]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Merge pull request #1113 from fenner/no-eventfd
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #ifdef _WIN32
27 #include <ws2tcpip.h>
28 #else
29 #include <sys/socket.h>
30
31 #ifdef __NetBSD__
32 #include <sys/param.h>
33 #endif
34
35 #include <netinet/in.h>
36 #include <arpa/inet.h>
37 #endif /* _WIN32 */
38
39 #include <stdlib.h>
40 #include <string.h>
41 #include <memory.h>
42 #include <setjmp.h>
43 #include <stdarg.h>
44 #include <stdio.h>
45
46 #ifdef MSDOS
47 #include "pcap-dos.h"
48 #endif
49
50 #include "pcap-int.h"
51
52 #include "extract.h"
53
54 #include "ethertype.h"
55 #include "nlpid.h"
56 #include "llc.h"
57 #include "gencode.h"
58 #include "ieee80211.h"
59 #include "atmuni31.h"
60 #include "sunatmpos.h"
61 #include "pflog.h"
62 #include "ppp.h"
63 #include "pcap/sll.h"
64 #include "pcap/ipnet.h"
65 #include "arcnet.h"
66 #include "diag-control.h"
67
68 #include "scanner.h"
69
70 #if defined(linux)
71 #include <linux/types.h>
72 #include <linux/if_packet.h>
73 #include <linux/filter.h>
74 #endif
75
76 #ifndef offsetof
77 #define offsetof(s, e) ((size_t)&((s *)0)->e)
78 #endif
79
80 #ifdef _WIN32
81 #ifdef INET6
82 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
83 /* IPv6 address */
84 struct in6_addr
85 {
86 union
87 {
88 uint8_t u6_addr8[16];
89 uint16_t u6_addr16[8];
90 uint32_t u6_addr32[4];
91 } in6_u;
92 #define s6_addr in6_u.u6_addr8
93 #define s6_addr16 in6_u.u6_addr16
94 #define s6_addr32 in6_u.u6_addr32
95 #define s6_addr64 in6_u.u6_addr64
96 };
97
98 typedef unsigned short sa_family_t;
99
100 #define __SOCKADDR_COMMON(sa_prefix) \
101 sa_family_t sa_prefix##family
102
103 /* Ditto, for IPv6. */
104 struct sockaddr_in6
105 {
106 __SOCKADDR_COMMON (sin6_);
107 uint16_t sin6_port; /* Transport layer port # */
108 uint32_t sin6_flowinfo; /* IPv6 flow information */
109 struct in6_addr sin6_addr; /* IPv6 address */
110 };
111
112 #ifndef EAI_ADDRFAMILY
113 struct addrinfo {
114 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
115 int ai_family; /* PF_xxx */
116 int ai_socktype; /* SOCK_xxx */
117 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
118 size_t ai_addrlen; /* length of ai_addr */
119 char *ai_canonname; /* canonical name for hostname */
120 struct sockaddr *ai_addr; /* binary address */
121 struct addrinfo *ai_next; /* next structure in linked list */
122 };
123 #endif /* EAI_ADDRFAMILY */
124 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
125 #endif /* INET6 */
126 #else /* _WIN32 */
127 #include <netdb.h> /* for "struct addrinfo" */
128 #endif /* _WIN32 */
129 #include <pcap/namedb.h>
130
131 #include "nametoaddr.h"
132
133 #define ETHERMTU 1500
134
135 #ifndef IPPROTO_HOPOPTS
136 #define IPPROTO_HOPOPTS 0
137 #endif
138 #ifndef IPPROTO_ROUTING
139 #define IPPROTO_ROUTING 43
140 #endif
141 #ifndef IPPROTO_FRAGMENT
142 #define IPPROTO_FRAGMENT 44
143 #endif
144 #ifndef IPPROTO_DSTOPTS
145 #define IPPROTO_DSTOPTS 60
146 #endif
147 #ifndef IPPROTO_SCTP
148 #define IPPROTO_SCTP 132
149 #endif
150
151 #define GENEVE_PORT 6081
152
153 #ifdef HAVE_OS_PROTO_H
154 #include "os-proto.h"
155 #endif
156
157 #define JMP(c) ((c)|BPF_JMP|BPF_K)
158
159 /*
160 * "Push" the current value of the link-layer header type and link-layer
161 * header offset onto a "stack", and set a new value. (It's not a
162 * full-blown stack; we keep only the top two items.)
163 */
164 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
165 { \
166 (cs)->prevlinktype = (cs)->linktype; \
167 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
168 (cs)->linktype = (new_linktype); \
169 (cs)->off_linkhdr.is_variable = (new_is_variable); \
170 (cs)->off_linkhdr.constant_part = (new_constant_part); \
171 (cs)->off_linkhdr.reg = (new_reg); \
172 (cs)->is_geneve = 0; \
173 }
174
175 /*
176 * Offset "not set" value.
177 */
178 #define OFFSET_NOT_SET 0xffffffffU
179
180 /*
181 * Absolute offsets, which are offsets from the beginning of the raw
182 * packet data, are, in the general case, the sum of a variable value
183 * and a constant value; the variable value may be absent, in which
184 * case the offset is only the constant value, and the constant value
185 * may be zero, in which case the offset is only the variable value.
186 *
187 * bpf_abs_offset is a structure containing all that information:
188 *
189 * is_variable is 1 if there's a variable part.
190 *
191 * constant_part is the constant part of the value, possibly zero;
192 *
193 * if is_variable is 1, reg is the register number for a register
194 * containing the variable value if the register has been assigned,
195 * and -1 otherwise.
196 */
197 typedef struct {
198 int is_variable;
199 u_int constant_part;
200 int reg;
201 } bpf_abs_offset;
202
203 /*
204 * Value passed to gen_load_a() to indicate what the offset argument
205 * is relative to the beginning of.
206 */
207 enum e_offrel {
208 OR_PACKET, /* full packet data */
209 OR_LINKHDR, /* link-layer header */
210 OR_PREVLINKHDR, /* previous link-layer header */
211 OR_LLC, /* 802.2 LLC header */
212 OR_PREVMPLSHDR, /* previous MPLS header */
213 OR_LINKTYPE, /* link-layer type */
214 OR_LINKPL, /* link-layer payload */
215 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
216 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
217 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
218 };
219
220 /*
221 * We divy out chunks of memory rather than call malloc each time so
222 * we don't have to worry about leaking memory. It's probably
223 * not a big deal if all this memory was wasted but if this ever
224 * goes into a library that would probably not be a good idea.
225 *
226 * XXX - this *is* in a library....
227 */
228 #define NCHUNKS 16
229 #define CHUNK0SIZE 1024
230 struct chunk {
231 size_t n_left;
232 void *m;
233 };
234
235 /* Code generator state */
236
237 struct _compiler_state {
238 jmp_buf top_ctx;
239 pcap_t *bpf_pcap;
240 int error_set;
241
242 struct icode ic;
243
244 int snaplen;
245
246 int linktype;
247 int prevlinktype;
248 int outermostlinktype;
249
250 bpf_u_int32 netmask;
251 int no_optimize;
252
253 /* Hack for handling VLAN and MPLS stacks. */
254 u_int label_stack_depth;
255 u_int vlan_stack_depth;
256
257 /* XXX */
258 u_int pcap_fddipad;
259
260 /*
261 * As errors are handled by a longjmp, anything allocated must
262 * be freed in the longjmp handler, so it must be reachable
263 * from that handler.
264 *
265 * One thing that's allocated is the result of pcap_nametoaddrinfo();
266 * it must be freed with freeaddrinfo(). This variable points to
267 * any addrinfo structure that would need to be freed.
268 */
269 struct addrinfo *ai;
270
271 /*
272 * Another thing that's allocated is the result of pcap_ether_aton();
273 * it must be freed with free(). This variable points to any
274 * address that would need to be freed.
275 */
276 u_char *e;
277
278 /*
279 * Various code constructs need to know the layout of the packet.
280 * These values give the necessary offsets from the beginning
281 * of the packet data.
282 */
283
284 /*
285 * Absolute offset of the beginning of the link-layer header.
286 */
287 bpf_abs_offset off_linkhdr;
288
289 /*
290 * If we're checking a link-layer header for a packet encapsulated
291 * in another protocol layer, this is the equivalent information
292 * for the previous layers' link-layer header from the beginning
293 * of the raw packet data.
294 */
295 bpf_abs_offset off_prevlinkhdr;
296
297 /*
298 * This is the equivalent information for the outermost layers'
299 * link-layer header.
300 */
301 bpf_abs_offset off_outermostlinkhdr;
302
303 /*
304 * Absolute offset of the beginning of the link-layer payload.
305 */
306 bpf_abs_offset off_linkpl;
307
308 /*
309 * "off_linktype" is the offset to information in the link-layer
310 * header giving the packet type. This is an absolute offset
311 * from the beginning of the packet.
312 *
313 * For Ethernet, it's the offset of the Ethernet type field; this
314 * means that it must have a value that skips VLAN tags.
315 *
316 * For link-layer types that always use 802.2 headers, it's the
317 * offset of the LLC header; this means that it must have a value
318 * that skips VLAN tags.
319 *
320 * For PPP, it's the offset of the PPP type field.
321 *
322 * For Cisco HDLC, it's the offset of the CHDLC type field.
323 *
324 * For BSD loopback, it's the offset of the AF_ value.
325 *
326 * For Linux cooked sockets, it's the offset of the type field.
327 *
328 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
329 * encapsulation, in which case, IP is assumed.
330 */
331 bpf_abs_offset off_linktype;
332
333 /*
334 * TRUE if the link layer includes an ATM pseudo-header.
335 */
336 int is_atm;
337
338 /*
339 * TRUE if "geneve" appeared in the filter; it causes us to
340 * generate code that checks for a Geneve header and assume
341 * that later filters apply to the encapsulated payload.
342 */
343 int is_geneve;
344
345 /*
346 * TRUE if we need variable length part of VLAN offset
347 */
348 int is_vlan_vloffset;
349
350 /*
351 * These are offsets for the ATM pseudo-header.
352 */
353 u_int off_vpi;
354 u_int off_vci;
355 u_int off_proto;
356
357 /*
358 * These are offsets for the MTP2 fields.
359 */
360 u_int off_li;
361 u_int off_li_hsl;
362
363 /*
364 * These are offsets for the MTP3 fields.
365 */
366 u_int off_sio;
367 u_int off_opc;
368 u_int off_dpc;
369 u_int off_sls;
370
371 /*
372 * This is the offset of the first byte after the ATM pseudo_header,
373 * or -1 if there is no ATM pseudo-header.
374 */
375 u_int off_payload;
376
377 /*
378 * These are offsets to the beginning of the network-layer header.
379 * They are relative to the beginning of the link-layer payload
380 * (i.e., they don't include off_linkhdr.constant_part or
381 * off_linkpl.constant_part).
382 *
383 * If the link layer never uses 802.2 LLC:
384 *
385 * "off_nl" and "off_nl_nosnap" are the same.
386 *
387 * If the link layer always uses 802.2 LLC:
388 *
389 * "off_nl" is the offset if there's a SNAP header following
390 * the 802.2 header;
391 *
392 * "off_nl_nosnap" is the offset if there's no SNAP header.
393 *
394 * If the link layer is Ethernet:
395 *
396 * "off_nl" is the offset if the packet is an Ethernet II packet
397 * (we assume no 802.3+802.2+SNAP);
398 *
399 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
400 * with an 802.2 header following it.
401 */
402 u_int off_nl;
403 u_int off_nl_nosnap;
404
405 /*
406 * Here we handle simple allocation of the scratch registers.
407 * If too many registers are alloc'd, the allocator punts.
408 */
409 int regused[BPF_MEMWORDS];
410 int curreg;
411
412 /*
413 * Memory chunks.
414 */
415 struct chunk chunks[NCHUNKS];
416 int cur_chunk;
417 };
418
419 /*
420 * For use by routines outside this file.
421 */
422 /* VARARGS */
423 void
424 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
425 {
426 va_list ap;
427
428 /*
429 * If we've already set an error, don't override it.
430 * The lexical analyzer reports some errors by setting
431 * the error and then returning a LEX_ERROR token, which
432 * is not recognized by any grammar rule, and thus forces
433 * the parse to stop. We don't want the error reported
434 * by the lexical analyzer to be overwritten by the syntax
435 * error.
436 */
437 if (!cstate->error_set) {
438 va_start(ap, fmt);
439 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
440 fmt, ap);
441 va_end(ap);
442 cstate->error_set = 1;
443 }
444 }
445
446 /*
447 * For use *ONLY* in routines in this file.
448 */
449 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
450 PCAP_PRINTFLIKE(2, 3);
451
452 /* VARARGS */
453 static void PCAP_NORETURN
454 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
455 {
456 va_list ap;
457
458 va_start(ap, fmt);
459 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
460 fmt, ap);
461 va_end(ap);
462 longjmp(cstate->top_ctx, 1);
463 /*NOTREACHED*/
464 #ifdef _AIX
465 PCAP_UNREACHABLE
466 #endif /* _AIX */
467 }
468
469 static int init_linktype(compiler_state_t *, pcap_t *);
470
471 static void init_regs(compiler_state_t *);
472 static int alloc_reg(compiler_state_t *);
473 static void free_reg(compiler_state_t *, int);
474
475 static void initchunks(compiler_state_t *cstate);
476 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
477 static void *newchunk(compiler_state_t *cstate, size_t);
478 static void freechunks(compiler_state_t *cstate);
479 static inline struct block *new_block(compiler_state_t *cstate, int);
480 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
481 static struct block *gen_retblk(compiler_state_t *cstate, int);
482 static inline void syntax(compiler_state_t *cstate);
483
484 static void backpatch(struct block *, struct block *);
485 static void merge(struct block *, struct block *);
486 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
487 u_int, bpf_u_int32);
488 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
489 u_int, bpf_u_int32);
490 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
491 u_int, bpf_u_int32);
492 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
493 u_int, bpf_u_int32);
494 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
495 u_int, bpf_u_int32);
496 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
497 u_int, bpf_u_int32, bpf_u_int32);
498 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
499 u_int, const u_char *);
500 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
501 u_int, bpf_u_int32, int, int, bpf_u_int32);
502 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
503 u_int, u_int);
504 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
505 u_int);
506 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
507 static struct block *gen_uncond(compiler_state_t *, int);
508 static inline struct block *gen_true(compiler_state_t *);
509 static inline struct block *gen_false(compiler_state_t *);
510 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
511 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
512 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
513 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
514 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
515 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
516 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
517 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
518 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
519 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
520 bpf_abs_offset *);
521 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
522 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
523 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
524 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
525 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
526 int, bpf_u_int32, u_int, u_int);
527 #ifdef INET6
528 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
529 struct in6_addr *, int, bpf_u_int32, u_int, u_int);
530 #endif
531 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
532 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
533 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
534 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
535 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
536 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
537 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
538 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
539 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
540 int, int, int);
541 #ifdef INET6
542 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
543 struct in6_addr *, int, int, int);
544 #endif
545 #ifndef INET6
546 static struct block *gen_gateway(compiler_state_t *, const u_char *,
547 struct addrinfo *, int, int);
548 #endif
549 static struct block *gen_ipfrag(compiler_state_t *);
550 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
551 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
552 bpf_u_int32);
553 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
554 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
555 bpf_u_int32);
556 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
557 static struct block *gen_port(compiler_state_t *, u_int, int, int);
558 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
559 bpf_u_int32, int);
560 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
561 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
562 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
563 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
564 bpf_u_int32, int);
565 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
566 static int lookup_proto(compiler_state_t *, const char *, int);
567 #if !defined(NO_PROTOCHAIN)
568 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
569 #endif /* !defined(NO_PROTOCHAIN) */
570 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
571 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
572 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
573 static struct block *gen_mac_multicast(compiler_state_t *, int);
574 static struct block *gen_len(compiler_state_t *, int, int);
575 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
576 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
577
578 static struct block *gen_ppi_dlt_check(compiler_state_t *);
579 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
580 bpf_u_int32, int, int);
581 static struct block *gen_atmtype_llc(compiler_state_t *);
582 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
583
584 static void
585 initchunks(compiler_state_t *cstate)
586 {
587 int i;
588
589 for (i = 0; i < NCHUNKS; i++) {
590 cstate->chunks[i].n_left = 0;
591 cstate->chunks[i].m = NULL;
592 }
593 cstate->cur_chunk = 0;
594 }
595
596 static void *
597 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
598 {
599 struct chunk *cp;
600 int k;
601 size_t size;
602
603 #ifndef __NetBSD__
604 /* XXX Round up to nearest long. */
605 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
606 #else
607 /* XXX Round up to structure boundary. */
608 n = ALIGN(n);
609 #endif
610
611 cp = &cstate->chunks[cstate->cur_chunk];
612 if (n > cp->n_left) {
613 ++cp;
614 k = ++cstate->cur_chunk;
615 if (k >= NCHUNKS) {
616 bpf_set_error(cstate, "out of memory");
617 return (NULL);
618 }
619 size = CHUNK0SIZE << k;
620 cp->m = (void *)malloc(size);
621 if (cp->m == NULL) {
622 bpf_set_error(cstate, "out of memory");
623 return (NULL);
624 }
625 memset((char *)cp->m, 0, size);
626 cp->n_left = size;
627 if (n > size) {
628 bpf_set_error(cstate, "out of memory");
629 return (NULL);
630 }
631 }
632 cp->n_left -= n;
633 return (void *)((char *)cp->m + cp->n_left);
634 }
635
636 static void *
637 newchunk(compiler_state_t *cstate, size_t n)
638 {
639 void *p;
640
641 p = newchunk_nolongjmp(cstate, n);
642 if (p == NULL) {
643 longjmp(cstate->top_ctx, 1);
644 /*NOTREACHED*/
645 }
646 return (p);
647 }
648
649 static void
650 freechunks(compiler_state_t *cstate)
651 {
652 int i;
653
654 for (i = 0; i < NCHUNKS; ++i)
655 if (cstate->chunks[i].m != NULL)
656 free(cstate->chunks[i].m);
657 }
658
659 /*
660 * A strdup whose allocations are freed after code generation is over.
661 * This is used by the lexical analyzer, so it can't longjmp; it just
662 * returns NULL on an allocation error, and the callers must check
663 * for it.
664 */
665 char *
666 sdup(compiler_state_t *cstate, const char *s)
667 {
668 size_t n = strlen(s) + 1;
669 char *cp = newchunk_nolongjmp(cstate, n);
670
671 if (cp == NULL)
672 return (NULL);
673 pcap_strlcpy(cp, s, n);
674 return (cp);
675 }
676
677 static inline struct block *
678 new_block(compiler_state_t *cstate, int code)
679 {
680 struct block *p;
681
682 p = (struct block *)newchunk(cstate, sizeof(*p));
683 p->s.code = code;
684 p->head = p;
685
686 return p;
687 }
688
689 static inline struct slist *
690 new_stmt(compiler_state_t *cstate, int code)
691 {
692 struct slist *p;
693
694 p = (struct slist *)newchunk(cstate, sizeof(*p));
695 p->s.code = code;
696
697 return p;
698 }
699
700 static struct block *
701 gen_retblk(compiler_state_t *cstate, int v)
702 {
703 struct block *b = new_block(cstate, BPF_RET|BPF_K);
704
705 b->s.k = v;
706 return b;
707 }
708
709 static inline PCAP_NORETURN_DEF void
710 syntax(compiler_state_t *cstate)
711 {
712 bpf_error(cstate, "syntax error in filter expression");
713 }
714
715 int
716 pcap_compile(pcap_t *p, struct bpf_program *program,
717 const char *buf, int optimize, bpf_u_int32 mask)
718 {
719 #ifdef _WIN32
720 static int done = 0;
721 #endif
722 compiler_state_t cstate;
723 const char * volatile xbuf = buf;
724 yyscan_t scanner = NULL;
725 volatile YY_BUFFER_STATE in_buffer = NULL;
726 u_int len;
727 int rc;
728
729 /*
730 * If this pcap_t hasn't been activated, it doesn't have a
731 * link-layer type, so we can't use it.
732 */
733 if (!p->activated) {
734 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
735 "not-yet-activated pcap_t passed to pcap_compile");
736 return (PCAP_ERROR);
737 }
738
739 #ifdef _WIN32
740 if (!done)
741 pcap_wsockinit();
742 done = 1;
743 #endif
744
745 #ifdef ENABLE_REMOTE
746 /*
747 * If the device on which we're capturing need to be notified
748 * that a new filter is being compiled, do so.
749 *
750 * This allows them to save a copy of it, in case, for example,
751 * they're implementing a form of remote packet capture, and
752 * want the remote machine to filter out the packets in which
753 * it's sending the packets it's captured.
754 *
755 * XXX - the fact that we happen to be compiling a filter
756 * doesn't necessarily mean we'll be installing it as the
757 * filter for this pcap_t; we might be running it from userland
758 * on captured packets to do packet classification. We really
759 * need a better way of handling this, but this is all that
760 * the WinPcap remote capture code did.
761 */
762 if (p->save_current_filter_op != NULL)
763 (p->save_current_filter_op)(p, buf);
764 #endif
765
766 initchunks(&cstate);
767 cstate.no_optimize = 0;
768 #ifdef INET6
769 cstate.ai = NULL;
770 #endif
771 cstate.e = NULL;
772 cstate.ic.root = NULL;
773 cstate.ic.cur_mark = 0;
774 cstate.bpf_pcap = p;
775 cstate.error_set = 0;
776 init_regs(&cstate);
777
778 cstate.netmask = mask;
779
780 cstate.snaplen = pcap_snapshot(p);
781 if (cstate.snaplen == 0) {
782 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
783 "snaplen of 0 rejects all packets");
784 rc = PCAP_ERROR;
785 goto quit;
786 }
787
788 if (pcap_lex_init(&scanner) != 0)
789 pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
790 errno, "can't initialize scanner");
791 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
792
793 /*
794 * Associate the compiler state with the lexical analyzer
795 * state.
796 */
797 pcap_set_extra(&cstate, scanner);
798
799 if (init_linktype(&cstate, p) == -1) {
800 rc = PCAP_ERROR;
801 goto quit;
802 }
803 if (pcap_parse(scanner, &cstate) != 0) {
804 #ifdef INET6
805 if (cstate.ai != NULL)
806 freeaddrinfo(cstate.ai);
807 #endif
808 if (cstate.e != NULL)
809 free(cstate.e);
810 rc = PCAP_ERROR;
811 goto quit;
812 }
813
814 if (cstate.ic.root == NULL) {
815 /*
816 * Catch errors reported by gen_retblk().
817 */
818 if (setjmp(cstate.top_ctx)) {
819 rc = PCAP_ERROR;
820 goto quit;
821 }
822 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
823 }
824
825 if (optimize && !cstate.no_optimize) {
826 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
827 /* Failure */
828 rc = PCAP_ERROR;
829 goto quit;
830 }
831 if (cstate.ic.root == NULL ||
832 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
833 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
834 "expression rejects all packets");
835 rc = PCAP_ERROR;
836 goto quit;
837 }
838 }
839 program->bf_insns = icode_to_fcode(&cstate.ic,
840 cstate.ic.root, &len, p->errbuf);
841 if (program->bf_insns == NULL) {
842 /* Failure */
843 rc = PCAP_ERROR;
844 goto quit;
845 }
846 program->bf_len = len;
847
848 rc = 0; /* We're all okay */
849
850 quit:
851 /*
852 * Clean up everything for the lexical analyzer.
853 */
854 if (in_buffer != NULL)
855 pcap__delete_buffer(in_buffer, scanner);
856 if (scanner != NULL)
857 pcap_lex_destroy(scanner);
858
859 /*
860 * Clean up our own allocated memory.
861 */
862 freechunks(&cstate);
863
864 return (rc);
865 }
866
867 /*
868 * entry point for using the compiler with no pcap open
869 * pass in all the stuff that is needed explicitly instead.
870 */
871 int
872 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
873 struct bpf_program *program,
874 const char *buf, int optimize, bpf_u_int32 mask)
875 {
876 pcap_t *p;
877 int ret;
878
879 p = pcap_open_dead(linktype_arg, snaplen_arg);
880 if (p == NULL)
881 return (PCAP_ERROR);
882 ret = pcap_compile(p, program, buf, optimize, mask);
883 pcap_close(p);
884 return (ret);
885 }
886
887 /*
888 * Clean up a "struct bpf_program" by freeing all the memory allocated
889 * in it.
890 */
891 void
892 pcap_freecode(struct bpf_program *program)
893 {
894 program->bf_len = 0;
895 if (program->bf_insns != NULL) {
896 free((char *)program->bf_insns);
897 program->bf_insns = NULL;
898 }
899 }
900
901 /*
902 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
903 * which of the jt and jf fields has been resolved and which is a pointer
904 * back to another unresolved block (or nil). At least one of the fields
905 * in each block is already resolved.
906 */
907 static void
908 backpatch(struct block *list, struct block *target)
909 {
910 struct block *next;
911
912 while (list) {
913 if (!list->sense) {
914 next = JT(list);
915 JT(list) = target;
916 } else {
917 next = JF(list);
918 JF(list) = target;
919 }
920 list = next;
921 }
922 }
923
924 /*
925 * Merge the lists in b0 and b1, using the 'sense' field to indicate
926 * which of jt and jf is the link.
927 */
928 static void
929 merge(struct block *b0, struct block *b1)
930 {
931 register struct block **p = &b0;
932
933 /* Find end of list. */
934 while (*p)
935 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
936
937 /* Concatenate the lists. */
938 *p = b1;
939 }
940
941 int
942 finish_parse(compiler_state_t *cstate, struct block *p)
943 {
944 struct block *ppi_dlt_check;
945
946 /*
947 * Catch errors reported by us and routines below us, and return -1
948 * on an error.
949 */
950 if (setjmp(cstate->top_ctx))
951 return (-1);
952
953 /*
954 * Insert before the statements of the first (root) block any
955 * statements needed to load the lengths of any variable-length
956 * headers into registers.
957 *
958 * XXX - a fancier strategy would be to insert those before the
959 * statements of all blocks that use those lengths and that
960 * have no predecessors that use them, so that we only compute
961 * the lengths if we need them. There might be even better
962 * approaches than that.
963 *
964 * However, those strategies would be more complicated, and
965 * as we don't generate code to compute a length if the
966 * program has no tests that use the length, and as most
967 * tests will probably use those lengths, we would just
968 * postpone computing the lengths so that it's not done
969 * for tests that fail early, and it's not clear that's
970 * worth the effort.
971 */
972 insert_compute_vloffsets(cstate, p->head);
973
974 /*
975 * For DLT_PPI captures, generate a check of the per-packet
976 * DLT value to make sure it's DLT_IEEE802_11.
977 *
978 * XXX - TurboCap cards use DLT_PPI for Ethernet.
979 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
980 * with appropriate Ethernet information and use that rather
981 * than using something such as DLT_PPI where you don't know
982 * the link-layer header type until runtime, which, in the
983 * general case, would force us to generate both Ethernet *and*
984 * 802.11 code (*and* anything else for which PPI is used)
985 * and choose between them early in the BPF program?
986 */
987 ppi_dlt_check = gen_ppi_dlt_check(cstate);
988 if (ppi_dlt_check != NULL)
989 gen_and(ppi_dlt_check, p);
990
991 backpatch(p, gen_retblk(cstate, cstate->snaplen));
992 p->sense = !p->sense;
993 backpatch(p, gen_retblk(cstate, 0));
994 cstate->ic.root = p->head;
995 return (0);
996 }
997
998 void
999 gen_and(struct block *b0, struct block *b1)
1000 {
1001 backpatch(b0, b1->head);
1002 b0->sense = !b0->sense;
1003 b1->sense = !b1->sense;
1004 merge(b1, b0);
1005 b1->sense = !b1->sense;
1006 b1->head = b0->head;
1007 }
1008
1009 void
1010 gen_or(struct block *b0, struct block *b1)
1011 {
1012 b0->sense = !b0->sense;
1013 backpatch(b0, b1->head);
1014 b0->sense = !b0->sense;
1015 merge(b1, b0);
1016 b1->head = b0->head;
1017 }
1018
1019 void
1020 gen_not(struct block *b)
1021 {
1022 b->sense = !b->sense;
1023 }
1024
1025 static struct block *
1026 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1027 u_int size, bpf_u_int32 v)
1028 {
1029 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1030 }
1031
1032 static struct block *
1033 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1034 u_int size, bpf_u_int32 v)
1035 {
1036 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1037 }
1038
1039 static struct block *
1040 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1041 u_int size, bpf_u_int32 v)
1042 {
1043 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1044 }
1045
1046 static struct block *
1047 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1048 u_int size, bpf_u_int32 v)
1049 {
1050 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1051 }
1052
1053 static struct block *
1054 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1055 u_int size, bpf_u_int32 v)
1056 {
1057 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1058 }
1059
1060 static struct block *
1061 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1062 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1063 {
1064 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1065 }
1066
1067 static struct block *
1068 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1069 u_int size, const u_char *v)
1070 {
1071 register struct block *b, *tmp;
1072
1073 b = NULL;
1074 while (size >= 4) {
1075 register const u_char *p = &v[size - 4];
1076
1077 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1078 EXTRACT_BE_U_4(p));
1079 if (b != NULL)
1080 gen_and(b, tmp);
1081 b = tmp;
1082 size -= 4;
1083 }
1084 while (size >= 2) {
1085 register const u_char *p = &v[size - 2];
1086
1087 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1088 EXTRACT_BE_U_2(p));
1089 if (b != NULL)
1090 gen_and(b, tmp);
1091 b = tmp;
1092 size -= 2;
1093 }
1094 if (size > 0) {
1095 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1096 if (b != NULL)
1097 gen_and(b, tmp);
1098 b = tmp;
1099 }
1100 return b;
1101 }
1102
1103 /*
1104 * AND the field of size "size" at offset "offset" relative to the header
1105 * specified by "offrel" with "mask", and compare it with the value "v"
1106 * with the test specified by "jtype"; if "reverse" is true, the test
1107 * should test the opposite of "jtype".
1108 */
1109 static struct block *
1110 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1111 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1112 bpf_u_int32 v)
1113 {
1114 struct slist *s, *s2;
1115 struct block *b;
1116
1117 s = gen_load_a(cstate, offrel, offset, size);
1118
1119 if (mask != 0xffffffff) {
1120 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1121 s2->s.k = mask;
1122 sappend(s, s2);
1123 }
1124
1125 b = new_block(cstate, JMP(jtype));
1126 b->stmts = s;
1127 b->s.k = v;
1128 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1129 gen_not(b);
1130 return b;
1131 }
1132
1133 static int
1134 init_linktype(compiler_state_t *cstate, pcap_t *p)
1135 {
1136 cstate->pcap_fddipad = p->fddipad;
1137
1138 /*
1139 * We start out with only one link-layer header.
1140 */
1141 cstate->outermostlinktype = pcap_datalink(p);
1142 cstate->off_outermostlinkhdr.constant_part = 0;
1143 cstate->off_outermostlinkhdr.is_variable = 0;
1144 cstate->off_outermostlinkhdr.reg = -1;
1145
1146 cstate->prevlinktype = cstate->outermostlinktype;
1147 cstate->off_prevlinkhdr.constant_part = 0;
1148 cstate->off_prevlinkhdr.is_variable = 0;
1149 cstate->off_prevlinkhdr.reg = -1;
1150
1151 cstate->linktype = cstate->outermostlinktype;
1152 cstate->off_linkhdr.constant_part = 0;
1153 cstate->off_linkhdr.is_variable = 0;
1154 cstate->off_linkhdr.reg = -1;
1155
1156 /*
1157 * XXX
1158 */
1159 cstate->off_linkpl.constant_part = 0;
1160 cstate->off_linkpl.is_variable = 0;
1161 cstate->off_linkpl.reg = -1;
1162
1163 cstate->off_linktype.constant_part = 0;
1164 cstate->off_linktype.is_variable = 0;
1165 cstate->off_linktype.reg = -1;
1166
1167 /*
1168 * Assume it's not raw ATM with a pseudo-header, for now.
1169 */
1170 cstate->is_atm = 0;
1171 cstate->off_vpi = OFFSET_NOT_SET;
1172 cstate->off_vci = OFFSET_NOT_SET;
1173 cstate->off_proto = OFFSET_NOT_SET;
1174 cstate->off_payload = OFFSET_NOT_SET;
1175
1176 /*
1177 * And not Geneve.
1178 */
1179 cstate->is_geneve = 0;
1180
1181 /*
1182 * No variable length VLAN offset by default
1183 */
1184 cstate->is_vlan_vloffset = 0;
1185
1186 /*
1187 * And assume we're not doing SS7.
1188 */
1189 cstate->off_li = OFFSET_NOT_SET;
1190 cstate->off_li_hsl = OFFSET_NOT_SET;
1191 cstate->off_sio = OFFSET_NOT_SET;
1192 cstate->off_opc = OFFSET_NOT_SET;
1193 cstate->off_dpc = OFFSET_NOT_SET;
1194 cstate->off_sls = OFFSET_NOT_SET;
1195
1196 cstate->label_stack_depth = 0;
1197 cstate->vlan_stack_depth = 0;
1198
1199 switch (cstate->linktype) {
1200
1201 case DLT_ARCNET:
1202 cstate->off_linktype.constant_part = 2;
1203 cstate->off_linkpl.constant_part = 6;
1204 cstate->off_nl = 0; /* XXX in reality, variable! */
1205 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1206 break;
1207
1208 case DLT_ARCNET_LINUX:
1209 cstate->off_linktype.constant_part = 4;
1210 cstate->off_linkpl.constant_part = 8;
1211 cstate->off_nl = 0; /* XXX in reality, variable! */
1212 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1213 break;
1214
1215 case DLT_EN10MB:
1216 cstate->off_linktype.constant_part = 12;
1217 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1218 cstate->off_nl = 0; /* Ethernet II */
1219 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1220 break;
1221
1222 case DLT_SLIP:
1223 /*
1224 * SLIP doesn't have a link level type. The 16 byte
1225 * header is hacked into our SLIP driver.
1226 */
1227 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1228 cstate->off_linkpl.constant_part = 16;
1229 cstate->off_nl = 0;
1230 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1231 break;
1232
1233 case DLT_SLIP_BSDOS:
1234 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1235 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1236 /* XXX end */
1237 cstate->off_linkpl.constant_part = 24;
1238 cstate->off_nl = 0;
1239 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1240 break;
1241
1242 case DLT_NULL:
1243 case DLT_LOOP:
1244 cstate->off_linktype.constant_part = 0;
1245 cstate->off_linkpl.constant_part = 4;
1246 cstate->off_nl = 0;
1247 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1248 break;
1249
1250 case DLT_ENC:
1251 cstate->off_linktype.constant_part = 0;
1252 cstate->off_linkpl.constant_part = 12;
1253 cstate->off_nl = 0;
1254 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1255 break;
1256
1257 case DLT_PPP:
1258 case DLT_PPP_PPPD:
1259 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1260 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1261 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1262 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1263 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1264 cstate->off_nl = 0;
1265 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1266 break;
1267
1268 case DLT_PPP_ETHER:
1269 /*
1270 * This does no include the Ethernet header, and
1271 * only covers session state.
1272 */
1273 cstate->off_linktype.constant_part = 6;
1274 cstate->off_linkpl.constant_part = 8;
1275 cstate->off_nl = 0;
1276 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1277 break;
1278
1279 case DLT_PPP_BSDOS:
1280 cstate->off_linktype.constant_part = 5;
1281 cstate->off_linkpl.constant_part = 24;
1282 cstate->off_nl = 0;
1283 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1284 break;
1285
1286 case DLT_FDDI:
1287 /*
1288 * FDDI doesn't really have a link-level type field.
1289 * We set "off_linktype" to the offset of the LLC header.
1290 *
1291 * To check for Ethernet types, we assume that SSAP = SNAP
1292 * is being used and pick out the encapsulated Ethernet type.
1293 * XXX - should we generate code to check for SNAP?
1294 */
1295 cstate->off_linktype.constant_part = 13;
1296 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1297 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1298 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1299 cstate->off_nl = 8; /* 802.2+SNAP */
1300 cstate->off_nl_nosnap = 3; /* 802.2 */
1301 break;
1302
1303 case DLT_IEEE802:
1304 /*
1305 * Token Ring doesn't really have a link-level type field.
1306 * We set "off_linktype" to the offset of the LLC header.
1307 *
1308 * To check for Ethernet types, we assume that SSAP = SNAP
1309 * is being used and pick out the encapsulated Ethernet type.
1310 * XXX - should we generate code to check for SNAP?
1311 *
1312 * XXX - the header is actually variable-length.
1313 * Some various Linux patched versions gave 38
1314 * as "off_linktype" and 40 as "off_nl"; however,
1315 * if a token ring packet has *no* routing
1316 * information, i.e. is not source-routed, the correct
1317 * values are 20 and 22, as they are in the vanilla code.
1318 *
1319 * A packet is source-routed iff the uppermost bit
1320 * of the first byte of the source address, at an
1321 * offset of 8, has the uppermost bit set. If the
1322 * packet is source-routed, the total number of bytes
1323 * of routing information is 2 plus bits 0x1F00 of
1324 * the 16-bit value at an offset of 14 (shifted right
1325 * 8 - figure out which byte that is).
1326 */
1327 cstate->off_linktype.constant_part = 14;
1328 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1329 cstate->off_nl = 8; /* 802.2+SNAP */
1330 cstate->off_nl_nosnap = 3; /* 802.2 */
1331 break;
1332
1333 case DLT_PRISM_HEADER:
1334 case DLT_IEEE802_11_RADIO_AVS:
1335 case DLT_IEEE802_11_RADIO:
1336 cstate->off_linkhdr.is_variable = 1;
1337 /* Fall through, 802.11 doesn't have a variable link
1338 * prefix but is otherwise the same. */
1339 /* FALLTHROUGH */
1340
1341 case DLT_IEEE802_11:
1342 /*
1343 * 802.11 doesn't really have a link-level type field.
1344 * We set "off_linktype.constant_part" to the offset of
1345 * the LLC header.
1346 *
1347 * To check for Ethernet types, we assume that SSAP = SNAP
1348 * is being used and pick out the encapsulated Ethernet type.
1349 * XXX - should we generate code to check for SNAP?
1350 *
1351 * We also handle variable-length radio headers here.
1352 * The Prism header is in theory variable-length, but in
1353 * practice it's always 144 bytes long. However, some
1354 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1355 * sometimes or always supply an AVS header, so we
1356 * have to check whether the radio header is a Prism
1357 * header or an AVS header, so, in practice, it's
1358 * variable-length.
1359 */
1360 cstate->off_linktype.constant_part = 24;
1361 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1362 cstate->off_linkpl.is_variable = 1;
1363 cstate->off_nl = 8; /* 802.2+SNAP */
1364 cstate->off_nl_nosnap = 3; /* 802.2 */
1365 break;
1366
1367 case DLT_PPI:
1368 /*
1369 * At the moment we treat PPI the same way that we treat
1370 * normal Radiotap encoded packets. The difference is in
1371 * the function that generates the code at the beginning
1372 * to compute the header length. Since this code generator
1373 * of PPI supports bare 802.11 encapsulation only (i.e.
1374 * the encapsulated DLT should be DLT_IEEE802_11) we
1375 * generate code to check for this too.
1376 */
1377 cstate->off_linktype.constant_part = 24;
1378 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1379 cstate->off_linkpl.is_variable = 1;
1380 cstate->off_linkhdr.is_variable = 1;
1381 cstate->off_nl = 8; /* 802.2+SNAP */
1382 cstate->off_nl_nosnap = 3; /* 802.2 */
1383 break;
1384
1385 case DLT_ATM_RFC1483:
1386 case DLT_ATM_CLIP: /* Linux ATM defines this */
1387 /*
1388 * assume routed, non-ISO PDUs
1389 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1390 *
1391 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1392 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1393 * latter would presumably be treated the way PPPoE
1394 * should be, so you can do "pppoe and udp port 2049"
1395 * or "pppoa and tcp port 80" and have it check for
1396 * PPPo{A,E} and a PPP protocol of IP and....
1397 */
1398 cstate->off_linktype.constant_part = 0;
1399 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1400 cstate->off_nl = 8; /* 802.2+SNAP */
1401 cstate->off_nl_nosnap = 3; /* 802.2 */
1402 break;
1403
1404 case DLT_SUNATM:
1405 /*
1406 * Full Frontal ATM; you get AALn PDUs with an ATM
1407 * pseudo-header.
1408 */
1409 cstate->is_atm = 1;
1410 cstate->off_vpi = SUNATM_VPI_POS;
1411 cstate->off_vci = SUNATM_VCI_POS;
1412 cstate->off_proto = PROTO_POS;
1413 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1414 cstate->off_linktype.constant_part = cstate->off_payload;
1415 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1416 cstate->off_nl = 8; /* 802.2+SNAP */
1417 cstate->off_nl_nosnap = 3; /* 802.2 */
1418 break;
1419
1420 case DLT_RAW:
1421 case DLT_IPV4:
1422 case DLT_IPV6:
1423 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1424 cstate->off_linkpl.constant_part = 0;
1425 cstate->off_nl = 0;
1426 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1427 break;
1428
1429 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1430 cstate->off_linktype.constant_part = 14;
1431 cstate->off_linkpl.constant_part = 16;
1432 cstate->off_nl = 0;
1433 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1434 break;
1435
1436 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1437 cstate->off_linktype.constant_part = 0;
1438 cstate->off_linkpl.constant_part = 20;
1439 cstate->off_nl = 0;
1440 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1441 break;
1442
1443 case DLT_LTALK:
1444 /*
1445 * LocalTalk does have a 1-byte type field in the LLAP header,
1446 * but really it just indicates whether there is a "short" or
1447 * "long" DDP packet following.
1448 */
1449 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1450 cstate->off_linkpl.constant_part = 0;
1451 cstate->off_nl = 0;
1452 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1453 break;
1454
1455 case DLT_IP_OVER_FC:
1456 /*
1457 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1458 * link-level type field. We set "off_linktype" to the
1459 * offset of the LLC header.
1460 *
1461 * To check for Ethernet types, we assume that SSAP = SNAP
1462 * is being used and pick out the encapsulated Ethernet type.
1463 * XXX - should we generate code to check for SNAP? RFC
1464 * 2625 says SNAP should be used.
1465 */
1466 cstate->off_linktype.constant_part = 16;
1467 cstate->off_linkpl.constant_part = 16;
1468 cstate->off_nl = 8; /* 802.2+SNAP */
1469 cstate->off_nl_nosnap = 3; /* 802.2 */
1470 break;
1471
1472 case DLT_FRELAY:
1473 /*
1474 * XXX - we should set this to handle SNAP-encapsulated
1475 * frames (NLPID of 0x80).
1476 */
1477 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1478 cstate->off_linkpl.constant_part = 0;
1479 cstate->off_nl = 0;
1480 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1481 break;
1482
1483 /*
1484 * the only BPF-interesting FRF.16 frames are non-control frames;
1485 * Frame Relay has a variable length link-layer
1486 * so lets start with offset 4 for now and increments later on (FIXME);
1487 */
1488 case DLT_MFR:
1489 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1490 cstate->off_linkpl.constant_part = 0;
1491 cstate->off_nl = 4;
1492 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1493 break;
1494
1495 case DLT_APPLE_IP_OVER_IEEE1394:
1496 cstate->off_linktype.constant_part = 16;
1497 cstate->off_linkpl.constant_part = 18;
1498 cstate->off_nl = 0;
1499 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1500 break;
1501
1502 case DLT_SYMANTEC_FIREWALL:
1503 cstate->off_linktype.constant_part = 6;
1504 cstate->off_linkpl.constant_part = 44;
1505 cstate->off_nl = 0; /* Ethernet II */
1506 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1507 break;
1508
1509 case DLT_PFLOG:
1510 cstate->off_linktype.constant_part = 0;
1511 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1512 cstate->off_linkpl.is_variable = 1;
1513 cstate->off_nl = 0;
1514 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1515 break;
1516
1517 case DLT_JUNIPER_MFR:
1518 case DLT_JUNIPER_MLFR:
1519 case DLT_JUNIPER_MLPPP:
1520 case DLT_JUNIPER_PPP:
1521 case DLT_JUNIPER_CHDLC:
1522 case DLT_JUNIPER_FRELAY:
1523 cstate->off_linktype.constant_part = 4;
1524 cstate->off_linkpl.constant_part = 4;
1525 cstate->off_nl = 0;
1526 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1527 break;
1528
1529 case DLT_JUNIPER_ATM1:
1530 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1531 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1532 cstate->off_nl = 0;
1533 cstate->off_nl_nosnap = 10;
1534 break;
1535
1536 case DLT_JUNIPER_ATM2:
1537 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1538 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1539 cstate->off_nl = 0;
1540 cstate->off_nl_nosnap = 10;
1541 break;
1542
1543 /* frames captured on a Juniper PPPoE service PIC
1544 * contain raw ethernet frames */
1545 case DLT_JUNIPER_PPPOE:
1546 case DLT_JUNIPER_ETHER:
1547 cstate->off_linkpl.constant_part = 14;
1548 cstate->off_linktype.constant_part = 16;
1549 cstate->off_nl = 18; /* Ethernet II */
1550 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1551 break;
1552
1553 case DLT_JUNIPER_PPPOE_ATM:
1554 cstate->off_linktype.constant_part = 4;
1555 cstate->off_linkpl.constant_part = 6;
1556 cstate->off_nl = 0;
1557 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1558 break;
1559
1560 case DLT_JUNIPER_GGSN:
1561 cstate->off_linktype.constant_part = 6;
1562 cstate->off_linkpl.constant_part = 12;
1563 cstate->off_nl = 0;
1564 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1565 break;
1566
1567 case DLT_JUNIPER_ES:
1568 cstate->off_linktype.constant_part = 6;
1569 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1570 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1571 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1572 break;
1573
1574 case DLT_JUNIPER_MONITOR:
1575 cstate->off_linktype.constant_part = 12;
1576 cstate->off_linkpl.constant_part = 12;
1577 cstate->off_nl = 0; /* raw IP/IP6 header */
1578 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1579 break;
1580
1581 case DLT_BACNET_MS_TP:
1582 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1583 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1584 cstate->off_nl = OFFSET_NOT_SET;
1585 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1586 break;
1587
1588 case DLT_JUNIPER_SERVICES:
1589 cstate->off_linktype.constant_part = 12;
1590 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1591 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1592 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1593 break;
1594
1595 case DLT_JUNIPER_VP:
1596 cstate->off_linktype.constant_part = 18;
1597 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1598 cstate->off_nl = OFFSET_NOT_SET;
1599 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1600 break;
1601
1602 case DLT_JUNIPER_ST:
1603 cstate->off_linktype.constant_part = 18;
1604 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1605 cstate->off_nl = OFFSET_NOT_SET;
1606 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1607 break;
1608
1609 case DLT_JUNIPER_ISM:
1610 cstate->off_linktype.constant_part = 8;
1611 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1612 cstate->off_nl = OFFSET_NOT_SET;
1613 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1614 break;
1615
1616 case DLT_JUNIPER_VS:
1617 case DLT_JUNIPER_SRX_E2E:
1618 case DLT_JUNIPER_FIBRECHANNEL:
1619 case DLT_JUNIPER_ATM_CEMIC:
1620 cstate->off_linktype.constant_part = 8;
1621 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1622 cstate->off_nl = OFFSET_NOT_SET;
1623 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1624 break;
1625
1626 case DLT_MTP2:
1627 cstate->off_li = 2;
1628 cstate->off_li_hsl = 4;
1629 cstate->off_sio = 3;
1630 cstate->off_opc = 4;
1631 cstate->off_dpc = 4;
1632 cstate->off_sls = 7;
1633 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1634 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1635 cstate->off_nl = OFFSET_NOT_SET;
1636 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1637 break;
1638
1639 case DLT_MTP2_WITH_PHDR:
1640 cstate->off_li = 6;
1641 cstate->off_li_hsl = 8;
1642 cstate->off_sio = 7;
1643 cstate->off_opc = 8;
1644 cstate->off_dpc = 8;
1645 cstate->off_sls = 11;
1646 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1647 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1648 cstate->off_nl = OFFSET_NOT_SET;
1649 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1650 break;
1651
1652 case DLT_ERF:
1653 cstate->off_li = 22;
1654 cstate->off_li_hsl = 24;
1655 cstate->off_sio = 23;
1656 cstate->off_opc = 24;
1657 cstate->off_dpc = 24;
1658 cstate->off_sls = 27;
1659 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1660 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1661 cstate->off_nl = OFFSET_NOT_SET;
1662 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1663 break;
1664
1665 case DLT_PFSYNC:
1666 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1667 cstate->off_linkpl.constant_part = 4;
1668 cstate->off_nl = 0;
1669 cstate->off_nl_nosnap = 0;
1670 break;
1671
1672 case DLT_AX25_KISS:
1673 /*
1674 * Currently, only raw "link[N:M]" filtering is supported.
1675 */
1676 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1677 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1678 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1679 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1680 break;
1681
1682 case DLT_IPNET:
1683 cstate->off_linktype.constant_part = 1;
1684 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1685 cstate->off_nl = 0;
1686 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1687 break;
1688
1689 case DLT_NETANALYZER:
1690 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1691 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1692 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1693 cstate->off_nl = 0; /* Ethernet II */
1694 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1695 break;
1696
1697 case DLT_NETANALYZER_TRANSPARENT:
1698 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1699 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1700 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1701 cstate->off_nl = 0; /* Ethernet II */
1702 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1703 break;
1704
1705 default:
1706 /*
1707 * For values in the range in which we've assigned new
1708 * DLT_ values, only raw "link[N:M]" filtering is supported.
1709 */
1710 if (cstate->linktype >= DLT_MATCHING_MIN &&
1711 cstate->linktype <= DLT_MATCHING_MAX) {
1712 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1713 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1714 cstate->off_nl = OFFSET_NOT_SET;
1715 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1716 } else {
1717 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1718 cstate->linktype, DLT_MATCHING_MIN, DLT_MATCHING_MAX);
1719 return (-1);
1720 }
1721 break;
1722 }
1723
1724 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1725 return (0);
1726 }
1727
1728 /*
1729 * Load a value relative to the specified absolute offset.
1730 */
1731 static struct slist *
1732 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1733 u_int offset, u_int size)
1734 {
1735 struct slist *s, *s2;
1736
1737 s = gen_abs_offset_varpart(cstate, abs_offset);
1738
1739 /*
1740 * If "s" is non-null, it has code to arrange that the X register
1741 * contains the variable part of the absolute offset, so we
1742 * generate a load relative to that, with an offset of
1743 * abs_offset->constant_part + offset.
1744 *
1745 * Otherwise, we can do an absolute load with an offset of
1746 * abs_offset->constant_part + offset.
1747 */
1748 if (s != NULL) {
1749 /*
1750 * "s" points to a list of statements that puts the
1751 * variable part of the absolute offset into the X register.
1752 * Do an indirect load, to use the X register as an offset.
1753 */
1754 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1755 s2->s.k = abs_offset->constant_part + offset;
1756 sappend(s, s2);
1757 } else {
1758 /*
1759 * There is no variable part of the absolute offset, so
1760 * just do an absolute load.
1761 */
1762 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1763 s->s.k = abs_offset->constant_part + offset;
1764 }
1765 return s;
1766 }
1767
1768 /*
1769 * Load a value relative to the beginning of the specified header.
1770 */
1771 static struct slist *
1772 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1773 u_int size)
1774 {
1775 struct slist *s, *s2;
1776
1777 /*
1778 * Squelch warnings from compilers that *don't* assume that
1779 * offrel always has a valid enum value and therefore don't
1780 * assume that we'll always go through one of the case arms.
1781 *
1782 * If we have a default case, compilers that *do* assume that
1783 * will then complain about the default case code being
1784 * unreachable.
1785 *
1786 * Damned if you do, damned if you don't.
1787 */
1788 s = NULL;
1789
1790 switch (offrel) {
1791
1792 case OR_PACKET:
1793 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1794 s->s.k = offset;
1795 break;
1796
1797 case OR_LINKHDR:
1798 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1799 break;
1800
1801 case OR_PREVLINKHDR:
1802 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1803 break;
1804
1805 case OR_LLC:
1806 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1807 break;
1808
1809 case OR_PREVMPLSHDR:
1810 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1811 break;
1812
1813 case OR_LINKPL:
1814 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1815 break;
1816
1817 case OR_LINKPL_NOSNAP:
1818 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1819 break;
1820
1821 case OR_LINKTYPE:
1822 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1823 break;
1824
1825 case OR_TRAN_IPV4:
1826 /*
1827 * Load the X register with the length of the IPv4 header
1828 * (plus the offset of the link-layer header, if it's
1829 * preceded by a variable-length header such as a radio
1830 * header), in bytes.
1831 */
1832 s = gen_loadx_iphdrlen(cstate);
1833
1834 /*
1835 * Load the item at {offset of the link-layer payload} +
1836 * {offset, relative to the start of the link-layer
1837 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1838 * {specified offset}.
1839 *
1840 * If the offset of the link-layer payload is variable,
1841 * the variable part of that offset is included in the
1842 * value in the X register, and we include the constant
1843 * part in the offset of the load.
1844 */
1845 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1846 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1847 sappend(s, s2);
1848 break;
1849
1850 case OR_TRAN_IPV6:
1851 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1852 break;
1853 }
1854 return s;
1855 }
1856
1857 /*
1858 * Generate code to load into the X register the sum of the length of
1859 * the IPv4 header and the variable part of the offset of the link-layer
1860 * payload.
1861 */
1862 static struct slist *
1863 gen_loadx_iphdrlen(compiler_state_t *cstate)
1864 {
1865 struct slist *s, *s2;
1866
1867 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1868 if (s != NULL) {
1869 /*
1870 * The offset of the link-layer payload has a variable
1871 * part. "s" points to a list of statements that put
1872 * the variable part of that offset into the X register.
1873 *
1874 * The 4*([k]&0xf) addressing mode can't be used, as we
1875 * don't have a constant offset, so we have to load the
1876 * value in question into the A register and add to it
1877 * the value from the X register.
1878 */
1879 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1880 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1881 sappend(s, s2);
1882 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1883 s2->s.k = 0xf;
1884 sappend(s, s2);
1885 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1886 s2->s.k = 2;
1887 sappend(s, s2);
1888
1889 /*
1890 * The A register now contains the length of the IP header.
1891 * We need to add to it the variable part of the offset of
1892 * the link-layer payload, which is still in the X
1893 * register, and move the result into the X register.
1894 */
1895 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1896 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1897 } else {
1898 /*
1899 * The offset of the link-layer payload is a constant,
1900 * so no code was generated to load the (non-existent)
1901 * variable part of that offset.
1902 *
1903 * This means we can use the 4*([k]&0xf) addressing
1904 * mode. Load the length of the IPv4 header, which
1905 * is at an offset of cstate->off_nl from the beginning of
1906 * the link-layer payload, and thus at an offset of
1907 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1908 * of the raw packet data, using that addressing mode.
1909 */
1910 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1911 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1912 }
1913 return s;
1914 }
1915
1916
1917 static struct block *
1918 gen_uncond(compiler_state_t *cstate, int rsense)
1919 {
1920 struct block *b;
1921 struct slist *s;
1922
1923 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1924 s->s.k = !rsense;
1925 b = new_block(cstate, JMP(BPF_JEQ));
1926 b->stmts = s;
1927
1928 return b;
1929 }
1930
1931 static inline struct block *
1932 gen_true(compiler_state_t *cstate)
1933 {
1934 return gen_uncond(cstate, 1);
1935 }
1936
1937 static inline struct block *
1938 gen_false(compiler_state_t *cstate)
1939 {
1940 return gen_uncond(cstate, 0);
1941 }
1942
1943 /*
1944 * Byte-swap a 32-bit number.
1945 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1946 * big-endian platforms.)
1947 */
1948 #define SWAPLONG(y) \
1949 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1950
1951 /*
1952 * Generate code to match a particular packet type.
1953 *
1954 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1955 * value, if <= ETHERMTU. We use that to determine whether to
1956 * match the type/length field or to check the type/length field for
1957 * a value <= ETHERMTU to see whether it's a type field and then do
1958 * the appropriate test.
1959 */
1960 static struct block *
1961 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1962 {
1963 struct block *b0, *b1;
1964
1965 switch (ll_proto) {
1966
1967 case LLCSAP_ISONS:
1968 case LLCSAP_IP:
1969 case LLCSAP_NETBEUI:
1970 /*
1971 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1972 * so we check the DSAP and SSAP.
1973 *
1974 * LLCSAP_IP checks for IP-over-802.2, rather
1975 * than IP-over-Ethernet or IP-over-SNAP.
1976 *
1977 * XXX - should we check both the DSAP and the
1978 * SSAP, like this, or should we check just the
1979 * DSAP, as we do for other types <= ETHERMTU
1980 * (i.e., other SAP values)?
1981 */
1982 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1983 gen_not(b0);
1984 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
1985 gen_and(b0, b1);
1986 return b1;
1987
1988 case LLCSAP_IPX:
1989 /*
1990 * Check for;
1991 *
1992 * Ethernet_II frames, which are Ethernet
1993 * frames with a frame type of ETHERTYPE_IPX;
1994 *
1995 * Ethernet_802.3 frames, which are 802.3
1996 * frames (i.e., the type/length field is
1997 * a length field, <= ETHERMTU, rather than
1998 * a type field) with the first two bytes
1999 * after the Ethernet/802.3 header being
2000 * 0xFFFF;
2001 *
2002 * Ethernet_802.2 frames, which are 802.3
2003 * frames with an 802.2 LLC header and
2004 * with the IPX LSAP as the DSAP in the LLC
2005 * header;
2006 *
2007 * Ethernet_SNAP frames, which are 802.3
2008 * frames with an LLC header and a SNAP
2009 * header and with an OUI of 0x000000
2010 * (encapsulated Ethernet) and a protocol
2011 * ID of ETHERTYPE_IPX in the SNAP header.
2012 *
2013 * XXX - should we generate the same code both
2014 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2015 */
2016
2017 /*
2018 * This generates code to check both for the
2019 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2020 */
2021 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2022 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2023 gen_or(b0, b1);
2024
2025 /*
2026 * Now we add code to check for SNAP frames with
2027 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2028 */
2029 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2030 gen_or(b0, b1);
2031
2032 /*
2033 * Now we generate code to check for 802.3
2034 * frames in general.
2035 */
2036 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2037 gen_not(b0);
2038
2039 /*
2040 * Now add the check for 802.3 frames before the
2041 * check for Ethernet_802.2 and Ethernet_802.3,
2042 * as those checks should only be done on 802.3
2043 * frames, not on Ethernet frames.
2044 */
2045 gen_and(b0, b1);
2046
2047 /*
2048 * Now add the check for Ethernet_II frames, and
2049 * do that before checking for the other frame
2050 * types.
2051 */
2052 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2053 gen_or(b0, b1);
2054 return b1;
2055
2056 case ETHERTYPE_ATALK:
2057 case ETHERTYPE_AARP:
2058 /*
2059 * EtherTalk (AppleTalk protocols on Ethernet link
2060 * layer) may use 802.2 encapsulation.
2061 */
2062
2063 /*
2064 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2065 * we check for an Ethernet type field less than
2066 * 1500, which means it's an 802.3 length field.
2067 */
2068 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2069 gen_not(b0);
2070
2071 /*
2072 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2073 * SNAP packets with an organization code of
2074 * 0x080007 (Apple, for Appletalk) and a protocol
2075 * type of ETHERTYPE_ATALK (Appletalk).
2076 *
2077 * 802.2-encapsulated ETHERTYPE_AARP packets are
2078 * SNAP packets with an organization code of
2079 * 0x000000 (encapsulated Ethernet) and a protocol
2080 * type of ETHERTYPE_AARP (Appletalk ARP).
2081 */
2082 if (ll_proto == ETHERTYPE_ATALK)
2083 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2084 else /* ll_proto == ETHERTYPE_AARP */
2085 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2086 gen_and(b0, b1);
2087
2088 /*
2089 * Check for Ethernet encapsulation (Ethertalk
2090 * phase 1?); we just check for the Ethernet
2091 * protocol type.
2092 */
2093 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2094
2095 gen_or(b0, b1);
2096 return b1;
2097
2098 default:
2099 if (ll_proto <= ETHERMTU) {
2100 /*
2101 * This is an LLC SAP value, so the frames
2102 * that match would be 802.2 frames.
2103 * Check that the frame is an 802.2 frame
2104 * (i.e., that the length/type field is
2105 * a length field, <= ETHERMTU) and
2106 * then check the DSAP.
2107 */
2108 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2109 gen_not(b0);
2110 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2111 gen_and(b0, b1);
2112 return b1;
2113 } else {
2114 /*
2115 * This is an Ethernet type, so compare
2116 * the length/type field with it (if
2117 * the frame is an 802.2 frame, the length
2118 * field will be <= ETHERMTU, and, as
2119 * "ll_proto" is > ETHERMTU, this test
2120 * will fail and the frame won't match,
2121 * which is what we want).
2122 */
2123 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2124 }
2125 }
2126 }
2127
2128 static struct block *
2129 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2130 {
2131 /*
2132 * For DLT_NULL, the link-layer header is a 32-bit word
2133 * containing an AF_ value in *host* byte order, and for
2134 * DLT_ENC, the link-layer header begins with a 32-bit
2135 * word containing an AF_ value in host byte order.
2136 *
2137 * In addition, if we're reading a saved capture file,
2138 * the host byte order in the capture may not be the
2139 * same as the host byte order on this machine.
2140 *
2141 * For DLT_LOOP, the link-layer header is a 32-bit
2142 * word containing an AF_ value in *network* byte order.
2143 */
2144 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2145 /*
2146 * The AF_ value is in host byte order, but the BPF
2147 * interpreter will convert it to network byte order.
2148 *
2149 * If this is a save file, and it's from a machine
2150 * with the opposite byte order to ours, we byte-swap
2151 * the AF_ value.
2152 *
2153 * Then we run it through "htonl()", and generate
2154 * code to compare against the result.
2155 */
2156 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2157 ll_proto = SWAPLONG(ll_proto);
2158 ll_proto = htonl(ll_proto);
2159 }
2160 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2161 }
2162
2163 /*
2164 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2165 * or IPv6 then we have an error.
2166 */
2167 static struct block *
2168 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2169 {
2170 switch (ll_proto) {
2171
2172 case ETHERTYPE_IP:
2173 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2174 /*NOTREACHED*/
2175
2176 case ETHERTYPE_IPV6:
2177 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2178 /*NOTREACHED*/
2179
2180 default:
2181 break;
2182 }
2183
2184 return gen_false(cstate);
2185 }
2186
2187 /*
2188 * Generate code to match a particular packet type.
2189 *
2190 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2191 * value, if <= ETHERMTU. We use that to determine whether to
2192 * match the type field or to check the type field for the special
2193 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2194 */
2195 static struct block *
2196 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2197 {
2198 struct block *b0, *b1;
2199
2200 switch (ll_proto) {
2201
2202 case LLCSAP_ISONS:
2203 case LLCSAP_IP:
2204 case LLCSAP_NETBEUI:
2205 /*
2206 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2207 * so we check the DSAP and SSAP.
2208 *
2209 * LLCSAP_IP checks for IP-over-802.2, rather
2210 * than IP-over-Ethernet or IP-over-SNAP.
2211 *
2212 * XXX - should we check both the DSAP and the
2213 * SSAP, like this, or should we check just the
2214 * DSAP, as we do for other types <= ETHERMTU
2215 * (i.e., other SAP values)?
2216 */
2217 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2218 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2219 gen_and(b0, b1);
2220 return b1;
2221
2222 case LLCSAP_IPX:
2223 /*
2224 * Ethernet_II frames, which are Ethernet
2225 * frames with a frame type of ETHERTYPE_IPX;
2226 *
2227 * Ethernet_802.3 frames, which have a frame
2228 * type of LINUX_SLL_P_802_3;
2229 *
2230 * Ethernet_802.2 frames, which are 802.3
2231 * frames with an 802.2 LLC header (i.e, have
2232 * a frame type of LINUX_SLL_P_802_2) and
2233 * with the IPX LSAP as the DSAP in the LLC
2234 * header;
2235 *
2236 * Ethernet_SNAP frames, which are 802.3
2237 * frames with an LLC header and a SNAP
2238 * header and with an OUI of 0x000000
2239 * (encapsulated Ethernet) and a protocol
2240 * ID of ETHERTYPE_IPX in the SNAP header.
2241 *
2242 * First, do the checks on LINUX_SLL_P_802_2
2243 * frames; generate the check for either
2244 * Ethernet_802.2 or Ethernet_SNAP frames, and
2245 * then put a check for LINUX_SLL_P_802_2 frames
2246 * before it.
2247 */
2248 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2249 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2250 gen_or(b0, b1);
2251 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2252 gen_and(b0, b1);
2253
2254 /*
2255 * Now check for 802.3 frames and OR that with
2256 * the previous test.
2257 */
2258 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2259 gen_or(b0, b1);
2260
2261 /*
2262 * Now add the check for Ethernet_II frames, and
2263 * do that before checking for the other frame
2264 * types.
2265 */
2266 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2267 gen_or(b0, b1);
2268 return b1;
2269
2270 case ETHERTYPE_ATALK:
2271 case ETHERTYPE_AARP:
2272 /*
2273 * EtherTalk (AppleTalk protocols on Ethernet link
2274 * layer) may use 802.2 encapsulation.
2275 */
2276
2277 /*
2278 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2279 * we check for the 802.2 protocol type in the
2280 * "Ethernet type" field.
2281 */
2282 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2283
2284 /*
2285 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2286 * SNAP packets with an organization code of
2287 * 0x080007 (Apple, for Appletalk) and a protocol
2288 * type of ETHERTYPE_ATALK (Appletalk).
2289 *
2290 * 802.2-encapsulated ETHERTYPE_AARP packets are
2291 * SNAP packets with an organization code of
2292 * 0x000000 (encapsulated Ethernet) and a protocol
2293 * type of ETHERTYPE_AARP (Appletalk ARP).
2294 */
2295 if (ll_proto == ETHERTYPE_ATALK)
2296 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2297 else /* ll_proto == ETHERTYPE_AARP */
2298 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2299 gen_and(b0, b1);
2300
2301 /*
2302 * Check for Ethernet encapsulation (Ethertalk
2303 * phase 1?); we just check for the Ethernet
2304 * protocol type.
2305 */
2306 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2307
2308 gen_or(b0, b1);
2309 return b1;
2310
2311 default:
2312 if (ll_proto <= ETHERMTU) {
2313 /*
2314 * This is an LLC SAP value, so the frames
2315 * that match would be 802.2 frames.
2316 * Check for the 802.2 protocol type
2317 * in the "Ethernet type" field, and
2318 * then check the DSAP.
2319 */
2320 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2321 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2322 ll_proto);
2323 gen_and(b0, b1);
2324 return b1;
2325 } else {
2326 /*
2327 * This is an Ethernet type, so compare
2328 * the length/type field with it (if
2329 * the frame is an 802.2 frame, the length
2330 * field will be <= ETHERMTU, and, as
2331 * "ll_proto" is > ETHERMTU, this test
2332 * will fail and the frame won't match,
2333 * which is what we want).
2334 */
2335 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2336 }
2337 }
2338 }
2339
2340 /*
2341 * Load a value relative to the beginning of the link-layer header after the
2342 * pflog header.
2343 */
2344 static struct slist *
2345 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2346 {
2347 struct slist *s1, *s2;
2348
2349 /*
2350 * Generate code to load the length of the pflog header into
2351 * the register assigned to hold that length, if one has been
2352 * assigned. (If one hasn't been assigned, no code we've
2353 * generated uses that prefix, so we don't need to generate any
2354 * code to load it.)
2355 */
2356 if (cstate->off_linkpl.reg != -1) {
2357 /*
2358 * The length is in the first byte of the header.
2359 */
2360 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2361 s1->s.k = 0;
2362
2363 /*
2364 * Round it up to a multiple of 4.
2365 * Add 3, and clear the lower 2 bits.
2366 */
2367 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2368 s2->s.k = 3;
2369 sappend(s1, s2);
2370 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2371 s2->s.k = 0xfffffffc;
2372 sappend(s1, s2);
2373
2374 /*
2375 * Now allocate a register to hold that value and store
2376 * it.
2377 */
2378 s2 = new_stmt(cstate, BPF_ST);
2379 s2->s.k = cstate->off_linkpl.reg;
2380 sappend(s1, s2);
2381
2382 /*
2383 * Now move it into the X register.
2384 */
2385 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2386 sappend(s1, s2);
2387
2388 return (s1);
2389 } else
2390 return (NULL);
2391 }
2392
2393 static struct slist *
2394 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2395 {
2396 struct slist *s1, *s2;
2397 struct slist *sjeq_avs_cookie;
2398 struct slist *sjcommon;
2399
2400 /*
2401 * This code is not compatible with the optimizer, as
2402 * we are generating jmp instructions within a normal
2403 * slist of instructions
2404 */
2405 cstate->no_optimize = 1;
2406
2407 /*
2408 * Generate code to load the length of the radio header into
2409 * the register assigned to hold that length, if one has been
2410 * assigned. (If one hasn't been assigned, no code we've
2411 * generated uses that prefix, so we don't need to generate any
2412 * code to load it.)
2413 *
2414 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2415 * or always use the AVS header rather than the Prism header.
2416 * We load a 4-byte big-endian value at the beginning of the
2417 * raw packet data, and see whether, when masked with 0xFFFFF000,
2418 * it's equal to 0x80211000. If so, that indicates that it's
2419 * an AVS header (the masked-out bits are the version number).
2420 * Otherwise, it's a Prism header.
2421 *
2422 * XXX - the Prism header is also, in theory, variable-length,
2423 * but no known software generates headers that aren't 144
2424 * bytes long.
2425 */
2426 if (cstate->off_linkhdr.reg != -1) {
2427 /*
2428 * Load the cookie.
2429 */
2430 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2431 s1->s.k = 0;
2432
2433 /*
2434 * AND it with 0xFFFFF000.
2435 */
2436 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2437 s2->s.k = 0xFFFFF000;
2438 sappend(s1, s2);
2439
2440 /*
2441 * Compare with 0x80211000.
2442 */
2443 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2444 sjeq_avs_cookie->s.k = 0x80211000;
2445 sappend(s1, sjeq_avs_cookie);
2446
2447 /*
2448 * If it's AVS:
2449 *
2450 * The 4 bytes at an offset of 4 from the beginning of
2451 * the AVS header are the length of the AVS header.
2452 * That field is big-endian.
2453 */
2454 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2455 s2->s.k = 4;
2456 sappend(s1, s2);
2457 sjeq_avs_cookie->s.jt = s2;
2458
2459 /*
2460 * Now jump to the code to allocate a register
2461 * into which to save the header length and
2462 * store the length there. (The "jump always"
2463 * instruction needs to have the k field set;
2464 * it's added to the PC, so, as we're jumping
2465 * over a single instruction, it should be 1.)
2466 */
2467 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2468 sjcommon->s.k = 1;
2469 sappend(s1, sjcommon);
2470
2471 /*
2472 * Now for the code that handles the Prism header.
2473 * Just load the length of the Prism header (144)
2474 * into the A register. Have the test for an AVS
2475 * header branch here if we don't have an AVS header.
2476 */
2477 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2478 s2->s.k = 144;
2479 sappend(s1, s2);
2480 sjeq_avs_cookie->s.jf = s2;
2481
2482 /*
2483 * Now allocate a register to hold that value and store
2484 * it. The code for the AVS header will jump here after
2485 * loading the length of the AVS header.
2486 */
2487 s2 = new_stmt(cstate, BPF_ST);
2488 s2->s.k = cstate->off_linkhdr.reg;
2489 sappend(s1, s2);
2490 sjcommon->s.jf = s2;
2491
2492 /*
2493 * Now move it into the X register.
2494 */
2495 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2496 sappend(s1, s2);
2497
2498 return (s1);
2499 } else
2500 return (NULL);
2501 }
2502
2503 static struct slist *
2504 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2505 {
2506 struct slist *s1, *s2;
2507
2508 /*
2509 * Generate code to load the length of the AVS header into
2510 * the register assigned to hold that length, if one has been
2511 * assigned. (If one hasn't been assigned, no code we've
2512 * generated uses that prefix, so we don't need to generate any
2513 * code to load it.)
2514 */
2515 if (cstate->off_linkhdr.reg != -1) {
2516 /*
2517 * The 4 bytes at an offset of 4 from the beginning of
2518 * the AVS header are the length of the AVS header.
2519 * That field is big-endian.
2520 */
2521 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2522 s1->s.k = 4;
2523
2524 /*
2525 * Now allocate a register to hold that value and store
2526 * it.
2527 */
2528 s2 = new_stmt(cstate, BPF_ST);
2529 s2->s.k = cstate->off_linkhdr.reg;
2530 sappend(s1, s2);
2531
2532 /*
2533 * Now move it into the X register.
2534 */
2535 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2536 sappend(s1, s2);
2537
2538 return (s1);
2539 } else
2540 return (NULL);
2541 }
2542
2543 static struct slist *
2544 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2545 {
2546 struct slist *s1, *s2;
2547
2548 /*
2549 * Generate code to load the length of the radiotap header into
2550 * the register assigned to hold that length, if one has been
2551 * assigned. (If one hasn't been assigned, no code we've
2552 * generated uses that prefix, so we don't need to generate any
2553 * code to load it.)
2554 */
2555 if (cstate->off_linkhdr.reg != -1) {
2556 /*
2557 * The 2 bytes at offsets of 2 and 3 from the beginning
2558 * of the radiotap header are the length of the radiotap
2559 * header; unfortunately, it's little-endian, so we have
2560 * to load it a byte at a time and construct the value.
2561 */
2562
2563 /*
2564 * Load the high-order byte, at an offset of 3, shift it
2565 * left a byte, and put the result in the X register.
2566 */
2567 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2568 s1->s.k = 3;
2569 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2570 sappend(s1, s2);
2571 s2->s.k = 8;
2572 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2573 sappend(s1, s2);
2574
2575 /*
2576 * Load the next byte, at an offset of 2, and OR the
2577 * value from the X register into it.
2578 */
2579 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2580 sappend(s1, s2);
2581 s2->s.k = 2;
2582 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2583 sappend(s1, s2);
2584
2585 /*
2586 * Now allocate a register to hold that value and store
2587 * it.
2588 */
2589 s2 = new_stmt(cstate, BPF_ST);
2590 s2->s.k = cstate->off_linkhdr.reg;
2591 sappend(s1, s2);
2592
2593 /*
2594 * Now move it into the X register.
2595 */
2596 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2597 sappend(s1, s2);
2598
2599 return (s1);
2600 } else
2601 return (NULL);
2602 }
2603
2604 /*
2605 * At the moment we treat PPI as normal Radiotap encoded
2606 * packets. The difference is in the function that generates
2607 * the code at the beginning to compute the header length.
2608 * Since this code generator of PPI supports bare 802.11
2609 * encapsulation only (i.e. the encapsulated DLT should be
2610 * DLT_IEEE802_11) we generate code to check for this too;
2611 * that's done in finish_parse().
2612 */
2613 static struct slist *
2614 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2615 {
2616 struct slist *s1, *s2;
2617
2618 /*
2619 * Generate code to load the length of the radiotap header
2620 * into the register assigned to hold that length, if one has
2621 * been assigned.
2622 */
2623 if (cstate->off_linkhdr.reg != -1) {
2624 /*
2625 * The 2 bytes at offsets of 2 and 3 from the beginning
2626 * of the radiotap header are the length of the radiotap
2627 * header; unfortunately, it's little-endian, so we have
2628 * to load it a byte at a time and construct the value.
2629 */
2630
2631 /*
2632 * Load the high-order byte, at an offset of 3, shift it
2633 * left a byte, and put the result in the X register.
2634 */
2635 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2636 s1->s.k = 3;
2637 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2638 sappend(s1, s2);
2639 s2->s.k = 8;
2640 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2641 sappend(s1, s2);
2642
2643 /*
2644 * Load the next byte, at an offset of 2, and OR the
2645 * value from the X register into it.
2646 */
2647 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2648 sappend(s1, s2);
2649 s2->s.k = 2;
2650 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2651 sappend(s1, s2);
2652
2653 /*
2654 * Now allocate a register to hold that value and store
2655 * it.
2656 */
2657 s2 = new_stmt(cstate, BPF_ST);
2658 s2->s.k = cstate->off_linkhdr.reg;
2659 sappend(s1, s2);
2660
2661 /*
2662 * Now move it into the X register.
2663 */
2664 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2665 sappend(s1, s2);
2666
2667 return (s1);
2668 } else
2669 return (NULL);
2670 }
2671
2672 /*
2673 * Load a value relative to the beginning of the link-layer header after the 802.11
2674 * header, i.e. LLC_SNAP.
2675 * The link-layer header doesn't necessarily begin at the beginning
2676 * of the packet data; there might be a variable-length prefix containing
2677 * radio information.
2678 */
2679 static struct slist *
2680 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2681 {
2682 struct slist *s2;
2683 struct slist *sjset_data_frame_1;
2684 struct slist *sjset_data_frame_2;
2685 struct slist *sjset_qos;
2686 struct slist *sjset_radiotap_flags_present;
2687 struct slist *sjset_radiotap_ext_present;
2688 struct slist *sjset_radiotap_tsft_present;
2689 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2690 struct slist *s_roundup;
2691
2692 if (cstate->off_linkpl.reg == -1) {
2693 /*
2694 * No register has been assigned to the offset of
2695 * the link-layer payload, which means nobody needs
2696 * it; don't bother computing it - just return
2697 * what we already have.
2698 */
2699 return (s);
2700 }
2701
2702 /*
2703 * This code is not compatible with the optimizer, as
2704 * we are generating jmp instructions within a normal
2705 * slist of instructions
2706 */
2707 cstate->no_optimize = 1;
2708
2709 /*
2710 * If "s" is non-null, it has code to arrange that the X register
2711 * contains the length of the prefix preceding the link-layer
2712 * header.
2713 *
2714 * Otherwise, the length of the prefix preceding the link-layer
2715 * header is "off_outermostlinkhdr.constant_part".
2716 */
2717 if (s == NULL) {
2718 /*
2719 * There is no variable-length header preceding the
2720 * link-layer header.
2721 *
2722 * Load the length of the fixed-length prefix preceding
2723 * the link-layer header (if any) into the X register,
2724 * and store it in the cstate->off_linkpl.reg register.
2725 * That length is off_outermostlinkhdr.constant_part.
2726 */
2727 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2728 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2729 }
2730
2731 /*
2732 * The X register contains the offset of the beginning of the
2733 * link-layer header; add 24, which is the minimum length
2734 * of the MAC header for a data frame, to that, and store it
2735 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2736 * which is at the offset in the X register, with an indexed load.
2737 */
2738 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2739 sappend(s, s2);
2740 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2741 s2->s.k = 24;
2742 sappend(s, s2);
2743 s2 = new_stmt(cstate, BPF_ST);
2744 s2->s.k = cstate->off_linkpl.reg;
2745 sappend(s, s2);
2746
2747 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2748 s2->s.k = 0;
2749 sappend(s, s2);
2750
2751 /*
2752 * Check the Frame Control field to see if this is a data frame;
2753 * a data frame has the 0x08 bit (b3) in that field set and the
2754 * 0x04 bit (b2) clear.
2755 */
2756 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2757 sjset_data_frame_1->s.k = 0x08;
2758 sappend(s, sjset_data_frame_1);
2759
2760 /*
2761 * If b3 is set, test b2, otherwise go to the first statement of
2762 * the rest of the program.
2763 */
2764 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2765 sjset_data_frame_2->s.k = 0x04;
2766 sappend(s, sjset_data_frame_2);
2767 sjset_data_frame_1->s.jf = snext;
2768
2769 /*
2770 * If b2 is not set, this is a data frame; test the QoS bit.
2771 * Otherwise, go to the first statement of the rest of the
2772 * program.
2773 */
2774 sjset_data_frame_2->s.jt = snext;
2775 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2776 sjset_qos->s.k = 0x80; /* QoS bit */
2777 sappend(s, sjset_qos);
2778
2779 /*
2780 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2781 * field.
2782 * Otherwise, go to the first statement of the rest of the
2783 * program.
2784 */
2785 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2786 s2->s.k = cstate->off_linkpl.reg;
2787 sappend(s, s2);
2788 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2789 s2->s.k = 2;
2790 sappend(s, s2);
2791 s2 = new_stmt(cstate, BPF_ST);
2792 s2->s.k = cstate->off_linkpl.reg;
2793 sappend(s, s2);
2794
2795 /*
2796 * If we have a radiotap header, look at it to see whether
2797 * there's Atheros padding between the MAC-layer header
2798 * and the payload.
2799 *
2800 * Note: all of the fields in the radiotap header are
2801 * little-endian, so we byte-swap all of the values
2802 * we test against, as they will be loaded as big-endian
2803 * values.
2804 *
2805 * XXX - in the general case, we would have to scan through
2806 * *all* the presence bits, if there's more than one word of
2807 * presence bits. That would require a loop, meaning that
2808 * we wouldn't be able to run the filter in the kernel.
2809 *
2810 * We assume here that the Atheros adapters that insert the
2811 * annoying padding don't have multiple antennae and therefore
2812 * do not generate radiotap headers with multiple presence words.
2813 */
2814 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2815 /*
2816 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2817 * in the first presence flag word?
2818 */
2819 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2820 s2->s.k = 4;
2821 sappend(s, s2);
2822
2823 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2824 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2825 sappend(s, sjset_radiotap_flags_present);
2826
2827 /*
2828 * If not, skip all of this.
2829 */
2830 sjset_radiotap_flags_present->s.jf = snext;
2831
2832 /*
2833 * Otherwise, is the "extension" bit set in that word?
2834 */
2835 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2836 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2837 sappend(s, sjset_radiotap_ext_present);
2838 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2839
2840 /*
2841 * If so, skip all of this.
2842 */
2843 sjset_radiotap_ext_present->s.jt = snext;
2844
2845 /*
2846 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2847 */
2848 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2849 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2850 sappend(s, sjset_radiotap_tsft_present);
2851 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2852
2853 /*
2854 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2855 * at an offset of 16 from the beginning of the raw packet
2856 * data (8 bytes for the radiotap header and 8 bytes for
2857 * the TSFT field).
2858 *
2859 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2860 * is set.
2861 */
2862 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2863 s2->s.k = 16;
2864 sappend(s, s2);
2865 sjset_radiotap_tsft_present->s.jt = s2;
2866
2867 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2868 sjset_tsft_datapad->s.k = 0x20;
2869 sappend(s, sjset_tsft_datapad);
2870
2871 /*
2872 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2873 * at an offset of 8 from the beginning of the raw packet
2874 * data (8 bytes for the radiotap header).
2875 *
2876 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2877 * is set.
2878 */
2879 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2880 s2->s.k = 8;
2881 sappend(s, s2);
2882 sjset_radiotap_tsft_present->s.jf = s2;
2883
2884 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2885 sjset_notsft_datapad->s.k = 0x20;
2886 sappend(s, sjset_notsft_datapad);
2887
2888 /*
2889 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2890 * set, round the length of the 802.11 header to
2891 * a multiple of 4. Do that by adding 3 and then
2892 * dividing by and multiplying by 4, which we do by
2893 * ANDing with ~3.
2894 */
2895 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2896 s_roundup->s.k = cstate->off_linkpl.reg;
2897 sappend(s, s_roundup);
2898 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2899 s2->s.k = 3;
2900 sappend(s, s2);
2901 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2902 s2->s.k = (bpf_u_int32)~3;
2903 sappend(s, s2);
2904 s2 = new_stmt(cstate, BPF_ST);
2905 s2->s.k = cstate->off_linkpl.reg;
2906 sappend(s, s2);
2907
2908 sjset_tsft_datapad->s.jt = s_roundup;
2909 sjset_tsft_datapad->s.jf = snext;
2910 sjset_notsft_datapad->s.jt = s_roundup;
2911 sjset_notsft_datapad->s.jf = snext;
2912 } else
2913 sjset_qos->s.jf = snext;
2914
2915 return s;
2916 }
2917
2918 static void
2919 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2920 {
2921 struct slist *s;
2922
2923 /* There is an implicit dependency between the link
2924 * payload and link header since the payload computation
2925 * includes the variable part of the header. Therefore,
2926 * if nobody else has allocated a register for the link
2927 * header and we need it, do it now. */
2928 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2929 cstate->off_linkhdr.reg == -1)
2930 cstate->off_linkhdr.reg = alloc_reg(cstate);
2931
2932 /*
2933 * For link-layer types that have a variable-length header
2934 * preceding the link-layer header, generate code to load
2935 * the offset of the link-layer header into the register
2936 * assigned to that offset, if any.
2937 *
2938 * XXX - this, and the next switch statement, won't handle
2939 * encapsulation of 802.11 or 802.11+radio information in
2940 * some other protocol stack. That's significantly more
2941 * complicated.
2942 */
2943 switch (cstate->outermostlinktype) {
2944
2945 case DLT_PRISM_HEADER:
2946 s = gen_load_prism_llprefixlen(cstate);
2947 break;
2948
2949 case DLT_IEEE802_11_RADIO_AVS:
2950 s = gen_load_avs_llprefixlen(cstate);
2951 break;
2952
2953 case DLT_IEEE802_11_RADIO:
2954 s = gen_load_radiotap_llprefixlen(cstate);
2955 break;
2956
2957 case DLT_PPI:
2958 s = gen_load_ppi_llprefixlen(cstate);
2959 break;
2960
2961 default:
2962 s = NULL;
2963 break;
2964 }
2965
2966 /*
2967 * For link-layer types that have a variable-length link-layer
2968 * header, generate code to load the offset of the link-layer
2969 * payload into the register assigned to that offset, if any.
2970 */
2971 switch (cstate->outermostlinktype) {
2972
2973 case DLT_IEEE802_11:
2974 case DLT_PRISM_HEADER:
2975 case DLT_IEEE802_11_RADIO_AVS:
2976 case DLT_IEEE802_11_RADIO:
2977 case DLT_PPI:
2978 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2979 break;
2980
2981 case DLT_PFLOG:
2982 s = gen_load_pflog_llprefixlen(cstate);
2983 break;
2984 }
2985
2986 /*
2987 * If there is no initialization yet and we need variable
2988 * length offsets for VLAN, initialize them to zero
2989 */
2990 if (s == NULL && cstate->is_vlan_vloffset) {
2991 struct slist *s2;
2992
2993 if (cstate->off_linkpl.reg == -1)
2994 cstate->off_linkpl.reg = alloc_reg(cstate);
2995 if (cstate->off_linktype.reg == -1)
2996 cstate->off_linktype.reg = alloc_reg(cstate);
2997
2998 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2999 s->s.k = 0;
3000 s2 = new_stmt(cstate, BPF_ST);
3001 s2->s.k = cstate->off_linkpl.reg;
3002 sappend(s, s2);
3003 s2 = new_stmt(cstate, BPF_ST);
3004 s2->s.k = cstate->off_linktype.reg;
3005 sappend(s, s2);
3006 }
3007
3008 /*
3009 * If we have any offset-loading code, append all the
3010 * existing statements in the block to those statements,
3011 * and make the resulting list the list of statements
3012 * for the block.
3013 */
3014 if (s != NULL) {
3015 sappend(s, b->stmts);
3016 b->stmts = s;
3017 }
3018 }
3019
3020 static struct block *
3021 gen_ppi_dlt_check(compiler_state_t *cstate)
3022 {
3023 struct slist *s_load_dlt;
3024 struct block *b;
3025
3026 if (cstate->linktype == DLT_PPI)
3027 {
3028 /* Create the statements that check for the DLT
3029 */
3030 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3031 s_load_dlt->s.k = 4;
3032
3033 b = new_block(cstate, JMP(BPF_JEQ));
3034
3035 b->stmts = s_load_dlt;
3036 b->s.k = SWAPLONG(DLT_IEEE802_11);
3037 }
3038 else
3039 {
3040 b = NULL;
3041 }
3042
3043 return b;
3044 }
3045
3046 /*
3047 * Take an absolute offset, and:
3048 *
3049 * if it has no variable part, return NULL;
3050 *
3051 * if it has a variable part, generate code to load the register
3052 * containing that variable part into the X register, returning
3053 * a pointer to that code - if no register for that offset has
3054 * been allocated, allocate it first.
3055 *
3056 * (The code to set that register will be generated later, but will
3057 * be placed earlier in the code sequence.)
3058 */
3059 static struct slist *
3060 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3061 {
3062 struct slist *s;
3063
3064 if (off->is_variable) {
3065 if (off->reg == -1) {
3066 /*
3067 * We haven't yet assigned a register for the
3068 * variable part of the offset of the link-layer
3069 * header; allocate one.
3070 */
3071 off->reg = alloc_reg(cstate);
3072 }
3073
3074 /*
3075 * Load the register containing the variable part of the
3076 * offset of the link-layer header into the X register.
3077 */
3078 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3079 s->s.k = off->reg;
3080 return s;
3081 } else {
3082 /*
3083 * That offset isn't variable, there's no variable part,
3084 * so we don't need to generate any code.
3085 */
3086 return NULL;
3087 }
3088 }
3089
3090 /*
3091 * Map an Ethernet type to the equivalent PPP type.
3092 */
3093 static bpf_u_int32
3094 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3095 {
3096 switch (ll_proto) {
3097
3098 case ETHERTYPE_IP:
3099 ll_proto = PPP_IP;
3100 break;
3101
3102 case ETHERTYPE_IPV6:
3103 ll_proto = PPP_IPV6;
3104 break;
3105
3106 case ETHERTYPE_DN:
3107 ll_proto = PPP_DECNET;
3108 break;
3109
3110 case ETHERTYPE_ATALK:
3111 ll_proto = PPP_APPLE;
3112 break;
3113
3114 case ETHERTYPE_NS:
3115 ll_proto = PPP_NS;
3116 break;
3117
3118 case LLCSAP_ISONS:
3119 ll_proto = PPP_OSI;
3120 break;
3121
3122 case LLCSAP_8021D:
3123 /*
3124 * I'm assuming the "Bridging PDU"s that go
3125 * over PPP are Spanning Tree Protocol
3126 * Bridging PDUs.
3127 */
3128 ll_proto = PPP_BRPDU;
3129 break;
3130
3131 case LLCSAP_IPX:
3132 ll_proto = PPP_IPX;
3133 break;
3134 }
3135 return (ll_proto);
3136 }
3137
3138 /*
3139 * Generate any tests that, for encapsulation of a link-layer packet
3140 * inside another protocol stack, need to be done to check for those
3141 * link-layer packets (and that haven't already been done by a check
3142 * for that encapsulation).
3143 */
3144 static struct block *
3145 gen_prevlinkhdr_check(compiler_state_t *cstate)
3146 {
3147 struct block *b0;
3148
3149 if (cstate->is_geneve)
3150 return gen_geneve_ll_check(cstate);
3151
3152 switch (cstate->prevlinktype) {
3153
3154 case DLT_SUNATM:
3155 /*
3156 * This is LANE-encapsulated Ethernet; check that the LANE
3157 * packet doesn't begin with an LE Control marker, i.e.
3158 * that it's data, not a control message.
3159 *
3160 * (We've already generated a test for LANE.)
3161 */
3162 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3163 gen_not(b0);
3164 return b0;
3165
3166 default:
3167 /*
3168 * No such tests are necessary.
3169 */
3170 return NULL;
3171 }
3172 /*NOTREACHED*/
3173 }
3174
3175 /*
3176 * The three different values we should check for when checking for an
3177 * IPv6 packet with DLT_NULL.
3178 */
3179 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3180 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3181 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3182
3183 /*
3184 * Generate code to match a particular packet type by matching the
3185 * link-layer type field or fields in the 802.2 LLC header.
3186 *
3187 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3188 * value, if <= ETHERMTU.
3189 */
3190 static struct block *
3191 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3192 {
3193 struct block *b0, *b1, *b2;
3194 const char *description;
3195
3196 /* are we checking MPLS-encapsulated packets? */
3197 if (cstate->label_stack_depth > 0)
3198 return gen_mpls_linktype(cstate, ll_proto);
3199
3200 switch (cstate->linktype) {
3201
3202 case DLT_EN10MB:
3203 case DLT_NETANALYZER:
3204 case DLT_NETANALYZER_TRANSPARENT:
3205 /* Geneve has an EtherType regardless of whether there is an
3206 * L2 header. */
3207 if (!cstate->is_geneve)
3208 b0 = gen_prevlinkhdr_check(cstate);
3209 else
3210 b0 = NULL;
3211
3212 b1 = gen_ether_linktype(cstate, ll_proto);
3213 if (b0 != NULL)
3214 gen_and(b0, b1);
3215 return b1;
3216 /*NOTREACHED*/
3217
3218 case DLT_C_HDLC:
3219 case DLT_HDLC:
3220 switch (ll_proto) {
3221
3222 case LLCSAP_ISONS:
3223 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3224 /* fall through */
3225
3226 default:
3227 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3228 /*NOTREACHED*/
3229 }
3230
3231 case DLT_IEEE802_11:
3232 case DLT_PRISM_HEADER:
3233 case DLT_IEEE802_11_RADIO_AVS:
3234 case DLT_IEEE802_11_RADIO:
3235 case DLT_PPI:
3236 /*
3237 * Check that we have a data frame.
3238 */
3239 b0 = gen_check_802_11_data_frame(cstate);
3240
3241 /*
3242 * Now check for the specified link-layer type.
3243 */
3244 b1 = gen_llc_linktype(cstate, ll_proto);
3245 gen_and(b0, b1);
3246 return b1;
3247 /*NOTREACHED*/
3248
3249 case DLT_FDDI:
3250 /*
3251 * XXX - check for LLC frames.
3252 */
3253 return gen_llc_linktype(cstate, ll_proto);
3254 /*NOTREACHED*/
3255
3256 case DLT_IEEE802:
3257 /*
3258 * XXX - check for LLC PDUs, as per IEEE 802.5.
3259 */
3260 return gen_llc_linktype(cstate, ll_proto);
3261 /*NOTREACHED*/
3262
3263 case DLT_ATM_RFC1483:
3264 case DLT_ATM_CLIP:
3265 case DLT_IP_OVER_FC:
3266 return gen_llc_linktype(cstate, ll_proto);
3267 /*NOTREACHED*/
3268
3269 case DLT_SUNATM:
3270 /*
3271 * Check for an LLC-encapsulated version of this protocol;
3272 * if we were checking for LANE, linktype would no longer
3273 * be DLT_SUNATM.
3274 *
3275 * Check for LLC encapsulation and then check the protocol.
3276 */
3277 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3278 b1 = gen_llc_linktype(cstate, ll_proto);
3279 gen_and(b0, b1);
3280 return b1;
3281 /*NOTREACHED*/
3282
3283 case DLT_LINUX_SLL:
3284 return gen_linux_sll_linktype(cstate, ll_proto);
3285 /*NOTREACHED*/
3286
3287 case DLT_SLIP:
3288 case DLT_SLIP_BSDOS:
3289 case DLT_RAW:
3290 /*
3291 * These types don't provide any type field; packets
3292 * are always IPv4 or IPv6.
3293 *
3294 * XXX - for IPv4, check for a version number of 4, and,
3295 * for IPv6, check for a version number of 6?
3296 */
3297 switch (ll_proto) {
3298
3299 case ETHERTYPE_IP:
3300 /* Check for a version number of 4. */
3301 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3302
3303 case ETHERTYPE_IPV6:
3304 /* Check for a version number of 6. */
3305 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3306
3307 default:
3308 return gen_false(cstate); /* always false */
3309 }
3310 /*NOTREACHED*/
3311
3312 case DLT_IPV4:
3313 /*
3314 * Raw IPv4, so no type field.
3315 */
3316 if (ll_proto == ETHERTYPE_IP)
3317 return gen_true(cstate); /* always true */
3318
3319 /* Checking for something other than IPv4; always false */
3320 return gen_false(cstate);
3321 /*NOTREACHED*/
3322
3323 case DLT_IPV6:
3324 /*
3325 * Raw IPv6, so no type field.
3326 */
3327 if (ll_proto == ETHERTYPE_IPV6)
3328 return gen_true(cstate); /* always true */
3329
3330 /* Checking for something other than IPv6; always false */
3331 return gen_false(cstate);
3332 /*NOTREACHED*/
3333
3334 case DLT_PPP:
3335 case DLT_PPP_PPPD:
3336 case DLT_PPP_SERIAL:
3337 case DLT_PPP_ETHER:
3338 /*
3339 * We use Ethernet protocol types inside libpcap;
3340 * map them to the corresponding PPP protocol types.
3341 */
3342 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3343 ethertype_to_ppptype(ll_proto));
3344 /*NOTREACHED*/
3345
3346 case DLT_PPP_BSDOS:
3347 /*
3348 * We use Ethernet protocol types inside libpcap;
3349 * map them to the corresponding PPP protocol types.
3350 */
3351 switch (ll_proto) {
3352
3353 case ETHERTYPE_IP:
3354 /*
3355 * Also check for Van Jacobson-compressed IP.
3356 * XXX - do this for other forms of PPP?
3357 */
3358 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3359 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3360 gen_or(b0, b1);
3361 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3362 gen_or(b1, b0);
3363 return b0;
3364
3365 default:
3366 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3367 ethertype_to_ppptype(ll_proto));
3368 }
3369 /*NOTREACHED*/
3370
3371 case DLT_NULL:
3372 case DLT_LOOP:
3373 case DLT_ENC:
3374 switch (ll_proto) {
3375
3376 case ETHERTYPE_IP:
3377 return (gen_loopback_linktype(cstate, AF_INET));
3378
3379 case ETHERTYPE_IPV6:
3380 /*
3381 * AF_ values may, unfortunately, be platform-
3382 * dependent; AF_INET isn't, because everybody
3383 * used 4.2BSD's value, but AF_INET6 is, because
3384 * 4.2BSD didn't have a value for it (given that
3385 * IPv6 didn't exist back in the early 1980's),
3386 * and they all picked their own values.
3387 *
3388 * This means that, if we're reading from a
3389 * savefile, we need to check for all the
3390 * possible values.
3391 *
3392 * If we're doing a live capture, we only need
3393 * to check for this platform's value; however,
3394 * Npcap uses 24, which isn't Windows's AF_INET6
3395 * value. (Given the multiple different values,
3396 * programs that read pcap files shouldn't be
3397 * checking for their platform's AF_INET6 value
3398 * anyway, they should check for all of the
3399 * possible values. and they might as well do
3400 * that even for live captures.)
3401 */
3402 if (cstate->bpf_pcap->rfile != NULL) {
3403 /*
3404 * Savefile - check for all three
3405 * possible IPv6 values.
3406 */
3407 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3408 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3409 gen_or(b0, b1);
3410 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3411 gen_or(b0, b1);
3412 return (b1);
3413 } else {
3414 /*
3415 * Live capture, so we only need to
3416 * check for the value used on this
3417 * platform.
3418 */
3419 #ifdef _WIN32
3420 /*
3421 * Npcap doesn't use Windows's AF_INET6,
3422 * as that collides with AF_IPX on
3423 * some BSDs (both have the value 23).
3424 * Instead, it uses 24.
3425 */
3426 return (gen_loopback_linktype(cstate, 24));
3427 #else /* _WIN32 */
3428 #ifdef AF_INET6
3429 return (gen_loopback_linktype(cstate, AF_INET6));
3430 #else /* AF_INET6 */
3431 /*
3432 * I guess this platform doesn't support
3433 * IPv6, so we just reject all packets.
3434 */
3435 return gen_false(cstate);
3436 #endif /* AF_INET6 */
3437 #endif /* _WIN32 */
3438 }
3439
3440 default:
3441 /*
3442 * Not a type on which we support filtering.
3443 * XXX - support those that have AF_ values
3444 * #defined on this platform, at least?
3445 */
3446 return gen_false(cstate);
3447 }
3448
3449 case DLT_PFLOG:
3450 /*
3451 * af field is host byte order in contrast to the rest of
3452 * the packet.
3453 */
3454 if (ll_proto == ETHERTYPE_IP)
3455 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3456 BPF_B, AF_INET));
3457 else if (ll_proto == ETHERTYPE_IPV6)
3458 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3459 BPF_B, AF_INET6));
3460 else
3461 return gen_false(cstate);
3462 /*NOTREACHED*/
3463
3464 case DLT_ARCNET:
3465 case DLT_ARCNET_LINUX:
3466 /*
3467 * XXX should we check for first fragment if the protocol
3468 * uses PHDS?
3469 */
3470 switch (ll_proto) {
3471
3472 default:
3473 return gen_false(cstate);
3474
3475 case ETHERTYPE_IPV6:
3476 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3477 ARCTYPE_INET6));
3478
3479 case ETHERTYPE_IP:
3480 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3481 ARCTYPE_IP);
3482 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3483 ARCTYPE_IP_OLD);
3484 gen_or(b0, b1);
3485 return (b1);
3486
3487 case ETHERTYPE_ARP:
3488 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3489 ARCTYPE_ARP);
3490 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3491 ARCTYPE_ARP_OLD);
3492 gen_or(b0, b1);
3493 return (b1);
3494
3495 case ETHERTYPE_REVARP:
3496 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3497 ARCTYPE_REVARP));
3498
3499 case ETHERTYPE_ATALK:
3500 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3501 ARCTYPE_ATALK));
3502 }
3503 /*NOTREACHED*/
3504
3505 case DLT_LTALK:
3506 switch (ll_proto) {
3507 case ETHERTYPE_ATALK:
3508 return gen_true(cstate);
3509 default:
3510 return gen_false(cstate);
3511 }
3512 /*NOTREACHED*/
3513
3514 case DLT_FRELAY:
3515 /*
3516 * XXX - assumes a 2-byte Frame Relay header with
3517 * DLCI and flags. What if the address is longer?
3518 */
3519 switch (ll_proto) {
3520
3521 case ETHERTYPE_IP:
3522 /*
3523 * Check for the special NLPID for IP.
3524 */
3525 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3526
3527 case ETHERTYPE_IPV6:
3528 /*
3529 * Check for the special NLPID for IPv6.
3530 */
3531 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3532
3533 case LLCSAP_ISONS:
3534 /*
3535 * Check for several OSI protocols.
3536 *
3537 * Frame Relay packets typically have an OSI
3538 * NLPID at the beginning; we check for each
3539 * of them.
3540 *
3541 * What we check for is the NLPID and a frame
3542 * control field of UI, i.e. 0x03 followed
3543 * by the NLPID.
3544 */
3545 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3546 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3547 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3548 gen_or(b1, b2);
3549 gen_or(b0, b2);
3550 return b2;
3551
3552 default:
3553 return gen_false(cstate);
3554 }
3555 /*NOTREACHED*/
3556
3557 case DLT_MFR:
3558 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3559
3560 case DLT_JUNIPER_MFR:
3561 case DLT_JUNIPER_MLFR:
3562 case DLT_JUNIPER_MLPPP:
3563 case DLT_JUNIPER_ATM1:
3564 case DLT_JUNIPER_ATM2:
3565 case DLT_JUNIPER_PPPOE:
3566 case DLT_JUNIPER_PPPOE_ATM:
3567 case DLT_JUNIPER_GGSN:
3568 case DLT_JUNIPER_ES:
3569 case DLT_JUNIPER_MONITOR:
3570 case DLT_JUNIPER_SERVICES:
3571 case DLT_JUNIPER_ETHER:
3572 case DLT_JUNIPER_PPP:
3573 case DLT_JUNIPER_FRELAY:
3574 case DLT_JUNIPER_CHDLC:
3575 case DLT_JUNIPER_VP:
3576 case DLT_JUNIPER_ST:
3577 case DLT_JUNIPER_ISM:
3578 case DLT_JUNIPER_VS:
3579 case DLT_JUNIPER_SRX_E2E:
3580 case DLT_JUNIPER_FIBRECHANNEL:
3581 case DLT_JUNIPER_ATM_CEMIC:
3582
3583 /* just lets verify the magic number for now -
3584 * on ATM we may have up to 6 different encapsulations on the wire
3585 * and need a lot of heuristics to figure out that the payload
3586 * might be;
3587 *
3588 * FIXME encapsulation specific BPF_ filters
3589 */
3590 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3591
3592 case DLT_BACNET_MS_TP:
3593 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3594
3595 case DLT_IPNET:
3596 return gen_ipnet_linktype(cstate, ll_proto);
3597
3598 case DLT_LINUX_IRDA:
3599 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3600
3601 case DLT_DOCSIS:
3602 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3603
3604 case DLT_MTP2:
3605 case DLT_MTP2_WITH_PHDR:
3606 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3607
3608 case DLT_ERF:
3609 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3610
3611 case DLT_PFSYNC:
3612 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3613
3614 case DLT_LINUX_LAPD:
3615 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3616
3617 case DLT_USB_FREEBSD:
3618 case DLT_USB_LINUX:
3619 case DLT_USB_LINUX_MMAPPED:
3620 case DLT_USBPCAP:
3621 bpf_error(cstate, "USB link-layer type filtering not implemented");
3622
3623 case DLT_BLUETOOTH_HCI_H4:
3624 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3625 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3626
3627 case DLT_CAN20B:
3628 case DLT_CAN_SOCKETCAN:
3629 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3630
3631 case DLT_IEEE802_15_4:
3632 case DLT_IEEE802_15_4_LINUX:
3633 case DLT_IEEE802_15_4_NONASK_PHY:
3634 case DLT_IEEE802_15_4_NOFCS:
3635 case DLT_IEEE802_15_4_TAP:
3636 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3637
3638 case DLT_IEEE802_16_MAC_CPS_RADIO:
3639 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3640
3641 case DLT_SITA:
3642 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3643
3644 case DLT_RAIF1:
3645 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3646
3647 case DLT_IPMB_KONTRON:
3648 case DLT_IPMB_LINUX:
3649 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3650
3651 case DLT_AX25_KISS:
3652 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3653
3654 case DLT_NFLOG:
3655 /* Using the fixed-size NFLOG header it is possible to tell only
3656 * the address family of the packet, other meaningful data is
3657 * either missing or behind TLVs.
3658 */
3659 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3660
3661 default:
3662 /*
3663 * Does this link-layer header type have a field
3664 * indicating the type of the next protocol? If
3665 * so, off_linktype.constant_part will be the offset of that
3666 * field in the packet; if not, it will be OFFSET_NOT_SET.
3667 */
3668 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3669 /*
3670 * Yes; assume it's an Ethernet type. (If
3671 * it's not, it needs to be handled specially
3672 * above.)
3673 */
3674 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3675 /*NOTREACHED */
3676 } else {
3677 /*
3678 * No; report an error.
3679 */
3680 description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3681 bpf_error(cstate, "%s link-layer type filtering not implemented",
3682 description);
3683 /*NOTREACHED */
3684 }
3685 }
3686 }
3687
3688 /*
3689 * Check for an LLC SNAP packet with a given organization code and
3690 * protocol type; we check the entire contents of the 802.2 LLC and
3691 * snap headers, checking for DSAP and SSAP of SNAP and a control
3692 * field of 0x03 in the LLC header, and for the specified organization
3693 * code and protocol type in the SNAP header.
3694 */
3695 static struct block *
3696 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3697 {
3698 u_char snapblock[8];
3699
3700 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3701 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3702 snapblock[2] = 0x03; /* control = UI */
3703 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3704 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3705 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3706 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3707 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3708 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3709 }
3710
3711 /*
3712 * Generate code to match frames with an LLC header.
3713 */
3714 static struct block *
3715 gen_llc_internal(compiler_state_t *cstate)
3716 {
3717 struct block *b0, *b1;
3718
3719 switch (cstate->linktype) {
3720
3721 case DLT_EN10MB:
3722 /*
3723 * We check for an Ethernet type field less than
3724 * 1500, which means it's an 802.3 length field.
3725 */
3726 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3727 gen_not(b0);
3728
3729 /*
3730 * Now check for the purported DSAP and SSAP not being
3731 * 0xFF, to rule out NetWare-over-802.3.
3732 */
3733 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3734 gen_not(b1);
3735 gen_and(b0, b1);
3736 return b1;
3737
3738 case DLT_SUNATM:
3739 /*
3740 * We check for LLC traffic.
3741 */
3742 b0 = gen_atmtype_llc(cstate);
3743 return b0;
3744
3745 case DLT_IEEE802: /* Token Ring */
3746 /*
3747 * XXX - check for LLC frames.
3748 */
3749 return gen_true(cstate);
3750
3751 case DLT_FDDI:
3752 /*
3753 * XXX - check for LLC frames.
3754 */
3755 return gen_true(cstate);
3756
3757 case DLT_ATM_RFC1483:
3758 /*
3759 * For LLC encapsulation, these are defined to have an
3760 * 802.2 LLC header.
3761 *
3762 * For VC encapsulation, they don't, but there's no
3763 * way to check for that; the protocol used on the VC
3764 * is negotiated out of band.
3765 */
3766 return gen_true(cstate);
3767
3768 case DLT_IEEE802_11:
3769 case DLT_PRISM_HEADER:
3770 case DLT_IEEE802_11_RADIO:
3771 case DLT_IEEE802_11_RADIO_AVS:
3772 case DLT_PPI:
3773 /*
3774 * Check that we have a data frame.
3775 */
3776 b0 = gen_check_802_11_data_frame(cstate);
3777 return b0;
3778
3779 default:
3780 bpf_error(cstate, "'llc' not supported for %s",
3781 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3782 /*NOTREACHED*/
3783 }
3784 }
3785
3786 struct block *
3787 gen_llc(compiler_state_t *cstate)
3788 {
3789 /*
3790 * Catch errors reported by us and routines below us, and return NULL
3791 * on an error.
3792 */
3793 if (setjmp(cstate->top_ctx))
3794 return (NULL);
3795
3796 return gen_llc_internal(cstate);
3797 }
3798
3799 struct block *
3800 gen_llc_i(compiler_state_t *cstate)
3801 {
3802 struct block *b0, *b1;
3803 struct slist *s;
3804
3805 /*
3806 * Catch errors reported by us and routines below us, and return NULL
3807 * on an error.
3808 */
3809 if (setjmp(cstate->top_ctx))
3810 return (NULL);
3811
3812 /*
3813 * Check whether this is an LLC frame.
3814 */
3815 b0 = gen_llc_internal(cstate);
3816
3817 /*
3818 * Load the control byte and test the low-order bit; it must
3819 * be clear for I frames.
3820 */
3821 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3822 b1 = new_block(cstate, JMP(BPF_JSET));
3823 b1->s.k = 0x01;
3824 b1->stmts = s;
3825 gen_not(b1);
3826 gen_and(b0, b1);
3827 return b1;
3828 }
3829
3830 struct block *
3831 gen_llc_s(compiler_state_t *cstate)
3832 {
3833 struct block *b0, *b1;
3834
3835 /*
3836 * Catch errors reported by us and routines below us, and return NULL
3837 * on an error.
3838 */
3839 if (setjmp(cstate->top_ctx))
3840 return (NULL);
3841
3842 /*
3843 * Check whether this is an LLC frame.
3844 */
3845 b0 = gen_llc_internal(cstate);
3846
3847 /*
3848 * Now compare the low-order 2 bit of the control byte against
3849 * the appropriate value for S frames.
3850 */
3851 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3852 gen_and(b0, b1);
3853 return b1;
3854 }
3855
3856 struct block *
3857 gen_llc_u(compiler_state_t *cstate)
3858 {
3859 struct block *b0, *b1;
3860
3861 /*
3862 * Catch errors reported by us and routines below us, and return NULL
3863 * on an error.
3864 */
3865 if (setjmp(cstate->top_ctx))
3866 return (NULL);
3867
3868 /*
3869 * Check whether this is an LLC frame.
3870 */
3871 b0 = gen_llc_internal(cstate);
3872
3873 /*
3874 * Now compare the low-order 2 bit of the control byte against
3875 * the appropriate value for U frames.
3876 */
3877 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3878 gen_and(b0, b1);
3879 return b1;
3880 }
3881
3882 struct block *
3883 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3884 {
3885 struct block *b0, *b1;
3886
3887 /*
3888 * Catch errors reported by us and routines below us, and return NULL
3889 * on an error.
3890 */
3891 if (setjmp(cstate->top_ctx))
3892 return (NULL);
3893
3894 /*
3895 * Check whether this is an LLC frame.
3896 */
3897 b0 = gen_llc_internal(cstate);
3898
3899 /*
3900 * Now check for an S frame with the appropriate type.
3901 */
3902 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3903 gen_and(b0, b1);
3904 return b1;
3905 }
3906
3907 struct block *
3908 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3909 {
3910 struct block *b0, *b1;
3911
3912 /*
3913 * Catch errors reported by us and routines below us, and return NULL
3914 * on an error.
3915 */
3916 if (setjmp(cstate->top_ctx))
3917 return (NULL);
3918
3919 /*
3920 * Check whether this is an LLC frame.
3921 */
3922 b0 = gen_llc_internal(cstate);
3923
3924 /*
3925 * Now check for a U frame with the appropriate type.
3926 */
3927 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3928 gen_and(b0, b1);
3929 return b1;
3930 }
3931
3932 /*
3933 * Generate code to match a particular packet type, for link-layer types
3934 * using 802.2 LLC headers.
3935 *
3936 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3937 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3938 *
3939 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3940 * value, if <= ETHERMTU. We use that to determine whether to
3941 * match the DSAP or both DSAP and LSAP or to check the OUI and
3942 * protocol ID in a SNAP header.
3943 */
3944 static struct block *
3945 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3946 {
3947 /*
3948 * XXX - handle token-ring variable-length header.
3949 */
3950 switch (ll_proto) {
3951
3952 case LLCSAP_IP:
3953 case LLCSAP_ISONS:
3954 case LLCSAP_NETBEUI:
3955 /*
3956 * XXX - should we check both the DSAP and the
3957 * SSAP, like this, or should we check just the
3958 * DSAP, as we do for other SAP values?
3959 */
3960 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3961 ((ll_proto << 8) | ll_proto));
3962
3963 case LLCSAP_IPX:
3964 /*
3965 * XXX - are there ever SNAP frames for IPX on
3966 * non-Ethernet 802.x networks?
3967 */
3968 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3969
3970 case ETHERTYPE_ATALK:
3971 /*
3972 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3973 * SNAP packets with an organization code of
3974 * 0x080007 (Apple, for Appletalk) and a protocol
3975 * type of ETHERTYPE_ATALK (Appletalk).
3976 *
3977 * XXX - check for an organization code of
3978 * encapsulated Ethernet as well?
3979 */
3980 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3981
3982 default:
3983 /*
3984 * XXX - we don't have to check for IPX 802.3
3985 * here, but should we check for the IPX Ethertype?
3986 */
3987 if (ll_proto <= ETHERMTU) {
3988 /*
3989 * This is an LLC SAP value, so check
3990 * the DSAP.
3991 */
3992 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
3993 } else {
3994 /*
3995 * This is an Ethernet type; we assume that it's
3996 * unlikely that it'll appear in the right place
3997 * at random, and therefore check only the
3998 * location that would hold the Ethernet type
3999 * in a SNAP frame with an organization code of
4000 * 0x000000 (encapsulated Ethernet).
4001 *
4002 * XXX - if we were to check for the SNAP DSAP and
4003 * LSAP, as per XXX, and were also to check for an
4004 * organization code of 0x000000 (encapsulated
4005 * Ethernet), we'd do
4006 *
4007 * return gen_snap(cstate, 0x000000, ll_proto);
4008 *
4009 * here; for now, we don't, as per the above.
4010 * I don't know whether it's worth the extra CPU
4011 * time to do the right check or not.
4012 */
4013 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4014 }
4015 }
4016 }
4017
4018 static struct block *
4019 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4020 int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4021 {
4022 struct block *b0, *b1;
4023 u_int offset;
4024
4025 switch (dir) {
4026
4027 case Q_SRC:
4028 offset = src_off;
4029 break;
4030
4031 case Q_DST:
4032 offset = dst_off;
4033 break;
4034
4035 case Q_AND:
4036 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4037 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4038 gen_and(b0, b1);
4039 return b1;
4040
4041 case Q_DEFAULT:
4042 case Q_OR:
4043 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4044 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4045 gen_or(b0, b1);
4046 return b1;
4047
4048 case Q_ADDR1:
4049 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4050 /*NOTREACHED*/
4051
4052 case Q_ADDR2:
4053 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4054 /*NOTREACHED*/
4055
4056 case Q_ADDR3:
4057 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4058 /*NOTREACHED*/
4059
4060 case Q_ADDR4:
4061 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4062 /*NOTREACHED*/
4063
4064 case Q_RA:
4065 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4066 /*NOTREACHED*/
4067
4068 case Q_TA:
4069 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4070 /*NOTREACHED*/
4071
4072 default:
4073 abort();
4074 /*NOTREACHED*/
4075 }
4076 b0 = gen_linktype(cstate, ll_proto);
4077 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4078 gen_and(b0, b1);
4079 return b1;
4080 }
4081
4082 #ifdef INET6
4083 static struct block *
4084 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4085 struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4086 u_int dst_off)
4087 {
4088 struct block *b0, *b1;
4089 u_int offset;
4090 uint32_t *a, *m;
4091
4092 switch (dir) {
4093
4094 case Q_SRC:
4095 offset = src_off;
4096 break;
4097
4098 case Q_DST:
4099 offset = dst_off;
4100 break;
4101
4102 case Q_AND:
4103 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4104 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4105 gen_and(b0, b1);
4106 return b1;
4107
4108 case Q_DEFAULT:
4109 case Q_OR:
4110 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4111 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4112 gen_or(b0, b1);
4113 return b1;
4114
4115 case Q_ADDR1:
4116 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4117 /*NOTREACHED*/
4118
4119 case Q_ADDR2:
4120 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4121 /*NOTREACHED*/
4122
4123 case Q_ADDR3:
4124 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4125 /*NOTREACHED*/
4126
4127 case Q_ADDR4:
4128 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4129 /*NOTREACHED*/
4130
4131 case Q_RA:
4132 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4133 /*NOTREACHED*/
4134
4135 case Q_TA:
4136 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4137 /*NOTREACHED*/
4138
4139 default:
4140 abort();
4141 /*NOTREACHED*/
4142 }
4143 /* this order is important */
4144 a = (uint32_t *)addr;
4145 m = (uint32_t *)mask;
4146 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4147 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4148 gen_and(b0, b1);
4149 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4150 gen_and(b0, b1);
4151 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4152 gen_and(b0, b1);
4153 b0 = gen_linktype(cstate, ll_proto);
4154 gen_and(b0, b1);
4155 return b1;
4156 }
4157 #endif
4158
4159 static struct block *
4160 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4161 {
4162 register struct block *b0, *b1;
4163
4164 switch (dir) {
4165 case Q_SRC:
4166 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4167
4168 case Q_DST:
4169 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4170
4171 case Q_AND:
4172 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4173 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4174 gen_and(b0, b1);
4175 return b1;
4176
4177 case Q_DEFAULT:
4178 case Q_OR:
4179 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4180 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4181 gen_or(b0, b1);
4182 return b1;
4183
4184 case Q_ADDR1:
4185 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4186 /*NOTREACHED*/
4187
4188 case Q_ADDR2:
4189 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4190 /*NOTREACHED*/
4191
4192 case Q_ADDR3:
4193 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4194 /*NOTREACHED*/
4195
4196 case Q_ADDR4:
4197 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4198 /*NOTREACHED*/
4199
4200 case Q_RA:
4201 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4202 /*NOTREACHED*/
4203
4204 case Q_TA:
4205 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4206 /*NOTREACHED*/
4207 }
4208 abort();
4209 /*NOTREACHED*/
4210 }
4211
4212 /*
4213 * Like gen_ehostop, but for DLT_FDDI
4214 */
4215 static struct block *
4216 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4217 {
4218 struct block *b0, *b1;
4219
4220 switch (dir) {
4221 case Q_SRC:
4222 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4223
4224 case Q_DST:
4225 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4226
4227 case Q_AND:
4228 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4229 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4230 gen_and(b0, b1);
4231 return b1;
4232
4233 case Q_DEFAULT:
4234 case Q_OR:
4235 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4236 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4237 gen_or(b0, b1);
4238 return b1;
4239
4240 case Q_ADDR1:
4241 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4242 /*NOTREACHED*/
4243
4244 case Q_ADDR2:
4245 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4246 /*NOTREACHED*/
4247
4248 case Q_ADDR3:
4249 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4250 /*NOTREACHED*/
4251
4252 case Q_ADDR4:
4253 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4254 /*NOTREACHED*/
4255
4256 case Q_RA:
4257 bpf_error(cstate, "'ra' is only supported on 802.11");
4258 /*NOTREACHED*/
4259
4260 case Q_TA:
4261 bpf_error(cstate, "'ta' is only supported on 802.11");
4262 /*NOTREACHED*/
4263 }
4264 abort();
4265 /*NOTREACHED*/
4266 }
4267
4268 /*
4269 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4270 */
4271 static struct block *
4272 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4273 {
4274 register struct block *b0, *b1;
4275
4276 switch (dir) {
4277 case Q_SRC:
4278 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4279
4280 case Q_DST:
4281 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4282
4283 case Q_AND:
4284 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4285 b1 = gen_thostop(cstate, eaddr, Q_DST);
4286 gen_and(b0, b1);
4287 return b1;
4288
4289 case Q_DEFAULT:
4290 case Q_OR:
4291 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4292 b1 = gen_thostop(cstate, eaddr, Q_DST);
4293 gen_or(b0, b1);
4294 return b1;
4295
4296 case Q_ADDR1:
4297 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4298 /*NOTREACHED*/
4299
4300 case Q_ADDR2:
4301 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4302 /*NOTREACHED*/
4303
4304 case Q_ADDR3:
4305 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4306 /*NOTREACHED*/
4307
4308 case Q_ADDR4:
4309 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4310 /*NOTREACHED*/
4311
4312 case Q_RA:
4313 bpf_error(cstate, "'ra' is only supported on 802.11");
4314 /*NOTREACHED*/
4315
4316 case Q_TA:
4317 bpf_error(cstate, "'ta' is only supported on 802.11");
4318 /*NOTREACHED*/
4319 }
4320 abort();
4321 /*NOTREACHED*/
4322 }
4323
4324 /*
4325 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4326 * various 802.11 + radio headers.
4327 */
4328 static struct block *
4329 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4330 {
4331 register struct block *b0, *b1, *b2;
4332 register struct slist *s;
4333
4334 #ifdef ENABLE_WLAN_FILTERING_PATCH
4335 /*
4336 * TODO GV 20070613
4337 * We need to disable the optimizer because the optimizer is buggy
4338 * and wipes out some LD instructions generated by the below
4339 * code to validate the Frame Control bits
4340 */
4341 cstate->no_optimize = 1;
4342 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4343
4344 switch (dir) {
4345 case Q_SRC:
4346 /*
4347 * Oh, yuk.
4348 *
4349 * For control frames, there is no SA.
4350 *
4351 * For management frames, SA is at an
4352 * offset of 10 from the beginning of
4353 * the packet.
4354 *
4355 * For data frames, SA is at an offset
4356 * of 10 from the beginning of the packet
4357 * if From DS is clear, at an offset of
4358 * 16 from the beginning of the packet
4359 * if From DS is set and To DS is clear,
4360 * and an offset of 24 from the beginning
4361 * of the packet if From DS is set and To DS
4362 * is set.
4363 */
4364
4365 /*
4366 * Generate the tests to be done for data frames
4367 * with From DS set.
4368 *
4369 * First, check for To DS set, i.e. check "link[1] & 0x01".
4370 */
4371 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4372 b1 = new_block(cstate, JMP(BPF_JSET));
4373 b1->s.k = 0x01; /* To DS */
4374 b1->stmts = s;
4375
4376 /*
4377 * If To DS is set, the SA is at 24.
4378 */
4379 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4380 gen_and(b1, b0);
4381
4382 /*
4383 * Now, check for To DS not set, i.e. check
4384 * "!(link[1] & 0x01)".
4385 */
4386 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4387 b2 = new_block(cstate, JMP(BPF_JSET));
4388 b2->s.k = 0x01; /* To DS */
4389 b2->stmts = s;
4390 gen_not(b2);
4391
4392 /*
4393 * If To DS is not set, the SA is at 16.
4394 */
4395 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4396 gen_and(b2, b1);
4397
4398 /*
4399 * Now OR together the last two checks. That gives
4400 * the complete set of checks for data frames with
4401 * From DS set.
4402 */
4403 gen_or(b1, b0);
4404
4405 /*
4406 * Now check for From DS being set, and AND that with
4407 * the ORed-together checks.
4408 */
4409 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4410 b1 = new_block(cstate, JMP(BPF_JSET));
4411 b1->s.k = 0x02; /* From DS */
4412 b1->stmts = s;
4413 gen_and(b1, b0);
4414
4415 /*
4416 * Now check for data frames with From DS not set.
4417 */
4418 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4419 b2 = new_block(cstate, JMP(BPF_JSET));
4420 b2->s.k = 0x02; /* From DS */
4421 b2->stmts = s;
4422 gen_not(b2);
4423
4424 /*
4425 * If From DS isn't set, the SA is at 10.
4426 */
4427 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4428 gen_and(b2, b1);
4429
4430 /*
4431 * Now OR together the checks for data frames with
4432 * From DS not set and for data frames with From DS
4433 * set; that gives the checks done for data frames.
4434 */
4435 gen_or(b1, b0);
4436
4437 /*
4438 * Now check for a data frame.
4439 * I.e, check "link[0] & 0x08".
4440 */
4441 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4442 b1 = new_block(cstate, JMP(BPF_JSET));
4443 b1->s.k = 0x08;
4444 b1->stmts = s;
4445
4446 /*
4447 * AND that with the checks done for data frames.
4448 */
4449 gen_and(b1, b0);
4450
4451 /*
4452 * If the high-order bit of the type value is 0, this
4453 * is a management frame.
4454 * I.e, check "!(link[0] & 0x08)".
4455 */
4456 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4457 b2 = new_block(cstate, JMP(BPF_JSET));
4458 b2->s.k = 0x08;
4459 b2->stmts = s;
4460 gen_not(b2);
4461
4462 /*
4463 * For management frames, the SA is at 10.
4464 */
4465 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4466 gen_and(b2, b1);
4467
4468 /*
4469 * OR that with the checks done for data frames.
4470 * That gives the checks done for management and
4471 * data frames.
4472 */
4473 gen_or(b1, b0);
4474
4475 /*
4476 * If the low-order bit of the type value is 1,
4477 * this is either a control frame or a frame
4478 * with a reserved type, and thus not a
4479 * frame with an SA.
4480 *
4481 * I.e., check "!(link[0] & 0x04)".
4482 */
4483 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4484 b1 = new_block(cstate, JMP(BPF_JSET));
4485 b1->s.k = 0x04;
4486 b1->stmts = s;
4487 gen_not(b1);
4488
4489 /*
4490 * AND that with the checks for data and management
4491 * frames.
4492 */
4493 gen_and(b1, b0);
4494 return b0;
4495
4496 case Q_DST:
4497 /*
4498 * Oh, yuk.
4499 *
4500 * For control frames, there is no DA.
4501 *
4502 * For management frames, DA is at an
4503 * offset of 4 from the beginning of
4504 * the packet.
4505 *
4506 * For data frames, DA is at an offset
4507 * of 4 from the beginning of the packet
4508 * if To DS is clear and at an offset of
4509 * 16 from the beginning of the packet
4510 * if To DS is set.
4511 */
4512
4513 /*
4514 * Generate the tests to be done for data frames.
4515 *
4516 * First, check for To DS set, i.e. "link[1] & 0x01".
4517 */
4518 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4519 b1 = new_block(cstate, JMP(BPF_JSET));
4520 b1->s.k = 0x01; /* To DS */
4521 b1->stmts = s;
4522
4523 /*
4524 * If To DS is set, the DA is at 16.
4525 */
4526 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4527 gen_and(b1, b0);
4528
4529 /*
4530 * Now, check for To DS not set, i.e. check
4531 * "!(link[1] & 0x01)".
4532 */
4533 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4534 b2 = new_block(cstate, JMP(BPF_JSET));
4535 b2->s.k = 0x01; /* To DS */
4536 b2->stmts = s;
4537 gen_not(b2);
4538
4539 /*
4540 * If To DS is not set, the DA is at 4.
4541 */
4542 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4543 gen_and(b2, b1);
4544
4545 /*
4546 * Now OR together the last two checks. That gives
4547 * the complete set of checks for data frames.
4548 */
4549 gen_or(b1, b0);
4550
4551 /*
4552 * Now check for a data frame.
4553 * I.e, check "link[0] & 0x08".
4554 */
4555 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4556 b1 = new_block(cstate, JMP(BPF_JSET));
4557 b1->s.k = 0x08;
4558 b1->stmts = s;
4559
4560 /*
4561 * AND that with the checks done for data frames.
4562 */
4563 gen_and(b1, b0);
4564
4565 /*
4566 * If the high-order bit of the type value is 0, this
4567 * is a management frame.
4568 * I.e, check "!(link[0] & 0x08)".
4569 */
4570 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4571 b2 = new_block(cstate, JMP(BPF_JSET));
4572 b2->s.k = 0x08;
4573 b2->stmts = s;
4574 gen_not(b2);
4575
4576 /*
4577 * For management frames, the DA is at 4.
4578 */
4579 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4580 gen_and(b2, b1);
4581
4582 /*
4583 * OR that with the checks done for data frames.
4584 * That gives the checks done for management and
4585 * data frames.
4586 */
4587 gen_or(b1, b0);
4588
4589 /*
4590 * If the low-order bit of the type value is 1,
4591 * this is either a control frame or a frame
4592 * with a reserved type, and thus not a
4593 * frame with an SA.
4594 *
4595 * I.e., check "!(link[0] & 0x04)".
4596 */
4597 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4598 b1 = new_block(cstate, JMP(BPF_JSET));
4599 b1->s.k = 0x04;
4600 b1->stmts = s;
4601 gen_not(b1);
4602
4603 /*
4604 * AND that with the checks for data and management
4605 * frames.
4606 */
4607 gen_and(b1, b0);
4608 return b0;
4609
4610 case Q_AND:
4611 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4612 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4613 gen_and(b0, b1);
4614 return b1;
4615
4616 case Q_DEFAULT:
4617 case Q_OR:
4618 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4619 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4620 gen_or(b0, b1);
4621 return b1;
4622
4623 /*
4624 * XXX - add BSSID keyword?
4625 */
4626 case Q_ADDR1:
4627 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4628
4629 case Q_ADDR2:
4630 /*
4631 * Not present in CTS or ACK control frames.
4632 */
4633 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4634 IEEE80211_FC0_TYPE_MASK);
4635 gen_not(b0);
4636 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4637 IEEE80211_FC0_SUBTYPE_MASK);
4638 gen_not(b1);
4639 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4640 IEEE80211_FC0_SUBTYPE_MASK);
4641 gen_not(b2);
4642 gen_and(b1, b2);
4643 gen_or(b0, b2);
4644 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4645 gen_and(b2, b1);
4646 return b1;
4647
4648 case Q_ADDR3:
4649 /*
4650 * Not present in control frames.
4651 */
4652 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4653 IEEE80211_FC0_TYPE_MASK);
4654 gen_not(b0);
4655 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4656 gen_and(b0, b1);
4657 return b1;
4658
4659 case Q_ADDR4:
4660 /*
4661 * Present only if the direction mask has both "From DS"
4662 * and "To DS" set. Neither control frames nor management
4663 * frames should have both of those set, so we don't
4664 * check the frame type.
4665 */
4666 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4667 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4668 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4669 gen_and(b0, b1);
4670 return b1;
4671
4672 case Q_RA:
4673 /*
4674 * Not present in management frames; addr1 in other
4675 * frames.
4676 */
4677
4678 /*
4679 * If the high-order bit of the type value is 0, this
4680 * is a management frame.
4681 * I.e, check "(link[0] & 0x08)".
4682 */
4683 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4684 b1 = new_block(cstate, JMP(BPF_JSET));
4685 b1->s.k = 0x08;
4686 b1->stmts = s;
4687
4688 /*
4689 * Check addr1.
4690 */
4691 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4692
4693 /*
4694 * AND that with the check of addr1.
4695 */
4696 gen_and(b1, b0);
4697 return (b0);
4698
4699 case Q_TA:
4700 /*
4701 * Not present in management frames; addr2, if present,
4702 * in other frames.
4703 */
4704
4705 /*
4706 * Not present in CTS or ACK control frames.
4707 */
4708 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4709 IEEE80211_FC0_TYPE_MASK);
4710 gen_not(b0);
4711 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4712 IEEE80211_FC0_SUBTYPE_MASK);
4713 gen_not(b1);
4714 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4715 IEEE80211_FC0_SUBTYPE_MASK);
4716 gen_not(b2);
4717 gen_and(b1, b2);
4718 gen_or(b0, b2);
4719
4720 /*
4721 * If the high-order bit of the type value is 0, this
4722 * is a management frame.
4723 * I.e, check "(link[0] & 0x08)".
4724 */
4725 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4726 b1 = new_block(cstate, JMP(BPF_JSET));
4727 b1->s.k = 0x08;
4728 b1->stmts = s;
4729
4730 /*
4731 * AND that with the check for frames other than
4732 * CTS and ACK frames.
4733 */
4734 gen_and(b1, b2);
4735
4736 /*
4737 * Check addr2.
4738 */
4739 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4740 gen_and(b2, b1);
4741 return b1;
4742 }
4743 abort();
4744 /*NOTREACHED*/
4745 }
4746
4747 /*
4748 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4749 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4750 * as the RFC states.)
4751 */
4752 static struct block *
4753 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4754 {
4755 register struct block *b0, *b1;
4756
4757 switch (dir) {
4758 case Q_SRC:
4759 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4760
4761 case Q_DST:
4762 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4763
4764 case Q_AND:
4765 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4766 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4767 gen_and(b0, b1);
4768 return b1;
4769
4770 case Q_DEFAULT:
4771 case Q_OR:
4772 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4773 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4774 gen_or(b0, b1);
4775 return b1;
4776
4777 case Q_ADDR1:
4778 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4779 /*NOTREACHED*/
4780
4781 case Q_ADDR2:
4782 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4783 /*NOTREACHED*/
4784
4785 case Q_ADDR3:
4786 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4787 /*NOTREACHED*/
4788
4789 case Q_ADDR4:
4790 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4791 /*NOTREACHED*/
4792
4793 case Q_RA:
4794 bpf_error(cstate, "'ra' is only supported on 802.11");
4795 /*NOTREACHED*/
4796
4797 case Q_TA:
4798 bpf_error(cstate, "'ta' is only supported on 802.11");
4799 /*NOTREACHED*/
4800 }
4801 abort();
4802 /*NOTREACHED*/
4803 }
4804
4805 /*
4806 * This is quite tricky because there may be pad bytes in front of the
4807 * DECNET header, and then there are two possible data packet formats that
4808 * carry both src and dst addresses, plus 5 packet types in a format that
4809 * carries only the src node, plus 2 types that use a different format and
4810 * also carry just the src node.
4811 *
4812 * Yuck.
4813 *
4814 * Instead of doing those all right, we just look for data packets with
4815 * 0 or 1 bytes of padding. If you want to look at other packets, that
4816 * will require a lot more hacking.
4817 *
4818 * To add support for filtering on DECNET "areas" (network numbers)
4819 * one would want to add a "mask" argument to this routine. That would
4820 * make the filter even more inefficient, although one could be clever
4821 * and not generate masking instructions if the mask is 0xFFFF.
4822 */
4823 static struct block *
4824 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4825 {
4826 struct block *b0, *b1, *b2, *tmp;
4827 u_int offset_lh; /* offset if long header is received */
4828 u_int offset_sh; /* offset if short header is received */
4829
4830 switch (dir) {
4831
4832 case Q_DST:
4833 offset_sh = 1; /* follows flags */
4834 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4835 break;
4836
4837 case Q_SRC:
4838 offset_sh = 3; /* follows flags, dstnode */
4839 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4840 break;
4841
4842 case Q_AND:
4843 /* Inefficient because we do our Calvinball dance twice */
4844 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4845 b1 = gen_dnhostop(cstate, addr, Q_DST);
4846 gen_and(b0, b1);
4847 return b1;
4848
4849 case Q_DEFAULT:
4850 case Q_OR:
4851 /* Inefficient because we do our Calvinball dance twice */
4852 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4853 b1 = gen_dnhostop(cstate, addr, Q_DST);
4854 gen_or(b0, b1);
4855 return b1;
4856
4857 case Q_ADDR1:
4858 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4859 /*NOTREACHED*/
4860
4861 case Q_ADDR2:
4862 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4863 /*NOTREACHED*/
4864
4865 case Q_ADDR3:
4866 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4867 /*NOTREACHED*/
4868
4869 case Q_ADDR4:
4870 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4871 /*NOTREACHED*/
4872
4873 case Q_RA:
4874 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4875 /*NOTREACHED*/
4876
4877 case Q_TA:
4878 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4879 /*NOTREACHED*/
4880
4881 default:
4882 abort();
4883 /*NOTREACHED*/
4884 }
4885 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4886 /* Check for pad = 1, long header case */
4887 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4888 (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4889 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4890 BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4891 gen_and(tmp, b1);
4892 /* Check for pad = 0, long header case */
4893 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4894 (bpf_u_int32)0x7);
4895 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4896 (bpf_u_int32)ntohs((u_short)addr));
4897 gen_and(tmp, b2);
4898 gen_or(b2, b1);
4899 /* Check for pad = 1, short header case */
4900 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4901 (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4902 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4903 (bpf_u_int32)ntohs((u_short)addr));
4904 gen_and(tmp, b2);
4905 gen_or(b2, b1);
4906 /* Check for pad = 0, short header case */
4907 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4908 (bpf_u_int32)0x7);
4909 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4910 (bpf_u_int32)ntohs((u_short)addr));
4911 gen_and(tmp, b2);
4912 gen_or(b2, b1);
4913
4914 /* Combine with test for cstate->linktype */
4915 gen_and(b0, b1);
4916 return b1;
4917 }
4918
4919 /*
4920 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4921 * test the bottom-of-stack bit, and then check the version number
4922 * field in the IP header.
4923 */
4924 static struct block *
4925 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4926 {
4927 struct block *b0, *b1;
4928
4929 switch (ll_proto) {
4930
4931 case ETHERTYPE_IP:
4932 /* match the bottom-of-stack bit */
4933 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4934 /* match the IPv4 version number */
4935 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4936 gen_and(b0, b1);
4937 return b1;
4938
4939 case ETHERTYPE_IPV6:
4940 /* match the bottom-of-stack bit */
4941 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4942 /* match the IPv4 version number */
4943 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4944 gen_and(b0, b1);
4945 return b1;
4946
4947 default:
4948 /* FIXME add other L3 proto IDs */
4949 bpf_error(cstate, "unsupported protocol over mpls");
4950 /*NOTREACHED*/
4951 }
4952 }
4953
4954 static struct block *
4955 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4956 int proto, int dir, int type)
4957 {
4958 struct block *b0, *b1;
4959 const char *typestr;
4960
4961 if (type == Q_NET)
4962 typestr = "net";
4963 else
4964 typestr = "host";
4965
4966 switch (proto) {
4967
4968 case Q_DEFAULT:
4969 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4970 /*
4971 * Only check for non-IPv4 addresses if we're not
4972 * checking MPLS-encapsulated packets.
4973 */
4974 if (cstate->label_stack_depth == 0) {
4975 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4976 gen_or(b0, b1);
4977 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4978 gen_or(b1, b0);
4979 }
4980 return b0;
4981
4982 case Q_LINK:
4983 bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4984
4985 case Q_IP:
4986 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4987
4988 case Q_RARP:
4989 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4990
4991 case Q_ARP:
4992 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4993
4994 case Q_SCTP:
4995 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4996
4997 case Q_TCP:
4998 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4999
5000 case Q_UDP:
5001 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5002
5003 case Q_ICMP:
5004 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5005
5006 case Q_IGMP:
5007 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5008
5009 case Q_IGRP:
5010 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5011
5012 case Q_ATALK:
5013 bpf_error(cstate, "AppleTalk host filtering not implemented");
5014
5015 case Q_DECNET:
5016 return gen_dnhostop(cstate, addr, dir);
5017
5018 case Q_LAT:
5019 bpf_error(cstate, "LAT host filtering not implemented");
5020
5021 case Q_SCA:
5022 bpf_error(cstate, "SCA host filtering not implemented");
5023
5024 case Q_MOPRC:
5025 bpf_error(cstate, "MOPRC host filtering not implemented");
5026
5027 case Q_MOPDL:
5028 bpf_error(cstate, "MOPDL host filtering not implemented");
5029
5030 case Q_IPV6:
5031 bpf_error(cstate, "'ip6' modifier applied to ip host");
5032
5033 case Q_ICMPV6:
5034 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5035
5036 case Q_AH:
5037 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5038
5039 case Q_ESP:
5040 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5041
5042 case Q_PIM:
5043 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5044
5045 case Q_VRRP:
5046 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5047
5048 case Q_AARP:
5049 bpf_error(cstate, "AARP host filtering not implemented");
5050
5051 case Q_ISO:
5052 bpf_error(cstate, "ISO host filtering not implemented");
5053
5054 case Q_ESIS:
5055 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5056
5057 case Q_ISIS:
5058 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5059
5060 case Q_CLNP:
5061 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5062
5063 case Q_STP:
5064 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5065
5066 case Q_IPX:
5067 bpf_error(cstate, "IPX host filtering not implemented");
5068
5069 case Q_NETBEUI:
5070 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5071
5072 case Q_ISIS_L1:
5073 bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5074
5075 case Q_ISIS_L2:
5076 bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5077
5078 case Q_ISIS_IIH:
5079 bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5080
5081 case Q_ISIS_SNP:
5082 bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5083
5084 case Q_ISIS_CSNP:
5085 bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5086
5087 case Q_ISIS_PSNP:
5088 bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5089
5090 case Q_ISIS_LSP:
5091 bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5092
5093 case Q_RADIO:
5094 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5095
5096 case Q_CARP:
5097 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5098
5099 default:
5100 abort();
5101 }
5102 /*NOTREACHED*/
5103 }
5104
5105 #ifdef INET6
5106 static struct block *
5107 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5108 struct in6_addr *mask, int proto, int dir, int type)
5109 {
5110 const char *typestr;
5111
5112 if (type == Q_NET)
5113 typestr = "net";
5114 else
5115 typestr = "host";
5116
5117 switch (proto) {
5118
5119 case Q_DEFAULT:
5120 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5121
5122 case Q_LINK:
5123 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5124
5125 case Q_IP:
5126 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5127
5128 case Q_RARP:
5129 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5130
5131 case Q_ARP:
5132 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5133
5134 case Q_SCTP:
5135 bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5136
5137 case Q_TCP:
5138 bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5139
5140 case Q_UDP:
5141 bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5142
5143 case Q_ICMP:
5144 bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5145
5146 case Q_IGMP:
5147 bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5148
5149 case Q_IGRP:
5150 bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5151
5152 case Q_ATALK:
5153 bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5154
5155 case Q_DECNET:
5156 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5157
5158 case Q_LAT:
5159 bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5160
5161 case Q_SCA:
5162 bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5163
5164 case Q_MOPRC:
5165 bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5166
5167 case Q_MOPDL:
5168 bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5169
5170 case Q_IPV6:
5171 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5172
5173 case Q_ICMPV6:
5174 bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5175
5176 case Q_AH:
5177 bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5178
5179 case Q_ESP:
5180 bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5181
5182 case Q_PIM:
5183 bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5184
5185 case Q_VRRP:
5186 bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5187
5188 case Q_AARP:
5189 bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5190
5191 case Q_ISO:
5192 bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5193
5194 case Q_ESIS:
5195 bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5196
5197 case Q_ISIS:
5198 bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5199
5200 case Q_CLNP:
5201 bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5202
5203 case Q_STP:
5204 bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5205
5206 case Q_IPX:
5207 bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5208
5209 case Q_NETBEUI:
5210 bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5211
5212 case Q_ISIS_L1:
5213 bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5214
5215 case Q_ISIS_L2:
5216 bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5217
5218 case Q_ISIS_IIH:
5219 bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5220
5221 case Q_ISIS_SNP:
5222 bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5223
5224 case Q_ISIS_CSNP:
5225 bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5226
5227 case Q_ISIS_PSNP:
5228 bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5229
5230 case Q_ISIS_LSP:
5231 bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5232
5233 case Q_RADIO:
5234 bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5235
5236 case Q_CARP:
5237 bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5238
5239 default:
5240 abort();
5241 }
5242 /*NOTREACHED*/
5243 }
5244 #endif
5245
5246 #ifndef INET6
5247 static struct block *
5248 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5249 struct addrinfo *alist, int proto, int dir)
5250 {
5251 struct block *b0, *b1, *tmp;
5252 struct addrinfo *ai;
5253 struct sockaddr_in *sin;
5254
5255 if (dir != 0)
5256 bpf_error(cstate, "direction applied to 'gateway'");
5257
5258 switch (proto) {
5259 case Q_DEFAULT:
5260 case Q_IP:
5261 case Q_ARP:
5262 case Q_RARP:
5263 switch (cstate->linktype) {
5264 case DLT_EN10MB:
5265 case DLT_NETANALYZER:
5266 case DLT_NETANALYZER_TRANSPARENT:
5267 b1 = gen_prevlinkhdr_check(cstate);
5268 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5269 if (b1 != NULL)
5270 gen_and(b1, b0);
5271 break;
5272 case DLT_FDDI:
5273 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5274 break;
5275 case DLT_IEEE802:
5276 b0 = gen_thostop(cstate, eaddr, Q_OR);
5277 break;
5278 case DLT_IEEE802_11:
5279 case DLT_PRISM_HEADER:
5280 case DLT_IEEE802_11_RADIO_AVS:
5281 case DLT_IEEE802_11_RADIO:
5282 case DLT_PPI:
5283 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5284 break;
5285 case DLT_SUNATM:
5286 /*
5287 * This is LLC-multiplexed traffic; if it were
5288 * LANE, cstate->linktype would have been set to
5289 * DLT_EN10MB.
5290 */
5291 bpf_error(cstate,
5292 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5293 break;
5294 case DLT_IP_OVER_FC:
5295 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5296 break;
5297 default:
5298 bpf_error(cstate,
5299 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5300 }
5301 b1 = NULL;
5302 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5303 /*
5304 * Does it have an address?
5305 */
5306 if (ai->ai_addr != NULL) {
5307 /*
5308 * Yes. Is it an IPv4 address?
5309 */
5310 if (ai->ai_addr->sa_family == AF_INET) {
5311 /*
5312 * Generate an entry for it.
5313 */
5314 sin = (struct sockaddr_in *)ai->ai_addr;
5315 tmp = gen_host(cstate,
5316 ntohl(sin->sin_addr.s_addr),
5317 0xffffffff, proto, Q_OR, Q_HOST);
5318 /*
5319 * Is it the *first* IPv4 address?
5320 */
5321 if (b1 == NULL) {
5322 /*
5323 * Yes, so start with it.
5324 */
5325 b1 = tmp;
5326 } else {
5327 /*
5328 * No, so OR it into the
5329 * existing set of
5330 * addresses.
5331 */
5332 gen_or(b1, tmp);
5333 b1 = tmp;
5334 }
5335 }
5336 }
5337 }
5338 if (b1 == NULL) {
5339 /*
5340 * No IPv4 addresses found.
5341 */
5342 return (NULL);
5343 }
5344 gen_not(b1);
5345 gen_and(b0, b1);
5346 return b1;
5347 }
5348 bpf_error(cstate, "illegal modifier of 'gateway'");
5349 /*NOTREACHED*/
5350 }
5351 #endif
5352
5353 static struct block *
5354 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5355 {
5356 struct block *b0;
5357 struct block *b1;
5358
5359 switch (proto) {
5360
5361 case Q_SCTP:
5362 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5363 break;
5364
5365 case Q_TCP:
5366 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5367 break;
5368
5369 case Q_UDP:
5370 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5371 break;
5372
5373 case Q_ICMP:
5374 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5375 break;
5376
5377 #ifndef IPPROTO_IGMP
5378 #define IPPROTO_IGMP 2
5379 #endif
5380
5381 case Q_IGMP:
5382 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5383 break;
5384
5385 #ifndef IPPROTO_IGRP
5386 #define IPPROTO_IGRP 9
5387 #endif
5388 case Q_IGRP:
5389 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5390 break;
5391
5392 #ifndef IPPROTO_PIM
5393 #define IPPROTO_PIM 103
5394 #endif
5395
5396 case Q_PIM:
5397 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5398 break;
5399
5400 #ifndef IPPROTO_VRRP
5401 #define IPPROTO_VRRP 112
5402 #endif
5403
5404 case Q_VRRP:
5405 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5406 break;
5407
5408 #ifndef IPPROTO_CARP
5409 #define IPPROTO_CARP 112
5410 #endif
5411
5412 case Q_CARP:
5413 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5414 break;
5415
5416 case Q_IP:
5417 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5418 break;
5419
5420 case Q_ARP:
5421 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5422 break;
5423
5424 case Q_RARP:
5425 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5426 break;
5427
5428 case Q_LINK:
5429 bpf_error(cstate, "link layer applied in wrong context");
5430
5431 case Q_ATALK:
5432 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5433 break;
5434
5435 case Q_AARP:
5436 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5437 break;
5438
5439 case Q_DECNET:
5440 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5441 break;
5442
5443 case Q_SCA:
5444 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5445 break;
5446
5447 case Q_LAT:
5448 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5449 break;
5450
5451 case Q_MOPDL:
5452 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5453 break;
5454
5455 case Q_MOPRC:
5456 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5457 break;
5458
5459 case Q_IPV6:
5460 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5461 break;
5462
5463 #ifndef IPPROTO_ICMPV6
5464 #define IPPROTO_ICMPV6 58
5465 #endif
5466 case Q_ICMPV6:
5467 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5468 break;
5469
5470 #ifndef IPPROTO_AH
5471 #define IPPROTO_AH 51
5472 #endif
5473 case Q_AH:
5474 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5475 break;
5476
5477 #ifndef IPPROTO_ESP
5478 #define IPPROTO_ESP 50
5479 #endif
5480 case Q_ESP:
5481 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5482 break;
5483
5484 case Q_ISO:
5485 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5486 break;
5487
5488 case Q_ESIS:
5489 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5490 break;
5491
5492 case Q_ISIS:
5493 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5494 break;
5495
5496 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5497 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5498 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5499 gen_or(b0, b1);
5500 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5501 gen_or(b0, b1);
5502 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5503 gen_or(b0, b1);
5504 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5505 gen_or(b0, b1);
5506 break;
5507
5508 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5509 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5510 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5511 gen_or(b0, b1);
5512 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5513 gen_or(b0, b1);
5514 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5515 gen_or(b0, b1);
5516 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5517 gen_or(b0, b1);
5518 break;
5519
5520 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5521 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5522 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5523 gen_or(b0, b1);
5524 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5525 gen_or(b0, b1);
5526 break;
5527
5528 case Q_ISIS_LSP:
5529 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5530 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5531 gen_or(b0, b1);
5532 break;
5533
5534 case Q_ISIS_SNP:
5535 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5536 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5537 gen_or(b0, b1);
5538 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5539 gen_or(b0, b1);
5540 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5541 gen_or(b0, b1);
5542 break;
5543
5544 case Q_ISIS_CSNP:
5545 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5546 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5547 gen_or(b0, b1);
5548 break;
5549
5550 case Q_ISIS_PSNP:
5551 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5552 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5553 gen_or(b0, b1);
5554 break;
5555
5556 case Q_CLNP:
5557 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5558 break;
5559
5560 case Q_STP:
5561 b1 = gen_linktype(cstate, LLCSAP_8021D);
5562 break;
5563
5564 case Q_IPX:
5565 b1 = gen_linktype(cstate, LLCSAP_IPX);
5566 break;
5567
5568 case Q_NETBEUI:
5569 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5570 break;
5571
5572 case Q_RADIO:
5573 bpf_error(cstate, "'radio' is not a valid protocol type");
5574
5575 default:
5576 abort();
5577 }
5578 return b1;
5579 }
5580
5581 struct block *
5582 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5583 {
5584 /*
5585 * Catch errors reported by us and routines below us, and return NULL
5586 * on an error.
5587 */
5588 if (setjmp(cstate->top_ctx))
5589 return (NULL);
5590
5591 return gen_proto_abbrev_internal(cstate, proto);
5592 }
5593
5594 static struct block *
5595 gen_ipfrag(compiler_state_t *cstate)
5596 {
5597 struct slist *s;
5598 struct block *b;
5599
5600 /* not IPv4 frag other than the first frag */
5601 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5602 b = new_block(cstate, JMP(BPF_JSET));
5603 b->s.k = 0x1fff;
5604 b->stmts = s;
5605 gen_not(b);
5606
5607 return b;
5608 }
5609
5610 /*
5611 * Generate a comparison to a port value in the transport-layer header
5612 * at the specified offset from the beginning of that header.
5613 *
5614 * XXX - this handles a variable-length prefix preceding the link-layer
5615 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5616 * variable-length link-layer headers (such as Token Ring or 802.11
5617 * headers).
5618 */
5619 static struct block *
5620 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5621 {
5622 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5623 }
5624
5625 static struct block *
5626 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5627 {
5628 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5629 }
5630
5631 static struct block *
5632 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5633 {
5634 struct block *b0, *b1, *tmp;
5635
5636 /* ip proto 'proto' and not a fragment other than the first fragment */
5637 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5638 b0 = gen_ipfrag(cstate);
5639 gen_and(tmp, b0);
5640
5641 switch (dir) {
5642 case Q_SRC:
5643 b1 = gen_portatom(cstate, 0, port);
5644 break;
5645
5646 case Q_DST:
5647 b1 = gen_portatom(cstate, 2, port);
5648 break;
5649
5650 case Q_AND:
5651 tmp = gen_portatom(cstate, 0, port);
5652 b1 = gen_portatom(cstate, 2, port);
5653 gen_and(tmp, b1);
5654 break;
5655
5656 case Q_DEFAULT:
5657 case Q_OR:
5658 tmp = gen_portatom(cstate, 0, port);
5659 b1 = gen_portatom(cstate, 2, port);
5660 gen_or(tmp, b1);
5661 break;
5662
5663 case Q_ADDR1:
5664 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5665 /*NOTREACHED*/
5666
5667 case Q_ADDR2:
5668 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5669 /*NOTREACHED*/
5670
5671 case Q_ADDR3:
5672 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5673 /*NOTREACHED*/
5674
5675 case Q_ADDR4:
5676 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5677 /*NOTREACHED*/
5678
5679 case Q_RA:
5680 bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5681 /*NOTREACHED*/
5682
5683 case Q_TA:
5684 bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5685 /*NOTREACHED*/
5686
5687 default:
5688 abort();
5689 /*NOTREACHED*/
5690 }
5691 gen_and(b0, b1);
5692
5693 return b1;
5694 }
5695
5696 static struct block *
5697 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5698 {
5699 struct block *b0, *b1, *tmp;
5700
5701 /*
5702 * ether proto ip
5703 *
5704 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5705 * not LLC encapsulation with LLCSAP_IP.
5706 *
5707 * For IEEE 802 networks - which includes 802.5 token ring
5708 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5709 * says that SNAP encapsulation is used, not LLC encapsulation
5710 * with LLCSAP_IP.
5711 *
5712 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5713 * RFC 2225 say that SNAP encapsulation is used, not LLC
5714 * encapsulation with LLCSAP_IP.
5715 *
5716 * So we always check for ETHERTYPE_IP.
5717 */
5718 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5719
5720 switch (ip_proto) {
5721 case IPPROTO_UDP:
5722 case IPPROTO_TCP:
5723 case IPPROTO_SCTP:
5724 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5725 break;
5726
5727 case PROTO_UNDEF:
5728 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5729 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5730 gen_or(tmp, b1);
5731 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5732 gen_or(tmp, b1);
5733 break;
5734
5735 default:
5736 abort();
5737 }
5738 gen_and(b0, b1);
5739 return b1;
5740 }
5741
5742 struct block *
5743 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5744 {
5745 struct block *b0, *b1, *tmp;
5746
5747 /* ip6 proto 'proto' */
5748 /* XXX - catch the first fragment of a fragmented packet? */
5749 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5750
5751 switch (dir) {
5752 case Q_SRC:
5753 b1 = gen_portatom6(cstate, 0, port);
5754 break;
5755
5756 case Q_DST:
5757 b1 = gen_portatom6(cstate, 2, port);
5758 break;
5759
5760 case Q_AND:
5761 tmp = gen_portatom6(cstate, 0, port);
5762 b1 = gen_portatom6(cstate, 2, port);
5763 gen_and(tmp, b1);
5764 break;
5765
5766 case Q_DEFAULT:
5767 case Q_OR:
5768 tmp = gen_portatom6(cstate, 0, port);
5769 b1 = gen_portatom6(cstate, 2, port);
5770 gen_or(tmp, b1);
5771 break;
5772
5773 default:
5774 abort();
5775 }
5776 gen_and(b0, b1);
5777
5778 return b1;
5779 }
5780
5781 static struct block *
5782 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5783 {
5784 struct block *b0, *b1, *tmp;
5785
5786 /* link proto ip6 */
5787 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5788
5789 switch (ip_proto) {
5790 case IPPROTO_UDP:
5791 case IPPROTO_TCP:
5792 case IPPROTO_SCTP:
5793 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5794 break;
5795
5796 case PROTO_UNDEF:
5797 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5798 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5799 gen_or(tmp, b1);
5800 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5801 gen_or(tmp, b1);
5802 break;
5803
5804 default:
5805 abort();
5806 }
5807 gen_and(b0, b1);
5808 return b1;
5809 }
5810
5811 /* gen_portrange code */
5812 static struct block *
5813 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5814 bpf_u_int32 v2)
5815 {
5816 struct block *b1, *b2;
5817
5818 if (v1 > v2) {
5819 /*
5820 * Reverse the order of the ports, so v1 is the lower one.
5821 */
5822 bpf_u_int32 vtemp;
5823
5824 vtemp = v1;
5825 v1 = v2;
5826 v2 = vtemp;
5827 }
5828
5829 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5830 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5831
5832 gen_and(b1, b2);
5833
5834 return b2;
5835 }
5836
5837 static struct block *
5838 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5839 bpf_u_int32 proto, int dir)
5840 {
5841 struct block *b0, *b1, *tmp;
5842
5843 /* ip proto 'proto' and not a fragment other than the first fragment */
5844 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5845 b0 = gen_ipfrag(cstate);
5846 gen_and(tmp, b0);
5847
5848 switch (dir) {
5849 case Q_SRC:
5850 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5851 break;
5852
5853 case Q_DST:
5854 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5855 break;
5856
5857 case Q_AND:
5858 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5859 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5860 gen_and(tmp, b1);
5861 break;
5862
5863 case Q_DEFAULT:
5864 case Q_OR:
5865 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5866 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5867 gen_or(tmp, b1);
5868 break;
5869
5870 case Q_ADDR1:
5871 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5872 /*NOTREACHED*/
5873
5874 case Q_ADDR2:
5875 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5876 /*NOTREACHED*/
5877
5878 case Q_ADDR3:
5879 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5880 /*NOTREACHED*/
5881
5882 case Q_ADDR4:
5883 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5884 /*NOTREACHED*/
5885
5886 case Q_RA:
5887 bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5888 /*NOTREACHED*/
5889
5890 case Q_TA:
5891 bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5892 /*NOTREACHED*/
5893
5894 default:
5895 abort();
5896 /*NOTREACHED*/
5897 }
5898 gen_and(b0, b1);
5899
5900 return b1;
5901 }
5902
5903 static struct block *
5904 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5905 int dir)
5906 {
5907 struct block *b0, *b1, *tmp;
5908
5909 /* link proto ip */
5910 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5911
5912 switch (ip_proto) {
5913 case IPPROTO_UDP:
5914 case IPPROTO_TCP:
5915 case IPPROTO_SCTP:
5916 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5917 dir);
5918 break;
5919
5920 case PROTO_UNDEF:
5921 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5922 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5923 gen_or(tmp, b1);
5924 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5925 gen_or(tmp, b1);
5926 break;
5927
5928 default:
5929 abort();
5930 }
5931 gen_and(b0, b1);
5932 return b1;
5933 }
5934
5935 static struct block *
5936 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5937 bpf_u_int32 v2)
5938 {
5939 struct block *b1, *b2;
5940
5941 if (v1 > v2) {
5942 /*
5943 * Reverse the order of the ports, so v1 is the lower one.
5944 */
5945 bpf_u_int32 vtemp;
5946
5947 vtemp = v1;
5948 v1 = v2;
5949 v2 = vtemp;
5950 }
5951
5952 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5953 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5954
5955 gen_and(b1, b2);
5956
5957 return b2;
5958 }
5959
5960 static struct block *
5961 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5962 bpf_u_int32 proto, int dir)
5963 {
5964 struct block *b0, *b1, *tmp;
5965
5966 /* ip6 proto 'proto' */
5967 /* XXX - catch the first fragment of a fragmented packet? */
5968 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5969
5970 switch (dir) {
5971 case Q_SRC:
5972 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5973 break;
5974
5975 case Q_DST:
5976 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5977 break;
5978
5979 case Q_AND:
5980 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5981 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5982 gen_and(tmp, b1);
5983 break;
5984
5985 case Q_DEFAULT:
5986 case Q_OR:
5987 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5988 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5989 gen_or(tmp, b1);
5990 break;
5991
5992 default:
5993 abort();
5994 }
5995 gen_and(b0, b1);
5996
5997 return b1;
5998 }
5999
6000 static struct block *
6001 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6002 int dir)
6003 {
6004 struct block *b0, *b1, *tmp;
6005
6006 /* link proto ip6 */
6007 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6008
6009 switch (ip_proto) {
6010 case IPPROTO_UDP:
6011 case IPPROTO_TCP:
6012 case IPPROTO_SCTP:
6013 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6014 dir);
6015 break;
6016
6017 case PROTO_UNDEF:
6018 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6019 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6020 gen_or(tmp, b1);
6021 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6022 gen_or(tmp, b1);
6023 break;
6024
6025 default:
6026 abort();
6027 }
6028 gen_and(b0, b1);
6029 return b1;
6030 }
6031
6032 static int
6033 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6034 {
6035 register int v;
6036
6037 switch (proto) {
6038
6039 case Q_DEFAULT:
6040 case Q_IP:
6041 case Q_IPV6:
6042 v = pcap_nametoproto(name);
6043 if (v == PROTO_UNDEF)
6044 bpf_error(cstate, "unknown ip proto '%s'", name);
6045 break;
6046
6047 case Q_LINK:
6048 /* XXX should look up h/w protocol type based on cstate->linktype */
6049 v = pcap_nametoeproto(name);
6050 if (v == PROTO_UNDEF) {
6051 v = pcap_nametollc(name);
6052 if (v == PROTO_UNDEF)
6053 bpf_error(cstate, "unknown ether proto '%s'", name);
6054 }
6055 break;
6056
6057 case Q_ISO:
6058 if (strcmp(name, "esis") == 0)
6059 v = ISO9542_ESIS;
6060 else if (strcmp(name, "isis") == 0)
6061 v = ISO10589_ISIS;
6062 else if (strcmp(name, "clnp") == 0)
6063 v = ISO8473_CLNP;
6064 else
6065 bpf_error(cstate, "unknown osi proto '%s'", name);
6066 break;
6067
6068 default:
6069 v = PROTO_UNDEF;
6070 break;
6071 }
6072 return v;
6073 }
6074
6075 #if !defined(NO_PROTOCHAIN)
6076 static struct block *
6077 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6078 {
6079 struct block *b0, *b;
6080 struct slist *s[100];
6081 int fix2, fix3, fix4, fix5;
6082 int ahcheck, again, end;
6083 int i, max;
6084 int reg2 = alloc_reg(cstate);
6085
6086 memset(s, 0, sizeof(s));
6087 fix3 = fix4 = fix5 = 0;
6088
6089 switch (proto) {
6090 case Q_IP:
6091 case Q_IPV6:
6092 break;
6093 case Q_DEFAULT:
6094 b0 = gen_protochain(cstate, v, Q_IP);
6095 b = gen_protochain(cstate, v, Q_IPV6);
6096 gen_or(b0, b);
6097 return b;
6098 default:
6099 bpf_error(cstate, "bad protocol applied for 'protochain'");
6100 /*NOTREACHED*/
6101 }
6102
6103 /*
6104 * We don't handle variable-length prefixes before the link-layer
6105 * header, or variable-length link-layer headers, here yet.
6106 * We might want to add BPF instructions to do the protochain
6107 * work, to simplify that and, on platforms that have a BPF
6108 * interpreter with the new instructions, let the filtering
6109 * be done in the kernel. (We already require a modified BPF
6110 * engine to do the protochain stuff, to support backward
6111 * branches, and backward branch support is unlikely to appear
6112 * in kernel BPF engines.)
6113 */
6114 if (cstate->off_linkpl.is_variable)
6115 bpf_error(cstate, "'protochain' not supported with variable length headers");
6116
6117 /*
6118 * To quote a comment in optimize.c:
6119 *
6120 * "These data structures are used in a Cocke and Shwarz style
6121 * value numbering scheme. Since the flowgraph is acyclic,
6122 * exit values can be propagated from a node's predecessors
6123 * provided it is uniquely defined."
6124 *
6125 * "Acyclic" means "no backward branches", which means "no
6126 * loops", so we have to turn the optimizer off.
6127 */
6128 cstate->no_optimize = 1;
6129
6130 /*
6131 * s[0] is a dummy entry to protect other BPF insn from damage
6132 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6133 * hard to find interdependency made by jump table fixup.
6134 */
6135 i = 0;
6136 s[i] = new_stmt(cstate, 0); /*dummy*/
6137 i++;
6138
6139 switch (proto) {
6140 case Q_IP:
6141 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6142
6143 /* A = ip->ip_p */
6144 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6145 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6146 i++;
6147 /* X = ip->ip_hl << 2 */
6148 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6149 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6150 i++;
6151 break;
6152
6153 case Q_IPV6:
6154 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6155
6156 /* A = ip6->ip_nxt */
6157 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6158 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6159 i++;
6160 /* X = sizeof(struct ip6_hdr) */
6161 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6162 s[i]->s.k = 40;
6163 i++;
6164 break;
6165
6166 default:
6167 bpf_error(cstate, "unsupported proto to gen_protochain");
6168 /*NOTREACHED*/
6169 }
6170
6171 /* again: if (A == v) goto end; else fall through; */
6172 again = i;
6173 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6174 s[i]->s.k = v;
6175 s[i]->s.jt = NULL; /*later*/
6176 s[i]->s.jf = NULL; /*update in next stmt*/
6177 fix5 = i;
6178 i++;
6179
6180 #ifndef IPPROTO_NONE
6181 #define IPPROTO_NONE 59
6182 #endif
6183 /* if (A == IPPROTO_NONE) goto end */
6184 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6185 s[i]->s.jt = NULL; /*later*/
6186 s[i]->s.jf = NULL; /*update in next stmt*/
6187 s[i]->s.k = IPPROTO_NONE;
6188 s[fix5]->s.jf = s[i];
6189 fix2 = i;
6190 i++;
6191
6192 if (proto == Q_IPV6) {
6193 int v6start, v6end, v6advance, j;
6194
6195 v6start = i;
6196 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6197 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6198 s[i]->s.jt = NULL; /*later*/
6199 s[i]->s.jf = NULL; /*update in next stmt*/
6200 s[i]->s.k = IPPROTO_HOPOPTS;
6201 s[fix2]->s.jf = s[i];
6202 i++;
6203 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6204 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6205 s[i]->s.jt = NULL; /*later*/
6206 s[i]->s.jf = NULL; /*update in next stmt*/
6207 s[i]->s.k = IPPROTO_DSTOPTS;
6208 i++;
6209 /* if (A == IPPROTO_ROUTING) goto v6advance */
6210 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6211 s[i]->s.jt = NULL; /*later*/
6212 s[i]->s.jf = NULL; /*update in next stmt*/
6213 s[i]->s.k = IPPROTO_ROUTING;
6214 i++;
6215 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6216 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6217 s[i]->s.jt = NULL; /*later*/
6218 s[i]->s.jf = NULL; /*later*/
6219 s[i]->s.k = IPPROTO_FRAGMENT;
6220 fix3 = i;
6221 v6end = i;
6222 i++;
6223
6224 /* v6advance: */
6225 v6advance = i;
6226
6227 /*
6228 * in short,
6229 * A = P[X + packet head];
6230 * X = X + (P[X + packet head + 1] + 1) * 8;
6231 */
6232 /* A = P[X + packet head] */
6233 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6234 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6235 i++;
6236 /* MEM[reg2] = A */
6237 s[i] = new_stmt(cstate, BPF_ST);
6238 s[i]->s.k = reg2;
6239 i++;
6240 /* A = P[X + packet head + 1]; */
6241 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6242 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6243 i++;
6244 /* A += 1 */
6245 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6246 s[i]->s.k = 1;
6247 i++;
6248 /* A *= 8 */
6249 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6250 s[i]->s.k = 8;
6251 i++;
6252 /* A += X */
6253 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6254 s[i]->s.k = 0;
6255 i++;
6256 /* X = A; */
6257 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6258 i++;
6259 /* A = MEM[reg2] */
6260 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6261 s[i]->s.k = reg2;
6262 i++;
6263
6264 /* goto again; (must use BPF_JA for backward jump) */
6265 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6266 s[i]->s.k = again - i - 1;
6267 s[i - 1]->s.jf = s[i];
6268 i++;
6269
6270 /* fixup */
6271 for (j = v6start; j <= v6end; j++)
6272 s[j]->s.jt = s[v6advance];
6273 } else {
6274 /* nop */
6275 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6276 s[i]->s.k = 0;
6277 s[fix2]->s.jf = s[i];
6278 i++;
6279 }
6280
6281 /* ahcheck: */
6282 ahcheck = i;
6283 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6284 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6285 s[i]->s.jt = NULL; /*later*/
6286 s[i]->s.jf = NULL; /*later*/
6287 s[i]->s.k = IPPROTO_AH;
6288 if (fix3)
6289 s[fix3]->s.jf = s[ahcheck];
6290 fix4 = i;
6291 i++;
6292
6293 /*
6294 * in short,
6295 * A = P[X];
6296 * X = X + (P[X + 1] + 2) * 4;
6297 */
6298 /* A = X */
6299 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6300 i++;
6301 /* A = P[X + packet head]; */
6302 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6303 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6304 i++;
6305 /* MEM[reg2] = A */
6306 s[i] = new_stmt(cstate, BPF_ST);
6307 s[i]->s.k = reg2;
6308 i++;
6309 /* A = X */
6310 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6311 i++;
6312 /* A += 1 */
6313 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6314 s[i]->s.k = 1;
6315 i++;
6316 /* X = A */
6317 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6318 i++;
6319 /* A = P[X + packet head] */
6320 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6321 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6322 i++;
6323 /* A += 2 */
6324 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6325 s[i]->s.k = 2;
6326 i++;
6327 /* A *= 4 */
6328 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6329 s[i]->s.k = 4;
6330 i++;
6331 /* X = A; */
6332 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6333 i++;
6334 /* A = MEM[reg2] */
6335 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6336 s[i]->s.k = reg2;
6337 i++;
6338
6339 /* goto again; (must use BPF_JA for backward jump) */
6340 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6341 s[i]->s.k = again - i - 1;
6342 i++;
6343
6344 /* end: nop */
6345 end = i;
6346 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6347 s[i]->s.k = 0;
6348 s[fix2]->s.jt = s[end];
6349 s[fix4]->s.jf = s[end];
6350 s[fix5]->s.jt = s[end];
6351 i++;
6352
6353 /*
6354 * make slist chain
6355 */
6356 max = i;
6357 for (i = 0; i < max - 1; i++)
6358 s[i]->next = s[i + 1];
6359 s[max - 1]->next = NULL;
6360
6361 /*
6362 * emit final check
6363 */
6364 b = new_block(cstate, JMP(BPF_JEQ));
6365 b->stmts = s[1]; /*remember, s[0] is dummy*/
6366 b->s.k = v;
6367
6368 free_reg(cstate, reg2);
6369
6370 gen_and(b0, b);
6371 return b;
6372 }
6373 #endif /* !defined(NO_PROTOCHAIN) */
6374
6375 static struct block *
6376 gen_check_802_11_data_frame(compiler_state_t *cstate)
6377 {
6378 struct slist *s;
6379 struct block *b0, *b1;
6380
6381 /*
6382 * A data frame has the 0x08 bit (b3) in the frame control field set
6383 * and the 0x04 bit (b2) clear.
6384 */
6385 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6386 b0 = new_block(cstate, JMP(BPF_JSET));
6387 b0->s.k = 0x08;
6388 b0->stmts = s;
6389
6390 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6391 b1 = new_block(cstate, JMP(BPF_JSET));
6392 b1->s.k = 0x04;
6393 b1->stmts = s;
6394 gen_not(b1);
6395
6396 gen_and(b1, b0);
6397
6398 return b0;
6399 }
6400
6401 /*
6402 * Generate code that checks whether the packet is a packet for protocol
6403 * <proto> and whether the type field in that protocol's header has
6404 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6405 * IP packet and checks the protocol number in the IP header against <v>.
6406 *
6407 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6408 * against Q_IP and Q_IPV6.
6409 */
6410 static struct block *
6411 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6412 {
6413 struct block *b0, *b1;
6414 struct block *b2;
6415
6416 if (dir != Q_DEFAULT)
6417 bpf_error(cstate, "direction applied to 'proto'");
6418
6419 switch (proto) {
6420 case Q_DEFAULT:
6421 b0 = gen_proto(cstate, v, Q_IP, dir);
6422 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6423 gen_or(b0, b1);
6424 return b1;
6425
6426 case Q_LINK:
6427 return gen_linktype(cstate, v);
6428
6429 case Q_IP:
6430 /*
6431 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6432 * not LLC encapsulation with LLCSAP_IP.
6433 *
6434 * For IEEE 802 networks - which includes 802.5 token ring
6435 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6436 * says that SNAP encapsulation is used, not LLC encapsulation
6437 * with LLCSAP_IP.
6438 *
6439 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6440 * RFC 2225 say that SNAP encapsulation is used, not LLC
6441 * encapsulation with LLCSAP_IP.
6442 *
6443 * So we always check for ETHERTYPE_IP.
6444 */
6445 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6446 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6447 gen_and(b0, b1);
6448 return b1;
6449
6450 case Q_ARP:
6451 bpf_error(cstate, "arp does not encapsulate another protocol");
6452 /*NOTREACHED*/
6453
6454 case Q_RARP:
6455 bpf_error(cstate, "rarp does not encapsulate another protocol");
6456 /*NOTREACHED*/
6457
6458 case Q_SCTP:
6459 bpf_error(cstate, "'sctp proto' is bogus");
6460 /*NOTREACHED*/
6461
6462 case Q_TCP:
6463 bpf_error(cstate, "'tcp proto' is bogus");
6464 /*NOTREACHED*/
6465
6466 case Q_UDP:
6467 bpf_error(cstate, "'udp proto' is bogus");
6468 /*NOTREACHED*/
6469
6470 case Q_ICMP:
6471 bpf_error(cstate, "'icmp proto' is bogus");
6472 /*NOTREACHED*/
6473
6474 case Q_IGMP:
6475 bpf_error(cstate, "'igmp proto' is bogus");
6476 /*NOTREACHED*/
6477
6478 case Q_IGRP:
6479 bpf_error(cstate, "'igrp proto' is bogus");
6480 /*NOTREACHED*/
6481
6482 case Q_ATALK:
6483 bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6484 /*NOTREACHED*/
6485
6486 case Q_DECNET:
6487 bpf_error(cstate, "DECNET encapsulation is not specifiable");
6488 /*NOTREACHED*/
6489
6490 case Q_LAT:
6491 bpf_error(cstate, "LAT does not encapsulate another protocol");
6492 /*NOTREACHED*/
6493
6494 case Q_SCA:
6495 bpf_error(cstate, "SCA does not encapsulate another protocol");
6496 /*NOTREACHED*/
6497
6498 case Q_MOPRC:
6499 bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6500 /*NOTREACHED*/
6501
6502 case Q_MOPDL:
6503 bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6504 /*NOTREACHED*/
6505
6506 case Q_IPV6:
6507 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6508 /*
6509 * Also check for a fragment header before the final
6510 * header.
6511 */
6512 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6513 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6514 gen_and(b2, b1);
6515 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6516 gen_or(b2, b1);
6517 gen_and(b0, b1);
6518 return b1;
6519
6520 case Q_ICMPV6:
6521 bpf_error(cstate, "'icmp6 proto' is bogus");
6522 /*NOTREACHED*/
6523
6524 case Q_AH:
6525 bpf_error(cstate, "'ah proto' is bogus");
6526 /*NOTREACHED*/
6527
6528 case Q_ESP:
6529 bpf_error(cstate, "'esp proto' is bogus");
6530 /*NOTREACHED*/
6531
6532 case Q_PIM:
6533 bpf_error(cstate, "'pim proto' is bogus");
6534 /*NOTREACHED*/
6535
6536 case Q_VRRP:
6537 bpf_error(cstate, "'vrrp proto' is bogus");
6538 /*NOTREACHED*/
6539
6540 case Q_AARP:
6541 bpf_error(cstate, "'aarp proto' is bogus");
6542 /*NOTREACHED*/
6543
6544 case Q_ISO:
6545 switch (cstate->linktype) {
6546
6547 case DLT_FRELAY:
6548 /*
6549 * Frame Relay packets typically have an OSI
6550 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6551 * generates code to check for all the OSI
6552 * NLPIDs, so calling it and then adding a check
6553 * for the particular NLPID for which we're
6554 * looking is bogus, as we can just check for
6555 * the NLPID.
6556 *
6557 * What we check for is the NLPID and a frame
6558 * control field value of UI, i.e. 0x03 followed
6559 * by the NLPID.
6560 *
6561 * XXX - assumes a 2-byte Frame Relay header with
6562 * DLCI and flags. What if the address is longer?
6563 *
6564 * XXX - what about SNAP-encapsulated frames?
6565 */
6566 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6567 /*NOTREACHED*/
6568
6569 case DLT_C_HDLC:
6570 case DLT_HDLC:
6571 /*
6572 * Cisco uses an Ethertype lookalike - for OSI,
6573 * it's 0xfefe.
6574 */
6575 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6576 /* OSI in C-HDLC is stuffed with a fudge byte */
6577 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6578 gen_and(b0, b1);
6579 return b1;
6580
6581 default:
6582 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6583 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6584 gen_and(b0, b1);
6585 return b1;
6586 }
6587
6588 case Q_ESIS:
6589 bpf_error(cstate, "'esis proto' is bogus");
6590 /*NOTREACHED*/
6591
6592 case Q_ISIS:
6593 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6594 /*
6595 * 4 is the offset of the PDU type relative to the IS-IS
6596 * header.
6597 */
6598 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6599 gen_and(b0, b1);
6600 return b1;
6601
6602 case Q_CLNP:
6603 bpf_error(cstate, "'clnp proto' is not supported");
6604 /*NOTREACHED*/
6605
6606 case Q_STP:
6607 bpf_error(cstate, "'stp proto' is bogus");
6608 /*NOTREACHED*/
6609
6610 case Q_IPX:
6611 bpf_error(cstate, "'ipx proto' is bogus");
6612 /*NOTREACHED*/
6613
6614 case Q_NETBEUI:
6615 bpf_error(cstate, "'netbeui proto' is bogus");
6616 /*NOTREACHED*/
6617
6618 case Q_ISIS_L1:
6619 bpf_error(cstate, "'l1 proto' is bogus");
6620 /*NOTREACHED*/
6621
6622 case Q_ISIS_L2:
6623 bpf_error(cstate, "'l2 proto' is bogus");
6624 /*NOTREACHED*/
6625
6626 case Q_ISIS_IIH:
6627 bpf_error(cstate, "'iih proto' is bogus");
6628 /*NOTREACHED*/
6629
6630 case Q_ISIS_SNP:
6631 bpf_error(cstate, "'snp proto' is bogus");
6632 /*NOTREACHED*/
6633
6634 case Q_ISIS_CSNP:
6635 bpf_error(cstate, "'csnp proto' is bogus");
6636 /*NOTREACHED*/
6637
6638 case Q_ISIS_PSNP:
6639 bpf_error(cstate, "'psnp proto' is bogus");
6640 /*NOTREACHED*/
6641
6642 case Q_ISIS_LSP:
6643 bpf_error(cstate, "'lsp proto' is bogus");
6644 /*NOTREACHED*/
6645
6646 case Q_RADIO:
6647 bpf_error(cstate, "'radio proto' is bogus");
6648 /*NOTREACHED*/
6649
6650 case Q_CARP:
6651 bpf_error(cstate, "'carp proto' is bogus");
6652 /*NOTREACHED*/
6653
6654 default:
6655 abort();
6656 /*NOTREACHED*/
6657 }
6658 /*NOTREACHED*/
6659 }
6660
6661 struct block *
6662 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6663 {
6664 int proto = q.proto;
6665 int dir = q.dir;
6666 int tproto;
6667 u_char *eaddr;
6668 bpf_u_int32 mask, addr;
6669 struct addrinfo *res, *res0;
6670 struct sockaddr_in *sin4;
6671 #ifdef INET6
6672 int tproto6;
6673 struct sockaddr_in6 *sin6;
6674 struct in6_addr mask128;
6675 #endif /*INET6*/
6676 struct block *b, *tmp;
6677 int port, real_proto;
6678 int port1, port2;
6679
6680 /*
6681 * Catch errors reported by us and routines below us, and return NULL
6682 * on an error.
6683 */
6684 if (setjmp(cstate->top_ctx))
6685 return (NULL);
6686
6687 switch (q.addr) {
6688
6689 case Q_NET:
6690 addr = pcap_nametonetaddr(name);
6691 if (addr == 0)
6692 bpf_error(cstate, "unknown network '%s'", name);
6693 /* Left justify network addr and calculate its network mask */
6694 mask = 0xffffffff;
6695 while (addr && (addr & 0xff000000) == 0) {
6696 addr <<= 8;
6697 mask <<= 8;
6698 }
6699 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6700
6701 case Q_DEFAULT:
6702 case Q_HOST:
6703 if (proto == Q_LINK) {
6704 switch (cstate->linktype) {
6705
6706 case DLT_EN10MB:
6707 case DLT_NETANALYZER:
6708 case DLT_NETANALYZER_TRANSPARENT:
6709 eaddr = pcap_ether_hostton(name);
6710 if (eaddr == NULL)
6711 bpf_error(cstate,
6712 "unknown ether host '%s'", name);
6713 tmp = gen_prevlinkhdr_check(cstate);
6714 b = gen_ehostop(cstate, eaddr, dir);
6715 if (tmp != NULL)
6716 gen_and(tmp, b);
6717 free(eaddr);
6718 return b;
6719
6720 case DLT_FDDI:
6721 eaddr = pcap_ether_hostton(name);
6722 if (eaddr == NULL)
6723 bpf_error(cstate,
6724 "unknown FDDI host '%s'", name);
6725 b = gen_fhostop(cstate, eaddr, dir);
6726 free(eaddr);
6727 return b;
6728
6729 case DLT_IEEE802:
6730 eaddr = pcap_ether_hostton(name);
6731 if (eaddr == NULL)
6732 bpf_error(cstate,
6733 "unknown token ring host '%s'", name);
6734 b = gen_thostop(cstate, eaddr, dir);
6735 free(eaddr);
6736 return b;
6737
6738 case DLT_IEEE802_11:
6739 case DLT_PRISM_HEADER:
6740 case DLT_IEEE802_11_RADIO_AVS:
6741 case DLT_IEEE802_11_RADIO:
6742 case DLT_PPI:
6743 eaddr = pcap_ether_hostton(name);
6744 if (eaddr == NULL)
6745 bpf_error(cstate,
6746 "unknown 802.11 host '%s'", name);
6747 b = gen_wlanhostop(cstate, eaddr, dir);
6748 free(eaddr);
6749 return b;
6750
6751 case DLT_IP_OVER_FC:
6752 eaddr = pcap_ether_hostton(name);
6753 if (eaddr == NULL)
6754 bpf_error(cstate,
6755 "unknown Fibre Channel host '%s'", name);
6756 b = gen_ipfchostop(cstate, eaddr, dir);
6757 free(eaddr);
6758 return b;
6759 }
6760
6761 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6762 } else if (proto == Q_DECNET) {
6763 unsigned short dn_addr;
6764
6765 if (!__pcap_nametodnaddr(name, &dn_addr)) {
6766 #ifdef DECNETLIB
6767 bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6768 #else
6769 bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6770 name);
6771 #endif
6772 }
6773 /*
6774 * I don't think DECNET hosts can be multihomed, so
6775 * there is no need to build up a list of addresses
6776 */
6777 return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6778 } else {
6779 #ifdef INET6
6780 memset(&mask128, 0xff, sizeof(mask128));
6781 #endif
6782 res0 = res = pcap_nametoaddrinfo(name);
6783 if (res == NULL)
6784 bpf_error(cstate, "unknown host '%s'", name);
6785 cstate->ai = res;
6786 b = tmp = NULL;
6787 tproto = proto;
6788 #ifdef INET6
6789 tproto6 = proto;
6790 #endif
6791 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6792 tproto == Q_DEFAULT) {
6793 tproto = Q_IP;
6794 #ifdef INET6
6795 tproto6 = Q_IPV6;
6796 #endif
6797 }
6798 for (res = res0; res; res = res->ai_next) {
6799 switch (res->ai_family) {
6800 case AF_INET:
6801 #ifdef INET6
6802 if (tproto == Q_IPV6)
6803 continue;
6804 #endif
6805
6806 sin4 = (struct sockaddr_in *)
6807 res->ai_addr;
6808 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6809 0xffffffff, tproto, dir, q.addr);
6810 break;
6811 #ifdef INET6
6812 case AF_INET6:
6813 if (tproto6 == Q_IP)
6814 continue;
6815
6816 sin6 = (struct sockaddr_in6 *)
6817 res->ai_addr;
6818 tmp = gen_host6(cstate, &sin6->sin6_addr,
6819 &mask128, tproto6, dir, q.addr);
6820 break;
6821 #endif
6822 default:
6823 continue;
6824 }
6825 if (b)
6826 gen_or(b, tmp);
6827 b = tmp;
6828 }
6829 cstate->ai = NULL;
6830 freeaddrinfo(res0);
6831 if (b == NULL) {
6832 bpf_error(cstate, "unknown host '%s'%s", name,
6833 (proto == Q_DEFAULT)
6834 ? ""
6835 : " for specified address family");
6836 }
6837 return b;
6838 }
6839
6840 case Q_PORT:
6841 if (proto != Q_DEFAULT &&
6842 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6843 bpf_error(cstate, "illegal qualifier of 'port'");
6844 if (pcap_nametoport(name, &port, &real_proto) == 0)
6845 bpf_error(cstate, "unknown port '%s'", name);
6846 if (proto == Q_UDP) {
6847 if (real_proto == IPPROTO_TCP)
6848 bpf_error(cstate, "port '%s' is tcp", name);
6849 else if (real_proto == IPPROTO_SCTP)
6850 bpf_error(cstate, "port '%s' is sctp", name);
6851 else
6852 /* override PROTO_UNDEF */
6853 real_proto = IPPROTO_UDP;
6854 }
6855 if (proto == Q_TCP) {
6856 if (real_proto == IPPROTO_UDP)
6857 bpf_error(cstate, "port '%s' is udp", name);
6858
6859 else if (real_proto == IPPROTO_SCTP)
6860 bpf_error(cstate, "port '%s' is sctp", name);
6861 else
6862 /* override PROTO_UNDEF */
6863 real_proto = IPPROTO_TCP;
6864 }
6865 if (proto == Q_SCTP) {
6866 if (real_proto == IPPROTO_UDP)
6867 bpf_error(cstate, "port '%s' is udp", name);
6868
6869 else if (real_proto == IPPROTO_TCP)
6870 bpf_error(cstate, "port '%s' is tcp", name);
6871 else
6872 /* override PROTO_UNDEF */
6873 real_proto = IPPROTO_SCTP;
6874 }
6875 if (port < 0)
6876 bpf_error(cstate, "illegal port number %d < 0", port);
6877 if (port > 65535)
6878 bpf_error(cstate, "illegal port number %d > 65535", port);
6879 b = gen_port(cstate, port, real_proto, dir);
6880 gen_or(gen_port6(cstate, port, real_proto, dir), b);
6881 return b;
6882
6883 case Q_PORTRANGE:
6884 if (proto != Q_DEFAULT &&
6885 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6886 bpf_error(cstate, "illegal qualifier of 'portrange'");
6887 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6888 bpf_error(cstate, "unknown port in range '%s'", name);
6889 if (proto == Q_UDP) {
6890 if (real_proto == IPPROTO_TCP)
6891 bpf_error(cstate, "port in range '%s' is tcp", name);
6892 else if (real_proto == IPPROTO_SCTP)
6893 bpf_error(cstate, "port in range '%s' is sctp", name);
6894 else
6895 /* override PROTO_UNDEF */
6896 real_proto = IPPROTO_UDP;
6897 }
6898 if (proto == Q_TCP) {
6899 if (real_proto == IPPROTO_UDP)
6900 bpf_error(cstate, "port in range '%s' is udp", name);
6901 else if (real_proto == IPPROTO_SCTP)
6902 bpf_error(cstate, "port in range '%s' is sctp", name);
6903 else
6904 /* override PROTO_UNDEF */
6905 real_proto = IPPROTO_TCP;
6906 }
6907 if (proto == Q_SCTP) {
6908 if (real_proto == IPPROTO_UDP)
6909 bpf_error(cstate, "port in range '%s' is udp", name);
6910 else if (real_proto == IPPROTO_TCP)
6911 bpf_error(cstate, "port in range '%s' is tcp", name);
6912 else
6913 /* override PROTO_UNDEF */
6914 real_proto = IPPROTO_SCTP;
6915 }
6916 if (port1 < 0)
6917 bpf_error(cstate, "illegal port number %d < 0", port1);
6918 if (port1 > 65535)
6919 bpf_error(cstate, "illegal port number %d > 65535", port1);
6920 if (port2 < 0)
6921 bpf_error(cstate, "illegal port number %d < 0", port2);
6922 if (port2 > 65535)
6923 bpf_error(cstate, "illegal port number %d > 65535", port2);
6924
6925 b = gen_portrange(cstate, port1, port2, real_proto, dir);
6926 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6927 return b;
6928
6929 case Q_GATEWAY:
6930 #ifndef INET6
6931 eaddr = pcap_ether_hostton(name);
6932 if (eaddr == NULL)
6933 bpf_error(cstate, "unknown ether host: %s", name);
6934
6935 res = pcap_nametoaddrinfo(name);
6936 cstate->ai = res;
6937 if (res == NULL)
6938 bpf_error(cstate, "unknown host '%s'", name);
6939 b = gen_gateway(cstate, eaddr, res, proto, dir);
6940 cstate->ai = NULL;
6941 freeaddrinfo(res);
6942 if (b == NULL)
6943 bpf_error(cstate, "unknown host '%s'", name);
6944 return b;
6945 #else
6946 bpf_error(cstate, "'gateway' not supported in this configuration");
6947 #endif /*INET6*/
6948
6949 case Q_PROTO:
6950 real_proto = lookup_proto(cstate, name, proto);
6951 if (real_proto >= 0)
6952 return gen_proto(cstate, real_proto, proto, dir);
6953 else
6954 bpf_error(cstate, "unknown protocol: %s", name);
6955
6956 #if !defined(NO_PROTOCHAIN)
6957 case Q_PROTOCHAIN:
6958 real_proto = lookup_proto(cstate, name, proto);
6959 if (real_proto >= 0)
6960 return gen_protochain(cstate, real_proto, proto);
6961 else
6962 bpf_error(cstate, "unknown protocol: %s", name);
6963 #endif /* !defined(NO_PROTOCHAIN) */
6964
6965 case Q_UNDEF:
6966 syntax(cstate);
6967 /*NOTREACHED*/
6968 }
6969 abort();
6970 /*NOTREACHED*/
6971 }
6972
6973 struct block *
6974 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6975 bpf_u_int32 masklen, struct qual q)
6976 {
6977 register int nlen, mlen;
6978 bpf_u_int32 n, m;
6979
6980 /*
6981 * Catch errors reported by us and routines below us, and return NULL
6982 * on an error.
6983 */
6984 if (setjmp(cstate->top_ctx))
6985 return (NULL);
6986
6987 nlen = __pcap_atoin(s1, &n);
6988 if (nlen < 0)
6989 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
6990 /* Promote short ipaddr */
6991 n <<= 32 - nlen;
6992
6993 if (s2 != NULL) {
6994 mlen = __pcap_atoin(s2, &m);
6995 if (mlen < 0)
6996 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
6997 /* Promote short ipaddr */
6998 m <<= 32 - mlen;
6999 if ((n & ~m) != 0)
7000 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7001 s1, s2);
7002 } else {
7003 /* Convert mask len to mask */
7004 if (masklen > 32)
7005 bpf_error(cstate, "mask length must be <= 32");
7006 if (masklen == 0) {
7007 /*
7008 * X << 32 is not guaranteed by C to be 0; it's
7009 * undefined.
7010 */
7011 m = 0;
7012 } else
7013 m = 0xffffffff << (32 - masklen);
7014 if ((n & ~m) != 0)
7015 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7016 s1, masklen);
7017 }
7018
7019 switch (q.addr) {
7020
7021 case Q_NET:
7022 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7023
7024 default:
7025 bpf_error(cstate, "Mask syntax for networks only");
7026 /*NOTREACHED*/
7027 }
7028 /*NOTREACHED*/
7029 }
7030
7031 struct block *
7032 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7033 {
7034 bpf_u_int32 mask;
7035 int proto;
7036 int dir;
7037 register int vlen;
7038
7039 /*
7040 * Catch errors reported by us and routines below us, and return NULL
7041 * on an error.
7042 */
7043 if (setjmp(cstate->top_ctx))
7044 return (NULL);
7045
7046 proto = q.proto;
7047 dir = q.dir;
7048 if (s == NULL)
7049 vlen = 32;
7050 else if (q.proto == Q_DECNET) {
7051 vlen = __pcap_atodn(s, &v);
7052 if (vlen == 0)
7053 bpf_error(cstate, "malformed decnet address '%s'", s);
7054 } else {
7055 vlen = __pcap_atoin(s, &v);
7056 if (vlen < 0)
7057 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7058 }
7059
7060 switch (q.addr) {
7061
7062 case Q_DEFAULT:
7063 case Q_HOST:
7064 case Q_NET:
7065 if (proto == Q_DECNET)
7066 return gen_host(cstate, v, 0, proto, dir, q.addr);
7067 else if (proto == Q_LINK) {
7068 bpf_error(cstate, "illegal link layer address");
7069 } else {
7070 mask = 0xffffffff;
7071 if (s == NULL && q.addr == Q_NET) {
7072 /* Promote short net number */
7073 while (v && (v & 0xff000000) == 0) {
7074 v <<= 8;
7075 mask <<= 8;
7076 }
7077 } else {
7078 /* Promote short ipaddr */
7079 v <<= 32 - vlen;
7080 mask <<= 32 - vlen ;
7081 }
7082 return gen_host(cstate, v, mask, proto, dir, q.addr);
7083 }
7084
7085 case Q_PORT:
7086 if (proto == Q_UDP)
7087 proto = IPPROTO_UDP;
7088 else if (proto == Q_TCP)
7089 proto = IPPROTO_TCP;
7090 else if (proto == Q_SCTP)
7091 proto = IPPROTO_SCTP;
7092 else if (proto == Q_DEFAULT)
7093 proto = PROTO_UNDEF;
7094 else
7095 bpf_error(cstate, "illegal qualifier of 'port'");
7096
7097 if (v > 65535)
7098 bpf_error(cstate, "illegal port number %u > 65535", v);
7099
7100 {
7101 struct block *b;
7102 b = gen_port(cstate, v, proto, dir);
7103 gen_or(gen_port6(cstate, v, proto, dir), b);
7104 return b;
7105 }
7106
7107 case Q_PORTRANGE:
7108 if (proto == Q_UDP)
7109 proto = IPPROTO_UDP;
7110 else if (proto == Q_TCP)
7111 proto = IPPROTO_TCP;
7112 else if (proto == Q_SCTP)
7113 proto = IPPROTO_SCTP;
7114 else if (proto == Q_DEFAULT)
7115 proto = PROTO_UNDEF;
7116 else
7117 bpf_error(cstate, "illegal qualifier of 'portrange'");
7118
7119 if (v > 65535)
7120 bpf_error(cstate, "illegal port number %u > 65535", v);
7121
7122 {
7123 struct block *b;
7124 b = gen_portrange(cstate, v, v, proto, dir);
7125 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7126 return b;
7127 }
7128
7129 case Q_GATEWAY:
7130 bpf_error(cstate, "'gateway' requires a name");
7131 /*NOTREACHED*/
7132
7133 case Q_PROTO:
7134 return gen_proto(cstate, v, proto, dir);
7135
7136 #if !defined(NO_PROTOCHAIN)
7137 case Q_PROTOCHAIN:
7138 return gen_protochain(cstate, v, proto);
7139 #endif
7140
7141 case Q_UNDEF:
7142 syntax(cstate);
7143 /*NOTREACHED*/
7144
7145 default:
7146 abort();
7147 /*NOTREACHED*/
7148 }
7149 /*NOTREACHED*/
7150 }
7151
7152 #ifdef INET6
7153 struct block *
7154 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7155 bpf_u_int32 masklen, struct qual q)
7156 {
7157 struct addrinfo *res;
7158 struct in6_addr *addr;
7159 struct in6_addr mask;
7160 struct block *b;
7161 uint32_t *a, *m;
7162
7163 /*
7164 * Catch errors reported by us and routines below us, and return NULL
7165 * on an error.
7166 */
7167 if (setjmp(cstate->top_ctx))
7168 return (NULL);
7169
7170 if (s2)
7171 bpf_error(cstate, "no mask %s supported", s2);
7172
7173 res = pcap_nametoaddrinfo(s1);
7174 if (!res)
7175 bpf_error(cstate, "invalid ip6 address %s", s1);
7176 cstate->ai = res;
7177 if (res->ai_next)
7178 bpf_error(cstate, "%s resolved to multiple address", s1);
7179 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7180
7181 if (masklen > sizeof(mask.s6_addr) * 8)
7182 bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask.s6_addr) * 8));
7183 memset(&mask, 0, sizeof(mask));
7184 memset(&mask.s6_addr, 0xff, masklen / 8);
7185 if (masklen % 8) {
7186 mask.s6_addr[masklen / 8] =
7187 (0xff << (8 - masklen % 8)) & 0xff;
7188 }
7189
7190 a = (uint32_t *)addr;
7191 m = (uint32_t *)&mask;
7192 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7193 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7194 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7195 }
7196
7197 switch (q.addr) {
7198
7199 case Q_DEFAULT:
7200 case Q_HOST:
7201 if (masklen != 128)
7202 bpf_error(cstate, "Mask syntax for networks only");
7203 /* FALLTHROUGH */
7204
7205 case Q_NET:
7206 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7207 cstate->ai = NULL;
7208 freeaddrinfo(res);
7209 return b;
7210
7211 default:
7212 bpf_error(cstate, "invalid qualifier against IPv6 address");
7213 /*NOTREACHED*/
7214 }
7215 }
7216 #endif /*INET6*/
7217
7218 struct block *
7219 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7220 {
7221 struct block *b, *tmp;
7222
7223 /*
7224 * Catch errors reported by us and routines below us, and return NULL
7225 * on an error.
7226 */
7227 if (setjmp(cstate->top_ctx))
7228 return (NULL);
7229
7230 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7231 cstate->e = pcap_ether_aton(s);
7232 if (cstate->e == NULL)
7233 bpf_error(cstate, "malloc");
7234 switch (cstate->linktype) {
7235 case DLT_EN10MB:
7236 case DLT_NETANALYZER:
7237 case DLT_NETANALYZER_TRANSPARENT:
7238 tmp = gen_prevlinkhdr_check(cstate);
7239 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7240 if (tmp != NULL)
7241 gen_and(tmp, b);
7242 break;
7243 case DLT_FDDI:
7244 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7245 break;
7246 case DLT_IEEE802:
7247 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7248 break;
7249 case DLT_IEEE802_11:
7250 case DLT_PRISM_HEADER:
7251 case DLT_IEEE802_11_RADIO_AVS:
7252 case DLT_IEEE802_11_RADIO:
7253 case DLT_PPI:
7254 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7255 break;
7256 case DLT_IP_OVER_FC:
7257 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7258 break;
7259 default:
7260 free(cstate->e);
7261 cstate->e = NULL;
7262 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7263 /*NOTREACHED*/
7264 }
7265 free(cstate->e);
7266 cstate->e = NULL;
7267 return (b);
7268 }
7269 bpf_error(cstate, "ethernet address used in non-ether expression");
7270 /*NOTREACHED*/
7271 }
7272
7273 void
7274 sappend(struct slist *s0, struct slist *s1)
7275 {
7276 /*
7277 * This is definitely not the best way to do this, but the
7278 * lists will rarely get long.
7279 */
7280 while (s0->next)
7281 s0 = s0->next;
7282 s0->next = s1;
7283 }
7284
7285 static struct slist *
7286 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7287 {
7288 struct slist *s;
7289
7290 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7291 s->s.k = a->regno;
7292 return s;
7293 }
7294
7295 static struct slist *
7296 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7297 {
7298 struct slist *s;
7299
7300 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7301 s->s.k = a->regno;
7302 return s;
7303 }
7304
7305 /*
7306 * Modify "index" to use the value stored into its register as an
7307 * offset relative to the beginning of the header for the protocol
7308 * "proto", and allocate a register and put an item "size" bytes long
7309 * (1, 2, or 4) at that offset into that register, making it the register
7310 * for "index".
7311 */
7312 static struct arth *
7313 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7314 bpf_u_int32 size)
7315 {
7316 int size_code;
7317 struct slist *s, *tmp;
7318 struct block *b;
7319 int regno = alloc_reg(cstate);
7320
7321 free_reg(cstate, inst->regno);
7322 switch (size) {
7323
7324 default:
7325 bpf_error(cstate, "data size must be 1, 2, or 4");
7326 /*NOTREACHED*/
7327
7328 case 1:
7329 size_code = BPF_B;
7330 break;
7331
7332 case 2:
7333 size_code = BPF_H;
7334 break;
7335
7336 case 4:
7337 size_code = BPF_W;
7338 break;
7339 }
7340 switch (proto) {
7341 default:
7342 bpf_error(cstate, "unsupported index operation");
7343
7344 case Q_RADIO:
7345 /*
7346 * The offset is relative to the beginning of the packet
7347 * data, if we have a radio header. (If we don't, this
7348 * is an error.)
7349 */
7350 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7351 cstate->linktype != DLT_IEEE802_11_RADIO &&
7352 cstate->linktype != DLT_PRISM_HEADER)
7353 bpf_error(cstate, "radio information not present in capture");
7354
7355 /*
7356 * Load into the X register the offset computed into the
7357 * register specified by "index".
7358 */
7359 s = xfer_to_x(cstate, inst);
7360
7361 /*
7362 * Load the item at that offset.
7363 */
7364 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7365 sappend(s, tmp);
7366 sappend(inst->s, s);
7367 break;
7368
7369 case Q_LINK:
7370 /*
7371 * The offset is relative to the beginning of
7372 * the link-layer header.
7373 *
7374 * XXX - what about ATM LANE? Should the index be
7375 * relative to the beginning of the AAL5 frame, so
7376 * that 0 refers to the beginning of the LE Control
7377 * field, or relative to the beginning of the LAN
7378 * frame, so that 0 refers, for Ethernet LANE, to
7379 * the beginning of the destination address?
7380 */
7381 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7382
7383 /*
7384 * If "s" is non-null, it has code to arrange that the
7385 * X register contains the length of the prefix preceding
7386 * the link-layer header. Add to it the offset computed
7387 * into the register specified by "index", and move that
7388 * into the X register. Otherwise, just load into the X
7389 * register the offset computed into the register specified
7390 * by "index".
7391 */
7392 if (s != NULL) {
7393 sappend(s, xfer_to_a(cstate, inst));
7394 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7395 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7396 } else
7397 s = xfer_to_x(cstate, inst);
7398
7399 /*
7400 * Load the item at the sum of the offset we've put in the
7401 * X register and the offset of the start of the link
7402 * layer header (which is 0 if the radio header is
7403 * variable-length; that header length is what we put
7404 * into the X register and then added to the index).
7405 */
7406 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7407 tmp->s.k = cstate->off_linkhdr.constant_part;
7408 sappend(s, tmp);
7409 sappend(inst->s, s);
7410 break;
7411
7412 case Q_IP:
7413 case Q_ARP:
7414 case Q_RARP:
7415 case Q_ATALK:
7416 case Q_DECNET:
7417 case Q_SCA:
7418 case Q_LAT:
7419 case Q_MOPRC:
7420 case Q_MOPDL:
7421 case Q_IPV6:
7422 /*
7423 * The offset is relative to the beginning of
7424 * the network-layer header.
7425 * XXX - are there any cases where we want
7426 * cstate->off_nl_nosnap?
7427 */
7428 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7429
7430 /*
7431 * If "s" is non-null, it has code to arrange that the
7432 * X register contains the variable part of the offset
7433 * of the link-layer payload. Add to it the offset
7434 * computed into the register specified by "index",
7435 * and move that into the X register. Otherwise, just
7436 * load into the X register the offset computed into
7437 * the register specified by "index".
7438 */
7439 if (s != NULL) {
7440 sappend(s, xfer_to_a(cstate, inst));
7441 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7442 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7443 } else
7444 s = xfer_to_x(cstate, inst);
7445
7446 /*
7447 * Load the item at the sum of the offset we've put in the
7448 * X register, the offset of the start of the network
7449 * layer header from the beginning of the link-layer
7450 * payload, and the constant part of the offset of the
7451 * start of the link-layer payload.
7452 */
7453 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7454 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7455 sappend(s, tmp);
7456 sappend(inst->s, s);
7457
7458 /*
7459 * Do the computation only if the packet contains
7460 * the protocol in question.
7461 */
7462 b = gen_proto_abbrev_internal(cstate, proto);
7463 if (inst->b)
7464 gen_and(inst->b, b);
7465 inst->b = b;
7466 break;
7467
7468 case Q_SCTP:
7469 case Q_TCP:
7470 case Q_UDP:
7471 case Q_ICMP:
7472 case Q_IGMP:
7473 case Q_IGRP:
7474 case Q_PIM:
7475 case Q_VRRP:
7476 case Q_CARP:
7477 /*
7478 * The offset is relative to the beginning of
7479 * the transport-layer header.
7480 *
7481 * Load the X register with the length of the IPv4 header
7482 * (plus the offset of the link-layer header, if it's
7483 * a variable-length header), in bytes.
7484 *
7485 * XXX - are there any cases where we want
7486 * cstate->off_nl_nosnap?
7487 * XXX - we should, if we're built with
7488 * IPv6 support, generate code to load either
7489 * IPv4, IPv6, or both, as appropriate.
7490 */
7491 s = gen_loadx_iphdrlen(cstate);
7492
7493 /*
7494 * The X register now contains the sum of the variable
7495 * part of the offset of the link-layer payload and the
7496 * length of the network-layer header.
7497 *
7498 * Load into the A register the offset relative to
7499 * the beginning of the transport layer header,
7500 * add the X register to that, move that to the
7501 * X register, and load with an offset from the
7502 * X register equal to the sum of the constant part of
7503 * the offset of the link-layer payload and the offset,
7504 * relative to the beginning of the link-layer payload,
7505 * of the network-layer header.
7506 */
7507 sappend(s, xfer_to_a(cstate, inst));
7508 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7509 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7510 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7511 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7512 sappend(inst->s, s);
7513
7514 /*
7515 * Do the computation only if the packet contains
7516 * the protocol in question - which is true only
7517 * if this is an IP datagram and is the first or
7518 * only fragment of that datagram.
7519 */
7520 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7521 if (inst->b)
7522 gen_and(inst->b, b);
7523 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7524 inst->b = b;
7525 break;
7526 case Q_ICMPV6:
7527 /*
7528 * Do the computation only if the packet contains
7529 * the protocol in question.
7530 */
7531 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7532 if (inst->b) {
7533 gen_and(inst->b, b);
7534 }
7535 inst->b = b;
7536
7537 /*
7538 * Check if we have an icmp6 next header
7539 */
7540 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7541 if (inst->b) {
7542 gen_and(inst->b, b);
7543 }
7544 inst->b = b;
7545
7546
7547 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7548 /*
7549 * If "s" is non-null, it has code to arrange that the
7550 * X register contains the variable part of the offset
7551 * of the link-layer payload. Add to it the offset
7552 * computed into the register specified by "index",
7553 * and move that into the X register. Otherwise, just
7554 * load into the X register the offset computed into
7555 * the register specified by "index".
7556 */
7557 if (s != NULL) {
7558 sappend(s, xfer_to_a(cstate, inst));
7559 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7560 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7561 } else {
7562 s = xfer_to_x(cstate, inst);
7563 }
7564
7565 /*
7566 * Load the item at the sum of the offset we've put in the
7567 * X register, the offset of the start of the network
7568 * layer header from the beginning of the link-layer
7569 * payload, and the constant part of the offset of the
7570 * start of the link-layer payload.
7571 */
7572 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7573 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7574
7575 sappend(s, tmp);
7576 sappend(inst->s, s);
7577
7578 break;
7579 }
7580 inst->regno = regno;
7581 s = new_stmt(cstate, BPF_ST);
7582 s->s.k = regno;
7583 sappend(inst->s, s);
7584
7585 return inst;
7586 }
7587
7588 struct arth *
7589 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7590 bpf_u_int32 size)
7591 {
7592 /*
7593 * Catch errors reported by us and routines below us, and return NULL
7594 * on an error.
7595 */
7596 if (setjmp(cstate->top_ctx))
7597 return (NULL);
7598
7599 return gen_load_internal(cstate, proto, inst, size);
7600 }
7601
7602 static struct block *
7603 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7604 struct arth *a1, int reversed)
7605 {
7606 struct slist *s0, *s1, *s2;
7607 struct block *b, *tmp;
7608
7609 s0 = xfer_to_x(cstate, a1);
7610 s1 = xfer_to_a(cstate, a0);
7611 if (code == BPF_JEQ) {
7612 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7613 b = new_block(cstate, JMP(code));
7614 sappend(s1, s2);
7615 }
7616 else
7617 b = new_block(cstate, BPF_JMP|code|BPF_X);
7618 if (reversed)
7619 gen_not(b);
7620
7621 sappend(s0, s1);
7622 sappend(a1->s, s0);
7623 sappend(a0->s, a1->s);
7624
7625 b->stmts = a0->s;
7626
7627 free_reg(cstate, a0->regno);
7628 free_reg(cstate, a1->regno);
7629
7630 /* 'and' together protocol checks */
7631 if (a0->b) {
7632 if (a1->b) {
7633 gen_and(a0->b, tmp = a1->b);
7634 }
7635 else
7636 tmp = a0->b;
7637 } else
7638 tmp = a1->b;
7639
7640 if (tmp)
7641 gen_and(tmp, b);
7642
7643 return b;
7644 }
7645
7646 struct block *
7647 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7648 struct arth *a1, int reversed)
7649 {
7650 /*
7651 * Catch errors reported by us and routines below us, and return NULL
7652 * on an error.
7653 */
7654 if (setjmp(cstate->top_ctx))
7655 return (NULL);
7656
7657 return gen_relation_internal(cstate, code, a0, a1, reversed);
7658 }
7659
7660 struct arth *
7661 gen_loadlen(compiler_state_t *cstate)
7662 {
7663 int regno;
7664 struct arth *a;
7665 struct slist *s;
7666
7667 /*
7668 * Catch errors reported by us and routines below us, and return NULL
7669 * on an error.
7670 */
7671 if (setjmp(cstate->top_ctx))
7672 return (NULL);
7673
7674 regno = alloc_reg(cstate);
7675 a = (struct arth *)newchunk(cstate, sizeof(*a));
7676 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7677 s->next = new_stmt(cstate, BPF_ST);
7678 s->next->s.k = regno;
7679 a->s = s;
7680 a->regno = regno;
7681
7682 return a;
7683 }
7684
7685 static struct arth *
7686 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7687 {
7688 struct arth *a;
7689 struct slist *s;
7690 int reg;
7691
7692 a = (struct arth *)newchunk(cstate, sizeof(*a));
7693
7694 reg = alloc_reg(cstate);
7695
7696 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7697 s->s.k = val;
7698 s->next = new_stmt(cstate, BPF_ST);
7699 s->next->s.k = reg;
7700 a->s = s;
7701 a->regno = reg;
7702
7703 return a;
7704 }
7705
7706 struct arth *
7707 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7708 {
7709 /*
7710 * Catch errors reported by us and routines below us, and return NULL
7711 * on an error.
7712 */
7713 if (setjmp(cstate->top_ctx))
7714 return (NULL);
7715
7716 return gen_loadi_internal(cstate, val);
7717 }
7718
7719 /*
7720 * The a_arg dance is to avoid annoying whining by compilers that
7721 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7722 * It's not *used* after setjmp returns.
7723 */
7724 struct arth *
7725 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7726 {
7727 struct arth *a = a_arg;
7728 struct slist *s;
7729
7730 /*
7731 * Catch errors reported by us and routines below us, and return NULL
7732 * on an error.
7733 */
7734 if (setjmp(cstate->top_ctx))
7735 return (NULL);
7736
7737 s = xfer_to_a(cstate, a);
7738 sappend(a->s, s);
7739 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7740 s->s.k = 0;
7741 sappend(a->s, s);
7742 s = new_stmt(cstate, BPF_ST);
7743 s->s.k = a->regno;
7744 sappend(a->s, s);
7745
7746 return a;
7747 }
7748
7749 /*
7750 * The a0_arg dance is to avoid annoying whining by compilers that
7751 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7752 * It's not *used* after setjmp returns.
7753 */
7754 struct arth *
7755 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7756 struct arth *a1)
7757 {
7758 struct arth *a0 = a0_arg;
7759 struct slist *s0, *s1, *s2;
7760
7761 /*
7762 * Catch errors reported by us and routines below us, and return NULL
7763 * on an error.
7764 */
7765 if (setjmp(cstate->top_ctx))
7766 return (NULL);
7767
7768 /*
7769 * Disallow division by, or modulus by, zero; we do this here
7770 * so that it gets done even if the optimizer is disabled.
7771 *
7772 * Also disallow shifts by a value greater than 31; we do this
7773 * here, for the same reason.
7774 */
7775 if (code == BPF_DIV) {
7776 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7777 bpf_error(cstate, "division by zero");
7778 } else if (code == BPF_MOD) {
7779 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7780 bpf_error(cstate, "modulus by zero");
7781 } else if (code == BPF_LSH || code == BPF_RSH) {
7782 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7783 bpf_error(cstate, "shift by more than 31 bits");
7784 }
7785 s0 = xfer_to_x(cstate, a1);
7786 s1 = xfer_to_a(cstate, a0);
7787 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7788
7789 sappend(s1, s2);
7790 sappend(s0, s1);
7791 sappend(a1->s, s0);
7792 sappend(a0->s, a1->s);
7793
7794 free_reg(cstate, a0->regno);
7795 free_reg(cstate, a1->regno);
7796
7797 s0 = new_stmt(cstate, BPF_ST);
7798 a0->regno = s0->s.k = alloc_reg(cstate);
7799 sappend(a0->s, s0);
7800
7801 return a0;
7802 }
7803
7804 /*
7805 * Initialize the table of used registers and the current register.
7806 */
7807 static void
7808 init_regs(compiler_state_t *cstate)
7809 {
7810 cstate->curreg = 0;
7811 memset(cstate->regused, 0, sizeof cstate->regused);
7812 }
7813
7814 /*
7815 * Return the next free register.
7816 */
7817 static int
7818 alloc_reg(compiler_state_t *cstate)
7819 {
7820 int n = BPF_MEMWORDS;
7821
7822 while (--n >= 0) {
7823 if (cstate->regused[cstate->curreg])
7824 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7825 else {
7826 cstate->regused[cstate->curreg] = 1;
7827 return cstate->curreg;
7828 }
7829 }
7830 bpf_error(cstate, "too many registers needed to evaluate expression");
7831 /*NOTREACHED*/
7832 }
7833
7834 /*
7835 * Return a register to the table so it can
7836 * be used later.
7837 */
7838 static void
7839 free_reg(compiler_state_t *cstate, int n)
7840 {
7841 cstate->regused[n] = 0;
7842 }
7843
7844 static struct block *
7845 gen_len(compiler_state_t *cstate, int jmp, int n)
7846 {
7847 struct slist *s;
7848 struct block *b;
7849
7850 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7851 b = new_block(cstate, JMP(jmp));
7852 b->stmts = s;
7853 b->s.k = n;
7854
7855 return b;
7856 }
7857
7858 struct block *
7859 gen_greater(compiler_state_t *cstate, int n)
7860 {
7861 /*
7862 * Catch errors reported by us and routines below us, and return NULL
7863 * on an error.
7864 */
7865 if (setjmp(cstate->top_ctx))
7866 return (NULL);
7867
7868 return gen_len(cstate, BPF_JGE, n);
7869 }
7870
7871 /*
7872 * Actually, this is less than or equal.
7873 */
7874 struct block *
7875 gen_less(compiler_state_t *cstate, int n)
7876 {
7877 struct block *b;
7878
7879 /*
7880 * Catch errors reported by us and routines below us, and return NULL
7881 * on an error.
7882 */
7883 if (setjmp(cstate->top_ctx))
7884 return (NULL);
7885
7886 b = gen_len(cstate, BPF_JGT, n);
7887 gen_not(b);
7888
7889 return b;
7890 }
7891
7892 /*
7893 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7894 * the beginning of the link-layer header.
7895 * XXX - that means you can't test values in the radiotap header, but
7896 * as that header is difficult if not impossible to parse generally
7897 * without a loop, that might not be a severe problem. A new keyword
7898 * "radio" could be added for that, although what you'd really want
7899 * would be a way of testing particular radio header values, which
7900 * would generate code appropriate to the radio header in question.
7901 */
7902 struct block *
7903 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7904 {
7905 struct block *b;
7906 struct slist *s;
7907
7908 /*
7909 * Catch errors reported by us and routines below us, and return NULL
7910 * on an error.
7911 */
7912 if (setjmp(cstate->top_ctx))
7913 return (NULL);
7914
7915 switch (op) {
7916 default:
7917 abort();
7918
7919 case '=':
7920 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7921
7922 case '<':
7923 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7924 return b;
7925
7926 case '>':
7927 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7928 return b;
7929
7930 case '|':
7931 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7932 break;
7933
7934 case '&':
7935 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7936 break;
7937 }
7938 s->s.k = val;
7939 b = new_block(cstate, JMP(BPF_JEQ));
7940 b->stmts = s;
7941 gen_not(b);
7942
7943 return b;
7944 }
7945
7946 static const u_char abroadcast[] = { 0x0 };
7947
7948 struct block *
7949 gen_broadcast(compiler_state_t *cstate, int proto)
7950 {
7951 bpf_u_int32 hostmask;
7952 struct block *b0, *b1, *b2;
7953 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7954
7955 /*
7956 * Catch errors reported by us and routines below us, and return NULL
7957 * on an error.
7958 */
7959 if (setjmp(cstate->top_ctx))
7960 return (NULL);
7961
7962 switch (proto) {
7963
7964 case Q_DEFAULT:
7965 case Q_LINK:
7966 switch (cstate->linktype) {
7967 case DLT_ARCNET:
7968 case DLT_ARCNET_LINUX:
7969 return gen_ahostop(cstate, abroadcast, Q_DST);
7970 case DLT_EN10MB:
7971 case DLT_NETANALYZER:
7972 case DLT_NETANALYZER_TRANSPARENT:
7973 b1 = gen_prevlinkhdr_check(cstate);
7974 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7975 if (b1 != NULL)
7976 gen_and(b1, b0);
7977 return b0;
7978 case DLT_FDDI:
7979 return gen_fhostop(cstate, ebroadcast, Q_DST);
7980 case DLT_IEEE802:
7981 return gen_thostop(cstate, ebroadcast, Q_DST);
7982 case DLT_IEEE802_11:
7983 case DLT_PRISM_HEADER:
7984 case DLT_IEEE802_11_RADIO_AVS:
7985 case DLT_IEEE802_11_RADIO:
7986 case DLT_PPI:
7987 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7988 case DLT_IP_OVER_FC:
7989 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7990 default:
7991 bpf_error(cstate, "not a broadcast link");
7992 }
7993 /*NOTREACHED*/
7994
7995 case Q_IP:
7996 /*
7997 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7998 * as an indication that we don't know the netmask, and fail
7999 * in that case.
8000 */
8001 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8002 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8003 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8004 hostmask = ~cstate->netmask;
8005 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8006 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8007 ~0 & hostmask, hostmask);
8008 gen_or(b1, b2);
8009 gen_and(b0, b2);
8010 return b2;
8011 }
8012 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8013 /*NOTREACHED*/
8014 }
8015
8016 /*
8017 * Generate code to test the low-order bit of a MAC address (that's
8018 * the bottom bit of the *first* byte).
8019 */
8020 static struct block *
8021 gen_mac_multicast(compiler_state_t *cstate, int offset)
8022 {
8023 register struct block *b0;
8024 register struct slist *s;
8025
8026 /* link[offset] & 1 != 0 */
8027 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8028 b0 = new_block(cstate, JMP(BPF_JSET));
8029 b0->s.k = 1;
8030 b0->stmts = s;
8031 return b0;
8032 }
8033
8034 struct block *
8035 gen_multicast(compiler_state_t *cstate, int proto)
8036 {
8037 register struct block *b0, *b1, *b2;
8038 register struct slist *s;
8039
8040 /*
8041 * Catch errors reported by us and routines below us, and return NULL
8042 * on an error.
8043 */
8044 if (setjmp(cstate->top_ctx))
8045 return (NULL);
8046
8047 switch (proto) {
8048
8049 case Q_DEFAULT:
8050 case Q_LINK:
8051 switch (cstate->linktype) {
8052 case DLT_ARCNET:
8053 case DLT_ARCNET_LINUX:
8054 /* all ARCnet multicasts use the same address */
8055 return gen_ahostop(cstate, abroadcast, Q_DST);
8056 case DLT_EN10MB:
8057 case DLT_NETANALYZER:
8058 case DLT_NETANALYZER_TRANSPARENT:
8059 b1 = gen_prevlinkhdr_check(cstate);
8060 /* ether[0] & 1 != 0 */
8061 b0 = gen_mac_multicast(cstate, 0);
8062 if (b1 != NULL)
8063 gen_and(b1, b0);
8064 return b0;
8065 case DLT_FDDI:
8066 /*
8067 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8068 *
8069 * XXX - was that referring to bit-order issues?
8070 */
8071 /* fddi[1] & 1 != 0 */
8072 return gen_mac_multicast(cstate, 1);
8073 case DLT_IEEE802:
8074 /* tr[2] & 1 != 0 */
8075 return gen_mac_multicast(cstate, 2);
8076 case DLT_IEEE802_11:
8077 case DLT_PRISM_HEADER:
8078 case DLT_IEEE802_11_RADIO_AVS:
8079 case DLT_IEEE802_11_RADIO:
8080 case DLT_PPI:
8081 /*
8082 * Oh, yuk.
8083 *
8084 * For control frames, there is no DA.
8085 *
8086 * For management frames, DA is at an
8087 * offset of 4 from the beginning of
8088 * the packet.
8089 *
8090 * For data frames, DA is at an offset
8091 * of 4 from the beginning of the packet
8092 * if To DS is clear and at an offset of
8093 * 16 from the beginning of the packet
8094 * if To DS is set.
8095 */
8096
8097 /*
8098 * Generate the tests to be done for data frames.
8099 *
8100 * First, check for To DS set, i.e. "link[1] & 0x01".
8101 */
8102 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8103 b1 = new_block(cstate, JMP(BPF_JSET));
8104 b1->s.k = 0x01; /* To DS */
8105 b1->stmts = s;
8106
8107 /*
8108 * If To DS is set, the DA is at 16.
8109 */
8110 b0 = gen_mac_multicast(cstate, 16);
8111 gen_and(b1, b0);
8112
8113 /*
8114 * Now, check for To DS not set, i.e. check
8115 * "!(link[1] & 0x01)".
8116 */
8117 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8118 b2 = new_block(cstate, JMP(BPF_JSET));
8119 b2->s.k = 0x01; /* To DS */
8120 b2->stmts = s;
8121 gen_not(b2);
8122
8123 /*
8124 * If To DS is not set, the DA is at 4.
8125 */
8126 b1 = gen_mac_multicast(cstate, 4);
8127 gen_and(b2, b1);
8128
8129 /*
8130 * Now OR together the last two checks. That gives
8131 * the complete set of checks for data frames.
8132 */
8133 gen_or(b1, b0);
8134
8135 /*
8136 * Now check for a data frame.
8137 * I.e, check "link[0] & 0x08".
8138 */
8139 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8140 b1 = new_block(cstate, JMP(BPF_JSET));
8141 b1->s.k = 0x08;
8142 b1->stmts = s;
8143
8144 /*
8145 * AND that with the checks done for data frames.
8146 */
8147 gen_and(b1, b0);
8148
8149 /*
8150 * If the high-order bit of the type value is 0, this
8151 * is a management frame.
8152 * I.e, check "!(link[0] & 0x08)".
8153 */
8154 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8155 b2 = new_block(cstate, JMP(BPF_JSET));
8156 b2->s.k = 0x08;
8157 b2->stmts = s;
8158 gen_not(b2);
8159
8160 /*
8161 * For management frames, the DA is at 4.
8162 */
8163 b1 = gen_mac_multicast(cstate, 4);
8164 gen_and(b2, b1);
8165
8166 /*
8167 * OR that with the checks done for data frames.
8168 * That gives the checks done for management and
8169 * data frames.
8170 */
8171 gen_or(b1, b0);
8172
8173 /*
8174 * If the low-order bit of the type value is 1,
8175 * this is either a control frame or a frame
8176 * with a reserved type, and thus not a
8177 * frame with an SA.
8178 *
8179 * I.e., check "!(link[0] & 0x04)".
8180 */
8181 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8182 b1 = new_block(cstate, JMP(BPF_JSET));
8183 b1->s.k = 0x04;
8184 b1->stmts = s;
8185 gen_not(b1);
8186
8187 /*
8188 * AND that with the checks for data and management
8189 * frames.
8190 */
8191 gen_and(b1, b0);
8192 return b0;
8193 case DLT_IP_OVER_FC:
8194 b0 = gen_mac_multicast(cstate, 2);
8195 return b0;
8196 default:
8197 break;
8198 }
8199 /* Link not known to support multicasts */
8200 break;
8201
8202 case Q_IP:
8203 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8204 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8205 gen_and(b0, b1);
8206 return b1;
8207
8208 case Q_IPV6:
8209 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8210 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8211 gen_and(b0, b1);
8212 return b1;
8213 }
8214 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8215 /*NOTREACHED*/
8216 }
8217
8218 struct block *
8219 gen_ifindex(compiler_state_t *cstate, int ifindex)
8220 {
8221 register struct block *b0;
8222
8223 /*
8224 * Catch errors reported by us and routines below us, and return NULL
8225 * on an error.
8226 */
8227 if (setjmp(cstate->top_ctx))
8228 return (NULL);
8229
8230 /*
8231 * Only some data link types support ifindex qualifiers.
8232 */
8233 switch (cstate->linktype) {
8234 case DLT_LINUX_SLL2:
8235 /* match packets on this interface */
8236 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8237 break;
8238 default:
8239 #if defined(linux)
8240 /*
8241 * This is Linux; we require PF_PACKET support.
8242 * If this is a *live* capture, we can look at
8243 * special meta-data in the filter expression;
8244 * if it's a savefile, we can't.
8245 */
8246 if (cstate->bpf_pcap->rfile != NULL) {
8247 /* We have a FILE *, so this is a savefile */
8248 bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8249 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8250 b0 = NULL;
8251 /*NOTREACHED*/
8252 }
8253 /* match ifindex */
8254 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8255 ifindex);
8256 #else /* defined(linux) */
8257 bpf_error(cstate, "ifindex not supported on %s",
8258 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8259 /*NOTREACHED*/
8260 #endif /* defined(linux) */
8261 }
8262 return (b0);
8263 }
8264
8265 /*
8266 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8267 * Outbound traffic is sent by this machine, while inbound traffic is
8268 * sent by a remote machine (and may include packets destined for a
8269 * unicast or multicast link-layer address we are not subscribing to).
8270 * These are the same definitions implemented by pcap_setdirection().
8271 * Capturing only unicast traffic destined for this host is probably
8272 * better accomplished using a higher-layer filter.
8273 */
8274 struct block *
8275 gen_inbound(compiler_state_t *cstate, int dir)
8276 {
8277 register struct block *b0;
8278
8279 /*
8280 * Catch errors reported by us and routines below us, and return NULL
8281 * on an error.
8282 */
8283 if (setjmp(cstate->top_ctx))
8284 return (NULL);
8285
8286 /*
8287 * Only some data link types support inbound/outbound qualifiers.
8288 */
8289 switch (cstate->linktype) {
8290 case DLT_SLIP:
8291 b0 = gen_relation_internal(cstate, BPF_JEQ,
8292 gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8293 gen_loadi_internal(cstate, 0),
8294 dir);
8295 break;
8296
8297 case DLT_IPNET:
8298 if (dir) {
8299 /* match outgoing packets */
8300 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8301 } else {
8302 /* match incoming packets */
8303 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8304 }
8305 break;
8306
8307 case DLT_LINUX_SLL:
8308 /* match outgoing packets */
8309 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8310 if (!dir) {
8311 /* to filter on inbound traffic, invert the match */
8312 gen_not(b0);
8313 }
8314 break;
8315
8316 case DLT_LINUX_SLL2:
8317 /* match outgoing packets */
8318 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8319 if (!dir) {
8320 /* to filter on inbound traffic, invert the match */
8321 gen_not(b0);
8322 }
8323 break;
8324
8325 case DLT_PFLOG:
8326 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8327 ((dir == 0) ? PF_IN : PF_OUT));
8328 break;
8329
8330 case DLT_PPP_PPPD:
8331 if (dir) {
8332 /* match outgoing packets */
8333 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8334 } else {
8335 /* match incoming packets */
8336 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8337 }
8338 break;
8339
8340 case DLT_JUNIPER_MFR:
8341 case DLT_JUNIPER_MLFR:
8342 case DLT_JUNIPER_MLPPP:
8343 case DLT_JUNIPER_ATM1:
8344 case DLT_JUNIPER_ATM2:
8345 case DLT_JUNIPER_PPPOE:
8346 case DLT_JUNIPER_PPPOE_ATM:
8347 case DLT_JUNIPER_GGSN:
8348 case DLT_JUNIPER_ES:
8349 case DLT_JUNIPER_MONITOR:
8350 case DLT_JUNIPER_SERVICES:
8351 case DLT_JUNIPER_ETHER:
8352 case DLT_JUNIPER_PPP:
8353 case DLT_JUNIPER_FRELAY:
8354 case DLT_JUNIPER_CHDLC:
8355 case DLT_JUNIPER_VP:
8356 case DLT_JUNIPER_ST:
8357 case DLT_JUNIPER_ISM:
8358 case DLT_JUNIPER_VS:
8359 case DLT_JUNIPER_SRX_E2E:
8360 case DLT_JUNIPER_FIBRECHANNEL:
8361 case DLT_JUNIPER_ATM_CEMIC:
8362
8363 /* juniper flags (including direction) are stored
8364 * the byte after the 3-byte magic number */
8365 if (dir) {
8366 /* match outgoing packets */
8367 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8368 } else {
8369 /* match incoming packets */
8370 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8371 }
8372 break;
8373
8374 default:
8375 /*
8376 * If we have packet meta-data indicating a direction,
8377 * and that metadata can be checked by BPF code, check
8378 * it. Otherwise, give up, as this link-layer type has
8379 * nothing in the packet data.
8380 *
8381 * Currently, the only platform where a BPF filter can
8382 * check that metadata is Linux with the in-kernel
8383 * BPF interpreter. If other packet capture mechanisms
8384 * and BPF filters also supported this, it would be
8385 * nice. It would be even better if they made that
8386 * metadata available so that we could provide it
8387 * with newer capture APIs, allowing it to be saved
8388 * in pcapng files.
8389 */
8390 #if defined(linux)
8391 /*
8392 * This is Linux; we require PF_PACKET support.
8393 * If this is a *live* capture, we can look at
8394 * special meta-data in the filter expression;
8395 * if it's a savefile, we can't.
8396 */
8397 if (cstate->bpf_pcap->rfile != NULL) {
8398 /* We have a FILE *, so this is a savefile */
8399 bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8400 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8401 /*NOTREACHED*/
8402 }
8403 /* match outgoing packets */
8404 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8405 PACKET_OUTGOING);
8406 if (!dir) {
8407 /* to filter on inbound traffic, invert the match */
8408 gen_not(b0);
8409 }
8410 #else /* defined(linux) */
8411 bpf_error(cstate, "inbound/outbound not supported on %s",
8412 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8413 /*NOTREACHED*/
8414 #endif /* defined(linux) */
8415 }
8416 return (b0);
8417 }
8418
8419 /* PF firewall log matched interface */
8420 struct block *
8421 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8422 {
8423 struct block *b0;
8424 u_int len, off;
8425
8426 /*
8427 * Catch errors reported by us and routines below us, and return NULL
8428 * on an error.
8429 */
8430 if (setjmp(cstate->top_ctx))
8431 return (NULL);
8432
8433 if (cstate->linktype != DLT_PFLOG) {
8434 bpf_error(cstate, "ifname supported only on PF linktype");
8435 /*NOTREACHED*/
8436 }
8437 len = sizeof(((struct pfloghdr *)0)->ifname);
8438 off = offsetof(struct pfloghdr, ifname);
8439 if (strlen(ifname) >= len) {
8440 bpf_error(cstate, "ifname interface names can only be %d characters",
8441 len-1);
8442 /*NOTREACHED*/
8443 }
8444 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8445 (const u_char *)ifname);
8446 return (b0);
8447 }
8448
8449 /* PF firewall log ruleset name */
8450 struct block *
8451 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8452 {
8453 struct block *b0;
8454
8455 /*
8456 * Catch errors reported by us and routines below us, and return NULL
8457 * on an error.
8458 */
8459 if (setjmp(cstate->top_ctx))
8460 return (NULL);
8461
8462 if (cstate->linktype != DLT_PFLOG) {
8463 bpf_error(cstate, "ruleset supported only on PF linktype");
8464 /*NOTREACHED*/
8465 }
8466
8467 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8468 bpf_error(cstate, "ruleset names can only be %ld characters",
8469 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8470 /*NOTREACHED*/
8471 }
8472
8473 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8474 (u_int)strlen(ruleset), (const u_char *)ruleset);
8475 return (b0);
8476 }
8477
8478 /* PF firewall log rule number */
8479 struct block *
8480 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8481 {
8482 struct block *b0;
8483
8484 /*
8485 * Catch errors reported by us and routines below us, and return NULL
8486 * on an error.
8487 */
8488 if (setjmp(cstate->top_ctx))
8489 return (NULL);
8490
8491 if (cstate->linktype != DLT_PFLOG) {
8492 bpf_error(cstate, "rnr supported only on PF linktype");
8493 /*NOTREACHED*/
8494 }
8495
8496 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8497 (bpf_u_int32)rnr);
8498 return (b0);
8499 }
8500
8501 /* PF firewall log sub-rule number */
8502 struct block *
8503 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8504 {
8505 struct block *b0;
8506
8507 /*
8508 * Catch errors reported by us and routines below us, and return NULL
8509 * on an error.
8510 */
8511 if (setjmp(cstate->top_ctx))
8512 return (NULL);
8513
8514 if (cstate->linktype != DLT_PFLOG) {
8515 bpf_error(cstate, "srnr supported only on PF linktype");
8516 /*NOTREACHED*/
8517 }
8518
8519 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8520 (bpf_u_int32)srnr);
8521 return (b0);
8522 }
8523
8524 /* PF firewall log reason code */
8525 struct block *
8526 gen_pf_reason(compiler_state_t *cstate, int reason)
8527 {
8528 struct block *b0;
8529
8530 /*
8531 * Catch errors reported by us and routines below us, and return NULL
8532 * on an error.
8533 */
8534 if (setjmp(cstate->top_ctx))
8535 return (NULL);
8536
8537 if (cstate->linktype != DLT_PFLOG) {
8538 bpf_error(cstate, "reason supported only on PF linktype");
8539 /*NOTREACHED*/
8540 }
8541
8542 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8543 (bpf_u_int32)reason);
8544 return (b0);
8545 }
8546
8547 /* PF firewall log action */
8548 struct block *
8549 gen_pf_action(compiler_state_t *cstate, int action)
8550 {
8551 struct block *b0;
8552
8553 /*
8554 * Catch errors reported by us and routines below us, and return NULL
8555 * on an error.
8556 */
8557 if (setjmp(cstate->top_ctx))
8558 return (NULL);
8559
8560 if (cstate->linktype != DLT_PFLOG) {
8561 bpf_error(cstate, "action supported only on PF linktype");
8562 /*NOTREACHED*/
8563 }
8564
8565 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8566 (bpf_u_int32)action);
8567 return (b0);
8568 }
8569
8570 /* IEEE 802.11 wireless header */
8571 struct block *
8572 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8573 {
8574 struct block *b0;
8575
8576 /*
8577 * Catch errors reported by us and routines below us, and return NULL
8578 * on an error.
8579 */
8580 if (setjmp(cstate->top_ctx))
8581 return (NULL);
8582
8583 switch (cstate->linktype) {
8584
8585 case DLT_IEEE802_11:
8586 case DLT_PRISM_HEADER:
8587 case DLT_IEEE802_11_RADIO_AVS:
8588 case DLT_IEEE802_11_RADIO:
8589 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8590 break;
8591
8592 default:
8593 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8594 /*NOTREACHED*/
8595 }
8596
8597 return (b0);
8598 }
8599
8600 struct block *
8601 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8602 {
8603 struct block *b0;
8604
8605 /*
8606 * Catch errors reported by us and routines below us, and return NULL
8607 * on an error.
8608 */
8609 if (setjmp(cstate->top_ctx))
8610 return (NULL);
8611
8612 switch (cstate->linktype) {
8613
8614 case DLT_IEEE802_11:
8615 case DLT_PRISM_HEADER:
8616 case DLT_IEEE802_11_RADIO_AVS:
8617 case DLT_IEEE802_11_RADIO:
8618 break;
8619
8620 default:
8621 bpf_error(cstate, "frame direction supported only with 802.11 headers");
8622 /*NOTREACHED*/
8623 }
8624
8625 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8626 IEEE80211_FC1_DIR_MASK);
8627
8628 return (b0);
8629 }
8630
8631 struct block *
8632 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8633 {
8634 struct block *b;
8635
8636 /*
8637 * Catch errors reported by us and routines below us, and return NULL
8638 * on an error.
8639 */
8640 if (setjmp(cstate->top_ctx))
8641 return (NULL);
8642
8643 switch (cstate->linktype) {
8644
8645 case DLT_ARCNET:
8646 case DLT_ARCNET_LINUX:
8647 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8648 q.proto == Q_LINK) {
8649 cstate->e = pcap_ether_aton(s);
8650 if (cstate->e == NULL)
8651 bpf_error(cstate, "malloc");
8652 b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8653 free(cstate->e);
8654 cstate->e = NULL;
8655 return (b);
8656 } else
8657 bpf_error(cstate, "ARCnet address used in non-arc expression");
8658 /*NOTREACHED*/
8659
8660 default:
8661 bpf_error(cstate, "aid supported only on ARCnet");
8662 /*NOTREACHED*/
8663 }
8664 }
8665
8666 static struct block *
8667 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8668 {
8669 register struct block *b0, *b1;
8670
8671 switch (dir) {
8672 /* src comes first, different from Ethernet */
8673 case Q_SRC:
8674 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8675
8676 case Q_DST:
8677 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8678
8679 case Q_AND:
8680 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8681 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8682 gen_and(b0, b1);
8683 return b1;
8684
8685 case Q_DEFAULT:
8686 case Q_OR:
8687 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8688 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8689 gen_or(b0, b1);
8690 return b1;
8691
8692 case Q_ADDR1:
8693 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8694 /*NOTREACHED*/
8695
8696 case Q_ADDR2:
8697 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8698 /*NOTREACHED*/
8699
8700 case Q_ADDR3:
8701 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8702 /*NOTREACHED*/
8703
8704 case Q_ADDR4:
8705 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8706 /*NOTREACHED*/
8707
8708 case Q_RA:
8709 bpf_error(cstate, "'ra' is only supported on 802.11");
8710 /*NOTREACHED*/
8711
8712 case Q_TA:
8713 bpf_error(cstate, "'ta' is only supported on 802.11");
8714 /*NOTREACHED*/
8715 }
8716 abort();
8717 /*NOTREACHED*/
8718 }
8719
8720 static struct block *
8721 gen_vlan_tpid_test(compiler_state_t *cstate)
8722 {
8723 struct block *b0, *b1;
8724
8725 /* check for VLAN, including QinQ */
8726 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8727 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8728 gen_or(b0,b1);
8729 b0 = b1;
8730 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8731 gen_or(b0,b1);
8732
8733 return b1;
8734 }
8735
8736 static struct block *
8737 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8738 {
8739 if (vlan_num > 0x0fff) {
8740 bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8741 vlan_num, 0x0fff);
8742 }
8743 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8744 }
8745
8746 static struct block *
8747 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8748 int has_vlan_tag)
8749 {
8750 struct block *b0, *b1;
8751
8752 b0 = gen_vlan_tpid_test(cstate);
8753
8754 if (has_vlan_tag) {
8755 b1 = gen_vlan_vid_test(cstate, vlan_num);
8756 gen_and(b0, b1);
8757 b0 = b1;
8758 }
8759
8760 /*
8761 * Both payload and link header type follow the VLAN tags so that
8762 * both need to be updated.
8763 */
8764 cstate->off_linkpl.constant_part += 4;
8765 cstate->off_linktype.constant_part += 4;
8766
8767 return b0;
8768 }
8769
8770 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8771 /* add v to variable part of off */
8772 static void
8773 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8774 bpf_u_int32 v, struct slist *s)
8775 {
8776 struct slist *s2;
8777
8778 if (!off->is_variable)
8779 off->is_variable = 1;
8780 if (off->reg == -1)
8781 off->reg = alloc_reg(cstate);
8782
8783 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8784 s2->s.k = off->reg;
8785 sappend(s, s2);
8786 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8787 s2->s.k = v;
8788 sappend(s, s2);
8789 s2 = new_stmt(cstate, BPF_ST);
8790 s2->s.k = off->reg;
8791 sappend(s, s2);
8792 }
8793
8794 /*
8795 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8796 * and link type offsets first
8797 */
8798 static void
8799 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8800 {
8801 struct slist s;
8802
8803 /* offset determined at run time, shift variable part */
8804 s.next = NULL;
8805 cstate->is_vlan_vloffset = 1;
8806 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8807 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8808
8809 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8810 sappend(s.next, b_tpid->head->stmts);
8811 b_tpid->head->stmts = s.next;
8812 }
8813
8814 /*
8815 * patch block b_vid (VLAN id test) to load VID value either from packet
8816 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8817 */
8818 static void
8819 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8820 {
8821 struct slist *s, *s2, *sjeq;
8822 unsigned cnt;
8823
8824 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8825 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8826
8827 /* true -> next instructions, false -> beginning of b_vid */
8828 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8829 sjeq->s.k = 1;
8830 sjeq->s.jf = b_vid->stmts;
8831 sappend(s, sjeq);
8832
8833 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8834 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8835 sappend(s, s2);
8836 sjeq->s.jt = s2;
8837
8838 /* Jump to the test in b_vid. We need to jump one instruction before
8839 * the end of the b_vid block so that we only skip loading the TCI
8840 * from packet data and not the 'and' instruction extractging VID.
8841 */
8842 cnt = 0;
8843 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8844 cnt++;
8845 s2 = new_stmt(cstate, JMP(BPF_JA));
8846 s2->s.k = cnt - 1;
8847 sappend(s, s2);
8848
8849 /* insert our statements at the beginning of b_vid */
8850 sappend(s, b_vid->stmts);
8851 b_vid->stmts = s;
8852 }
8853
8854 /*
8855 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8856 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8857 * tag can be either in metadata or in packet data; therefore if the
8858 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8859 * header for VLAN tag. As the decision is done at run time, we need
8860 * update variable part of the offsets
8861 */
8862 static struct block *
8863 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8864 int has_vlan_tag)
8865 {
8866 struct block *b0, *b_tpid, *b_vid = NULL;
8867 struct slist *s;
8868
8869 /* generate new filter code based on extracting packet
8870 * metadata */
8871 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8872 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8873
8874 b0 = new_block(cstate, JMP(BPF_JEQ));
8875 b0->stmts = s;
8876 b0->s.k = 1;
8877
8878 /*
8879 * This is tricky. We need to insert the statements updating variable
8880 * parts of offsets before the traditional TPID and VID tests so
8881 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8882 * we do not want this update to affect those checks. That's why we
8883 * generate both test blocks first and insert the statements updating
8884 * variable parts of both offsets after that. This wouldn't work if
8885 * there already were variable length link header when entering this
8886 * function but gen_vlan_bpf_extensions() isn't called in that case.
8887 */
8888 b_tpid = gen_vlan_tpid_test(cstate);
8889 if (has_vlan_tag)
8890 b_vid = gen_vlan_vid_test(cstate, vlan_num);
8891
8892 gen_vlan_patch_tpid_test(cstate, b_tpid);
8893 gen_or(b0, b_tpid);
8894 b0 = b_tpid;
8895
8896 if (has_vlan_tag) {
8897 gen_vlan_patch_vid_test(cstate, b_vid);
8898 gen_and(b0, b_vid);
8899 b0 = b_vid;
8900 }
8901
8902 return b0;
8903 }
8904 #endif
8905
8906 /*
8907 * support IEEE 802.1Q VLAN trunk over ethernet
8908 */
8909 struct block *
8910 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8911 {
8912 struct block *b0;
8913
8914 /*
8915 * Catch errors reported by us and routines below us, and return NULL
8916 * on an error.
8917 */
8918 if (setjmp(cstate->top_ctx))
8919 return (NULL);
8920
8921 /* can't check for VLAN-encapsulated packets inside MPLS */
8922 if (cstate->label_stack_depth > 0)
8923 bpf_error(cstate, "no VLAN match after MPLS");
8924
8925 /*
8926 * Check for a VLAN packet, and then change the offsets to point
8927 * to the type and data fields within the VLAN packet. Just
8928 * increment the offsets, so that we can support a hierarchy, e.g.
8929 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8930 * VLAN 100.
8931 *
8932 * XXX - this is a bit of a kludge. If we were to split the
8933 * compiler into a parser that parses an expression and
8934 * generates an expression tree, and a code generator that
8935 * takes an expression tree (which could come from our
8936 * parser or from some other parser) and generates BPF code,
8937 * we could perhaps make the offsets parameters of routines
8938 * and, in the handler for an "AND" node, pass to subnodes
8939 * other than the VLAN node the adjusted offsets.
8940 *
8941 * This would mean that "vlan" would, instead of changing the
8942 * behavior of *all* tests after it, change only the behavior
8943 * of tests ANDed with it. That would change the documented
8944 * semantics of "vlan", which might break some expressions.
8945 * However, it would mean that "(vlan and ip) or ip" would check
8946 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8947 * checking only for VLAN-encapsulated IP, so that could still
8948 * be considered worth doing; it wouldn't break expressions
8949 * that are of the form "vlan and ..." or "vlan N and ...",
8950 * which I suspect are the most common expressions involving
8951 * "vlan". "vlan or ..." doesn't necessarily do what the user
8952 * would really want, now, as all the "or ..." tests would
8953 * be done assuming a VLAN, even though the "or" could be viewed
8954 * as meaning "or, if this isn't a VLAN packet...".
8955 */
8956 switch (cstate->linktype) {
8957
8958 case DLT_EN10MB:
8959 case DLT_NETANALYZER:
8960 case DLT_NETANALYZER_TRANSPARENT:
8961 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8962 /* Verify that this is the outer part of the packet and
8963 * not encapsulated somehow. */
8964 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8965 cstate->off_linkhdr.constant_part ==
8966 cstate->off_outermostlinkhdr.constant_part) {
8967 /*
8968 * Do we need special VLAN handling?
8969 */
8970 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8971 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8972 has_vlan_tag);
8973 else
8974 b0 = gen_vlan_no_bpf_extensions(cstate,
8975 vlan_num, has_vlan_tag);
8976 } else
8977 #endif
8978 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8979 has_vlan_tag);
8980 break;
8981
8982 case DLT_IEEE802_11:
8983 case DLT_PRISM_HEADER:
8984 case DLT_IEEE802_11_RADIO_AVS:
8985 case DLT_IEEE802_11_RADIO:
8986 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8987 break;
8988
8989 default:
8990 bpf_error(cstate, "no VLAN support for %s",
8991 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8992 /*NOTREACHED*/
8993 }
8994
8995 cstate->vlan_stack_depth++;
8996
8997 return (b0);
8998 }
8999
9000 /*
9001 * support for MPLS
9002 *
9003 * The label_num_arg dance is to avoid annoying whining by compilers that
9004 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9005 * It's not *used* after setjmp returns.
9006 */
9007 struct block *
9008 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9009 int has_label_num)
9010 {
9011 volatile bpf_u_int32 label_num = label_num_arg;
9012 struct block *b0, *b1;
9013
9014 /*
9015 * Catch errors reported by us and routines below us, and return NULL
9016 * on an error.
9017 */
9018 if (setjmp(cstate->top_ctx))
9019 return (NULL);
9020
9021 if (cstate->label_stack_depth > 0) {
9022 /* just match the bottom-of-stack bit clear */
9023 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9024 } else {
9025 /*
9026 * We're not in an MPLS stack yet, so check the link-layer
9027 * type against MPLS.
9028 */
9029 switch (cstate->linktype) {
9030
9031 case DLT_C_HDLC: /* fall through */
9032 case DLT_HDLC:
9033 case DLT_EN10MB:
9034 case DLT_NETANALYZER:
9035 case DLT_NETANALYZER_TRANSPARENT:
9036 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9037 break;
9038
9039 case DLT_PPP:
9040 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9041 break;
9042
9043 /* FIXME add other DLT_s ...
9044 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9045 * leave it for now */
9046
9047 default:
9048 bpf_error(cstate, "no MPLS support for %s",
9049 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9050 /*NOTREACHED*/
9051 }
9052 }
9053
9054 /* If a specific MPLS label is requested, check it */
9055 if (has_label_num) {
9056 if (label_num > 0xFFFFF) {
9057 bpf_error(cstate, "MPLS label %u greater than maximum %u",
9058 label_num, 0xFFFFF);
9059 }
9060 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9061 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9062 0xfffff000); /* only compare the first 20 bits */
9063 gen_and(b0, b1);
9064 b0 = b1;
9065 }
9066
9067 /*
9068 * Change the offsets to point to the type and data fields within
9069 * the MPLS packet. Just increment the offsets, so that we
9070 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9071 * capture packets with an outer label of 100000 and an inner
9072 * label of 1024.
9073 *
9074 * Increment the MPLS stack depth as well; this indicates that
9075 * we're checking MPLS-encapsulated headers, to make sure higher
9076 * level code generators don't try to match against IP-related
9077 * protocols such as Q_ARP, Q_RARP etc.
9078 *
9079 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9080 */
9081 cstate->off_nl_nosnap += 4;
9082 cstate->off_nl += 4;
9083 cstate->label_stack_depth++;
9084 return (b0);
9085 }
9086
9087 /*
9088 * Support PPPOE discovery and session.
9089 */
9090 struct block *
9091 gen_pppoed(compiler_state_t *cstate)
9092 {
9093 /*
9094 * Catch errors reported by us and routines below us, and return NULL
9095 * on an error.
9096 */
9097 if (setjmp(cstate->top_ctx))
9098 return (NULL);
9099
9100 /* check for PPPoE discovery */
9101 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9102 }
9103
9104 struct block *
9105 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9106 {
9107 struct block *b0, *b1;
9108
9109 /*
9110 * Catch errors reported by us and routines below us, and return NULL
9111 * on an error.
9112 */
9113 if (setjmp(cstate->top_ctx))
9114 return (NULL);
9115
9116 /*
9117 * Test against the PPPoE session link-layer type.
9118 */
9119 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9120
9121 /* If a specific session is requested, check PPPoE session id */
9122 if (has_sess_num) {
9123 if (sess_num > 0x0000ffff) {
9124 bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9125 sess_num, 0x0000ffff);
9126 }
9127 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9128 gen_and(b0, b1);
9129 b0 = b1;
9130 }
9131
9132 /*
9133 * Change the offsets to point to the type and data fields within
9134 * the PPP packet, and note that this is PPPoE rather than
9135 * raw PPP.
9136 *
9137 * XXX - this is a bit of a kludge. See the comments in
9138 * gen_vlan().
9139 *
9140 * The "network-layer" protocol is PPPoE, which has a 6-byte
9141 * PPPoE header, followed by a PPP packet.
9142 *
9143 * There is no HDLC encapsulation for the PPP packet (it's
9144 * encapsulated in PPPoES instead), so the link-layer type
9145 * starts at the first byte of the PPP packet. For PPPoE,
9146 * that offset is relative to the beginning of the total
9147 * link-layer payload, including any 802.2 LLC header, so
9148 * it's 6 bytes past cstate->off_nl.
9149 */
9150 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9151 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9152 cstate->off_linkpl.reg);
9153
9154 cstate->off_linktype = cstate->off_linkhdr;
9155 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9156
9157 cstate->off_nl = 0;
9158 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9159
9160 return b0;
9161 }
9162
9163 /* Check that this is Geneve and the VNI is correct if
9164 * specified. Parameterized to handle both IPv4 and IPv6. */
9165 static struct block *
9166 gen_geneve_check(compiler_state_t *cstate,
9167 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9168 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9169 {
9170 struct block *b0, *b1;
9171
9172 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9173
9174 /* Check that we are operating on version 0. Otherwise, we
9175 * can't decode the rest of the fields. The version is 2 bits
9176 * in the first byte of the Geneve header. */
9177 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9178 gen_and(b0, b1);
9179 b0 = b1;
9180
9181 if (has_vni) {
9182 if (vni > 0xffffff) {
9183 bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9184 vni, 0xffffff);
9185 }
9186 vni <<= 8; /* VNI is in the upper 3 bytes */
9187 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9188 gen_and(b0, b1);
9189 b0 = b1;
9190 }
9191
9192 return b0;
9193 }
9194
9195 /* The IPv4 and IPv6 Geneve checks need to do two things:
9196 * - Verify that this actually is Geneve with the right VNI.
9197 * - Place the IP header length (plus variable link prefix if
9198 * needed) into register A to be used later to compute
9199 * the inner packet offsets. */
9200 static struct block *
9201 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9202 {
9203 struct block *b0, *b1;
9204 struct slist *s, *s1;
9205
9206 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9207
9208 /* Load the IP header length into A. */
9209 s = gen_loadx_iphdrlen(cstate);
9210
9211 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9212 sappend(s, s1);
9213
9214 /* Forcibly append these statements to the true condition
9215 * of the protocol check by creating a new block that is
9216 * always true and ANDing them. */
9217 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9218 b1->stmts = s;
9219 b1->s.k = 0;
9220
9221 gen_and(b0, b1);
9222
9223 return b1;
9224 }
9225
9226 static struct block *
9227 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9228 {
9229 struct block *b0, *b1;
9230 struct slist *s, *s1;
9231
9232 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9233
9234 /* Load the IP header length. We need to account for a
9235 * variable length link prefix if there is one. */
9236 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9237 if (s) {
9238 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9239 s1->s.k = 40;
9240 sappend(s, s1);
9241
9242 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9243 s1->s.k = 0;
9244 sappend(s, s1);
9245 } else {
9246 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9247 s->s.k = 40;
9248 }
9249
9250 /* Forcibly append these statements to the true condition
9251 * of the protocol check by creating a new block that is
9252 * always true and ANDing them. */
9253 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9254 sappend(s, s1);
9255
9256 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9257 b1->stmts = s;
9258 b1->s.k = 0;
9259
9260 gen_and(b0, b1);
9261
9262 return b1;
9263 }
9264
9265 /* We need to store three values based on the Geneve header::
9266 * - The offset of the linktype.
9267 * - The offset of the end of the Geneve header.
9268 * - The offset of the end of the encapsulated MAC header. */
9269 static struct slist *
9270 gen_geneve_offsets(compiler_state_t *cstate)
9271 {
9272 struct slist *s, *s1, *s_proto;
9273
9274 /* First we need to calculate the offset of the Geneve header
9275 * itself. This is composed of the IP header previously calculated
9276 * (include any variable link prefix) and stored in A plus the
9277 * fixed sized headers (fixed link prefix, MAC length, and UDP
9278 * header). */
9279 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9280 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9281
9282 /* Stash this in X since we'll need it later. */
9283 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9284 sappend(s, s1);
9285
9286 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9287 * store it. */
9288 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9289 s1->s.k = 2;
9290 sappend(s, s1);
9291
9292 cstate->off_linktype.reg = alloc_reg(cstate);
9293 cstate->off_linktype.is_variable = 1;
9294 cstate->off_linktype.constant_part = 0;
9295
9296 s1 = new_stmt(cstate, BPF_ST);
9297 s1->s.k = cstate->off_linktype.reg;
9298 sappend(s, s1);
9299
9300 /* Load the Geneve option length and mask and shift to get the
9301 * number of bytes. It is stored in the first byte of the Geneve
9302 * header. */
9303 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9304 s1->s.k = 0;
9305 sappend(s, s1);
9306
9307 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9308 s1->s.k = 0x3f;
9309 sappend(s, s1);
9310
9311 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9312 s1->s.k = 4;
9313 sappend(s, s1);
9314
9315 /* Add in the rest of the Geneve base header. */
9316 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9317 s1->s.k = 8;
9318 sappend(s, s1);
9319
9320 /* Add the Geneve header length to its offset and store. */
9321 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9322 s1->s.k = 0;
9323 sappend(s, s1);
9324
9325 /* Set the encapsulated type as Ethernet. Even though we may
9326 * not actually have Ethernet inside there are two reasons this
9327 * is useful:
9328 * - The linktype field is always in EtherType format regardless
9329 * of whether it is in Geneve or an inner Ethernet frame.
9330 * - The only link layer that we have specific support for is
9331 * Ethernet. We will confirm that the packet actually is
9332 * Ethernet at runtime before executing these checks. */
9333 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9334
9335 s1 = new_stmt(cstate, BPF_ST);
9336 s1->s.k = cstate->off_linkhdr.reg;
9337 sappend(s, s1);
9338
9339 /* Calculate whether we have an Ethernet header or just raw IP/
9340 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9341 * and linktype by 14 bytes so that the network header can be found
9342 * seamlessly. Otherwise, keep what we've calculated already. */
9343
9344 /* We have a bare jmp so we can't use the optimizer. */
9345 cstate->no_optimize = 1;
9346
9347 /* Load the EtherType in the Geneve header, 2 bytes in. */
9348 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9349 s1->s.k = 2;
9350 sappend(s, s1);
9351
9352 /* Load X with the end of the Geneve header. */
9353 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9354 s1->s.k = cstate->off_linkhdr.reg;
9355 sappend(s, s1);
9356
9357 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9358 * end of this check, we should have the total length in X. In
9359 * the non-Ethernet case, it's already there. */
9360 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9361 s_proto->s.k = ETHERTYPE_TEB;
9362 sappend(s, s_proto);
9363
9364 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9365 sappend(s, s1);
9366 s_proto->s.jt = s1;
9367
9368 /* Since this is Ethernet, use the EtherType of the payload
9369 * directly as the linktype. Overwrite what we already have. */
9370 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9371 s1->s.k = 12;
9372 sappend(s, s1);
9373
9374 s1 = new_stmt(cstate, BPF_ST);
9375 s1->s.k = cstate->off_linktype.reg;
9376 sappend(s, s1);
9377
9378 /* Advance two bytes further to get the end of the Ethernet
9379 * header. */
9380 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9381 s1->s.k = 2;
9382 sappend(s, s1);
9383
9384 /* Move the result to X. */
9385 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9386 sappend(s, s1);
9387
9388 /* Store the final result of our linkpl calculation. */
9389 cstate->off_linkpl.reg = alloc_reg(cstate);
9390 cstate->off_linkpl.is_variable = 1;
9391 cstate->off_linkpl.constant_part = 0;
9392
9393 s1 = new_stmt(cstate, BPF_STX);
9394 s1->s.k = cstate->off_linkpl.reg;
9395 sappend(s, s1);
9396 s_proto->s.jf = s1;
9397
9398 cstate->off_nl = 0;
9399
9400 return s;
9401 }
9402
9403 /* Check to see if this is a Geneve packet. */
9404 struct block *
9405 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9406 {
9407 struct block *b0, *b1;
9408 struct slist *s;
9409
9410 /*
9411 * Catch errors reported by us and routines below us, and return NULL
9412 * on an error.
9413 */
9414 if (setjmp(cstate->top_ctx))
9415 return (NULL);
9416
9417 b0 = gen_geneve4(cstate, vni, has_vni);
9418 b1 = gen_geneve6(cstate, vni, has_vni);
9419
9420 gen_or(b0, b1);
9421 b0 = b1;
9422
9423 /* Later filters should act on the payload of the Geneve frame,
9424 * update all of the header pointers. Attach this code so that
9425 * it gets executed in the event that the Geneve filter matches. */
9426 s = gen_geneve_offsets(cstate);
9427
9428 b1 = gen_true(cstate);
9429 sappend(s, b1->stmts);
9430 b1->stmts = s;
9431
9432 gen_and(b0, b1);
9433
9434 cstate->is_geneve = 1;
9435
9436 return b1;
9437 }
9438
9439 /* Check that the encapsulated frame has a link layer header
9440 * for Ethernet filters. */
9441 static struct block *
9442 gen_geneve_ll_check(compiler_state_t *cstate)
9443 {
9444 struct block *b0;
9445 struct slist *s, *s1;
9446
9447 /* The easiest way to see if there is a link layer present
9448 * is to check if the link layer header and payload are not
9449 * the same. */
9450
9451 /* Geneve always generates pure variable offsets so we can
9452 * compare only the registers. */
9453 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9454 s->s.k = cstate->off_linkhdr.reg;
9455
9456 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9457 s1->s.k = cstate->off_linkpl.reg;
9458 sappend(s, s1);
9459
9460 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9461 b0->stmts = s;
9462 b0->s.k = 0;
9463 gen_not(b0);
9464
9465 return b0;
9466 }
9467
9468 static struct block *
9469 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9470 bpf_u_int32 jvalue, int jtype, int reverse)
9471 {
9472 struct block *b0;
9473
9474 switch (atmfield) {
9475
9476 case A_VPI:
9477 if (!cstate->is_atm)
9478 bpf_error(cstate, "'vpi' supported only on raw ATM");
9479 if (cstate->off_vpi == OFFSET_NOT_SET)
9480 abort();
9481 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9482 0xffffffffU, jtype, reverse, jvalue);
9483 break;
9484
9485 case A_VCI:
9486 if (!cstate->is_atm)
9487 bpf_error(cstate, "'vci' supported only on raw ATM");
9488 if (cstate->off_vci == OFFSET_NOT_SET)
9489 abort();
9490 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9491 0xffffffffU, jtype, reverse, jvalue);
9492 break;
9493
9494 case A_PROTOTYPE:
9495 if (cstate->off_proto == OFFSET_NOT_SET)
9496 abort(); /* XXX - this isn't on FreeBSD */
9497 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9498 0x0fU, jtype, reverse, jvalue);
9499 break;
9500
9501 case A_MSGTYPE:
9502 if (cstate->off_payload == OFFSET_NOT_SET)
9503 abort();
9504 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9505 0xffffffffU, jtype, reverse, jvalue);
9506 break;
9507
9508 case A_CALLREFTYPE:
9509 if (!cstate->is_atm)
9510 bpf_error(cstate, "'callref' supported only on raw ATM");
9511 if (cstate->off_proto == OFFSET_NOT_SET)
9512 abort();
9513 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9514 0xffffffffU, jtype, reverse, jvalue);
9515 break;
9516
9517 default:
9518 abort();
9519 }
9520 return b0;
9521 }
9522
9523 static struct block *
9524 gen_atmtype_metac(compiler_state_t *cstate)
9525 {
9526 struct block *b0, *b1;
9527
9528 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9529 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9530 gen_and(b0, b1);
9531 return b1;
9532 }
9533
9534 static struct block *
9535 gen_atmtype_sc(compiler_state_t *cstate)
9536 {
9537 struct block *b0, *b1;
9538
9539 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9540 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9541 gen_and(b0, b1);
9542 return b1;
9543 }
9544
9545 static struct block *
9546 gen_atmtype_llc(compiler_state_t *cstate)
9547 {
9548 struct block *b0;
9549
9550 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9551 cstate->linktype = cstate->prevlinktype;
9552 return b0;
9553 }
9554
9555 struct block *
9556 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9557 bpf_u_int32 jvalue, int jtype, int reverse)
9558 {
9559 /*
9560 * Catch errors reported by us and routines below us, and return NULL
9561 * on an error.
9562 */
9563 if (setjmp(cstate->top_ctx))
9564 return (NULL);
9565
9566 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9567 reverse);
9568 }
9569
9570 struct block *
9571 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9572 {
9573 struct block *b0, *b1;
9574
9575 /*
9576 * Catch errors reported by us and routines below us, and return NULL
9577 * on an error.
9578 */
9579 if (setjmp(cstate->top_ctx))
9580 return (NULL);
9581
9582 switch (type) {
9583
9584 case A_METAC:
9585 /* Get all packets in Meta signalling Circuit */
9586 if (!cstate->is_atm)
9587 bpf_error(cstate, "'metac' supported only on raw ATM");
9588 b1 = gen_atmtype_metac(cstate);
9589 break;
9590
9591 case A_BCC:
9592 /* Get all packets in Broadcast Circuit*/
9593 if (!cstate->is_atm)
9594 bpf_error(cstate, "'bcc' supported only on raw ATM");
9595 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9596 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9597 gen_and(b0, b1);
9598 break;
9599
9600 case A_OAMF4SC:
9601 /* Get all cells in Segment OAM F4 circuit*/
9602 if (!cstate->is_atm)
9603 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9604 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9605 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9606 gen_and(b0, b1);
9607 break;
9608
9609 case A_OAMF4EC:
9610 /* Get all cells in End-to-End OAM F4 Circuit*/
9611 if (!cstate->is_atm)
9612 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9613 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9614 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9615 gen_and(b0, b1);
9616 break;
9617
9618 case A_SC:
9619 /* Get all packets in connection Signalling Circuit */
9620 if (!cstate->is_atm)
9621 bpf_error(cstate, "'sc' supported only on raw ATM");
9622 b1 = gen_atmtype_sc(cstate);
9623 break;
9624
9625 case A_ILMIC:
9626 /* Get all packets in ILMI Circuit */
9627 if (!cstate->is_atm)
9628 bpf_error(cstate, "'ilmic' supported only on raw ATM");
9629 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9630 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9631 gen_and(b0, b1);
9632 break;
9633
9634 case A_LANE:
9635 /* Get all LANE packets */
9636 if (!cstate->is_atm)
9637 bpf_error(cstate, "'lane' supported only on raw ATM");
9638 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9639
9640 /*
9641 * Arrange that all subsequent tests assume LANE
9642 * rather than LLC-encapsulated packets, and set
9643 * the offsets appropriately for LANE-encapsulated
9644 * Ethernet.
9645 *
9646 * We assume LANE means Ethernet, not Token Ring.
9647 */
9648 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9649 cstate->off_payload + 2, /* Ethernet header */
9650 -1);
9651 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9652 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9653 cstate->off_nl = 0; /* Ethernet II */
9654 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9655 break;
9656
9657 case A_LLC:
9658 /* Get all LLC-encapsulated packets */
9659 if (!cstate->is_atm)
9660 bpf_error(cstate, "'llc' supported only on raw ATM");
9661 b1 = gen_atmtype_llc(cstate);
9662 break;
9663
9664 default:
9665 abort();
9666 }
9667 return b1;
9668 }
9669
9670 /*
9671 * Filtering for MTP2 messages based on li value
9672 * FISU, length is null
9673 * LSSU, length is 1 or 2
9674 * MSU, length is 3 or more
9675 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9676 */
9677 struct block *
9678 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9679 {
9680 struct block *b0, *b1;
9681
9682 /*
9683 * Catch errors reported by us and routines below us, and return NULL
9684 * on an error.
9685 */
9686 if (setjmp(cstate->top_ctx))
9687 return (NULL);
9688
9689 switch (type) {
9690
9691 case M_FISU:
9692 if ( (cstate->linktype != DLT_MTP2) &&
9693 (cstate->linktype != DLT_ERF) &&
9694 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9695 bpf_error(cstate, "'fisu' supported only on MTP2");
9696 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9697 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9698 0x3fU, BPF_JEQ, 0, 0U);
9699 break;
9700
9701 case M_LSSU:
9702 if ( (cstate->linktype != DLT_MTP2) &&
9703 (cstate->linktype != DLT_ERF) &&
9704 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9705 bpf_error(cstate, "'lssu' supported only on MTP2");
9706 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9707 0x3fU, BPF_JGT, 1, 2U);
9708 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9709 0x3fU, BPF_JGT, 0, 0U);
9710 gen_and(b1, b0);
9711 break;
9712
9713 case M_MSU:
9714 if ( (cstate->linktype != DLT_MTP2) &&
9715 (cstate->linktype != DLT_ERF) &&
9716 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9717 bpf_error(cstate, "'msu' supported only on MTP2");
9718 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9719 0x3fU, BPF_JGT, 0, 2U);
9720 break;
9721
9722 case MH_FISU:
9723 if ( (cstate->linktype != DLT_MTP2) &&
9724 (cstate->linktype != DLT_ERF) &&
9725 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9726 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9727 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9728 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9729 0xff80U, BPF_JEQ, 0, 0U);
9730 break;
9731
9732 case MH_LSSU:
9733 if ( (cstate->linktype != DLT_MTP2) &&
9734 (cstate->linktype != DLT_ERF) &&
9735 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9736 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9737 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9738 0xff80U, BPF_JGT, 1, 0x0100U);
9739 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9740 0xff80U, BPF_JGT, 0, 0U);
9741 gen_and(b1, b0);
9742 break;
9743
9744 case MH_MSU:
9745 if ( (cstate->linktype != DLT_MTP2) &&
9746 (cstate->linktype != DLT_ERF) &&
9747 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9748 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9749 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9750 0xff80U, BPF_JGT, 0, 0x0100U);
9751 break;
9752
9753 default:
9754 abort();
9755 }
9756 return b0;
9757 }
9758
9759 /*
9760 * The jvalue_arg dance is to avoid annoying whining by compilers that
9761 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9762 * It's not *used* after setjmp returns.
9763 */
9764 struct block *
9765 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9766 bpf_u_int32 jvalue_arg, int jtype, int reverse)
9767 {
9768 volatile bpf_u_int32 jvalue = jvalue_arg;
9769 struct block *b0;
9770 bpf_u_int32 val1 , val2 , val3;
9771 u_int newoff_sio;
9772 u_int newoff_opc;
9773 u_int newoff_dpc;
9774 u_int newoff_sls;
9775
9776 /*
9777 * Catch errors reported by us and routines below us, and return NULL
9778 * on an error.
9779 */
9780 if (setjmp(cstate->top_ctx))
9781 return (NULL);
9782
9783 newoff_sio = cstate->off_sio;
9784 newoff_opc = cstate->off_opc;
9785 newoff_dpc = cstate->off_dpc;
9786 newoff_sls = cstate->off_sls;
9787 switch (mtp3field) {
9788
9789 case MH_SIO:
9790 newoff_sio += 3; /* offset for MTP2_HSL */
9791 /* FALLTHROUGH */
9792
9793 case M_SIO:
9794 if (cstate->off_sio == OFFSET_NOT_SET)
9795 bpf_error(cstate, "'sio' supported only on SS7");
9796 /* sio coded on 1 byte so max value 255 */
9797 if(jvalue > 255)
9798 bpf_error(cstate, "sio value %u too big; max value = 255",
9799 jvalue);
9800 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
9801 jtype, reverse, jvalue);
9802 break;
9803
9804 case MH_OPC:
9805 newoff_opc += 3;
9806
9807 /* FALLTHROUGH */
9808 case M_OPC:
9809 if (cstate->off_opc == OFFSET_NOT_SET)
9810 bpf_error(cstate, "'opc' supported only on SS7");
9811 /* opc coded on 14 bits so max value 16383 */
9812 if (jvalue > 16383)
9813 bpf_error(cstate, "opc value %u too big; max value = 16383",
9814 jvalue);
9815 /* the following instructions are made to convert jvalue
9816 * to the form used to write opc in an ss7 message*/
9817 val1 = jvalue & 0x00003c00;
9818 val1 = val1 >>10;
9819 val2 = jvalue & 0x000003fc;
9820 val2 = val2 <<6;
9821 val3 = jvalue & 0x00000003;
9822 val3 = val3 <<22;
9823 jvalue = val1 + val2 + val3;
9824 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
9825 jtype, reverse, jvalue);
9826 break;
9827
9828 case MH_DPC:
9829 newoff_dpc += 3;
9830 /* FALLTHROUGH */
9831
9832 case M_DPC:
9833 if (cstate->off_dpc == OFFSET_NOT_SET)
9834 bpf_error(cstate, "'dpc' supported only on SS7");
9835 /* dpc coded on 14 bits so max value 16383 */
9836 if (jvalue > 16383)
9837 bpf_error(cstate, "dpc value %u too big; max value = 16383",
9838 jvalue);
9839 /* the following instructions are made to convert jvalue
9840 * to the forme used to write dpc in an ss7 message*/
9841 val1 = jvalue & 0x000000ff;
9842 val1 = val1 << 24;
9843 val2 = jvalue & 0x00003f00;
9844 val2 = val2 << 8;
9845 jvalue = val1 + val2;
9846 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
9847 jtype, reverse, jvalue);
9848 break;
9849
9850 case MH_SLS:
9851 newoff_sls += 3;
9852 /* FALLTHROUGH */
9853
9854 case M_SLS:
9855 if (cstate->off_sls == OFFSET_NOT_SET)
9856 bpf_error(cstate, "'sls' supported only on SS7");
9857 /* sls coded on 4 bits so max value 15 */
9858 if (jvalue > 15)
9859 bpf_error(cstate, "sls value %u too big; max value = 15",
9860 jvalue);
9861 /* the following instruction is made to convert jvalue
9862 * to the forme used to write sls in an ss7 message*/
9863 jvalue = jvalue << 4;
9864 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
9865 jtype, reverse, jvalue);
9866 break;
9867
9868 default:
9869 abort();
9870 }
9871 return b0;
9872 }
9873
9874 static struct block *
9875 gen_msg_abbrev(compiler_state_t *cstate, int type)
9876 {
9877 struct block *b1;
9878
9879 /*
9880 * Q.2931 signalling protocol messages for handling virtual circuits
9881 * establishment and teardown
9882 */
9883 switch (type) {
9884
9885 case A_SETUP:
9886 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9887 break;
9888
9889 case A_CALLPROCEED:
9890 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9891 break;
9892
9893 case A_CONNECT:
9894 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9895 break;
9896
9897 case A_CONNECTACK:
9898 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9899 break;
9900
9901 case A_RELEASE:
9902 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9903 break;
9904
9905 case A_RELEASE_DONE:
9906 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9907 break;
9908
9909 default:
9910 abort();
9911 }
9912 return b1;
9913 }
9914
9915 struct block *
9916 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9917 {
9918 struct block *b0, *b1;
9919
9920 /*
9921 * Catch errors reported by us and routines below us, and return NULL
9922 * on an error.
9923 */
9924 if (setjmp(cstate->top_ctx))
9925 return (NULL);
9926
9927 switch (type) {
9928
9929 case A_OAM:
9930 if (!cstate->is_atm)
9931 bpf_error(cstate, "'oam' supported only on raw ATM");
9932 /* OAM F4 type */
9933 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9934 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9935 gen_or(b0, b1);
9936 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9937 gen_and(b0, b1);
9938 break;
9939
9940 case A_OAMF4:
9941 if (!cstate->is_atm)
9942 bpf_error(cstate, "'oamf4' supported only on raw ATM");
9943 /* OAM F4 type */
9944 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9945 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9946 gen_or(b0, b1);
9947 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9948 gen_and(b0, b1);
9949 break;
9950
9951 case A_CONNECTMSG:
9952 /*
9953 * Get Q.2931 signalling messages for switched
9954 * virtual connection
9955 */
9956 if (!cstate->is_atm)
9957 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9958 b0 = gen_msg_abbrev(cstate, A_SETUP);
9959 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9960 gen_or(b0, b1);
9961 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9962 gen_or(b0, b1);
9963 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9964 gen_or(b0, b1);
9965 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9966 gen_or(b0, b1);
9967 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9968 gen_or(b0, b1);
9969 b0 = gen_atmtype_sc(cstate);
9970 gen_and(b0, b1);
9971 break;
9972
9973 case A_METACONNECT:
9974 if (!cstate->is_atm)
9975 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9976 b0 = gen_msg_abbrev(cstate, A_SETUP);
9977 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9978 gen_or(b0, b1);
9979 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9980 gen_or(b0, b1);
9981 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9982 gen_or(b0, b1);
9983 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9984 gen_or(b0, b1);
9985 b0 = gen_atmtype_metac(cstate);
9986 gen_and(b0, b1);
9987 break;
9988
9989 default:
9990 abort();
9991 }
9992 return b1;
9993 }