2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_unset(compiler_state_t
*, bpf_u_int32
, struct slist
*);
650 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
651 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
652 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
654 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
656 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
657 static struct block
*gen_uncond(compiler_state_t
*, int);
658 static inline struct block
*gen_true(compiler_state_t
*);
659 static inline struct block
*gen_false(compiler_state_t
*);
660 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
663 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
667 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
668 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
669 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
671 static uint16_t ethertype_to_ppptype(compiler_state_t
*, bpf_u_int32
);
672 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
673 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
674 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
675 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
678 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
679 struct in6_addr
*, int, u_int
, u_int
);
681 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
682 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
683 static unsigned char is_mac48_linktype(const int);
684 static struct block
*gen_mac48host(compiler_state_t
*, const u_char
*,
685 const u_char
, const char *);
686 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
687 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
688 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
691 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
692 struct in6_addr
*, int, int, int);
695 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
696 struct addrinfo
*, int);
698 static struct block
*gen_ip_proto(compiler_state_t
*, const uint8_t);
699 static struct block
*gen_ip6_proto(compiler_state_t
*, const uint8_t);
700 static struct block
*gen_ipfrag(compiler_state_t
*);
701 static struct block
*gen_portatom(compiler_state_t
*, int, uint16_t);
702 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, uint16_t,
704 static struct block
*gen_portatom6(compiler_state_t
*, int, uint16_t);
705 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, uint16_t,
707 static struct block
*gen_port(compiler_state_t
*, uint16_t, int, int);
708 static struct block
*gen_port_common(compiler_state_t
*, int, struct block
*);
709 static struct block
*gen_portrange(compiler_state_t
*, uint16_t, uint16_t,
711 static struct block
*gen_port6(compiler_state_t
*, uint16_t, int, int);
712 static struct block
*gen_port6_common(compiler_state_t
*, int, struct block
*);
713 static struct block
*gen_portrange6(compiler_state_t
*, uint16_t, uint16_t,
715 static int lookup_proto(compiler_state_t
*, const char *, int);
716 #if !defined(NO_PROTOCHAIN)
717 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
718 #endif /* !defined(NO_PROTOCHAIN) */
719 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
720 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
721 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
722 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
723 static struct block
*gen_len(compiler_state_t
*, int, int);
724 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
726 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
727 bpf_u_int32
, int, int);
728 static struct block
*gen_atmtype_llc(compiler_state_t
*);
729 static struct block
*gen_msg_abbrev(compiler_state_t
*, const uint8_t);
730 static struct block
*gen_atm_prototype(compiler_state_t
*, const uint8_t);
731 static struct block
*gen_atm_vpi(compiler_state_t
*, const uint8_t);
732 static struct block
*gen_atm_vci(compiler_state_t
*, const uint16_t);
735 initchunks(compiler_state_t
*cstate
)
739 for (i
= 0; i
< NCHUNKS
; i
++) {
740 cstate
->chunks
[i
].n_left
= 0;
741 cstate
->chunks
[i
].m
= NULL
;
743 cstate
->cur_chunk
= 0;
747 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
753 /* Round up to chunk alignment. */
754 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
756 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
757 if (n
> cp
->n_left
) {
759 k
= ++cstate
->cur_chunk
;
761 bpf_set_error(cstate
, "out of memory");
764 size
= CHUNK0SIZE
<< k
;
765 cp
->m
= (void *)malloc(size
);
767 bpf_set_error(cstate
, "out of memory");
770 memset((char *)cp
->m
, 0, size
);
773 bpf_set_error(cstate
, "out of memory");
778 return (void *)((char *)cp
->m
+ cp
->n_left
);
782 newchunk(compiler_state_t
*cstate
, size_t n
)
786 p
= newchunk_nolongjmp(cstate
, n
);
788 longjmp(cstate
->top_ctx
, 1);
795 freechunks(compiler_state_t
*cstate
)
799 for (i
= 0; i
< NCHUNKS
; ++i
)
800 if (cstate
->chunks
[i
].m
!= NULL
)
801 free(cstate
->chunks
[i
].m
);
805 * A strdup whose allocations are freed after code generation is over.
806 * This is used by the lexical analyzer, so it can't longjmp; it just
807 * returns NULL on an allocation error, and the callers must check
811 sdup(compiler_state_t
*cstate
, const char *s
)
813 size_t n
= strlen(s
) + 1;
814 char *cp
= newchunk_nolongjmp(cstate
, n
);
818 pcapint_strlcpy(cp
, s
, n
);
822 static inline struct block
*
823 new_block(compiler_state_t
*cstate
, int code
)
827 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
834 static inline struct slist
*
835 new_stmt(compiler_state_t
*cstate
, int code
)
839 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
845 static struct block
*
846 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
848 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
854 static struct block
*
855 gen_retblk(compiler_state_t
*cstate
, int v
)
857 if (setjmp(cstate
->top_ctx
)) {
859 * gen_retblk() only fails because a memory
860 * allocation failed in newchunk(), meaning
861 * that it can't return a pointer.
867 return gen_retblk_internal(cstate
, v
);
870 static inline PCAP_NORETURN_DEF
void
871 syntax(compiler_state_t
*cstate
)
873 bpf_error(cstate
, "syntax error in filter expression");
877 * For the given integer return a string with the keyword (or the nominal
878 * keyword if there is more than one). This is a simpler version of tok2str()
879 * in tcpdump because in this problem space a valid integer value is not
883 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
886 static char buf
[4][64];
889 if (id
< size
&& tokens
[id
])
892 char *ret
= buf
[idx
];
893 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
894 ret
[0] = '\0'; // just in case
895 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
899 // protocol qualifier keywords
901 pqkw(const unsigned id
)
903 const char * tokens
[] = {
915 [Q_DECNET
] = "decnet",
921 [Q_ICMPV6
] = "icmp6",
933 [Q_NETBEUI
] = "netbeui",
936 [Q_ISIS_IIH
] = "iih",
937 [Q_ISIS_SNP
] = "snp",
938 [Q_ISIS_CSNP
] = "csnp",
939 [Q_ISIS_PSNP
] = "psnp",
940 [Q_ISIS_LSP
] = "lsp",
944 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
947 // direction qualifier keywords
949 dqkw(const unsigned id
)
951 const char * map
[] = {
954 [Q_OR
] = "src or dst",
955 [Q_AND
] = "src and dst",
963 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
968 atmkw(const unsigned id
)
970 const char * tokens
[] = {
973 [A_OAMF4SC
] = "oamf4sc",
974 [A_OAMF4EC
] = "oamf4ec",
982 [A_CONNECTMSG
] = "connectmsg",
983 [A_METACONNECT
] = "metaconnect",
985 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
990 ss7kw(const unsigned id
)
992 const char * tokens
[] = {
1008 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1011 static PCAP_NORETURN_DEF
void
1012 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1014 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1015 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1019 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1021 if (cstate
->linktype
!= DLT_PFLOG
)
1022 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1026 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1029 * Belt and braces: init_linktype() sets either all of these struct
1030 * members (for DLT_SUNATM) or none (otherwise).
1032 if (cstate
->linktype
!= DLT_SUNATM
||
1034 cstate
->off_vpi
== OFFSET_NOT_SET
||
1035 cstate
->off_vci
== OFFSET_NOT_SET
||
1036 cstate
->off_proto
== OFFSET_NOT_SET
||
1037 cstate
->off_payload
== OFFSET_NOT_SET
)
1038 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1042 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1044 switch (cstate
->linktype
) {
1047 case DLT_MTP2_WITH_PHDR
:
1048 // Belt and braces, same as in assert_atm().
1049 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1050 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1051 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1052 cstate
->off_sls
!= OFFSET_NOT_SET
)
1055 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1059 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1060 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1063 bpf_error(cstate
, "%s %u greater than maximum %u",
1067 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1068 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1069 #define ERRSTR_UNKNOWN_MAC48HOST "unknown Ethernet-like host '%s'"
1071 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1073 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1081 return IPPROTO_SCTP
;
1085 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1089 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1090 const char *buf
, int optimize
, bpf_u_int32 mask
)
1096 compiler_state_t cstate
;
1097 yyscan_t scanner
= NULL
;
1098 YY_BUFFER_STATE in_buffer
= NULL
;
1103 * If this pcap_t hasn't been activated, it doesn't have a
1104 * link-layer type, so we can't use it.
1106 if (!p
->activated
) {
1107 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1108 "not-yet-activated pcap_t passed to pcap_compile");
1109 return (PCAP_ERROR
);
1114 * Initialize Winsock, asking for the latest version (2.2),
1115 * as we may be calling Winsock routines to translate
1116 * host names to addresses.
1118 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1120 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1121 err
, "Error calling WSAStartup()");
1122 return (PCAP_ERROR
);
1126 #ifdef ENABLE_REMOTE
1128 * If the device on which we're capturing need to be notified
1129 * that a new filter is being compiled, do so.
1131 * This allows them to save a copy of it, in case, for example,
1132 * they're implementing a form of remote packet capture, and
1133 * want the remote machine to filter out the packets in which
1134 * it's sending the packets it's captured.
1136 * XXX - the fact that we happen to be compiling a filter
1137 * doesn't necessarily mean we'll be installing it as the
1138 * filter for this pcap_t; we might be running it from userland
1139 * on captured packets to do packet classification. We really
1140 * need a better way of handling this, but this is all that
1141 * the WinPcap remote capture code did.
1143 if (p
->save_current_filter_op
!= NULL
)
1144 (p
->save_current_filter_op
)(p
, buf
);
1147 initchunks(&cstate
);
1148 cstate
.no_optimize
= 0;
1153 cstate
.ic
.root
= NULL
;
1154 cstate
.ic
.cur_mark
= 0;
1155 cstate
.bpf_pcap
= p
;
1156 cstate
.error_set
= 0;
1159 cstate
.netmask
= mask
;
1161 cstate
.snaplen
= pcap_snapshot(p
);
1162 if (cstate
.snaplen
== 0) {
1163 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1164 "snaplen of 0 rejects all packets");
1169 if (pcap_lex_init(&scanner
) != 0) {
1170 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1171 errno
, "can't initialize scanner");
1175 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1178 * Associate the compiler state with the lexical analyzer
1181 pcap_set_extra(&cstate
, scanner
);
1183 if (init_linktype(&cstate
, p
) == -1) {
1187 if (pcap_parse(scanner
, &cstate
) != 0) {
1189 if (cstate
.ai
!= NULL
)
1190 freeaddrinfo(cstate
.ai
);
1192 if (cstate
.e
!= NULL
)
1198 if (cstate
.ic
.root
== NULL
) {
1199 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1202 * Catch errors reported by gen_retblk().
1204 if (cstate
.ic
.root
== NULL
) {
1210 if (optimize
&& !cstate
.no_optimize
) {
1211 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1216 if (cstate
.ic
.root
== NULL
||
1217 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1218 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1219 "expression rejects all packets");
1224 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1225 cstate
.ic
.root
, &len
, p
->errbuf
);
1226 if (program
->bf_insns
== NULL
) {
1231 program
->bf_len
= len
;
1233 rc
= 0; /* We're all okay */
1237 * Clean up everything for the lexical analyzer.
1239 if (in_buffer
!= NULL
)
1240 pcap__delete_buffer(in_buffer
, scanner
);
1241 if (scanner
!= NULL
)
1242 pcap_lex_destroy(scanner
);
1245 * Clean up our own allocated memory.
1247 freechunks(&cstate
);
1257 * entry point for using the compiler with no pcap open
1258 * pass in all the stuff that is needed explicitly instead.
1261 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1262 struct bpf_program
*program
,
1263 const char *buf
, int optimize
, bpf_u_int32 mask
)
1268 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1270 return (PCAP_ERROR
);
1271 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1277 * Clean up a "struct bpf_program" by freeing all the memory allocated
1281 pcap_freecode(struct bpf_program
*program
)
1283 program
->bf_len
= 0;
1284 if (program
->bf_insns
!= NULL
) {
1285 free((char *)program
->bf_insns
);
1286 program
->bf_insns
= NULL
;
1291 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1292 * which of the jt and jf fields has been resolved and which is a pointer
1293 * back to another unresolved block (or nil). At least one of the fields
1294 * in each block is already resolved.
1297 backpatch(struct block
*list
, struct block
*target
)
1314 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1315 * which of jt and jf is the link.
1318 merge(struct block
*b0
, struct block
*b1
)
1320 register struct block
**p
= &b0
;
1322 /* Find end of list. */
1324 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1326 /* Concatenate the lists. */
1331 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1334 * Catch errors reported by us and routines below us, and return -1
1337 if (setjmp(cstate
->top_ctx
))
1341 * Insert before the statements of the first (root) block any
1342 * statements needed to load the lengths of any variable-length
1343 * headers into registers.
1345 * XXX - a fancier strategy would be to insert those before the
1346 * statements of all blocks that use those lengths and that
1347 * have no predecessors that use them, so that we only compute
1348 * the lengths if we need them. There might be even better
1349 * approaches than that.
1351 * However, those strategies would be more complicated, and
1352 * as we don't generate code to compute a length if the
1353 * program has no tests that use the length, and as most
1354 * tests will probably use those lengths, we would just
1355 * postpone computing the lengths so that it's not done
1356 * for tests that fail early, and it's not clear that's
1359 insert_compute_vloffsets(cstate
, p
->head
);
1362 * For DLT_PPI captures, generate a check of the per-packet
1363 * DLT value to make sure it's DLT_IEEE802_11.
1365 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1366 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1367 * with appropriate Ethernet information and use that rather
1368 * than using something such as DLT_PPI where you don't know
1369 * the link-layer header type until runtime, which, in the
1370 * general case, would force us to generate both Ethernet *and*
1371 * 802.11 code (*and* anything else for which PPI is used)
1372 * and choose between them early in the BPF program?
1374 if (cstate
->linktype
== DLT_PPI
) {
1375 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1376 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1377 gen_and(ppi_dlt_check
, p
);
1380 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1381 p
->sense
= !p
->sense
;
1382 backpatch(p
, gen_retblk_internal(cstate
, 0));
1383 cstate
->ic
.root
= p
->head
;
1388 gen_and(struct block
*b0
, struct block
*b1
)
1390 backpatch(b0
, b1
->head
);
1391 b0
->sense
= !b0
->sense
;
1392 b1
->sense
= !b1
->sense
;
1394 b1
->sense
= !b1
->sense
;
1395 b1
->head
= b0
->head
;
1399 gen_or(struct block
*b0
, struct block
*b1
)
1401 b0
->sense
= !b0
->sense
;
1402 backpatch(b0
, b1
->head
);
1403 b0
->sense
= !b0
->sense
;
1405 b1
->head
= b0
->head
;
1409 gen_not(struct block
*b
)
1411 b
->sense
= !b
->sense
;
1414 static struct block
*
1415 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1416 u_int size
, bpf_u_int32 v
)
1418 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1421 static struct block
*
1422 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1423 u_int size
, bpf_u_int32 v
)
1425 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1428 static struct block
*
1429 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1430 u_int size
, bpf_u_int32 v
)
1432 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1435 static struct block
*
1436 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1437 u_int size
, bpf_u_int32 v
)
1439 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1442 static struct block
*
1443 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1444 u_int size
, bpf_u_int32 v
)
1446 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1449 static struct block
*
1450 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1451 u_int size
, bpf_u_int32 v
)
1453 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1456 static struct block
*
1457 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1458 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1461 * For any A: if mask == 0, it means A & mask == 0, so the result is
1462 * true iff v == 0. In this case ideally the caller should have
1463 * skipped this invocation and have fewer statement blocks to juggle.
1464 * If the caller could have skipped, but has not, produce a block with
1467 * This could be done in gen_ncmp() in a more generic way, but this
1468 * function is the only code path that can have mask == 0.
1471 return v
? gen_false(cstate
) : gen_true(cstate
);
1473 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1476 static struct block
*
1477 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1478 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1480 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1483 static struct block
*
1484 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1485 u_int size
, const u_char
*v
)
1487 register struct block
*b
, *tmp
;
1491 register const u_char
*p
= &v
[size
- 4];
1493 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1501 register const u_char
*p
= &v
[size
- 2];
1503 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1511 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1519 static struct block
*
1520 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1522 struct block
*b
= new_block(cstate
, JMP(jtype
));
1528 static struct block
*
1529 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1531 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1534 static struct block
*
1535 gen_unset(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1537 struct block
*b
= gen_set(cstate
, v
, stmts
);
1543 * AND the field of size "size" at offset "offset" relative to the header
1544 * specified by "offrel" with "mask", and compare it with the value "v"
1545 * with the test specified by "jtype"; if "reverse" is true, the test
1546 * should test the opposite of "jtype".
1548 static struct block
*
1549 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1550 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1553 struct slist
*s
, *s2
;
1556 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1558 if (mask
!= 0xffffffff) {
1559 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1564 b
= gen_jmp(cstate
, jtype
, v
, s
);
1571 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1573 cstate
->pcap_fddipad
= p
->fddipad
;
1576 * We start out with only one link-layer header.
1578 cstate
->outermostlinktype
= pcap_datalink(p
);
1579 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1580 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1581 cstate
->off_outermostlinkhdr
.reg
= -1;
1583 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1584 cstate
->off_prevlinkhdr
.constant_part
= 0;
1585 cstate
->off_prevlinkhdr
.is_variable
= 0;
1586 cstate
->off_prevlinkhdr
.reg
= -1;
1588 cstate
->linktype
= cstate
->outermostlinktype
;
1589 cstate
->off_linkhdr
.constant_part
= 0;
1590 cstate
->off_linkhdr
.is_variable
= 0;
1591 cstate
->off_linkhdr
.reg
= -1;
1596 cstate
->off_linkpl
.constant_part
= 0;
1597 cstate
->off_linkpl
.is_variable
= 0;
1598 cstate
->off_linkpl
.reg
= -1;
1600 cstate
->off_linktype
.constant_part
= 0;
1601 cstate
->off_linktype
.is_variable
= 0;
1602 cstate
->off_linktype
.reg
= -1;
1605 * Assume it's not raw ATM with a pseudo-header, for now.
1608 cstate
->off_vpi
= OFFSET_NOT_SET
;
1609 cstate
->off_vci
= OFFSET_NOT_SET
;
1610 cstate
->off_proto
= OFFSET_NOT_SET
;
1611 cstate
->off_payload
= OFFSET_NOT_SET
;
1614 * And not encapsulated with either Geneve or VXLAN.
1616 cstate
->is_encap
= 0;
1619 * No variable length VLAN offset by default
1621 cstate
->is_vlan_vloffset
= 0;
1624 * And assume we're not doing SS7.
1626 cstate
->off_li
= OFFSET_NOT_SET
;
1627 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1628 cstate
->off_sio
= OFFSET_NOT_SET
;
1629 cstate
->off_opc
= OFFSET_NOT_SET
;
1630 cstate
->off_dpc
= OFFSET_NOT_SET
;
1631 cstate
->off_sls
= OFFSET_NOT_SET
;
1633 cstate
->label_stack_depth
= 0;
1634 cstate
->vlan_stack_depth
= 0;
1636 switch (cstate
->linktype
) {
1639 cstate
->off_linktype
.constant_part
= 2;
1640 cstate
->off_linkpl
.constant_part
= 6;
1641 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1642 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1645 case DLT_ARCNET_LINUX
:
1646 cstate
->off_linktype
.constant_part
= 4;
1647 cstate
->off_linkpl
.constant_part
= 8;
1648 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1649 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1653 cstate
->off_linktype
.constant_part
= 12;
1654 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1655 cstate
->off_nl
= 0; /* Ethernet II */
1656 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1661 * SLIP doesn't have a link level type. The 16 byte
1662 * header is hacked into our SLIP driver.
1664 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1665 cstate
->off_linkpl
.constant_part
= 16;
1667 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1670 case DLT_SLIP_BSDOS
:
1671 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1672 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1674 cstate
->off_linkpl
.constant_part
= 24;
1676 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1681 cstate
->off_linktype
.constant_part
= 0;
1682 cstate
->off_linkpl
.constant_part
= 4;
1684 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1688 cstate
->off_linktype
.constant_part
= 0;
1689 cstate
->off_linkpl
.constant_part
= 12;
1691 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1696 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1697 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1698 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1699 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1700 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1702 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1707 * This does not include the Ethernet header, and
1708 * only covers session state.
1710 cstate
->off_linktype
.constant_part
= 6;
1711 cstate
->off_linkpl
.constant_part
= 8;
1713 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1717 cstate
->off_linktype
.constant_part
= 5;
1718 cstate
->off_linkpl
.constant_part
= 24;
1720 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1725 * FDDI doesn't really have a link-level type field.
1726 * We set "off_linktype" to the offset of the LLC header.
1728 * To check for Ethernet types, we assume that SSAP = SNAP
1729 * is being used and pick out the encapsulated Ethernet type.
1730 * XXX - should we generate code to check for SNAP?
1732 cstate
->off_linktype
.constant_part
= 13;
1733 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1734 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1735 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1736 cstate
->off_nl
= 8; /* 802.2+SNAP */
1737 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1742 * Token Ring doesn't really have a link-level type field.
1743 * We set "off_linktype" to the offset of the LLC header.
1745 * To check for Ethernet types, we assume that SSAP = SNAP
1746 * is being used and pick out the encapsulated Ethernet type.
1747 * XXX - should we generate code to check for SNAP?
1749 * XXX - the header is actually variable-length.
1750 * Some various Linux patched versions gave 38
1751 * as "off_linktype" and 40 as "off_nl"; however,
1752 * if a token ring packet has *no* routing
1753 * information, i.e. is not source-routed, the correct
1754 * values are 20 and 22, as they are in the vanilla code.
1756 * A packet is source-routed iff the uppermost bit
1757 * of the first byte of the source address, at an
1758 * offset of 8, has the uppermost bit set. If the
1759 * packet is source-routed, the total number of bytes
1760 * of routing information is 2 plus bits 0x1F00 of
1761 * the 16-bit value at an offset of 14 (shifted right
1762 * 8 - figure out which byte that is).
1764 cstate
->off_linktype
.constant_part
= 14;
1765 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1766 cstate
->off_nl
= 8; /* 802.2+SNAP */
1767 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1770 case DLT_PRISM_HEADER
:
1771 case DLT_IEEE802_11_RADIO_AVS
:
1772 case DLT_IEEE802_11_RADIO
:
1773 cstate
->off_linkhdr
.is_variable
= 1;
1774 /* Fall through, 802.11 doesn't have a variable link
1775 * prefix but is otherwise the same. */
1778 case DLT_IEEE802_11
:
1780 * 802.11 doesn't really have a link-level type field.
1781 * We set "off_linktype.constant_part" to the offset of
1784 * To check for Ethernet types, we assume that SSAP = SNAP
1785 * is being used and pick out the encapsulated Ethernet type.
1786 * XXX - should we generate code to check for SNAP?
1788 * We also handle variable-length radio headers here.
1789 * The Prism header is in theory variable-length, but in
1790 * practice it's always 144 bytes long. However, some
1791 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1792 * sometimes or always supply an AVS header, so we
1793 * have to check whether the radio header is a Prism
1794 * header or an AVS header, so, in practice, it's
1797 cstate
->off_linktype
.constant_part
= 24;
1798 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1799 cstate
->off_linkpl
.is_variable
= 1;
1800 cstate
->off_nl
= 8; /* 802.2+SNAP */
1801 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1806 * At the moment we treat PPI the same way that we treat
1807 * normal Radiotap encoded packets. The difference is in
1808 * the function that generates the code at the beginning
1809 * to compute the header length. Since this code generator
1810 * of PPI supports bare 802.11 encapsulation only (i.e.
1811 * the encapsulated DLT should be DLT_IEEE802_11) we
1812 * generate code to check for this too.
1814 cstate
->off_linktype
.constant_part
= 24;
1815 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1816 cstate
->off_linkpl
.is_variable
= 1;
1817 cstate
->off_linkhdr
.is_variable
= 1;
1818 cstate
->off_nl
= 8; /* 802.2+SNAP */
1819 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1822 case DLT_ATM_RFC1483
:
1823 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1825 * assume routed, non-ISO PDUs
1826 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1828 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1829 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1830 * latter would presumably be treated the way PPPoE
1831 * should be, so you can do "pppoe and udp port 2049"
1832 * or "pppoa and tcp port 80" and have it check for
1833 * PPPo{A,E} and a PPP protocol of IP and....
1835 cstate
->off_linktype
.constant_part
= 0;
1836 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1837 cstate
->off_nl
= 8; /* 802.2+SNAP */
1838 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1843 * Full Frontal ATM; you get AALn PDUs with an ATM
1847 cstate
->off_vpi
= SUNATM_VPI_POS
;
1848 cstate
->off_vci
= SUNATM_VCI_POS
;
1849 cstate
->off_proto
= PROTO_POS
;
1850 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1851 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1852 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1853 cstate
->off_nl
= 8; /* 802.2+SNAP */
1854 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1860 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1861 cstate
->off_linkpl
.constant_part
= 0;
1863 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1866 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1867 cstate
->off_linktype
.constant_part
= 14;
1868 cstate
->off_linkpl
.constant_part
= 16;
1870 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1873 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1874 cstate
->off_linktype
.constant_part
= 0;
1875 cstate
->off_linkpl
.constant_part
= 20;
1877 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1882 * LocalTalk does have a 1-byte type field in the LLAP header,
1883 * but really it just indicates whether there is a "short" or
1884 * "long" DDP packet following.
1886 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1887 cstate
->off_linkpl
.constant_part
= 0;
1889 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1892 case DLT_IP_OVER_FC
:
1894 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1895 * link-level type field. We set "off_linktype" to the
1896 * offset of the LLC header.
1898 * To check for Ethernet types, we assume that SSAP = SNAP
1899 * is being used and pick out the encapsulated Ethernet type.
1900 * XXX - should we generate code to check for SNAP? RFC
1901 * 2625 says SNAP should be used.
1903 cstate
->off_linktype
.constant_part
= 16;
1904 cstate
->off_linkpl
.constant_part
= 16;
1905 cstate
->off_nl
= 8; /* 802.2+SNAP */
1906 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1911 * XXX - we should set this to handle SNAP-encapsulated
1912 * frames (NLPID of 0x80).
1914 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1915 cstate
->off_linkpl
.constant_part
= 0;
1917 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1921 * the only BPF-interesting FRF.16 frames are non-control frames;
1922 * Frame Relay has a variable length link-layer
1923 * so lets start with offset 4 for now and increments later on (FIXME);
1926 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1927 cstate
->off_linkpl
.constant_part
= 0;
1929 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1932 case DLT_APPLE_IP_OVER_IEEE1394
:
1933 cstate
->off_linktype
.constant_part
= 16;
1934 cstate
->off_linkpl
.constant_part
= 18;
1936 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1939 case DLT_SYMANTEC_FIREWALL
:
1940 cstate
->off_linktype
.constant_part
= 6;
1941 cstate
->off_linkpl
.constant_part
= 44;
1942 cstate
->off_nl
= 0; /* Ethernet II */
1943 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1947 cstate
->off_linktype
.constant_part
= 0;
1948 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1949 cstate
->off_linkpl
.is_variable
= 1;
1951 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1954 case DLT_JUNIPER_MFR
:
1955 case DLT_JUNIPER_MLFR
:
1956 case DLT_JUNIPER_MLPPP
:
1957 case DLT_JUNIPER_PPP
:
1958 case DLT_JUNIPER_CHDLC
:
1959 case DLT_JUNIPER_FRELAY
:
1960 cstate
->off_linktype
.constant_part
= 4;
1961 cstate
->off_linkpl
.constant_part
= 4;
1963 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1966 case DLT_JUNIPER_ATM1
:
1967 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1968 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1970 cstate
->off_nl_nosnap
= 10;
1973 case DLT_JUNIPER_ATM2
:
1974 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1975 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1977 cstate
->off_nl_nosnap
= 10;
1980 /* frames captured on a Juniper PPPoE service PIC
1981 * contain raw ethernet frames */
1982 case DLT_JUNIPER_PPPOE
:
1983 case DLT_JUNIPER_ETHER
:
1984 cstate
->off_linkpl
.constant_part
= 14;
1985 cstate
->off_linktype
.constant_part
= 16;
1986 cstate
->off_nl
= 18; /* Ethernet II */
1987 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1990 case DLT_JUNIPER_PPPOE_ATM
:
1991 cstate
->off_linktype
.constant_part
= 4;
1992 cstate
->off_linkpl
.constant_part
= 6;
1994 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1997 case DLT_JUNIPER_GGSN
:
1998 cstate
->off_linktype
.constant_part
= 6;
1999 cstate
->off_linkpl
.constant_part
= 12;
2001 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2004 case DLT_JUNIPER_ES
:
2005 cstate
->off_linktype
.constant_part
= 6;
2006 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2007 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2008 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2011 case DLT_JUNIPER_MONITOR
:
2012 cstate
->off_linktype
.constant_part
= 12;
2013 cstate
->off_linkpl
.constant_part
= 12;
2014 cstate
->off_nl
= 0; /* raw IP/IP6 header */
2015 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2018 case DLT_BACNET_MS_TP
:
2019 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2020 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2021 cstate
->off_nl
= OFFSET_NOT_SET
;
2022 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2025 case DLT_JUNIPER_SERVICES
:
2026 cstate
->off_linktype
.constant_part
= 12;
2027 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2028 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2029 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2032 case DLT_JUNIPER_VP
:
2033 cstate
->off_linktype
.constant_part
= 18;
2034 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2035 cstate
->off_nl
= OFFSET_NOT_SET
;
2036 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2039 case DLT_JUNIPER_ST
:
2040 cstate
->off_linktype
.constant_part
= 18;
2041 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2042 cstate
->off_nl
= OFFSET_NOT_SET
;
2043 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2046 case DLT_JUNIPER_ISM
:
2047 cstate
->off_linktype
.constant_part
= 8;
2048 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2049 cstate
->off_nl
= OFFSET_NOT_SET
;
2050 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2053 case DLT_JUNIPER_VS
:
2054 case DLT_JUNIPER_SRX_E2E
:
2055 case DLT_JUNIPER_FIBRECHANNEL
:
2056 case DLT_JUNIPER_ATM_CEMIC
:
2057 cstate
->off_linktype
.constant_part
= 8;
2058 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2059 cstate
->off_nl
= OFFSET_NOT_SET
;
2060 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2065 cstate
->off_li_hsl
= 4;
2066 cstate
->off_sio
= 3;
2067 cstate
->off_opc
= 4;
2068 cstate
->off_dpc
= 4;
2069 cstate
->off_sls
= 7;
2070 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2071 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2072 cstate
->off_nl
= OFFSET_NOT_SET
;
2073 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2076 case DLT_MTP2_WITH_PHDR
:
2078 cstate
->off_li_hsl
= 8;
2079 cstate
->off_sio
= 7;
2080 cstate
->off_opc
= 8;
2081 cstate
->off_dpc
= 8;
2082 cstate
->off_sls
= 11;
2083 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2084 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2085 cstate
->off_nl
= OFFSET_NOT_SET
;
2086 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2090 cstate
->off_li
= 22;
2091 cstate
->off_li_hsl
= 24;
2092 cstate
->off_sio
= 23;
2093 cstate
->off_opc
= 24;
2094 cstate
->off_dpc
= 24;
2095 cstate
->off_sls
= 27;
2096 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2097 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2098 cstate
->off_nl
= OFFSET_NOT_SET
;
2099 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2103 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2104 cstate
->off_linkpl
.constant_part
= 4;
2106 cstate
->off_nl_nosnap
= 0;
2111 * Currently, only raw "link[N:M]" filtering is supported.
2113 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2114 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2115 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2116 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2120 cstate
->off_linktype
.constant_part
= 1;
2121 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2123 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2126 case DLT_NETANALYZER
:
2127 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2128 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2129 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2130 cstate
->off_nl
= 0; /* Ethernet II */
2131 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2134 case DLT_NETANALYZER_TRANSPARENT
:
2135 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2136 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2137 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2138 cstate
->off_nl
= 0; /* Ethernet II */
2139 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2144 * For values in the range in which we've assigned new
2145 * DLT_ values, only raw "link[N:M]" filtering is supported.
2147 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2148 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2149 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2150 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2151 cstate
->off_nl
= OFFSET_NOT_SET
;
2152 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2154 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2155 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2161 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2166 * Load a value relative to the specified absolute offset.
2168 static struct slist
*
2169 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2170 u_int offset
, u_int size
)
2172 struct slist
*s
, *s2
;
2174 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2177 * If "s" is non-null, it has code to arrange that the X register
2178 * contains the variable part of the absolute offset, so we
2179 * generate a load relative to that, with an offset of
2180 * abs_offset->constant_part + offset.
2182 * Otherwise, we can do an absolute load with an offset of
2183 * abs_offset->constant_part + offset.
2187 * "s" points to a list of statements that puts the
2188 * variable part of the absolute offset into the X register.
2189 * Do an indirect load, to use the X register as an offset.
2191 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2192 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2196 * There is no variable part of the absolute offset, so
2197 * just do an absolute load.
2199 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2200 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2206 * Load a value relative to the beginning of the specified header.
2208 static struct slist
*
2209 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2212 struct slist
*s
, *s2
;
2215 * Squelch warnings from compilers that *don't* assume that
2216 * offrel always has a valid enum value and therefore don't
2217 * assume that we'll always go through one of the case arms.
2219 * If we have a default case, compilers that *do* assume that
2220 * will then complain about the default case code being
2223 * Damned if you do, damned if you don't.
2230 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2235 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2238 case OR_PREVLINKHDR
:
2239 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2243 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2246 case OR_PREVMPLSHDR
:
2247 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2251 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2254 case OR_LINKPL_NOSNAP
:
2255 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2259 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2264 * Load the X register with the length of the IPv4 header
2265 * (plus the offset of the link-layer header, if it's
2266 * preceded by a variable-length header such as a radio
2267 * header), in bytes.
2269 s
= gen_loadx_iphdrlen(cstate
);
2272 * Load the item at {offset of the link-layer payload} +
2273 * {offset, relative to the start of the link-layer
2274 * payload, of the IPv4 header} + {length of the IPv4 header} +
2275 * {specified offset}.
2277 * If the offset of the link-layer payload is variable,
2278 * the variable part of that offset is included in the
2279 * value in the X register, and we include the constant
2280 * part in the offset of the load.
2282 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2283 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2288 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2295 * Generate code to load into the X register the sum of the length of
2296 * the IPv4 header and the variable part of the offset of the link-layer
2299 static struct slist
*
2300 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2302 struct slist
*s
, *s2
;
2304 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2307 * The offset of the link-layer payload has a variable
2308 * part. "s" points to a list of statements that put
2309 * the variable part of that offset into the X register.
2311 * The 4*([k]&0xf) addressing mode can't be used, as we
2312 * don't have a constant offset, so we have to load the
2313 * value in question into the A register and add to it
2314 * the value from the X register.
2316 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2317 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2319 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2322 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2327 * The A register now contains the length of the IP header.
2328 * We need to add to it the variable part of the offset of
2329 * the link-layer payload, which is still in the X
2330 * register, and move the result into the X register.
2332 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2333 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2336 * The offset of the link-layer payload is a constant,
2337 * so no code was generated to load the (nonexistent)
2338 * variable part of that offset.
2340 * This means we can use the 4*([k]&0xf) addressing
2341 * mode. Load the length of the IPv4 header, which
2342 * is at an offset of cstate->off_nl from the beginning of
2343 * the link-layer payload, and thus at an offset of
2344 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2345 * of the raw packet data, using that addressing mode.
2347 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2348 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2354 static struct block
*
2355 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2359 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2361 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2364 static inline struct block
*
2365 gen_true(compiler_state_t
*cstate
)
2367 return gen_uncond(cstate
, 1);
2370 static inline struct block
*
2371 gen_false(compiler_state_t
*cstate
)
2373 return gen_uncond(cstate
, 0);
2377 * Generate code to match a particular packet type.
2379 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2380 * value, if <= ETHERMTU. We use that to determine whether to
2381 * match the type/length field or to check the type/length field for
2382 * a value <= ETHERMTU to see whether it's a type field and then do
2383 * the appropriate test.
2385 static struct block
*
2386 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2388 struct block
*b0
, *b1
;
2394 case LLCSAP_NETBEUI
:
2396 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2397 * so we check the DSAP and SSAP.
2399 * LLCSAP_IP checks for IP-over-802.2, rather
2400 * than IP-over-Ethernet or IP-over-SNAP.
2402 * XXX - should we check both the DSAP and the
2403 * SSAP, like this, or should we check just the
2404 * DSAP, as we do for other types <= ETHERMTU
2405 * (i.e., other SAP values)?
2407 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2408 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2416 * Ethernet_II frames, which are Ethernet
2417 * frames with a frame type of ETHERTYPE_IPX;
2419 * Ethernet_802.3 frames, which are 802.3
2420 * frames (i.e., the type/length field is
2421 * a length field, <= ETHERMTU, rather than
2422 * a type field) with the first two bytes
2423 * after the Ethernet/802.3 header being
2426 * Ethernet_802.2 frames, which are 802.3
2427 * frames with an 802.2 LLC header and
2428 * with the IPX LSAP as the DSAP in the LLC
2431 * Ethernet_SNAP frames, which are 802.3
2432 * frames with an LLC header and a SNAP
2433 * header and with an OUI of 0x000000
2434 * (encapsulated Ethernet) and a protocol
2435 * ID of ETHERTYPE_IPX in the SNAP header.
2437 * XXX - should we generate the same code both
2438 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2442 * This generates code to check both for the
2443 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2445 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2446 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2450 * Now we add code to check for SNAP frames with
2451 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2453 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2457 * Now we generate code to check for 802.3
2458 * frames in general.
2460 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2463 * Now add the check for 802.3 frames before the
2464 * check for Ethernet_802.2 and Ethernet_802.3,
2465 * as those checks should only be done on 802.3
2466 * frames, not on Ethernet frames.
2471 * Now add the check for Ethernet_II frames, and
2472 * do that before checking for the other frame
2475 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2479 case ETHERTYPE_ATALK
:
2480 case ETHERTYPE_AARP
:
2482 * EtherTalk (AppleTalk protocols on Ethernet link
2483 * layer) may use 802.2 encapsulation.
2487 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2488 * we check for an Ethernet type field less or equal than
2489 * 1500, which means it's an 802.3 length field.
2491 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2494 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2495 * SNAP packets with an organization code of
2496 * 0x080007 (Apple, for Appletalk) and a protocol
2497 * type of ETHERTYPE_ATALK (Appletalk).
2499 * 802.2-encapsulated ETHERTYPE_AARP packets are
2500 * SNAP packets with an organization code of
2501 * 0x000000 (encapsulated Ethernet) and a protocol
2502 * type of ETHERTYPE_AARP (Appletalk ARP).
2504 if (ll_proto
== ETHERTYPE_ATALK
)
2505 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2506 else /* ll_proto == ETHERTYPE_AARP */
2507 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2511 * Check for Ethernet encapsulation (Ethertalk
2512 * phase 1?); we just check for the Ethernet
2515 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2521 if (ll_proto
<= ETHERMTU
) {
2522 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2524 * This is an LLC SAP value, so the frames
2525 * that match would be 802.2 frames.
2526 * Check that the frame is an 802.2 frame
2527 * (i.e., that the length/type field is
2528 * a length field, <= ETHERMTU) and
2529 * then check the DSAP.
2531 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2532 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2536 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2538 * This is an Ethernet type, so compare
2539 * the length/type field with it (if
2540 * the frame is an 802.2 frame, the length
2541 * field will be <= ETHERMTU, and, as
2542 * "ll_proto" is > ETHERMTU, this test
2543 * will fail and the frame won't match,
2544 * which is what we want).
2546 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2551 static struct block
*
2552 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2555 * For DLT_NULL, the link-layer header is a 32-bit word
2556 * containing an AF_ value in *host* byte order, and for
2557 * DLT_ENC, the link-layer header begins with a 32-bit
2558 * word containing an AF_ value in host byte order.
2560 * In addition, if we're reading a saved capture file,
2561 * the host byte order in the capture may not be the
2562 * same as the host byte order on this machine.
2564 * For DLT_LOOP, the link-layer header is a 32-bit
2565 * word containing an AF_ value in *network* byte order.
2567 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2569 * The AF_ value is in host byte order, but the BPF
2570 * interpreter will convert it to network byte order.
2572 * If this is a save file, and it's from a machine
2573 * with the opposite byte order to ours, we byte-swap
2576 * Then we run it through "htonl()", and generate
2577 * code to compare against the result.
2579 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2580 ll_proto
= SWAPLONG(ll_proto
);
2581 ll_proto
= htonl(ll_proto
);
2583 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2587 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2588 * or IPv6 then we have an error.
2590 static struct block
*
2591 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2596 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2599 case ETHERTYPE_IPV6
:
2600 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2607 return gen_false(cstate
);
2611 * Generate code to match a particular packet type.
2613 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2614 * value, if <= ETHERMTU. We use that to determine whether to
2615 * match the type field or to check the type field for the special
2616 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2618 static struct block
*
2619 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2621 struct block
*b0
, *b1
;
2627 case LLCSAP_NETBEUI
:
2629 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2630 * so we check the DSAP and SSAP.
2632 * LLCSAP_IP checks for IP-over-802.2, rather
2633 * than IP-over-Ethernet or IP-over-SNAP.
2635 * XXX - should we check both the DSAP and the
2636 * SSAP, like this, or should we check just the
2637 * DSAP, as we do for other types <= ETHERMTU
2638 * (i.e., other SAP values)?
2640 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2641 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2647 * Ethernet_II frames, which are Ethernet
2648 * frames with a frame type of ETHERTYPE_IPX;
2650 * Ethernet_802.3 frames, which have a frame
2651 * type of LINUX_SLL_P_802_3;
2653 * Ethernet_802.2 frames, which are 802.3
2654 * frames with an 802.2 LLC header (i.e, have
2655 * a frame type of LINUX_SLL_P_802_2) and
2656 * with the IPX LSAP as the DSAP in the LLC
2659 * Ethernet_SNAP frames, which are 802.3
2660 * frames with an LLC header and a SNAP
2661 * header and with an OUI of 0x000000
2662 * (encapsulated Ethernet) and a protocol
2663 * ID of ETHERTYPE_IPX in the SNAP header.
2665 * First, do the checks on LINUX_SLL_P_802_2
2666 * frames; generate the check for either
2667 * Ethernet_802.2 or Ethernet_SNAP frames, and
2668 * then put a check for LINUX_SLL_P_802_2 frames
2671 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2672 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2674 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2678 * Now check for 802.3 frames and OR that with
2679 * the previous test.
2681 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2685 * Now add the check for Ethernet_II frames, and
2686 * do that before checking for the other frame
2689 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2693 case ETHERTYPE_ATALK
:
2694 case ETHERTYPE_AARP
:
2696 * EtherTalk (AppleTalk protocols on Ethernet link
2697 * layer) may use 802.2 encapsulation.
2701 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2702 * we check for the 802.2 protocol type in the
2703 * "Ethernet type" field.
2705 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2708 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2709 * SNAP packets with an organization code of
2710 * 0x080007 (Apple, for Appletalk) and a protocol
2711 * type of ETHERTYPE_ATALK (Appletalk).
2713 * 802.2-encapsulated ETHERTYPE_AARP packets are
2714 * SNAP packets with an organization code of
2715 * 0x000000 (encapsulated Ethernet) and a protocol
2716 * type of ETHERTYPE_AARP (Appletalk ARP).
2718 if (ll_proto
== ETHERTYPE_ATALK
)
2719 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2720 else /* ll_proto == ETHERTYPE_AARP */
2721 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2725 * Check for Ethernet encapsulation (Ethertalk
2726 * phase 1?); we just check for the Ethernet
2729 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2735 if (ll_proto
<= ETHERMTU
) {
2736 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2738 * This is an LLC SAP value, so the frames
2739 * that match would be 802.2 frames.
2740 * Check for the 802.2 protocol type
2741 * in the "Ethernet type" field, and
2742 * then check the DSAP.
2744 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2745 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2750 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2752 * This is an Ethernet type, so compare
2753 * the length/type field with it (if
2754 * the frame is an 802.2 frame, the length
2755 * field will be <= ETHERMTU, and, as
2756 * "ll_proto" is > ETHERMTU, this test
2757 * will fail and the frame won't match,
2758 * which is what we want).
2760 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2766 * Load a value relative to the beginning of the link-layer header after the
2769 static struct slist
*
2770 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2772 struct slist
*s1
, *s2
;
2775 * Generate code to load the length of the pflog header into
2776 * the register assigned to hold that length, if one has been
2777 * assigned. (If one hasn't been assigned, no code we've
2778 * generated uses that prefix, so we don't need to generate any
2781 if (cstate
->off_linkpl
.reg
!= -1) {
2783 * The length is in the first byte of the header.
2785 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2789 * Round it up to a multiple of 4.
2790 * Add 3, and clear the lower 2 bits.
2792 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2795 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2796 s2
->s
.k
= 0xfffffffc;
2800 * Now allocate a register to hold that value and store
2803 s2
= new_stmt(cstate
, BPF_ST
);
2804 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2808 * Now move it into the X register.
2810 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2818 static struct slist
*
2819 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2821 struct slist
*s1
, *s2
;
2822 struct slist
*sjeq_avs_cookie
;
2823 struct slist
*sjcommon
;
2826 * This code is not compatible with the optimizer, as
2827 * we are generating jmp instructions within a normal
2828 * slist of instructions
2830 cstate
->no_optimize
= 1;
2833 * Generate code to load the length of the radio header into
2834 * the register assigned to hold that length, if one has been
2835 * assigned. (If one hasn't been assigned, no code we've
2836 * generated uses that prefix, so we don't need to generate any
2839 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2840 * or always use the AVS header rather than the Prism header.
2841 * We load a 4-byte big-endian value at the beginning of the
2842 * raw packet data, and see whether, when masked with 0xFFFFF000,
2843 * it's equal to 0x80211000. If so, that indicates that it's
2844 * an AVS header (the masked-out bits are the version number).
2845 * Otherwise, it's a Prism header.
2847 * XXX - the Prism header is also, in theory, variable-length,
2848 * but no known software generates headers that aren't 144
2851 if (cstate
->off_linkhdr
.reg
!= -1) {
2855 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2859 * AND it with 0xFFFFF000.
2861 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2862 s2
->s
.k
= 0xFFFFF000;
2866 * Compare with 0x80211000.
2868 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2869 sjeq_avs_cookie
->s
.k
= 0x80211000;
2870 sappend(s1
, sjeq_avs_cookie
);
2875 * The 4 bytes at an offset of 4 from the beginning of
2876 * the AVS header are the length of the AVS header.
2877 * That field is big-endian.
2879 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2882 sjeq_avs_cookie
->s
.jt
= s2
;
2885 * Now jump to the code to allocate a register
2886 * into which to save the header length and
2887 * store the length there. (The "jump always"
2888 * instruction needs to have the k field set;
2889 * it's added to the PC, so, as we're jumping
2890 * over a single instruction, it should be 1.)
2892 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2894 sappend(s1
, sjcommon
);
2897 * Now for the code that handles the Prism header.
2898 * Just load the length of the Prism header (144)
2899 * into the A register. Have the test for an AVS
2900 * header branch here if we don't have an AVS header.
2902 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2905 sjeq_avs_cookie
->s
.jf
= s2
;
2908 * Now allocate a register to hold that value and store
2909 * it. The code for the AVS header will jump here after
2910 * loading the length of the AVS header.
2912 s2
= new_stmt(cstate
, BPF_ST
);
2913 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2915 sjcommon
->s
.jf
= s2
;
2918 * Now move it into the X register.
2920 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2928 static struct slist
*
2929 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2931 struct slist
*s1
, *s2
;
2934 * Generate code to load the length of the AVS header into
2935 * the register assigned to hold that length, if one has been
2936 * assigned. (If one hasn't been assigned, no code we've
2937 * generated uses that prefix, so we don't need to generate any
2940 if (cstate
->off_linkhdr
.reg
!= -1) {
2942 * The 4 bytes at an offset of 4 from the beginning of
2943 * the AVS header are the length of the AVS header.
2944 * That field is big-endian.
2946 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2950 * Now allocate a register to hold that value and store
2953 s2
= new_stmt(cstate
, BPF_ST
);
2954 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2958 * Now move it into the X register.
2960 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2968 static struct slist
*
2969 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2971 struct slist
*s1
, *s2
;
2974 * Generate code to load the length of the radiotap header into
2975 * the register assigned to hold that length, if one has been
2976 * assigned. (If one hasn't been assigned, no code we've
2977 * generated uses that prefix, so we don't need to generate any
2980 if (cstate
->off_linkhdr
.reg
!= -1) {
2982 * The 2 bytes at offsets of 2 and 3 from the beginning
2983 * of the radiotap header are the length of the radiotap
2984 * header; unfortunately, it's little-endian, so we have
2985 * to load it a byte at a time and construct the value.
2989 * Load the high-order byte, at an offset of 3, shift it
2990 * left a byte, and put the result in the X register.
2992 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2994 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2997 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3001 * Load the next byte, at an offset of 2, and OR the
3002 * value from the X register into it.
3004 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3007 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3011 * Now allocate a register to hold that value and store
3014 s2
= new_stmt(cstate
, BPF_ST
);
3015 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3019 * Now move it into the X register.
3021 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3030 * At the moment we treat PPI as normal Radiotap encoded
3031 * packets. The difference is in the function that generates
3032 * the code at the beginning to compute the header length.
3033 * Since this code generator of PPI supports bare 802.11
3034 * encapsulation only (i.e. the encapsulated DLT should be
3035 * DLT_IEEE802_11) we generate code to check for this too;
3036 * that's done in finish_parse().
3038 static struct slist
*
3039 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3041 struct slist
*s1
, *s2
;
3044 * Generate code to load the length of the radiotap header
3045 * into the register assigned to hold that length, if one has
3048 if (cstate
->off_linkhdr
.reg
!= -1) {
3050 * The 2 bytes at offsets of 2 and 3 from the beginning
3051 * of the radiotap header are the length of the radiotap
3052 * header; unfortunately, it's little-endian, so we have
3053 * to load it a byte at a time and construct the value.
3057 * Load the high-order byte, at an offset of 3, shift it
3058 * left a byte, and put the result in the X register.
3060 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3062 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3065 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3069 * Load the next byte, at an offset of 2, and OR the
3070 * value from the X register into it.
3072 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3075 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3079 * Now allocate a register to hold that value and store
3082 s2
= new_stmt(cstate
, BPF_ST
);
3083 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3087 * Now move it into the X register.
3089 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3098 * Load a value relative to the beginning of the link-layer header after the 802.11
3099 * header, i.e. LLC_SNAP.
3100 * The link-layer header doesn't necessarily begin at the beginning
3101 * of the packet data; there might be a variable-length prefix containing
3102 * radio information.
3104 static struct slist
*
3105 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3108 struct slist
*sjset_data_frame_1
;
3109 struct slist
*sjset_data_frame_2
;
3110 struct slist
*sjset_qos
;
3111 struct slist
*sjset_radiotap_flags_present
;
3112 struct slist
*sjset_radiotap_ext_present
;
3113 struct slist
*sjset_radiotap_tsft_present
;
3114 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3115 struct slist
*s_roundup
;
3117 if (cstate
->off_linkpl
.reg
== -1) {
3119 * No register has been assigned to the offset of
3120 * the link-layer payload, which means nobody needs
3121 * it; don't bother computing it - just return
3122 * what we already have.
3128 * This code is not compatible with the optimizer, as
3129 * we are generating jmp instructions within a normal
3130 * slist of instructions
3132 cstate
->no_optimize
= 1;
3135 * If "s" is non-null, it has code to arrange that the X register
3136 * contains the length of the prefix preceding the link-layer
3139 * Otherwise, the length of the prefix preceding the link-layer
3140 * header is "off_outermostlinkhdr.constant_part".
3144 * There is no variable-length header preceding the
3145 * link-layer header.
3147 * Load the length of the fixed-length prefix preceding
3148 * the link-layer header (if any) into the X register,
3149 * and store it in the cstate->off_linkpl.reg register.
3150 * That length is off_outermostlinkhdr.constant_part.
3152 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3153 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3157 * The X register contains the offset of the beginning of the
3158 * link-layer header; add 24, which is the minimum length
3159 * of the MAC header for a data frame, to that, and store it
3160 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3161 * which is at the offset in the X register, with an indexed load.
3163 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3165 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3168 s2
= new_stmt(cstate
, BPF_ST
);
3169 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3172 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3177 * Check the Frame Control field to see if this is a data frame;
3178 * a data frame has the 0x08 bit (b3) in that field set and the
3179 * 0x04 bit (b2) clear.
3181 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3182 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3183 sappend(s
, sjset_data_frame_1
);
3186 * If b3 is set, test b2, otherwise go to the first statement of
3187 * the rest of the program.
3189 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3190 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3191 sappend(s
, sjset_data_frame_2
);
3192 sjset_data_frame_1
->s
.jf
= snext
;
3195 * If b2 is not set, this is a data frame; test the QoS bit.
3196 * Otherwise, go to the first statement of the rest of the
3199 sjset_data_frame_2
->s
.jt
= snext
;
3200 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3201 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3202 sappend(s
, sjset_qos
);
3205 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3207 * Otherwise, go to the first statement of the rest of the
3210 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3211 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3213 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3216 s2
= new_stmt(cstate
, BPF_ST
);
3217 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3221 * If we have a radiotap header, look at it to see whether
3222 * there's Atheros padding between the MAC-layer header
3225 * Note: all of the fields in the radiotap header are
3226 * little-endian, so we byte-swap all of the values
3227 * we test against, as they will be loaded as big-endian
3230 * XXX - in the general case, we would have to scan through
3231 * *all* the presence bits, if there's more than one word of
3232 * presence bits. That would require a loop, meaning that
3233 * we wouldn't be able to run the filter in the kernel.
3235 * We assume here that the Atheros adapters that insert the
3236 * annoying padding don't have multiple antennae and therefore
3237 * do not generate radiotap headers with multiple presence words.
3239 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3241 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3242 * in the first presence flag word?
3244 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3248 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3249 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3250 sappend(s
, sjset_radiotap_flags_present
);
3253 * If not, skip all of this.
3255 sjset_radiotap_flags_present
->s
.jf
= snext
;
3258 * Otherwise, is the "extension" bit set in that word?
3260 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3261 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3262 sappend(s
, sjset_radiotap_ext_present
);
3263 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3266 * If so, skip all of this.
3268 sjset_radiotap_ext_present
->s
.jt
= snext
;
3271 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3273 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3274 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3275 sappend(s
, sjset_radiotap_tsft_present
);
3276 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3279 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3280 * at an offset of 16 from the beginning of the raw packet
3281 * data (8 bytes for the radiotap header and 8 bytes for
3284 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3287 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3290 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3292 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3293 sjset_tsft_datapad
->s
.k
= 0x20;
3294 sappend(s
, sjset_tsft_datapad
);
3297 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3298 * at an offset of 8 from the beginning of the raw packet
3299 * data (8 bytes for the radiotap header).
3301 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3304 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3307 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3309 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3310 sjset_notsft_datapad
->s
.k
= 0x20;
3311 sappend(s
, sjset_notsft_datapad
);
3314 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3315 * set, round the length of the 802.11 header to
3316 * a multiple of 4. Do that by adding 3 and then
3317 * dividing by and multiplying by 4, which we do by
3320 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3321 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3322 sappend(s
, s_roundup
);
3323 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3326 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3327 s2
->s
.k
= (bpf_u_int32
)~3;
3329 s2
= new_stmt(cstate
, BPF_ST
);
3330 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3333 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3334 sjset_tsft_datapad
->s
.jf
= snext
;
3335 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3336 sjset_notsft_datapad
->s
.jf
= snext
;
3338 sjset_qos
->s
.jf
= snext
;
3344 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3348 /* There is an implicit dependency between the link
3349 * payload and link header since the payload computation
3350 * includes the variable part of the header. Therefore,
3351 * if nobody else has allocated a register for the link
3352 * header and we need it, do it now. */
3353 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3354 cstate
->off_linkhdr
.reg
== -1)
3355 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3358 * For link-layer types that have a variable-length header
3359 * preceding the link-layer header, generate code to load
3360 * the offset of the link-layer header into the register
3361 * assigned to that offset, if any.
3363 * XXX - this, and the next switch statement, won't handle
3364 * encapsulation of 802.11 or 802.11+radio information in
3365 * some other protocol stack. That's significantly more
3368 switch (cstate
->outermostlinktype
) {
3370 case DLT_PRISM_HEADER
:
3371 s
= gen_load_prism_llprefixlen(cstate
);
3374 case DLT_IEEE802_11_RADIO_AVS
:
3375 s
= gen_load_avs_llprefixlen(cstate
);
3378 case DLT_IEEE802_11_RADIO
:
3379 s
= gen_load_radiotap_llprefixlen(cstate
);
3383 s
= gen_load_ppi_llprefixlen(cstate
);
3392 * For link-layer types that have a variable-length link-layer
3393 * header, generate code to load the offset of the link-layer
3394 * payload into the register assigned to that offset, if any.
3396 switch (cstate
->outermostlinktype
) {
3398 case DLT_IEEE802_11
:
3399 case DLT_PRISM_HEADER
:
3400 case DLT_IEEE802_11_RADIO_AVS
:
3401 case DLT_IEEE802_11_RADIO
:
3403 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3407 s
= gen_load_pflog_llprefixlen(cstate
);
3412 * If there is no initialization yet and we need variable
3413 * length offsets for VLAN, initialize them to zero
3415 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3418 if (cstate
->off_linkpl
.reg
== -1)
3419 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3420 if (cstate
->off_linktype
.reg
== -1)
3421 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3423 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3425 s2
= new_stmt(cstate
, BPF_ST
);
3426 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3428 s2
= new_stmt(cstate
, BPF_ST
);
3429 s2
->s
.k
= cstate
->off_linktype
.reg
;
3434 * If we have any offset-loading code, append all the
3435 * existing statements in the block to those statements,
3436 * and make the resulting list the list of statements
3440 sappend(s
, b
->stmts
);
3446 * Take an absolute offset, and:
3448 * if it has no variable part, return NULL;
3450 * if it has a variable part, generate code to load the register
3451 * containing that variable part into the X register, returning
3452 * a pointer to that code - if no register for that offset has
3453 * been allocated, allocate it first.
3455 * (The code to set that register will be generated later, but will
3456 * be placed earlier in the code sequence.)
3458 static struct slist
*
3459 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3463 if (off
->is_variable
) {
3464 if (off
->reg
== -1) {
3466 * We haven't yet assigned a register for the
3467 * variable part of the offset of the link-layer
3468 * header; allocate one.
3470 off
->reg
= alloc_reg(cstate
);
3474 * Load the register containing the variable part of the
3475 * offset of the link-layer header into the X register.
3477 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3482 * That offset isn't variable, there's no variable part,
3483 * so we don't need to generate any code.
3490 * Map an Ethernet type to the equivalent PPP type.
3493 ethertype_to_ppptype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3500 case ETHERTYPE_IPV6
:
3506 case ETHERTYPE_ATALK
:
3517 * I'm assuming the "Bridging PDU"s that go
3518 * over PPP are Spanning Tree Protocol
3526 assert_maxval(cstate
, "PPP protocol", ll_proto
, UINT16_MAX
);
3527 return (uint16_t)ll_proto
;
3531 * Generate any tests that, for encapsulation of a link-layer packet
3532 * inside another protocol stack, need to be done to check for those
3533 * link-layer packets (and that haven't already been done by a check
3534 * for that encapsulation).
3536 static struct block
*
3537 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3539 if (cstate
->is_encap
)
3540 return gen_encap_ll_check(cstate
);
3542 switch (cstate
->prevlinktype
) {
3546 * This is LANE-encapsulated Ethernet; check that the LANE
3547 * packet doesn't begin with an LE Control marker, i.e.
3548 * that it's data, not a control message.
3550 * (We've already generated a test for LANE.)
3552 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3556 * No such tests are necessary.
3564 * The three different values we should check for when checking for an
3565 * IPv6 packet with DLT_NULL.
3567 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3568 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3569 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3572 * Generate code to match a particular packet type by matching the
3573 * link-layer type field or fields in the 802.2 LLC header.
3575 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3576 * value, if <= ETHERMTU.
3578 static struct block
*
3579 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3581 struct block
*b0
, *b1
, *b2
;
3583 /* are we checking MPLS-encapsulated packets? */
3584 if (cstate
->label_stack_depth
> 0)
3585 return gen_mpls_linktype(cstate
, ll_proto
);
3587 switch (cstate
->linktype
) {
3590 case DLT_NETANALYZER
:
3591 case DLT_NETANALYZER_TRANSPARENT
:
3592 /* Geneve has an EtherType regardless of whether there is an
3593 * L2 header. VXLAN always has an EtherType. */
3594 if (!cstate
->is_encap
)
3595 b0
= gen_prevlinkhdr_check(cstate
);
3599 b1
= gen_ether_linktype(cstate
, ll_proto
);
3607 assert_maxval(cstate
, "HDLC protocol", ll_proto
, UINT16_MAX
);
3611 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3615 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3619 case DLT_IEEE802_11
:
3620 case DLT_PRISM_HEADER
:
3621 case DLT_IEEE802_11_RADIO_AVS
:
3622 case DLT_IEEE802_11_RADIO
:
3625 * Check that we have a data frame.
3627 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3628 IEEE80211_FC0_TYPE_DATA
,
3629 IEEE80211_FC0_TYPE_MASK
);
3632 * Now check for the specified link-layer type.
3634 b1
= gen_llc_linktype(cstate
, ll_proto
);
3641 * XXX - check for LLC frames.
3643 return gen_llc_linktype(cstate
, ll_proto
);
3648 * XXX - check for LLC PDUs, as per IEEE 802.5.
3650 return gen_llc_linktype(cstate
, ll_proto
);
3653 case DLT_ATM_RFC1483
:
3655 case DLT_IP_OVER_FC
:
3656 return gen_llc_linktype(cstate
, ll_proto
);
3661 * Check for an LLC-encapsulated version of this protocol;
3662 * if we were checking for LANE, linktype would no longer
3665 * Check for LLC encapsulation and then check the protocol.
3667 b0
= gen_atm_prototype(cstate
, PT_LLC
);
3668 b1
= gen_llc_linktype(cstate
, ll_proto
);
3674 return gen_linux_sll_linktype(cstate
, ll_proto
);
3678 case DLT_SLIP_BSDOS
:
3681 * These types don't provide any type field; packets
3682 * are always IPv4 or IPv6.
3684 * XXX - for IPv4, check for a version number of 4, and,
3685 * for IPv6, check for a version number of 6?
3690 /* Check for a version number of 4. */
3691 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3693 case ETHERTYPE_IPV6
:
3694 /* Check for a version number of 6. */
3695 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3698 return gen_false(cstate
); /* always false */
3704 * Raw IPv4, so no type field.
3706 if (ll_proto
== ETHERTYPE_IP
)
3707 return gen_true(cstate
); /* always true */
3709 /* Checking for something other than IPv4; always false */
3710 return gen_false(cstate
);
3715 * Raw IPv6, so no type field.
3717 if (ll_proto
== ETHERTYPE_IPV6
)
3718 return gen_true(cstate
); /* always true */
3720 /* Checking for something other than IPv6; always false */
3721 return gen_false(cstate
);
3726 case DLT_PPP_SERIAL
:
3729 * We use Ethernet protocol types inside libpcap;
3730 * map them to the corresponding PPP protocol types.
3732 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3733 ethertype_to_ppptype(cstate
, ll_proto
));
3738 * We use Ethernet protocol types inside libpcap;
3739 * map them to the corresponding PPP protocol types.
3745 * Also check for Van Jacobson-compressed IP.
3746 * XXX - do this for other forms of PPP?
3748 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3749 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3751 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3756 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3757 ethertype_to_ppptype(cstate
, ll_proto
));
3767 return (gen_loopback_linktype(cstate
, AF_INET
));
3769 case ETHERTYPE_IPV6
:
3771 * AF_ values may, unfortunately, be platform-
3772 * dependent; AF_INET isn't, because everybody
3773 * used 4.2BSD's value, but AF_INET6 is, because
3774 * 4.2BSD didn't have a value for it (given that
3775 * IPv6 didn't exist back in the early 1980's),
3776 * and they all picked their own values.
3778 * This means that, if we're reading from a
3779 * savefile, we need to check for all the
3782 * If we're doing a live capture, we only need
3783 * to check for this platform's value; however,
3784 * Npcap uses 24, which isn't Windows's AF_INET6
3785 * value. (Given the multiple different values,
3786 * programs that read pcap files shouldn't be
3787 * checking for their platform's AF_INET6 value
3788 * anyway, they should check for all of the
3789 * possible values. and they might as well do
3790 * that even for live captures.)
3792 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3794 * Savefile - check for all three
3795 * possible IPv6 values.
3797 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3798 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3800 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3805 * Live capture, so we only need to
3806 * check for the value used on this
3811 * Npcap doesn't use Windows's AF_INET6,
3812 * as that collides with AF_IPX on
3813 * some BSDs (both have the value 23).
3814 * Instead, it uses 24.
3816 return (gen_loopback_linktype(cstate
, 24));
3819 return (gen_loopback_linktype(cstate
, AF_INET6
));
3820 #else /* AF_INET6 */
3822 * I guess this platform doesn't support
3823 * IPv6, so we just reject all packets.
3825 return gen_false(cstate
);
3826 #endif /* AF_INET6 */
3832 * Not a type on which we support filtering.
3833 * XXX - support those that have AF_ values
3834 * #defined on this platform, at least?
3836 return gen_false(cstate
);
3841 * af field is host byte order in contrast to the rest of
3844 if (ll_proto
== ETHERTYPE_IP
)
3845 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3847 else if (ll_proto
== ETHERTYPE_IPV6
)
3848 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3851 return gen_false(cstate
);
3855 case DLT_ARCNET_LINUX
:
3857 * XXX should we check for first fragment if the protocol
3863 return gen_false(cstate
);
3865 case ETHERTYPE_IPV6
:
3866 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3870 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3872 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3878 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3880 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3885 case ETHERTYPE_REVARP
:
3886 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3889 case ETHERTYPE_ATALK
:
3890 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3897 case ETHERTYPE_ATALK
:
3898 return gen_true(cstate
);
3900 return gen_false(cstate
);
3906 * XXX - assumes a 2-byte Frame Relay header with
3907 * DLCI and flags. What if the address is longer?
3913 * Check for the special NLPID for IP.
3915 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3917 case ETHERTYPE_IPV6
:
3919 * Check for the special NLPID for IPv6.
3921 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3925 * Check for several OSI protocols.
3927 * Frame Relay packets typically have an OSI
3928 * NLPID at the beginning; we check for each
3931 * What we check for is the NLPID and a frame
3932 * control field of UI, i.e. 0x03 followed
3935 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3936 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3937 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3943 return gen_false(cstate
);
3948 break; // not implemented
3950 case DLT_JUNIPER_MFR
:
3951 case DLT_JUNIPER_MLFR
:
3952 case DLT_JUNIPER_MLPPP
:
3953 case DLT_JUNIPER_ATM1
:
3954 case DLT_JUNIPER_ATM2
:
3955 case DLT_JUNIPER_PPPOE
:
3956 case DLT_JUNIPER_PPPOE_ATM
:
3957 case DLT_JUNIPER_GGSN
:
3958 case DLT_JUNIPER_ES
:
3959 case DLT_JUNIPER_MONITOR
:
3960 case DLT_JUNIPER_SERVICES
:
3961 case DLT_JUNIPER_ETHER
:
3962 case DLT_JUNIPER_PPP
:
3963 case DLT_JUNIPER_FRELAY
:
3964 case DLT_JUNIPER_CHDLC
:
3965 case DLT_JUNIPER_VP
:
3966 case DLT_JUNIPER_ST
:
3967 case DLT_JUNIPER_ISM
:
3968 case DLT_JUNIPER_VS
:
3969 case DLT_JUNIPER_SRX_E2E
:
3970 case DLT_JUNIPER_FIBRECHANNEL
:
3971 case DLT_JUNIPER_ATM_CEMIC
:
3973 /* just lets verify the magic number for now -
3974 * on ATM we may have up to 6 different encapsulations on the wire
3975 * and need a lot of heuristics to figure out that the payload
3978 * FIXME encapsulation specific BPF_ filters
3980 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3982 case DLT_BACNET_MS_TP
:
3983 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3986 return gen_ipnet_linktype(cstate
, ll_proto
);
3988 case DLT_LINUX_IRDA
:
3991 case DLT_MTP2_WITH_PHDR
:
3994 case DLT_LINUX_LAPD
:
3995 case DLT_USB_FREEBSD
:
3997 case DLT_USB_LINUX_MMAPPED
:
3999 case DLT_BLUETOOTH_HCI_H4
:
4000 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
4002 case DLT_CAN_SOCKETCAN
:
4003 case DLT_IEEE802_15_4
:
4004 case DLT_IEEE802_15_4_LINUX
:
4005 case DLT_IEEE802_15_4_NONASK_PHY
:
4006 case DLT_IEEE802_15_4_NOFCS
:
4007 case DLT_IEEE802_15_4_TAP
:
4008 case DLT_IEEE802_16_MAC_CPS_RADIO
:
4011 case DLT_IPMB_KONTRON
:
4015 /* Using the fixed-size NFLOG header it is possible to tell only
4016 * the address family of the packet, other meaningful data is
4017 * either missing or behind TLVs.
4019 break; // not implemented
4023 * Does this link-layer header type have a field
4024 * indicating the type of the next protocol? If
4025 * so, off_linktype.constant_part will be the offset of that
4026 * field in the packet; if not, it will be OFFSET_NOT_SET.
4028 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4030 * Yes; assume it's an Ethernet type. (If
4031 * it's not, it needs to be handled specially
4034 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4035 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4039 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4040 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4044 * Check for an LLC SNAP packet with a given organization code and
4045 * protocol type; we check the entire contents of the 802.2 LLC and
4046 * snap headers, checking for DSAP and SSAP of SNAP and a control
4047 * field of 0x03 in the LLC header, and for the specified organization
4048 * code and protocol type in the SNAP header.
4050 static struct block
*
4051 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4053 u_char snapblock
[8];
4055 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4056 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4057 snapblock
[2] = 0x03; /* control = UI */
4058 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4059 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4060 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4061 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4062 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4063 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4067 * Generate code to match frames with an LLC header.
4069 static struct block
*
4070 gen_llc_internal(compiler_state_t
*cstate
)
4072 struct block
*b0
, *b1
;
4074 switch (cstate
->linktype
) {
4078 * We check for an Ethernet type field less or equal than
4079 * 1500, which means it's an 802.3 length field.
4081 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4084 * Now check for the purported DSAP and SSAP not being
4085 * 0xFF, to rule out NetWare-over-802.3.
4087 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4093 * We check for LLC traffic.
4095 return gen_atmtype_llc(cstate
);
4097 case DLT_IEEE802
: /* Token Ring */
4099 * XXX - check for LLC frames.
4101 return gen_true(cstate
);
4105 * XXX - check for LLC frames.
4107 return gen_true(cstate
);
4109 case DLT_ATM_RFC1483
:
4111 * For LLC encapsulation, these are defined to have an
4114 * For VC encapsulation, they don't, but there's no
4115 * way to check for that; the protocol used on the VC
4116 * is negotiated out of band.
4118 return gen_true(cstate
);
4120 case DLT_IEEE802_11
:
4121 case DLT_PRISM_HEADER
:
4122 case DLT_IEEE802_11_RADIO
:
4123 case DLT_IEEE802_11_RADIO_AVS
:
4126 * Check that we have a data frame.
4128 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4129 IEEE80211_FC0_TYPE_DATA
,
4130 IEEE80211_FC0_TYPE_MASK
);
4133 fail_kw_on_dlt(cstate
, "llc");
4139 gen_llc(compiler_state_t
*cstate
)
4142 * Catch errors reported by us and routines below us, and return NULL
4145 if (setjmp(cstate
->top_ctx
))
4148 return gen_llc_internal(cstate
);
4152 gen_llc_i(compiler_state_t
*cstate
)
4154 struct block
*b0
, *b1
;
4158 * Catch errors reported by us and routines below us, and return NULL
4161 if (setjmp(cstate
->top_ctx
))
4165 * Check whether this is an LLC frame.
4167 b0
= gen_llc_internal(cstate
);
4170 * Load the control byte and test the low-order bit; it must
4171 * be clear for I frames.
4173 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4174 b1
= gen_unset(cstate
, 0x01, s
);
4181 gen_llc_s(compiler_state_t
*cstate
)
4183 struct block
*b0
, *b1
;
4186 * Catch errors reported by us and routines below us, and return NULL
4189 if (setjmp(cstate
->top_ctx
))
4193 * Check whether this is an LLC frame.
4195 b0
= gen_llc_internal(cstate
);
4198 * Now compare the low-order 2 bit of the control byte against
4199 * the appropriate value for S frames.
4201 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4207 gen_llc_u(compiler_state_t
*cstate
)
4209 struct block
*b0
, *b1
;
4212 * Catch errors reported by us and routines below us, and return NULL
4215 if (setjmp(cstate
->top_ctx
))
4219 * Check whether this is an LLC frame.
4221 b0
= gen_llc_internal(cstate
);
4224 * Now compare the low-order 2 bit of the control byte against
4225 * the appropriate value for U frames.
4227 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4233 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4235 struct block
*b0
, *b1
;
4238 * Catch errors reported by us and routines below us, and return NULL
4241 if (setjmp(cstate
->top_ctx
))
4245 * Check whether this is an LLC frame.
4247 b0
= gen_llc_internal(cstate
);
4250 * Now check for an S frame with the appropriate type.
4252 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4258 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4260 struct block
*b0
, *b1
;
4263 * Catch errors reported by us and routines below us, and return NULL
4266 if (setjmp(cstate
->top_ctx
))
4270 * Check whether this is an LLC frame.
4272 b0
= gen_llc_internal(cstate
);
4275 * Now check for a U frame with the appropriate type.
4277 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4283 * Generate code to match a particular packet type, for link-layer types
4284 * using 802.2 LLC headers.
4286 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4287 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4289 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4290 * value, if <= ETHERMTU. We use that to determine whether to
4291 * match the DSAP or both DSAP and LSAP or to check the OUI and
4292 * protocol ID in a SNAP header.
4294 static struct block
*
4295 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4298 * XXX - handle token-ring variable-length header.
4304 case LLCSAP_NETBEUI
:
4306 * XXX - should we check both the DSAP and the
4307 * SSAP, like this, or should we check just the
4308 * DSAP, as we do for other SAP values?
4310 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4311 ((ll_proto
<< 8) | ll_proto
));
4315 * XXX - are there ever SNAP frames for IPX on
4316 * non-Ethernet 802.x networks?
4318 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4320 case ETHERTYPE_ATALK
:
4322 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4323 * SNAP packets with an organization code of
4324 * 0x080007 (Apple, for Appletalk) and a protocol
4325 * type of ETHERTYPE_ATALK (Appletalk).
4327 * XXX - check for an organization code of
4328 * encapsulated Ethernet as well?
4330 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4334 * XXX - we don't have to check for IPX 802.3
4335 * here, but should we check for the IPX Ethertype?
4337 if (ll_proto
<= ETHERMTU
) {
4338 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
4340 * This is an LLC SAP value, so check
4343 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4345 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4347 * This is an Ethernet type; we assume that it's
4348 * unlikely that it'll appear in the right place
4349 * at random, and therefore check only the
4350 * location that would hold the Ethernet type
4351 * in a SNAP frame with an organization code of
4352 * 0x000000 (encapsulated Ethernet).
4354 * XXX - if we were to check for the SNAP DSAP and
4355 * LSAP, as per XXX, and were also to check for an
4356 * organization code of 0x000000 (encapsulated
4357 * Ethernet), we'd do
4359 * return gen_snap(cstate, 0x000000, ll_proto);
4361 * here; for now, we don't, as per the above.
4362 * I don't know whether it's worth the extra CPU
4363 * time to do the right check or not.
4365 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4370 static struct block
*
4371 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4372 int dir
, u_int src_off
, u_int dst_off
)
4374 struct block
*b0
, *b1
;
4388 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4389 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4395 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4396 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4406 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4413 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4417 static struct block
*
4418 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4419 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4421 struct block
*b0
, *b1
;
4424 * Code below needs to access four separate 32-bit parts of the 128-bit
4425 * IPv6 address and mask. In some OSes this is as simple as using the
4426 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4427 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4428 * far as libpcap sees it. Hence copy the data before use to avoid
4429 * potential unaligned memory access and the associated compiler
4430 * warnings (whether genuine or not).
4432 bpf_u_int32 a
[4], m
[4];
4445 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4446 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4452 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4453 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4463 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4470 /* this order is important */
4471 memcpy(a
, addr
, sizeof(a
));
4472 memcpy(m
, mask
, sizeof(m
));
4474 for (int i
= 3; i
>= 0; i
--) {
4475 // Same as the Q_IP case in gen_host().
4476 if (m
[i
] == 0 && a
[i
] == 0)
4478 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4 * i
, BPF_W
,
4479 ntohl(a
[i
]), ntohl(m
[i
]));
4485 return b1
? b1
: gen_true(cstate
);
4490 * Like gen_mac48host(), but for DLT_IEEE802_11 (802.11 wireless LAN) and
4491 * various 802.11 + radio headers.
4493 static struct block
*
4494 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4496 register struct block
*b0
, *b1
, *b2
;
4497 register struct slist
*s
;
4499 #ifdef ENABLE_WLAN_FILTERING_PATCH
4502 * We need to disable the optimizer because the optimizer is buggy
4503 * and wipes out some LD instructions generated by the below
4504 * code to validate the Frame Control bits
4506 cstate
->no_optimize
= 1;
4507 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4514 * For control frames, there is no SA.
4516 * For management frames, SA is at an
4517 * offset of 10 from the beginning of
4520 * For data frames, SA is at an offset
4521 * of 10 from the beginning of the packet
4522 * if From DS is clear, at an offset of
4523 * 16 from the beginning of the packet
4524 * if From DS is set and To DS is clear,
4525 * and an offset of 24 from the beginning
4526 * of the packet if From DS is set and To DS
4531 * Generate the tests to be done for data frames
4534 * First, check for To DS set, i.e. check "link[1] & 0x01".
4536 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4537 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4540 * If To DS is set, the SA is at 24.
4542 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4546 * Now, check for To DS not set, i.e. check
4547 * "!(link[1] & 0x01)".
4549 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4550 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4553 * If To DS is not set, the SA is at 16.
4555 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4559 * Now OR together the last two checks. That gives
4560 * the complete set of checks for data frames with
4566 * Now check for From DS being set, and AND that with
4567 * the ORed-together checks.
4569 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4570 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4574 * Now check for data frames with From DS not set.
4576 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4577 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4580 * If From DS isn't set, the SA is at 10.
4582 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4586 * Now OR together the checks for data frames with
4587 * From DS not set and for data frames with From DS
4588 * set; that gives the checks done for data frames.
4593 * Now check for a data frame.
4594 * I.e, check "link[0] & 0x08".
4596 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4597 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4600 * AND that with the checks done for data frames.
4605 * If the high-order bit of the type value is 0, this
4606 * is a management frame.
4607 * I.e, check "!(link[0] & 0x08)".
4609 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4610 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4613 * For management frames, the SA is at 10.
4615 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4619 * OR that with the checks done for data frames.
4620 * That gives the checks done for management and
4626 * If the low-order bit of the type value is 1,
4627 * this is either a control frame or a frame
4628 * with a reserved type, and thus not a
4631 * I.e., check "!(link[0] & 0x04)".
4633 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4634 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4637 * AND that with the checks for data and management
4647 * For control frames, there is no DA.
4649 * For management frames, DA is at an
4650 * offset of 4 from the beginning of
4653 * For data frames, DA is at an offset
4654 * of 4 from the beginning of the packet
4655 * if To DS is clear and at an offset of
4656 * 16 from the beginning of the packet
4661 * Generate the tests to be done for data frames.
4663 * First, check for To DS set, i.e. "link[1] & 0x01".
4665 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4666 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4669 * If To DS is set, the DA is at 16.
4671 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4675 * Now, check for To DS not set, i.e. check
4676 * "!(link[1] & 0x01)".
4678 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4679 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4682 * If To DS is not set, the DA is at 4.
4684 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4688 * Now OR together the last two checks. That gives
4689 * the complete set of checks for data frames.
4694 * Now check for a data frame.
4695 * I.e, check "link[0] & 0x08".
4697 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4698 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4701 * AND that with the checks done for data frames.
4706 * If the high-order bit of the type value is 0, this
4707 * is a management frame.
4708 * I.e, check "!(link[0] & 0x08)".
4710 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4711 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4714 * For management frames, the DA is at 4.
4716 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4720 * OR that with the checks done for data frames.
4721 * That gives the checks done for management and
4727 * If the low-order bit of the type value is 1,
4728 * this is either a control frame or a frame
4729 * with a reserved type, and thus not a
4732 * I.e., check "!(link[0] & 0x04)".
4734 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4735 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4738 * AND that with the checks for data and management
4745 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4746 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4752 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4753 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4758 * XXX - add BSSID keyword?
4761 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4765 * Not present in CTS or ACK control frames.
4767 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4768 IEEE80211_FC0_TYPE_MASK
);
4769 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4770 IEEE80211_FC0_SUBTYPE_MASK
);
4771 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4772 IEEE80211_FC0_SUBTYPE_MASK
);
4775 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4781 * Not present in control frames.
4783 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4784 IEEE80211_FC0_TYPE_MASK
);
4785 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4791 * Present only if the direction mask has both "From DS"
4792 * and "To DS" set. Neither control frames nor management
4793 * frames should have both of those set, so we don't
4794 * check the frame type.
4796 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4797 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4798 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4804 * Not present in management frames; addr1 in other
4809 * If the high-order bit of the type value is 0, this
4810 * is a management frame.
4811 * I.e, check "(link[0] & 0x08)".
4813 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4814 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4819 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4822 * AND that with the check of addr1.
4829 * Not present in management frames; addr2, if present,
4834 * Not present in CTS or ACK control frames.
4836 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4837 IEEE80211_FC0_TYPE_MASK
);
4838 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4839 IEEE80211_FC0_SUBTYPE_MASK
);
4840 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4841 IEEE80211_FC0_SUBTYPE_MASK
);
4846 * If the high-order bit of the type value is 0, this
4847 * is a management frame.
4848 * I.e, check "(link[0] & 0x08)".
4850 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4851 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4854 * AND that with the check for frames other than
4855 * CTS and ACK frames.
4862 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4871 * This is quite tricky because there may be pad bytes in front of the
4872 * DECNET header, and then there are two possible data packet formats that
4873 * carry both src and dst addresses, plus 5 packet types in a format that
4874 * carries only the src node, plus 2 types that use a different format and
4875 * also carry just the src node.
4879 * Instead of doing those all right, we just look for data packets with
4880 * 0 or 1 bytes of padding. If you want to look at other packets, that
4881 * will require a lot more hacking.
4883 * To add support for filtering on DECNET "areas" (network numbers)
4884 * one would want to add a "mask" argument to this routine. That would
4885 * make the filter even more inefficient, although one could be clever
4886 * and not generate masking instructions if the mask is 0xFFFF.
4888 static struct block
*
4889 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4891 struct block
*b0
, *b1
, *b2
, *tmp
;
4892 u_int offset_lh
; /* offset if long header is received */
4893 u_int offset_sh
; /* offset if short header is received */
4898 offset_sh
= 1; /* follows flags */
4899 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4903 offset_sh
= 3; /* follows flags, dstnode */
4904 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4908 /* Inefficient because we do our Calvinball dance twice */
4909 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4910 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4916 /* Inefficient because we do our Calvinball dance twice */
4917 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4918 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4928 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4936 * In a DECnet message inside an Ethernet frame the first two bytes
4937 * immediately after EtherType are the [litle-endian] DECnet message
4938 * length, which is irrelevant in this context.
4940 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
4941 * 8-bit bitmap of the optional padding before the packet route header.
4942 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
4943 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
4944 * means there aren't any PAD bytes after the bitmap, so the header
4945 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
4946 * is set to 0, thus the header begins at the third byte.
4948 * The header can be in several (as mentioned above) formats, all of
4949 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
4950 * (PF, "pad field") set to 0 regardless of any padding present before
4951 * the header. "Short header" means bits 0-2 of the bitmap encode the
4952 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
4954 * To test PLENGTH and FLAGS, use multiple-byte constants with the
4955 * values and the masks, this maps to the required single bytes of
4956 * the message correctly on both big-endian and little-endian hosts.
4957 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
4958 * because the wire encoding is little-endian and BPF multiple-byte
4959 * loads are big-endian. When the destination address is near enough
4960 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
4963 /* Check for pad = 1, long header case */
4964 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
4965 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4966 BPF_H
, SWAPSHORT(addr
));
4968 /* Check for pad = 0, long header case */
4969 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
4970 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
4974 /* Check for pad = 1, short header case */
4976 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
4977 0x81020000U
| SWAPSHORT(addr
),
4980 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
4981 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
4986 /* Check for pad = 0, short header case */
4988 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
4989 0x02000000U
| SWAPSHORT(addr
) << 8,
4992 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
4993 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5003 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5004 * test the bottom-of-stack bit, and then check the version number
5005 * field in the IP header.
5007 static struct block
*
5008 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5010 struct block
*b0
, *b1
;
5015 /* match the bottom-of-stack bit */
5016 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5017 /* match the IPv4 version number */
5018 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5022 case ETHERTYPE_IPV6
:
5023 /* match the bottom-of-stack bit */
5024 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5025 /* match the IPv6 version number */
5026 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5031 /* FIXME add other L3 proto IDs */
5032 bpf_error(cstate
, "unsupported protocol over mpls");
5037 static struct block
*
5038 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5039 int proto
, int dir
, int type
)
5041 struct block
*b0
, *b1
;
5046 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5048 * Only check for non-IPv4 addresses if we're not
5049 * checking MPLS-encapsulated packets.
5051 if (cstate
->label_stack_depth
== 0) {
5052 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5054 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5060 // "link net NETNAME" and variations thereof
5061 break; // invalid qualifier
5064 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5066 * Belt and braces: if other code works correctly, any host
5067 * bits are clear and mask == 0 means addr == 0. In this case
5068 * the call to gen_hostop() would produce an "always true"
5069 * instruction block and ANDing it with the link type check
5072 if (mask
== 0 && addr
== 0)
5074 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5079 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5080 // Same as for Q_IP above.
5081 if (mask
== 0 && addr
== 0)
5083 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5088 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5089 // Same as for Q_IP above.
5090 if (mask
== 0 && addr
== 0)
5092 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5103 break; // invalid qualifier
5106 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5107 b1
= gen_dnhostop(cstate
, addr
, dir
);
5138 break; // invalid qualifier
5143 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5144 type
== Q_NET
? "ip net" : "ip host");
5149 static struct block
*
5150 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5151 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5153 struct block
*b0
, *b1
;
5159 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5160 // Same as the Q_IP case in gen_host().
5162 ! memcmp(mask
, &in6addr_any
, sizeof(struct in6_addr
)) &&
5163 ! memcmp(addr
, &in6addr_any
, sizeof(struct in6_addr
))
5166 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5208 break; // invalid qualifier
5213 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5214 type
== Q_NET
? "ip6 net" : "ip6 host");
5219 static unsigned char
5220 is_mac48_linktype(const int linktype
)
5226 case DLT_IEEE802_11
:
5227 case DLT_IEEE802_11_RADIO
:
5228 case DLT_IEEE802_11_RADIO_AVS
:
5229 case DLT_IP_OVER_FC
:
5230 case DLT_NETANALYZER
:
5231 case DLT_NETANALYZER_TRANSPARENT
:
5233 case DLT_PRISM_HEADER
:
5240 static struct block
*
5241 gen_mac48host(compiler_state_t
*cstate
, const u_char
*eaddr
, const u_char dir
,
5242 const char *keyword
)
5244 struct block
*b1
= NULL
;
5245 u_int src_off
, dst_off
;
5247 switch (cstate
->linktype
) {
5249 case DLT_NETANALYZER
:
5250 case DLT_NETANALYZER_TRANSPARENT
:
5251 b1
= gen_prevlinkhdr_check(cstate
);
5256 src_off
= 6 + 1 + cstate
->pcap_fddipad
;
5257 dst_off
= 0 + 1 + cstate
->pcap_fddipad
;
5263 case DLT_IEEE802_11
:
5264 case DLT_PRISM_HEADER
:
5265 case DLT_IEEE802_11_RADIO_AVS
:
5266 case DLT_IEEE802_11_RADIO
:
5268 return gen_wlanhostop(cstate
, eaddr
, dir
);
5269 case DLT_IP_OVER_FC
:
5271 * Assume that the addresses are IEEE 48-bit MAC addresses,
5272 * as RFC 2625 states.
5279 * This is LLC-multiplexed traffic; if it were
5280 * LANE, cstate->linktype would have been set to
5285 fail_kw_on_dlt(cstate
, keyword
);
5288 struct block
*b0
, *tmp
;
5292 b0
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5295 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5298 tmp
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5299 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5304 tmp
= gen_bcmp(cstate
, OR_LINKHDR
, src_off
, 6, eaddr
);
5305 b0
= gen_bcmp(cstate
, OR_LINKHDR
, dst_off
, 6, eaddr
);
5309 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5319 * This primitive is non-directional by design, so the grammar does not allow
5320 * to qualify it with a direction.
5322 static struct block
*
5323 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5324 struct addrinfo
*alist
, int proto
)
5326 struct block
*b0
, *b1
, *tmp
;
5327 struct addrinfo
*ai
;
5328 struct sockaddr_in
*sin
;
5335 b0
= gen_mac48host(cstate
, eaddr
, Q_OR
, "gateway");
5337 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5339 * Does it have an address?
5341 if (ai
->ai_addr
!= NULL
) {
5343 * Yes. Is it an IPv4 address?
5345 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5347 * Generate an entry for it.
5349 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5350 tmp
= gen_host(cstate
,
5351 ntohl(sin
->sin_addr
.s_addr
),
5352 0xffffffff, proto
, Q_OR
, Q_HOST
);
5354 * Is it the *first* IPv4 address?
5358 * Yes, so start with it.
5363 * No, so OR it into the
5375 * No IPv4 addresses found.
5383 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5388 static struct block
*
5389 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5397 return gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5400 return gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5403 return gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5406 return gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5408 #ifndef IPPROTO_IGMP
5409 #define IPPROTO_IGMP 2
5413 return gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5415 #ifndef IPPROTO_IGRP
5416 #define IPPROTO_IGRP 9
5419 return gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5422 #define IPPROTO_PIM 103
5426 return gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5428 #ifndef IPPROTO_VRRP
5429 #define IPPROTO_VRRP 112
5433 return gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5435 #ifndef IPPROTO_CARP
5436 #define IPPROTO_CARP 112
5440 return gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5443 return gen_linktype(cstate
, ETHERTYPE_IP
);
5446 return gen_linktype(cstate
, ETHERTYPE_ARP
);
5449 return gen_linktype(cstate
, ETHERTYPE_REVARP
);
5452 break; // invalid syntax
5455 return gen_linktype(cstate
, ETHERTYPE_ATALK
);
5458 return gen_linktype(cstate
, ETHERTYPE_AARP
);
5461 return gen_linktype(cstate
, ETHERTYPE_DN
);
5464 return gen_linktype(cstate
, ETHERTYPE_SCA
);
5467 return gen_linktype(cstate
, ETHERTYPE_LAT
);
5470 return gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5473 return gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5476 return gen_linktype(cstate
, ETHERTYPE_IPV6
);
5478 #ifndef IPPROTO_ICMPV6
5479 #define IPPROTO_ICMPV6 58
5482 return gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5485 #define IPPROTO_AH 51
5488 return gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5491 #define IPPROTO_ESP 50
5494 return gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5497 return gen_linktype(cstate
, LLCSAP_ISONS
);
5500 return gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5503 return gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5505 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5506 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5507 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5509 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5511 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5513 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5517 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5518 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5519 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5521 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5523 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5525 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5529 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5530 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5531 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5533 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5538 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5539 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5544 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5545 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5547 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5549 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5554 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5555 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5560 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5561 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5566 return gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5569 return gen_linktype(cstate
, LLCSAP_8021D
);
5572 return gen_linktype(cstate
, LLCSAP_IPX
);
5575 return gen_linktype(cstate
, LLCSAP_NETBEUI
);
5578 break; // invalid syntax
5583 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5587 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5590 * Catch errors reported by us and routines below us, and return NULL
5593 if (setjmp(cstate
->top_ctx
))
5596 return gen_proto_abbrev_internal(cstate
, proto
);
5599 static struct block
*
5600 gen_ip_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5602 return gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5605 static struct block
*
5606 gen_ip6_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5608 return gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5611 static struct block
*
5612 gen_ipfrag(compiler_state_t
*cstate
)
5616 /* not IPv4 frag other than the first frag */
5617 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5618 return gen_unset(cstate
, 0x1fff, s
);
5622 * Generate a comparison to a port value in the transport-layer header
5623 * at the specified offset from the beginning of that header.
5625 * XXX - this handles a variable-length prefix preceding the link-layer
5626 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5627 * variable-length link-layer headers (such as Token Ring or 802.11
5630 static struct block
*
5631 gen_portatom(compiler_state_t
*cstate
, int off
, uint16_t v
)
5633 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5636 static struct block
*
5637 gen_portatom6(compiler_state_t
*cstate
, int off
, uint16_t v
)
5639 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5642 static struct block
*
5643 gen_port(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5645 struct block
*b1
, *tmp
;
5649 b1
= gen_portatom(cstate
, 0, port
);
5653 b1
= gen_portatom(cstate
, 2, port
);
5657 tmp
= gen_portatom(cstate
, 0, port
);
5658 b1
= gen_portatom(cstate
, 2, port
);
5664 tmp
= gen_portatom(cstate
, 0, port
);
5665 b1
= gen_portatom(cstate
, 2, port
);
5675 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5683 return gen_port_common(cstate
, proto
, b1
);
5686 static struct block
*
5687 gen_port_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5689 struct block
*b0
, *tmp
;
5694 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5695 * not LLC encapsulation with LLCSAP_IP.
5697 * For IEEE 802 networks - which includes 802.5 token ring
5698 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5699 * says that SNAP encapsulation is used, not LLC encapsulation
5702 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5703 * RFC 2225 say that SNAP encapsulation is used, not LLC
5704 * encapsulation with LLCSAP_IP.
5706 * So we always check for ETHERTYPE_IP.
5708 * At the time of this writing all three L4 protocols the "port" and
5709 * "portrange" primitives support (TCP, UDP and SCTP) have the source
5710 * and the destination ports identically encoded in the transport
5711 * protocol header. So without a proto qualifier the only difference
5712 * between the implemented cases is the protocol number and all other
5713 * checks need to be made exactly once.
5715 * If the expression syntax in future starts to support ports for
5716 * another L4 protocol that has unsigned integer ports encoded using a
5717 * different size and/or offset, this will require a different code.
5723 tmp
= gen_ip_proto(cstate
, (uint8_t)proto
);
5727 tmp
= gen_ip_proto(cstate
, IPPROTO_UDP
);
5728 gen_or(gen_ip_proto(cstate
, IPPROTO_TCP
), tmp
);
5729 gen_or(gen_ip_proto(cstate
, IPPROTO_SCTP
), tmp
);
5735 // Not a fragment other than the first fragment.
5736 b0
= gen_ipfrag(cstate
);
5740 gen_and(gen_linktype(cstate
, ETHERTYPE_IP
), b1
);
5744 static struct block
*
5745 gen_port6(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5747 struct block
*b1
, *tmp
;
5751 b1
= gen_portatom6(cstate
, 0, port
);
5755 b1
= gen_portatom6(cstate
, 2, port
);
5759 tmp
= gen_portatom6(cstate
, 0, port
);
5760 b1
= gen_portatom6(cstate
, 2, port
);
5766 tmp
= gen_portatom6(cstate
, 0, port
);
5767 b1
= gen_portatom6(cstate
, 2, port
);
5775 return gen_port6_common(cstate
, proto
, b1
);
5778 static struct block
*
5779 gen_port6_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5783 // "ip6 proto 'ip_proto'"
5788 tmp
= gen_ip6_proto(cstate
, (uint8_t)proto
);
5792 // Same as in gen_port_common().
5793 tmp
= gen_ip6_proto(cstate
, IPPROTO_UDP
);
5794 gen_or(gen_ip6_proto(cstate
, IPPROTO_TCP
), tmp
);
5795 gen_or(gen_ip6_proto(cstate
, IPPROTO_SCTP
), tmp
);
5801 // XXX - catch the first fragment of a fragmented packet?
5803 // "link proto \ip6"
5804 gen_and(gen_linktype(cstate
, ETHERTYPE_IPV6
), b1
);
5808 /* gen_portrange code */
5809 static struct block
*
5810 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5814 return gen_portatom(cstate
, off
, v1
);
5816 struct block
*b1
, *b2
;
5818 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5819 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5826 static struct block
*
5827 gen_portrange(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5830 struct block
*b1
, *tmp
;
5834 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5838 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5842 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5843 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5849 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5850 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5860 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5868 return gen_port_common(cstate
, proto
, b1
);
5871 static struct block
*
5872 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5876 return gen_portatom6(cstate
, off
, v1
);
5878 struct block
*b1
, *b2
;
5880 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
5881 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
5888 static struct block
*
5889 gen_portrange6(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5892 struct block
*b1
, *tmp
;
5896 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5900 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5904 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5905 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5911 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5912 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5920 return gen_port6_common(cstate
, proto
, b1
);
5924 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5933 v
= pcap_nametoproto(name
);
5934 if (v
== PROTO_UNDEF
)
5935 bpf_error(cstate
, "unknown ip proto '%s'", name
);
5939 /* XXX should look up h/w protocol type based on cstate->linktype */
5940 v
= pcap_nametoeproto(name
);
5941 if (v
== PROTO_UNDEF
) {
5942 v
= pcap_nametollc(name
);
5943 if (v
== PROTO_UNDEF
)
5944 bpf_error(cstate
, "unknown ether proto '%s'", name
);
5949 if (strcmp(name
, "esis") == 0)
5951 else if (strcmp(name
, "isis") == 0)
5953 else if (strcmp(name
, "clnp") == 0)
5956 bpf_error(cstate
, "unknown osi proto '%s'", name
);
5966 #if !defined(NO_PROTOCHAIN)
5968 * This primitive is non-directional by design, so the grammar does not allow
5969 * to qualify it with a direction.
5971 static struct block
*
5972 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
5974 struct block
*b0
, *b
;
5975 struct slist
*s
[100];
5976 int fix2
, fix3
, fix4
, fix5
;
5977 int ahcheck
, again
, end
;
5979 int reg2
= alloc_reg(cstate
);
5981 memset(s
, 0, sizeof(s
));
5982 fix3
= fix4
= fix5
= 0;
5987 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
5990 b0
= gen_protochain(cstate
, v
, Q_IP
);
5991 b
= gen_protochain(cstate
, v
, Q_IPV6
);
5995 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6000 * We don't handle variable-length prefixes before the link-layer
6001 * header, or variable-length link-layer headers, here yet.
6002 * We might want to add BPF instructions to do the protochain
6003 * work, to simplify that and, on platforms that have a BPF
6004 * interpreter with the new instructions, let the filtering
6005 * be done in the kernel. (We already require a modified BPF
6006 * engine to do the protochain stuff, to support backward
6007 * branches, and backward branch support is unlikely to appear
6008 * in kernel BPF engines.)
6010 if (cstate
->off_linkpl
.is_variable
)
6011 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6014 * To quote a comment in optimize.c:
6016 * "These data structures are used in a Cocke and Schwartz style
6017 * value numbering scheme. Since the flowgraph is acyclic,
6018 * exit values can be propagated from a node's predecessors
6019 * provided it is uniquely defined."
6021 * "Acyclic" means "no backward branches", which means "no
6022 * loops", so we have to turn the optimizer off.
6024 cstate
->no_optimize
= 1;
6027 * s[0] is a dummy entry to protect other BPF insn from damage
6028 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6029 * hard to find interdependency made by jump table fixup.
6032 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6037 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6040 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6041 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6043 /* X = ip->ip_hl << 2 */
6044 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6045 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6050 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6052 /* A = ip6->ip_nxt */
6053 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6054 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6056 /* X = sizeof(struct ip6_hdr) */
6057 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6063 bpf_error(cstate
, "unsupported proto to gen_protochain");
6067 /* again: if (A == v) goto end; else fall through; */
6069 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6071 s
[i
]->s
.jt
= NULL
; /*later*/
6072 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6076 #ifndef IPPROTO_NONE
6077 #define IPPROTO_NONE 59
6079 /* if (A == IPPROTO_NONE) goto end */
6080 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6081 s
[i
]->s
.jt
= NULL
; /*later*/
6082 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6083 s
[i
]->s
.k
= IPPROTO_NONE
;
6084 s
[fix5
]->s
.jf
= s
[i
];
6088 if (proto
== Q_IPV6
) {
6089 int v6start
, v6end
, v6advance
, j
;
6092 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6093 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6094 s
[i
]->s
.jt
= NULL
; /*later*/
6095 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6096 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6097 s
[fix2
]->s
.jf
= s
[i
];
6099 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6100 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6101 s
[i
]->s
.jt
= NULL
; /*later*/
6102 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6103 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6105 /* if (A == IPPROTO_ROUTING) goto v6advance */
6106 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6107 s
[i
]->s
.jt
= NULL
; /*later*/
6108 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6109 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6111 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6112 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6113 s
[i
]->s
.jt
= NULL
; /*later*/
6114 s
[i
]->s
.jf
= NULL
; /*later*/
6115 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6125 * A = P[X + packet head];
6126 * X = X + (P[X + packet head + 1] + 1) * 8;
6128 /* A = P[X + packet head] */
6129 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6130 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6133 s
[i
] = new_stmt(cstate
, BPF_ST
);
6136 /* A = P[X + packet head + 1]; */
6137 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6138 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6141 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6145 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6149 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6153 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6156 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6160 /* goto again; (must use BPF_JA for backward jump) */
6161 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6162 s
[i
]->s
.k
= again
- i
- 1;
6163 s
[i
- 1]->s
.jf
= s
[i
];
6167 for (j
= v6start
; j
<= v6end
; j
++)
6168 s
[j
]->s
.jt
= s
[v6advance
];
6171 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6173 s
[fix2
]->s
.jf
= s
[i
];
6179 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6180 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6181 s
[i
]->s
.jt
= NULL
; /*later*/
6182 s
[i
]->s
.jf
= NULL
; /*later*/
6183 s
[i
]->s
.k
= IPPROTO_AH
;
6185 s
[fix3
]->s
.jf
= s
[ahcheck
];
6192 * X = X + (P[X + 1] + 2) * 4;
6194 /* A = P[X + packet head]; */
6195 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6196 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6197 s
[i
- 1]->s
.jt
= s
[i
];
6200 s
[i
] = new_stmt(cstate
, BPF_ST
);
6204 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6207 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6211 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6213 /* A = P[X + packet head] */
6214 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6215 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6218 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6222 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6226 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6229 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6233 /* goto again; (must use BPF_JA for backward jump) */
6234 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6235 s
[i
]->s
.k
= again
- i
- 1;
6240 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6242 s
[fix2
]->s
.jt
= s
[end
];
6243 s
[fix4
]->s
.jf
= s
[end
];
6244 s
[fix5
]->s
.jt
= s
[end
];
6251 for (i
= 0; i
< max
- 1; i
++)
6252 s
[i
]->next
= s
[i
+ 1];
6253 s
[max
- 1]->next
= NULL
;
6257 * Remember, s[0] is dummy.
6259 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6261 free_reg(cstate
, reg2
);
6266 #endif /* !defined(NO_PROTOCHAIN) */
6269 * Generate code that checks whether the packet is a packet for protocol
6270 * <proto> and whether the type field in that protocol's header has
6271 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6272 * IP packet and checks the protocol number in the IP header against <v>.
6274 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6275 * against Q_IP and Q_IPV6.
6277 * This primitive is non-directional by design, so the grammar does not allow
6278 * to qualify it with a direction.
6280 static struct block
*
6281 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6283 struct block
*b0
, *b1
;
6288 b0
= gen_proto(cstate
, v
, Q_IP
);
6289 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6294 return gen_linktype(cstate
, v
);
6297 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6299 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6300 * not LLC encapsulation with LLCSAP_IP.
6302 * For IEEE 802 networks - which includes 802.5 token ring
6303 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6304 * says that SNAP encapsulation is used, not LLC encapsulation
6307 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6308 * RFC 2225 say that SNAP encapsulation is used, not LLC
6309 * encapsulation with LLCSAP_IP.
6311 * So we always check for ETHERTYPE_IP.
6313 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6314 // 0 <= v <= UINT8_MAX
6315 b1
= gen_ip_proto(cstate
, (uint8_t)v
);
6333 break; // invalid qualifier
6336 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6337 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6339 * Also check for a fragment header before the final
6342 b2
= gen_ip6_proto(cstate
, IPPROTO_FRAGMENT
);
6343 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6345 // 0 <= v <= UINT8_MAX
6346 b2
= gen_ip6_proto(cstate
, (uint8_t)v
);
6357 break; // invalid qualifier
6360 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6361 switch (cstate
->linktype
) {
6365 * Frame Relay packets typically have an OSI
6366 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6367 * generates code to check for all the OSI
6368 * NLPIDs, so calling it and then adding a check
6369 * for the particular NLPID for which we're
6370 * looking is bogus, as we can just check for
6373 * What we check for is the NLPID and a frame
6374 * control field value of UI, i.e. 0x03 followed
6377 * XXX - assumes a 2-byte Frame Relay header with
6378 * DLCI and flags. What if the address is longer?
6380 * XXX - what about SNAP-encapsulated frames?
6382 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6388 * Cisco uses an Ethertype lookalike - for OSI,
6391 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6392 /* OSI in C-HDLC is stuffed with a fudge byte */
6393 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6398 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6399 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6405 break; // invalid qualifier
6408 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6409 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6411 * 4 is the offset of the PDU type relative to the IS-IS
6413 * Except when it is not, see above.
6415 unsigned pdu_type_offset
;
6416 switch (cstate
->linktype
) {
6419 pdu_type_offset
= 5;
6422 pdu_type_offset
= 4;
6424 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6425 v
, ISIS_PDU_TYPE_MAX
);
6442 break; // invalid qualifier
6448 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6453 * Convert a non-numeric name to a port number.
6456 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6458 struct addrinfo hints
, *res
, *ai
;
6460 struct sockaddr_in
*in4
;
6462 struct sockaddr_in6
*in6
;
6467 * We check for both TCP and UDP in case there are
6468 * ambiguous entries.
6470 memset(&hints
, 0, sizeof(hints
));
6471 hints
.ai_family
= PF_UNSPEC
;
6472 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6473 hints
.ai_protocol
= ipproto
;
6474 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6481 * No such port. Just return -1.
6488 * We don't use strerror() because it's not
6489 * guaranteed to be thread-safe on all platforms
6490 * (probably because it might use a non-thread-local
6491 * buffer into which to format an error message
6492 * if the error code isn't one for which it has
6493 * a canned string; three cheers for C string
6496 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6498 port
= -2; /* a real error */
6504 * This is a real error, not just "there's
6505 * no such service name".
6507 * We don't use gai_strerror() because it's not
6508 * guaranteed to be thread-safe on all platforms
6509 * (probably because it might use a non-thread-local
6510 * buffer into which to format an error message
6511 * if the error code isn't one for which it has
6512 * a canned string; three cheers for C string
6515 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6517 port
= -2; /* a real error */
6522 * OK, we found it. Did it find anything?
6524 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6526 * Does it have an address?
6528 if (ai
->ai_addr
!= NULL
) {
6530 * Yes. Get a port number; we're done.
6532 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6533 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6534 port
= ntohs(in4
->sin_port
);
6538 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6539 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6540 port
= ntohs(in6
->sin6_port
);
6552 * Convert a string to a port number.
6555 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6565 * See if it's a number.
6567 ret
= stoulen(string
, string_size
, &val
, cstate
);
6571 /* Unknown port type - it's just a number. */
6572 *proto
= PROTO_UNDEF
;
6575 case STOULEN_NOT_OCTAL_NUMBER
:
6576 case STOULEN_NOT_HEX_NUMBER
:
6577 case STOULEN_NOT_DECIMAL_NUMBER
:
6579 * Not a valid number; try looking it up as a port.
6581 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6582 memcpy(cpy
, string
, string_size
);
6583 cpy
[string_size
] = '\0';
6584 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6585 if (tcp_port
== -2) {
6587 * We got a hard error; the error string has
6591 longjmp(cstate
->top_ctx
, 1);
6594 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6595 if (udp_port
== -2) {
6597 * We got a hard error; the error string has
6601 longjmp(cstate
->top_ctx
, 1);
6606 * We need to check /etc/services for ambiguous entries.
6607 * If we find an ambiguous entry, and it has the
6608 * same port number, change the proto to PROTO_UNDEF
6609 * so both TCP and UDP will be checked.
6611 if (tcp_port
>= 0) {
6612 val
= (bpf_u_int32
)tcp_port
;
6613 *proto
= IPPROTO_TCP
;
6614 if (udp_port
>= 0) {
6615 if (udp_port
== tcp_port
)
6616 *proto
= PROTO_UNDEF
;
6619 /* Can't handle ambiguous names that refer
6620 to different port numbers. */
6621 warning("ambiguous port %s in /etc/services",
6628 if (udp_port
>= 0) {
6629 val
= (bpf_u_int32
)udp_port
;
6630 *proto
= IPPROTO_UDP
;
6634 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6636 longjmp(cstate
->top_ctx
, 1);
6643 /* Error already set. */
6644 longjmp(cstate
->top_ctx
, 1);
6651 /* Should not happen */
6652 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6653 longjmp(cstate
->top_ctx
, 1);
6660 * Convert a string in the form PPP-PPP, which correspond to ports, to
6661 * a starting and ending port in a port range.
6664 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6665 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6668 const char *first
, *second
;
6669 size_t first_size
, second_size
;
6672 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6673 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6676 * Make sure there are no other hyphens.
6678 * XXX - we support named ports, but there are some port names
6679 * in /etc/services that include hyphens, so this would rule
6682 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6683 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6687 * Get the length of the first port.
6690 first_size
= hyphen_off
- string
;
6691 if (first_size
== 0) {
6692 /* Range of "-port", which we don't support. */
6693 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6697 * Try to convert it to a port.
6699 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6700 save_proto
= *proto
;
6703 * Get the length of the second port.
6705 second
= hyphen_off
+ 1;
6706 second_size
= strlen(second
);
6707 if (second_size
== 0) {
6708 /* Range of "port-", which we don't support. */
6709 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6713 * Try to convert it to a port.
6715 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6716 if (*proto
!= save_proto
)
6717 *proto
= PROTO_UNDEF
;
6721 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6723 int proto
= q
.proto
;
6728 bpf_u_int32 mask
, addr
;
6729 struct addrinfo
*res
, *res0
;
6730 struct sockaddr_in
*sin4
;
6733 struct sockaddr_in6
*sin6
;
6734 struct in6_addr mask128
;
6736 struct block
*b
, *tmp
;
6737 int port
, real_proto
;
6738 bpf_u_int32 port1
, port2
;
6741 * Catch errors reported by us and routines below us, and return NULL
6744 if (setjmp(cstate
->top_ctx
))
6750 addr
= pcap_nametonetaddr(name
);
6752 bpf_error(cstate
, "unknown network '%s'", name
);
6753 /* Left justify network addr and calculate its network mask */
6755 while (addr
&& (addr
& 0xff000000) == 0) {
6759 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6763 if (proto
== Q_LINK
) {
6764 const char *context
= "link host NAME";
6765 if (! is_mac48_linktype(cstate
->linktype
))
6766 fail_kw_on_dlt(cstate
, context
);
6767 eaddrp
= pcap_ether_hostton(name
);
6769 bpf_error(cstate
, ERRSTR_UNKNOWN_MAC48HOST
, name
);
6770 memcpy(eaddr
, eaddrp
, sizeof(eaddr
));
6772 return gen_mac48host(cstate
, eaddr
, q
.dir
, context
);
6773 } else if (proto
== Q_DECNET
) {
6775 * A long time ago on Ultrix libpcap supported
6776 * translation of DECnet host names into DECnet
6777 * addresses, but this feature is history now.
6779 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
6782 memset(&mask128
, 0xff, sizeof(mask128
));
6784 res0
= res
= pcap_nametoaddrinfo(name
);
6786 bpf_error(cstate
, "unknown host '%s'", name
);
6793 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6794 tproto
== Q_DEFAULT
) {
6800 for (res
= res0
; res
; res
= res
->ai_next
) {
6801 switch (res
->ai_family
) {
6804 if (tproto
== Q_IPV6
)
6808 sin4
= (struct sockaddr_in
*)
6810 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6811 0xffffffff, tproto
, dir
, q
.addr
);
6815 if (tproto6
== Q_IP
)
6818 sin6
= (struct sockaddr_in6
*)
6820 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6821 &mask128
, tproto6
, dir
, q
.addr
);
6834 bpf_error(cstate
, "unknown host '%s'%s", name
,
6835 (proto
== Q_DEFAULT
)
6837 : " for specified address family");
6843 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
6844 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6845 bpf_error(cstate
, "unknown port '%s'", name
);
6846 if (proto
== Q_UDP
) {
6847 if (real_proto
== IPPROTO_TCP
)
6848 bpf_error(cstate
, "port '%s' is tcp", name
);
6849 else if (real_proto
== IPPROTO_SCTP
)
6850 bpf_error(cstate
, "port '%s' is sctp", name
);
6852 /* override PROTO_UNDEF */
6853 real_proto
= IPPROTO_UDP
;
6855 if (proto
== Q_TCP
) {
6856 if (real_proto
== IPPROTO_UDP
)
6857 bpf_error(cstate
, "port '%s' is udp", name
);
6859 else if (real_proto
== IPPROTO_SCTP
)
6860 bpf_error(cstate
, "port '%s' is sctp", name
);
6862 /* override PROTO_UNDEF */
6863 real_proto
= IPPROTO_TCP
;
6865 if (proto
== Q_SCTP
) {
6866 if (real_proto
== IPPROTO_UDP
)
6867 bpf_error(cstate
, "port '%s' is udp", name
);
6869 else if (real_proto
== IPPROTO_TCP
)
6870 bpf_error(cstate
, "port '%s' is tcp", name
);
6872 /* override PROTO_UNDEF */
6873 real_proto
= IPPROTO_SCTP
;
6876 bpf_error(cstate
, "illegal port number %d < 0", port
);
6878 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6879 // real_proto can be PROTO_UNDEF
6880 b
= gen_port(cstate
, (uint16_t)port
, real_proto
, dir
);
6881 gen_or(gen_port6(cstate
, (uint16_t)port
, real_proto
, dir
), b
);
6885 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
6886 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
6887 if (proto
== Q_UDP
) {
6888 if (real_proto
== IPPROTO_TCP
)
6889 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6890 else if (real_proto
== IPPROTO_SCTP
)
6891 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6893 /* override PROTO_UNDEF */
6894 real_proto
= IPPROTO_UDP
;
6896 if (proto
== Q_TCP
) {
6897 if (real_proto
== IPPROTO_UDP
)
6898 bpf_error(cstate
, "port in range '%s' is udp", name
);
6899 else if (real_proto
== IPPROTO_SCTP
)
6900 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6902 /* override PROTO_UNDEF */
6903 real_proto
= IPPROTO_TCP
;
6905 if (proto
== Q_SCTP
) {
6906 if (real_proto
== IPPROTO_UDP
)
6907 bpf_error(cstate
, "port in range '%s' is udp", name
);
6908 else if (real_proto
== IPPROTO_TCP
)
6909 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6911 /* override PROTO_UNDEF */
6912 real_proto
= IPPROTO_SCTP
;
6915 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6917 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6919 // real_proto can be PROTO_UNDEF
6920 b
= gen_portrange(cstate
, (uint16_t)port1
, (uint16_t)port2
,
6922 gen_or(gen_portrange6(cstate
, (uint16_t)port1
, (uint16_t)port2
,
6923 real_proto
, dir
), b
);
6928 if (! is_mac48_linktype(cstate
->linktype
))
6929 fail_kw_on_dlt(cstate
, "gateway");
6930 eaddrp
= pcap_ether_hostton(name
);
6932 bpf_error(cstate
, ERRSTR_UNKNOWN_MAC48HOST
, name
);
6933 memcpy(eaddr
, eaddrp
, sizeof(eaddr
));
6936 res
= pcap_nametoaddrinfo(name
);
6939 bpf_error(cstate
, "unknown host '%s'", name
);
6940 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
6944 bpf_error(cstate
, "unknown host '%s'", name
);
6947 bpf_error(cstate
, "'gateway' not supported in this configuration");
6951 real_proto
= lookup_proto(cstate
, name
, proto
);
6952 if (real_proto
>= 0)
6953 return gen_proto(cstate
, real_proto
, proto
);
6955 bpf_error(cstate
, "unknown protocol: %s", name
);
6957 #if !defined(NO_PROTOCHAIN)
6959 real_proto
= lookup_proto(cstate
, name
, proto
);
6960 if (real_proto
>= 0)
6961 return gen_protochain(cstate
, real_proto
, proto
);
6963 bpf_error(cstate
, "unknown protocol: %s", name
);
6964 #endif /* !defined(NO_PROTOCHAIN) */
6975 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6976 bpf_u_int32 masklen
, struct qual q
)
6978 register int nlen
, mlen
;
6983 * Catch errors reported by us and routines below us, and return NULL
6986 if (setjmp(cstate
->top_ctx
))
6989 nlen
= pcapint_atoin(s1
, &n
);
6991 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
6992 /* Promote short ipaddr */
6996 mlen
= pcapint_atoin(s2
, &m
);
6998 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
6999 /* Promote short ipaddr */
7002 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7005 /* Convert mask len to mask */
7007 bpf_error(cstate
, "mask length must be <= 32");
7008 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7009 m
= (bpf_u_int32
)m64
;
7011 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7018 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7021 // Q_HOST and Q_GATEWAY only (see the grammar)
7022 bpf_error(cstate
, "Mask syntax for networks only");
7029 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7037 * Catch errors reported by us and routines below us, and return NULL
7040 if (setjmp(cstate
->top_ctx
))
7047 * v contains a 32-bit unsigned parsed from a string of the
7048 * form {N}, which could be decimal, hexadecimal or octal.
7049 * Although it would be possible to use the value as a raw
7050 * 16-bit DECnet address when the value fits into 16 bits, this
7051 * would be a questionable feature: DECnet address wire
7052 * encoding is little-endian, so this would not work as
7053 * intuitively as the same works for [big-endian] IPv4
7054 * addresses (0x01020304 means 1.2.3.4).
7056 if (proto
== Q_DECNET
)
7057 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7059 } else if (proto
== Q_DECNET
) {
7061 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7062 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7063 * for a valid DECnet address.
7065 vlen
= pcapint_atodn(s
, &v
);
7067 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7070 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7071 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7074 vlen
= pcapint_atoin(s
, &v
);
7076 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7084 if (proto
== Q_DECNET
)
7085 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7086 else if (proto
== Q_LINK
) {
7087 // "link (host|net) IPV4ADDR" and variations thereof
7088 bpf_error(cstate
, "illegal link layer address");
7091 if (s
== NULL
&& q
.addr
== Q_NET
) {
7092 /* Promote short net number */
7093 while (v
&& (v
& 0xff000000) == 0) {
7098 /* Promote short ipaddr */
7100 mask
<<= 32 - vlen
;
7102 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7106 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7109 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7111 // proto can be PROTO_UNDEF
7114 b
= gen_port(cstate
, (uint16_t)v
, proto
, dir
);
7115 gen_or(gen_port6(cstate
, (uint16_t)v
, proto
, dir
), b
);
7120 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7123 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7125 // proto can be PROTO_UNDEF
7128 b
= gen_portrange(cstate
, (uint16_t)v
, (uint16_t)v
,
7130 gen_or(gen_portrange6(cstate
, (uint16_t)v
, (uint16_t)v
,
7136 bpf_error(cstate
, "'gateway' requires a name");
7140 return gen_proto(cstate
, v
, proto
);
7142 #if !defined(NO_PROTOCHAIN)
7144 return gen_protochain(cstate
, v
, proto
);
7160 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7163 struct addrinfo
*res
;
7164 struct in6_addr
*addr
;
7165 struct in6_addr mask
;
7167 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7170 * Catch errors reported by us and routines below us, and return NULL
7173 if (setjmp(cstate
->top_ctx
))
7176 res
= pcap_nametoaddrinfo(s
);
7178 bpf_error(cstate
, "invalid ip6 address %s", s
);
7181 bpf_error(cstate
, "%s resolved to multiple address", s
);
7182 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7184 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7185 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7186 memset(&mask
, 0, sizeof(mask
));
7187 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7189 mask
.s6_addr
[masklen
/ 8] =
7190 (0xff << (8 - masklen
% 8)) & 0xff;
7193 memcpy(a
, addr
, sizeof(a
));
7194 memcpy(m
, &mask
, sizeof(m
));
7195 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7196 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7197 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7205 bpf_error(cstate
, "Mask syntax for networks only");
7209 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7215 // Q_GATEWAY only (see the grammar)
7216 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7223 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7226 * Catch errors reported by us and routines below us, and return NULL
7229 if (setjmp(cstate
->top_ctx
))
7232 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7233 const char *context
= "link host XX:XX:XX:XX:XX:XX";
7234 if (! is_mac48_linktype(cstate
->linktype
))
7235 fail_kw_on_dlt(cstate
, context
);
7236 cstate
->e
= pcap_ether_aton(s
);
7237 if (cstate
->e
== NULL
)
7238 bpf_error(cstate
, "malloc");
7239 struct block
*b
= gen_mac48host(cstate
, cstate
->e
, q
.dir
, context
);
7244 bpf_error(cstate
, "ethernet address used in non-ether expression");
7249 sappend(struct slist
*s0
, struct slist
*s1
)
7252 * This is definitely not the best way to do this, but the
7253 * lists will rarely get long.
7260 static struct slist
*
7261 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7265 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7270 static struct slist
*
7271 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7275 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7281 * Modify "index" to use the value stored into its register as an
7282 * offset relative to the beginning of the header for the protocol
7283 * "proto", and allocate a register and put an item "size" bytes long
7284 * (1, 2, or 4) at that offset into that register, making it the register
7287 static struct arth
*
7288 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7292 struct slist
*s
, *tmp
;
7294 int regno
= alloc_reg(cstate
);
7296 free_reg(cstate
, inst
->regno
);
7300 bpf_error(cstate
, "data size must be 1, 2, or 4");
7317 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7321 * The offset is relative to the beginning of the packet
7322 * data, if we have a radio header. (If we don't, this
7325 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7326 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7327 cstate
->linktype
!= DLT_PRISM_HEADER
)
7328 bpf_error(cstate
, "radio information not present in capture");
7331 * Load into the X register the offset computed into the
7332 * register specified by "index".
7334 s
= xfer_to_x(cstate
, inst
);
7337 * Load the item at that offset.
7339 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7341 sappend(inst
->s
, s
);
7346 * The offset is relative to the beginning of
7347 * the link-layer header.
7349 * XXX - what about ATM LANE? Should the index be
7350 * relative to the beginning of the AAL5 frame, so
7351 * that 0 refers to the beginning of the LE Control
7352 * field, or relative to the beginning of the LAN
7353 * frame, so that 0 refers, for Ethernet LANE, to
7354 * the beginning of the destination address?
7356 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7359 * If "s" is non-null, it has code to arrange that the
7360 * X register contains the length of the prefix preceding
7361 * the link-layer header. Add to it the offset computed
7362 * into the register specified by "index", and move that
7363 * into the X register. Otherwise, just load into the X
7364 * register the offset computed into the register specified
7368 sappend(s
, xfer_to_a(cstate
, inst
));
7369 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7370 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7372 s
= xfer_to_x(cstate
, inst
);
7375 * Load the item at the sum of the offset we've put in the
7376 * X register and the offset of the start of the link
7377 * layer header (which is 0 if the radio header is
7378 * variable-length; that header length is what we put
7379 * into the X register and then added to the index).
7381 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7382 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7384 sappend(inst
->s
, s
);
7398 * The offset is relative to the beginning of
7399 * the network-layer header.
7400 * XXX - are there any cases where we want
7401 * cstate->off_nl_nosnap?
7403 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7406 * If "s" is non-null, it has code to arrange that the
7407 * X register contains the variable part of the offset
7408 * of the link-layer payload. Add to it the offset
7409 * computed into the register specified by "index",
7410 * and move that into the X register. Otherwise, just
7411 * load into the X register the offset computed into
7412 * the register specified by "index".
7415 sappend(s
, xfer_to_a(cstate
, inst
));
7416 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7417 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7419 s
= xfer_to_x(cstate
, inst
);
7422 * Load the item at the sum of the offset we've put in the
7423 * X register, the offset of the start of the network
7424 * layer header from the beginning of the link-layer
7425 * payload, and the constant part of the offset of the
7426 * start of the link-layer payload.
7428 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7429 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7431 sappend(inst
->s
, s
);
7434 * Do the computation only if the packet contains
7435 * the protocol in question.
7437 b
= gen_proto_abbrev_internal(cstate
, proto
);
7439 gen_and(inst
->b
, b
);
7453 * The offset is relative to the beginning of
7454 * the transport-layer header.
7456 * Load the X register with the length of the IPv4 header
7457 * (plus the offset of the link-layer header, if it's
7458 * a variable-length header), in bytes.
7460 * XXX - are there any cases where we want
7461 * cstate->off_nl_nosnap?
7462 * XXX - we should, if we're built with
7463 * IPv6 support, generate code to load either
7464 * IPv4, IPv6, or both, as appropriate.
7466 s
= gen_loadx_iphdrlen(cstate
);
7469 * The X register now contains the sum of the variable
7470 * part of the offset of the link-layer payload and the
7471 * length of the network-layer header.
7473 * Load into the A register the offset relative to
7474 * the beginning of the transport layer header,
7475 * add the X register to that, move that to the
7476 * X register, and load with an offset from the
7477 * X register equal to the sum of the constant part of
7478 * the offset of the link-layer payload and the offset,
7479 * relative to the beginning of the link-layer payload,
7480 * of the network-layer header.
7482 sappend(s
, xfer_to_a(cstate
, inst
));
7483 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7484 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7485 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7486 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7487 sappend(inst
->s
, s
);
7490 * Do the computation only if the packet contains
7491 * the protocol in question - which is true only
7492 * if this is an IP datagram and is the first or
7493 * only fragment of that datagram.
7495 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7497 gen_and(inst
->b
, b
);
7498 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7503 * Do the computation only if the packet contains
7504 * the protocol in question.
7506 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7508 gen_and(inst
->b
, b
);
7512 * Check if we have an icmp6 next header
7514 b
= gen_ip6_proto(cstate
, 58);
7516 gen_and(inst
->b
, b
);
7519 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7521 * If "s" is non-null, it has code to arrange that the
7522 * X register contains the variable part of the offset
7523 * of the link-layer payload. Add to it the offset
7524 * computed into the register specified by "index",
7525 * and move that into the X register. Otherwise, just
7526 * load into the X register the offset computed into
7527 * the register specified by "index".
7530 sappend(s
, xfer_to_a(cstate
, inst
));
7531 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7532 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7534 s
= xfer_to_x(cstate
, inst
);
7537 * Load the item at the sum of the offset we've put in the
7538 * X register, the offset of the start of the network
7539 * layer header from the beginning of the link-layer
7540 * payload, and the constant part of the offset of the
7541 * start of the link-layer payload.
7543 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7544 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7547 sappend(inst
->s
, s
);
7551 inst
->regno
= regno
;
7552 s
= new_stmt(cstate
, BPF_ST
);
7554 sappend(inst
->s
, s
);
7560 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7564 * Catch errors reported by us and routines below us, and return NULL
7567 if (setjmp(cstate
->top_ctx
))
7570 return gen_load_internal(cstate
, proto
, inst
, size
);
7573 static struct block
*
7574 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7575 struct arth
*a1
, int reversed
)
7577 struct slist
*s0
, *s1
, *s2
;
7578 struct block
*b
, *tmp
;
7580 s0
= xfer_to_x(cstate
, a1
);
7581 s1
= xfer_to_a(cstate
, a0
);
7582 if (code
== BPF_JEQ
) {
7583 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7584 b
= new_block(cstate
, JMP(code
));
7588 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7594 sappend(a0
->s
, a1
->s
);
7598 free_reg(cstate
, a0
->regno
);
7599 free_reg(cstate
, a1
->regno
);
7601 /* 'and' together protocol checks */
7604 gen_and(a0
->b
, tmp
= a1
->b
);
7618 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7619 struct arth
*a1
, int reversed
)
7622 * Catch errors reported by us and routines below us, and return NULL
7625 if (setjmp(cstate
->top_ctx
))
7628 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7632 gen_loadlen(compiler_state_t
*cstate
)
7639 * Catch errors reported by us and routines below us, and return NULL
7642 if (setjmp(cstate
->top_ctx
))
7645 regno
= alloc_reg(cstate
);
7646 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7647 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7648 s
->next
= new_stmt(cstate
, BPF_ST
);
7649 s
->next
->s
.k
= regno
;
7656 static struct arth
*
7657 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7663 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7665 reg
= alloc_reg(cstate
);
7667 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7669 s
->next
= new_stmt(cstate
, BPF_ST
);
7678 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7681 * Catch errors reported by us and routines below us, and return NULL
7684 if (setjmp(cstate
->top_ctx
))
7687 return gen_loadi_internal(cstate
, val
);
7691 * The a_arg dance is to avoid annoying whining by compilers that
7692 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7693 * It's not *used* after setjmp returns.
7696 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7698 struct arth
*a
= a_arg
;
7702 * Catch errors reported by us and routines below us, and return NULL
7705 if (setjmp(cstate
->top_ctx
))
7708 s
= xfer_to_a(cstate
, a
);
7710 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7713 s
= new_stmt(cstate
, BPF_ST
);
7721 * The a0_arg dance is to avoid annoying whining by compilers that
7722 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7723 * It's not *used* after setjmp returns.
7726 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7729 struct arth
*a0
= a0_arg
;
7730 struct slist
*s0
, *s1
, *s2
;
7733 * Catch errors reported by us and routines below us, and return NULL
7736 if (setjmp(cstate
->top_ctx
))
7740 * Disallow division by, or modulus by, zero; we do this here
7741 * so that it gets done even if the optimizer is disabled.
7743 * Also disallow shifts by a value greater than 31; we do this
7744 * here, for the same reason.
7746 if (code
== BPF_DIV
) {
7747 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7748 bpf_error(cstate
, "division by zero");
7749 } else if (code
== BPF_MOD
) {
7750 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7751 bpf_error(cstate
, "modulus by zero");
7752 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7753 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7754 bpf_error(cstate
, "shift by more than 31 bits");
7756 s0
= xfer_to_x(cstate
, a1
);
7757 s1
= xfer_to_a(cstate
, a0
);
7758 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7763 sappend(a0
->s
, a1
->s
);
7765 free_reg(cstate
, a0
->regno
);
7766 free_reg(cstate
, a1
->regno
);
7768 s0
= new_stmt(cstate
, BPF_ST
);
7769 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7776 * Initialize the table of used registers and the current register.
7779 init_regs(compiler_state_t
*cstate
)
7782 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7786 * Return the next free register.
7789 alloc_reg(compiler_state_t
*cstate
)
7791 int n
= BPF_MEMWORDS
;
7794 if (cstate
->regused
[cstate
->curreg
])
7795 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7797 cstate
->regused
[cstate
->curreg
] = 1;
7798 return cstate
->curreg
;
7801 bpf_error(cstate
, "too many registers needed to evaluate expression");
7806 * Return a register to the table so it can
7810 free_reg(compiler_state_t
*cstate
, int n
)
7812 cstate
->regused
[n
] = 0;
7815 static struct block
*
7816 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7820 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7821 return gen_jmp(cstate
, jmp
, n
, s
);
7825 gen_greater(compiler_state_t
*cstate
, int n
)
7828 * Catch errors reported by us and routines below us, and return NULL
7831 if (setjmp(cstate
->top_ctx
))
7834 return gen_len(cstate
, BPF_JGE
, n
);
7838 * Actually, this is less than or equal.
7841 gen_less(compiler_state_t
*cstate
, int n
)
7846 * Catch errors reported by us and routines below us, and return NULL
7849 if (setjmp(cstate
->top_ctx
))
7852 b
= gen_len(cstate
, BPF_JGT
, n
);
7859 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7860 * the beginning of the link-layer header.
7861 * XXX - that means you can't test values in the radiotap header, but
7862 * as that header is difficult if not impossible to parse generally
7863 * without a loop, that might not be a severe problem. A new keyword
7864 * "radio" could be added for that, although what you'd really want
7865 * would be a way of testing particular radio header values, which
7866 * would generate code appropriate to the radio header in question.
7869 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
7875 * Catch errors reported by us and routines below us, and return NULL
7878 if (setjmp(cstate
->top_ctx
))
7881 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
7888 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7891 return gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7894 return gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
7897 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7901 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7905 // Load the required byte first.
7906 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
7908 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
7915 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7917 bpf_u_int32 hostmask
;
7918 struct block
*b0
, *b1
, *b2
;
7919 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7922 * Catch errors reported by us and routines below us, and return NULL
7925 if (setjmp(cstate
->top_ctx
))
7932 switch (cstate
->linktype
) {
7934 case DLT_ARCNET_LINUX
:
7935 // ARCnet broadcast is [8-bit] destination address 0.
7936 return gen_ahostop(cstate
, 0, Q_DST
);
7938 return gen_mac48host(cstate
, ebroadcast
, Q_DST
, "broadcast");
7943 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7944 * as an indication that we don't know the netmask, and fail
7947 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7948 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7949 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7950 hostmask
= ~cstate
->netmask
;
7951 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
7952 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
7957 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
7962 * Generate code to test the low-order bit of a MAC address (that's
7963 * the bottom bit of the *first* byte).
7965 static struct block
*
7966 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7968 register struct slist
*s
;
7970 /* link[offset] & 1 != 0 */
7971 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7972 return gen_set(cstate
, 1, s
);
7976 gen_multicast(compiler_state_t
*cstate
, int proto
)
7978 register struct block
*b0
, *b1
, *b2
;
7979 register struct slist
*s
;
7982 * Catch errors reported by us and routines below us, and return NULL
7985 if (setjmp(cstate
->top_ctx
))
7992 switch (cstate
->linktype
) {
7994 case DLT_ARCNET_LINUX
:
7995 // ARCnet multicast is the same as broadcast.
7996 return gen_ahostop(cstate
, 0, Q_DST
);
7998 case DLT_NETANALYZER
:
7999 case DLT_NETANALYZER_TRANSPARENT
:
8000 b1
= gen_prevlinkhdr_check(cstate
);
8001 /* ether[0] & 1 != 0 */
8002 b0
= gen_mac_multicast(cstate
, 0);
8008 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8010 * XXX - was that referring to bit-order issues?
8012 /* fddi[1] & 1 != 0 */
8013 return gen_mac_multicast(cstate
, 1);
8015 /* tr[2] & 1 != 0 */
8016 return gen_mac_multicast(cstate
, 2);
8017 case DLT_IEEE802_11
:
8018 case DLT_PRISM_HEADER
:
8019 case DLT_IEEE802_11_RADIO_AVS
:
8020 case DLT_IEEE802_11_RADIO
:
8025 * For control frames, there is no DA.
8027 * For management frames, DA is at an
8028 * offset of 4 from the beginning of
8031 * For data frames, DA is at an offset
8032 * of 4 from the beginning of the packet
8033 * if To DS is clear and at an offset of
8034 * 16 from the beginning of the packet
8039 * Generate the tests to be done for data frames.
8041 * First, check for To DS set, i.e. "link[1] & 0x01".
8043 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8044 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8047 * If To DS is set, the DA is at 16.
8049 b0
= gen_mac_multicast(cstate
, 16);
8053 * Now, check for To DS not set, i.e. check
8054 * "!(link[1] & 0x01)".
8056 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8057 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8060 * If To DS is not set, the DA is at 4.
8062 b1
= gen_mac_multicast(cstate
, 4);
8066 * Now OR together the last two checks. That gives
8067 * the complete set of checks for data frames.
8072 * Now check for a data frame.
8073 * I.e, check "link[0] & 0x08".
8075 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8076 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8079 * AND that with the checks done for data frames.
8084 * If the high-order bit of the type value is 0, this
8085 * is a management frame.
8086 * I.e, check "!(link[0] & 0x08)".
8088 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8089 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8092 * For management frames, the DA is at 4.
8094 b1
= gen_mac_multicast(cstate
, 4);
8098 * OR that with the checks done for data frames.
8099 * That gives the checks done for management and
8105 * If the low-order bit of the type value is 1,
8106 * this is either a control frame or a frame
8107 * with a reserved type, and thus not a
8110 * I.e., check "!(link[0] & 0x04)".
8112 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8113 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
8116 * AND that with the checks for data and management
8121 case DLT_IP_OVER_FC
:
8122 return gen_mac_multicast(cstate
, 2);
8126 fail_kw_on_dlt(cstate
, "multicast");
8130 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8131 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8136 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8137 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8141 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8147 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8148 * we can look at special meta-data in the filter expression; otherwise we
8149 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8150 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8151 * pcap_activate() conditionally sets.
8154 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8156 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8158 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8160 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8165 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8168 * Catch errors reported by us and routines below us, and return NULL
8171 if (setjmp(cstate
->top_ctx
))
8175 * Only some data link types support ifindex qualifiers.
8177 switch (cstate
->linktype
) {
8178 case DLT_LINUX_SLL2
:
8179 /* match packets on this interface */
8180 return gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8182 #if defined(__linux__)
8183 require_basic_bpf_extensions(cstate
, "ifindex");
8185 return gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8187 #else /* defined(__linux__) */
8188 fail_kw_on_dlt(cstate
, "ifindex");
8190 #endif /* defined(__linux__) */
8195 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8196 * Outbound traffic is sent by this machine, while inbound traffic is
8197 * sent by a remote machine (and may include packets destined for a
8198 * unicast or multicast link-layer address we are not subscribing to).
8199 * These are the same definitions implemented by pcap_setdirection().
8200 * Capturing only unicast traffic destined for this host is probably
8201 * better accomplished using a higher-layer filter.
8204 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8206 register struct block
*b0
;
8209 * Catch errors reported by us and routines below us, and return NULL
8212 if (setjmp(cstate
->top_ctx
))
8216 * Only some data link types support inbound/outbound qualifiers.
8218 switch (cstate
->linktype
) {
8220 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8221 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8224 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8225 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8228 /* match outgoing packets */
8229 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8231 /* to filter on inbound traffic, invert the match */
8236 case DLT_LINUX_SLL2
:
8237 /* match outgoing packets */
8238 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8240 /* to filter on inbound traffic, invert the match */
8246 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8247 outbound
? PF_OUT
: PF_IN
);
8250 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8252 case DLT_JUNIPER_MFR
:
8253 case DLT_JUNIPER_MLFR
:
8254 case DLT_JUNIPER_MLPPP
:
8255 case DLT_JUNIPER_ATM1
:
8256 case DLT_JUNIPER_ATM2
:
8257 case DLT_JUNIPER_PPPOE
:
8258 case DLT_JUNIPER_PPPOE_ATM
:
8259 case DLT_JUNIPER_GGSN
:
8260 case DLT_JUNIPER_ES
:
8261 case DLT_JUNIPER_MONITOR
:
8262 case DLT_JUNIPER_SERVICES
:
8263 case DLT_JUNIPER_ETHER
:
8264 case DLT_JUNIPER_PPP
:
8265 case DLT_JUNIPER_FRELAY
:
8266 case DLT_JUNIPER_CHDLC
:
8267 case DLT_JUNIPER_VP
:
8268 case DLT_JUNIPER_ST
:
8269 case DLT_JUNIPER_ISM
:
8270 case DLT_JUNIPER_VS
:
8271 case DLT_JUNIPER_SRX_E2E
:
8272 case DLT_JUNIPER_FIBRECHANNEL
:
8273 case DLT_JUNIPER_ATM_CEMIC
:
8274 /* juniper flags (including direction) are stored
8275 * the byte after the 3-byte magic number */
8276 return gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8280 * If we have packet meta-data indicating a direction,
8281 * and that metadata can be checked by BPF code, check
8282 * it. Otherwise, give up, as this link-layer type has
8283 * nothing in the packet data.
8285 * Currently, the only platform where a BPF filter can
8286 * check that metadata is Linux with the in-kernel
8287 * BPF interpreter. If other packet capture mechanisms
8288 * and BPF filters also supported this, it would be
8289 * nice. It would be even better if they made that
8290 * metadata available so that we could provide it
8291 * with newer capture APIs, allowing it to be saved
8294 #if defined(__linux__)
8295 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8296 /* match outgoing packets */
8297 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8300 /* to filter on inbound traffic, invert the match */
8304 #else /* defined(__linux__) */
8305 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8307 #endif /* defined(__linux__) */
8311 /* PF firewall log matched interface */
8313 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8318 * Catch errors reported by us and routines below us, and return NULL
8321 if (setjmp(cstate
->top_ctx
))
8324 assert_pflog(cstate
, "ifname");
8326 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8327 off
= offsetof(struct pfloghdr
, ifname
);
8328 if (strlen(ifname
) >= len
) {
8329 bpf_error(cstate
, "ifname interface names can only be %d characters",
8333 return gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8334 (const u_char
*)ifname
);
8337 /* PF firewall log ruleset name */
8339 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8342 * Catch errors reported by us and routines below us, and return NULL
8345 if (setjmp(cstate
->top_ctx
))
8348 assert_pflog(cstate
, "ruleset");
8350 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8351 bpf_error(cstate
, "ruleset names can only be %ld characters",
8352 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8356 return gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8357 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8360 /* PF firewall log rule number */
8362 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8365 * Catch errors reported by us and routines below us, and return NULL
8368 if (setjmp(cstate
->top_ctx
))
8371 assert_pflog(cstate
, "rnr");
8373 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8377 /* PF firewall log sub-rule number */
8379 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8382 * Catch errors reported by us and routines below us, and return NULL
8385 if (setjmp(cstate
->top_ctx
))
8388 assert_pflog(cstate
, "srnr");
8390 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8394 /* PF firewall log reason code */
8396 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8399 * Catch errors reported by us and routines below us, and return NULL
8402 if (setjmp(cstate
->top_ctx
))
8405 assert_pflog(cstate
, "reason");
8407 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8408 (bpf_u_int32
)reason
);
8411 /* PF firewall log action */
8413 gen_pf_action(compiler_state_t
*cstate
, int action
)
8416 * Catch errors reported by us and routines below us, and return NULL
8419 if (setjmp(cstate
->top_ctx
))
8422 assert_pflog(cstate
, "action");
8424 return gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8425 (bpf_u_int32
)action
);
8428 /* IEEE 802.11 wireless header */
8430 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8433 * Catch errors reported by us and routines below us, and return NULL
8436 if (setjmp(cstate
->top_ctx
))
8439 switch (cstate
->linktype
) {
8441 case DLT_IEEE802_11
:
8442 case DLT_PRISM_HEADER
:
8443 case DLT_IEEE802_11_RADIO_AVS
:
8444 case DLT_IEEE802_11_RADIO
:
8446 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8449 fail_kw_on_dlt(cstate
, "type/subtype");
8455 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8458 * Catch errors reported by us and routines below us, and return NULL
8461 if (setjmp(cstate
->top_ctx
))
8464 switch (cstate
->linktype
) {
8466 case DLT_IEEE802_11
:
8467 case DLT_PRISM_HEADER
:
8468 case DLT_IEEE802_11_RADIO_AVS
:
8469 case DLT_IEEE802_11_RADIO
:
8471 return gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8472 IEEE80211_FC1_DIR_MASK
);
8475 fail_kw_on_dlt(cstate
, "dir");
8480 // Process an ARCnet host address string.
8482 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8485 * Catch errors reported by us and routines below us, and return NULL
8488 if (setjmp(cstate
->top_ctx
))
8491 switch (cstate
->linktype
) {
8494 case DLT_ARCNET_LINUX
:
8495 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8496 q
.proto
== Q_LINK
) {
8499 * The lexer currently defines the address format in a
8500 * way that makes this error condition never true.
8501 * Let's check it anyway in case this part of the lexer
8502 * changes in future.
8504 if (! pcapint_atoan(s
, &addr
))
8505 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8506 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8508 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8512 bpf_error(cstate
, "aid supported only on ARCnet");
8517 // Compare an ARCnet host address with the given value.
8518 static struct block
*
8519 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8521 register struct block
*b0
, *b1
;
8525 * ARCnet is different from Ethernet: the source address comes before
8526 * the destination address, each is one byte long. This holds for all
8527 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8528 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8529 * by Datapoint (document number 61610-01).
8532 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8535 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8538 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8539 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8545 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8546 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8556 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8563 static struct block
*
8564 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8566 struct block
*b0
, *b1
;
8568 /* check for VLAN, including 802.1ad and QinQ */
8569 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8570 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8573 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8579 static struct block
*
8580 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8582 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8583 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8586 static struct block
*
8587 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8590 struct block
*b0
, *b1
;
8592 b0
= gen_vlan_tpid_test(cstate
);
8595 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8601 * Both payload and link header type follow the VLAN tags so that
8602 * both need to be updated.
8604 cstate
->off_linkpl
.constant_part
+= 4;
8605 cstate
->off_linktype
.constant_part
+= 4;
8610 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8611 /* add v to variable part of off */
8613 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8614 bpf_u_int32 v
, struct slist
*s
)
8618 if (!off
->is_variable
)
8619 off
->is_variable
= 1;
8621 off
->reg
= alloc_reg(cstate
);
8623 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8626 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8629 s2
= new_stmt(cstate
, BPF_ST
);
8635 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8636 * and link type offsets first
8639 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8643 /* offset determined at run time, shift variable part */
8645 cstate
->is_vlan_vloffset
= 1;
8646 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8647 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8649 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8650 sappend(s
.next
, b_tpid
->head
->stmts
);
8651 b_tpid
->head
->stmts
= s
.next
;
8655 * patch block b_vid (VLAN id test) to load VID value either from packet
8656 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8659 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8661 struct slist
*s
, *s2
, *sjeq
;
8664 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8665 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8667 /* true -> next instructions, false -> beginning of b_vid */
8668 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8670 sjeq
->s
.jf
= b_vid
->stmts
;
8673 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8674 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8678 /* Jump to the test in b_vid. We need to jump one instruction before
8679 * the end of the b_vid block so that we only skip loading the TCI
8680 * from packet data and not the 'and' instruction extracting VID.
8683 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8685 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8689 /* insert our statements at the beginning of b_vid */
8690 sappend(s
, b_vid
->stmts
);
8695 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8696 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8697 * tag can be either in metadata or in packet data; therefore if the
8698 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8699 * header for VLAN tag. As the decision is done at run time, we need
8700 * update variable part of the offsets
8702 static struct block
*
8703 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8706 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8709 /* generate new filter code based on extracting packet
8711 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8712 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8714 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
8717 * This is tricky. We need to insert the statements updating variable
8718 * parts of offsets before the traditional TPID and VID tests so
8719 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8720 * we do not want this update to affect those checks. That's why we
8721 * generate both test blocks first and insert the statements updating
8722 * variable parts of both offsets after that. This wouldn't work if
8723 * there already were variable length link header when entering this
8724 * function but gen_vlan_bpf_extensions() isn't called in that case.
8726 b_tpid
= gen_vlan_tpid_test(cstate
);
8728 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
8730 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
8735 gen_vlan_patch_vid_test(cstate
, b_vid
);
8745 * support IEEE 802.1Q VLAN trunk over ethernet
8748 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
8753 * Catch errors reported by us and routines below us, and return NULL
8756 if (setjmp(cstate
->top_ctx
))
8759 /* can't check for VLAN-encapsulated packets inside MPLS */
8760 if (cstate
->label_stack_depth
> 0)
8761 bpf_error(cstate
, "no VLAN match after MPLS");
8764 * Check for a VLAN packet, and then change the offsets to point
8765 * to the type and data fields within the VLAN packet. Just
8766 * increment the offsets, so that we can support a hierarchy, e.g.
8767 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
8770 * XXX - this is a bit of a kludge. If we were to split the
8771 * compiler into a parser that parses an expression and
8772 * generates an expression tree, and a code generator that
8773 * takes an expression tree (which could come from our
8774 * parser or from some other parser) and generates BPF code,
8775 * we could perhaps make the offsets parameters of routines
8776 * and, in the handler for an "AND" node, pass to subnodes
8777 * other than the VLAN node the adjusted offsets.
8779 * This would mean that "vlan" would, instead of changing the
8780 * behavior of *all* tests after it, change only the behavior
8781 * of tests ANDed with it. That would change the documented
8782 * semantics of "vlan", which might break some expressions.
8783 * However, it would mean that "(vlan and ip) or ip" would check
8784 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8785 * checking only for VLAN-encapsulated IP, so that could still
8786 * be considered worth doing; it wouldn't break expressions
8787 * that are of the form "vlan and ..." or "vlan N and ...",
8788 * which I suspect are the most common expressions involving
8789 * "vlan". "vlan or ..." doesn't necessarily do what the user
8790 * would really want, now, as all the "or ..." tests would
8791 * be done assuming a VLAN, even though the "or" could be viewed
8792 * as meaning "or, if this isn't a VLAN packet...".
8794 switch (cstate
->linktype
) {
8798 * Newer version of the Linux kernel pass around
8799 * packets in which the VLAN tag has been removed
8800 * from the packet data and put into metadata.
8802 * This requires special treatment.
8804 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8805 /* Verify that this is the outer part of the packet and
8806 * not encapsulated somehow. */
8807 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8808 cstate
->off_linkhdr
.constant_part
==
8809 cstate
->off_outermostlinkhdr
.constant_part
) {
8811 * Do we need special VLAN handling?
8813 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8814 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
8817 b0
= gen_vlan_no_bpf_extensions(cstate
,
8818 vlan_num
, has_vlan_tag
);
8821 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
8825 case DLT_NETANALYZER
:
8826 case DLT_NETANALYZER_TRANSPARENT
:
8827 case DLT_IEEE802_11
:
8828 case DLT_PRISM_HEADER
:
8829 case DLT_IEEE802_11_RADIO_AVS
:
8830 case DLT_IEEE802_11_RADIO
:
8832 * These are either Ethernet packets with an additional
8833 * metadata header (the NetAnalyzer types), or 802.11
8834 * packets, possibly with an additional metadata header.
8836 * For the first of those, the VLAN tag is in the normal
8837 * place, so the special-case handling above isn't
8840 * For the second of those, we don't do the special-case
8843 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
8847 bpf_error(cstate
, "no VLAN support for %s",
8848 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8852 cstate
->vlan_stack_depth
++;
8860 * The label_num_arg dance is to avoid annoying whining by compilers that
8861 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8862 * It's not *used* after setjmp returns.
8864 static struct block
*
8865 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
8868 struct block
*b0
, *b1
;
8870 if (cstate
->label_stack_depth
> 0) {
8871 /* just match the bottom-of-stack bit clear */
8872 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
8875 * We're not in an MPLS stack yet, so check the link-layer
8876 * type against MPLS.
8878 switch (cstate
->linktype
) {
8880 case DLT_C_HDLC
: /* fall through */
8883 case DLT_NETANALYZER
:
8884 case DLT_NETANALYZER_TRANSPARENT
:
8885 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
8889 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
8892 /* FIXME add other DLT_s ...
8893 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8894 * leave it for now */
8897 bpf_error(cstate
, "no MPLS support for %s",
8898 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8903 /* If a specific MPLS label is requested, check it */
8904 if (has_label_num
) {
8905 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
8906 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8907 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
8908 0xfffff000); /* only compare the first 20 bits */
8914 * Change the offsets to point to the type and data fields within
8915 * the MPLS packet. Just increment the offsets, so that we
8916 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8917 * capture packets with an outer label of 100000 and an inner
8920 * Increment the MPLS stack depth as well; this indicates that
8921 * we're checking MPLS-encapsulated headers, to make sure higher
8922 * level code generators don't try to match against IP-related
8923 * protocols such as Q_ARP, Q_RARP etc.
8925 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8927 cstate
->off_nl_nosnap
+= 4;
8928 cstate
->off_nl
+= 4;
8929 cstate
->label_stack_depth
++;
8934 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
8937 * Catch errors reported by us and routines below us, and return NULL
8940 if (setjmp(cstate
->top_ctx
))
8943 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
8947 * Support PPPOE discovery and session.
8950 gen_pppoed(compiler_state_t
*cstate
)
8953 * Catch errors reported by us and routines below us, and return NULL
8956 if (setjmp(cstate
->top_ctx
))
8959 /* check for PPPoE discovery */
8960 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
8964 * RFC 2516 Section 4:
8966 * The Ethernet payload for PPPoE is as follows:
8969 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
8970 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8971 * | VER | TYPE | CODE | SESSION_ID |
8972 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8973 * | LENGTH | payload ~
8974 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8977 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
8979 struct block
*b0
, *b1
;
8982 * Catch errors reported by us and routines below us, and return NULL
8985 if (setjmp(cstate
->top_ctx
))
8989 * Test against the PPPoE session link-layer type.
8991 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
8993 /* If a specific session is requested, check PPPoE session id */
8995 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
8996 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9002 * Change the offsets to point to the type and data fields within
9003 * the PPP packet, and note that this is PPPoE rather than
9006 * XXX - this is a bit of a kludge. See the comments in
9009 * The "network-layer" protocol is PPPoE, which has a 6-byte
9010 * PPPoE header, followed by a PPP packet.
9012 * There is no HDLC encapsulation for the PPP packet (it's
9013 * encapsulated in PPPoES instead), so the link-layer type
9014 * starts at the first byte of the PPP packet. For PPPoE,
9015 * that offset is relative to the beginning of the total
9016 * link-layer payload, including any 802.2 LLC header, so
9017 * it's 6 bytes past cstate->off_nl.
9019 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9020 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9021 cstate
->off_linkpl
.reg
);
9023 cstate
->off_linktype
= cstate
->off_linkhdr
;
9024 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9027 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9032 /* Check that this is Geneve and the VNI is correct if
9033 * specified. Parameterized to handle both IPv4 and IPv6. */
9034 static struct block
*
9035 gen_geneve_check(compiler_state_t
*cstate
,
9036 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9037 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9039 struct block
*b0
, *b1
;
9041 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9043 /* Check that we are operating on version 0. Otherwise, we
9044 * can't decode the rest of the fields. The version is 2 bits
9045 * in the first byte of the Geneve header. */
9046 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9051 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9052 vni
<<= 8; /* VNI is in the upper 3 bytes */
9053 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9061 /* The IPv4 and IPv6 Geneve checks need to do two things:
9062 * - Verify that this actually is Geneve with the right VNI.
9063 * - Place the IP header length (plus variable link prefix if
9064 * needed) into register A to be used later to compute
9065 * the inner packet offsets. */
9066 static struct block
*
9067 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9069 struct block
*b0
, *b1
;
9070 struct slist
*s
, *s1
;
9072 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9074 /* Load the IP header length into A. */
9075 s
= gen_loadx_iphdrlen(cstate
);
9077 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9080 /* Forcibly append these statements to the true condition
9081 * of the protocol check by creating a new block that is
9082 * always true and ANDing them. */
9083 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9090 static struct block
*
9091 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9093 struct block
*b0
, *b1
;
9094 struct slist
*s
, *s1
;
9096 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9098 /* Load the IP header length. We need to account for a
9099 * variable length link prefix if there is one. */
9100 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9102 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9106 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9110 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9114 /* Forcibly append these statements to the true condition
9115 * of the protocol check by creating a new block that is
9116 * always true and ANDing them. */
9117 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9120 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9127 /* We need to store three values based on the Geneve header::
9128 * - The offset of the linktype.
9129 * - The offset of the end of the Geneve header.
9130 * - The offset of the end of the encapsulated MAC header. */
9131 static struct slist
*
9132 gen_geneve_offsets(compiler_state_t
*cstate
)
9134 struct slist
*s
, *s1
, *s_proto
;
9136 /* First we need to calculate the offset of the Geneve header
9137 * itself. This is composed of the IP header previously calculated
9138 * (include any variable link prefix) and stored in A plus the
9139 * fixed sized headers (fixed link prefix, MAC length, and UDP
9141 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9142 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9144 /* Stash this in X since we'll need it later. */
9145 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9148 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9150 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9154 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9155 cstate
->off_linktype
.is_variable
= 1;
9156 cstate
->off_linktype
.constant_part
= 0;
9158 s1
= new_stmt(cstate
, BPF_ST
);
9159 s1
->s
.k
= cstate
->off_linktype
.reg
;
9162 /* Load the Geneve option length and mask and shift to get the
9163 * number of bytes. It is stored in the first byte of the Geneve
9165 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9169 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9173 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9177 /* Add in the rest of the Geneve base header. */
9178 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9182 /* Add the Geneve header length to its offset and store. */
9183 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9187 /* Set the encapsulated type as Ethernet. Even though we may
9188 * not actually have Ethernet inside there are two reasons this
9190 * - The linktype field is always in EtherType format regardless
9191 * of whether it is in Geneve or an inner Ethernet frame.
9192 * - The only link layer that we have specific support for is
9193 * Ethernet. We will confirm that the packet actually is
9194 * Ethernet at runtime before executing these checks. */
9195 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9197 s1
= new_stmt(cstate
, BPF_ST
);
9198 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9201 /* Calculate whether we have an Ethernet header or just raw IP/
9202 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9203 * and linktype by 14 bytes so that the network header can be found
9204 * seamlessly. Otherwise, keep what we've calculated already. */
9206 /* We have a bare jmp so we can't use the optimizer. */
9207 cstate
->no_optimize
= 1;
9209 /* Load the EtherType in the Geneve header, 2 bytes in. */
9210 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9214 /* Load X with the end of the Geneve header. */
9215 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9216 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9219 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9220 * end of this check, we should have the total length in X. In
9221 * the non-Ethernet case, it's already there. */
9222 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9223 s_proto
->s
.k
= ETHERTYPE_TEB
;
9224 sappend(s
, s_proto
);
9226 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9230 /* Since this is Ethernet, use the EtherType of the payload
9231 * directly as the linktype. Overwrite what we already have. */
9232 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9236 s1
= new_stmt(cstate
, BPF_ST
);
9237 s1
->s
.k
= cstate
->off_linktype
.reg
;
9240 /* Advance two bytes further to get the end of the Ethernet
9242 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9246 /* Move the result to X. */
9247 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9250 /* Store the final result of our linkpl calculation. */
9251 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9252 cstate
->off_linkpl
.is_variable
= 1;
9253 cstate
->off_linkpl
.constant_part
= 0;
9255 s1
= new_stmt(cstate
, BPF_STX
);
9256 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9265 /* Check to see if this is a Geneve packet. */
9267 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9269 struct block
*b0
, *b1
;
9273 * Catch errors reported by us and routines below us, and return NULL
9276 if (setjmp(cstate
->top_ctx
))
9279 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9280 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9285 /* Later filters should act on the payload of the Geneve frame,
9286 * update all of the header pointers. Attach this code so that
9287 * it gets executed in the event that the Geneve filter matches. */
9288 s
= gen_geneve_offsets(cstate
);
9290 b1
= gen_true(cstate
);
9291 sappend(s
, b1
->stmts
);
9296 cstate
->is_encap
= 1;
9301 /* Check that this is VXLAN and the VNI is correct if
9302 * specified. Parameterized to handle both IPv4 and IPv6. */
9303 static struct block
*
9304 gen_vxlan_check(compiler_state_t
*cstate
,
9305 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9306 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9308 struct block
*b0
, *b1
;
9310 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9312 /* Check that the VXLAN header has the flag bits set
9314 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9319 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9320 vni
<<= 8; /* VNI is in the upper 3 bytes */
9321 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9329 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9330 * - Verify that this actually is VXLAN with the right VNI.
9331 * - Place the IP header length (plus variable link prefix if
9332 * needed) into register A to be used later to compute
9333 * the inner packet offsets. */
9334 static struct block
*
9335 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9337 struct block
*b0
, *b1
;
9338 struct slist
*s
, *s1
;
9340 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9342 /* Load the IP header length into A. */
9343 s
= gen_loadx_iphdrlen(cstate
);
9345 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9348 /* Forcibly append these statements to the true condition
9349 * of the protocol check by creating a new block that is
9350 * always true and ANDing them. */
9351 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9358 static struct block
*
9359 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9361 struct block
*b0
, *b1
;
9362 struct slist
*s
, *s1
;
9364 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9366 /* Load the IP header length. We need to account for a
9367 * variable length link prefix if there is one. */
9368 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9370 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9374 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9378 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9382 /* Forcibly append these statements to the true condition
9383 * of the protocol check by creating a new block that is
9384 * always true and ANDing them. */
9385 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9388 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9395 /* We need to store three values based on the VXLAN header:
9396 * - The offset of the linktype.
9397 * - The offset of the end of the VXLAN header.
9398 * - The offset of the end of the encapsulated MAC header. */
9399 static struct slist
*
9400 gen_vxlan_offsets(compiler_state_t
*cstate
)
9402 struct slist
*s
, *s1
;
9404 /* Calculate the offset of the VXLAN header itself. This
9405 * includes the IP header computed previously (including any
9406 * variable link prefix) and stored in A plus the fixed size
9407 * headers (fixed link prefix, MAC length, UDP header). */
9408 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9409 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9411 /* Add the VXLAN header length to its offset and store */
9412 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9416 /* Push the link header. VXLAN packets always contain Ethernet
9418 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9420 s1
= new_stmt(cstate
, BPF_ST
);
9421 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9424 /* As the payload is an Ethernet packet, we can use the
9425 * EtherType of the payload directly as the linktype. */
9426 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9430 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9431 cstate
->off_linktype
.is_variable
= 1;
9432 cstate
->off_linktype
.constant_part
= 0;
9434 s1
= new_stmt(cstate
, BPF_ST
);
9435 s1
->s
.k
= cstate
->off_linktype
.reg
;
9438 /* Two bytes further is the end of the Ethernet header and the
9439 * start of the payload. */
9440 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9444 /* Move the result to X. */
9445 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9448 /* Store the final result of our linkpl calculation. */
9449 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9450 cstate
->off_linkpl
.is_variable
= 1;
9451 cstate
->off_linkpl
.constant_part
= 0;
9453 s1
= new_stmt(cstate
, BPF_STX
);
9454 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9462 /* Check to see if this is a VXLAN packet. */
9464 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9466 struct block
*b0
, *b1
;
9470 * Catch errors reported by us and routines below us, and return NULL
9473 if (setjmp(cstate
->top_ctx
))
9476 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9477 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9482 /* Later filters should act on the payload of the VXLAN frame,
9483 * update all of the header pointers. Attach this code so that
9484 * it gets executed in the event that the VXLAN filter matches. */
9485 s
= gen_vxlan_offsets(cstate
);
9487 b1
= gen_true(cstate
);
9488 sappend(s
, b1
->stmts
);
9493 cstate
->is_encap
= 1;
9498 /* Check that the encapsulated frame has a link layer header
9499 * for Ethernet filters. */
9500 static struct block
*
9501 gen_encap_ll_check(compiler_state_t
*cstate
)
9504 struct slist
*s
, *s1
;
9506 /* The easiest way to see if there is a link layer present
9507 * is to check if the link layer header and payload are not
9510 /* Geneve always generates pure variable offsets so we can
9511 * compare only the registers. */
9512 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9513 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9515 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9516 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9519 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9525 static struct block
*
9526 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9527 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9529 assert_atm(cstate
, atmkw(atmfield
));
9534 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9535 return gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9536 0xffffffffU
, jtype
, reverse
, jvalue
);
9539 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9540 return gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9541 0xffffffffU
, jtype
, reverse
, jvalue
);
9548 static struct block
*
9549 gen_atm_vpi(compiler_state_t
*cstate
, const uint8_t v
)
9551 return gen_atmfield_code_internal(cstate
, A_VPI
, v
, BPF_JEQ
, 0);
9554 static struct block
*
9555 gen_atm_vci(compiler_state_t
*cstate
, const uint16_t v
)
9557 return gen_atmfield_code_internal(cstate
, A_VCI
, v
, BPF_JEQ
, 0);
9560 static struct block
*
9561 gen_atm_prototype(compiler_state_t
*cstate
, const uint8_t v
)
9563 return gen_mcmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, v
, 0x0fU
);
9566 static struct block
*
9567 gen_atmtype_llc(compiler_state_t
*cstate
)
9571 b0
= gen_atm_prototype(cstate
, PT_LLC
);
9572 cstate
->linktype
= cstate
->prevlinktype
;
9577 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9578 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9581 * Catch errors reported by us and routines below us, and return NULL
9584 if (setjmp(cstate
->top_ctx
))
9587 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9592 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9594 struct block
*b0
, *b1
;
9597 * Catch errors reported by us and routines below us, and return NULL
9600 if (setjmp(cstate
->top_ctx
))
9603 assert_atm(cstate
, atmkw(type
));
9608 /* Get all packets in Meta signalling Circuit */
9609 b0
= gen_atm_vpi(cstate
, 0);
9610 b1
= gen_atm_vci(cstate
, 1);
9615 /* Get all packets in Broadcast Circuit*/
9616 b0
= gen_atm_vpi(cstate
, 0);
9617 b1
= gen_atm_vci(cstate
, 2);
9622 /* Get all cells in Segment OAM F4 circuit*/
9623 b0
= gen_atm_vpi(cstate
, 0);
9624 b1
= gen_atm_vci(cstate
, 3);
9629 /* Get all cells in End-to-End OAM F4 Circuit*/
9630 b0
= gen_atm_vpi(cstate
, 0);
9631 b1
= gen_atm_vci(cstate
, 4);
9636 /* Get all packets in connection Signalling Circuit */
9637 b0
= gen_atm_vpi(cstate
, 0);
9638 b1
= gen_atm_vci(cstate
, 5);
9643 /* Get all packets in ILMI Circuit */
9644 b0
= gen_atm_vpi(cstate
, 0);
9645 b1
= gen_atm_vci(cstate
, 16);
9650 /* Get all LANE packets */
9651 b1
= gen_atm_prototype(cstate
, PT_LANE
);
9654 * Arrange that all subsequent tests assume LANE
9655 * rather than LLC-encapsulated packets, and set
9656 * the offsets appropriately for LANE-encapsulated
9659 * We assume LANE means Ethernet, not Token Ring.
9661 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9662 cstate
->off_payload
+ 2, /* Ethernet header */
9664 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9665 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9666 cstate
->off_nl
= 0; /* Ethernet II */
9667 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9676 * Filtering for MTP2 messages based on li value
9677 * FISU, length is null
9678 * LSSU, length is 1 or 2
9679 * MSU, length is 3 or more
9680 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9683 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9685 struct block
*b0
, *b1
;
9688 * Catch errors reported by us and routines below us, and return NULL
9691 if (setjmp(cstate
->top_ctx
))
9694 assert_ss7(cstate
, ss7kw(type
));
9699 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9700 0x3fU
, BPF_JEQ
, 0, 0U);
9703 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9704 0x3fU
, BPF_JGT
, 1, 2U);
9705 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9706 0x3fU
, BPF_JGT
, 0, 0U);
9711 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9712 0x3fU
, BPF_JGT
, 0, 2U);
9715 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9716 0xff80U
, BPF_JEQ
, 0, 0U);
9719 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9720 0xff80U
, BPF_JGT
, 1, 0x0100U
);
9721 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9722 0xff80U
, BPF_JGT
, 0, 0U);
9727 return gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9728 0xff80U
, BPF_JGT
, 0, 0x0100U
);
9736 * These maximum valid values are all-ones, so they double as the bitmasks
9737 * before any bitwise shifting.
9739 #define MTP2_SIO_MAXVAL UINT8_MAX
9740 #define MTP3_PC_MAXVAL 0x3fffU
9741 #define MTP3_SLS_MAXVAL 0xfU
9743 static struct block
*
9744 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
9745 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9752 newoff_sio
= cstate
->off_sio
;
9753 newoff_opc
= cstate
->off_opc
;
9754 newoff_dpc
= cstate
->off_dpc
;
9755 newoff_sls
= cstate
->off_sls
;
9757 assert_ss7(cstate
, ss7kw(mtp3field
));
9759 switch (mtp3field
) {
9762 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
9764 * SIO is the simplest field: the size is one byte and the offset is a
9765 * multiple of bytes, so the only detail to get right is the value of
9766 * the [right-to-left] field offset.
9769 newoff_sio
+= 3; /* offset for MTP2_HSL */
9773 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
9774 // Here the bitmask means "do not apply a bitmask".
9775 return gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
9776 jtype
, reverse
, jvalue
);
9779 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
9781 * SLS, OPC and DPC are more complicated: none of these is sized in a
9782 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
9783 * diagrams are meant to be read right-to-left. This means in the
9784 * diagrams within individual fields and concatenations thereof
9785 * bitwise shifts and masks can be noted in the common left-to-right
9786 * manner until each final value is ready to be byte-swapped and
9787 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
9788 * similar problem in a similar way.
9790 * Offsets of fields within the packet header always have the
9791 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
9792 * DLTs the offset does not include the F (Flag) field at the
9793 * beginning of each message.
9795 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
9796 * 32-bit standard routing header has a 4 byte [RTL] offset and could
9797 * be tested entirely using a single BPF_W comparison. In this case
9798 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
9799 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
9800 * [LTR] bitmask would be (0xF << 28), all of which conveniently
9801 * correlates with the [RTL] packet diagram until the byte-swapping is
9804 * The code below uses this approach for OPC, which spans 3 bytes.
9805 * DPC and SLS use shorter loads, SLS also uses a different offset.
9812 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
9813 return gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
9814 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
9815 SWAPLONG(jvalue
<< 14));
9822 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
9823 return gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
9824 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
9832 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
9833 return gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
9834 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
9843 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
9844 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9847 * Catch errors reported by us and routines below us, and return NULL
9850 if (setjmp(cstate
->top_ctx
))
9853 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
9857 static struct block
*
9858 gen_msg_abbrev(compiler_state_t
*cstate
, const uint8_t type
)
9861 * Q.2931 signalling protocol messages for handling virtual circuits
9862 * establishment and teardown
9864 return gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
,
9869 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
9871 struct block
*b0
, *b1
;
9874 * Catch errors reported by us and routines below us, and return NULL
9877 if (setjmp(cstate
->top_ctx
))
9880 assert_atm(cstate
, atmkw(type
));
9886 b0
= gen_atm_vci(cstate
, 3);
9887 b1
= gen_atm_vci(cstate
, 4);
9889 b0
= gen_atm_vpi(cstate
, 0);
9895 b0
= gen_atm_vci(cstate
, 3);
9896 b1
= gen_atm_vci(cstate
, 4);
9898 b0
= gen_atm_vpi(cstate
, 0);
9904 * Get Q.2931 signalling messages for switched
9905 * virtual connection
9907 b0
= gen_msg_abbrev(cstate
, SETUP
);
9908 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
9910 b0
= gen_msg_abbrev(cstate
, CONNECT
);
9912 b0
= gen_msg_abbrev(cstate
, CONNECT_ACK
);
9914 b0
= gen_msg_abbrev(cstate
, RELEASE
);
9916 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
9918 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
9923 b0
= gen_msg_abbrev(cstate
, SETUP
);
9924 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
9926 b0
= gen_msg_abbrev(cstate
, CONNECT
);
9928 b0
= gen_msg_abbrev(cstate
, RELEASE
);
9930 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
9932 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);