2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
42 #ifdef HAVE_OS_PROTO_H
48 * The internal "debug printout" flag for the filter expression optimizer.
49 * The code to print that stuff is present only if BDEBUG is defined, so
50 * the flag, and the routine to set it, are defined only if BDEBUG is
53 static int pcap_optimizer_debug
;
56 * Routine to set that flag.
58 * This is intended for libpcap developers, not for general use.
59 * If you want to set these in a program, you'll have to declare this
60 * routine yourself, with the appropriate DLL import attribute on Windows;
61 * it's not declared in any header file, and won't be declared in any
62 * header file provided by libpcap.
64 PCAP_API
void pcap_set_optimizer_debug(int value
);
67 pcap_set_optimizer_debug(int value
)
69 pcap_optimizer_debug
= value
;
73 * The internal "print dot graph" flag for the filter expression optimizer.
74 * The code to print that stuff is present only if BDEBUG is defined, so
75 * the flag, and the routine to set it, are defined only if BDEBUG is
78 static int pcap_print_dot_graph
;
81 * Routine to set that flag.
83 * This is intended for libpcap developers, not for general use.
84 * If you want to set these in a program, you'll have to declare this
85 * routine yourself, with the appropriate DLL import attribute on Windows;
86 * it's not declared in any header file, and won't be declared in any
87 * header file provided by libpcap.
89 PCAP_API
void pcap_set_print_dot_graph(int value
);
92 pcap_set_print_dot_graph(int value
)
94 pcap_print_dot_graph
= value
;
102 * Takes a 32-bit integer as an argument.
104 * If handed a non-zero value, returns the index of the lowest set bit,
105 * counting upwards fro zero.
107 * If handed zero, the results are platform- and compiler-dependent.
108 * Keep it out of the light, don't give it any water, don't feed it
109 * after midnight, and don't pass zero to it.
111 * This is the same as the count of trailing zeroes in the word.
113 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115 * GCC 3.4 and later; we have __builtin_ctz().
117 #define lowest_set_bit(mask) __builtin_ctz(mask)
118 #elif defined(_MSC_VER)
120 * Visual Studio; we support only 2005 and later, so use
126 #pragma intrinsic(_BitScanForward)
129 static __forceinline
int
130 lowest_set_bit(int mask
)
135 * Don't sign-extend mask if long is longer than int.
136 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
139 return -1; /* mask is zero */
142 #elif defined(MSDOS) && defined(__DJGPP__)
144 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
145 * we've already included.
147 #define lowest_set_bit(mask) (ffs((mask)) - 1)
148 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
151 * or some other platform (UN*X conforming to a sufficient recent version
152 * of the Single UNIX Specification).
155 #define lowest_set_bit(mask) (ffs((mask)) - 1)
159 * Use a perfect-hash-function-based function.
162 lowest_set_bit(int mask
)
164 unsigned int v
= (unsigned int)mask
;
166 static const int MultiplyDeBruijnBitPosition
[32] = {
167 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
168 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
172 * We strip off all but the lowermost set bit (v & ~v),
173 * and perform a minimal perfect hash on it to look up the
174 * number of low-order zero bits in a table.
178 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180 * http://supertech.csail.mit.edu/papers/debruijn.pdf
182 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
187 * Represents a deleted instruction.
192 * Register numbers for use-def values.
193 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
194 * location. A_ATOM is the accumulator and X_ATOM is the index
197 #define A_ATOM BPF_MEMWORDS
198 #define X_ATOM (BPF_MEMWORDS+1)
201 * This define is used to represent *both* the accumulator and
202 * x register in use-def computations.
203 * Currently, the use-def code assumes only one definition per instruction.
205 #define AX_ATOM N_ATOMS
208 * These data structures are used in a Cocke and Shwarz style
209 * value numbering scheme. Since the flowgraph is acyclic,
210 * exit values can be propagated from a node's predecessors
211 * provided it is uniquely defined.
217 struct valnode
*next
;
220 /* Integer constants mapped with the load immediate opcode. */
221 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
230 * A flag to indicate that further optimization is needed.
231 * Iterative passes are continued until a given pass yields no
237 struct block
**blocks
;
242 * A bit vector set representation of the dominators.
243 * We round up the set size to the next power of two.
247 struct block
**levels
;
250 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
252 * True if a is in uset {p}
254 #define SET_MEMBER(p, a) \
255 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
260 #define SET_INSERT(p, a) \
261 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
264 * Delete 'a' from uset p.
266 #define SET_DELETE(p, a) \
267 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
272 #define SET_INTERSECT(a, b, n)\
274 register bpf_u_int32 *_x = a, *_y = b;\
275 register int _n = n;\
276 while (--_n >= 0) *_x++ &= *_y++;\
282 #define SET_SUBTRACT(a, b, n)\
284 register bpf_u_int32 *_x = a, *_y = b;\
285 register int _n = n;\
286 while (--_n >= 0) *_x++ &=~ *_y++;\
292 #define SET_UNION(a, b, n)\
294 register bpf_u_int32 *_x = a, *_y = b;\
295 register int _n = n;\
296 while (--_n >= 0) *_x++ |= *_y++;\
300 uset all_closure_sets
;
304 struct valnode
*hashtbl
[MODULUS
];
308 struct vmapinfo
*vmap
;
309 struct valnode
*vnode_base
;
310 struct valnode
*next_vnode
;
315 * Some pointers used to convert the basic block form of the code,
316 * into the array form that BPF requires. 'fstart' will point to
317 * the malloc'd array while 'ftail' is used during the recursive
320 struct bpf_insn
*fstart
;
321 struct bpf_insn
*ftail
;
324 static void opt_init(compiler_state_t
*, opt_state_t
*, struct icode
*);
325 static void opt_cleanup(opt_state_t
*);
326 static void PCAP_NORETURN
opt_error(compiler_state_t
*, opt_state_t
*, const char *, ...)
327 PCAP_PRINTFLIKE(3, 4);
329 static void intern_blocks(opt_state_t
*, struct icode
*);
331 static void find_inedges(opt_state_t
*, struct block
*);
333 static void opt_dump(compiler_state_t
*, struct icode
*);
337 #define MAX(a,b) ((a)>(b)?(a):(b))
341 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
352 find_levels_r(opt_state
, ic
, JT(b
));
353 find_levels_r(opt_state
, ic
, JF(b
));
354 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
358 b
->link
= opt_state
->levels
[level
];
359 opt_state
->levels
[level
] = b
;
363 * Level graph. The levels go from 0 at the leaves to
364 * N_LEVELS at the root. The opt_state->levels[] array points to the
365 * first node of the level list, whose elements are linked
366 * with the 'link' field of the struct block.
369 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
371 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
373 find_levels_r(opt_state
, ic
, ic
->root
);
377 * Find dominator relationships.
378 * Assumes graph has been leveled.
381 find_dom(opt_state_t
*opt_state
, struct block
*root
)
388 * Initialize sets to contain all nodes.
390 x
= opt_state
->all_dom_sets
;
391 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
394 /* Root starts off empty. */
395 for (i
= opt_state
->nodewords
; --i
>= 0;)
398 /* root->level is the highest level no found. */
399 for (i
= root
->level
; i
>= 0; --i
) {
400 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
401 SET_INSERT(b
->dom
, b
->id
);
404 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
405 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
411 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
413 SET_INSERT(ep
->edom
, ep
->id
);
415 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
416 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
421 * Compute edge dominators.
422 * Assumes graph has been leveled and predecessors established.
425 find_edom(opt_state_t
*opt_state
, struct block
*root
)
431 x
= opt_state
->all_edge_sets
;
432 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; --i
>= 0; )
435 /* root->level is the highest level no found. */
436 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
437 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
438 for (i
= root
->level
; i
>= 0; --i
) {
439 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
440 propedom(opt_state
, &b
->et
);
441 propedom(opt_state
, &b
->ef
);
447 * Find the backwards transitive closure of the flow graph. These sets
448 * are backwards in the sense that we find the set of nodes that reach
449 * a given node, not the set of nodes that can be reached by a node.
451 * Assumes graph has been leveled.
454 find_closure(opt_state_t
*opt_state
, struct block
*root
)
460 * Initialize sets to contain no nodes.
462 memset((char *)opt_state
->all_closure_sets
, 0,
463 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
465 /* root->level is the highest level no found. */
466 for (i
= root
->level
; i
>= 0; --i
) {
467 for (b
= opt_state
->levels
[i
]; b
; b
= b
->link
) {
468 SET_INSERT(b
->closure
, b
->id
);
471 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
472 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
478 * Return the register number that is used by s. If A and X are both
479 * used, return AX_ATOM. If no register is used, return -1.
481 * The implementation should probably change to an array access.
484 atomuse(struct stmt
*s
)
486 register int c
= s
->code
;
491 switch (BPF_CLASS(c
)) {
494 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
495 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
499 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
500 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
510 if (BPF_SRC(c
) == BPF_X
)
515 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
522 * Return the register number that is defined by 's'. We assume that
523 * a single stmt cannot define more than one register. If no register
524 * is defined, return -1.
526 * The implementation should probably change to an array access.
529 atomdef(struct stmt
*s
)
534 switch (BPF_CLASS(s
->code
)) {
548 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
554 * Compute the sets of registers used, defined, and killed by 'b'.
556 * "Used" means that a statement in 'b' uses the register before any
557 * statement in 'b' defines it, i.e. it uses the value left in
558 * that register by a predecessor block of this block.
559 * "Defined" means that a statement in 'b' defines it.
560 * "Killed" means that a statement in 'b' defines it before any
561 * statement in 'b' uses it, i.e. it kills the value left in that
562 * register by a predecessor block of this block.
565 compute_local_ud(struct block
*b
)
568 atomset def
= 0, use
= 0, killed
= 0;
571 for (s
= b
->stmts
; s
; s
= s
->next
) {
572 if (s
->s
.code
== NOP
)
574 atom
= atomuse(&s
->s
);
576 if (atom
== AX_ATOM
) {
577 if (!ATOMELEM(def
, X_ATOM
))
578 use
|= ATOMMASK(X_ATOM
);
579 if (!ATOMELEM(def
, A_ATOM
))
580 use
|= ATOMMASK(A_ATOM
);
582 else if (atom
< N_ATOMS
) {
583 if (!ATOMELEM(def
, atom
))
584 use
|= ATOMMASK(atom
);
589 atom
= atomdef(&s
->s
);
591 if (!ATOMELEM(use
, atom
))
592 killed
|= ATOMMASK(atom
);
593 def
|= ATOMMASK(atom
);
596 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
598 * XXX - what about RET?
600 atom
= atomuse(&b
->s
);
602 if (atom
== AX_ATOM
) {
603 if (!ATOMELEM(def
, X_ATOM
))
604 use
|= ATOMMASK(X_ATOM
);
605 if (!ATOMELEM(def
, A_ATOM
))
606 use
|= ATOMMASK(A_ATOM
);
608 else if (atom
< N_ATOMS
) {
609 if (!ATOMELEM(def
, atom
))
610 use
|= ATOMMASK(atom
);
623 * Assume graph is already leveled.
626 find_ud(opt_state_t
*opt_state
, struct block
*root
)
632 * root->level is the highest level no found;
633 * count down from there.
635 maxlevel
= root
->level
;
636 for (i
= maxlevel
; i
>= 0; --i
)
637 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
642 for (i
= 1; i
<= maxlevel
; ++i
) {
643 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
644 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
645 p
->in_use
|= p
->out_use
&~ p
->kill
;
650 init_val(opt_state_t
*opt_state
)
652 opt_state
->curval
= 0;
653 opt_state
->next_vnode
= opt_state
->vnode_base
;
654 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
655 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
658 /* Because we really don't have an IR, this stuff is a little messy. */
660 F(opt_state_t
*opt_state
, int code
, int v0
, int v1
)
666 hash
= (u_int
)code
^ ((u_int
)v0
<< 4) ^ ((u_int
)v1
<< 8);
669 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
670 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
673 val
= ++opt_state
->curval
;
674 if (BPF_MODE(code
) == BPF_IMM
&&
675 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
676 opt_state
->vmap
[val
].const_val
= v0
;
677 opt_state
->vmap
[val
].is_const
= 1;
679 p
= opt_state
->next_vnode
++;
684 p
->next
= opt_state
->hashtbl
[hash
];
685 opt_state
->hashtbl
[hash
] = p
;
691 vstore(struct stmt
*s
, int *valp
, int newval
, int alter
)
693 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
700 * Do constant-folding on binary operators.
701 * (Unary operators are handled elsewhere.)
704 fold_op(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
705 struct stmt
*s
, int v0
, int v1
)
709 a
= opt_state
->vmap
[v0
].const_val
;
710 b
= opt_state
->vmap
[v1
].const_val
;
712 switch (BPF_OP(s
->code
)) {
727 opt_error(cstate
, opt_state
, "division by zero");
733 opt_error(cstate
, opt_state
, "modulus by zero");
751 * A left shift of more than the width of the type
752 * is undefined in C; we'll just treat it as shifting
755 * XXX - the BPF interpreter doesn't check for this,
756 * so its behavior is dependent on the behavior of
757 * the processor on which it's running. There are
758 * processors on which it shifts all the bits out
759 * and processors on which it does no shift.
769 * A right shift of more than the width of the type
770 * is undefined in C; we'll just treat it as shifting
773 * XXX - the BPF interpreter doesn't check for this,
774 * so its behavior is dependent on the behavior of
775 * the processor on which it's running. There are
776 * processors on which it shifts all the bits out
777 * and processors on which it does no shift.
789 s
->code
= BPF_LD
|BPF_IMM
;
793 static inline struct slist
*
794 this_op(struct slist
*s
)
796 while (s
!= 0 && s
->s
.code
== NOP
)
802 opt_not(struct block
*b
)
804 struct block
*tmp
= JT(b
);
811 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
814 struct slist
*next
, *last
;
822 for (/*empty*/; /*empty*/; s
= next
) {
828 break; /* nothing left in the block */
831 * Find the next real instruction after that one
834 next
= this_op(s
->next
);
836 break; /* no next instruction */
840 * st M[k] --> st M[k]
843 if (s
->s
.code
== BPF_ST
&&
844 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
845 s
->s
.k
== next
->s
.k
) {
847 next
->s
.code
= BPF_MISC
|BPF_TAX
;
853 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
854 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
855 s
->s
.code
= BPF_LDX
|BPF_IMM
;
856 next
->s
.code
= BPF_MISC
|BPF_TXA
;
860 * This is an ugly special case, but it happens
861 * when you say tcp[k] or udp[k] where k is a constant.
863 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
864 struct slist
*add
, *tax
, *ild
;
867 * Check that X isn't used on exit from this
868 * block (which the optimizer might cause).
869 * We know the code generator won't generate
870 * any local dependencies.
872 if (ATOMELEM(b
->out_use
, X_ATOM
))
876 * Check that the instruction following the ldi
877 * is an addx, or it's an ldxms with an addx
878 * following it (with 0 or more nops between the
881 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
884 add
= this_op(next
->next
);
885 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
889 * Check that a tax follows that (with 0 or more
890 * nops between them).
892 tax
= this_op(add
->next
);
893 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
897 * Check that an ild follows that (with 0 or more
898 * nops between them).
900 ild
= this_op(tax
->next
);
901 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
902 BPF_MODE(ild
->s
.code
) != BPF_IND
)
905 * We want to turn this sequence:
908 * (005) ldxms [14] {next} -- optional
911 * (008) ild [x+0] {ild}
913 * into this sequence:
921 * XXX We need to check that X is not
922 * subsequently used, because we want to change
923 * what'll be in it after this sequence.
925 * We know we can eliminate the accumulator
926 * modifications earlier in the sequence since
927 * it is defined by the last stmt of this sequence
928 * (i.e., the last statement of the sequence loads
929 * a value into the accumulator, so we can eliminate
930 * earlier operations on the accumulator).
940 * If the comparison at the end of a block is an equality
941 * comparison against a constant, and nobody uses the value
942 * we leave in the A register at the end of a block, and
943 * the operation preceding the comparison is an arithmetic
944 * operation, we can sometime optimize it away.
946 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
947 !ATOMELEM(b
->out_use
, A_ATOM
)) {
949 * We can optimize away certain subtractions of the
952 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
953 val
= b
->val
[X_ATOM
];
954 if (opt_state
->vmap
[val
].is_const
) {
956 * If we have a subtract to do a comparison,
957 * and the X register is a known constant,
958 * we can merge this value into the
964 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
967 } else if (b
->s
.k
== 0) {
969 * If the X register isn't a constant,
970 * and the comparison in the test is
971 * against 0, we can compare with the
972 * X register, instead:
978 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
983 * Likewise, a constant subtract can be simplified:
986 * jeq #y -> jeq #(x+y)
988 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
994 * And, similarly, a constant AND can be simplified
995 * if we're testing against 0, i.e.:
1000 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1003 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1005 opt_state
->done
= 0;
1011 * jset #ffffffff -> always
1013 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1016 if ((u_int
)b
->s
.k
== 0xffffffffU
)
1020 * If we're comparing against the index register, and the index
1021 * register is a known constant, we can just compare against that
1024 val
= b
->val
[X_ATOM
];
1025 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1026 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1027 b
->s
.code
&= ~BPF_X
;
1031 * If the accumulator is a known constant, we can compute the
1032 * comparison result.
1034 val
= b
->val
[A_ATOM
];
1035 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1036 bpf_int32 v
= opt_state
->vmap
[val
].const_val
;
1037 switch (BPF_OP(b
->s
.code
)) {
1044 v
= (unsigned)v
> (unsigned)b
->s
.k
;
1048 v
= (unsigned)v
>= (unsigned)b
->s
.k
;
1059 opt_state
->done
= 0;
1068 * Compute the symbolic value of expression of 's', and update
1069 * anything it defines in the value table 'val'. If 'alter' is true,
1070 * do various optimizations. This code would be cleaner if symbolic
1071 * evaluation and code transformations weren't folded together.
1074 opt_stmt(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1075 struct stmt
*s
, int val
[], int alter
)
1082 case BPF_LD
|BPF_ABS
|BPF_W
:
1083 case BPF_LD
|BPF_ABS
|BPF_H
:
1084 case BPF_LD
|BPF_ABS
|BPF_B
:
1085 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1086 vstore(s
, &val
[A_ATOM
], v
, alter
);
1089 case BPF_LD
|BPF_IND
|BPF_W
:
1090 case BPF_LD
|BPF_IND
|BPF_H
:
1091 case BPF_LD
|BPF_IND
|BPF_B
:
1093 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1094 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1095 s
->k
+= opt_state
->vmap
[v
].const_val
;
1096 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1097 opt_state
->done
= 0;
1100 v
= F(opt_state
, s
->code
, s
->k
, v
);
1101 vstore(s
, &val
[A_ATOM
], v
, alter
);
1104 case BPF_LD
|BPF_LEN
:
1105 v
= F(opt_state
, s
->code
, 0L, 0L);
1106 vstore(s
, &val
[A_ATOM
], v
, alter
);
1109 case BPF_LD
|BPF_IMM
:
1111 vstore(s
, &val
[A_ATOM
], v
, alter
);
1114 case BPF_LDX
|BPF_IMM
:
1116 vstore(s
, &val
[X_ATOM
], v
, alter
);
1119 case BPF_LDX
|BPF_MSH
|BPF_B
:
1120 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1121 vstore(s
, &val
[X_ATOM
], v
, alter
);
1124 case BPF_ALU
|BPF_NEG
:
1125 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1126 s
->code
= BPF_LD
|BPF_IMM
;
1127 s
->k
= -opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1128 val
[A_ATOM
] = K(s
->k
);
1131 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1134 case BPF_ALU
|BPF_ADD
|BPF_K
:
1135 case BPF_ALU
|BPF_SUB
|BPF_K
:
1136 case BPF_ALU
|BPF_MUL
|BPF_K
:
1137 case BPF_ALU
|BPF_DIV
|BPF_K
:
1138 case BPF_ALU
|BPF_MOD
|BPF_K
:
1139 case BPF_ALU
|BPF_AND
|BPF_K
:
1140 case BPF_ALU
|BPF_OR
|BPF_K
:
1141 case BPF_ALU
|BPF_XOR
|BPF_K
:
1142 case BPF_ALU
|BPF_LSH
|BPF_K
:
1143 case BPF_ALU
|BPF_RSH
|BPF_K
:
1144 op
= BPF_OP(s
->code
);
1147 /* don't optimize away "sub #0"
1148 * as it may be needed later to
1149 * fixup the generated math code */
1150 if (op
== BPF_ADD
||
1151 op
== BPF_LSH
|| op
== BPF_RSH
||
1152 op
== BPF_OR
|| op
== BPF_XOR
) {
1156 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1157 s
->code
= BPF_LD
|BPF_IMM
;
1158 val
[A_ATOM
] = K(s
->k
);
1162 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1163 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1164 val
[A_ATOM
] = K(s
->k
);
1168 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1171 case BPF_ALU
|BPF_ADD
|BPF_X
:
1172 case BPF_ALU
|BPF_SUB
|BPF_X
:
1173 case BPF_ALU
|BPF_MUL
|BPF_X
:
1174 case BPF_ALU
|BPF_DIV
|BPF_X
:
1175 case BPF_ALU
|BPF_MOD
|BPF_X
:
1176 case BPF_ALU
|BPF_AND
|BPF_X
:
1177 case BPF_ALU
|BPF_OR
|BPF_X
:
1178 case BPF_ALU
|BPF_XOR
|BPF_X
:
1179 case BPF_ALU
|BPF_LSH
|BPF_X
:
1180 case BPF_ALU
|BPF_RSH
|BPF_X
:
1181 op
= BPF_OP(s
->code
);
1182 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1183 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1184 fold_op(cstate
, opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1185 val
[A_ATOM
] = K(s
->k
);
1188 s
->code
= BPF_ALU
|BPF_K
|op
;
1189 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1190 opt_state
->done
= 0;
1192 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1197 * Check if we're doing something to an accumulator
1198 * that is 0, and simplify. This may not seem like
1199 * much of a simplification but it could open up further
1201 * XXX We could also check for mul by 1, etc.
1203 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1204 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1205 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1206 s
->code
= BPF_MISC
|BPF_TXA
;
1207 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1210 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1211 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1212 s
->code
= BPF_LD
|BPF_IMM
;
1214 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1217 else if (op
== BPF_NEG
) {
1222 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1225 case BPF_MISC
|BPF_TXA
:
1226 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1229 case BPF_LD
|BPF_MEM
:
1231 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1232 s
->code
= BPF_LD
|BPF_IMM
;
1233 s
->k
= opt_state
->vmap
[v
].const_val
;
1234 opt_state
->done
= 0;
1236 vstore(s
, &val
[A_ATOM
], v
, alter
);
1239 case BPF_MISC
|BPF_TAX
:
1240 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1243 case BPF_LDX
|BPF_MEM
:
1245 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1246 s
->code
= BPF_LDX
|BPF_IMM
;
1247 s
->k
= opt_state
->vmap
[v
].const_val
;
1248 opt_state
->done
= 0;
1250 vstore(s
, &val
[X_ATOM
], v
, alter
);
1254 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1258 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1264 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1270 if (atom
== AX_ATOM
) {
1280 opt_state
->done
= 0;
1281 last
[atom
]->code
= NOP
;
1288 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1290 register struct slist
*s
;
1292 struct stmt
*last
[N_ATOMS
];
1294 memset((char *)last
, 0, sizeof last
);
1296 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1297 deadstmt(opt_state
, &s
->s
, last
);
1298 deadstmt(opt_state
, &b
->s
, last
);
1300 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1301 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1302 last
[atom
]->code
= NOP
;
1303 opt_state
->done
= 0;
1308 opt_blk(compiler_state_t
*cstate
, opt_state_t
*opt_state
,
1309 struct block
*b
, int do_stmts
)
1314 bpf_int32 aval
, xval
;
1317 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1318 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1325 * Initialize the atom values.
1330 * We have no predecessors, so everything is undefined
1331 * upon entry to this block.
1333 memset((char *)b
->val
, 0, sizeof(b
->val
));
1336 * Inherit values from our predecessors.
1338 * First, get the values from the predecessor along the
1339 * first edge leading to this node.
1341 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1343 * Now look at all the other nodes leading to this node.
1344 * If, for the predecessor along that edge, a register
1345 * has a different value from the one we have (i.e.,
1346 * control paths are merging, and the merging paths
1347 * assign different values to that register), give the
1348 * register the undefined value of 0.
1350 while ((p
= p
->next
) != NULL
) {
1351 for (i
= 0; i
< N_ATOMS
; ++i
)
1352 if (b
->val
[i
] != p
->pred
->val
[i
])
1356 aval
= b
->val
[A_ATOM
];
1357 xval
= b
->val
[X_ATOM
];
1358 for (s
= b
->stmts
; s
; s
= s
->next
)
1359 opt_stmt(cstate
, opt_state
, &s
->s
, b
->val
, do_stmts
);
1362 * This is a special case: if we don't use anything from this
1363 * block, and we load the accumulator or index register with a
1364 * value that is already there, or if this block is a return,
1365 * eliminate all the statements.
1367 * XXX - what if it does a store?
1369 * XXX - why does it matter whether we use anything from this
1370 * block? If the accumulator or index register doesn't change
1371 * its value, isn't that OK even if we use that value?
1373 * XXX - if we load the accumulator with a different value,
1374 * and the block ends with a conditional branch, we obviously
1375 * can't eliminate it, as the branch depends on that value.
1376 * For the index register, the conditional branch only depends
1377 * on the index register value if the test is against the index
1378 * register value rather than a constant; if nothing uses the
1379 * value we put into the index register, and we're not testing
1380 * against the index register's value, and there aren't any
1381 * other problems that would keep us from eliminating this
1382 * block, can we eliminate it?
1385 ((b
->out_use
== 0 &&
1386 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1387 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1388 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1389 if (b
->stmts
!= 0) {
1391 opt_state
->done
= 0;
1394 opt_peep(opt_state
, b
);
1395 opt_deadstores(opt_state
, b
);
1398 * Set up values for branch optimizer.
1400 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1401 b
->oval
= K(b
->s
.k
);
1403 b
->oval
= b
->val
[X_ATOM
];
1404 b
->et
.code
= b
->s
.code
;
1405 b
->ef
.code
= -b
->s
.code
;
1409 * Return true if any register that is used on exit from 'succ', has
1410 * an exit value that is different from the corresponding exit value
1414 use_conflict(struct block
*b
, struct block
*succ
)
1417 atomset use
= succ
->out_use
;
1422 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1423 if (ATOMELEM(use
, atom
))
1424 if (b
->val
[atom
] != succ
->val
[atom
])
1429 static struct block
*
1430 fold_edge(struct block
*child
, struct edge
*ep
)
1433 int aval0
, aval1
, oval0
, oval1
;
1434 int code
= ep
->code
;
1442 if (child
->s
.code
!= code
)
1445 aval0
= child
->val
[A_ATOM
];
1446 oval0
= child
->oval
;
1447 aval1
= ep
->pred
->val
[A_ATOM
];
1448 oval1
= ep
->pred
->oval
;
1455 * The operands of the branch instructions are
1456 * identical, so the result is true if a true
1457 * branch was taken to get here, otherwise false.
1459 return sense
? JT(child
) : JF(child
);
1461 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1463 * At this point, we only know the comparison if we
1464 * came down the true branch, and it was an equality
1465 * comparison with a constant.
1467 * I.e., if we came down the true branch, and the branch
1468 * was an equality comparison with a constant, we know the
1469 * accumulator contains that constant. If we came down
1470 * the false branch, or the comparison wasn't with a
1471 * constant, we don't know what was in the accumulator.
1473 * We rely on the fact that distinct constants have distinct
1482 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1485 register struct block
*target
;
1487 if (JT(ep
->succ
) == 0)
1490 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1492 * Common branch targets can be eliminated, provided
1493 * there is no data dependency.
1495 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1496 opt_state
->done
= 0;
1497 ep
->succ
= JT(ep
->succ
);
1501 * For each edge dominator that matches the successor of this
1502 * edge, promote the edge successor to the its grandchild.
1504 * XXX We violate the set abstraction here in favor a reasonably
1508 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1509 register bpf_u_int32 x
= ep
->edom
[i
];
1512 k
= lowest_set_bit(x
);
1513 x
&=~ ((bpf_u_int32
)1 << k
);
1514 k
+= i
* BITS_PER_WORD
;
1516 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1518 * Check that there is no data dependency between
1519 * nodes that will be violated if we move the edge.
1521 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1522 opt_state
->done
= 0;
1524 if (JT(target
) != 0)
1526 * Start over unless we hit a leaf.
1537 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1541 struct block
**diffp
, **samep
;
1549 * Make sure each predecessor loads the same value.
1552 val
= ep
->pred
->val
[A_ATOM
];
1553 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1554 if (val
!= ep
->pred
->val
[A_ATOM
])
1557 if (JT(b
->in_edges
->pred
) == b
)
1558 diffp
= &JT(b
->in_edges
->pred
);
1560 diffp
= &JF(b
->in_edges
->pred
);
1567 if (JT(*diffp
) != JT(b
))
1570 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1573 if ((*diffp
)->val
[A_ATOM
] != val
)
1576 diffp
= &JF(*diffp
);
1579 samep
= &JF(*diffp
);
1584 if (JT(*samep
) != JT(b
))
1587 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1590 if ((*samep
)->val
[A_ATOM
] == val
)
1593 /* XXX Need to check that there are no data dependencies
1594 between dp0 and dp1. Currently, the code generator
1595 will not produce such dependencies. */
1596 samep
= &JF(*samep
);
1599 /* XXX This doesn't cover everything. */
1600 for (i
= 0; i
< N_ATOMS
; ++i
)
1601 if ((*samep
)->val
[i
] != pred
->val
[i
])
1604 /* Pull up the node. */
1610 * At the top of the chain, each predecessor needs to point at the
1611 * pulled up node. Inside the chain, there is only one predecessor
1615 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1616 if (JT(ep
->pred
) == b
)
1617 JT(ep
->pred
) = pull
;
1619 JF(ep
->pred
) = pull
;
1625 opt_state
->done
= 0;
1629 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1633 struct block
**diffp
, **samep
;
1641 * Make sure each predecessor loads the same value.
1643 val
= ep
->pred
->val
[A_ATOM
];
1644 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1645 if (val
!= ep
->pred
->val
[A_ATOM
])
1648 if (JT(b
->in_edges
->pred
) == b
)
1649 diffp
= &JT(b
->in_edges
->pred
);
1651 diffp
= &JF(b
->in_edges
->pred
);
1658 if (JF(*diffp
) != JF(b
))
1661 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1664 if ((*diffp
)->val
[A_ATOM
] != val
)
1667 diffp
= &JT(*diffp
);
1670 samep
= &JT(*diffp
);
1675 if (JF(*samep
) != JF(b
))
1678 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1681 if ((*samep
)->val
[A_ATOM
] == val
)
1684 /* XXX Need to check that there are no data dependencies
1685 between diffp and samep. Currently, the code generator
1686 will not produce such dependencies. */
1687 samep
= &JT(*samep
);
1690 /* XXX This doesn't cover everything. */
1691 for (i
= 0; i
< N_ATOMS
; ++i
)
1692 if ((*samep
)->val
[i
] != pred
->val
[i
])
1695 /* Pull up the node. */
1701 * At the top of the chain, each predecessor needs to point at the
1702 * pulled up node. Inside the chain, there is only one predecessor
1706 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1707 if (JT(ep
->pred
) == b
)
1708 JT(ep
->pred
) = pull
;
1710 JF(ep
->pred
) = pull
;
1716 opt_state
->done
= 0;
1720 opt_blks(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1726 init_val(opt_state
);
1727 maxlevel
= ic
->root
->level
;
1729 find_inedges(opt_state
, ic
->root
);
1730 for (i
= maxlevel
; i
>= 0; --i
)
1731 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
1732 opt_blk(cstate
, opt_state
, p
, do_stmts
);
1736 * No point trying to move branches; it can't possibly
1737 * make a difference at this point.
1741 for (i
= 1; i
<= maxlevel
; ++i
) {
1742 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1743 opt_j(opt_state
, &p
->et
);
1744 opt_j(opt_state
, &p
->ef
);
1748 find_inedges(opt_state
, ic
->root
);
1749 for (i
= 1; i
<= maxlevel
; ++i
) {
1750 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
1751 or_pullup(opt_state
, p
);
1752 and_pullup(opt_state
, p
);
1758 link_inedge(struct edge
*parent
, struct block
*child
)
1760 parent
->next
= child
->in_edges
;
1761 child
->in_edges
= parent
;
1765 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
1770 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1771 opt_state
->blocks
[i
]->in_edges
= 0;
1774 * Traverse the graph, adding each edge to the predecessor
1775 * list of its successors. Skip the leaves (i.e. level 0).
1777 for (i
= root
->level
; i
> 0; --i
) {
1778 for (b
= opt_state
->levels
[i
]; b
!= 0; b
= b
->link
) {
1779 link_inedge(&b
->et
, JT(b
));
1780 link_inedge(&b
->ef
, JF(b
));
1786 opt_root(struct block
**b
)
1788 struct slist
*tmp
, *s
;
1792 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1801 * If the root node is a return, then there is no
1802 * point executing any statements (since the bpf machine
1803 * has no side effects).
1805 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1810 opt_loop(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
,
1815 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1816 printf("opt_loop(root, %d) begin\n", do_stmts
);
1817 opt_dump(cstate
, ic
);
1821 opt_state
->done
= 1;
1822 find_levels(opt_state
, ic
);
1823 find_dom(opt_state
, ic
->root
);
1824 find_closure(opt_state
, ic
->root
);
1825 find_ud(opt_state
, ic
->root
);
1826 find_edom(opt_state
, ic
->root
);
1827 opt_blks(cstate
, opt_state
, ic
, do_stmts
);
1829 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1830 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
1831 opt_dump(cstate
, ic
);
1834 } while (!opt_state
->done
);
1838 * Optimize the filter code in its dag representation.
1841 bpf_optimize(compiler_state_t
*cstate
, struct icode
*ic
)
1843 opt_state_t opt_state
;
1845 opt_init(cstate
, &opt_state
, ic
);
1846 opt_loop(cstate
, &opt_state
, ic
, 0);
1847 opt_loop(cstate
, &opt_state
, ic
, 1);
1848 intern_blocks(&opt_state
, ic
);
1850 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1851 printf("after intern_blocks()\n");
1852 opt_dump(cstate
, ic
);
1855 opt_root(&ic
->root
);
1857 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
1858 printf("after opt_root()\n");
1859 opt_dump(cstate
, ic
);
1862 opt_cleanup(&opt_state
);
1866 make_marks(struct icode
*ic
, struct block
*p
)
1868 if (!isMarked(ic
, p
)) {
1870 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1871 make_marks(ic
, JT(p
));
1872 make_marks(ic
, JF(p
));
1878 * Mark code array such that isMarked(ic->cur_mark, i) is true
1879 * only for nodes that are alive.
1882 mark_code(struct icode
*ic
)
1885 make_marks(ic
, ic
->root
);
1889 * True iff the two stmt lists load the same value from the packet into
1893 eq_slist(struct slist
*x
, struct slist
*y
)
1896 while (x
&& x
->s
.code
== NOP
)
1898 while (y
&& y
->s
.code
== NOP
)
1904 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1912 eq_blk(struct block
*b0
, struct block
*b1
)
1914 if (b0
->s
.code
== b1
->s
.code
&&
1915 b0
->s
.k
== b1
->s
.k
&&
1916 b0
->et
.succ
== b1
->et
.succ
&&
1917 b0
->ef
.succ
== b1
->ef
.succ
)
1918 return eq_slist(b0
->stmts
, b1
->stmts
);
1923 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
1927 int done1
; /* don't shadow global */
1930 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
1931 opt_state
->blocks
[i
]->link
= 0;
1935 for (i
= opt_state
->n_blocks
- 1; --i
>= 0; ) {
1936 if (!isMarked(ic
, opt_state
->blocks
[i
]))
1938 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
1939 if (!isMarked(ic
, opt_state
->blocks
[j
]))
1941 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
1942 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
1943 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
1948 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
1949 p
= opt_state
->blocks
[i
];
1954 JT(p
) = JT(p
)->link
;
1958 JF(p
) = JF(p
)->link
;
1966 opt_cleanup(opt_state_t
*opt_state
)
1968 free((void *)opt_state
->vnode_base
);
1969 free((void *)opt_state
->vmap
);
1970 free((void *)opt_state
->edges
);
1971 free((void *)opt_state
->space
);
1972 free((void *)opt_state
->levels
);
1973 free((void *)opt_state
->blocks
);
1977 * Like bpf_error(), but also cleans up the optimizer state.
1979 static void PCAP_NORETURN
1980 opt_error(compiler_state_t
*cstate
, opt_state_t
*opt_state
, const char *fmt
, ...)
1984 opt_cleanup(opt_state
);
1986 bpf_vset_error(cstate
, fmt
, ap
);
1988 bpf_abort_compilation(cstate
);
1993 * Return the number of stmts in 's'.
1996 slength(struct slist
*s
)
2000 for (; s
; s
= s
->next
)
2001 if (s
->s
.code
!= NOP
)
2007 * Return the number of nodes reachable by 'p'.
2008 * All nodes should be initially unmarked.
2011 count_blocks(struct icode
*ic
, struct block
*p
)
2013 if (p
== 0 || isMarked(ic
, p
))
2016 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2020 * Do a depth first search on the flow graph, numbering the
2021 * the basic blocks, and entering them into the 'blocks' array.`
2024 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2028 if (p
== 0 || isMarked(ic
, p
))
2032 n
= opt_state
->n_blocks
++;
2034 opt_state
->blocks
[n
] = p
;
2036 number_blks_r(opt_state
, ic
, JT(p
));
2037 number_blks_r(opt_state
, ic
, JF(p
));
2041 * Return the number of stmts in the flowgraph reachable by 'p'.
2042 * The nodes should be unmarked before calling.
2044 * Note that "stmts" means "instructions", and that this includes
2046 * side-effect statements in 'p' (slength(p->stmts));
2048 * statements in the true branch from 'p' (count_stmts(JT(p)));
2050 * statements in the false branch from 'p' (count_stmts(JF(p)));
2052 * the conditional jump itself (1);
2054 * an extra long jump if the true branch requires it (p->longjt);
2056 * an extra long jump if the false branch requires it (p->longjf).
2059 count_stmts(struct icode
*ic
, struct block
*p
)
2063 if (p
== 0 || isMarked(ic
, p
))
2066 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2067 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2071 * Allocate memory. All allocation is done before optimization
2072 * is begun. A linear bound on the size of all data structures is computed
2073 * from the total number of blocks and/or statements.
2076 opt_init(compiler_state_t
*cstate
, opt_state_t
*opt_state
, struct icode
*ic
)
2079 int i
, n
, max_stmts
;
2082 * First, count the blocks, so we can malloc an array to map
2083 * block number to block. Then, put the blocks into the array.
2086 n
= count_blocks(ic
, ic
->root
);
2087 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2088 if (opt_state
->blocks
== NULL
)
2089 bpf_error(cstate
, "malloc");
2091 opt_state
->n_blocks
= 0;
2092 number_blks_r(opt_state
, ic
, ic
->root
);
2094 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2095 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2096 if (opt_state
->edges
== NULL
) {
2097 free(opt_state
->blocks
);
2098 bpf_error(cstate
, "malloc");
2102 * The number of levels is bounded by the number of nodes.
2104 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2105 if (opt_state
->levels
== NULL
) {
2106 free(opt_state
->edges
);
2107 free(opt_state
->blocks
);
2108 bpf_error(cstate
, "malloc");
2111 opt_state
->edgewords
= opt_state
->n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
2112 opt_state
->nodewords
= opt_state
->n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
2115 opt_state
->space
= (bpf_u_int32
*)malloc(2 * opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->space
)
2116 + opt_state
->n_edges
* opt_state
->edgewords
* sizeof(*opt_state
->space
));
2117 if (opt_state
->space
== NULL
) {
2118 free(opt_state
->levels
);
2119 free(opt_state
->edges
);
2120 free(opt_state
->blocks
);
2121 bpf_error(cstate
, "malloc");
2123 p
= opt_state
->space
;
2124 opt_state
->all_dom_sets
= p
;
2125 for (i
= 0; i
< n
; ++i
) {
2126 opt_state
->blocks
[i
]->dom
= p
;
2127 p
+= opt_state
->nodewords
;
2129 opt_state
->all_closure_sets
= p
;
2130 for (i
= 0; i
< n
; ++i
) {
2131 opt_state
->blocks
[i
]->closure
= p
;
2132 p
+= opt_state
->nodewords
;
2134 opt_state
->all_edge_sets
= p
;
2135 for (i
= 0; i
< n
; ++i
) {
2136 register struct block
*b
= opt_state
->blocks
[i
];
2139 p
+= opt_state
->edgewords
;
2141 p
+= opt_state
->edgewords
;
2143 opt_state
->edges
[i
] = &b
->et
;
2144 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2145 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2150 for (i
= 0; i
< n
; ++i
)
2151 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2153 * We allocate at most 3 value numbers per statement,
2154 * so this is an upper bound on the number of valnodes
2157 opt_state
->maxval
= 3 * max_stmts
;
2158 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2159 if (opt_state
->vmap
== NULL
) {
2160 free(opt_state
->space
);
2161 free(opt_state
->levels
);
2162 free(opt_state
->edges
);
2163 free(opt_state
->blocks
);
2164 bpf_error(cstate
, "malloc");
2166 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2167 if (opt_state
->vnode_base
== NULL
) {
2168 free(opt_state
->vmap
);
2169 free(opt_state
->space
);
2170 free(opt_state
->levels
);
2171 free(opt_state
->edges
);
2172 free(opt_state
->blocks
);
2173 bpf_error(cstate
, "malloc");
2178 * This is only used when supporting optimizer debugging. It is
2179 * global state, so do *not* do more than one compile in parallel
2180 * and expect it to provide meaningful information.
2186 static void PCAP_NORETURN
conv_error(compiler_state_t
*, conv_state_t
*, const char *, ...)
2187 PCAP_PRINTFLIKE(3, 4);
2190 * Returns true if successful. Returns false if a branch has
2191 * an offset that is too large. If so, we have marked that
2192 * branch so that on a subsequent iteration, it will be treated
2196 convert_code_r(compiler_state_t
*cstate
, conv_state_t
*conv_state
,
2197 struct icode
*ic
, struct block
*p
)
2199 struct bpf_insn
*dst
;
2203 u_int extrajmps
; /* number of extra jumps inserted */
2204 struct slist
**offset
= NULL
;
2206 if (p
== 0 || isMarked(ic
, p
))
2210 if (convert_code_r(cstate
, conv_state
, ic
, JF(p
)) == 0)
2212 if (convert_code_r(cstate
, conv_state
, ic
, JT(p
)) == 0)
2215 slen
= slength(p
->stmts
);
2216 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2217 /* inflate length by any extra jumps */
2219 p
->offset
= (int)(dst
- conv_state
->fstart
);
2221 /* generate offset[] for convenience */
2223 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2225 conv_error(cstate
, conv_state
, "not enough core");
2230 for (off
= 0; off
< slen
&& src
; off
++) {
2232 printf("off=%d src=%x\n", off
, src
);
2239 for (src
= p
->stmts
; src
; src
= src
->next
) {
2240 if (src
->s
.code
== NOP
)
2242 dst
->code
= (u_short
)src
->s
.code
;
2245 /* fill block-local relative jump */
2246 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2248 if (src
->s
.jt
|| src
->s
.jf
) {
2250 conv_error(cstate
, conv_state
, "illegal jmp destination");
2256 if (off
== slen
- 2) /*???*/
2262 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2265 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2266 off
, src
->s
.jt
, src
->s
.jf
);
2269 if (!src
->s
.jt
|| !src
->s
.jf
) {
2271 conv_error(cstate
, conv_state
, ljerr
, "no jmp destination", off
);
2276 for (i
= 0; i
< slen
; i
++) {
2277 if (offset
[i
] == src
->s
.jt
) {
2280 conv_error(cstate
, conv_state
, ljerr
, "multiple matches", off
);
2284 if (i
- off
- 1 >= 256) {
2286 conv_error(cstate
, conv_state
, ljerr
, "out-of-range jump", off
);
2289 dst
->jt
= (u_char
)(i
- off
- 1);
2292 if (offset
[i
] == src
->s
.jf
) {
2295 conv_error(cstate
, conv_state
, ljerr
, "multiple matches", off
);
2298 if (i
- off
- 1 >= 256) {
2300 conv_error(cstate
, conv_state
, ljerr
, "out-of-range jump", off
);
2303 dst
->jf
= (u_char
)(i
- off
- 1);
2309 conv_error(cstate
, conv_state
, ljerr
, "no destination found", off
);
2321 if (dst
- conv_state
->fstart
< NBIDS
)
2322 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2324 dst
->code
= (u_short
)p
->s
.code
;
2328 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2330 /* offset too large for branch, must add a jump */
2331 if (p
->longjt
== 0) {
2332 /* mark this instruction and retry */
2336 /* branch if T to following jump */
2337 if (extrajmps
>= 256) {
2338 conv_error(cstate
, conv_state
, "too many extra jumps");
2341 dst
->jt
= (u_char
)extrajmps
;
2343 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2344 dst
[extrajmps
].k
= off
- extrajmps
;
2347 dst
->jt
= (u_char
)off
;
2348 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2350 /* offset too large for branch, must add a jump */
2351 if (p
->longjf
== 0) {
2352 /* mark this instruction and retry */
2356 /* branch if F to following jump */
2357 /* if two jumps are inserted, F goes to second one */
2358 if (extrajmps
>= 256) {
2359 conv_error(cstate
, conv_state
, "too many extra jumps");
2362 dst
->jf
= (u_char
)extrajmps
;
2364 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2365 dst
[extrajmps
].k
= off
- extrajmps
;
2368 dst
->jf
= (u_char
)off
;
2375 * Convert flowgraph intermediate representation to the
2376 * BPF array representation. Set *lenp to the number of instructions.
2378 * This routine does *NOT* leak the memory pointed to by fp. It *must
2379 * not* do free(fp) before returning fp; doing so would make no sense,
2380 * as the BPF array pointed to by the return value of icode_to_fcode()
2381 * must be valid - it's being returned for use in a bpf_program structure.
2383 * If it appears that icode_to_fcode() is leaking, the problem is that
2384 * the program using pcap_compile() is failing to free the memory in
2385 * the BPF program when it's done - the leak is in the program, not in
2386 * the routine that happens to be allocating the memory. (By analogy, if
2387 * a program calls fopen() without ever calling fclose() on the FILE *,
2388 * it will leak the FILE structure; the leak is not in fopen(), it's in
2389 * the program.) Change the program to use pcap_freecode() when it's
2390 * done with the filter program. See the pcap man page.
2393 icode_to_fcode(compiler_state_t
*cstate
, struct icode
*ic
,
2394 struct block
*root
, u_int
*lenp
)
2397 struct bpf_insn
*fp
;
2398 conv_state_t conv_state
;
2401 * Loop doing convert_code_r() until no branches remain
2402 * with too-large offsets.
2406 n
= *lenp
= count_stmts(ic
, root
);
2408 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2410 bpf_error(cstate
, "malloc");
2411 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2412 conv_state
.fstart
= fp
;
2413 conv_state
.ftail
= fp
+ n
;
2416 if (convert_code_r(cstate
, &conv_state
, ic
, root
))
2425 * Like bpf_error(), but also frees the array into which we're putting
2426 * the generated BPF code.
2428 static void PCAP_NORETURN
2429 conv_error(compiler_state_t
*cstate
, conv_state_t
*conv_state
, const char *fmt
, ...)
2433 free(conv_state
->fstart
);
2435 bpf_vset_error(cstate
, fmt
, ap
);
2437 bpf_abort_compilation(cstate
);
2442 * Make a copy of a BPF program and put it in the "fcode" member of
2445 * If we fail to allocate memory for the copy, fill in the "errbuf"
2446 * member of the "pcap_t" with an error message, and return -1;
2447 * otherwise, return 0.
2450 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2455 * Validate the program.
2457 if (!pcap_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2458 pcap_snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2459 "BPF program is not valid");
2464 * Free up any already installed program.
2466 pcap_freecode(&p
->fcode
);
2468 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2469 p
->fcode
.bf_len
= fp
->bf_len
;
2470 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2471 if (p
->fcode
.bf_insns
== NULL
) {
2472 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2476 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2482 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2485 int icount
, noffset
;
2488 if (block
== NULL
|| isMarked(ic
, block
))
2492 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2493 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2495 fprintf(out
, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block
->id
, block
->id
, block
->id
);
2496 for (i
= block
->offset
; i
< noffset
; i
++) {
2497 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2499 fprintf(out
, "\" tooltip=\"");
2500 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2501 if (block
->val
[i
] != VAL_UNKNOWN
)
2502 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2503 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2504 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
2506 if (JT(block
) == NULL
)
2507 fprintf(out
, ", peripheries=2");
2508 fprintf(out
, "];\n");
2510 dot_dump_node(ic
, JT(block
), prog
, out
);
2511 dot_dump_node(ic
, JF(block
), prog
, out
);
2515 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
2517 if (block
== NULL
|| isMarked(ic
, block
))
2522 fprintf(out
, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2523 block
->id
, JT(block
)->id
);
2524 fprintf(out
, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2525 block
->id
, JF(block
)->id
);
2527 dot_dump_edge(ic
, JT(block
), out
);
2528 dot_dump_edge(ic
, JF(block
), out
);
2531 /* Output the block CFG using graphviz/DOT language
2532 * In the CFG, block's code, value index for each registers at EXIT,
2533 * and the jump relationship is show.
2535 * example DOT for BPF `ip src host 1.1.1.1' is:
2537 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
2538 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
2539 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2540 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2541 "block0":se -> "block1":n [label="T"];
2542 "block0":sw -> "block3":n [label="F"];
2543 "block1":se -> "block2":n [label="T"];
2544 "block1":sw -> "block3":n [label="F"];
2547 * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2548 * and run `dot -Tpng -O bpf.dot' to draw the graph.
2551 dot_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2553 struct bpf_program f
;
2556 memset(bids
, 0, sizeof bids
);
2557 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2559 fprintf(out
, "digraph BPF {\n");
2561 dot_dump_node(ic
, ic
->root
, &f
, out
);
2563 dot_dump_edge(ic
, ic
->root
, out
);
2564 fprintf(out
, "}\n");
2566 free((char *)f
.bf_insns
);
2570 plain_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2572 struct bpf_program f
;
2574 memset(bids
, 0, sizeof bids
);
2575 f
.bf_insns
= icode_to_fcode(cstate
, ic
, ic
->root
, &f
.bf_len
);
2578 free((char *)f
.bf_insns
);
2582 opt_dump(compiler_state_t
*cstate
, struct icode
*ic
)
2585 * If the CFG, in DOT format, is requested, output it rather than
2586 * the code that would be generated from that graph.
2588 if (pcap_print_dot_graph
)
2589 dot_dump(cstate
, ic
);
2591 plain_dump(cstate
, ic
);