2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
650 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
651 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
653 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
655 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
656 static struct block
*gen_uncond(compiler_state_t
*, int);
657 static inline struct block
*gen_true(compiler_state_t
*);
658 static inline struct block
*gen_false(compiler_state_t
*);
659 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
660 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
663 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
667 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
668 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
670 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32
);
671 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
672 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
673 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
674 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
677 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
678 struct in6_addr
*, int, u_int
, u_int
);
680 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
681 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
682 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
683 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
684 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
685 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
686 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
687 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
688 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
691 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
692 struct in6_addr
*, int, int, int);
695 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
696 struct addrinfo
*, int);
698 static struct block
*gen_ipfrag(compiler_state_t
*);
699 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_u_int32
);
700 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, bpf_u_int32
,
702 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_u_int32
);
703 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, bpf_u_int32
,
705 static struct block
*gen_portop(compiler_state_t
*, u_int
, u_int
, int);
706 static struct block
*gen_port(compiler_state_t
*, u_int
, int, int);
707 static struct block
*gen_portrangeop(compiler_state_t
*, u_int
, u_int
,
709 static struct block
*gen_portrange(compiler_state_t
*, u_int
, u_int
, int, int);
710 struct block
*gen_portop6(compiler_state_t
*, u_int
, u_int
, int);
711 static struct block
*gen_port6(compiler_state_t
*, u_int
, int, int);
712 static struct block
*gen_portrangeop6(compiler_state_t
*, u_int
, u_int
,
714 static struct block
*gen_portrange6(compiler_state_t
*, u_int
, u_int
, int, int);
715 static int lookup_proto(compiler_state_t
*, const char *, int);
716 #if !defined(NO_PROTOCHAIN)
717 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
718 #endif /* !defined(NO_PROTOCHAIN) */
719 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
720 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
721 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
722 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
723 static struct block
*gen_len(compiler_state_t
*, int, int);
724 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
726 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
727 bpf_u_int32
, int, int);
728 static struct block
*gen_atmtype_llc(compiler_state_t
*);
729 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
732 initchunks(compiler_state_t
*cstate
)
736 for (i
= 0; i
< NCHUNKS
; i
++) {
737 cstate
->chunks
[i
].n_left
= 0;
738 cstate
->chunks
[i
].m
= NULL
;
740 cstate
->cur_chunk
= 0;
744 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
750 /* Round up to chunk alignment. */
751 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
753 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
754 if (n
> cp
->n_left
) {
756 k
= ++cstate
->cur_chunk
;
758 bpf_set_error(cstate
, "out of memory");
761 size
= CHUNK0SIZE
<< k
;
762 cp
->m
= (void *)malloc(size
);
764 bpf_set_error(cstate
, "out of memory");
767 memset((char *)cp
->m
, 0, size
);
770 bpf_set_error(cstate
, "out of memory");
775 return (void *)((char *)cp
->m
+ cp
->n_left
);
779 newchunk(compiler_state_t
*cstate
, size_t n
)
783 p
= newchunk_nolongjmp(cstate
, n
);
785 longjmp(cstate
->top_ctx
, 1);
792 freechunks(compiler_state_t
*cstate
)
796 for (i
= 0; i
< NCHUNKS
; ++i
)
797 if (cstate
->chunks
[i
].m
!= NULL
)
798 free(cstate
->chunks
[i
].m
);
802 * A strdup whose allocations are freed after code generation is over.
803 * This is used by the lexical analyzer, so it can't longjmp; it just
804 * returns NULL on an allocation error, and the callers must check
808 sdup(compiler_state_t
*cstate
, const char *s
)
810 size_t n
= strlen(s
) + 1;
811 char *cp
= newchunk_nolongjmp(cstate
, n
);
815 pcapint_strlcpy(cp
, s
, n
);
819 static inline struct block
*
820 new_block(compiler_state_t
*cstate
, int code
)
824 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
831 static inline struct slist
*
832 new_stmt(compiler_state_t
*cstate
, int code
)
836 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
842 static struct block
*
843 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
845 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
851 static struct block
*
852 gen_retblk(compiler_state_t
*cstate
, int v
)
854 if (setjmp(cstate
->top_ctx
)) {
856 * gen_retblk() only fails because a memory
857 * allocation failed in newchunk(), meaning
858 * that it can't return a pointer.
864 return gen_retblk_internal(cstate
, v
);
867 static inline PCAP_NORETURN_DEF
void
868 syntax(compiler_state_t
*cstate
)
870 bpf_error(cstate
, "syntax error in filter expression");
874 * For the given integer return a string with the keyword (or the nominal
875 * keyword if there is more than one). This is a simpler version of tok2str()
876 * in tcpdump because in this problem space a valid integer value is not
880 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
883 static char buf
[4][64];
886 if (id
< size
&& tokens
[id
])
889 char *ret
= buf
[idx
];
890 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
891 ret
[0] = '\0'; // just in case
892 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
896 // protocol qualifier keywords
898 pqkw(const unsigned id
)
900 const char * tokens
[] = {
912 [Q_DECNET
] = "decnet",
918 [Q_ICMPV6
] = "icmp6",
930 [Q_NETBEUI
] = "netbeui",
933 [Q_ISIS_IIH
] = "iih",
934 [Q_ISIS_SNP
] = "snp",
935 [Q_ISIS_CSNP
] = "csnp",
936 [Q_ISIS_PSNP
] = "psnp",
937 [Q_ISIS_LSP
] = "lsp",
941 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
944 // direction qualifier keywords
946 dqkw(const unsigned id
)
948 const char * map
[] = {
951 [Q_OR
] = "src or dst",
952 [Q_AND
] = "src and dst",
960 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
965 atmkw(const unsigned id
)
967 const char * tokens
[] = {
970 [A_OAMF4SC
] = "oamf4sc",
971 [A_OAMF4EC
] = "oamf4ec",
977 // no keyword for A_SETUP
978 // no keyword for A_CALLPROCEED
979 // no keyword for A_CONNECT
980 // no keyword for A_CONNECTACK
981 // no keyword for A_RELEASE
982 // no keyword for A_RELEASE_DONE
985 // no keyword for A_PROTOTYPE
986 // no keyword for A_MSGTYPE
987 [A_CONNECTMSG
] = "connectmsg",
988 [A_METACONNECT
] = "metaconnect",
990 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
995 ss7kw(const unsigned id
)
997 const char * tokens
[] = {
1001 [MH_FISU
] = "hfisu",
1002 [MH_LSSU
] = "hlssu",
1013 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1016 static PCAP_NORETURN_DEF
void
1017 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1019 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1020 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1024 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1026 if (cstate
->linktype
!= DLT_PFLOG
)
1027 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1031 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1034 * Belt and braces: init_linktype() sets either all of these struct
1035 * members (for DLT_SUNATM) or none (otherwise).
1037 if (cstate
->linktype
!= DLT_SUNATM
||
1039 cstate
->off_vpi
== OFFSET_NOT_SET
||
1040 cstate
->off_vci
== OFFSET_NOT_SET
||
1041 cstate
->off_proto
== OFFSET_NOT_SET
||
1042 cstate
->off_payload
== OFFSET_NOT_SET
)
1043 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1047 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1049 switch (cstate
->linktype
) {
1052 case DLT_MTP2_WITH_PHDR
:
1053 // Belt and braces, same as in assert_atm().
1054 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1055 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1056 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1057 cstate
->off_sls
!= OFFSET_NOT_SET
)
1060 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1064 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1065 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1068 bpf_error(cstate
, "%s %u greater than maximum %u",
1072 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1073 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1075 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1077 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1085 return IPPROTO_SCTP
;
1089 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1093 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1094 const char *buf
, int optimize
, bpf_u_int32 mask
)
1100 compiler_state_t cstate
;
1101 yyscan_t scanner
= NULL
;
1102 YY_BUFFER_STATE in_buffer
= NULL
;
1107 * If this pcap_t hasn't been activated, it doesn't have a
1108 * link-layer type, so we can't use it.
1110 if (!p
->activated
) {
1111 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1112 "not-yet-activated pcap_t passed to pcap_compile");
1113 return (PCAP_ERROR
);
1118 * Initialize Winsock, asking for the latest version (2.2),
1119 * as we may be calling Winsock routines to translate
1120 * host names to addresses.
1122 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1124 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1125 err
, "Error calling WSAStartup()");
1126 return (PCAP_ERROR
);
1130 #ifdef ENABLE_REMOTE
1132 * If the device on which we're capturing need to be notified
1133 * that a new filter is being compiled, do so.
1135 * This allows them to save a copy of it, in case, for example,
1136 * they're implementing a form of remote packet capture, and
1137 * want the remote machine to filter out the packets in which
1138 * it's sending the packets it's captured.
1140 * XXX - the fact that we happen to be compiling a filter
1141 * doesn't necessarily mean we'll be installing it as the
1142 * filter for this pcap_t; we might be running it from userland
1143 * on captured packets to do packet classification. We really
1144 * need a better way of handling this, but this is all that
1145 * the WinPcap remote capture code did.
1147 if (p
->save_current_filter_op
!= NULL
)
1148 (p
->save_current_filter_op
)(p
, buf
);
1151 initchunks(&cstate
);
1152 cstate
.no_optimize
= 0;
1157 cstate
.ic
.root
= NULL
;
1158 cstate
.ic
.cur_mark
= 0;
1159 cstate
.bpf_pcap
= p
;
1160 cstate
.error_set
= 0;
1163 cstate
.netmask
= mask
;
1165 cstate
.snaplen
= pcap_snapshot(p
);
1166 if (cstate
.snaplen
== 0) {
1167 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1168 "snaplen of 0 rejects all packets");
1173 if (pcap_lex_init(&scanner
) != 0) {
1174 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1175 errno
, "can't initialize scanner");
1179 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1182 * Associate the compiler state with the lexical analyzer
1185 pcap_set_extra(&cstate
, scanner
);
1187 if (init_linktype(&cstate
, p
) == -1) {
1191 if (pcap_parse(scanner
, &cstate
) != 0) {
1193 if (cstate
.ai
!= NULL
)
1194 freeaddrinfo(cstate
.ai
);
1196 if (cstate
.e
!= NULL
)
1202 if (cstate
.ic
.root
== NULL
) {
1203 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1206 * Catch errors reported by gen_retblk().
1208 if (cstate
.ic
.root
== NULL
) {
1214 if (optimize
&& !cstate
.no_optimize
) {
1215 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1220 if (cstate
.ic
.root
== NULL
||
1221 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1222 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1223 "expression rejects all packets");
1228 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1229 cstate
.ic
.root
, &len
, p
->errbuf
);
1230 if (program
->bf_insns
== NULL
) {
1235 program
->bf_len
= len
;
1237 rc
= 0; /* We're all okay */
1241 * Clean up everything for the lexical analyzer.
1243 if (in_buffer
!= NULL
)
1244 pcap__delete_buffer(in_buffer
, scanner
);
1245 if (scanner
!= NULL
)
1246 pcap_lex_destroy(scanner
);
1249 * Clean up our own allocated memory.
1251 freechunks(&cstate
);
1261 * entry point for using the compiler with no pcap open
1262 * pass in all the stuff that is needed explicitly instead.
1265 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1266 struct bpf_program
*program
,
1267 const char *buf
, int optimize
, bpf_u_int32 mask
)
1272 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1274 return (PCAP_ERROR
);
1275 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1281 * Clean up a "struct bpf_program" by freeing all the memory allocated
1285 pcap_freecode(struct bpf_program
*program
)
1287 program
->bf_len
= 0;
1288 if (program
->bf_insns
!= NULL
) {
1289 free((char *)program
->bf_insns
);
1290 program
->bf_insns
= NULL
;
1295 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1296 * which of the jt and jf fields has been resolved and which is a pointer
1297 * back to another unresolved block (or nil). At least one of the fields
1298 * in each block is already resolved.
1301 backpatch(struct block
*list
, struct block
*target
)
1318 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1319 * which of jt and jf is the link.
1322 merge(struct block
*b0
, struct block
*b1
)
1324 register struct block
**p
= &b0
;
1326 /* Find end of list. */
1328 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1330 /* Concatenate the lists. */
1335 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1338 * Catch errors reported by us and routines below us, and return -1
1341 if (setjmp(cstate
->top_ctx
))
1345 * Insert before the statements of the first (root) block any
1346 * statements needed to load the lengths of any variable-length
1347 * headers into registers.
1349 * XXX - a fancier strategy would be to insert those before the
1350 * statements of all blocks that use those lengths and that
1351 * have no predecessors that use them, so that we only compute
1352 * the lengths if we need them. There might be even better
1353 * approaches than that.
1355 * However, those strategies would be more complicated, and
1356 * as we don't generate code to compute a length if the
1357 * program has no tests that use the length, and as most
1358 * tests will probably use those lengths, we would just
1359 * postpone computing the lengths so that it's not done
1360 * for tests that fail early, and it's not clear that's
1363 insert_compute_vloffsets(cstate
, p
->head
);
1366 * For DLT_PPI captures, generate a check of the per-packet
1367 * DLT value to make sure it's DLT_IEEE802_11.
1369 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1370 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1371 * with appropriate Ethernet information and use that rather
1372 * than using something such as DLT_PPI where you don't know
1373 * the link-layer header type until runtime, which, in the
1374 * general case, would force us to generate both Ethernet *and*
1375 * 802.11 code (*and* anything else for which PPI is used)
1376 * and choose between them early in the BPF program?
1378 if (cstate
->linktype
== DLT_PPI
) {
1379 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1380 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1381 gen_and(ppi_dlt_check
, p
);
1384 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1385 p
->sense
= !p
->sense
;
1386 backpatch(p
, gen_retblk_internal(cstate
, 0));
1387 cstate
->ic
.root
= p
->head
;
1392 gen_and(struct block
*b0
, struct block
*b1
)
1394 backpatch(b0
, b1
->head
);
1395 b0
->sense
= !b0
->sense
;
1396 b1
->sense
= !b1
->sense
;
1398 b1
->sense
= !b1
->sense
;
1399 b1
->head
= b0
->head
;
1403 gen_or(struct block
*b0
, struct block
*b1
)
1405 b0
->sense
= !b0
->sense
;
1406 backpatch(b0
, b1
->head
);
1407 b0
->sense
= !b0
->sense
;
1409 b1
->head
= b0
->head
;
1413 gen_not(struct block
*b
)
1415 b
->sense
= !b
->sense
;
1418 static struct block
*
1419 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1420 u_int size
, bpf_u_int32 v
)
1422 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1425 static struct block
*
1426 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1427 u_int size
, bpf_u_int32 v
)
1429 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1432 static struct block
*
1433 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1434 u_int size
, bpf_u_int32 v
)
1436 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1439 static struct block
*
1440 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1441 u_int size
, bpf_u_int32 v
)
1443 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1446 static struct block
*
1447 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1448 u_int size
, bpf_u_int32 v
)
1450 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1453 static struct block
*
1454 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1455 u_int size
, bpf_u_int32 v
)
1457 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1460 static struct block
*
1461 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1462 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1464 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1467 static struct block
*
1468 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1469 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1471 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1474 static struct block
*
1475 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1476 u_int size
, const u_char
*v
)
1478 register struct block
*b
, *tmp
;
1482 register const u_char
*p
= &v
[size
- 4];
1484 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1492 register const u_char
*p
= &v
[size
- 2];
1494 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1502 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1510 static struct block
*
1511 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1513 struct block
*b
= new_block(cstate
, JMP(jtype
));
1519 static struct block
*
1520 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1522 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1526 * AND the field of size "size" at offset "offset" relative to the header
1527 * specified by "offrel" with "mask", and compare it with the value "v"
1528 * with the test specified by "jtype"; if "reverse" is true, the test
1529 * should test the opposite of "jtype".
1531 static struct block
*
1532 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1533 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1536 struct slist
*s
, *s2
;
1539 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1541 if (mask
!= 0xffffffff) {
1542 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1547 b
= gen_jmp(cstate
, jtype
, v
, s
);
1554 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1556 cstate
->pcap_fddipad
= p
->fddipad
;
1559 * We start out with only one link-layer header.
1561 cstate
->outermostlinktype
= pcap_datalink(p
);
1562 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1563 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1564 cstate
->off_outermostlinkhdr
.reg
= -1;
1566 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1567 cstate
->off_prevlinkhdr
.constant_part
= 0;
1568 cstate
->off_prevlinkhdr
.is_variable
= 0;
1569 cstate
->off_prevlinkhdr
.reg
= -1;
1571 cstate
->linktype
= cstate
->outermostlinktype
;
1572 cstate
->off_linkhdr
.constant_part
= 0;
1573 cstate
->off_linkhdr
.is_variable
= 0;
1574 cstate
->off_linkhdr
.reg
= -1;
1579 cstate
->off_linkpl
.constant_part
= 0;
1580 cstate
->off_linkpl
.is_variable
= 0;
1581 cstate
->off_linkpl
.reg
= -1;
1583 cstate
->off_linktype
.constant_part
= 0;
1584 cstate
->off_linktype
.is_variable
= 0;
1585 cstate
->off_linktype
.reg
= -1;
1588 * Assume it's not raw ATM with a pseudo-header, for now.
1591 cstate
->off_vpi
= OFFSET_NOT_SET
;
1592 cstate
->off_vci
= OFFSET_NOT_SET
;
1593 cstate
->off_proto
= OFFSET_NOT_SET
;
1594 cstate
->off_payload
= OFFSET_NOT_SET
;
1597 * And not encapsulated with either Geneve or VXLAN.
1599 cstate
->is_encap
= 0;
1602 * No variable length VLAN offset by default
1604 cstate
->is_vlan_vloffset
= 0;
1607 * And assume we're not doing SS7.
1609 cstate
->off_li
= OFFSET_NOT_SET
;
1610 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1611 cstate
->off_sio
= OFFSET_NOT_SET
;
1612 cstate
->off_opc
= OFFSET_NOT_SET
;
1613 cstate
->off_dpc
= OFFSET_NOT_SET
;
1614 cstate
->off_sls
= OFFSET_NOT_SET
;
1616 cstate
->label_stack_depth
= 0;
1617 cstate
->vlan_stack_depth
= 0;
1619 switch (cstate
->linktype
) {
1622 cstate
->off_linktype
.constant_part
= 2;
1623 cstate
->off_linkpl
.constant_part
= 6;
1624 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1625 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1628 case DLT_ARCNET_LINUX
:
1629 cstate
->off_linktype
.constant_part
= 4;
1630 cstate
->off_linkpl
.constant_part
= 8;
1631 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1632 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1636 cstate
->off_linktype
.constant_part
= 12;
1637 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1638 cstate
->off_nl
= 0; /* Ethernet II */
1639 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1644 * SLIP doesn't have a link level type. The 16 byte
1645 * header is hacked into our SLIP driver.
1647 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1648 cstate
->off_linkpl
.constant_part
= 16;
1650 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1653 case DLT_SLIP_BSDOS
:
1654 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1655 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1657 cstate
->off_linkpl
.constant_part
= 24;
1659 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1664 cstate
->off_linktype
.constant_part
= 0;
1665 cstate
->off_linkpl
.constant_part
= 4;
1667 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1671 cstate
->off_linktype
.constant_part
= 0;
1672 cstate
->off_linkpl
.constant_part
= 12;
1674 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1679 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1680 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1681 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1682 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1683 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1685 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1690 * This does not include the Ethernet header, and
1691 * only covers session state.
1693 cstate
->off_linktype
.constant_part
= 6;
1694 cstate
->off_linkpl
.constant_part
= 8;
1696 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1700 cstate
->off_linktype
.constant_part
= 5;
1701 cstate
->off_linkpl
.constant_part
= 24;
1703 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1708 * FDDI doesn't really have a link-level type field.
1709 * We set "off_linktype" to the offset of the LLC header.
1711 * To check for Ethernet types, we assume that SSAP = SNAP
1712 * is being used and pick out the encapsulated Ethernet type.
1713 * XXX - should we generate code to check for SNAP?
1715 cstate
->off_linktype
.constant_part
= 13;
1716 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1717 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1718 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1719 cstate
->off_nl
= 8; /* 802.2+SNAP */
1720 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1725 * Token Ring doesn't really have a link-level type field.
1726 * We set "off_linktype" to the offset of the LLC header.
1728 * To check for Ethernet types, we assume that SSAP = SNAP
1729 * is being used and pick out the encapsulated Ethernet type.
1730 * XXX - should we generate code to check for SNAP?
1732 * XXX - the header is actually variable-length.
1733 * Some various Linux patched versions gave 38
1734 * as "off_linktype" and 40 as "off_nl"; however,
1735 * if a token ring packet has *no* routing
1736 * information, i.e. is not source-routed, the correct
1737 * values are 20 and 22, as they are in the vanilla code.
1739 * A packet is source-routed iff the uppermost bit
1740 * of the first byte of the source address, at an
1741 * offset of 8, has the uppermost bit set. If the
1742 * packet is source-routed, the total number of bytes
1743 * of routing information is 2 plus bits 0x1F00 of
1744 * the 16-bit value at an offset of 14 (shifted right
1745 * 8 - figure out which byte that is).
1747 cstate
->off_linktype
.constant_part
= 14;
1748 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1749 cstate
->off_nl
= 8; /* 802.2+SNAP */
1750 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1753 case DLT_PRISM_HEADER
:
1754 case DLT_IEEE802_11_RADIO_AVS
:
1755 case DLT_IEEE802_11_RADIO
:
1756 cstate
->off_linkhdr
.is_variable
= 1;
1757 /* Fall through, 802.11 doesn't have a variable link
1758 * prefix but is otherwise the same. */
1761 case DLT_IEEE802_11
:
1763 * 802.11 doesn't really have a link-level type field.
1764 * We set "off_linktype.constant_part" to the offset of
1767 * To check for Ethernet types, we assume that SSAP = SNAP
1768 * is being used and pick out the encapsulated Ethernet type.
1769 * XXX - should we generate code to check for SNAP?
1771 * We also handle variable-length radio headers here.
1772 * The Prism header is in theory variable-length, but in
1773 * practice it's always 144 bytes long. However, some
1774 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1775 * sometimes or always supply an AVS header, so we
1776 * have to check whether the radio header is a Prism
1777 * header or an AVS header, so, in practice, it's
1780 cstate
->off_linktype
.constant_part
= 24;
1781 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1782 cstate
->off_linkpl
.is_variable
= 1;
1783 cstate
->off_nl
= 8; /* 802.2+SNAP */
1784 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1789 * At the moment we treat PPI the same way that we treat
1790 * normal Radiotap encoded packets. The difference is in
1791 * the function that generates the code at the beginning
1792 * to compute the header length. Since this code generator
1793 * of PPI supports bare 802.11 encapsulation only (i.e.
1794 * the encapsulated DLT should be DLT_IEEE802_11) we
1795 * generate code to check for this too.
1797 cstate
->off_linktype
.constant_part
= 24;
1798 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1799 cstate
->off_linkpl
.is_variable
= 1;
1800 cstate
->off_linkhdr
.is_variable
= 1;
1801 cstate
->off_nl
= 8; /* 802.2+SNAP */
1802 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1805 case DLT_ATM_RFC1483
:
1806 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1808 * assume routed, non-ISO PDUs
1809 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1811 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1812 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1813 * latter would presumably be treated the way PPPoE
1814 * should be, so you can do "pppoe and udp port 2049"
1815 * or "pppoa and tcp port 80" and have it check for
1816 * PPPo{A,E} and a PPP protocol of IP and....
1818 cstate
->off_linktype
.constant_part
= 0;
1819 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1820 cstate
->off_nl
= 8; /* 802.2+SNAP */
1821 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1826 * Full Frontal ATM; you get AALn PDUs with an ATM
1830 cstate
->off_vpi
= SUNATM_VPI_POS
;
1831 cstate
->off_vci
= SUNATM_VCI_POS
;
1832 cstate
->off_proto
= PROTO_POS
;
1833 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1834 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1835 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1836 cstate
->off_nl
= 8; /* 802.2+SNAP */
1837 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1843 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1844 cstate
->off_linkpl
.constant_part
= 0;
1846 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1849 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1850 cstate
->off_linktype
.constant_part
= 14;
1851 cstate
->off_linkpl
.constant_part
= 16;
1853 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1856 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1857 cstate
->off_linktype
.constant_part
= 0;
1858 cstate
->off_linkpl
.constant_part
= 20;
1860 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1865 * LocalTalk does have a 1-byte type field in the LLAP header,
1866 * but really it just indicates whether there is a "short" or
1867 * "long" DDP packet following.
1869 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1870 cstate
->off_linkpl
.constant_part
= 0;
1872 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1875 case DLT_IP_OVER_FC
:
1877 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1878 * link-level type field. We set "off_linktype" to the
1879 * offset of the LLC header.
1881 * To check for Ethernet types, we assume that SSAP = SNAP
1882 * is being used and pick out the encapsulated Ethernet type.
1883 * XXX - should we generate code to check for SNAP? RFC
1884 * 2625 says SNAP should be used.
1886 cstate
->off_linktype
.constant_part
= 16;
1887 cstate
->off_linkpl
.constant_part
= 16;
1888 cstate
->off_nl
= 8; /* 802.2+SNAP */
1889 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1894 * XXX - we should set this to handle SNAP-encapsulated
1895 * frames (NLPID of 0x80).
1897 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1898 cstate
->off_linkpl
.constant_part
= 0;
1900 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1904 * the only BPF-interesting FRF.16 frames are non-control frames;
1905 * Frame Relay has a variable length link-layer
1906 * so lets start with offset 4 for now and increments later on (FIXME);
1909 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1910 cstate
->off_linkpl
.constant_part
= 0;
1912 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1915 case DLT_APPLE_IP_OVER_IEEE1394
:
1916 cstate
->off_linktype
.constant_part
= 16;
1917 cstate
->off_linkpl
.constant_part
= 18;
1919 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1922 case DLT_SYMANTEC_FIREWALL
:
1923 cstate
->off_linktype
.constant_part
= 6;
1924 cstate
->off_linkpl
.constant_part
= 44;
1925 cstate
->off_nl
= 0; /* Ethernet II */
1926 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1930 cstate
->off_linktype
.constant_part
= 0;
1931 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1932 cstate
->off_linkpl
.is_variable
= 1;
1934 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1937 case DLT_JUNIPER_MFR
:
1938 case DLT_JUNIPER_MLFR
:
1939 case DLT_JUNIPER_MLPPP
:
1940 case DLT_JUNIPER_PPP
:
1941 case DLT_JUNIPER_CHDLC
:
1942 case DLT_JUNIPER_FRELAY
:
1943 cstate
->off_linktype
.constant_part
= 4;
1944 cstate
->off_linkpl
.constant_part
= 4;
1946 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1949 case DLT_JUNIPER_ATM1
:
1950 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1951 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1953 cstate
->off_nl_nosnap
= 10;
1956 case DLT_JUNIPER_ATM2
:
1957 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1958 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1960 cstate
->off_nl_nosnap
= 10;
1963 /* frames captured on a Juniper PPPoE service PIC
1964 * contain raw ethernet frames */
1965 case DLT_JUNIPER_PPPOE
:
1966 case DLT_JUNIPER_ETHER
:
1967 cstate
->off_linkpl
.constant_part
= 14;
1968 cstate
->off_linktype
.constant_part
= 16;
1969 cstate
->off_nl
= 18; /* Ethernet II */
1970 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1973 case DLT_JUNIPER_PPPOE_ATM
:
1974 cstate
->off_linktype
.constant_part
= 4;
1975 cstate
->off_linkpl
.constant_part
= 6;
1977 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1980 case DLT_JUNIPER_GGSN
:
1981 cstate
->off_linktype
.constant_part
= 6;
1982 cstate
->off_linkpl
.constant_part
= 12;
1984 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1987 case DLT_JUNIPER_ES
:
1988 cstate
->off_linktype
.constant_part
= 6;
1989 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1990 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1991 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1994 case DLT_JUNIPER_MONITOR
:
1995 cstate
->off_linktype
.constant_part
= 12;
1996 cstate
->off_linkpl
.constant_part
= 12;
1997 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1998 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2001 case DLT_BACNET_MS_TP
:
2002 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2003 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2004 cstate
->off_nl
= OFFSET_NOT_SET
;
2005 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2008 case DLT_JUNIPER_SERVICES
:
2009 cstate
->off_linktype
.constant_part
= 12;
2010 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2011 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2012 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2015 case DLT_JUNIPER_VP
:
2016 cstate
->off_linktype
.constant_part
= 18;
2017 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2018 cstate
->off_nl
= OFFSET_NOT_SET
;
2019 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2022 case DLT_JUNIPER_ST
:
2023 cstate
->off_linktype
.constant_part
= 18;
2024 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2025 cstate
->off_nl
= OFFSET_NOT_SET
;
2026 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2029 case DLT_JUNIPER_ISM
:
2030 cstate
->off_linktype
.constant_part
= 8;
2031 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2032 cstate
->off_nl
= OFFSET_NOT_SET
;
2033 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2036 case DLT_JUNIPER_VS
:
2037 case DLT_JUNIPER_SRX_E2E
:
2038 case DLT_JUNIPER_FIBRECHANNEL
:
2039 case DLT_JUNIPER_ATM_CEMIC
:
2040 cstate
->off_linktype
.constant_part
= 8;
2041 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2042 cstate
->off_nl
= OFFSET_NOT_SET
;
2043 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2048 cstate
->off_li_hsl
= 4;
2049 cstate
->off_sio
= 3;
2050 cstate
->off_opc
= 4;
2051 cstate
->off_dpc
= 4;
2052 cstate
->off_sls
= 7;
2053 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2054 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2055 cstate
->off_nl
= OFFSET_NOT_SET
;
2056 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2059 case DLT_MTP2_WITH_PHDR
:
2061 cstate
->off_li_hsl
= 8;
2062 cstate
->off_sio
= 7;
2063 cstate
->off_opc
= 8;
2064 cstate
->off_dpc
= 8;
2065 cstate
->off_sls
= 11;
2066 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2067 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2068 cstate
->off_nl
= OFFSET_NOT_SET
;
2069 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2073 cstate
->off_li
= 22;
2074 cstate
->off_li_hsl
= 24;
2075 cstate
->off_sio
= 23;
2076 cstate
->off_opc
= 24;
2077 cstate
->off_dpc
= 24;
2078 cstate
->off_sls
= 27;
2079 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2080 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2081 cstate
->off_nl
= OFFSET_NOT_SET
;
2082 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2086 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2087 cstate
->off_linkpl
.constant_part
= 4;
2089 cstate
->off_nl_nosnap
= 0;
2094 * Currently, only raw "link[N:M]" filtering is supported.
2096 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2097 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2098 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2099 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2103 cstate
->off_linktype
.constant_part
= 1;
2104 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2106 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2109 case DLT_NETANALYZER
:
2110 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2111 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2112 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2113 cstate
->off_nl
= 0; /* Ethernet II */
2114 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2117 case DLT_NETANALYZER_TRANSPARENT
:
2118 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2119 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2120 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2121 cstate
->off_nl
= 0; /* Ethernet II */
2122 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2127 * For values in the range in which we've assigned new
2128 * DLT_ values, only raw "link[N:M]" filtering is supported.
2130 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2131 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2132 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2133 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2134 cstate
->off_nl
= OFFSET_NOT_SET
;
2135 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2137 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2138 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2144 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2149 * Load a value relative to the specified absolute offset.
2151 static struct slist
*
2152 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2153 u_int offset
, u_int size
)
2155 struct slist
*s
, *s2
;
2157 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2160 * If "s" is non-null, it has code to arrange that the X register
2161 * contains the variable part of the absolute offset, so we
2162 * generate a load relative to that, with an offset of
2163 * abs_offset->constant_part + offset.
2165 * Otherwise, we can do an absolute load with an offset of
2166 * abs_offset->constant_part + offset.
2170 * "s" points to a list of statements that puts the
2171 * variable part of the absolute offset into the X register.
2172 * Do an indirect load, to use the X register as an offset.
2174 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2175 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2179 * There is no variable part of the absolute offset, so
2180 * just do an absolute load.
2182 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2183 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2189 * Load a value relative to the beginning of the specified header.
2191 static struct slist
*
2192 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2195 struct slist
*s
, *s2
;
2198 * Squelch warnings from compilers that *don't* assume that
2199 * offrel always has a valid enum value and therefore don't
2200 * assume that we'll always go through one of the case arms.
2202 * If we have a default case, compilers that *do* assume that
2203 * will then complain about the default case code being
2206 * Damned if you do, damned if you don't.
2213 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2218 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2221 case OR_PREVLINKHDR
:
2222 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2226 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2229 case OR_PREVMPLSHDR
:
2230 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2234 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2237 case OR_LINKPL_NOSNAP
:
2238 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2242 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2247 * Load the X register with the length of the IPv4 header
2248 * (plus the offset of the link-layer header, if it's
2249 * preceded by a variable-length header such as a radio
2250 * header), in bytes.
2252 s
= gen_loadx_iphdrlen(cstate
);
2255 * Load the item at {offset of the link-layer payload} +
2256 * {offset, relative to the start of the link-layer
2257 * payload, of the IPv4 header} + {length of the IPv4 header} +
2258 * {specified offset}.
2260 * If the offset of the link-layer payload is variable,
2261 * the variable part of that offset is included in the
2262 * value in the X register, and we include the constant
2263 * part in the offset of the load.
2265 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2266 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2271 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2278 * Generate code to load into the X register the sum of the length of
2279 * the IPv4 header and the variable part of the offset of the link-layer
2282 static struct slist
*
2283 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2285 struct slist
*s
, *s2
;
2287 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2290 * The offset of the link-layer payload has a variable
2291 * part. "s" points to a list of statements that put
2292 * the variable part of that offset into the X register.
2294 * The 4*([k]&0xf) addressing mode can't be used, as we
2295 * don't have a constant offset, so we have to load the
2296 * value in question into the A register and add to it
2297 * the value from the X register.
2299 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2300 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2302 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2305 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2310 * The A register now contains the length of the IP header.
2311 * We need to add to it the variable part of the offset of
2312 * the link-layer payload, which is still in the X
2313 * register, and move the result into the X register.
2315 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2316 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2319 * The offset of the link-layer payload is a constant,
2320 * so no code was generated to load the (nonexistent)
2321 * variable part of that offset.
2323 * This means we can use the 4*([k]&0xf) addressing
2324 * mode. Load the length of the IPv4 header, which
2325 * is at an offset of cstate->off_nl from the beginning of
2326 * the link-layer payload, and thus at an offset of
2327 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2328 * of the raw packet data, using that addressing mode.
2330 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2331 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2337 static struct block
*
2338 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2342 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2344 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2347 static inline struct block
*
2348 gen_true(compiler_state_t
*cstate
)
2350 return gen_uncond(cstate
, 1);
2353 static inline struct block
*
2354 gen_false(compiler_state_t
*cstate
)
2356 return gen_uncond(cstate
, 0);
2360 * Generate code to match a particular packet type.
2362 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2363 * value, if <= ETHERMTU. We use that to determine whether to
2364 * match the type/length field or to check the type/length field for
2365 * a value <= ETHERMTU to see whether it's a type field and then do
2366 * the appropriate test.
2368 static struct block
*
2369 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2371 struct block
*b0
, *b1
;
2377 case LLCSAP_NETBEUI
:
2379 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2380 * so we check the DSAP and SSAP.
2382 * LLCSAP_IP checks for IP-over-802.2, rather
2383 * than IP-over-Ethernet or IP-over-SNAP.
2385 * XXX - should we check both the DSAP and the
2386 * SSAP, like this, or should we check just the
2387 * DSAP, as we do for other types <= ETHERMTU
2388 * (i.e., other SAP values)?
2390 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2391 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2399 * Ethernet_II frames, which are Ethernet
2400 * frames with a frame type of ETHERTYPE_IPX;
2402 * Ethernet_802.3 frames, which are 802.3
2403 * frames (i.e., the type/length field is
2404 * a length field, <= ETHERMTU, rather than
2405 * a type field) with the first two bytes
2406 * after the Ethernet/802.3 header being
2409 * Ethernet_802.2 frames, which are 802.3
2410 * frames with an 802.2 LLC header and
2411 * with the IPX LSAP as the DSAP in the LLC
2414 * Ethernet_SNAP frames, which are 802.3
2415 * frames with an LLC header and a SNAP
2416 * header and with an OUI of 0x000000
2417 * (encapsulated Ethernet) and a protocol
2418 * ID of ETHERTYPE_IPX in the SNAP header.
2420 * XXX - should we generate the same code both
2421 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2425 * This generates code to check both for the
2426 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2428 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2429 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2433 * Now we add code to check for SNAP frames with
2434 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2436 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2440 * Now we generate code to check for 802.3
2441 * frames in general.
2443 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2446 * Now add the check for 802.3 frames before the
2447 * check for Ethernet_802.2 and Ethernet_802.3,
2448 * as those checks should only be done on 802.3
2449 * frames, not on Ethernet frames.
2454 * Now add the check for Ethernet_II frames, and
2455 * do that before checking for the other frame
2458 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2462 case ETHERTYPE_ATALK
:
2463 case ETHERTYPE_AARP
:
2465 * EtherTalk (AppleTalk protocols on Ethernet link
2466 * layer) may use 802.2 encapsulation.
2470 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2471 * we check for an Ethernet type field less or equal than
2472 * 1500, which means it's an 802.3 length field.
2474 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2477 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2478 * SNAP packets with an organization code of
2479 * 0x080007 (Apple, for Appletalk) and a protocol
2480 * type of ETHERTYPE_ATALK (Appletalk).
2482 * 802.2-encapsulated ETHERTYPE_AARP packets are
2483 * SNAP packets with an organization code of
2484 * 0x000000 (encapsulated Ethernet) and a protocol
2485 * type of ETHERTYPE_AARP (Appletalk ARP).
2487 if (ll_proto
== ETHERTYPE_ATALK
)
2488 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2489 else /* ll_proto == ETHERTYPE_AARP */
2490 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2494 * Check for Ethernet encapsulation (Ethertalk
2495 * phase 1?); we just check for the Ethernet
2498 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2504 if (ll_proto
<= ETHERMTU
) {
2506 * This is an LLC SAP value, so the frames
2507 * that match would be 802.2 frames.
2508 * Check that the frame is an 802.2 frame
2509 * (i.e., that the length/type field is
2510 * a length field, <= ETHERMTU) and
2511 * then check the DSAP.
2513 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2514 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2519 * This is an Ethernet type, so compare
2520 * the length/type field with it (if
2521 * the frame is an 802.2 frame, the length
2522 * field will be <= ETHERMTU, and, as
2523 * "ll_proto" is > ETHERMTU, this test
2524 * will fail and the frame won't match,
2525 * which is what we want).
2527 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2532 static struct block
*
2533 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2536 * For DLT_NULL, the link-layer header is a 32-bit word
2537 * containing an AF_ value in *host* byte order, and for
2538 * DLT_ENC, the link-layer header begins with a 32-bit
2539 * word containing an AF_ value in host byte order.
2541 * In addition, if we're reading a saved capture file,
2542 * the host byte order in the capture may not be the
2543 * same as the host byte order on this machine.
2545 * For DLT_LOOP, the link-layer header is a 32-bit
2546 * word containing an AF_ value in *network* byte order.
2548 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2550 * The AF_ value is in host byte order, but the BPF
2551 * interpreter will convert it to network byte order.
2553 * If this is a save file, and it's from a machine
2554 * with the opposite byte order to ours, we byte-swap
2557 * Then we run it through "htonl()", and generate
2558 * code to compare against the result.
2560 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2561 ll_proto
= SWAPLONG(ll_proto
);
2562 ll_proto
= htonl(ll_proto
);
2564 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2568 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2569 * or IPv6 then we have an error.
2571 static struct block
*
2572 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2577 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2580 case ETHERTYPE_IPV6
:
2581 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2588 return gen_false(cstate
);
2592 * Generate code to match a particular packet type.
2594 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2595 * value, if <= ETHERMTU. We use that to determine whether to
2596 * match the type field or to check the type field for the special
2597 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2599 static struct block
*
2600 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2602 struct block
*b0
, *b1
;
2608 case LLCSAP_NETBEUI
:
2610 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2611 * so we check the DSAP and SSAP.
2613 * LLCSAP_IP checks for IP-over-802.2, rather
2614 * than IP-over-Ethernet or IP-over-SNAP.
2616 * XXX - should we check both the DSAP and the
2617 * SSAP, like this, or should we check just the
2618 * DSAP, as we do for other types <= ETHERMTU
2619 * (i.e., other SAP values)?
2621 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2622 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2628 * Ethernet_II frames, which are Ethernet
2629 * frames with a frame type of ETHERTYPE_IPX;
2631 * Ethernet_802.3 frames, which have a frame
2632 * type of LINUX_SLL_P_802_3;
2634 * Ethernet_802.2 frames, which are 802.3
2635 * frames with an 802.2 LLC header (i.e, have
2636 * a frame type of LINUX_SLL_P_802_2) and
2637 * with the IPX LSAP as the DSAP in the LLC
2640 * Ethernet_SNAP frames, which are 802.3
2641 * frames with an LLC header and a SNAP
2642 * header and with an OUI of 0x000000
2643 * (encapsulated Ethernet) and a protocol
2644 * ID of ETHERTYPE_IPX in the SNAP header.
2646 * First, do the checks on LINUX_SLL_P_802_2
2647 * frames; generate the check for either
2648 * Ethernet_802.2 or Ethernet_SNAP frames, and
2649 * then put a check for LINUX_SLL_P_802_2 frames
2652 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2653 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2655 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2659 * Now check for 802.3 frames and OR that with
2660 * the previous test.
2662 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2666 * Now add the check for Ethernet_II frames, and
2667 * do that before checking for the other frame
2670 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2674 case ETHERTYPE_ATALK
:
2675 case ETHERTYPE_AARP
:
2677 * EtherTalk (AppleTalk protocols on Ethernet link
2678 * layer) may use 802.2 encapsulation.
2682 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2683 * we check for the 802.2 protocol type in the
2684 * "Ethernet type" field.
2686 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2689 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2690 * SNAP packets with an organization code of
2691 * 0x080007 (Apple, for Appletalk) and a protocol
2692 * type of ETHERTYPE_ATALK (Appletalk).
2694 * 802.2-encapsulated ETHERTYPE_AARP packets are
2695 * SNAP packets with an organization code of
2696 * 0x000000 (encapsulated Ethernet) and a protocol
2697 * type of ETHERTYPE_AARP (Appletalk ARP).
2699 if (ll_proto
== ETHERTYPE_ATALK
)
2700 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2701 else /* ll_proto == ETHERTYPE_AARP */
2702 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2706 * Check for Ethernet encapsulation (Ethertalk
2707 * phase 1?); we just check for the Ethernet
2710 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2716 if (ll_proto
<= ETHERMTU
) {
2718 * This is an LLC SAP value, so the frames
2719 * that match would be 802.2 frames.
2720 * Check for the 802.2 protocol type
2721 * in the "Ethernet type" field, and
2722 * then check the DSAP.
2724 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2725 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2731 * This is an Ethernet type, so compare
2732 * the length/type field with it (if
2733 * the frame is an 802.2 frame, the length
2734 * field will be <= ETHERMTU, and, as
2735 * "ll_proto" is > ETHERMTU, this test
2736 * will fail and the frame won't match,
2737 * which is what we want).
2739 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2745 * Load a value relative to the beginning of the link-layer header after the
2748 static struct slist
*
2749 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2751 struct slist
*s1
, *s2
;
2754 * Generate code to load the length of the pflog header into
2755 * the register assigned to hold that length, if one has been
2756 * assigned. (If one hasn't been assigned, no code we've
2757 * generated uses that prefix, so we don't need to generate any
2760 if (cstate
->off_linkpl
.reg
!= -1) {
2762 * The length is in the first byte of the header.
2764 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2768 * Round it up to a multiple of 4.
2769 * Add 3, and clear the lower 2 bits.
2771 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2774 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2775 s2
->s
.k
= 0xfffffffc;
2779 * Now allocate a register to hold that value and store
2782 s2
= new_stmt(cstate
, BPF_ST
);
2783 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2787 * Now move it into the X register.
2789 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2797 static struct slist
*
2798 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2800 struct slist
*s1
, *s2
;
2801 struct slist
*sjeq_avs_cookie
;
2802 struct slist
*sjcommon
;
2805 * This code is not compatible with the optimizer, as
2806 * we are generating jmp instructions within a normal
2807 * slist of instructions
2809 cstate
->no_optimize
= 1;
2812 * Generate code to load the length of the radio header into
2813 * the register assigned to hold that length, if one has been
2814 * assigned. (If one hasn't been assigned, no code we've
2815 * generated uses that prefix, so we don't need to generate any
2818 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2819 * or always use the AVS header rather than the Prism header.
2820 * We load a 4-byte big-endian value at the beginning of the
2821 * raw packet data, and see whether, when masked with 0xFFFFF000,
2822 * it's equal to 0x80211000. If so, that indicates that it's
2823 * an AVS header (the masked-out bits are the version number).
2824 * Otherwise, it's a Prism header.
2826 * XXX - the Prism header is also, in theory, variable-length,
2827 * but no known software generates headers that aren't 144
2830 if (cstate
->off_linkhdr
.reg
!= -1) {
2834 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2838 * AND it with 0xFFFFF000.
2840 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2841 s2
->s
.k
= 0xFFFFF000;
2845 * Compare with 0x80211000.
2847 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2848 sjeq_avs_cookie
->s
.k
= 0x80211000;
2849 sappend(s1
, sjeq_avs_cookie
);
2854 * The 4 bytes at an offset of 4 from the beginning of
2855 * the AVS header are the length of the AVS header.
2856 * That field is big-endian.
2858 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2861 sjeq_avs_cookie
->s
.jt
= s2
;
2864 * Now jump to the code to allocate a register
2865 * into which to save the header length and
2866 * store the length there. (The "jump always"
2867 * instruction needs to have the k field set;
2868 * it's added to the PC, so, as we're jumping
2869 * over a single instruction, it should be 1.)
2871 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2873 sappend(s1
, sjcommon
);
2876 * Now for the code that handles the Prism header.
2877 * Just load the length of the Prism header (144)
2878 * into the A register. Have the test for an AVS
2879 * header branch here if we don't have an AVS header.
2881 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2884 sjeq_avs_cookie
->s
.jf
= s2
;
2887 * Now allocate a register to hold that value and store
2888 * it. The code for the AVS header will jump here after
2889 * loading the length of the AVS header.
2891 s2
= new_stmt(cstate
, BPF_ST
);
2892 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2894 sjcommon
->s
.jf
= s2
;
2897 * Now move it into the X register.
2899 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2907 static struct slist
*
2908 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2910 struct slist
*s1
, *s2
;
2913 * Generate code to load the length of the AVS header into
2914 * the register assigned to hold that length, if one has been
2915 * assigned. (If one hasn't been assigned, no code we've
2916 * generated uses that prefix, so we don't need to generate any
2919 if (cstate
->off_linkhdr
.reg
!= -1) {
2921 * The 4 bytes at an offset of 4 from the beginning of
2922 * the AVS header are the length of the AVS header.
2923 * That field is big-endian.
2925 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2929 * Now allocate a register to hold that value and store
2932 s2
= new_stmt(cstate
, BPF_ST
);
2933 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2937 * Now move it into the X register.
2939 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2947 static struct slist
*
2948 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2950 struct slist
*s1
, *s2
;
2953 * Generate code to load the length of the radiotap header into
2954 * the register assigned to hold that length, if one has been
2955 * assigned. (If one hasn't been assigned, no code we've
2956 * generated uses that prefix, so we don't need to generate any
2959 if (cstate
->off_linkhdr
.reg
!= -1) {
2961 * The 2 bytes at offsets of 2 and 3 from the beginning
2962 * of the radiotap header are the length of the radiotap
2963 * header; unfortunately, it's little-endian, so we have
2964 * to load it a byte at a time and construct the value.
2968 * Load the high-order byte, at an offset of 3, shift it
2969 * left a byte, and put the result in the X register.
2971 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2973 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2976 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2980 * Load the next byte, at an offset of 2, and OR the
2981 * value from the X register into it.
2983 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2986 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2990 * Now allocate a register to hold that value and store
2993 s2
= new_stmt(cstate
, BPF_ST
);
2994 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2998 * Now move it into the X register.
3000 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3009 * At the moment we treat PPI as normal Radiotap encoded
3010 * packets. The difference is in the function that generates
3011 * the code at the beginning to compute the header length.
3012 * Since this code generator of PPI supports bare 802.11
3013 * encapsulation only (i.e. the encapsulated DLT should be
3014 * DLT_IEEE802_11) we generate code to check for this too;
3015 * that's done in finish_parse().
3017 static struct slist
*
3018 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3020 struct slist
*s1
, *s2
;
3023 * Generate code to load the length of the radiotap header
3024 * into the register assigned to hold that length, if one has
3027 if (cstate
->off_linkhdr
.reg
!= -1) {
3029 * The 2 bytes at offsets of 2 and 3 from the beginning
3030 * of the radiotap header are the length of the radiotap
3031 * header; unfortunately, it's little-endian, so we have
3032 * to load it a byte at a time and construct the value.
3036 * Load the high-order byte, at an offset of 3, shift it
3037 * left a byte, and put the result in the X register.
3039 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3041 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3044 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3048 * Load the next byte, at an offset of 2, and OR the
3049 * value from the X register into it.
3051 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3054 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3058 * Now allocate a register to hold that value and store
3061 s2
= new_stmt(cstate
, BPF_ST
);
3062 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3066 * Now move it into the X register.
3068 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3077 * Load a value relative to the beginning of the link-layer header after the 802.11
3078 * header, i.e. LLC_SNAP.
3079 * The link-layer header doesn't necessarily begin at the beginning
3080 * of the packet data; there might be a variable-length prefix containing
3081 * radio information.
3083 static struct slist
*
3084 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3087 struct slist
*sjset_data_frame_1
;
3088 struct slist
*sjset_data_frame_2
;
3089 struct slist
*sjset_qos
;
3090 struct slist
*sjset_radiotap_flags_present
;
3091 struct slist
*sjset_radiotap_ext_present
;
3092 struct slist
*sjset_radiotap_tsft_present
;
3093 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3094 struct slist
*s_roundup
;
3096 if (cstate
->off_linkpl
.reg
== -1) {
3098 * No register has been assigned to the offset of
3099 * the link-layer payload, which means nobody needs
3100 * it; don't bother computing it - just return
3101 * what we already have.
3107 * This code is not compatible with the optimizer, as
3108 * we are generating jmp instructions within a normal
3109 * slist of instructions
3111 cstate
->no_optimize
= 1;
3114 * If "s" is non-null, it has code to arrange that the X register
3115 * contains the length of the prefix preceding the link-layer
3118 * Otherwise, the length of the prefix preceding the link-layer
3119 * header is "off_outermostlinkhdr.constant_part".
3123 * There is no variable-length header preceding the
3124 * link-layer header.
3126 * Load the length of the fixed-length prefix preceding
3127 * the link-layer header (if any) into the X register,
3128 * and store it in the cstate->off_linkpl.reg register.
3129 * That length is off_outermostlinkhdr.constant_part.
3131 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3132 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3136 * The X register contains the offset of the beginning of the
3137 * link-layer header; add 24, which is the minimum length
3138 * of the MAC header for a data frame, to that, and store it
3139 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3140 * which is at the offset in the X register, with an indexed load.
3142 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3144 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3147 s2
= new_stmt(cstate
, BPF_ST
);
3148 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3151 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3156 * Check the Frame Control field to see if this is a data frame;
3157 * a data frame has the 0x08 bit (b3) in that field set and the
3158 * 0x04 bit (b2) clear.
3160 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3161 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3162 sappend(s
, sjset_data_frame_1
);
3165 * If b3 is set, test b2, otherwise go to the first statement of
3166 * the rest of the program.
3168 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3169 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3170 sappend(s
, sjset_data_frame_2
);
3171 sjset_data_frame_1
->s
.jf
= snext
;
3174 * If b2 is not set, this is a data frame; test the QoS bit.
3175 * Otherwise, go to the first statement of the rest of the
3178 sjset_data_frame_2
->s
.jt
= snext
;
3179 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3180 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3181 sappend(s
, sjset_qos
);
3184 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3186 * Otherwise, go to the first statement of the rest of the
3189 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3190 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3192 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3195 s2
= new_stmt(cstate
, BPF_ST
);
3196 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3200 * If we have a radiotap header, look at it to see whether
3201 * there's Atheros padding between the MAC-layer header
3204 * Note: all of the fields in the radiotap header are
3205 * little-endian, so we byte-swap all of the values
3206 * we test against, as they will be loaded as big-endian
3209 * XXX - in the general case, we would have to scan through
3210 * *all* the presence bits, if there's more than one word of
3211 * presence bits. That would require a loop, meaning that
3212 * we wouldn't be able to run the filter in the kernel.
3214 * We assume here that the Atheros adapters that insert the
3215 * annoying padding don't have multiple antennae and therefore
3216 * do not generate radiotap headers with multiple presence words.
3218 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3220 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3221 * in the first presence flag word?
3223 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3227 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3228 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3229 sappend(s
, sjset_radiotap_flags_present
);
3232 * If not, skip all of this.
3234 sjset_radiotap_flags_present
->s
.jf
= snext
;
3237 * Otherwise, is the "extension" bit set in that word?
3239 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3240 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3241 sappend(s
, sjset_radiotap_ext_present
);
3242 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3245 * If so, skip all of this.
3247 sjset_radiotap_ext_present
->s
.jt
= snext
;
3250 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3252 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3253 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3254 sappend(s
, sjset_radiotap_tsft_present
);
3255 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3258 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3259 * at an offset of 16 from the beginning of the raw packet
3260 * data (8 bytes for the radiotap header and 8 bytes for
3263 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3266 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3269 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3271 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3272 sjset_tsft_datapad
->s
.k
= 0x20;
3273 sappend(s
, sjset_tsft_datapad
);
3276 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3277 * at an offset of 8 from the beginning of the raw packet
3278 * data (8 bytes for the radiotap header).
3280 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3283 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3286 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3288 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3289 sjset_notsft_datapad
->s
.k
= 0x20;
3290 sappend(s
, sjset_notsft_datapad
);
3293 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3294 * set, round the length of the 802.11 header to
3295 * a multiple of 4. Do that by adding 3 and then
3296 * dividing by and multiplying by 4, which we do by
3299 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3300 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3301 sappend(s
, s_roundup
);
3302 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3305 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3306 s2
->s
.k
= (bpf_u_int32
)~3;
3308 s2
= new_stmt(cstate
, BPF_ST
);
3309 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3312 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3313 sjset_tsft_datapad
->s
.jf
= snext
;
3314 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3315 sjset_notsft_datapad
->s
.jf
= snext
;
3317 sjset_qos
->s
.jf
= snext
;
3323 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3327 /* There is an implicit dependency between the link
3328 * payload and link header since the payload computation
3329 * includes the variable part of the header. Therefore,
3330 * if nobody else has allocated a register for the link
3331 * header and we need it, do it now. */
3332 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3333 cstate
->off_linkhdr
.reg
== -1)
3334 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3337 * For link-layer types that have a variable-length header
3338 * preceding the link-layer header, generate code to load
3339 * the offset of the link-layer header into the register
3340 * assigned to that offset, if any.
3342 * XXX - this, and the next switch statement, won't handle
3343 * encapsulation of 802.11 or 802.11+radio information in
3344 * some other protocol stack. That's significantly more
3347 switch (cstate
->outermostlinktype
) {
3349 case DLT_PRISM_HEADER
:
3350 s
= gen_load_prism_llprefixlen(cstate
);
3353 case DLT_IEEE802_11_RADIO_AVS
:
3354 s
= gen_load_avs_llprefixlen(cstate
);
3357 case DLT_IEEE802_11_RADIO
:
3358 s
= gen_load_radiotap_llprefixlen(cstate
);
3362 s
= gen_load_ppi_llprefixlen(cstate
);
3371 * For link-layer types that have a variable-length link-layer
3372 * header, generate code to load the offset of the link-layer
3373 * payload into the register assigned to that offset, if any.
3375 switch (cstate
->outermostlinktype
) {
3377 case DLT_IEEE802_11
:
3378 case DLT_PRISM_HEADER
:
3379 case DLT_IEEE802_11_RADIO_AVS
:
3380 case DLT_IEEE802_11_RADIO
:
3382 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3386 s
= gen_load_pflog_llprefixlen(cstate
);
3391 * If there is no initialization yet and we need variable
3392 * length offsets for VLAN, initialize them to zero
3394 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3397 if (cstate
->off_linkpl
.reg
== -1)
3398 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3399 if (cstate
->off_linktype
.reg
== -1)
3400 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3402 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3404 s2
= new_stmt(cstate
, BPF_ST
);
3405 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3407 s2
= new_stmt(cstate
, BPF_ST
);
3408 s2
->s
.k
= cstate
->off_linktype
.reg
;
3413 * If we have any offset-loading code, append all the
3414 * existing statements in the block to those statements,
3415 * and make the resulting list the list of statements
3419 sappend(s
, b
->stmts
);
3425 * Take an absolute offset, and:
3427 * if it has no variable part, return NULL;
3429 * if it has a variable part, generate code to load the register
3430 * containing that variable part into the X register, returning
3431 * a pointer to that code - if no register for that offset has
3432 * been allocated, allocate it first.
3434 * (The code to set that register will be generated later, but will
3435 * be placed earlier in the code sequence.)
3437 static struct slist
*
3438 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3442 if (off
->is_variable
) {
3443 if (off
->reg
== -1) {
3445 * We haven't yet assigned a register for the
3446 * variable part of the offset of the link-layer
3447 * header; allocate one.
3449 off
->reg
= alloc_reg(cstate
);
3453 * Load the register containing the variable part of the
3454 * offset of the link-layer header into the X register.
3456 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3461 * That offset isn't variable, there's no variable part,
3462 * so we don't need to generate any code.
3469 * Map an Ethernet type to the equivalent PPP type.
3472 ethertype_to_ppptype(bpf_u_int32 ll_proto
)
3480 case ETHERTYPE_IPV6
:
3481 ll_proto
= PPP_IPV6
;
3485 ll_proto
= PPP_DECNET
;
3488 case ETHERTYPE_ATALK
:
3489 ll_proto
= PPP_APPLE
;
3502 * I'm assuming the "Bridging PDU"s that go
3503 * over PPP are Spanning Tree Protocol
3506 ll_proto
= PPP_BRPDU
;
3517 * Generate any tests that, for encapsulation of a link-layer packet
3518 * inside another protocol stack, need to be done to check for those
3519 * link-layer packets (and that haven't already been done by a check
3520 * for that encapsulation).
3522 static struct block
*
3523 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3525 if (cstate
->is_encap
)
3526 return gen_encap_ll_check(cstate
);
3528 switch (cstate
->prevlinktype
) {
3532 * This is LANE-encapsulated Ethernet; check that the LANE
3533 * packet doesn't begin with an LE Control marker, i.e.
3534 * that it's data, not a control message.
3536 * (We've already generated a test for LANE.)
3538 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3542 * No such tests are necessary.
3550 * The three different values we should check for when checking for an
3551 * IPv6 packet with DLT_NULL.
3553 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3554 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3555 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3558 * Generate code to match a particular packet type by matching the
3559 * link-layer type field or fields in the 802.2 LLC header.
3561 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3562 * value, if <= ETHERMTU.
3564 static struct block
*
3565 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3567 struct block
*b0
, *b1
, *b2
;
3569 /* are we checking MPLS-encapsulated packets? */
3570 if (cstate
->label_stack_depth
> 0)
3571 return gen_mpls_linktype(cstate
, ll_proto
);
3573 switch (cstate
->linktype
) {
3576 case DLT_NETANALYZER
:
3577 case DLT_NETANALYZER_TRANSPARENT
:
3578 /* Geneve has an EtherType regardless of whether there is an
3579 * L2 header. VXLAN always has an EtherType. */
3580 if (!cstate
->is_encap
)
3581 b0
= gen_prevlinkhdr_check(cstate
);
3585 b1
= gen_ether_linktype(cstate
, ll_proto
);
3596 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3600 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3604 case DLT_IEEE802_11
:
3605 case DLT_PRISM_HEADER
:
3606 case DLT_IEEE802_11_RADIO_AVS
:
3607 case DLT_IEEE802_11_RADIO
:
3610 * Check that we have a data frame.
3612 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3613 IEEE80211_FC0_TYPE_DATA
,
3614 IEEE80211_FC0_TYPE_MASK
);
3617 * Now check for the specified link-layer type.
3619 b1
= gen_llc_linktype(cstate
, ll_proto
);
3626 * XXX - check for LLC frames.
3628 return gen_llc_linktype(cstate
, ll_proto
);
3633 * XXX - check for LLC PDUs, as per IEEE 802.5.
3635 return gen_llc_linktype(cstate
, ll_proto
);
3638 case DLT_ATM_RFC1483
:
3640 case DLT_IP_OVER_FC
:
3641 return gen_llc_linktype(cstate
, ll_proto
);
3646 * Check for an LLC-encapsulated version of this protocol;
3647 * if we were checking for LANE, linktype would no longer
3650 * Check for LLC encapsulation and then check the protocol.
3652 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3653 b1
= gen_llc_linktype(cstate
, ll_proto
);
3659 return gen_linux_sll_linktype(cstate
, ll_proto
);
3663 case DLT_SLIP_BSDOS
:
3666 * These types don't provide any type field; packets
3667 * are always IPv4 or IPv6.
3669 * XXX - for IPv4, check for a version number of 4, and,
3670 * for IPv6, check for a version number of 6?
3675 /* Check for a version number of 4. */
3676 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3678 case ETHERTYPE_IPV6
:
3679 /* Check for a version number of 6. */
3680 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3683 return gen_false(cstate
); /* always false */
3689 * Raw IPv4, so no type field.
3691 if (ll_proto
== ETHERTYPE_IP
)
3692 return gen_true(cstate
); /* always true */
3694 /* Checking for something other than IPv4; always false */
3695 return gen_false(cstate
);
3700 * Raw IPv6, so no type field.
3702 if (ll_proto
== ETHERTYPE_IPV6
)
3703 return gen_true(cstate
); /* always true */
3705 /* Checking for something other than IPv6; always false */
3706 return gen_false(cstate
);
3711 case DLT_PPP_SERIAL
:
3714 * We use Ethernet protocol types inside libpcap;
3715 * map them to the corresponding PPP protocol types.
3717 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3718 ethertype_to_ppptype(ll_proto
));
3723 * We use Ethernet protocol types inside libpcap;
3724 * map them to the corresponding PPP protocol types.
3730 * Also check for Van Jacobson-compressed IP.
3731 * XXX - do this for other forms of PPP?
3733 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3734 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3736 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3741 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3742 ethertype_to_ppptype(ll_proto
));
3752 return (gen_loopback_linktype(cstate
, AF_INET
));
3754 case ETHERTYPE_IPV6
:
3756 * AF_ values may, unfortunately, be platform-
3757 * dependent; AF_INET isn't, because everybody
3758 * used 4.2BSD's value, but AF_INET6 is, because
3759 * 4.2BSD didn't have a value for it (given that
3760 * IPv6 didn't exist back in the early 1980's),
3761 * and they all picked their own values.
3763 * This means that, if we're reading from a
3764 * savefile, we need to check for all the
3767 * If we're doing a live capture, we only need
3768 * to check for this platform's value; however,
3769 * Npcap uses 24, which isn't Windows's AF_INET6
3770 * value. (Given the multiple different values,
3771 * programs that read pcap files shouldn't be
3772 * checking for their platform's AF_INET6 value
3773 * anyway, they should check for all of the
3774 * possible values. and they might as well do
3775 * that even for live captures.)
3777 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3779 * Savefile - check for all three
3780 * possible IPv6 values.
3782 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3783 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3785 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3790 * Live capture, so we only need to
3791 * check for the value used on this
3796 * Npcap doesn't use Windows's AF_INET6,
3797 * as that collides with AF_IPX on
3798 * some BSDs (both have the value 23).
3799 * Instead, it uses 24.
3801 return (gen_loopback_linktype(cstate
, 24));
3804 return (gen_loopback_linktype(cstate
, AF_INET6
));
3805 #else /* AF_INET6 */
3807 * I guess this platform doesn't support
3808 * IPv6, so we just reject all packets.
3810 return gen_false(cstate
);
3811 #endif /* AF_INET6 */
3817 * Not a type on which we support filtering.
3818 * XXX - support those that have AF_ values
3819 * #defined on this platform, at least?
3821 return gen_false(cstate
);
3826 * af field is host byte order in contrast to the rest of
3829 if (ll_proto
== ETHERTYPE_IP
)
3830 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3832 else if (ll_proto
== ETHERTYPE_IPV6
)
3833 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3836 return gen_false(cstate
);
3840 case DLT_ARCNET_LINUX
:
3842 * XXX should we check for first fragment if the protocol
3848 return gen_false(cstate
);
3850 case ETHERTYPE_IPV6
:
3851 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3855 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3857 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3863 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3865 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3870 case ETHERTYPE_REVARP
:
3871 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3874 case ETHERTYPE_ATALK
:
3875 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3882 case ETHERTYPE_ATALK
:
3883 return gen_true(cstate
);
3885 return gen_false(cstate
);
3891 * XXX - assumes a 2-byte Frame Relay header with
3892 * DLCI and flags. What if the address is longer?
3898 * Check for the special NLPID for IP.
3900 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3902 case ETHERTYPE_IPV6
:
3904 * Check for the special NLPID for IPv6.
3906 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3910 * Check for several OSI protocols.
3912 * Frame Relay packets typically have an OSI
3913 * NLPID at the beginning; we check for each
3916 * What we check for is the NLPID and a frame
3917 * control field of UI, i.e. 0x03 followed
3920 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3921 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3922 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3928 return gen_false(cstate
);
3933 break; // not implemented
3935 case DLT_JUNIPER_MFR
:
3936 case DLT_JUNIPER_MLFR
:
3937 case DLT_JUNIPER_MLPPP
:
3938 case DLT_JUNIPER_ATM1
:
3939 case DLT_JUNIPER_ATM2
:
3940 case DLT_JUNIPER_PPPOE
:
3941 case DLT_JUNIPER_PPPOE_ATM
:
3942 case DLT_JUNIPER_GGSN
:
3943 case DLT_JUNIPER_ES
:
3944 case DLT_JUNIPER_MONITOR
:
3945 case DLT_JUNIPER_SERVICES
:
3946 case DLT_JUNIPER_ETHER
:
3947 case DLT_JUNIPER_PPP
:
3948 case DLT_JUNIPER_FRELAY
:
3949 case DLT_JUNIPER_CHDLC
:
3950 case DLT_JUNIPER_VP
:
3951 case DLT_JUNIPER_ST
:
3952 case DLT_JUNIPER_ISM
:
3953 case DLT_JUNIPER_VS
:
3954 case DLT_JUNIPER_SRX_E2E
:
3955 case DLT_JUNIPER_FIBRECHANNEL
:
3956 case DLT_JUNIPER_ATM_CEMIC
:
3958 /* just lets verify the magic number for now -
3959 * on ATM we may have up to 6 different encapsulations on the wire
3960 * and need a lot of heuristics to figure out that the payload
3963 * FIXME encapsulation specific BPF_ filters
3965 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3967 case DLT_BACNET_MS_TP
:
3968 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3971 return gen_ipnet_linktype(cstate
, ll_proto
);
3973 case DLT_LINUX_IRDA
:
3976 case DLT_MTP2_WITH_PHDR
:
3979 case DLT_LINUX_LAPD
:
3980 case DLT_USB_FREEBSD
:
3982 case DLT_USB_LINUX_MMAPPED
:
3984 case DLT_BLUETOOTH_HCI_H4
:
3985 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3987 case DLT_CAN_SOCKETCAN
:
3988 case DLT_IEEE802_15_4
:
3989 case DLT_IEEE802_15_4_LINUX
:
3990 case DLT_IEEE802_15_4_NONASK_PHY
:
3991 case DLT_IEEE802_15_4_NOFCS
:
3992 case DLT_IEEE802_15_4_TAP
:
3993 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3996 case DLT_IPMB_KONTRON
:
4000 /* Using the fixed-size NFLOG header it is possible to tell only
4001 * the address family of the packet, other meaningful data is
4002 * either missing or behind TLVs.
4004 break; // not implemented
4008 * Does this link-layer header type have a field
4009 * indicating the type of the next protocol? If
4010 * so, off_linktype.constant_part will be the offset of that
4011 * field in the packet; if not, it will be OFFSET_NOT_SET.
4013 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4015 * Yes; assume it's an Ethernet type. (If
4016 * it's not, it needs to be handled specially
4019 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4023 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4024 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4028 * Check for an LLC SNAP packet with a given organization code and
4029 * protocol type; we check the entire contents of the 802.2 LLC and
4030 * snap headers, checking for DSAP and SSAP of SNAP and a control
4031 * field of 0x03 in the LLC header, and for the specified organization
4032 * code and protocol type in the SNAP header.
4034 static struct block
*
4035 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4037 u_char snapblock
[8];
4039 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4040 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4041 snapblock
[2] = 0x03; /* control = UI */
4042 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4043 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4044 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4045 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4046 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4047 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4051 * Generate code to match frames with an LLC header.
4053 static struct block
*
4054 gen_llc_internal(compiler_state_t
*cstate
)
4056 struct block
*b0
, *b1
;
4058 switch (cstate
->linktype
) {
4062 * We check for an Ethernet type field less or equal than
4063 * 1500, which means it's an 802.3 length field.
4065 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4068 * Now check for the purported DSAP and SSAP not being
4069 * 0xFF, to rule out NetWare-over-802.3.
4071 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4077 * We check for LLC traffic.
4079 b0
= gen_atmtype_llc(cstate
);
4082 case DLT_IEEE802
: /* Token Ring */
4084 * XXX - check for LLC frames.
4086 return gen_true(cstate
);
4090 * XXX - check for LLC frames.
4092 return gen_true(cstate
);
4094 case DLT_ATM_RFC1483
:
4096 * For LLC encapsulation, these are defined to have an
4099 * For VC encapsulation, they don't, but there's no
4100 * way to check for that; the protocol used on the VC
4101 * is negotiated out of band.
4103 return gen_true(cstate
);
4105 case DLT_IEEE802_11
:
4106 case DLT_PRISM_HEADER
:
4107 case DLT_IEEE802_11_RADIO
:
4108 case DLT_IEEE802_11_RADIO_AVS
:
4111 * Check that we have a data frame.
4113 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4114 IEEE80211_FC0_TYPE_DATA
,
4115 IEEE80211_FC0_TYPE_MASK
);
4118 fail_kw_on_dlt(cstate
, "llc");
4124 gen_llc(compiler_state_t
*cstate
)
4127 * Catch errors reported by us and routines below us, and return NULL
4130 if (setjmp(cstate
->top_ctx
))
4133 return gen_llc_internal(cstate
);
4137 gen_llc_i(compiler_state_t
*cstate
)
4139 struct block
*b0
, *b1
;
4143 * Catch errors reported by us and routines below us, and return NULL
4146 if (setjmp(cstate
->top_ctx
))
4150 * Check whether this is an LLC frame.
4152 b0
= gen_llc_internal(cstate
);
4155 * Load the control byte and test the low-order bit; it must
4156 * be clear for I frames.
4158 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4159 b1
= new_block(cstate
, JMP(BPF_JSET
));
4168 gen_llc_s(compiler_state_t
*cstate
)
4170 struct block
*b0
, *b1
;
4173 * Catch errors reported by us and routines below us, and return NULL
4176 if (setjmp(cstate
->top_ctx
))
4180 * Check whether this is an LLC frame.
4182 b0
= gen_llc_internal(cstate
);
4185 * Now compare the low-order 2 bit of the control byte against
4186 * the appropriate value for S frames.
4188 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4194 gen_llc_u(compiler_state_t
*cstate
)
4196 struct block
*b0
, *b1
;
4199 * Catch errors reported by us and routines below us, and return NULL
4202 if (setjmp(cstate
->top_ctx
))
4206 * Check whether this is an LLC frame.
4208 b0
= gen_llc_internal(cstate
);
4211 * Now compare the low-order 2 bit of the control byte against
4212 * the appropriate value for U frames.
4214 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4220 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4222 struct block
*b0
, *b1
;
4225 * Catch errors reported by us and routines below us, and return NULL
4228 if (setjmp(cstate
->top_ctx
))
4232 * Check whether this is an LLC frame.
4234 b0
= gen_llc_internal(cstate
);
4237 * Now check for an S frame with the appropriate type.
4239 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4245 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4247 struct block
*b0
, *b1
;
4250 * Catch errors reported by us and routines below us, and return NULL
4253 if (setjmp(cstate
->top_ctx
))
4257 * Check whether this is an LLC frame.
4259 b0
= gen_llc_internal(cstate
);
4262 * Now check for a U frame with the appropriate type.
4264 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4270 * Generate code to match a particular packet type, for link-layer types
4271 * using 802.2 LLC headers.
4273 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4274 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4276 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4277 * value, if <= ETHERMTU. We use that to determine whether to
4278 * match the DSAP or both DSAP and LSAP or to check the OUI and
4279 * protocol ID in a SNAP header.
4281 static struct block
*
4282 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4285 * XXX - handle token-ring variable-length header.
4291 case LLCSAP_NETBEUI
:
4293 * XXX - should we check both the DSAP and the
4294 * SSAP, like this, or should we check just the
4295 * DSAP, as we do for other SAP values?
4297 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4298 ((ll_proto
<< 8) | ll_proto
));
4302 * XXX - are there ever SNAP frames for IPX on
4303 * non-Ethernet 802.x networks?
4305 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4307 case ETHERTYPE_ATALK
:
4309 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4310 * SNAP packets with an organization code of
4311 * 0x080007 (Apple, for Appletalk) and a protocol
4312 * type of ETHERTYPE_ATALK (Appletalk).
4314 * XXX - check for an organization code of
4315 * encapsulated Ethernet as well?
4317 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4321 * XXX - we don't have to check for IPX 802.3
4322 * here, but should we check for the IPX Ethertype?
4324 if (ll_proto
<= ETHERMTU
) {
4326 * This is an LLC SAP value, so check
4329 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4332 * This is an Ethernet type; we assume that it's
4333 * unlikely that it'll appear in the right place
4334 * at random, and therefore check only the
4335 * location that would hold the Ethernet type
4336 * in a SNAP frame with an organization code of
4337 * 0x000000 (encapsulated Ethernet).
4339 * XXX - if we were to check for the SNAP DSAP and
4340 * LSAP, as per XXX, and were also to check for an
4341 * organization code of 0x000000 (encapsulated
4342 * Ethernet), we'd do
4344 * return gen_snap(cstate, 0x000000, ll_proto);
4346 * here; for now, we don't, as per the above.
4347 * I don't know whether it's worth the extra CPU
4348 * time to do the right check or not.
4350 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4355 static struct block
*
4356 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4357 int dir
, u_int src_off
, u_int dst_off
)
4359 struct block
*b0
, *b1
;
4373 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4374 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4380 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4381 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4391 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4398 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4402 static struct block
*
4403 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4404 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4406 struct block
*b0
, *b1
;
4409 * Code below needs to access four separate 32-bit parts of the 128-bit
4410 * IPv6 address and mask. In some OSes this is as simple as using the
4411 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4412 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4413 * far as libpcap sees it. Hence copy the data before use to avoid
4414 * potential unaligned memory access and the associated compiler
4415 * warnings (whether genuine or not).
4417 bpf_u_int32 a
[4], m
[4];
4430 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4431 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4437 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4438 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4448 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4455 /* this order is important */
4456 memcpy(a
, addr
, sizeof(a
));
4457 memcpy(m
, mask
, sizeof(m
));
4458 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4459 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4461 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4463 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4469 static struct block
*
4470 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4472 register struct block
*b0
, *b1
;
4476 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4479 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4482 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4483 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4489 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4490 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4500 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4508 * Like gen_ehostop, but for DLT_FDDI
4510 static struct block
*
4511 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4513 struct block
*b0
, *b1
;
4517 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4520 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4523 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4524 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4530 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4531 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4541 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4549 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4551 static struct block
*
4552 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4554 register struct block
*b0
, *b1
;
4558 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4561 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4564 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4565 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4571 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4572 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4582 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4590 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4591 * various 802.11 + radio headers.
4593 static struct block
*
4594 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4596 register struct block
*b0
, *b1
, *b2
;
4597 register struct slist
*s
;
4599 #ifdef ENABLE_WLAN_FILTERING_PATCH
4602 * We need to disable the optimizer because the optimizer is buggy
4603 * and wipes out some LD instructions generated by the below
4604 * code to validate the Frame Control bits
4606 cstate
->no_optimize
= 1;
4607 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4614 * For control frames, there is no SA.
4616 * For management frames, SA is at an
4617 * offset of 10 from the beginning of
4620 * For data frames, SA is at an offset
4621 * of 10 from the beginning of the packet
4622 * if From DS is clear, at an offset of
4623 * 16 from the beginning of the packet
4624 * if From DS is set and To DS is clear,
4625 * and an offset of 24 from the beginning
4626 * of the packet if From DS is set and To DS
4631 * Generate the tests to be done for data frames
4634 * First, check for To DS set, i.e. check "link[1] & 0x01".
4636 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4637 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4640 * If To DS is set, the SA is at 24.
4642 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4646 * Now, check for To DS not set, i.e. check
4647 * "!(link[1] & 0x01)".
4649 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4650 b2
= new_block(cstate
, JMP(BPF_JSET
));
4651 b2
->s
.k
= 0x01; /* To DS */
4656 * If To DS is not set, the SA is at 16.
4658 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4662 * Now OR together the last two checks. That gives
4663 * the complete set of checks for data frames with
4669 * Now check for From DS being set, and AND that with
4670 * the ORed-together checks.
4672 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4673 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4677 * Now check for data frames with From DS not set.
4679 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4680 b2
= new_block(cstate
, JMP(BPF_JSET
));
4681 b2
->s
.k
= 0x02; /* From DS */
4686 * If From DS isn't set, the SA is at 10.
4688 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4692 * Now OR together the checks for data frames with
4693 * From DS not set and for data frames with From DS
4694 * set; that gives the checks done for data frames.
4699 * Now check for a data frame.
4700 * I.e, check "link[0] & 0x08".
4702 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4703 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4706 * AND that with the checks done for data frames.
4711 * If the high-order bit of the type value is 0, this
4712 * is a management frame.
4713 * I.e, check "!(link[0] & 0x08)".
4715 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4716 b2
= new_block(cstate
, JMP(BPF_JSET
));
4722 * For management frames, the SA is at 10.
4724 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4728 * OR that with the checks done for data frames.
4729 * That gives the checks done for management and
4735 * If the low-order bit of the type value is 1,
4736 * this is either a control frame or a frame
4737 * with a reserved type, and thus not a
4740 * I.e., check "!(link[0] & 0x04)".
4742 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4743 b1
= new_block(cstate
, JMP(BPF_JSET
));
4749 * AND that with the checks for data and management
4759 * For control frames, there is no DA.
4761 * For management frames, DA is at an
4762 * offset of 4 from the beginning of
4765 * For data frames, DA is at an offset
4766 * of 4 from the beginning of the packet
4767 * if To DS is clear and at an offset of
4768 * 16 from the beginning of the packet
4773 * Generate the tests to be done for data frames.
4775 * First, check for To DS set, i.e. "link[1] & 0x01".
4777 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4778 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4781 * If To DS is set, the DA is at 16.
4783 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4787 * Now, check for To DS not set, i.e. check
4788 * "!(link[1] & 0x01)".
4790 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4791 b2
= new_block(cstate
, JMP(BPF_JSET
));
4792 b2
->s
.k
= 0x01; /* To DS */
4797 * If To DS is not set, the DA is at 4.
4799 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4803 * Now OR together the last two checks. That gives
4804 * the complete set of checks for data frames.
4809 * Now check for a data frame.
4810 * I.e, check "link[0] & 0x08".
4812 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4813 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4816 * AND that with the checks done for data frames.
4821 * If the high-order bit of the type value is 0, this
4822 * is a management frame.
4823 * I.e, check "!(link[0] & 0x08)".
4825 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4826 b2
= new_block(cstate
, JMP(BPF_JSET
));
4832 * For management frames, the DA is at 4.
4834 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4838 * OR that with the checks done for data frames.
4839 * That gives the checks done for management and
4845 * If the low-order bit of the type value is 1,
4846 * this is either a control frame or a frame
4847 * with a reserved type, and thus not a
4850 * I.e., check "!(link[0] & 0x04)".
4852 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4853 b1
= new_block(cstate
, JMP(BPF_JSET
));
4859 * AND that with the checks for data and management
4866 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4867 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4873 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4874 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4879 * XXX - add BSSID keyword?
4882 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4886 * Not present in CTS or ACK control frames.
4888 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4889 IEEE80211_FC0_TYPE_MASK
);
4890 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4891 IEEE80211_FC0_SUBTYPE_MASK
);
4892 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4893 IEEE80211_FC0_SUBTYPE_MASK
);
4896 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4902 * Not present in control frames.
4904 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4905 IEEE80211_FC0_TYPE_MASK
);
4906 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4912 * Present only if the direction mask has both "From DS"
4913 * and "To DS" set. Neither control frames nor management
4914 * frames should have both of those set, so we don't
4915 * check the frame type.
4917 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4918 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4919 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4925 * Not present in management frames; addr1 in other
4930 * If the high-order bit of the type value is 0, this
4931 * is a management frame.
4932 * I.e, check "(link[0] & 0x08)".
4934 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4935 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4940 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4943 * AND that with the check of addr1.
4950 * Not present in management frames; addr2, if present,
4955 * Not present in CTS or ACK control frames.
4957 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4958 IEEE80211_FC0_TYPE_MASK
);
4959 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4960 IEEE80211_FC0_SUBTYPE_MASK
);
4961 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4962 IEEE80211_FC0_SUBTYPE_MASK
);
4967 * If the high-order bit of the type value is 0, this
4968 * is a management frame.
4969 * I.e, check "(link[0] & 0x08)".
4971 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4972 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4975 * AND that with the check for frames other than
4976 * CTS and ACK frames.
4983 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4992 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4993 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4994 * as the RFC states.)
4996 static struct block
*
4997 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4999 register struct block
*b0
, *b1
;
5003 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
5006 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
5009 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5010 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5016 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5017 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5027 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5035 * This is quite tricky because there may be pad bytes in front of the
5036 * DECNET header, and then there are two possible data packet formats that
5037 * carry both src and dst addresses, plus 5 packet types in a format that
5038 * carries only the src node, plus 2 types that use a different format and
5039 * also carry just the src node.
5043 * Instead of doing those all right, we just look for data packets with
5044 * 0 or 1 bytes of padding. If you want to look at other packets, that
5045 * will require a lot more hacking.
5047 * To add support for filtering on DECNET "areas" (network numbers)
5048 * one would want to add a "mask" argument to this routine. That would
5049 * make the filter even more inefficient, although one could be clever
5050 * and not generate masking instructions if the mask is 0xFFFF.
5052 static struct block
*
5053 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
5055 struct block
*b0
, *b1
, *b2
, *tmp
;
5056 u_int offset_lh
; /* offset if long header is received */
5057 u_int offset_sh
; /* offset if short header is received */
5062 offset_sh
= 1; /* follows flags */
5063 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
5067 offset_sh
= 3; /* follows flags, dstnode */
5068 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5072 /* Inefficient because we do our Calvinball dance twice */
5073 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5074 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5080 /* Inefficient because we do our Calvinball dance twice */
5081 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5082 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5092 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5100 * In a DECnet message inside an Ethernet frame the first two bytes
5101 * immediately after EtherType are the [litle-endian] DECnet message
5102 * length, which is irrelevant in this context.
5104 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5105 * 8-bit bitmap of the optional padding before the packet route header.
5106 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5107 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5108 * means there aren't any PAD bytes after the bitmap, so the header
5109 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5110 * is set to 0, thus the header begins at the third byte.
5112 * The header can be in several (as mentioned above) formats, all of
5113 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5114 * (PF, "pad field") set to 0 regardless of any padding present before
5115 * the header. "Short header" means bits 0-2 of the bitmap encode the
5116 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5118 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5119 * values and the masks, this maps to the required single bytes of
5120 * the message correctly on both big-endian and little-endian hosts.
5121 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5122 * because the wire encoding is little-endian and BPF multiple-byte
5123 * loads are big-endian. When the destination address is near enough
5124 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5127 /* Check for pad = 1, long header case */
5128 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
5129 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
5130 BPF_H
, SWAPSHORT(addr
));
5132 /* Check for pad = 0, long header case */
5133 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
5134 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
5138 /* Check for pad = 1, short header case */
5140 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5141 0x81020000U
| SWAPSHORT(addr
),
5144 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
5145 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
5150 /* Check for pad = 0, short header case */
5152 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5153 0x02000000U
| SWAPSHORT(addr
) << 8,
5156 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
5157 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5167 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5168 * test the bottom-of-stack bit, and then check the version number
5169 * field in the IP header.
5171 static struct block
*
5172 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5174 struct block
*b0
, *b1
;
5179 /* match the bottom-of-stack bit */
5180 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5181 /* match the IPv4 version number */
5182 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5186 case ETHERTYPE_IPV6
:
5187 /* match the bottom-of-stack bit */
5188 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5189 /* match the IPv4 version number */
5190 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5195 /* FIXME add other L3 proto IDs */
5196 bpf_error(cstate
, "unsupported protocol over mpls");
5201 static struct block
*
5202 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5203 int proto
, int dir
, int type
)
5205 struct block
*b0
, *b1
;
5210 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5212 * Only check for non-IPv4 addresses if we're not
5213 * checking MPLS-encapsulated packets.
5215 if (cstate
->label_stack_depth
== 0) {
5216 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5218 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5224 // "link net NETNAME" and variations thereof
5225 break; // invalid qualifier
5228 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5229 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5234 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5235 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5240 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5241 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5252 break; // invalid qualifier
5255 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5256 b1
= gen_dnhostop(cstate
, addr
, dir
);
5287 break; // invalid qualifier
5292 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5293 type
== Q_NET
? "ip net" : "ip host");
5298 static struct block
*
5299 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5300 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5302 struct block
*b0
, *b1
;
5308 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5309 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5351 break; // invalid qualifier
5356 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5357 type
== Q_NET
? "ip6 net" : "ip6 host");
5364 * This primitive is non-directional by design, so the grammar does not allow
5365 * to qualify it with a direction.
5367 static struct block
*
5368 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5369 struct addrinfo
*alist
, int proto
)
5371 struct block
*b0
, *b1
, *tmp
;
5372 struct addrinfo
*ai
;
5373 struct sockaddr_in
*sin
;
5380 switch (cstate
->linktype
) {
5382 case DLT_NETANALYZER
:
5383 case DLT_NETANALYZER_TRANSPARENT
:
5384 b1
= gen_prevlinkhdr_check(cstate
);
5385 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5390 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5393 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5395 case DLT_IEEE802_11
:
5396 case DLT_PRISM_HEADER
:
5397 case DLT_IEEE802_11_RADIO_AVS
:
5398 case DLT_IEEE802_11_RADIO
:
5400 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5402 case DLT_IP_OVER_FC
:
5403 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5407 * This is LLC-multiplexed traffic; if it were
5408 * LANE, cstate->linktype would have been set to
5414 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5417 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5419 * Does it have an address?
5421 if (ai
->ai_addr
!= NULL
) {
5423 * Yes. Is it an IPv4 address?
5425 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5427 * Generate an entry for it.
5429 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5430 tmp
= gen_host(cstate
,
5431 ntohl(sin
->sin_addr
.s_addr
),
5432 0xffffffff, proto
, Q_OR
, Q_HOST
);
5434 * Is it the *first* IPv4 address?
5438 * Yes, so start with it.
5443 * No, so OR it into the
5455 * No IPv4 addresses found.
5463 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5468 static struct block
*
5469 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5472 struct block
*b1
= NULL
;
5477 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5481 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5485 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5489 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5492 #ifndef IPPROTO_IGMP
5493 #define IPPROTO_IGMP 2
5497 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5500 #ifndef IPPROTO_IGRP
5501 #define IPPROTO_IGRP 9
5504 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5508 #define IPPROTO_PIM 103
5512 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5515 #ifndef IPPROTO_VRRP
5516 #define IPPROTO_VRRP 112
5520 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5523 #ifndef IPPROTO_CARP
5524 #define IPPROTO_CARP 112
5528 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5532 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5536 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5540 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5544 break; // invalid syntax
5547 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5551 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5555 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5559 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5563 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5567 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5571 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5575 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5578 #ifndef IPPROTO_ICMPV6
5579 #define IPPROTO_ICMPV6 58
5582 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5586 #define IPPROTO_AH 51
5589 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5593 #define IPPROTO_ESP 50
5596 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5600 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5604 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5608 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5611 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5612 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5613 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5615 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5617 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5619 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5623 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5624 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5625 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5627 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5629 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5631 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5635 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5636 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5637 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5639 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5644 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5645 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5650 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5651 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5653 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5655 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5660 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5661 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5666 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5667 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5672 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5676 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5680 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5684 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5688 break; // invalid syntax
5695 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5699 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5702 * Catch errors reported by us and routines below us, and return NULL
5705 if (setjmp(cstate
->top_ctx
))
5708 return gen_proto_abbrev_internal(cstate
, proto
);
5711 static struct block
*
5712 gen_ipfrag(compiler_state_t
*cstate
)
5717 /* not IPv4 frag other than the first frag */
5718 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5719 b
= new_block(cstate
, JMP(BPF_JSET
));
5728 * Generate a comparison to a port value in the transport-layer header
5729 * at the specified offset from the beginning of that header.
5731 * XXX - this handles a variable-length prefix preceding the link-layer
5732 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5733 * variable-length link-layer headers (such as Token Ring or 802.11
5736 static struct block
*
5737 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5739 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5742 static struct block
*
5743 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5745 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5748 static struct block
*
5749 gen_portop(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5751 struct block
*b0
, *b1
, *tmp
;
5753 /* ip proto 'proto' and not a fragment other than the first fragment */
5754 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5755 b0
= gen_ipfrag(cstate
);
5760 b1
= gen_portatom(cstate
, 0, port
);
5764 b1
= gen_portatom(cstate
, 2, port
);
5768 tmp
= gen_portatom(cstate
, 0, port
);
5769 b1
= gen_portatom(cstate
, 2, port
);
5775 tmp
= gen_portatom(cstate
, 0, port
);
5776 b1
= gen_portatom(cstate
, 2, port
);
5786 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5798 static struct block
*
5799 gen_port(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5801 struct block
*b0
, *b1
, *tmp
;
5806 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5807 * not LLC encapsulation with LLCSAP_IP.
5809 * For IEEE 802 networks - which includes 802.5 token ring
5810 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5811 * says that SNAP encapsulation is used, not LLC encapsulation
5814 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5815 * RFC 2225 say that SNAP encapsulation is used, not LLC
5816 * encapsulation with LLCSAP_IP.
5818 * So we always check for ETHERTYPE_IP.
5820 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5826 b1
= gen_portop(cstate
, port
, (u_int
)ip_proto
, dir
);
5830 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5831 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5833 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5845 gen_portop6(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5847 struct block
*b0
, *b1
, *tmp
;
5849 /* ip6 proto 'proto' */
5850 /* XXX - catch the first fragment of a fragmented packet? */
5851 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5855 b1
= gen_portatom6(cstate
, 0, port
);
5859 b1
= gen_portatom6(cstate
, 2, port
);
5863 tmp
= gen_portatom6(cstate
, 0, port
);
5864 b1
= gen_portatom6(cstate
, 2, port
);
5870 tmp
= gen_portatom6(cstate
, 0, port
);
5871 b1
= gen_portatom6(cstate
, 2, port
);
5883 static struct block
*
5884 gen_port6(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5886 struct block
*b0
, *b1
, *tmp
;
5888 /* link proto ip6 */
5889 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5895 b1
= gen_portop6(cstate
, port
, (u_int
)ip_proto
, dir
);
5899 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5900 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5902 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5913 /* gen_portrange code */
5914 static struct block
*
5915 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5919 return gen_portatom(cstate
, off
, v1
);
5921 struct block
*b1
, *b2
;
5923 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5924 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5931 static struct block
*
5932 gen_portrangeop(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
5933 bpf_u_int32 proto
, int dir
)
5935 struct block
*b0
, *b1
, *tmp
;
5937 /* ip proto 'proto' and not a fragment other than the first fragment */
5938 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5939 b0
= gen_ipfrag(cstate
);
5944 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5948 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5952 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5953 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5959 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5960 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5970 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5982 static struct block
*
5983 gen_portrange(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
5986 struct block
*b0
, *b1
, *tmp
;
5989 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5995 b1
= gen_portrangeop(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
6000 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6001 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6003 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6014 static struct block
*
6015 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
6019 return gen_portatom6(cstate
, off
, v1
);
6021 struct block
*b1
, *b2
;
6023 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
6024 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
6031 static struct block
*
6032 gen_portrangeop6(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
6033 bpf_u_int32 proto
, int dir
)
6035 struct block
*b0
, *b1
, *tmp
;
6037 /* ip6 proto 'proto' */
6038 /* XXX - catch the first fragment of a fragmented packet? */
6039 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
6043 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6047 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6051 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6052 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6058 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6059 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6071 static struct block
*
6072 gen_portrange6(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
6075 struct block
*b0
, *b1
, *tmp
;
6077 /* link proto ip6 */
6078 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6084 b1
= gen_portrangeop6(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
6089 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6090 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6092 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6104 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6113 v
= pcap_nametoproto(name
);
6114 if (v
== PROTO_UNDEF
)
6115 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6119 /* XXX should look up h/w protocol type based on cstate->linktype */
6120 v
= pcap_nametoeproto(name
);
6121 if (v
== PROTO_UNDEF
) {
6122 v
= pcap_nametollc(name
);
6123 if (v
== PROTO_UNDEF
)
6124 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6129 if (strcmp(name
, "esis") == 0)
6131 else if (strcmp(name
, "isis") == 0)
6133 else if (strcmp(name
, "clnp") == 0)
6136 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6146 #if !defined(NO_PROTOCHAIN)
6148 * This primitive is non-directional by design, so the grammar does not allow
6149 * to qualify it with a direction.
6151 static struct block
*
6152 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6154 struct block
*b0
, *b
;
6155 struct slist
*s
[100];
6156 int fix2
, fix3
, fix4
, fix5
;
6157 int ahcheck
, again
, end
;
6159 int reg2
= alloc_reg(cstate
);
6161 memset(s
, 0, sizeof(s
));
6162 fix3
= fix4
= fix5
= 0;
6169 b0
= gen_protochain(cstate
, v
, Q_IP
);
6170 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6174 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6179 * We don't handle variable-length prefixes before the link-layer
6180 * header, or variable-length link-layer headers, here yet.
6181 * We might want to add BPF instructions to do the protochain
6182 * work, to simplify that and, on platforms that have a BPF
6183 * interpreter with the new instructions, let the filtering
6184 * be done in the kernel. (We already require a modified BPF
6185 * engine to do the protochain stuff, to support backward
6186 * branches, and backward branch support is unlikely to appear
6187 * in kernel BPF engines.)
6189 if (cstate
->off_linkpl
.is_variable
)
6190 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6193 * To quote a comment in optimize.c:
6195 * "These data structures are used in a Cocke and Schwartz style
6196 * value numbering scheme. Since the flowgraph is acyclic,
6197 * exit values can be propagated from a node's predecessors
6198 * provided it is uniquely defined."
6200 * "Acyclic" means "no backward branches", which means "no
6201 * loops", so we have to turn the optimizer off.
6203 cstate
->no_optimize
= 1;
6206 * s[0] is a dummy entry to protect other BPF insn from damage
6207 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6208 * hard to find interdependency made by jump table fixup.
6211 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6216 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6219 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6220 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6222 /* X = ip->ip_hl << 2 */
6223 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6224 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6229 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6231 /* A = ip6->ip_nxt */
6232 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6233 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6235 /* X = sizeof(struct ip6_hdr) */
6236 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6242 bpf_error(cstate
, "unsupported proto to gen_protochain");
6246 /* again: if (A == v) goto end; else fall through; */
6248 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6250 s
[i
]->s
.jt
= NULL
; /*later*/
6251 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6255 #ifndef IPPROTO_NONE
6256 #define IPPROTO_NONE 59
6258 /* if (A == IPPROTO_NONE) goto end */
6259 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6260 s
[i
]->s
.jt
= NULL
; /*later*/
6261 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6262 s
[i
]->s
.k
= IPPROTO_NONE
;
6263 s
[fix5
]->s
.jf
= s
[i
];
6267 if (proto
== Q_IPV6
) {
6268 int v6start
, v6end
, v6advance
, j
;
6271 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6272 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6273 s
[i
]->s
.jt
= NULL
; /*later*/
6274 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6275 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6276 s
[fix2
]->s
.jf
= s
[i
];
6278 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6279 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6280 s
[i
]->s
.jt
= NULL
; /*later*/
6281 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6282 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6284 /* if (A == IPPROTO_ROUTING) goto v6advance */
6285 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6286 s
[i
]->s
.jt
= NULL
; /*later*/
6287 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6288 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6290 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6291 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6292 s
[i
]->s
.jt
= NULL
; /*later*/
6293 s
[i
]->s
.jf
= NULL
; /*later*/
6294 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6304 * A = P[X + packet head];
6305 * X = X + (P[X + packet head + 1] + 1) * 8;
6307 /* A = P[X + packet head] */
6308 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6309 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6312 s
[i
] = new_stmt(cstate
, BPF_ST
);
6315 /* A = P[X + packet head + 1]; */
6316 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6317 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6320 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6324 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6328 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6332 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6335 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6339 /* goto again; (must use BPF_JA for backward jump) */
6340 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6341 s
[i
]->s
.k
= again
- i
- 1;
6342 s
[i
- 1]->s
.jf
= s
[i
];
6346 for (j
= v6start
; j
<= v6end
; j
++)
6347 s
[j
]->s
.jt
= s
[v6advance
];
6350 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6352 s
[fix2
]->s
.jf
= s
[i
];
6358 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6359 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6360 s
[i
]->s
.jt
= NULL
; /*later*/
6361 s
[i
]->s
.jf
= NULL
; /*later*/
6362 s
[i
]->s
.k
= IPPROTO_AH
;
6364 s
[fix3
]->s
.jf
= s
[ahcheck
];
6371 * X = X + (P[X + 1] + 2) * 4;
6374 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6376 /* A = P[X + packet head]; */
6377 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6378 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6381 s
[i
] = new_stmt(cstate
, BPF_ST
);
6385 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6388 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6392 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6394 /* A = P[X + packet head] */
6395 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6396 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6399 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6403 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6407 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6410 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6414 /* goto again; (must use BPF_JA for backward jump) */
6415 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6416 s
[i
]->s
.k
= again
- i
- 1;
6421 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6423 s
[fix2
]->s
.jt
= s
[end
];
6424 s
[fix4
]->s
.jf
= s
[end
];
6425 s
[fix5
]->s
.jt
= s
[end
];
6432 for (i
= 0; i
< max
- 1; i
++)
6433 s
[i
]->next
= s
[i
+ 1];
6434 s
[max
- 1]->next
= NULL
;
6438 * Remember, s[0] is dummy.
6440 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6442 free_reg(cstate
, reg2
);
6447 #endif /* !defined(NO_PROTOCHAIN) */
6450 * Generate code that checks whether the packet is a packet for protocol
6451 * <proto> and whether the type field in that protocol's header has
6452 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6453 * IP packet and checks the protocol number in the IP header against <v>.
6455 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6456 * against Q_IP and Q_IPV6.
6458 * This primitive is non-directional by design, so the grammar does not allow
6459 * to qualify it with a direction.
6461 static struct block
*
6462 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6464 struct block
*b0
, *b1
;
6469 b0
= gen_proto(cstate
, v
, Q_IP
);
6470 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6475 return gen_linktype(cstate
, v
);
6479 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6480 * not LLC encapsulation with LLCSAP_IP.
6482 * For IEEE 802 networks - which includes 802.5 token ring
6483 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6484 * says that SNAP encapsulation is used, not LLC encapsulation
6487 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6488 * RFC 2225 say that SNAP encapsulation is used, not LLC
6489 * encapsulation with LLCSAP_IP.
6491 * So we always check for ETHERTYPE_IP.
6493 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6494 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, v
);
6512 break; // invalid qualifier
6515 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6517 * Also check for a fragment header before the final
6520 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6521 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6523 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, v
);
6534 break; // invalid qualifier
6537 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6538 switch (cstate
->linktype
) {
6542 * Frame Relay packets typically have an OSI
6543 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6544 * generates code to check for all the OSI
6545 * NLPIDs, so calling it and then adding a check
6546 * for the particular NLPID for which we're
6547 * looking is bogus, as we can just check for
6550 * What we check for is the NLPID and a frame
6551 * control field value of UI, i.e. 0x03 followed
6554 * XXX - assumes a 2-byte Frame Relay header with
6555 * DLCI and flags. What if the address is longer?
6557 * XXX - what about SNAP-encapsulated frames?
6559 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6565 * Cisco uses an Ethertype lookalike - for OSI,
6568 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6569 /* OSI in C-HDLC is stuffed with a fudge byte */
6570 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6575 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6576 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6582 break; // invalid qualifier
6585 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6586 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6588 * 4 is the offset of the PDU type relative to the IS-IS
6590 * Except when it is not, see above.
6592 unsigned pdu_type_offset
;
6593 switch (cstate
->linktype
) {
6596 pdu_type_offset
= 5;
6599 pdu_type_offset
= 4;
6601 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6602 v
, ISIS_PDU_TYPE_MAX
);
6619 break; // invalid qualifier
6625 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6630 * Convert a non-numeric name to a port number.
6633 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6635 struct addrinfo hints
, *res
, *ai
;
6637 struct sockaddr_in
*in4
;
6639 struct sockaddr_in6
*in6
;
6644 * We check for both TCP and UDP in case there are
6645 * ambiguous entries.
6647 memset(&hints
, 0, sizeof(hints
));
6648 hints
.ai_family
= PF_UNSPEC
;
6649 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6650 hints
.ai_protocol
= ipproto
;
6651 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6658 * No such port. Just return -1.
6665 * We don't use strerror() because it's not
6666 * guaranteed to be thread-safe on all platforms
6667 * (probably because it might use a non-thread-local
6668 * buffer into which to format an error message
6669 * if the error code isn't one for which it has
6670 * a canned string; three cheers for C string
6673 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6675 port
= -2; /* a real error */
6681 * This is a real error, not just "there's
6682 * no such service name".
6684 * We don't use gai_strerror() because it's not
6685 * guaranteed to be thread-safe on all platforms
6686 * (probably because it might use a non-thread-local
6687 * buffer into which to format an error message
6688 * if the error code isn't one for which it has
6689 * a canned string; three cheers for C string
6692 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6694 port
= -2; /* a real error */
6699 * OK, we found it. Did it find anything?
6701 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6703 * Does it have an address?
6705 if (ai
->ai_addr
!= NULL
) {
6707 * Yes. Get a port number; we're done.
6709 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6710 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6711 port
= ntohs(in4
->sin_port
);
6715 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6716 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6717 port
= ntohs(in6
->sin6_port
);
6729 * Convert a string to a port number.
6732 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6742 * See if it's a number.
6744 ret
= stoulen(string
, string_size
, &val
, cstate
);
6748 /* Unknown port type - it's just a number. */
6749 *proto
= PROTO_UNDEF
;
6752 case STOULEN_NOT_OCTAL_NUMBER
:
6753 case STOULEN_NOT_HEX_NUMBER
:
6754 case STOULEN_NOT_DECIMAL_NUMBER
:
6756 * Not a valid number; try looking it up as a port.
6758 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6759 memcpy(cpy
, string
, string_size
);
6760 cpy
[string_size
] = '\0';
6761 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6762 if (tcp_port
== -2) {
6764 * We got a hard error; the error string has
6768 longjmp(cstate
->top_ctx
, 1);
6771 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6772 if (udp_port
== -2) {
6774 * We got a hard error; the error string has
6778 longjmp(cstate
->top_ctx
, 1);
6783 * We need to check /etc/services for ambiguous entries.
6784 * If we find an ambiguous entry, and it has the
6785 * same port number, change the proto to PROTO_UNDEF
6786 * so both TCP and UDP will be checked.
6788 if (tcp_port
>= 0) {
6789 val
= (bpf_u_int32
)tcp_port
;
6790 *proto
= IPPROTO_TCP
;
6791 if (udp_port
>= 0) {
6792 if (udp_port
== tcp_port
)
6793 *proto
= PROTO_UNDEF
;
6796 /* Can't handle ambiguous names that refer
6797 to different port numbers. */
6798 warning("ambiguous port %s in /etc/services",
6805 if (udp_port
>= 0) {
6806 val
= (bpf_u_int32
)udp_port
;
6807 *proto
= IPPROTO_UDP
;
6811 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6813 longjmp(cstate
->top_ctx
, 1);
6820 /* Error already set. */
6821 longjmp(cstate
->top_ctx
, 1);
6828 /* Should not happen */
6829 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6830 longjmp(cstate
->top_ctx
, 1);
6837 * Convert a string in the form PPP-PPP, which correspond to ports, to
6838 * a starting and ending port in a port range.
6841 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6842 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6845 const char *first
, *second
;
6846 size_t first_size
, second_size
;
6849 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6850 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6853 * Make sure there are no other hyphens.
6855 * XXX - we support named ports, but there are some port names
6856 * in /etc/services that include hyphens, so this would rule
6859 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6860 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6864 * Get the length of the first port.
6867 first_size
= hyphen_off
- string
;
6868 if (first_size
== 0) {
6869 /* Range of "-port", which we don't support. */
6870 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6874 * Try to convert it to a port.
6876 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6877 save_proto
= *proto
;
6880 * Get the length of the second port.
6882 second
= hyphen_off
+ 1;
6883 second_size
= strlen(second
);
6884 if (second_size
== 0) {
6885 /* Range of "port-", which we don't support. */
6886 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6890 * Try to convert it to a port.
6892 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6893 if (*proto
!= save_proto
)
6894 *proto
= PROTO_UNDEF
;
6898 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6900 int proto
= q
.proto
;
6904 bpf_u_int32 mask
, addr
;
6905 struct addrinfo
*res
, *res0
;
6906 struct sockaddr_in
*sin4
;
6909 struct sockaddr_in6
*sin6
;
6910 struct in6_addr mask128
;
6912 struct block
*b
, *tmp
;
6913 int port
, real_proto
;
6914 bpf_u_int32 port1
, port2
;
6917 * Catch errors reported by us and routines below us, and return NULL
6920 if (setjmp(cstate
->top_ctx
))
6926 addr
= pcap_nametonetaddr(name
);
6928 bpf_error(cstate
, "unknown network '%s'", name
);
6929 /* Left justify network addr and calculate its network mask */
6931 while (addr
&& (addr
& 0xff000000) == 0) {
6935 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6939 if (proto
== Q_LINK
) {
6940 switch (cstate
->linktype
) {
6943 case DLT_NETANALYZER
:
6944 case DLT_NETANALYZER_TRANSPARENT
:
6945 eaddr
= pcap_ether_hostton(name
);
6948 "unknown ether host '%s'", name
);
6949 tmp
= gen_prevlinkhdr_check(cstate
);
6950 b
= gen_ehostop(cstate
, eaddr
, dir
);
6957 eaddr
= pcap_ether_hostton(name
);
6960 "unknown FDDI host '%s'", name
);
6961 b
= gen_fhostop(cstate
, eaddr
, dir
);
6966 eaddr
= pcap_ether_hostton(name
);
6969 "unknown token ring host '%s'", name
);
6970 b
= gen_thostop(cstate
, eaddr
, dir
);
6974 case DLT_IEEE802_11
:
6975 case DLT_PRISM_HEADER
:
6976 case DLT_IEEE802_11_RADIO_AVS
:
6977 case DLT_IEEE802_11_RADIO
:
6979 eaddr
= pcap_ether_hostton(name
);
6982 "unknown 802.11 host '%s'", name
);
6983 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6987 case DLT_IP_OVER_FC
:
6988 eaddr
= pcap_ether_hostton(name
);
6991 "unknown Fibre Channel host '%s'", name
);
6992 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6997 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6998 } else if (proto
== Q_DECNET
) {
7000 * A long time ago on Ultrix libpcap supported
7001 * translation of DECnet host names into DECnet
7002 * addresses, but this feature is history now.
7004 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
7007 memset(&mask128
, 0xff, sizeof(mask128
));
7009 res0
= res
= pcap_nametoaddrinfo(name
);
7011 bpf_error(cstate
, "unknown host '%s'", name
);
7018 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
7019 tproto
== Q_DEFAULT
) {
7025 for (res
= res0
; res
; res
= res
->ai_next
) {
7026 switch (res
->ai_family
) {
7029 if (tproto
== Q_IPV6
)
7033 sin4
= (struct sockaddr_in
*)
7035 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
7036 0xffffffff, tproto
, dir
, q
.addr
);
7040 if (tproto6
== Q_IP
)
7043 sin6
= (struct sockaddr_in6
*)
7045 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
7046 &mask128
, tproto6
, dir
, q
.addr
);
7059 bpf_error(cstate
, "unknown host '%s'%s", name
,
7060 (proto
== Q_DEFAULT
)
7062 : " for specified address family");
7068 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
7069 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
7070 bpf_error(cstate
, "unknown port '%s'", name
);
7071 if (proto
== Q_UDP
) {
7072 if (real_proto
== IPPROTO_TCP
)
7073 bpf_error(cstate
, "port '%s' is tcp", name
);
7074 else if (real_proto
== IPPROTO_SCTP
)
7075 bpf_error(cstate
, "port '%s' is sctp", name
);
7077 /* override PROTO_UNDEF */
7078 real_proto
= IPPROTO_UDP
;
7080 if (proto
== Q_TCP
) {
7081 if (real_proto
== IPPROTO_UDP
)
7082 bpf_error(cstate
, "port '%s' is udp", name
);
7084 else if (real_proto
== IPPROTO_SCTP
)
7085 bpf_error(cstate
, "port '%s' is sctp", name
);
7087 /* override PROTO_UNDEF */
7088 real_proto
= IPPROTO_TCP
;
7090 if (proto
== Q_SCTP
) {
7091 if (real_proto
== IPPROTO_UDP
)
7092 bpf_error(cstate
, "port '%s' is udp", name
);
7094 else if (real_proto
== IPPROTO_TCP
)
7095 bpf_error(cstate
, "port '%s' is tcp", name
);
7097 /* override PROTO_UNDEF */
7098 real_proto
= IPPROTO_SCTP
;
7101 bpf_error(cstate
, "illegal port number %d < 0", port
);
7103 bpf_error(cstate
, "illegal port number %d > 65535", port
);
7104 b
= gen_port(cstate
, port
, real_proto
, dir
);
7105 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
7109 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
7110 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
7111 if (proto
== Q_UDP
) {
7112 if (real_proto
== IPPROTO_TCP
)
7113 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7114 else if (real_proto
== IPPROTO_SCTP
)
7115 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7117 /* override PROTO_UNDEF */
7118 real_proto
= IPPROTO_UDP
;
7120 if (proto
== Q_TCP
) {
7121 if (real_proto
== IPPROTO_UDP
)
7122 bpf_error(cstate
, "port in range '%s' is udp", name
);
7123 else if (real_proto
== IPPROTO_SCTP
)
7124 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7126 /* override PROTO_UNDEF */
7127 real_proto
= IPPROTO_TCP
;
7129 if (proto
== Q_SCTP
) {
7130 if (real_proto
== IPPROTO_UDP
)
7131 bpf_error(cstate
, "port in range '%s' is udp", name
);
7132 else if (real_proto
== IPPROTO_TCP
)
7133 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7135 /* override PROTO_UNDEF */
7136 real_proto
= IPPROTO_SCTP
;
7139 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7141 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7143 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
7144 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
7149 eaddr
= pcap_ether_hostton(name
);
7151 bpf_error(cstate
, "unknown ether host: %s", name
);
7153 res
= pcap_nametoaddrinfo(name
);
7156 bpf_error(cstate
, "unknown host '%s'", name
);
7157 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
7162 bpf_error(cstate
, "unknown host '%s'", name
);
7165 bpf_error(cstate
, "'gateway' not supported in this configuration");
7169 real_proto
= lookup_proto(cstate
, name
, proto
);
7170 if (real_proto
>= 0)
7171 return gen_proto(cstate
, real_proto
, proto
);
7173 bpf_error(cstate
, "unknown protocol: %s", name
);
7175 #if !defined(NO_PROTOCHAIN)
7177 real_proto
= lookup_proto(cstate
, name
, proto
);
7178 if (real_proto
>= 0)
7179 return gen_protochain(cstate
, real_proto
, proto
);
7181 bpf_error(cstate
, "unknown protocol: %s", name
);
7182 #endif /* !defined(NO_PROTOCHAIN) */
7193 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7194 bpf_u_int32 masklen
, struct qual q
)
7196 register int nlen
, mlen
;
7201 * Catch errors reported by us and routines below us, and return NULL
7204 if (setjmp(cstate
->top_ctx
))
7207 nlen
= pcapint_atoin(s1
, &n
);
7209 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7210 /* Promote short ipaddr */
7214 mlen
= pcapint_atoin(s2
, &m
);
7216 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7217 /* Promote short ipaddr */
7220 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7223 /* Convert mask len to mask */
7225 bpf_error(cstate
, "mask length must be <= 32");
7226 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7227 m
= (bpf_u_int32
)m64
;
7229 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7236 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7239 // Q_HOST and Q_GATEWAY only (see the grammar)
7240 bpf_error(cstate
, "Mask syntax for networks only");
7247 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7255 * Catch errors reported by us and routines below us, and return NULL
7258 if (setjmp(cstate
->top_ctx
))
7265 * v contains a 32-bit unsigned parsed from a string of the
7266 * form {N}, which could be decimal, hexadecimal or octal.
7267 * Although it would be possible to use the value as a raw
7268 * 16-bit DECnet address when the value fits into 16 bits, this
7269 * would be a questionable feature: DECnet address wire
7270 * encoding is little-endian, so this would not work as
7271 * intuitively as the same works for [big-endian] IPv4
7272 * addresses (0x01020304 means 1.2.3.4).
7274 if (proto
== Q_DECNET
)
7275 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7277 } else if (proto
== Q_DECNET
) {
7279 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7280 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7281 * for a valid DECnet address.
7283 vlen
= pcapint_atodn(s
, &v
);
7285 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7288 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7289 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7292 vlen
= pcapint_atoin(s
, &v
);
7294 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7302 if (proto
== Q_DECNET
)
7303 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7304 else if (proto
== Q_LINK
) {
7305 // "link (host|net) IPV4ADDR" and variations thereof
7306 bpf_error(cstate
, "illegal link layer address");
7309 if (s
== NULL
&& q
.addr
== Q_NET
) {
7310 /* Promote short net number */
7311 while (v
&& (v
& 0xff000000) == 0) {
7316 /* Promote short ipaddr */
7318 mask
<<= 32 - vlen
;
7320 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7324 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7327 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7331 b
= gen_port(cstate
, v
, proto
, dir
);
7332 gen_or(gen_port6(cstate
, v
, proto
, dir
), b
);
7337 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7340 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7344 b
= gen_portrange(cstate
, v
, v
, proto
, dir
);
7345 gen_or(gen_portrange6(cstate
, v
, v
, proto
, dir
), b
);
7350 bpf_error(cstate
, "'gateway' requires a name");
7354 return gen_proto(cstate
, v
, proto
);
7356 #if !defined(NO_PROTOCHAIN)
7358 return gen_protochain(cstate
, v
, proto
);
7374 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7377 struct addrinfo
*res
;
7378 struct in6_addr
*addr
;
7379 struct in6_addr mask
;
7381 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7384 * Catch errors reported by us and routines below us, and return NULL
7387 if (setjmp(cstate
->top_ctx
))
7390 res
= pcap_nametoaddrinfo(s
);
7392 bpf_error(cstate
, "invalid ip6 address %s", s
);
7395 bpf_error(cstate
, "%s resolved to multiple address", s
);
7396 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7398 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7399 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7400 memset(&mask
, 0, sizeof(mask
));
7401 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7403 mask
.s6_addr
[masklen
/ 8] =
7404 (0xff << (8 - masklen
% 8)) & 0xff;
7407 memcpy(a
, addr
, sizeof(a
));
7408 memcpy(m
, &mask
, sizeof(m
));
7409 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7410 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7411 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7419 bpf_error(cstate
, "Mask syntax for networks only");
7423 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7429 // Q_GATEWAY only (see the grammar)
7430 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7437 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7439 struct block
*b
, *tmp
;
7442 * Catch errors reported by us and routines below us, and return NULL
7445 if (setjmp(cstate
->top_ctx
))
7448 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7449 cstate
->e
= pcap_ether_aton(s
);
7450 if (cstate
->e
== NULL
)
7451 bpf_error(cstate
, "malloc");
7452 switch (cstate
->linktype
) {
7454 case DLT_NETANALYZER
:
7455 case DLT_NETANALYZER_TRANSPARENT
:
7456 tmp
= gen_prevlinkhdr_check(cstate
);
7457 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7462 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7465 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7467 case DLT_IEEE802_11
:
7468 case DLT_PRISM_HEADER
:
7469 case DLT_IEEE802_11_RADIO_AVS
:
7470 case DLT_IEEE802_11_RADIO
:
7472 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7474 case DLT_IP_OVER_FC
:
7475 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7480 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7487 bpf_error(cstate
, "ethernet address used in non-ether expression");
7492 sappend(struct slist
*s0
, struct slist
*s1
)
7495 * This is definitely not the best way to do this, but the
7496 * lists will rarely get long.
7503 static struct slist
*
7504 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7508 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7513 static struct slist
*
7514 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7518 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7524 * Modify "index" to use the value stored into its register as an
7525 * offset relative to the beginning of the header for the protocol
7526 * "proto", and allocate a register and put an item "size" bytes long
7527 * (1, 2, or 4) at that offset into that register, making it the register
7530 static struct arth
*
7531 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7535 struct slist
*s
, *tmp
;
7537 int regno
= alloc_reg(cstate
);
7539 free_reg(cstate
, inst
->regno
);
7543 bpf_error(cstate
, "data size must be 1, 2, or 4");
7560 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7564 * The offset is relative to the beginning of the packet
7565 * data, if we have a radio header. (If we don't, this
7568 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7569 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7570 cstate
->linktype
!= DLT_PRISM_HEADER
)
7571 bpf_error(cstate
, "radio information not present in capture");
7574 * Load into the X register the offset computed into the
7575 * register specified by "index".
7577 s
= xfer_to_x(cstate
, inst
);
7580 * Load the item at that offset.
7582 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7584 sappend(inst
->s
, s
);
7589 * The offset is relative to the beginning of
7590 * the link-layer header.
7592 * XXX - what about ATM LANE? Should the index be
7593 * relative to the beginning of the AAL5 frame, so
7594 * that 0 refers to the beginning of the LE Control
7595 * field, or relative to the beginning of the LAN
7596 * frame, so that 0 refers, for Ethernet LANE, to
7597 * the beginning of the destination address?
7599 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7602 * If "s" is non-null, it has code to arrange that the
7603 * X register contains the length of the prefix preceding
7604 * the link-layer header. Add to it the offset computed
7605 * into the register specified by "index", and move that
7606 * into the X register. Otherwise, just load into the X
7607 * register the offset computed into the register specified
7611 sappend(s
, xfer_to_a(cstate
, inst
));
7612 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7613 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7615 s
= xfer_to_x(cstate
, inst
);
7618 * Load the item at the sum of the offset we've put in the
7619 * X register and the offset of the start of the link
7620 * layer header (which is 0 if the radio header is
7621 * variable-length; that header length is what we put
7622 * into the X register and then added to the index).
7624 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7625 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7627 sappend(inst
->s
, s
);
7641 * The offset is relative to the beginning of
7642 * the network-layer header.
7643 * XXX - are there any cases where we want
7644 * cstate->off_nl_nosnap?
7646 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7649 * If "s" is non-null, it has code to arrange that the
7650 * X register contains the variable part of the offset
7651 * of the link-layer payload. Add to it the offset
7652 * computed into the register specified by "index",
7653 * and move that into the X register. Otherwise, just
7654 * load into the X register the offset computed into
7655 * the register specified by "index".
7658 sappend(s
, xfer_to_a(cstate
, inst
));
7659 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7660 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7662 s
= xfer_to_x(cstate
, inst
);
7665 * Load the item at the sum of the offset we've put in the
7666 * X register, the offset of the start of the network
7667 * layer header from the beginning of the link-layer
7668 * payload, and the constant part of the offset of the
7669 * start of the link-layer payload.
7671 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7672 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7674 sappend(inst
->s
, s
);
7677 * Do the computation only if the packet contains
7678 * the protocol in question.
7680 b
= gen_proto_abbrev_internal(cstate
, proto
);
7682 gen_and(inst
->b
, b
);
7696 * The offset is relative to the beginning of
7697 * the transport-layer header.
7699 * Load the X register with the length of the IPv4 header
7700 * (plus the offset of the link-layer header, if it's
7701 * a variable-length header), in bytes.
7703 * XXX - are there any cases where we want
7704 * cstate->off_nl_nosnap?
7705 * XXX - we should, if we're built with
7706 * IPv6 support, generate code to load either
7707 * IPv4, IPv6, or both, as appropriate.
7709 s
= gen_loadx_iphdrlen(cstate
);
7712 * The X register now contains the sum of the variable
7713 * part of the offset of the link-layer payload and the
7714 * length of the network-layer header.
7716 * Load into the A register the offset relative to
7717 * the beginning of the transport layer header,
7718 * add the X register to that, move that to the
7719 * X register, and load with an offset from the
7720 * X register equal to the sum of the constant part of
7721 * the offset of the link-layer payload and the offset,
7722 * relative to the beginning of the link-layer payload,
7723 * of the network-layer header.
7725 sappend(s
, xfer_to_a(cstate
, inst
));
7726 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7727 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7728 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7729 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7730 sappend(inst
->s
, s
);
7733 * Do the computation only if the packet contains
7734 * the protocol in question - which is true only
7735 * if this is an IP datagram and is the first or
7736 * only fragment of that datagram.
7738 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7740 gen_and(inst
->b
, b
);
7741 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7746 * Do the computation only if the packet contains
7747 * the protocol in question.
7749 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7751 gen_and(inst
->b
, b
);
7755 * Check if we have an icmp6 next header
7757 b
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, 58);
7759 gen_and(inst
->b
, b
);
7762 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7764 * If "s" is non-null, it has code to arrange that the
7765 * X register contains the variable part of the offset
7766 * of the link-layer payload. Add to it the offset
7767 * computed into the register specified by "index",
7768 * and move that into the X register. Otherwise, just
7769 * load into the X register the offset computed into
7770 * the register specified by "index".
7773 sappend(s
, xfer_to_a(cstate
, inst
));
7774 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7775 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7777 s
= xfer_to_x(cstate
, inst
);
7780 * Load the item at the sum of the offset we've put in the
7781 * X register, the offset of the start of the network
7782 * layer header from the beginning of the link-layer
7783 * payload, and the constant part of the offset of the
7784 * start of the link-layer payload.
7786 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7787 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7790 sappend(inst
->s
, s
);
7794 inst
->regno
= regno
;
7795 s
= new_stmt(cstate
, BPF_ST
);
7797 sappend(inst
->s
, s
);
7803 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7807 * Catch errors reported by us and routines below us, and return NULL
7810 if (setjmp(cstate
->top_ctx
))
7813 return gen_load_internal(cstate
, proto
, inst
, size
);
7816 static struct block
*
7817 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7818 struct arth
*a1
, int reversed
)
7820 struct slist
*s0
, *s1
, *s2
;
7821 struct block
*b
, *tmp
;
7823 s0
= xfer_to_x(cstate
, a1
);
7824 s1
= xfer_to_a(cstate
, a0
);
7825 if (code
== BPF_JEQ
) {
7826 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7827 b
= new_block(cstate
, JMP(code
));
7831 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7837 sappend(a0
->s
, a1
->s
);
7841 free_reg(cstate
, a0
->regno
);
7842 free_reg(cstate
, a1
->regno
);
7844 /* 'and' together protocol checks */
7847 gen_and(a0
->b
, tmp
= a1
->b
);
7861 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7862 struct arth
*a1
, int reversed
)
7865 * Catch errors reported by us and routines below us, and return NULL
7868 if (setjmp(cstate
->top_ctx
))
7871 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7875 gen_loadlen(compiler_state_t
*cstate
)
7882 * Catch errors reported by us and routines below us, and return NULL
7885 if (setjmp(cstate
->top_ctx
))
7888 regno
= alloc_reg(cstate
);
7889 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7890 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7891 s
->next
= new_stmt(cstate
, BPF_ST
);
7892 s
->next
->s
.k
= regno
;
7899 static struct arth
*
7900 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7906 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7908 reg
= alloc_reg(cstate
);
7910 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7912 s
->next
= new_stmt(cstate
, BPF_ST
);
7921 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7924 * Catch errors reported by us and routines below us, and return NULL
7927 if (setjmp(cstate
->top_ctx
))
7930 return gen_loadi_internal(cstate
, val
);
7934 * The a_arg dance is to avoid annoying whining by compilers that
7935 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7936 * It's not *used* after setjmp returns.
7939 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7941 struct arth
*a
= a_arg
;
7945 * Catch errors reported by us and routines below us, and return NULL
7948 if (setjmp(cstate
->top_ctx
))
7951 s
= xfer_to_a(cstate
, a
);
7953 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7956 s
= new_stmt(cstate
, BPF_ST
);
7964 * The a0_arg dance is to avoid annoying whining by compilers that
7965 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7966 * It's not *used* after setjmp returns.
7969 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7972 struct arth
*a0
= a0_arg
;
7973 struct slist
*s0
, *s1
, *s2
;
7976 * Catch errors reported by us and routines below us, and return NULL
7979 if (setjmp(cstate
->top_ctx
))
7983 * Disallow division by, or modulus by, zero; we do this here
7984 * so that it gets done even if the optimizer is disabled.
7986 * Also disallow shifts by a value greater than 31; we do this
7987 * here, for the same reason.
7989 if (code
== BPF_DIV
) {
7990 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7991 bpf_error(cstate
, "division by zero");
7992 } else if (code
== BPF_MOD
) {
7993 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7994 bpf_error(cstate
, "modulus by zero");
7995 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7996 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7997 bpf_error(cstate
, "shift by more than 31 bits");
7999 s0
= xfer_to_x(cstate
, a1
);
8000 s1
= xfer_to_a(cstate
, a0
);
8001 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
8006 sappend(a0
->s
, a1
->s
);
8008 free_reg(cstate
, a0
->regno
);
8009 free_reg(cstate
, a1
->regno
);
8011 s0
= new_stmt(cstate
, BPF_ST
);
8012 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
8019 * Initialize the table of used registers and the current register.
8022 init_regs(compiler_state_t
*cstate
)
8025 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
8029 * Return the next free register.
8032 alloc_reg(compiler_state_t
*cstate
)
8034 int n
= BPF_MEMWORDS
;
8037 if (cstate
->regused
[cstate
->curreg
])
8038 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
8040 cstate
->regused
[cstate
->curreg
] = 1;
8041 return cstate
->curreg
;
8044 bpf_error(cstate
, "too many registers needed to evaluate expression");
8049 * Return a register to the table so it can
8053 free_reg(compiler_state_t
*cstate
, int n
)
8055 cstate
->regused
[n
] = 0;
8058 static struct block
*
8059 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
8063 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
8064 return gen_jmp(cstate
, jmp
, n
, s
);
8068 gen_greater(compiler_state_t
*cstate
, int n
)
8071 * Catch errors reported by us and routines below us, and return NULL
8074 if (setjmp(cstate
->top_ctx
))
8077 return gen_len(cstate
, BPF_JGE
, n
);
8081 * Actually, this is less than or equal.
8084 gen_less(compiler_state_t
*cstate
, int n
)
8089 * Catch errors reported by us and routines below us, and return NULL
8092 if (setjmp(cstate
->top_ctx
))
8095 b
= gen_len(cstate
, BPF_JGT
, n
);
8102 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8103 * the beginning of the link-layer header.
8104 * XXX - that means you can't test values in the radiotap header, but
8105 * as that header is difficult if not impossible to parse generally
8106 * without a loop, that might not be a severe problem. A new keyword
8107 * "radio" could be added for that, although what you'd really want
8108 * would be a way of testing particular radio header values, which
8109 * would generate code appropriate to the radio header in question.
8112 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8118 * Catch errors reported by us and routines below us, and return NULL
8121 if (setjmp(cstate
->top_ctx
))
8124 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
8131 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8134 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8138 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8142 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8146 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8150 // Load the required byte first.
8151 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
8153 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
8160 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8162 bpf_u_int32 hostmask
;
8163 struct block
*b0
, *b1
, *b2
;
8164 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8167 * Catch errors reported by us and routines below us, and return NULL
8170 if (setjmp(cstate
->top_ctx
))
8177 switch (cstate
->linktype
) {
8179 case DLT_ARCNET_LINUX
:
8180 // ARCnet broadcast is [8-bit] destination address 0.
8181 return gen_ahostop(cstate
, 0, Q_DST
);
8183 case DLT_NETANALYZER
:
8184 case DLT_NETANALYZER_TRANSPARENT
:
8185 b1
= gen_prevlinkhdr_check(cstate
);
8186 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8191 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8193 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8194 case DLT_IEEE802_11
:
8195 case DLT_PRISM_HEADER
:
8196 case DLT_IEEE802_11_RADIO_AVS
:
8197 case DLT_IEEE802_11_RADIO
:
8199 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8200 case DLT_IP_OVER_FC
:
8201 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8203 fail_kw_on_dlt(cstate
, "broadcast");
8208 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8209 * as an indication that we don't know the netmask, and fail
8212 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8213 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8214 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8215 hostmask
= ~cstate
->netmask
;
8216 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8217 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
8222 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
8227 * Generate code to test the low-order bit of a MAC address (that's
8228 * the bottom bit of the *first* byte).
8230 static struct block
*
8231 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8233 register struct slist
*s
;
8235 /* link[offset] & 1 != 0 */
8236 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8237 return gen_set(cstate
, 1, s
);
8241 gen_multicast(compiler_state_t
*cstate
, int proto
)
8243 register struct block
*b0
, *b1
, *b2
;
8244 register struct slist
*s
;
8247 * Catch errors reported by us and routines below us, and return NULL
8250 if (setjmp(cstate
->top_ctx
))
8257 switch (cstate
->linktype
) {
8259 case DLT_ARCNET_LINUX
:
8260 // ARCnet multicast is the same as broadcast.
8261 return gen_ahostop(cstate
, 0, Q_DST
);
8263 case DLT_NETANALYZER
:
8264 case DLT_NETANALYZER_TRANSPARENT
:
8265 b1
= gen_prevlinkhdr_check(cstate
);
8266 /* ether[0] & 1 != 0 */
8267 b0
= gen_mac_multicast(cstate
, 0);
8273 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8275 * XXX - was that referring to bit-order issues?
8277 /* fddi[1] & 1 != 0 */
8278 return gen_mac_multicast(cstate
, 1);
8280 /* tr[2] & 1 != 0 */
8281 return gen_mac_multicast(cstate
, 2);
8282 case DLT_IEEE802_11
:
8283 case DLT_PRISM_HEADER
:
8284 case DLT_IEEE802_11_RADIO_AVS
:
8285 case DLT_IEEE802_11_RADIO
:
8290 * For control frames, there is no DA.
8292 * For management frames, DA is at an
8293 * offset of 4 from the beginning of
8296 * For data frames, DA is at an offset
8297 * of 4 from the beginning of the packet
8298 * if To DS is clear and at an offset of
8299 * 16 from the beginning of the packet
8304 * Generate the tests to be done for data frames.
8306 * First, check for To DS set, i.e. "link[1] & 0x01".
8308 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8309 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8312 * If To DS is set, the DA is at 16.
8314 b0
= gen_mac_multicast(cstate
, 16);
8318 * Now, check for To DS not set, i.e. check
8319 * "!(link[1] & 0x01)".
8321 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8322 b2
= new_block(cstate
, JMP(BPF_JSET
));
8323 b2
->s
.k
= 0x01; /* To DS */
8328 * If To DS is not set, the DA is at 4.
8330 b1
= gen_mac_multicast(cstate
, 4);
8334 * Now OR together the last two checks. That gives
8335 * the complete set of checks for data frames.
8340 * Now check for a data frame.
8341 * I.e, check "link[0] & 0x08".
8343 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8344 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8347 * AND that with the checks done for data frames.
8352 * If the high-order bit of the type value is 0, this
8353 * is a management frame.
8354 * I.e, check "!(link[0] & 0x08)".
8356 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8357 b2
= new_block(cstate
, JMP(BPF_JSET
));
8363 * For management frames, the DA is at 4.
8365 b1
= gen_mac_multicast(cstate
, 4);
8369 * OR that with the checks done for data frames.
8370 * That gives the checks done for management and
8376 * If the low-order bit of the type value is 1,
8377 * this is either a control frame or a frame
8378 * with a reserved type, and thus not a
8381 * I.e., check "!(link[0] & 0x04)".
8383 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8384 b1
= new_block(cstate
, JMP(BPF_JSET
));
8390 * AND that with the checks for data and management
8395 case DLT_IP_OVER_FC
:
8396 b0
= gen_mac_multicast(cstate
, 2);
8401 fail_kw_on_dlt(cstate
, "multicast");
8405 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8406 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8411 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8412 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8416 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8422 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8423 * we can look at special meta-data in the filter expression; otherwise we
8424 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8425 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8426 * pcap_activate() conditionally sets.
8429 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8431 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8433 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8435 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8440 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8442 register struct block
*b0
;
8445 * Catch errors reported by us and routines below us, and return NULL
8448 if (setjmp(cstate
->top_ctx
))
8452 * Only some data link types support ifindex qualifiers.
8454 switch (cstate
->linktype
) {
8455 case DLT_LINUX_SLL2
:
8456 /* match packets on this interface */
8457 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8460 #if defined(__linux__)
8461 require_basic_bpf_extensions(cstate
, "ifindex");
8463 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8465 #else /* defined(__linux__) */
8466 fail_kw_on_dlt(cstate
, "ifindex");
8468 #endif /* defined(__linux__) */
8474 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8475 * Outbound traffic is sent by this machine, while inbound traffic is
8476 * sent by a remote machine (and may include packets destined for a
8477 * unicast or multicast link-layer address we are not subscribing to).
8478 * These are the same definitions implemented by pcap_setdirection().
8479 * Capturing only unicast traffic destined for this host is probably
8480 * better accomplished using a higher-layer filter.
8483 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8485 register struct block
*b0
;
8488 * Catch errors reported by us and routines below us, and return NULL
8491 if (setjmp(cstate
->top_ctx
))
8495 * Only some data link types support inbound/outbound qualifiers.
8497 switch (cstate
->linktype
) {
8499 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8500 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8504 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8505 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8509 /* match outgoing packets */
8510 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8512 /* to filter on inbound traffic, invert the match */
8517 case DLT_LINUX_SLL2
:
8518 /* match outgoing packets */
8519 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8521 /* to filter on inbound traffic, invert the match */
8527 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8528 outbound
? PF_OUT
: PF_IN
);
8532 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8535 case DLT_JUNIPER_MFR
:
8536 case DLT_JUNIPER_MLFR
:
8537 case DLT_JUNIPER_MLPPP
:
8538 case DLT_JUNIPER_ATM1
:
8539 case DLT_JUNIPER_ATM2
:
8540 case DLT_JUNIPER_PPPOE
:
8541 case DLT_JUNIPER_PPPOE_ATM
:
8542 case DLT_JUNIPER_GGSN
:
8543 case DLT_JUNIPER_ES
:
8544 case DLT_JUNIPER_MONITOR
:
8545 case DLT_JUNIPER_SERVICES
:
8546 case DLT_JUNIPER_ETHER
:
8547 case DLT_JUNIPER_PPP
:
8548 case DLT_JUNIPER_FRELAY
:
8549 case DLT_JUNIPER_CHDLC
:
8550 case DLT_JUNIPER_VP
:
8551 case DLT_JUNIPER_ST
:
8552 case DLT_JUNIPER_ISM
:
8553 case DLT_JUNIPER_VS
:
8554 case DLT_JUNIPER_SRX_E2E
:
8555 case DLT_JUNIPER_FIBRECHANNEL
:
8556 case DLT_JUNIPER_ATM_CEMIC
:
8557 /* juniper flags (including direction) are stored
8558 * the byte after the 3-byte magic number */
8559 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8564 * If we have packet meta-data indicating a direction,
8565 * and that metadata can be checked by BPF code, check
8566 * it. Otherwise, give up, as this link-layer type has
8567 * nothing in the packet data.
8569 * Currently, the only platform where a BPF filter can
8570 * check that metadata is Linux with the in-kernel
8571 * BPF interpreter. If other packet capture mechanisms
8572 * and BPF filters also supported this, it would be
8573 * nice. It would be even better if they made that
8574 * metadata available so that we could provide it
8575 * with newer capture APIs, allowing it to be saved
8578 #if defined(__linux__)
8579 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8580 /* match outgoing packets */
8581 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8584 /* to filter on inbound traffic, invert the match */
8587 #else /* defined(__linux__) */
8588 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8590 #endif /* defined(__linux__) */
8595 /* PF firewall log matched interface */
8597 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8603 * Catch errors reported by us and routines below us, and return NULL
8606 if (setjmp(cstate
->top_ctx
))
8609 assert_pflog(cstate
, "ifname");
8611 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8612 off
= offsetof(struct pfloghdr
, ifname
);
8613 if (strlen(ifname
) >= len
) {
8614 bpf_error(cstate
, "ifname interface names can only be %d characters",
8618 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8619 (const u_char
*)ifname
);
8623 /* PF firewall log ruleset name */
8625 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8630 * Catch errors reported by us and routines below us, and return NULL
8633 if (setjmp(cstate
->top_ctx
))
8636 assert_pflog(cstate
, "ruleset");
8638 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8639 bpf_error(cstate
, "ruleset names can only be %ld characters",
8640 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8644 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8645 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8649 /* PF firewall log rule number */
8651 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8656 * Catch errors reported by us and routines below us, and return NULL
8659 if (setjmp(cstate
->top_ctx
))
8662 assert_pflog(cstate
, "rnr");
8664 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8669 /* PF firewall log sub-rule number */
8671 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8676 * Catch errors reported by us and routines below us, and return NULL
8679 if (setjmp(cstate
->top_ctx
))
8682 assert_pflog(cstate
, "srnr");
8684 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8689 /* PF firewall log reason code */
8691 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8696 * Catch errors reported by us and routines below us, and return NULL
8699 if (setjmp(cstate
->top_ctx
))
8702 assert_pflog(cstate
, "reason");
8704 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8705 (bpf_u_int32
)reason
);
8709 /* PF firewall log action */
8711 gen_pf_action(compiler_state_t
*cstate
, int action
)
8716 * Catch errors reported by us and routines below us, and return NULL
8719 if (setjmp(cstate
->top_ctx
))
8722 assert_pflog(cstate
, "action");
8724 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8725 (bpf_u_int32
)action
);
8729 /* IEEE 802.11 wireless header */
8731 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8736 * Catch errors reported by us and routines below us, and return NULL
8739 if (setjmp(cstate
->top_ctx
))
8742 switch (cstate
->linktype
) {
8744 case DLT_IEEE802_11
:
8745 case DLT_PRISM_HEADER
:
8746 case DLT_IEEE802_11_RADIO_AVS
:
8747 case DLT_IEEE802_11_RADIO
:
8749 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8753 fail_kw_on_dlt(cstate
, "type/subtype");
8761 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8766 * Catch errors reported by us and routines below us, and return NULL
8769 if (setjmp(cstate
->top_ctx
))
8772 switch (cstate
->linktype
) {
8774 case DLT_IEEE802_11
:
8775 case DLT_PRISM_HEADER
:
8776 case DLT_IEEE802_11_RADIO_AVS
:
8777 case DLT_IEEE802_11_RADIO
:
8782 fail_kw_on_dlt(cstate
, "dir");
8786 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8787 IEEE80211_FC1_DIR_MASK
);
8792 // Process an ARCnet host address string.
8794 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8797 * Catch errors reported by us and routines below us, and return NULL
8800 if (setjmp(cstate
->top_ctx
))
8803 switch (cstate
->linktype
) {
8806 case DLT_ARCNET_LINUX
:
8807 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8808 q
.proto
== Q_LINK
) {
8811 * The lexer currently defines the address format in a
8812 * way that makes this error condition never true.
8813 * Let's check it anyway in case this part of the lexer
8814 * changes in future.
8816 if (! pcapint_atoan(s
, &addr
))
8817 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8818 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8820 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8824 bpf_error(cstate
, "aid supported only on ARCnet");
8829 // Compare an ARCnet host address with the given value.
8830 static struct block
*
8831 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8833 register struct block
*b0
, *b1
;
8837 * ARCnet is different from Ethernet: the source address comes before
8838 * the destination address, each is one byte long. This holds for all
8839 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8840 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8841 * by Datapoint (document number 61610-01).
8844 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8847 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8850 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8851 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8857 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8858 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8868 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8875 static struct block
*
8876 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8878 struct block
*b0
, *b1
;
8880 /* check for VLAN, including 802.1ad and QinQ */
8881 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8882 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8885 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8891 static struct block
*
8892 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8894 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8895 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8898 static struct block
*
8899 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8902 struct block
*b0
, *b1
;
8904 b0
= gen_vlan_tpid_test(cstate
);
8907 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8913 * Both payload and link header type follow the VLAN tags so that
8914 * both need to be updated.
8916 cstate
->off_linkpl
.constant_part
+= 4;
8917 cstate
->off_linktype
.constant_part
+= 4;
8922 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8923 /* add v to variable part of off */
8925 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8926 bpf_u_int32 v
, struct slist
*s
)
8930 if (!off
->is_variable
)
8931 off
->is_variable
= 1;
8933 off
->reg
= alloc_reg(cstate
);
8935 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8938 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8941 s2
= new_stmt(cstate
, BPF_ST
);
8947 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8948 * and link type offsets first
8951 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8955 /* offset determined at run time, shift variable part */
8957 cstate
->is_vlan_vloffset
= 1;
8958 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8959 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8961 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8962 sappend(s
.next
, b_tpid
->head
->stmts
);
8963 b_tpid
->head
->stmts
= s
.next
;
8967 * patch block b_vid (VLAN id test) to load VID value either from packet
8968 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8971 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8973 struct slist
*s
, *s2
, *sjeq
;
8976 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8977 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8979 /* true -> next instructions, false -> beginning of b_vid */
8980 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8982 sjeq
->s
.jf
= b_vid
->stmts
;
8985 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8986 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8990 /* Jump to the test in b_vid. We need to jump one instruction before
8991 * the end of the b_vid block so that we only skip loading the TCI
8992 * from packet data and not the 'and' instruction extracting VID.
8995 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8997 s2
= new_stmt(cstate
, JMP(BPF_JA
));
9001 /* insert our statements at the beginning of b_vid */
9002 sappend(s
, b_vid
->stmts
);
9007 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9008 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9009 * tag can be either in metadata or in packet data; therefore if the
9010 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9011 * header for VLAN tag. As the decision is done at run time, we need
9012 * update variable part of the offsets
9014 static struct block
*
9015 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
9018 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
9021 /* generate new filter code based on extracting packet
9023 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
9024 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
9026 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
9029 * This is tricky. We need to insert the statements updating variable
9030 * parts of offsets before the traditional TPID and VID tests so
9031 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9032 * we do not want this update to affect those checks. That's why we
9033 * generate both test blocks first and insert the statements updating
9034 * variable parts of both offsets after that. This wouldn't work if
9035 * there already were variable length link header when entering this
9036 * function but gen_vlan_bpf_extensions() isn't called in that case.
9038 b_tpid
= gen_vlan_tpid_test(cstate
);
9040 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
9042 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
9047 gen_vlan_patch_vid_test(cstate
, b_vid
);
9057 * support IEEE 802.1Q VLAN trunk over ethernet
9060 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
9065 * Catch errors reported by us and routines below us, and return NULL
9068 if (setjmp(cstate
->top_ctx
))
9071 /* can't check for VLAN-encapsulated packets inside MPLS */
9072 if (cstate
->label_stack_depth
> 0)
9073 bpf_error(cstate
, "no VLAN match after MPLS");
9076 * Check for a VLAN packet, and then change the offsets to point
9077 * to the type and data fields within the VLAN packet. Just
9078 * increment the offsets, so that we can support a hierarchy, e.g.
9079 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
9082 * XXX - this is a bit of a kludge. If we were to split the
9083 * compiler into a parser that parses an expression and
9084 * generates an expression tree, and a code generator that
9085 * takes an expression tree (which could come from our
9086 * parser or from some other parser) and generates BPF code,
9087 * we could perhaps make the offsets parameters of routines
9088 * and, in the handler for an "AND" node, pass to subnodes
9089 * other than the VLAN node the adjusted offsets.
9091 * This would mean that "vlan" would, instead of changing the
9092 * behavior of *all* tests after it, change only the behavior
9093 * of tests ANDed with it. That would change the documented
9094 * semantics of "vlan", which might break some expressions.
9095 * However, it would mean that "(vlan and ip) or ip" would check
9096 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9097 * checking only for VLAN-encapsulated IP, so that could still
9098 * be considered worth doing; it wouldn't break expressions
9099 * that are of the form "vlan and ..." or "vlan N and ...",
9100 * which I suspect are the most common expressions involving
9101 * "vlan". "vlan or ..." doesn't necessarily do what the user
9102 * would really want, now, as all the "or ..." tests would
9103 * be done assuming a VLAN, even though the "or" could be viewed
9104 * as meaning "or, if this isn't a VLAN packet...".
9106 switch (cstate
->linktype
) {
9110 * Newer version of the Linux kernel pass around
9111 * packets in which the VLAN tag has been removed
9112 * from the packet data and put into metadata.
9114 * This requires special treatment.
9116 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9117 /* Verify that this is the outer part of the packet and
9118 * not encapsulated somehow. */
9119 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9120 cstate
->off_linkhdr
.constant_part
==
9121 cstate
->off_outermostlinkhdr
.constant_part
) {
9123 * Do we need special VLAN handling?
9125 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9126 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9129 b0
= gen_vlan_no_bpf_extensions(cstate
,
9130 vlan_num
, has_vlan_tag
);
9133 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9137 case DLT_NETANALYZER
:
9138 case DLT_NETANALYZER_TRANSPARENT
:
9139 case DLT_IEEE802_11
:
9140 case DLT_PRISM_HEADER
:
9141 case DLT_IEEE802_11_RADIO_AVS
:
9142 case DLT_IEEE802_11_RADIO
:
9144 * These are either Ethernet packets with an additional
9145 * metadata header (the NetAnalyzer types), or 802.11
9146 * packets, possibly with an additional metadata header.
9148 * For the first of those, the VLAN tag is in the normal
9149 * place, so the special-case handling above isn't
9152 * For the second of those, we don't do the special-case
9155 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9159 bpf_error(cstate
, "no VLAN support for %s",
9160 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9164 cstate
->vlan_stack_depth
++;
9172 * The label_num_arg dance is to avoid annoying whining by compilers that
9173 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9174 * It's not *used* after setjmp returns.
9176 static struct block
*
9177 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
9180 struct block
*b0
, *b1
;
9182 if (cstate
->label_stack_depth
> 0) {
9183 /* just match the bottom-of-stack bit clear */
9184 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9187 * We're not in an MPLS stack yet, so check the link-layer
9188 * type against MPLS.
9190 switch (cstate
->linktype
) {
9192 case DLT_C_HDLC
: /* fall through */
9195 case DLT_NETANALYZER
:
9196 case DLT_NETANALYZER_TRANSPARENT
:
9197 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9201 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9204 /* FIXME add other DLT_s ...
9205 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9206 * leave it for now */
9209 bpf_error(cstate
, "no MPLS support for %s",
9210 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9215 /* If a specific MPLS label is requested, check it */
9216 if (has_label_num
) {
9217 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
9218 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9219 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9220 0xfffff000); /* only compare the first 20 bits */
9226 * Change the offsets to point to the type and data fields within
9227 * the MPLS packet. Just increment the offsets, so that we
9228 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9229 * capture packets with an outer label of 100000 and an inner
9232 * Increment the MPLS stack depth as well; this indicates that
9233 * we're checking MPLS-encapsulated headers, to make sure higher
9234 * level code generators don't try to match against IP-related
9235 * protocols such as Q_ARP, Q_RARP etc.
9237 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9239 cstate
->off_nl_nosnap
+= 4;
9240 cstate
->off_nl
+= 4;
9241 cstate
->label_stack_depth
++;
9246 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
9249 * Catch errors reported by us and routines below us, and return NULL
9252 if (setjmp(cstate
->top_ctx
))
9255 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
9259 * Support PPPOE discovery and session.
9262 gen_pppoed(compiler_state_t
*cstate
)
9265 * Catch errors reported by us and routines below us, and return NULL
9268 if (setjmp(cstate
->top_ctx
))
9271 /* check for PPPoE discovery */
9272 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9276 * RFC 2516 Section 4:
9278 * The Ethernet payload for PPPoE is as follows:
9281 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9282 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9283 * | VER | TYPE | CODE | SESSION_ID |
9284 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9285 * | LENGTH | payload ~
9286 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9289 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9291 struct block
*b0
, *b1
;
9294 * Catch errors reported by us and routines below us, and return NULL
9297 if (setjmp(cstate
->top_ctx
))
9301 * Test against the PPPoE session link-layer type.
9303 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9305 /* If a specific session is requested, check PPPoE session id */
9307 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
9308 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9314 * Change the offsets to point to the type and data fields within
9315 * the PPP packet, and note that this is PPPoE rather than
9318 * XXX - this is a bit of a kludge. See the comments in
9321 * The "network-layer" protocol is PPPoE, which has a 6-byte
9322 * PPPoE header, followed by a PPP packet.
9324 * There is no HDLC encapsulation for the PPP packet (it's
9325 * encapsulated in PPPoES instead), so the link-layer type
9326 * starts at the first byte of the PPP packet. For PPPoE,
9327 * that offset is relative to the beginning of the total
9328 * link-layer payload, including any 802.2 LLC header, so
9329 * it's 6 bytes past cstate->off_nl.
9331 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9332 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9333 cstate
->off_linkpl
.reg
);
9335 cstate
->off_linktype
= cstate
->off_linkhdr
;
9336 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9339 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9344 /* Check that this is Geneve and the VNI is correct if
9345 * specified. Parameterized to handle both IPv4 and IPv6. */
9346 static struct block
*
9347 gen_geneve_check(compiler_state_t
*cstate
,
9348 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9349 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9351 struct block
*b0
, *b1
;
9353 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9355 /* Check that we are operating on version 0. Otherwise, we
9356 * can't decode the rest of the fields. The version is 2 bits
9357 * in the first byte of the Geneve header. */
9358 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9363 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9364 vni
<<= 8; /* VNI is in the upper 3 bytes */
9365 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9373 /* The IPv4 and IPv6 Geneve checks need to do two things:
9374 * - Verify that this actually is Geneve with the right VNI.
9375 * - Place the IP header length (plus variable link prefix if
9376 * needed) into register A to be used later to compute
9377 * the inner packet offsets. */
9378 static struct block
*
9379 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9381 struct block
*b0
, *b1
;
9382 struct slist
*s
, *s1
;
9384 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9386 /* Load the IP header length into A. */
9387 s
= gen_loadx_iphdrlen(cstate
);
9389 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9392 /* Forcibly append these statements to the true condition
9393 * of the protocol check by creating a new block that is
9394 * always true and ANDing them. */
9395 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9402 static struct block
*
9403 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9405 struct block
*b0
, *b1
;
9406 struct slist
*s
, *s1
;
9408 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9410 /* Load the IP header length. We need to account for a
9411 * variable length link prefix if there is one. */
9412 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9414 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9418 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9422 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9426 /* Forcibly append these statements to the true condition
9427 * of the protocol check by creating a new block that is
9428 * always true and ANDing them. */
9429 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9432 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9439 /* We need to store three values based on the Geneve header::
9440 * - The offset of the linktype.
9441 * - The offset of the end of the Geneve header.
9442 * - The offset of the end of the encapsulated MAC header. */
9443 static struct slist
*
9444 gen_geneve_offsets(compiler_state_t
*cstate
)
9446 struct slist
*s
, *s1
, *s_proto
;
9448 /* First we need to calculate the offset of the Geneve header
9449 * itself. This is composed of the IP header previously calculated
9450 * (include any variable link prefix) and stored in A plus the
9451 * fixed sized headers (fixed link prefix, MAC length, and UDP
9453 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9454 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9456 /* Stash this in X since we'll need it later. */
9457 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9460 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9462 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9466 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9467 cstate
->off_linktype
.is_variable
= 1;
9468 cstate
->off_linktype
.constant_part
= 0;
9470 s1
= new_stmt(cstate
, BPF_ST
);
9471 s1
->s
.k
= cstate
->off_linktype
.reg
;
9474 /* Load the Geneve option length and mask and shift to get the
9475 * number of bytes. It is stored in the first byte of the Geneve
9477 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9481 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9485 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9489 /* Add in the rest of the Geneve base header. */
9490 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9494 /* Add the Geneve header length to its offset and store. */
9495 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9499 /* Set the encapsulated type as Ethernet. Even though we may
9500 * not actually have Ethernet inside there are two reasons this
9502 * - The linktype field is always in EtherType format regardless
9503 * of whether it is in Geneve or an inner Ethernet frame.
9504 * - The only link layer that we have specific support for is
9505 * Ethernet. We will confirm that the packet actually is
9506 * Ethernet at runtime before executing these checks. */
9507 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9509 s1
= new_stmt(cstate
, BPF_ST
);
9510 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9513 /* Calculate whether we have an Ethernet header or just raw IP/
9514 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9515 * and linktype by 14 bytes so that the network header can be found
9516 * seamlessly. Otherwise, keep what we've calculated already. */
9518 /* We have a bare jmp so we can't use the optimizer. */
9519 cstate
->no_optimize
= 1;
9521 /* Load the EtherType in the Geneve header, 2 bytes in. */
9522 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9526 /* Load X with the end of the Geneve header. */
9527 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9528 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9531 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9532 * end of this check, we should have the total length in X. In
9533 * the non-Ethernet case, it's already there. */
9534 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9535 s_proto
->s
.k
= ETHERTYPE_TEB
;
9536 sappend(s
, s_proto
);
9538 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9542 /* Since this is Ethernet, use the EtherType of the payload
9543 * directly as the linktype. Overwrite what we already have. */
9544 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9548 s1
= new_stmt(cstate
, BPF_ST
);
9549 s1
->s
.k
= cstate
->off_linktype
.reg
;
9552 /* Advance two bytes further to get the end of the Ethernet
9554 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9558 /* Move the result to X. */
9559 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9562 /* Store the final result of our linkpl calculation. */
9563 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9564 cstate
->off_linkpl
.is_variable
= 1;
9565 cstate
->off_linkpl
.constant_part
= 0;
9567 s1
= new_stmt(cstate
, BPF_STX
);
9568 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9577 /* Check to see if this is a Geneve packet. */
9579 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9581 struct block
*b0
, *b1
;
9585 * Catch errors reported by us and routines below us, and return NULL
9588 if (setjmp(cstate
->top_ctx
))
9591 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9592 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9597 /* Later filters should act on the payload of the Geneve frame,
9598 * update all of the header pointers. Attach this code so that
9599 * it gets executed in the event that the Geneve filter matches. */
9600 s
= gen_geneve_offsets(cstate
);
9602 b1
= gen_true(cstate
);
9603 sappend(s
, b1
->stmts
);
9608 cstate
->is_encap
= 1;
9613 /* Check that this is VXLAN and the VNI is correct if
9614 * specified. Parameterized to handle both IPv4 and IPv6. */
9615 static struct block
*
9616 gen_vxlan_check(compiler_state_t
*cstate
,
9617 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9618 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9620 struct block
*b0
, *b1
;
9622 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9624 /* Check that the VXLAN header has the flag bits set
9626 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9631 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9632 vni
<<= 8; /* VNI is in the upper 3 bytes */
9633 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9641 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9642 * - Verify that this actually is VXLAN with the right VNI.
9643 * - Place the IP header length (plus variable link prefix if
9644 * needed) into register A to be used later to compute
9645 * the inner packet offsets. */
9646 static struct block
*
9647 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9649 struct block
*b0
, *b1
;
9650 struct slist
*s
, *s1
;
9652 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9654 /* Load the IP header length into A. */
9655 s
= gen_loadx_iphdrlen(cstate
);
9657 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9660 /* Forcibly append these statements to the true condition
9661 * of the protocol check by creating a new block that is
9662 * always true and ANDing them. */
9663 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9670 static struct block
*
9671 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9673 struct block
*b0
, *b1
;
9674 struct slist
*s
, *s1
;
9676 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9678 /* Load the IP header length. We need to account for a
9679 * variable length link prefix if there is one. */
9680 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9682 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9686 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9690 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9694 /* Forcibly append these statements to the true condition
9695 * of the protocol check by creating a new block that is
9696 * always true and ANDing them. */
9697 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9700 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9707 /* We need to store three values based on the VXLAN header:
9708 * - The offset of the linktype.
9709 * - The offset of the end of the VXLAN header.
9710 * - The offset of the end of the encapsulated MAC header. */
9711 static struct slist
*
9712 gen_vxlan_offsets(compiler_state_t
*cstate
)
9714 struct slist
*s
, *s1
;
9716 /* Calculate the offset of the VXLAN header itself. This
9717 * includes the IP header computed previously (including any
9718 * variable link prefix) and stored in A plus the fixed size
9719 * headers (fixed link prefix, MAC length, UDP header). */
9720 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9721 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9723 /* Add the VXLAN header length to its offset and store */
9724 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9728 /* Push the link header. VXLAN packets always contain Ethernet
9730 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9732 s1
= new_stmt(cstate
, BPF_ST
);
9733 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9736 /* As the payload is an Ethernet packet, we can use the
9737 * EtherType of the payload directly as the linktype. */
9738 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9742 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9743 cstate
->off_linktype
.is_variable
= 1;
9744 cstate
->off_linktype
.constant_part
= 0;
9746 s1
= new_stmt(cstate
, BPF_ST
);
9747 s1
->s
.k
= cstate
->off_linktype
.reg
;
9750 /* Two bytes further is the end of the Ethernet header and the
9751 * start of the payload. */
9752 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9756 /* Move the result to X. */
9757 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9760 /* Store the final result of our linkpl calculation. */
9761 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9762 cstate
->off_linkpl
.is_variable
= 1;
9763 cstate
->off_linkpl
.constant_part
= 0;
9765 s1
= new_stmt(cstate
, BPF_STX
);
9766 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9774 /* Check to see if this is a VXLAN packet. */
9776 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9778 struct block
*b0
, *b1
;
9782 * Catch errors reported by us and routines below us, and return NULL
9785 if (setjmp(cstate
->top_ctx
))
9788 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9789 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9794 /* Later filters should act on the payload of the VXLAN frame,
9795 * update all of the header pointers. Attach this code so that
9796 * it gets executed in the event that the VXLAN filter matches. */
9797 s
= gen_vxlan_offsets(cstate
);
9799 b1
= gen_true(cstate
);
9800 sappend(s
, b1
->stmts
);
9805 cstate
->is_encap
= 1;
9810 /* Check that the encapsulated frame has a link layer header
9811 * for Ethernet filters. */
9812 static struct block
*
9813 gen_encap_ll_check(compiler_state_t
*cstate
)
9816 struct slist
*s
, *s1
;
9818 /* The easiest way to see if there is a link layer present
9819 * is to check if the link layer header and payload are not
9822 /* Geneve always generates pure variable offsets so we can
9823 * compare only the registers. */
9824 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9825 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9827 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9828 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9831 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9837 static struct block
*
9838 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9839 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9844 * This check is a no-op for A_MSGTYPE so long as the only incoming
9845 * code path is from gen_atmmulti_abbrev(), which makes the same
9846 * check first; also for A_PROTOTYPE so long as the only incoming code
9847 * paths are from gen_atmtype_abbrev(), which makes the same check
9848 * first, or from gen_llc_internal() or gen_linktype(), which restrict
9851 assert_atm(cstate
, atmkw(atmfield
));
9856 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9857 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9858 0xffffffffU
, jtype
, reverse
, jvalue
);
9862 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9863 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9864 0xffffffffU
, jtype
, reverse
, jvalue
);
9868 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9869 0x0fU
, jtype
, reverse
, jvalue
);
9873 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9874 0xffffffffU
, jtype
, reverse
, jvalue
);
9883 static struct block
*
9884 gen_atmtype_metac(compiler_state_t
*cstate
)
9886 struct block
*b0
, *b1
;
9888 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9889 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9894 static struct block
*
9895 gen_atmtype_sc(compiler_state_t
*cstate
)
9897 struct block
*b0
, *b1
;
9899 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9900 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9905 static struct block
*
9906 gen_atmtype_llc(compiler_state_t
*cstate
)
9910 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9911 cstate
->linktype
= cstate
->prevlinktype
;
9916 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9917 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9920 * Catch errors reported by us and routines below us, and return NULL
9923 if (setjmp(cstate
->top_ctx
))
9926 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9931 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9933 struct block
*b0
, *b1
;
9936 * Catch errors reported by us and routines below us, and return NULL
9939 if (setjmp(cstate
->top_ctx
))
9942 assert_atm(cstate
, atmkw(type
));
9947 /* Get all packets in Meta signalling Circuit */
9948 b1
= gen_atmtype_metac(cstate
);
9952 /* Get all packets in Broadcast Circuit*/
9953 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9954 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9959 /* Get all cells in Segment OAM F4 circuit*/
9960 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9961 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9966 /* Get all cells in End-to-End OAM F4 Circuit*/
9967 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9968 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9973 /* Get all packets in connection Signalling Circuit */
9974 b1
= gen_atmtype_sc(cstate
);
9978 /* Get all packets in ILMI Circuit */
9979 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9980 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
9985 /* Get all LANE packets */
9986 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
9989 * Arrange that all subsequent tests assume LANE
9990 * rather than LLC-encapsulated packets, and set
9991 * the offsets appropriately for LANE-encapsulated
9994 * We assume LANE means Ethernet, not Token Ring.
9996 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9997 cstate
->off_payload
+ 2, /* Ethernet header */
9999 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
10000 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
10001 cstate
->off_nl
= 0; /* Ethernet II */
10002 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
10012 * Filtering for MTP2 messages based on li value
10013 * FISU, length is null
10014 * LSSU, length is 1 or 2
10015 * MSU, length is 3 or more
10016 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
10019 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
10021 struct block
*b0
, *b1
;
10024 * Catch errors reported by us and routines below us, and return NULL
10027 if (setjmp(cstate
->top_ctx
))
10030 assert_ss7(cstate
, ss7kw(type
));
10035 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10036 0x3fU
, BPF_JEQ
, 0, 0U);
10040 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10041 0x3fU
, BPF_JGT
, 1, 2U);
10042 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10043 0x3fU
, BPF_JGT
, 0, 0U);
10048 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10049 0x3fU
, BPF_JGT
, 0, 2U);
10053 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10054 0xff80U
, BPF_JEQ
, 0, 0U);
10058 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10059 0xff80U
, BPF_JGT
, 1, 0x0100U
);
10060 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10061 0xff80U
, BPF_JGT
, 0, 0U);
10066 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10067 0xff80U
, BPF_JGT
, 0, 0x0100U
);
10077 * These maximum valid values are all-ones, so they double as the bitmasks
10078 * before any bitwise shifting.
10080 #define MTP2_SIO_MAXVAL UINT8_MAX
10081 #define MTP3_PC_MAXVAL 0x3fffU
10082 #define MTP3_SLS_MAXVAL 0xfU
10084 static struct block
*
10085 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
10086 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10094 newoff_sio
= cstate
->off_sio
;
10095 newoff_opc
= cstate
->off_opc
;
10096 newoff_dpc
= cstate
->off_dpc
;
10097 newoff_sls
= cstate
->off_sls
;
10099 assert_ss7(cstate
, ss7kw(mtp3field
));
10101 switch (mtp3field
) {
10104 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
10106 * SIO is the simplest field: the size is one byte and the offset is a
10107 * multiple of bytes, so the only detail to get right is the value of
10108 * the [right-to-left] field offset.
10111 newoff_sio
+= 3; /* offset for MTP2_HSL */
10115 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
10116 // Here the bitmask means "do not apply a bitmask".
10117 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
10118 jtype
, reverse
, jvalue
);
10122 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
10124 * SLS, OPC and DPC are more complicated: none of these is sized in a
10125 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
10126 * diagrams are meant to be read right-to-left. This means in the
10127 * diagrams within individual fields and concatenations thereof
10128 * bitwise shifts and masks can be noted in the common left-to-right
10129 * manner until each final value is ready to be byte-swapped and
10130 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
10131 * similar problem in a similar way.
10133 * Offsets of fields within the packet header always have the
10134 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
10135 * DLTs the offset does not include the F (Flag) field at the
10136 * beginning of each message.
10138 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10139 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10140 * be tested entirely using a single BPF_W comparison. In this case
10141 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10142 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10143 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10144 * correlates with the [RTL] packet diagram until the byte-swapping is
10147 * The code below uses this approach for OPC, which spans 3 bytes.
10148 * DPC and SLS use shorter loads, SLS also uses a different offset.
10155 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10156 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
10157 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
10158 SWAPLONG(jvalue
<< 14));
10166 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10167 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
10168 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
10169 SWAPSHORT(jvalue
));
10177 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
10178 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
10179 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
10190 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10191 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10194 * Catch errors reported by us and routines below us, and return NULL
10197 if (setjmp(cstate
->top_ctx
))
10200 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
10204 static struct block
*
10205 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
10210 * Q.2931 signalling protocol messages for handling virtual circuits
10211 * establishment and teardown
10216 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
10219 case A_CALLPROCEED
:
10220 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
10224 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
10228 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
10232 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
10235 case A_RELEASE_DONE
:
10236 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
10246 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10248 struct block
*b0
, *b1
;
10251 * Catch errors reported by us and routines below us, and return NULL
10254 if (setjmp(cstate
->top_ctx
))
10257 assert_atm(cstate
, atmkw(type
));
10263 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10264 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10266 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10272 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10273 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10275 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10281 * Get Q.2931 signalling messages for switched
10282 * virtual connection
10284 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10285 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10287 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10289 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
10291 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10293 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10295 b0
= gen_atmtype_sc(cstate
);
10299 case A_METACONNECT
:
10300 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10301 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10303 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10305 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10307 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10309 b0
= gen_atmtype_metac(cstate
);