established.
423 */
424 static void
425 find_edom(opt_state_t *opt_state, struct block *root)
426 {
427 int i;
428 uset x;
429 struct block *b;
430
431 x = opt_state->all_edge_sets;
432 for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
433 x[i] = 0xFFFFFFFFU;
434
435 /* root->level is the highest level no found. */
436 memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
437 memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
438 for (i = root->level; i >= 0; --i) {
439 for (b = opt_state->levels[i]; b != 0; b = b->link) {
440 propedom(opt_state, &b->et);
441 propedom(opt_state, &b->ef);
442 }
443 }
444 }
445
446 /*
447 * Find the backwards transitive closure of the flow graph. These sets
448 * are backwards in the sense that we find the set of nodes that reach
449 * a given node, not the set of nodes that can be reached by a node.
450 *
451 * Assumes graph has been leveled.
452 */
453 static void
454 find_closure(opt_state_t *opt_state, struct block *root)
455 {
456 int i;
457 struct block *b;
458
459 /*
460 * Initialize sets to contain no nodes.
461 */
462 memset((char *)opt_state->all_closure_sets, 0,
463 opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
464
465 /* root->level is the highest level no found. */
466 for (i = root->level; i >= 0; --i) {
467 for (b = opt_state->levels[i]; b; b = b->link) {
468 SET_INSERT(b->closure, b->id);
469 if (JT(b) == 0)
470 continue;
471 SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
472 SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
473 }
474 }
475 }
476
477 /*
478 * Return the register number that is used by s. If A and X are both
479 * used, return AX_ATOM. If no register is used, return -1.
480 *
481 * The implementation should probably change to an array access.
482 */
483 static int
484 atomuse(struct stmt *s)
485 {
486 register int c = s->code;
487
488 if (c == NOP)
489 return -1;
490
491 switch (BPF_CLASS(c)) {
492
493 case BPF_RET:
494 return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
495 (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
496
497 case BPF_LD:
498 case BPF_LDX:
499 return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
500 (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
501
502 case BPF_ST:
503 return A_ATOM;
504
505 case BPF_STX:
506 return X_ATOM;
507
508 case BPF_JMP:
509 case BPF_ALU:
510 if (BPF_SRC(c) == BPF_X)
511 return AX_ATOM;
512 return A_ATOM;
513
514 case BPF_MISC:
515 return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
516 }
517 abort();
518 /* NOTREACHED */
519 }
520
521 /*
522 * Return the register number that is defined by 's'. We assume that
523 * a single stmt cannot define more than one register. If no register
524 * is defined, return -1.
525 *
526 * The implementation should probably change to an array access.
527 */
528 static int
529 atomdef(struct stmt *s)
530 {
531 if (s->code == NOP)
532 return -1;
533
534 switch (BPF_CLASS(s->code)) {
535
536 case BPF_LD:
537 case BPF_ALU:
538 return A_ATOM;
539
540 case BPF_LDX:
541 return X_ATOM;
542
543 case BPF_ST:
544 case BPF_STX:
545 return s->k;
546
547 case BPF_MISC:
548 return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
549 }
550 return -1;
551 }
552
553 /*
554 * Compute the sets of registers used, defined, and killed by 'b'.
555 *
556 * "Used" means that a statement in 'b' uses the register before any
557 * statement in 'b' defines it, i.e. it uses the value left in
558 * that register by a predecessor block of this block.
559 * "Defined" means that a statement in 'b' defines it.
560 * "Killed" means that a statement in 'b' defines it before any
561 * statement in 'b' uses it, i.e. it kills the value left in that
562 * register by a predecessor block of this block.
563 */
564 static void
565 compute_local_ud(struct block *b)
566 {
567 struct slist *s;
568 atomset def = 0, use = 0, killed = 0;
569 int atom;
570
571 for (s = b->stmts; s; s = s->next) {
572 if (s->s.code == NOP)
573 continue;
574 atom = atomuse(&s->s);
575 if (atom >= 0) {
576 if (atom == AX_ATOM) {
577 if (!ATOMELEM(def, X_ATOM))
578 use |= ATOMMASK(X_ATOM);
579 if (!ATOMELEM(def, A_ATOM))
580 use |= ATOMMASK(A_ATOM);
581 }
582 else if (atom < N_ATOMS) {
583 if (!ATOMELEM(def, atom))
584 use |= ATOMMASK(atom);
585 }
586 else
587 abort();
588 }
589 atom = atomdef(&s->s);
590 if (atom >= 0) {
591 if (!ATOMELEM(use, atom))
592 killed |= ATOMMASK(atom);
593 def |= ATOMMASK(atom);
594 }
595 }
596 if (BPF_CLASS(b->s.code) == BPF_JMP) {
597 /*
598 * XXX - what about RET?
599 */
600 atom = atomuse(&b->s);
601 if (atom >= 0) {
602 if (atom == AX_ATOM) {
603 if (!ATOMELEM(def, X_ATOM))
604 use |= ATOMMASK(X_ATOM);
605 if (!ATOMELEM(def, A_ATOM))
606 use |= ATOMMASK(A_ATOM);
607 }
608 else if (atom < N_ATOMS) {
609 if (!ATOMELEM(def, atom))
610 use |= ATOMMASK(atom);
611 }
612 else
613 abort();
614 }
615 }
616
617 b->def = def;
618 b->kill = killed;
619 b->in_use = use;
620 }
621
622 /*
623 * Assume graph is already leveled.
624 */
625 static void
626 find_ud(opt_state_t *opt_state, struct block *root)
627 {
628 int i, maxlevel;
629 struct block *p;
630
631 /*
632 * root->level is the highest level no found;
633 * count down from there.
634 */
635 maxlevel = root->level;
636 for (i = maxlevel; i >= 0; --i)
637 for (p = opt_state->levels[i]; p; p = p->link) {
638 compute_local_ud(p);
639 p->out_use = 0;
640 }
641
642 for (i = 1; i <= maxlevel; ++i) {
643 for (p = opt_state->levels[i]; p; p = p->link) {
644 p->out_use |= JT(p)->in_use | JF(p)->in_use;
645 p->in_use |= p->out_use &~ p->kill;
646 }
647 }
648 }
649 static void
650 init_val(opt_state_t *opt_state)
651 {
652 opt_state->curval = 0;
653 opt_state->next_vnode = opt_state->vnode_base;
654 memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
655 memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
656 }
657
658 /* Because we really don't have an IR, this stuff is a little messy. */
659 static int
660 F(opt_state_t *opt_state, int code, int v0, int v1)
661 {
662 u_int hash;
663 int val;
664 struct valnode *p;
665
666 hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
667 hash %= MODULUS;
668
669 for (p = opt_state->hashtbl[hash]; p; p = p->next)
670 if (p->code == code && p->v0 == v0 && p->v1 == v1)
671 return p->val;
672
673 val = ++opt_state->curval;
674 if (BPF_MODE(code) == BPF_IMM &&
675 (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
676 opt_state->vmap[val].const_val = v0;
677 opt_state->vmap[val].is_const = 1;
678 }
679 p = opt_state->next_vnode++;
680 p->val = val;
681 p->code = code;
682 p->v0 = v0;
683 p->v1 = v1;
684 p->next = opt_state->hashtbl[hash];
685 opt_state->hashtbl[hash] = p;
686
687 return val;
688 }
689
690 static inline void
691 vstore(struct stmt *s, int *valp, int newval, int alter)
692 {
693 if (alter && newval != VAL_UNKNOWN && *valp == newval)
694 s->code = NOP;
695 else
696 *valp = newval;
697 }
698
699 /*
700 * Do constant-folding on binary operators.
701 * (Unary operators are handled elsewhere.)
702 */
703 static void
704 fold_op(compiler_state_t *cstate, opt_state_t *opt_state,
705 struct stmt *s, int v0, int v1)
706 {
707 bpf_u_int32 a, b;
708
709 a = opt_state->vmap[v0].const_val;
710 b = opt_state->vmap[v1].const_val;
711
712 switch (BPF_OP(s->code)) {
713 case BPF_ADD:
714 a += b;
715 break;
716
717 case BPF_SUB:
718 a -= b;
719 break;
720
721 case BPF_MUL:
722 a *= b;
723 break;
724
725 case BPF_DIV:
726 if (b == 0)
727 opt_error(cstate, opt_state, "division by zero");
728 a /= b;
729 break;
730
731 case BPF_MOD:
732 if (b == 0)
733 opt_error(cstate, opt_state, "modulus by zero");
734 a %= b;
735 break;
736
737 case BPF_AND:
738 a &= b;
739 break;
740
741 case BPF_OR:
742 a |= b;
743 break;
744
745 case BPF_XOR:
746 a ^= b;
747 break;
748
749 case BPF_LSH:
750 /*
751 * A left shift of more than the width of the type
752 * is undefined in C; we'll just treat it as shifting
753 * all the bits out.
754 *
755 * XXX - the BPF interpreter doesn't check for this,
756 * so its behavior is dependent on the behavior of
757 * the processor on which it's running. There are
758 * processors on which it shifts all the bits out
759 * and processors on which it does no shift.
760 */
761 if (b < 32)
762 a <<= b;
763 else
764 a = 0;
765 break;
766
767 case BPF_RSH:
768 /*
769 * A right shift of more than the width of the type
770 * is undefined in C; we'll just treat it as shifting
771 * all the bits out.
772 *
773 * XXX - the BPF interpreter doesn't check for this,
774 * so its behavior is dependent on the behavior of
775 * the processor on which it's running. There are
776 * processors on which it shifts all the bits out
777 * and processors on which it does no shift.
778 */
779 if (b < 32)
780 a >>= b;
781 else
782 a = 0;
783 break;
784
785 default:
786 abort();
787 }
788 s->k = a;
789 s->code = BPF_LD|BPF_IMM;
790 opt_state->done = 0;
791 }
792
793 static inline struct slist *
794 this_op(struct slist *s)
795 {
796 while (s != 0 && s->s.code == NOP)
797 s = s->next;
798 return s;
799 }
800
801 static void
802 opt_not(struct block *b)
803 {
804 struct block *tmp = JT(b);
805
806 JT(b) = JF(b);
807 JF(b) = tmp;
808 }
809
810 static void
811 opt_peep(opt_state_t *opt_state, struct block *b)
812 {
813 struct slist *s;
814 struct slist *next, *last;
815 int val;
816
817 s = b->stmts;
818 if (s == 0)
819 return;
820
821 last = s;
822 for (/*empty*/; /*empty*/; s = next) {
823 /*
824 * Skip over nops.
825 */
826 s = this_op(s);
827 if (s == 0)
828 break; /* nothing left in the block */
829
830 /*
831 * Find the next real instruction after that one
832 * (skipping nops).
833 */
834 next = this_op(s->next);
835 if (next == 0)
836 break; /* no next instruction */
837 last = next;
838
839 /*
840 * st M[k] --> st M[k]
841 * ldx M[k] tax
842 */
843 if (s->s.code == BPF_ST &&
844 next->s.code == (BPF_LDX|BPF_MEM) &&
845 s->s.k == next->s.k) {
846 opt_state->done = 0;
847 next->s.code = BPF_MISC|BPF_TAX;
848 }
849 /*
850 * ld #k --> ldx #k
851 * tax txa
852 */
853 if (s->s.code == (BPF_LD|BPF_IMM) &&
854 next->s.code == (BPF_MISC|BPF_TAX)) {
855 s->s.code = BPF_LDX|BPF_IMM;
856 next->s.code = BPF_MISC|BPF_TXA;
857 opt_state->done = 0;
858 }
859 /*
860 * This is an ugly special case, but it happens
861 * when you say tcp[k] or udp[k] where k is a constant.
862 */
863 if (s->s.code == (BPF_LD|BPF_IMM)) {
864 struct slist *add, *tax, *ild;
865
866 /*
867 * Check that X isn't used on exit from this
868 * block (which the optimizer might cause).
869 * We know the code generator won't generate
870 * any local dependencies.
871 */
872 if (ATOMELEM(b->out_use, X_ATOM))
873 continue;
874
875 /*
876 * Check that the instruction following the ldi
877 * is an addx, or it's an ldxms with an addx
878 * following it (with 0 or more nops between the
879 * ldxms and addx).
880 */
881 if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
882 add = next;
883 else
884 add = this_op(next->next);
885 if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
886 continue;
887
888 /*
889 * Check that a tax follows that (with 0 or more
890 * nops between them).
891 */
892 tax = this_op(add->next);
893 if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
894 continue;
895
896 /*
897 * Check that an ild follows that (with 0 or more
898 * nops between them).
899 */
900 ild = this_op(tax->next);
901 if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
902 BPF_MODE(ild->s.code) != BPF_IND)
903 continue;
904 /*
905 * We want to turn this sequence:
906 *
907 * (004) ldi #0x2 {s}
908 * (005) ldxms [14] {next} -- optional
909 * (006) addx {add}
910 * (007) tax {tax}
911 * (008) ild [x+0] {ild}
912 *
913 * into this sequence:
914 *
915 * (004) nop
916 * (005) ldxms [14]
917 * (006) nop
918 * (007) nop
919 * (008) ild [x+2]
920 *
921 * XXX We need to check that X is not
922 * subsequently used, because we want to change
923 * what'll be in it after this sequence.
924 *
925 * We know we can eliminate the accumulator
926 * modifications earlier in the sequence since
927 * it is defined by the last stmt of this sequence
928 * (i.e., the last statement of the sequence loads
929 * a value into the accumulator, so we can eliminate
930 * earlier operations on the accumulator).
931 */
932 ild->s.k += s->s.k;
933 s->s.code = NOP;
934 add->s.code = NOP;
935 tax->s.code = NOP;
936 opt_state->done = 0;
937 }
938 }
939 /*
940 * If the comparison at the end of a block is an equality
941 * comparison against a constant, and nobody uses the value
942 * we leave in the A register at the end of a block, and
943 * the operation preceding the comparison is an arithmetic
944 * operation, we can sometime optimize it away.
945 */
946 if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
947 !ATOMELEM(b->out_use, A_ATOM)) {
948 /*
949 * We can optimize away certain subtractions of the
950 * X register.
951 */
952 if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
953 val = b->val[X_ATOM];
954 if (opt_state->vmap[val].is_const) {
955 /*
956 * If we have a subtract to do a comparison,
957 * and the X register is a known constant,
958 * we can merge this value into the
959 * comparison:
960 *
961 * sub x -> nop
962 * jeq #y jeq #(x+y)
963 */
964 b->s.k += opt_state->vmap[val].const_val;
965 last->s.code = NOP;
966 opt_state->done = 0;
967 } else if (b->s.k == 0) {
968 /*
969 * If the X register isn't a constant,
970 * and the comparison in the test is
971 * against 0, we can compare with the
972 * X register, instead:
973 *
974 * sub x -> nop
975 * jeq #0 jeq x
976 */
977 last->s.code = NOP;
978 b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
979 opt_state->done = 0;
980 }
981 }
982 /*
983 * Likewise, a constant subtract can be simplified:
984 *
985 * sub #x -> nop
986 * jeq #y -> jeq #(x+y)
987 */
988 else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
989 last->s.code = NOP;
990 b->s.k += last->s.k;
991 opt_state->done = 0;
992 }
993 /*
994 * And, similarly, a constant AND can be simplified
995 * if we're testing against 0, i.e.:
996 *
997 * and #k nop
998 * jeq #0 -> jset #k
999 */
1000 else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1001 b->s.k == 0) {
1002 b->s.k = last->s.k;
1003 b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1004 last->s.code = NOP;
1005 opt_state->done = 0;
1006 opt_not(b);
1007 }
1008 }
1009 /*
1010 * jset #0 -> never
1011 * jset #ffffffff -> always
1012 */
1013 if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1014 if (b->s.k == 0)
1015 JT(b) = JF(b);
1016 if ((u_int)b->s.k == 0xffffffffU)
1017 JF(b) = JT(b);
1018 }
1019 /*
1020 * If we're comparing against the index register, and the index
1021 * register is a known constant, we can just compare against that
1022 * constant.
1023 */
1024 val = b->val[X_ATOM];
1025 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1026 bpf_int32 v = opt_state->vmap[val].const_val;
1027 b->s.code &= ~BPF_X;
1028 b->s.k = v;
1029 }
1030 /*
1031 * If the accumulator is a known constant, we can compute the
1032 * comparison result.
1033 */
1034 val = b->val[A_ATOM];
1035 if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1036 bpf_int32 v = opt_state->vmap[val].const_val;
1037 switch (BPF_OP(b->s.code)) {
1038
1039 case BPF_JEQ:
1040 v = v == b->s.k;
1041 break;
1042
1043 case BPF_JGT:
1044 v = (unsigned)v > (unsigned)b->s.k;
1045 break;
1046
1047 case BPF_JGE:
1048 v = (unsigned)v >= (unsigned)b->s.k;
1049 break;
1050
1051 case BPF_JSET:
1052 v &= b->s.k;
1053 break;
1054
1055 default:
1056 abort();
1057 }
1058 if (JF(b) != JT(b))
1059 opt_state->done = 0;
1060 if (v)
1061 JF(b) = JT(b);
1062 else
1063 JT(b) = JF(b);
1064 }
1065 }
1066
1067 /*
1068 * Compute the symbolic value of expression of 's', and update
1069 * anything it defines in the value table 'val'. If 'alter' is true,
1070 * do various optimizations. This code would be cleaner if symbolic
1071 * evaluation and code transformations weren't folded together.
1072 */
1073 static void
1074 opt_stmt(compiler_state_t *cstate, opt_state_t *opt_state,
1075 struct stmt *s, int val[], int alter)
1076 {
1077 int op;
1078 int v;
1079
1080 switch (s->code) {
1081
1082 case BPF_LD|BPF_ABS|BPF_W:
1083 case BPF_LD|BPF_ABS|BPF_H:
1084 case BPF_LD|BPF_ABS|BPF_B:
1085 v = F(opt_state, s->code, s->k, 0L);
1086 vstore(s, &val[A_ATOM], v, alter);
1087 break;
1088
1089 case BPF_LD|BPF_IND|BPF_W:
1090 case BPF_LD|BPF_IND|BPF_H:
1091 case BPF_LD|BPF_IND|BPF_B:
1092 v = val[X_ATOM];
1093 if (alter && opt_state->vmap[v].is_const) {
1094 s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1095 s->k += opt_state->vmap[v].const_val;
1096 v = F(opt_state, s->code, s->k, 0L);
1097 opt_state->done = 0;
1098 }
1099 else
1100 v = F(opt_state, s->code, s->k, v);
1101 vstore(s, &val[A_ATOM], v, alter);
1102 break;
1103
1104 case BPF_LD|BPF_LEN:
1105 v = F(opt_state, s->code, 0L, 0L);
1106 vstore(s, &val[A_ATOM], v, alter);
1107 break;
1108
1109 case BPF_LD|BPF_IMM:
1110 v = K(s->k);
1111 vstore(s, &val[A_ATOM], v, alter);
1112 break;
1113
1114 case BPF_LDX|BPF_IMM:
1115 v = K(s->k);
1116 vstore(s, &val[X_ATOM], v, alter);
1117 break;
1118
1119 case BPF_LDX|BPF_MSH|BPF_B:
1120 v = F(opt_state, s->code, s->k, 0L);
1121 vstore(s, &val[X_ATOM], v, alter);
1122 break;
1123
1124 case BPF_ALU|BPF_NEG:
1125 if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1126 s->code = BPF_LD|BPF_IMM;
1127 s->k = -opt_state->vmap[val[A_ATOM]].const_val;
1128 val[A_ATOM] = K(s->k);
1129 }
1130 else
1131 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1132 break;
1133
1134 case BPF_ALU|BPF_ADD|BPF_K:
1135 case BPF_ALU|BPF_SUB|BPF_K:
1136 case BPF_ALU|BPF_MUL|BPF_K:
1137 case BPF_ALU|BPF_DIV|BPF_K:
1138 case BPF_ALU|BPF_MOD|BPF_K:
1139 case BPF_ALU|BPF_AND|BPF_K:
1140 case BPF_ALU|BPF_OR|BPF_K:
1141 case BPF_ALU|BPF_XOR|BPF_K:
1142 case BPF_ALU|BPF_LSH|BPF_K:
1143 case BPF_ALU|BPF_RSH|BPF_K:
1144 op = BPF_OP(s->code);
1145 if (alter) {
1146 if (s->k == 0) {
1147 /* don't optimize away "sub #0"
1148 * as it may be needed later to
1149 * fixup the generated math code */
1150 if (op == BPF_ADD ||
1151 op == BPF_LSH || op == BPF_RSH ||
1152 op == BPF_OR || op == BPF_XOR) {
1153 s->code = NOP;
1154 break;
1155 }
1156 if (op == BPF_MUL || op == BPF_AND) {
1157 s->code = BPF_LD|BPF_IMM;
1158 val[A_ATOM] = K(s->k);
1159 break;
1160 }
1161 }
1162 if (opt_state->vmap[val[A_ATOM]].is_const) {
1163 fold_op(cstate, opt_state, s, val[A_ATOM], K(s->k));
1164 val[A_ATOM] = K(s->k);
1165 break;
1166 }
1167 }
1168 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1169 break;
1170
1171 case BPF_ALU|BPF_ADD|BPF_X:
1172 case BPF_ALU|BPF_SUB|BPF_X:
1173 case BPF_ALU|BPF_MUL|BPF_X:
1174 case BPF_ALU|BPF_DIV|BPF_X:
1175 case BPF_ALU|BPF_MOD|BPF_X:
1176 case BPF_ALU|BPF_AND|BPF_X:
1177 case BPF_ALU|BPF_OR|BPF_X:
1178 case BPF_ALU|BPF_XOR|BPF_X:
1179 case BPF_ALU|BPF_LSH|BPF_X:
1180 case BPF_ALU|BPF_RSH|BPF_X:
1181 op = BPF_OP(s->code);
1182 if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1183 if (opt_state->vmap[val[A_ATOM]].is_const) {
1184 fold_op(cstate, opt_state, s, val[A_ATOM], val[X_ATOM]);
1185 val[A_ATOM] = K(s->k);
1186 }
1187 else {
1188 s->code = BPF_ALU|BPF_K|op;
1189 s->k = opt_state->vmap[val[X_ATOM]].const_val;
1190 opt_state->done = 0;
1191 val[A_ATOM] =
1192 F(opt_state, s->code, val[A_ATOM], K(s->k));
1193 }
1194 break;
1195 }
1196 /*
1197 * Check if we're doing something to an accumulator
1198 * that is 0, and simplify. This may not seem like
1199 * much of a simplification but it could open up further
1200 * optimizations.
1201 * XXX We could also check for mul by 1, etc.
1202 */
1203 if (alter && opt_state->vmap[val[A_ATOM]].is_const
1204 && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1205 if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1206 s->code = BPF_MISC|BPF_TXA;
1207 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1208 break;
1209 }
1210 else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1211 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1212 s->code = BPF_LD|BPF_IMM;
1213 s->k = 0;
1214 vstore(s, &val[A_ATOM], K(s->k), alter);
1215 break;
1216 }
1217 else if (op == BPF_NEG) {
1218 s->code = NOP;
1219 break;
1220 }
1221 }
1222 val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1223 break;
1224
1225 case BPF_MISC|BPF_TXA:
1226 vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1227 break;
1228
1229 case BPF_LD|BPF_MEM:
1230 v = val[s->k];
1231 if (alter && opt_state->vmap[v].is_const) {
1232 s->code = BPF_LD|BPF_IMM;
1233 s->k = opt_state->vmap[v].const_val;
1234 opt_state->done = 0;
1235 }
1236 vstore(s, &val[A_ATOM], v, alter);
1237 break;
1238
1239 case BPF_MISC|BPF_TAX:
1240 vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1241 break;
1242
1243 case BPF_LDX|BPF_MEM:
1244 v = val[s->k];
1245 if (alter && opt_state->vmap[v].is_const) {
1246 s->code = BPF_LDX|BPF_IMM;
1247 s->k = opt_state->vmap[v].const_val;
1248 opt_state->done = 0;
1249 }
1250 vstore(s, &val[X_ATOM], v, alter);
1251 break;
1252
1253 case BPF_ST:
1254 vstore(s, &val[s->k], val[A_ATOM], alter);
1255 break;
1256
1257 case BPF_STX:
1258 vstore(s, &val[s->k], val[X_ATOM], alter);
1259 break;
1260 }
1261 }
1262
1263 static void
1264 deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1265 {
1266 register int atom;
1267
1268 atom = atomuse(s);
1269 if (atom >= 0) {
1270 if (atom == AX_ATOM) {
1271 last[X_ATOM] = 0;
1272 last[A_ATOM] = 0;
1273 }
1274 else
1275 last[atom] = 0;
1276 }
1277 atom = atomdef(s);
1278 if (atom >= 0) {
1279 if (last[atom]) {
1280 opt_state->done = 0;
1281 last[atom]->code = NOP;
1282 }
1283 last[atom] = s;
1284 }
1285 }
1286
1287 static void
1288 opt_deadstores(opt_state_t *opt_state, register struct block *b)
1289 {
1290 register struct slist *s;
1291 register int atom;
1292 struct stmt *last[N_ATOMS];
1293
1294 memset((char *)last, 0, sizeof last);
1295
1296 for (s = b->stmts; s != 0; s = s->next)
1297 deadstmt(opt_state, &s->s, last);
1298 deadstmt(opt_state, &b->s, last);
1299
1300 for (atom = 0; atom < N_ATOMS; ++atom)
1301 if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1302 last[atom]->code = NOP;
1303 opt_state->done = 0;
1304 }
1305 }
1306
1307 static void
1308 opt_blk(compiler_state_t *cstate, opt_state_t *opt_state,
1309 struct block *b, int do_stmts)
1310 {
1311 struct slist *s;
1312 struct edge *p;
1313 int i;
1314 bpf_int32 aval, xval;
1315
1316 #if 0
1317 for (s = b->stmts; s && s->next; s = s->next)
1318 if (BPF_CLASS(s->s.code) == BPF_JMP) {
1319 do_stmts = 0;
1320 break;
1321 }
1322 #endif
1323
1324 /*
1325 * Initialize the atom values.
1326 */
1327 p = b->in_edges;
1328 if (p == 0) {
1329 /*
1330 * We have no predecessors, so everything is undefined
1331 * upon entry to this block.
1332 */
1333 memset((char *)b->val, 0, sizeof(b->val));
1334 } else {
1335 /*
1336 * Inherit values from our predecessors.
1337 *
1338 * First, get the values from the predecessor along the
1339 * first edge leading to this node.
1340 */
1341 memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1342 /*
1343 * Now look at all the other nodes leading to this node.
1344 * If, for the predecessor along that edge, a register
1345 * has a different value from the one we have (i.e.,
1346 * control paths are merging, and the merging paths
1347 * assign different values to that register), give the
1348 * register the undefined value of 0.
1349 */
1350 while ((p = p->next) != NULL) {
1351 for (i = 0; i < N_ATOMS; ++i)
1352 if (b->val[i] != p->pred->val[i])
1353 b->val[i] = 0;
1354 }
1355 }
1356 aval = b->val[A_ATOM];
1357 xval = b->val[X_ATOM];
1358 for (s = b->stmts; s; s = s->next)
1359 opt_stmt(cstate, opt_state, &s->s, b->val, do_stmts);
1360
1361 /*
1362 * This is a special case: if we don't use anything from this
1363 * block, and we load the accumulator or index register with a
1364 * value that is already there, or if this block is a return,
1365 * eliminate all the statements.
1366 *
1367 * XXX - what if it does a store?
1368 *
1369 * XXX - why does it matter whether we use anything from this
1370 * block? If the accumulator or index register doesn't change
1371 * its value, isn't that OK even if we use that value?
1372 *
1373 * XXX - if we load the accumulator with a different value,
1374 * and the block ends with a conditional branch, we obviously
1375 * can't eliminate it, as the branch depends on that value.
1376 * For the index register, the conditional branch only depends
1377 * on the index register value if the test is against the index
1378 * register value rather than a constant; if nothing uses the
1379 * value we put into the index register, and we're not testing
1380 * against the index register's value, and there aren't any
1381 * other problems that would keep us from eliminating this
1382 * block, can we eliminate it?
1383 */
1384 if (do_stmts &&
1385 ((b->out_use == 0 &&
1386 aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1387 xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1388 BPF_CLASS(b->s.code) == BPF_RET)) {
1389 if (b->stmts != 0) {
1390 b->stmts = 0;
1391 opt_state->done = 0;
1392 }
1393 } else {
1394 opt_peep(opt_state, b);
1395 opt_deadstores(opt_state, b);
1396 }
1397 /*
1398 * Set up values for branch optimizer.
1399 */
1400 if (BPF_SRC(b->s.code) == BPF_K)
1401 b->oval = K(b->s.k);
1402 else
1403 b->oval = b->val[X_ATOM];
1404 b->et.code = b->s.code;
1405 b->ef.code = -b->s.code;
1406 }
1407
1408 /*
1409 * Return true if any register that is used on exit from 'succ', has
1410 * an exit value that is different from the corresponding exit value
1411 * from 'b'.
1412 */
1413 static int
1414 use_conflict(struct block *b, struct block *succ)
1415 {
1416 int atom;
1417 atomset use = succ->out_use;
1418
1419 if (use == 0)
1420 return 0;
1421
1422 for (atom = 0; atom < N_ATOMS; ++atom)
1423 if (ATOMELEM(use, atom))
1424 if (b->val[atom] != succ->val[atom])
1425 return 1;
1426 return 0;
1427 }
1428
1429 static struct block *
1430 fold_edge(struct block *child, struct edge *ep)
1431 {
1432 int sense;
1433 int aval0, aval1, oval0, oval1;
1434 int code = ep->code;
1435
1436 if (code < 0) {
1437 code = -code;
1438 sense = 0;
1439 } else
1440 sense = 1;
1441
1442 if (child->s.code != code)
1443 return 0;
1444
1445 aval0 = child->val[A_ATOM];
1446 oval0 = child->oval;
1447 aval1 = ep->pred->val[A_ATOM];
1448 oval1 = ep->pred->oval;
1449
1450 if (aval0 != aval1)
1451 return 0;
1452
1453 if (oval0 == oval1)
1454 /*
1455 * The operands of the branch instructions are
1456 * identical, so the result is true if a true
1457 * branch was taken to get here, otherwise false.
1458 */
1459 return sense ? JT(child) : JF(child);
1460
1461 if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1462 /*
1463 * At this point, we only know the comparison if we
1464 * came down the true branch, and it was an equality
1465 * comparison with a constant.
1466 *
1467 * I.e., if we came down the true branch, and the branch
1468 * was an equality comparison with a constant, we know the
1469 * accumulator contains that constant. If we came down
1470 * the false branch, or the comparison wasn't with a
1471 * constant, we don't know what was in the accumulator.
1472 *
1473 * We rely on the fact that distinct constants have distinct
1474 * value numbers.
1475 */
1476 return JF(child);
1477
1478 return 0;
1479 }
1480
1481 static void
1482 opt_j(opt_state_t *opt_state, struct edge *ep)
1483 {
1484 register int i, k;
1485 register struct block *target;
1486
1487 if (JT(ep->succ) == 0)
1488 return;
1489
1490 if (JT(ep->succ) == JF(ep->succ)) {
1491 /*
1492 * Common branch targets can be eliminated, provided
1493 * there is no data dependency.
1494 */
1495 if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1496 opt_state->done = 0;
1497 ep->succ = JT(ep->succ);
1498 }
1499 }
1500 /*
1501 * For each edge dominator that matches the successor of this
1502 * edge, promote the edge successor to the its grandchild.
1503 *
1504 * XXX We violate the set abstraction here in favor a reasonably
1505 * efficient loop.
1506 */
1507 top:
1508 for (i = 0; i < opt_state->edgewords; ++i) {
1509 register bpf_u_int32 x = ep->edom[i];
1510
1511 while (x != 0) {
1512 k = lowest_set_bit(x);
1513 x &=~ ((bpf_u_int32)1 << k);
1514 k += i * BITS_PER_WORD;
1515
1516 target = fold_edge(ep->succ, opt_state->edges[k]);
1517 /*
1518 * Check that there is no data dependency between
1519 * nodes that will be violated if we move the edge.
1520 */
1521 if (target != 0 && !use_conflict(ep->pred, target)) {
1522 opt_state->done = 0;
1523 ep->succ = target;
1524 if (JT(target) != 0)
1525 /*
1526 * Start over unless we hit a leaf.
1527 */
1528 goto top;
1529 return;
1530 }
1531 }
1532 }
1533 }
1534
1535
1536 static void
1537 or_pullup(opt_state_t *opt_state, struct block *b)
1538 {
1539 int val, at_top;
1540 struct block *pull;
1541 struct block **diffp, **samep;
1542 struct edge *ep;
1543
1544 ep = b->in_edges;
1545 if (ep == 0)
1546 return;
1547
1548 /*
1549 * Make sure each predecessor loads the same value.
1550 * XXX why?
1551 */
1552 val = ep->pred->val[A_ATOM];
1553 for (ep = ep->next; ep != 0; ep = ep->next)
1554 if (val != ep->pred->val[A_ATOM])
1555 return;
1556
1557 if (JT(b->in_edges->pred) == b)
1558 diffp = &JT(b->in_edges->pred);
1559 else
1560 diffp = &JF(b->in_edges->pred);
1561
1562 at_top = 1;
1563 for (;;) {
1564 if (*diffp == 0)
1565 return;
1566
1567 if (JT(*diffp) != JT(b))
1568 return;
1569
1570 if (!SET_MEMBER((*diffp)->dom, b->id))
1571 return;
1572
1573 if ((*diffp)->val[A_ATOM] != val)
1574 break;
1575
1576 diffp = &JF(*diffp);
1577 at_top = 0;
1578 }
1579 samep = &JF(*diffp);
1580 for (;;) {
1581 if (*samep == 0)
1582 return;
1583
1584 if (JT(*samep) != JT(b))
1585 return;
1586
1587 if (!SET_MEMBER((*samep)->dom, b->id))
1588 return;
1589
1590 if ((*samep)->val[A_ATOM] == val)
1591 break;
1592
1593 /* XXX Need to check that there are no data dependencies
1594 between dp0 and dp1. Currently, the code generator
1595 will not produce such dependencies. */
1596 samep = &JF(*samep);
1597 }
1598 #ifdef notdef
1599 /* XXX This doesn't cover everything. */
1600 for (i = 0; i < N_ATOMS; ++i)
1601 if ((*samep)->val[i] != pred->val[i])
1602 return;
1603 #endif
1604 /* Pull up the node. */
1605 pull = *samep;
1606 *samep = JF(pull);
1607 JF(pull) = *diffp;
1608
1609 /*
1610 * At the top of the chain, each predecessor needs to point at the
1611 * pulled up node. Inside the chain, there is only one predecessor
1612 * to worry about.
1613 */
1614 if (at_top) {
1615 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1616 if (JT(ep->pred) == b)
1617 JT(ep->pred) = pull;
1618 else
1619 JF(ep->pred) = pull;
1620 }
1621 }
1622 else
1623 *diffp = pull;
1624
1625 opt_state->done = 0;
1626 }
1627
1628 static void
1629 and_pullup(opt_state_t *opt_state, struct block *b)
1630 {
1631 int val, at_top;
1632 struct block *pull;
1633 struct block **diffp, **samep;
1634 struct edge *ep;
1635
1636 ep = b->in_edges;
1637 if (ep == 0)
1638 return;
1639
1640 /*
1641 * Make sure each predecessor loads the same value.
1642 */
1643 val = ep->pred->val[A_ATOM];
1644 for (ep = ep->next; ep != 0; ep = ep->next)
1645 if (val != ep->pred->val[A_ATOM])
1646 return;
1647
1648 if (JT(b->in_edges->pred) == b)
1649 diffp = &JT(b->in_edges->pred);
1650 else
1651 diffp = &JF(b->in_edges->pred);
1652
1653 at_top = 1;
1654 for (;;) {
1655 if (*diffp == 0)
1656 return;
1657
1658 if (JF(*diffp) != JF(b))
1659 return;
1660
1661 if (!SET_MEMBER((*diffp)->dom, b->id))
1662 return;
1663
1664 if ((*diffp)->val[A_ATOM] != val)
1665 break;
1666
1667 diffp = &JT(*diffp);
1668 at_top = 0;
1669 }
1670 samep = &JT(*diffp);
1671 for (;;) {
1672 if (*samep == 0)
1673 return;
1674
1675 if (JF(*samep) != JF(b))
1676 return;
1677
1678 if (!SET_MEMBER((*samep)->dom, b->id))
1679 return;
1680
1681 if ((*samep)->val[A_ATOM] == val)
1682 break;
1683
1684 /* XXX Need to check that there are no data dependencies
1685 between diffp and samep. Currently, the code generator
1686 will not produce such dependencies. */
1687 samep = &JT(*samep);
1688 }
1689 #ifdef notdef
1690 /* XXX This doesn't cover everything. */
1691 for (i = 0; i < N_ATOMS; ++i)
1692 if ((*samep)->val[i] != pred->val[i])
1693 return;
1694 #endif
1695 /* Pull up the node. */
1696 pull = *samep;
1697 *samep = JT(pull);
1698 JT(pull) = *diffp;
1699
1700 /*
1701 * At the top of the chain, each predecessor needs to point at the
1702 * pulled up node. Inside the chain, there is only one predecessor
1703 * to worry about.
1704 */
1705 if (at_top) {
1706 for (ep = b->in_edges; ep != 0; ep = ep->next) {
1707 if (JT(ep->pred) == b)
1708 JT(ep->pred) = pull;
1709 else
1710 JF(ep->pred) = pull;
1711 }
1712 }
1713 else
1714 *diffp = pull;
1715
1716 opt_state->done = 0;
1717 }
1718
1719 static void
1720 opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
1721 int do_stmts)
1722 {
1723 int i, maxlevel;
1724 struct block *p;
1725
1726 init_val(opt_state);
1727 maxlevel = ic->root->level;
1728
1729 find_inedges(opt_state, ic->root);
1730 for (i = maxlevel; i >= 0; --i)
1731 for (p = opt_state->levels[i]; p; p = p->link)
1732 opt_blk(cstate, opt_state, p, do_stmts);
1733
1734 if (do_stmts)
1735 /*
1736 * No point trying to move branches; it can't possibly
1737 * make a difference at this point.
1738 */
1739 return;
1740
1741 for (i = 1; i <= maxlevel; ++i) {
1742 for (p = opt_state->levels[i]; p; p = p->link) {
1743 opt_j(opt_state, &p->et);
1744 opt_j(opt_state, &p->ef);
1745 }
1746 }
1747
1748 find_inedges(opt_state, ic->root);
1749 for (i = 1; i <= maxlevel; ++i) {
1750 for (p = opt_state->levels[i]; p; p = p->link) {
1751 or_pullup(opt_state, p);
1752 and_pullup(opt_state, p);
1753 }
1754 }
1755 }
1756
1757 static inline void
1758 link_inedge(struct edge *parent, struct block *child)
1759 {
1760 parent->next = child->in_edges;
1761 child->in_edges = parent;
1762 }
1763
1764 static void
1765 find_inedges(opt_state_t *opt_state, struct block *root)
1766 {
1767 int i;
1768 struct block *b;
1769
1770 for (i = 0; i < opt_state->n_blocks; ++i)
1771 opt_state->blocks[i]->in_edges = 0;
1772
1773 /*
1774 * Traverse the graph, adding each edge to the predecessor
1775 * list of its successors. Skip the leaves (i.e. level 0).
1776 */
1777 for (i = root->level; i > 0; --i) {
1778 for (b = opt_state->levels[i]; b != 0; b = b->link) {
1779 link_inedge(&b->et, JT(b));
1780 link_inedge(&b->ef, JF(b));
1781 }
1782 }
1783 }
1784
1785 static void
1786 opt_root(struct block **b)
1787 {
1788 struct slist *tmp, *s;
1789
1790 s = (*b)->stmts;
1791 (*b)->stmts = 0;
1792 while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1793 *b = JT(*b);
1794
1795 tmp = (*b)->stmts;
1796 if (tmp != 0)
1797 sappend(s, tmp);
1798 (*b)->stmts = s;
1799
1800 /*
1801 * If the root node is a return, then there is no
1802 * point executing any statements (since the bpf machine
1803 * has no side effects).
1804 */
1805 if (BPF_CLASS((*b)->s.code) == BPF_RET)
1806 (*b)->stmts = 0;
1807 }
1808
1809 static void
1810 opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
1811 int do_stmts)
1812 {
1813
1814 #ifdef BDEBUG
1815 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1816 printf("opt_loop(root, %d) begin\n", do_stmts);
1817 opt_dump(cstate, ic);
1818 }
1819 #endif
1820 do {
1821 opt_state->done = 1;
1822 find_levels(opt_state, ic);
1823 find_dom(opt_state, ic->root);
1824 find_closure(opt_state, ic->root);
1825 find_ud(opt_state, ic->root);
1826 find_edom(opt_state, ic->root);
1827 opt_blks(cstate, opt_state, ic, do_stmts);
1828 #ifdef BDEBUG
1829 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1830 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
1831 opt_dump(cstate, ic);
1832 }
1833 #endif
1834 } while (!opt_state->done);
1835 }
1836
1837 /*
1838 * Optimize the filter code in its dag representation.
1839 */
1840 void
1841 bpf_optimize(compiler_state_t *cstate, struct icode *ic)
1842 {
1843 opt_state_t opt_state;
1844
1845 opt_init(cstate, &opt_state, ic);
1846 opt_loop(cstate, &opt_state, ic, 0);
1847 opt_loop(cstate, &opt_state, ic, 1);
1848 intern_blocks(&opt_state, ic);
1849 #ifdef BDEBUG
1850 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1851 printf("after intern_blocks()\n");
1852 opt_dump(cstate, ic);
1853 }
1854 #endif
1855 opt_root(&ic->root);
1856 #ifdef BDEBUG
1857 if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1858 printf("after opt_root()\n");
1859 opt_dump(cstate, ic);
1860 }
1861 #endif
1862 opt_cleanup(&opt_state);
1863 }
1864
1865 static void
1866 make_marks(struct icode *ic, struct block *p)
1867 {
1868 if (!isMarked(ic, p)) {
1869 Mark(ic, p);
1870 if (BPF_CLASS(p->s.code) != BPF_RET) {
1871 make_marks(ic, JT(p));
1872 make_marks(ic, JF(p));
1873 }
1874 }
1875 }
1876
1877 /*
1878 * Mark code array such that isMarked(ic->cur_mark, i) is true
1879 * only for nodes that are alive.
1880 */
1881 static void
1882 mark_code(struct icode *ic)
1883 {
1884 ic->cur_mark += 1;
1885 make_marks(ic, ic->root);
1886 }
1887
1888 /*
1889 * True iff the two stmt lists load the same value from the packet into
1890 * the accumulator.
1891 */
1892 static int
1893 eq_slist(struct slist *x, struct slist *y)
1894 {
1895 for (;;) {
1896 while (x && x->s.code == NOP)
1897 x = x->next;
1898 while (y && y->s.code == NOP)
1899 y = y->next;
1900 if (x == 0)
1901 return y == 0;
1902 if (y == 0)
1903 return x == 0;
1904 if (x->s.code != y->s.code || x->s.k != y->s.k)
1905 return 0;
1906 x = x->next;
1907 y = y->next;
1908 }
1909 }
1910
1911 static inline int
1912 eq_blk(struct block *b0, struct block *b1)
1913 {
1914 if (b0->s.code == b1->s.code &&
1915 b0->s.k == b1->s.k &&
1916 b0->et.succ == b1->et.succ &&
1917 b0->ef.succ == b1->ef.succ)
1918 return eq_slist(b0->stmts, b1->stmts);
1919 return 0;
1920 }
1921
1922 static void
1923 intern_blocks(opt_state_t *opt_state, struct icode *ic)
1924 {
1925 struct block *p;
1926 int i, j;
1927 int done1; /* don't shadow global */
1928 top:
1929 done1 = 1;
1930 for (i = 0; i < opt_state->n_blocks; ++i)
1931 opt_state->blocks[i]->link = 0;
1932
1933 mark_code(ic);
1934
1935 for (i = opt_state->n_blocks - 1; --i >= 0; ) {
1936 if (!isMarked(ic, opt_state->blocks[i]))
1937 continue;
1938 for (j = i + 1; j < opt_state->n_blocks; ++j) {
1939 if (!isMarked(ic, opt_state->blocks[j]))
1940 continue;
1941 if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
1942 opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
1943 opt_state->blocks[j]->link : opt_state->blocks[j];
1944 break;
1945 }
1946 }
1947 }
1948 for (i = 0; i < opt_state->n_blocks; ++i) {
1949 p = opt_state->blocks[i];
1950 if (JT(p) == 0)
1951 continue;
1952 if (JT(p)->link) {
1953 done1 = 0;
1954 JT(p) = JT(p)->link;
1955 }
1956 if (JF(p)->link) {
1957 done1 = 0;
1958 JF(p) = JF(p)->link;
1959 }
1960 }
1961 if (!done1)
1962 goto top;
1963 }
1964
1965 static void
1966 opt_cleanup(opt_state_t *opt_state)
1967 {
1968 free((void *)opt_state->vnode_base);
1969 free((void *)opt_state->vmap);
1970 free((void *)opt_state->edges);
1971 free((void *)opt_state->space);
1972 free((void *)opt_state->levels);
1973 free((void *)opt_state->blocks);
1974 }
1975
1976 /*
1977 * Like bpf_error(), but also cleans up the optimizer state.
1978 */
1979 static void PCAP_NORETURN
1980 opt_error(compiler_state_t *cstate, opt_state_t *opt_state, const char *fmt, ...)
1981 {
1982 va_list ap;
1983
1984 opt_cleanup(opt_state);
1985 va_start(ap, fmt);
1986 bpf_vset_error(cstate, fmt, ap);
1987 va_end(ap);
1988 bpf_abort_compilation(cstate);
1989 /* NOTREACHED */
1990 }
1991
1992 /*
1993 * Return the number of stmts in 's'.
1994 */
1995 static u_int
1996 slength(struct slist *s)
1997 {
1998 u_int n = 0;
1999
2000 for (; s; s = s->next)
2001 if (s->s.code != NOP)
2002 ++n;
2003 return n;
2004 }
2005
2006 /*
2007 * Return the number of nodes reachable by 'p'.
2008 * All nodes should be initially unmarked.
2009 */
2010 static int
2011 count_blocks(struct icode *ic, struct block *p)
2012 {
2013 if (p == 0 || isMarked(ic, p))
2014 return 0;
2015 Mark(ic, p);
2016 return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2017 }
2018
2019 /*
2020 * Do a depth first search on the flow graph, numbering the
2021 * the basic blocks, and entering them into the 'blocks' array.`
2022 */
2023 static void
2024 number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2025 {
2026 int n;
2027
2028 if (p == 0 || isMarked(ic, p))
2029 return;
2030
2031 Mark(ic, p);
2032 n = opt_state->n_blocks++;
2033 p->id = n;
2034 opt_state->blocks[n] = p;
2035
2036 number_blks_r(opt_state, ic, JT(p));
2037 number_blks_r(opt_state, ic, JF(p));
2038 }
2039
2040 /*
2041 * Return the number of stmts in the flowgraph reachable by 'p'.
2042 * The nodes should be unmarked before calling.
2043 *
2044 * Note that "stmts" means "instructions", and that this includes
2045 *
2046 * side-effect statements in 'p' (slength(p->stmts));
2047 *
2048 * statements in the true branch from 'p' (count_stmts(JT(p)));
2049 *
2050 * statements in the false branch from 'p' (count_stmts(JF(p)));
2051 *
2052 * the conditional jump itself (1);
2053 *
2054 * an extra long jump if the true branch requires it (p->longjt);
2055 *
2056 * an extra long jump if the false branch requires it (p->longjf).
2057 */
2058 static u_int
2059 count_stmts(struct icode *ic, struct block *p)
2060 {
2061 u_int n;
2062
2063 if (p == 0 || isMarked(ic, p))
2064 return 0;
2065 Mark(ic, p);
2066 n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2067 return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2068 }
2069
2070 /*
2071 * Allocate memory. All allocation is done before optimization
2072 * is begun. A linear bound on the size of all data structures is computed
2073 * from the total number of blocks and/or statements.
2074 */
2075 static void
2076 opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic)
2077 {
2078 bpf_u_int32 *p;
2079 int i, n, max_stmts;
2080
2081 /*
2082 * First, count the blocks, so we can malloc an array to map
2083 * block number to block. Then, put the blocks into the array.
2084 */
2085 unMarkAll(ic);
2086 n = count_blocks(ic, ic->root);
2087 opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2088 if (opt_state->blocks == NULL)
2089 bpf_error(cstate, "malloc");
2090 unMarkAll(ic);
2091 opt_state->n_blocks = 0;
2092 number_blks_r(opt_state, ic, ic->root);
2093
2094 opt_state->n_edges = 2 * opt_state->n_blocks;
2095 opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2096 if (opt_state->edges == NULL) {
2097 free(opt_state->blocks);
2098 bpf_error(cstate, "malloc");
2099 }
2100
2101 /*
2102 * The number of levels is bounded by the number of nodes.
2103 */
2104 opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2105 if (opt_state->levels == NULL) {
2106 free(opt_state->edges);
2107 free(opt_state->blocks);
2108 bpf_error(cstate, "malloc");
2109 }
2110
2111 opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2112 opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2113
2114 /* XXX */
2115 opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
2116 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
2117 if (opt_state->space == NULL) {
2118 free(opt_state->levels);
2119 free(opt_state->edges);
2120 free(opt_state->blocks);
2121 bpf_error(cstate, "malloc");
2122 }
2123 p = opt_state->space;
2124 opt_state->all_dom_sets = p;
2125 for (i = 0; i < n; ++i) {
2126 opt_state->blocks[i]->dom = p;
2127 p += opt_state->nodewords;
2128 }
2129 opt_state->all_closure_sets = p;
2130 for (i = 0; i < n; ++i) {
2131 opt_state->blocks[i]->closure = p;
2132 p += opt_state->nodewords;
2133 }
2134 opt_state->all_edge_sets = p;
2135 for (i = 0; i < n; ++i) {
2136 register struct block *b = opt_state->blocks[i];
2137
2138 b->et.edom = p;
2139 p += opt_state->edgewords;
2140 b->ef.edom = p;
2141 p += opt_state->edgewords;
2142 b->et.id = i;
2143 opt_state->edges[i] = &b->et;
2144 b->ef.id = opt_state->n_blocks + i;
2145 opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2146 b->et.pred = b;
2147 b->ef.pred = b;
2148 }
2149 max_stmts = 0;
2150 for (i = 0; i < n; ++i)
2151 max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2152 /*
2153 * We allocate at most 3 value numbers per statement,
2154 * so this is an upper bound on the number of valnodes
2155 * we'll need.
2156 */
2157 opt_state->maxval = 3 * max_stmts;
2158 opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2159 if (opt_state->vmap == NULL) {
2160 free(opt_state->space);
2161 free(opt_state->levels);
2162 free(opt_state->edges);
2163 free(opt_state->blocks);
2164 bpf_error(cstate, "malloc");
2165 }
2166 opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2167 if (opt_state->vnode_base == NULL) {
2168 free(opt_state->vmap);
2169 free(opt_state->space);
2170 free(opt_state->levels);
2171 free(opt_state->edges);
2172 free(opt_state->blocks);
2173 bpf_error(cstate, "malloc");
2174 }
2175 }
2176
2177 /*
2178 * This is only used when supporting optimizer debugging. It is
2179 * global state, so do *not* do more than one compile in parallel
2180 * and expect it to provide meaningful information.
2181 */
2182 #ifdef BDEBUG
2183 int bids[NBIDS];
2184 #endif
2185
2186 static void PCAP_NORETURN conv_error(compiler_state_t *, conv_state_t *, const char *, ...)
2187 PCAP_PRINTFLIKE(3, 4);
2188
2189 /*
2190 * Returns true if successful. Returns false if a branch has
2191 * an offset that is too large. If so, we have marked that
2192 * branch so that on a subsequent iteration, it will be treated
2193 * properly.
2194 */
2195 static int
2196 convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state,
2197 struct icode *ic, struct block *p)
2198 {
2199 struct bpf_insn *dst;
2200 struct slist *src;
2201 u_int slen;
2202 u_int off;
2203 u_int extrajmps; /* number of extra jumps inserted */
2204 struct slist **offset = NULL;
2205
2206 if (p == 0 || isMarked(ic, p))
2207 return (1);
2208 Mark(ic, p);
2209
2210 if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0)
2211 return (0);
2212 if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0)
2213 return (0);
2214
2215 slen = slength(p->stmts);
2216 dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2217 /* inflate length by any extra jumps */
2218
2219 p->offset = (int)(dst - conv_state->fstart);
2220
2221 /* generate offset[] for convenience */
2222 if (slen) {
2223 offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2224 if (!offset) {
2225 conv_error(cstate, conv_state, "not enough core");
2226 /*NOTREACHED*/
2227 }
2228 }
2229 src = p->stmts;
2230 for (off = 0; off < slen && src; off++) {
2231 #if 0
2232 printf("off=%d src=%x\n", off, src);
2233 #endif
2234 offset[off] = src;
2235 src = src->next;
2236 }
2237
2238 off = 0;
2239 for (src = p->stmts; src; src = src->next) {
2240 if (src->s.code == NOP)
2241 continue;
2242 dst->code = (u_short)src->s.code;
2243 dst->k = src->s.k;
2244
2245 /* fill block-local relative jump */
2246 if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2247 #if 0
2248 if (src->s.jt || src->s.jf) {
2249 free(offset);
2250 conv_error(cstate, conv_state, "illegal jmp destination");
2251 /*NOTREACHED*/
2252 }
2253 #endif
2254 goto filled;
2255 }
2256 if (off == slen - 2) /*???*/
2257 goto filled;
2258
2259 {
2260 u_int i;
2261 int jt, jf;
2262 const char ljerr[] = "%s for block-local relative jump: off=%d";
2263
2264 #if 0
2265 printf("code=%x off=%d %x %x\n", src->s.code,
2266 off, src->s.jt, src->s.jf);
2267 #endif
2268
2269 if (!src->s.jt || !src->s.jf) {
2270 free(offset);
2271 conv_error(cstate, conv_state, ljerr, "no jmp destination", off);
2272 /*NOTREACHED*/
2273 }
2274
2275 jt = jf = 0;
2276 for (i = 0; i < slen; i++) {
2277 if (offset[i] == src->s.jt) {
2278 if (jt) {
2279 free(offset);
2280 conv_error(cstate, conv_state, ljerr, "multiple matches", off);
2281 /*NOTREACHED*/
2282 }
2283
2284 if (i - off - 1 >= 256) {
2285 free(offset);
2286 conv_error(cstate, conv_state, ljerr, "out-of-range jump", off);
2287 /*NOTREACHED*/
2288 }
2289 dst->jt = (u_char)(i - off - 1);
2290 jt++;
2291 }
2292 if (offset[i] == src->s.jf) {
2293 if (jf) {
2294 free(offset);
2295 conv_error(cstate, conv_state, ljerr, "multiple matches", off);
2296 /*NOTREACHED*/
2297 }
2298 if (i - off - 1 >= 256) {
2299 free(offset);
2300 conv_error(cstate, conv_state, ljerr, "out-of-range jump", off);
2301 /*NOTREACHED*/
2302 }
2303 dst->jf = (u_char)(i - off - 1);
2304 jf++;
2305 }
2306 }
2307 if (!jt || !jf) {
2308 free(offset);
2309 conv_error(cstate, conv_state, ljerr, "no destination found", off);
2310 /*NOTREACHED*/
2311 }
2312 }
2313 filled:
2314 ++dst;
2315 ++off;
2316 }
2317 if (offset)
2318 free(offset);
2319
2320 #ifdef BDEBUG
2321 if (dst - conv_state->fstart < NBIDS)
2322 bids[dst - conv_state->fstart] = p->id + 1;
2323 #endif
2324 dst->code = (u_short)p->s.code;
2325 dst->k = p->s.k;
2326 if (JT(p)) {
2327 extrajmps = 0;
2328 off = JT(p)->offset - (p->offset + slen) - 1;
2329 if (off >= 256) {
2330 /* offset too large for branch, must add a jump */
2331 if (p->longjt == 0) {
2332 /* mark this instruction and retry */
2333 p->longjt++;
2334 return(0);
2335 }
2336 /* branch if T to following jump */
2337 if (extrajmps >= 256) {
2338 conv_error(cstate, conv_state, "too many extra jumps");
2339 /*NOTREACHED*/
2340 }
2341 dst->jt = (u_char)extrajmps;
2342 extrajmps++;
2343 dst[extrajmps].code = BPF_JMP|BPF_JA;
2344 dst[extrajmps].k = off - extrajmps;
2345 }
2346 else
2347 dst->jt = (u_char)off;
2348 off = JF(p)->offset - (p->offset + slen) - 1;
2349 if (off >= 256) {
2350 /* offset too large for branch, must add a jump */
2351 if (p->longjf == 0) {
2352 /* mark this instruction and retry */
2353 p->longjf++;
2354 return(0);
2355 }
2356 /* branch if F to following jump */
2357 /* if two jumps are inserted, F goes to second one */
2358 if (extrajmps >= 256) {
2359 conv_error(cstate, conv_state, "too many extra jumps");
2360 /*NOTREACHED*/
2361 }
2362 dst->jf = (u_char)extrajmps;
2363 extrajmps++;
2364 dst[extrajmps].code = BPF_JMP|BPF_JA;
2365 dst[extrajmps].k = off - extrajmps;
2366 }
2367 else
2368 dst->jf = (u_char)off;
2369 }
2370 return (1);
2371 }
2372
2373
2374 /*
2375 * Convert flowgraph intermediate representation to the
2376 * BPF array representation. Set *lenp to the number of instructions.
2377 *
2378 * This routine does *NOT* leak the memory pointed to by fp. It *must
2379 * not* do free(fp) before returning fp; doing so would make no sense,
2380 * as the BPF array pointed to by the return value of icode_to_fcode()
2381 * must be valid - it's being returned for use in a bpf_program structure.
2382 *
2383 * If it appears that icode_to_fcode() is leaking, the problem is that
2384 * the program using pcap_compile() is failing to free the memory in
2385 * the BPF program when it's done - the leak is in the program, not in
2386 * the routine that happens to be allocating the memory. (By analogy, if
2387 * a program calls fopen() without ever calling fclose() on the FILE *,
2388 * it will leak the FILE structure; the leak is not in fopen(), it's in
2389 * the program.) Change the program to use pcap_freecode() when it's
2390 * done with the filter program. See the pcap man page.
2391 */
2392 struct bpf_insn *
2393 icode_to_fcode(compiler_state_t *cstate, struct icode *ic,
2394 struct block *root, u_int *lenp)
2395 {
2396 u_int n;
2397 struct bpf_insn *fp;
2398 conv_state_t conv_state;
2399
2400 /*
2401 * Loop doing convert_code_r() until no branches remain
2402 * with too-large offsets.
2403 */
2404 for (;;) {
2405 unMarkAll(ic);
2406 n = *lenp = count_stmts(ic, root);
2407
2408 fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2409 if (fp == NULL)
2410 bpf_error(cstate, "malloc");
2411 memset((char *)fp, 0, sizeof(*fp) * n);
2412 conv_state.fstart = fp;
2413 conv_state.ftail = fp + n;
2414
2415 unMarkAll(ic);
2416 if (convert_code_r(cstate, &conv_state, ic, root))
2417 break;
2418 free(fp);
2419 }
2420
2421 return fp;
2422 }
2423
2424 /*
2425 * Like bpf_error(), but also frees the array into which we're putting
2426 * the generated BPF code.
2427 */
2428 static void PCAP_NORETURN
2429 conv_error(compiler_state_t *cstate, conv_state_t *conv_state, const char *fmt, ...)
2430 {
2431 va_list ap;
2432
2433 free(conv_state->fstart);
2434 va_start(ap, fmt);
2435 bpf_vset_error(cstate, fmt, ap);
2436 va_end(ap);
2437 bpf_abort_compilation(cstate);
2438 /* NOTREACHED */
2439 }
2440
2441 /*
2442 * Make a copy of a BPF program and put it in the "fcode" member of
2443 * a "pcap_t".
2444 *
2445 * If we fail to allocate memory for the copy, fill in the "errbuf"
2446 * member of the "pcap_t" with an error message, and return -1;
2447 * otherwise, return 0.
2448 */
2449 int
2450 install_bpf_program(pcap_t *p, struct bpf_program *fp)
2451 {
2452 size_t prog_size;
2453
2454 /*
2455 * Validate the program.
2456 */
2457 if (!pcap_validate_filter(fp->bf_insns, fp->bf_len)) {
2458 pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2459 "BPF program is not valid");
2460 return (-1);
2461 }
2462
2463 /*
2464 * Free up any already installed program.
2465 */
2466 pcap_freecode(&p->fcode);
2467
2468 prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2469 p->fcode.bf_len = fp->bf_len;
2470 p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2471 if (p->fcode.bf_insns == NULL) {
2472 pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2473 errno, "malloc");
2474 return (-1);
2475 }
2476 memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2477 return (0);
2478 }
2479
2480 #ifdef BDEBUG
2481 static void
2482 dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2483 FILE *out)
2484 {
2485 int icount, noffset;
2486 int i;
2487
2488 if (block == NULL || isMarked(ic, block))
2489 return;
2490 Mark(ic, block);
2491
2492 icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2493 noffset = min(block->offset + icount, (int)prog->bf_len);
2494
2495 fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2496 for (i = block->offset; i < noffset; i++) {
2497 fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2498 }
2499 fprintf(out, "\" tooltip=\"");
2500 for (i = 0; i < BPF_MEMWORDS; i++)
2501 if (block->val[i] != VAL_UNKNOWN)
2502 fprintf(out, "val[%d]=%d ", i, block->val[i]);
2503 fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2504 fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2505 fprintf(out, "\"");
2506 if (JT(block) == NULL)
2507 fprintf(out, ", peripheries=2");
2508 fprintf(out, "];\n");
2509
2510 dot_dump_node(ic, JT(block), prog, out);
2511 dot_dump_node(ic, JF(block), prog, out);
2512 }
2513
2514 static void
2515 dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
2516 {
2517 if (block == NULL || isMarked(ic, block))
2518 return;
2519 Mark(ic, block);
2520
2521 if (JT(block)) {
2522 fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2523 block->id, JT(block)->id);
2524 fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2525 block->id, JF(block)->id);
2526 }
2527 dot_dump_edge(ic, JT(block), out);
2528 dot_dump_edge(ic, JF(block), out);
2529 }
2530
2531 /* Output the block CFG using graphviz/DOT language
2532 * In the CFG, block's code, value index for each registers at EXIT,
2533 * and the jump relationship is show.
2534 *
2535 * example DOT for BPF `ip src host 1.1.1.1' is:
2536 digraph BPF {
2537 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2538 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2539 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2540 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2541 "block0":se -> "block1":n [label="T"];
2542 "block0":sw -> "block3":n [label="F"];
2543 "block1":se -> "block2":n [label="T"];
2544 "block1":sw -> "block3":n [label="F"];
2545 }
2546 *
2547 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2548 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2549 */
2550 static void
2551 dot_dump(compiler_state_t *cstate, struct icode *ic)
2552 {
2553 struct bpf_program f;
2554 FILE *out = stdout;
2555
2556 memset(bids, 0, sizeof bids);
2557 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
2558
2559 fprintf(out, "digraph BPF {\n");
2560 unMarkAll(ic);
2561 dot_dump_node(ic, ic->root, &f, out);
2562 unMarkAll(ic);
2563 dot_dump_edge(ic, ic->root, out);
2564 fprintf(out, "}\n");
2565
2566 free((char *)f.bf_insns);
2567 }
2568
2569 static void
2570 plain_dump(compiler_state_t *cstate, struct icode *ic)
2571 {
2572 struct bpf_program f;
2573
2574 memset(bids, 0, sizeof bids);
2575 f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
2576 bpf_dump(&f, 1);
2577 putchar('\n');
2578 free((char *)f.bf_insns);
2579 }
2580
2581 static void
2582 opt_dump(compiler_state_t *cstate, struct icode *ic)
2583 {
2584 /*
2585 * If the CFG, in DOT format, is requested, output it rather than
2586 * the code that would be generated from that graph.
2587 */
2588 if (pcap_print_dot_graph)
2589 dot_dump(cstate, ic);
2590 else
2591 plain_dump(cstate, ic);
2592 }
2593 #endif