1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <pcap-types.h>
31 #include <sys/socket.h>
34 #include <sys/param.h>
37 #include <netinet/in.h>
38 #include <arpa/inet.h>
53 #include "ethertype.h"
57 #include "ieee80211.h"
59 #include "sunatmpos.h"
62 #include "pcap/ipnet.h"
68 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
69 #include <linux/types.h>
70 #include <linux/if_packet.h>
71 #include <linux/filter.h>
74 #ifdef HAVE_NET_PFVAR_H
75 #include <sys/socket.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
82 #define offsetof(s, e) ((size_t)&((s *)0)->e)
87 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
94 uint16_t u6_addr16
[8];
95 uint32_t u6_addr32
[4];
97 #define s6_addr in6_u.u6_addr8
98 #define s6_addr16 in6_u.u6_addr16
99 #define s6_addr32 in6_u.u6_addr32
100 #define s6_addr64 in6_u.u6_addr64
103 typedef unsigned short sa_family_t
;
105 #define __SOCKADDR_COMMON(sa_prefix) \
106 sa_family_t sa_prefix##family
108 /* Ditto, for IPv6. */
111 __SOCKADDR_COMMON (sin6_
);
112 uint16_t sin6_port
; /* Transport layer port # */
113 uint32_t sin6_flowinfo
; /* IPv6 flow information */
114 struct in6_addr sin6_addr
; /* IPv6 address */
117 #ifndef EAI_ADDRFAMILY
119 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
120 int ai_family
; /* PF_xxx */
121 int ai_socktype
; /* SOCK_xxx */
122 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
123 size_t ai_addrlen
; /* length of ai_addr */
124 char *ai_canonname
; /* canonical name for hostname */
125 struct sockaddr
*ai_addr
; /* binary address */
126 struct addrinfo
*ai_next
; /* next structure in linked list */
128 #endif /* EAI_ADDRFAMILY */
129 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
131 #include <netdb.h> /* for "struct addrinfo" */
134 #include <pcap/namedb.h>
136 #include "nametoaddr.h"
138 #define ETHERMTU 1500
140 #ifndef ETHERTYPE_TEB
141 #define ETHERTYPE_TEB 0x6558
144 #ifndef IPPROTO_HOPOPTS
145 #define IPPROTO_HOPOPTS 0
147 #ifndef IPPROTO_ROUTING
148 #define IPPROTO_ROUTING 43
150 #ifndef IPPROTO_FRAGMENT
151 #define IPPROTO_FRAGMENT 44
153 #ifndef IPPROTO_DSTOPTS
154 #define IPPROTO_DSTOPTS 60
157 #define IPPROTO_SCTP 132
160 #define GENEVE_PORT 6081
162 #ifdef HAVE_OS_PROTO_H
163 #include "os-proto.h"
166 #define JMP(c) ((c)|BPF_JMP|BPF_K)
169 * "Push" the current value of the link-layer header type and link-layer
170 * header offset onto a "stack", and set a new value. (It's not a
171 * full-blown stack; we keep only the top two items.)
173 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
175 (cs)->prevlinktype = (cs)->linktype; \
176 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
177 (cs)->linktype = (new_linktype); \
178 (cs)->off_linkhdr.is_variable = (new_is_variable); \
179 (cs)->off_linkhdr.constant_part = (new_constant_part); \
180 (cs)->off_linkhdr.reg = (new_reg); \
181 (cs)->is_geneve = 0; \
185 * Offset "not set" value.
187 #define OFFSET_NOT_SET 0xffffffffU
190 * Absolute offsets, which are offsets from the beginning of the raw
191 * packet data, are, in the general case, the sum of a variable value
192 * and a constant value; the variable value may be absent, in which
193 * case the offset is only the constant value, and the constant value
194 * may be zero, in which case the offset is only the variable value.
196 * bpf_abs_offset is a structure containing all that information:
198 * is_variable is 1 if there's a variable part.
200 * constant_part is the constant part of the value, possibly zero;
202 * if is_variable is 1, reg is the register number for a register
203 * containing the variable value if the register has been assigned,
213 * Value passed to gen_load_a() to indicate what the offset argument
214 * is relative to the beginning of.
217 OR_PACKET
, /* full packet data */
218 OR_LINKHDR
, /* link-layer header */
219 OR_PREVLINKHDR
, /* previous link-layer header */
220 OR_LLC
, /* 802.2 LLC header */
221 OR_PREVMPLSHDR
, /* previous MPLS header */
222 OR_LINKTYPE
, /* link-layer type */
223 OR_LINKPL
, /* link-layer payload */
224 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
225 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
226 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
230 * We divy out chunks of memory rather than call malloc each time so
231 * we don't have to worry about leaking memory. It's probably
232 * not a big deal if all this memory was wasted but if this ever
233 * goes into a library that would probably not be a good idea.
235 * XXX - this *is* in a library....
238 #define CHUNK0SIZE 1024
244 /* Code generator state */
246 struct _compiler_state
{
256 int outermostlinktype
;
261 /* Hack for handling VLAN and MPLS stacks. */
262 u_int label_stack_depth
;
263 u_int vlan_stack_depth
;
270 * As errors are handled by a longjmp, anything allocated must
271 * be freed in the longjmp handler, so it must be reachable
274 * One thing that's allocated is the result of pcap_nametoaddrinfo();
275 * it must be freed with freeaddrinfo(). This variable points to
276 * any addrinfo structure that would need to be freed.
282 * Various code constructs need to know the layout of the packet.
283 * These values give the necessary offsets from the beginning
284 * of the packet data.
288 * Absolute offset of the beginning of the link-layer header.
290 bpf_abs_offset off_linkhdr
;
293 * If we're checking a link-layer header for a packet encapsulated
294 * in another protocol layer, this is the equivalent information
295 * for the previous layers' link-layer header from the beginning
296 * of the raw packet data.
298 bpf_abs_offset off_prevlinkhdr
;
301 * This is the equivalent information for the outermost layers'
304 bpf_abs_offset off_outermostlinkhdr
;
307 * Absolute offset of the beginning of the link-layer payload.
309 bpf_abs_offset off_linkpl
;
312 * "off_linktype" is the offset to information in the link-layer
313 * header giving the packet type. This is an absolute offset
314 * from the beginning of the packet.
316 * For Ethernet, it's the offset of the Ethernet type field; this
317 * means that it must have a value that skips VLAN tags.
319 * For link-layer types that always use 802.2 headers, it's the
320 * offset of the LLC header; this means that it must have a value
321 * that skips VLAN tags.
323 * For PPP, it's the offset of the PPP type field.
325 * For Cisco HDLC, it's the offset of the CHDLC type field.
327 * For BSD loopback, it's the offset of the AF_ value.
329 * For Linux cooked sockets, it's the offset of the type field.
331 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
332 * encapsulation, in which case, IP is assumed.
334 bpf_abs_offset off_linktype
;
337 * TRUE if the link layer includes an ATM pseudo-header.
342 * TRUE if "geneve" appeared in the filter; it causes us to
343 * generate code that checks for a Geneve header and assume
344 * that later filters apply to the encapsulated payload.
349 * TRUE if we need variable length part of VLAN offset
351 int is_vlan_vloffset
;
354 * These are offsets for the ATM pseudo-header.
361 * These are offsets for the MTP2 fields.
367 * These are offsets for the MTP3 fields.
375 * This is the offset of the first byte after the ATM pseudo_header,
376 * or -1 if there is no ATM pseudo-header.
381 * These are offsets to the beginning of the network-layer header.
382 * They are relative to the beginning of the link-layer payload
383 * (i.e., they don't include off_linkhdr.constant_part or
384 * off_linkpl.constant_part).
386 * If the link layer never uses 802.2 LLC:
388 * "off_nl" and "off_nl_nosnap" are the same.
390 * If the link layer always uses 802.2 LLC:
392 * "off_nl" is the offset if there's a SNAP header following
395 * "off_nl_nosnap" is the offset if there's no SNAP header.
397 * If the link layer is Ethernet:
399 * "off_nl" is the offset if the packet is an Ethernet II packet
400 * (we assume no 802.3+802.2+SNAP);
402 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
403 * with an 802.2 header following it.
409 * Here we handle simple allocation of the scratch registers.
410 * If too many registers are alloc'd, the allocator punts.
412 int regused
[BPF_MEMWORDS
];
418 struct chunk chunks
[NCHUNKS
];
423 bpf_syntax_error(compiler_state_t
*cstate
, const char *msg
)
425 bpf_error(cstate
, "syntax error in filter expression: %s", msg
);
431 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
436 if (cstate
->bpf_pcap
!= NULL
)
437 (void)pcap_vsnprintf(pcap_geterr(cstate
->bpf_pcap
),
438 PCAP_ERRBUF_SIZE
, fmt
, ap
);
440 longjmp(cstate
->top_ctx
, 1);
444 static void init_linktype(compiler_state_t
*, pcap_t
*);
446 static void init_regs(compiler_state_t
*);
447 static int alloc_reg(compiler_state_t
*);
448 static void free_reg(compiler_state_t
*, int);
450 static void initchunks(compiler_state_t
*cstate
);
451 static void *newchunk(compiler_state_t
*cstate
, size_t);
452 static void freechunks(compiler_state_t
*cstate
);
453 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
454 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
455 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
456 static inline void syntax(compiler_state_t
*cstate
);
458 static void backpatch(struct block
*, struct block
*);
459 static void merge(struct block
*, struct block
*);
460 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
462 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
464 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
466 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
468 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
470 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
471 u_int
, bpf_int32
, bpf_u_int32
);
472 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
473 u_int
, const u_char
*);
474 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, bpf_u_int32
,
475 bpf_u_int32
, bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
476 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
478 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
480 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
481 static struct block
*gen_uncond(compiler_state_t
*, int);
482 static inline struct block
*gen_true(compiler_state_t
*);
483 static inline struct block
*gen_false(compiler_state_t
*);
484 static struct block
*gen_ether_linktype(compiler_state_t
*, int);
485 static struct block
*gen_ipnet_linktype(compiler_state_t
*, int);
486 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, int);
487 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
488 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
489 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
490 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
491 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
492 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
494 static int ethertype_to_ppptype(int);
495 static struct block
*gen_linktype(compiler_state_t
*, int);
496 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
497 static struct block
*gen_llc_linktype(compiler_state_t
*, int);
498 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
499 int, int, u_int
, u_int
);
501 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
502 struct in6_addr
*, int, int, u_int
, u_int
);
504 static struct block
*gen_ahostop(compiler_state_t
*, const u_char
*, int);
505 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
506 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
507 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
508 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
509 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
510 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
511 static struct block
*gen_mpls_linktype(compiler_state_t
*, int);
512 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
515 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
516 struct in6_addr
*, int, int, int);
519 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
520 bpf_u_int32
**, int, int);
522 static struct block
*gen_ipfrag(compiler_state_t
*);
523 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_int32
);
524 static struct block
*gen_portrangeatom(compiler_state_t
*, int, bpf_int32
,
526 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_int32
);
527 static struct block
*gen_portrangeatom6(compiler_state_t
*, int, bpf_int32
,
529 struct block
*gen_portop(compiler_state_t
*, int, int, int);
530 static struct block
*gen_port(compiler_state_t
*, int, int, int);
531 struct block
*gen_portrangeop(compiler_state_t
*, int, int, int, int);
532 static struct block
*gen_portrange(compiler_state_t
*, int, int, int, int);
533 struct block
*gen_portop6(compiler_state_t
*, int, int, int);
534 static struct block
*gen_port6(compiler_state_t
*, int, int, int);
535 struct block
*gen_portrangeop6(compiler_state_t
*, int, int, int, int);
536 static struct block
*gen_portrange6(compiler_state_t
*, int, int, int, int);
537 static int lookup_proto(compiler_state_t
*, const char *, int);
538 static struct block
*gen_protochain(compiler_state_t
*, int, int, int);
539 static struct block
*gen_proto(compiler_state_t
*, int, int, int);
540 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
541 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
542 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
543 static struct block
*gen_len(compiler_state_t
*, int, int);
544 static struct block
*gen_check_802_11_data_frame(compiler_state_t
*);
545 static struct block
*gen_geneve_ll_check(compiler_state_t
*cstate
);
547 static struct block
*gen_ppi_dlt_check(compiler_state_t
*);
548 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
551 initchunks(compiler_state_t
*cstate
)
555 for (i
= 0; i
< NCHUNKS
; i
++) {
556 cstate
->chunks
[i
].n_left
= 0;
557 cstate
->chunks
[i
].m
= NULL
;
559 cstate
->cur_chunk
= 0;
563 newchunk(compiler_state_t
*cstate
, size_t n
)
570 /* XXX Round up to nearest long. */
571 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
573 /* XXX Round up to structure boundary. */
577 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
578 if (n
> cp
->n_left
) {
579 ++cp
, k
= ++cstate
->cur_chunk
;
581 bpf_error(cstate
, "out of memory");
582 size
= CHUNK0SIZE
<< k
;
583 cp
->m
= (void *)malloc(size
);
585 bpf_error(cstate
, "out of memory");
586 memset((char *)cp
->m
, 0, size
);
589 bpf_error(cstate
, "out of memory");
592 return (void *)((char *)cp
->m
+ cp
->n_left
);
596 freechunks(compiler_state_t
*cstate
)
600 for (i
= 0; i
< NCHUNKS
; ++i
)
601 if (cstate
->chunks
[i
].m
!= NULL
)
602 free(cstate
->chunks
[i
].m
);
606 * A strdup whose allocations are freed after code generation is over.
609 sdup(compiler_state_t
*cstate
, const char *s
)
611 size_t n
= strlen(s
) + 1;
612 char *cp
= newchunk(cstate
, n
);
618 static inline struct block
*
619 new_block(compiler_state_t
*cstate
, int code
)
623 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
630 static inline struct slist
*
631 new_stmt(compiler_state_t
*cstate
, int code
)
635 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
641 static struct block
*
642 gen_retblk(compiler_state_t
*cstate
, int v
)
644 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
651 syntax(compiler_state_t
*cstate
)
653 bpf_error(cstate
, "syntax error in filter expression");
657 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
658 const char *buf
, int optimize
, bpf_u_int32 mask
)
663 compiler_state_t cstate
;
664 const char * volatile xbuf
= buf
;
665 yyscan_t scanner
= NULL
;
666 YY_BUFFER_STATE in_buffer
= NULL
;
671 * If this pcap_t hasn't been activated, it doesn't have a
672 * link-layer type, so we can't use it.
675 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
676 "not-yet-activated pcap_t passed to pcap_compile");
688 * If the device on which we're capturing need to be notified
689 * that a new filter is being compiled, do so.
691 * This allows them to save a copy of it, in case, for example,
692 * they're implementing a form of remote packet capture, and
693 * want the remote machine to filter out the packets in which
694 * it's sending the packets it's captured.
696 * XXX - the fact that we happen to be compiling a filter
697 * doesn't necessarily mean we'll be installing it as the
698 * filter for this pcap_t; we might be running it from userland
699 * on captured packets to do packet classification. We really
700 * need a better way of handling this, but this is all that
701 * the WinPcap code did.
703 if (p
->save_current_filter_op
!= NULL
)
704 (p
->save_current_filter_op
)(p
, buf
);
708 cstate
.no_optimize
= 0;
712 cstate
.ic
.root
= NULL
;
713 cstate
.ic
.cur_mark
= 0;
717 if (setjmp(cstate
.top_ctx
)) {
719 if (cstate
.ai
!= NULL
)
720 freeaddrinfo(cstate
.ai
);
726 cstate
.netmask
= mask
;
728 cstate
.snaplen
= pcap_snapshot(p
);
729 if (cstate
.snaplen
== 0) {
730 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
731 "snaplen of 0 rejects all packets");
736 if (pcap_lex_init(&scanner
) != 0)
737 bpf_error(&cstate
, "can't initialize scanner: %s", pcap_strerror(errno
));
738 in_buffer
= pcap__scan_string(xbuf
? xbuf
: "", scanner
);
741 * Associate the compiler state with the lexical analyzer
744 pcap_set_extra(&cstate
, scanner
);
746 init_linktype(&cstate
, p
);
747 (void)pcap_parse(scanner
, &cstate
);
749 if (cstate
.ic
.root
== NULL
)
750 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
752 if (optimize
&& !cstate
.no_optimize
) {
753 bpf_optimize(&cstate
, &cstate
.ic
);
754 if (cstate
.ic
.root
== NULL
||
755 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0))
756 bpf_error(&cstate
, "expression rejects all packets");
758 program
->bf_insns
= icode_to_fcode(&cstate
, &cstate
.ic
, cstate
.ic
.root
, &len
);
759 program
->bf_len
= len
;
761 rc
= 0; /* We're all okay */
765 * Clean up everything for the lexical analyzer.
767 if (in_buffer
!= NULL
)
768 pcap__delete_buffer(in_buffer
, scanner
);
770 pcap_lex_destroy(scanner
);
773 * Clean up our own allocated memory.
781 * entry point for using the compiler with no pcap open
782 * pass in all the stuff that is needed explicitly instead.
785 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
786 struct bpf_program
*program
,
787 const char *buf
, int optimize
, bpf_u_int32 mask
)
792 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
795 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
801 * Clean up a "struct bpf_program" by freeing all the memory allocated
805 pcap_freecode(struct bpf_program
*program
)
808 if (program
->bf_insns
!= NULL
) {
809 free((char *)program
->bf_insns
);
810 program
->bf_insns
= NULL
;
815 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
816 * which of the jt and jf fields has been resolved and which is a pointer
817 * back to another unresolved block (or nil). At least one of the fields
818 * in each block is already resolved.
821 backpatch(list
, target
)
822 struct block
*list
, *target
;
839 * Merge the lists in b0 and b1, using the 'sense' field to indicate
840 * which of jt and jf is the link.
844 struct block
*b0
, *b1
;
846 register struct block
**p
= &b0
;
848 /* Find end of list. */
850 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
852 /* Concatenate the lists. */
857 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
859 struct block
*ppi_dlt_check
;
862 * Insert before the statements of the first (root) block any
863 * statements needed to load the lengths of any variable-length
864 * headers into registers.
866 * XXX - a fancier strategy would be to insert those before the
867 * statements of all blocks that use those lengths and that
868 * have no predecessors that use them, so that we only compute
869 * the lengths if we need them. There might be even better
870 * approaches than that.
872 * However, those strategies would be more complicated, and
873 * as we don't generate code to compute a length if the
874 * program has no tests that use the length, and as most
875 * tests will probably use those lengths, we would just
876 * postpone computing the lengths so that it's not done
877 * for tests that fail early, and it's not clear that's
880 insert_compute_vloffsets(cstate
, p
->head
);
883 * For DLT_PPI captures, generate a check of the per-packet
884 * DLT value to make sure it's DLT_IEEE802_11.
886 * XXX - TurboCap cards use DLT_PPI for Ethernet.
887 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
888 * with appropriate Ethernet information and use that rather
889 * than using something such as DLT_PPI where you don't know
890 * the link-layer header type until runtime, which, in the
891 * general case, would force us to generate both Ethernet *and*
892 * 802.11 code (*and* anything else for which PPI is used)
893 * and choose between them early in the BPF program?
895 ppi_dlt_check
= gen_ppi_dlt_check(cstate
);
896 if (ppi_dlt_check
!= NULL
)
897 gen_and(ppi_dlt_check
, p
);
899 backpatch(p
, gen_retblk(cstate
, cstate
->snaplen
));
900 p
->sense
= !p
->sense
;
901 backpatch(p
, gen_retblk(cstate
, 0));
902 cstate
->ic
.root
= p
->head
;
907 struct block
*b0
, *b1
;
909 backpatch(b0
, b1
->head
);
910 b0
->sense
= !b0
->sense
;
911 b1
->sense
= !b1
->sense
;
913 b1
->sense
= !b1
->sense
;
919 struct block
*b0
, *b1
;
921 b0
->sense
= !b0
->sense
;
922 backpatch(b0
, b1
->head
);
923 b0
->sense
= !b0
->sense
;
932 b
->sense
= !b
->sense
;
935 static struct block
*
936 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
937 u_int size
, bpf_int32 v
)
939 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
942 static struct block
*
943 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
944 u_int size
, bpf_int32 v
)
946 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
949 static struct block
*
950 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
951 u_int size
, bpf_int32 v
)
953 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
956 static struct block
*
957 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
958 u_int size
, bpf_int32 v
)
960 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
963 static struct block
*
964 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
965 u_int size
, bpf_int32 v
)
967 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
970 static struct block
*
971 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
972 u_int size
, bpf_int32 v
, bpf_u_int32 mask
)
974 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
977 static struct block
*
978 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
979 u_int size
, const u_char
*v
)
981 register struct block
*b
, *tmp
;
985 register const u_char
*p
= &v
[size
- 4];
986 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
987 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
989 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
, w
);
996 register const u_char
*p
= &v
[size
- 2];
997 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
999 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
, w
);
1006 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
1015 * AND the field of size "size" at offset "offset" relative to the header
1016 * specified by "offrel" with "mask", and compare it with the value "v"
1017 * with the test specified by "jtype"; if "reverse" is true, the test
1018 * should test the opposite of "jtype".
1020 static struct block
*
1021 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, bpf_u_int32 offset
,
1022 bpf_u_int32 size
, bpf_u_int32 mask
, bpf_u_int32 jtype
, int reverse
,
1025 struct slist
*s
, *s2
;
1028 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1030 if (mask
!= 0xffffffff) {
1031 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1036 b
= new_block(cstate
, JMP(jtype
));
1039 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
1045 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1047 cstate
->pcap_fddipad
= p
->fddipad
;
1050 * We start out with only one link-layer header.
1052 cstate
->outermostlinktype
= pcap_datalink(p
);
1053 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1054 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1055 cstate
->off_outermostlinkhdr
.reg
= -1;
1057 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1058 cstate
->off_prevlinkhdr
.constant_part
= 0;
1059 cstate
->off_prevlinkhdr
.is_variable
= 0;
1060 cstate
->off_prevlinkhdr
.reg
= -1;
1062 cstate
->linktype
= cstate
->outermostlinktype
;
1063 cstate
->off_linkhdr
.constant_part
= 0;
1064 cstate
->off_linkhdr
.is_variable
= 0;
1065 cstate
->off_linkhdr
.reg
= -1;
1070 cstate
->off_linkpl
.constant_part
= 0;
1071 cstate
->off_linkpl
.is_variable
= 0;
1072 cstate
->off_linkpl
.reg
= -1;
1074 cstate
->off_linktype
.constant_part
= 0;
1075 cstate
->off_linktype
.is_variable
= 0;
1076 cstate
->off_linktype
.reg
= -1;
1079 * Assume it's not raw ATM with a pseudo-header, for now.
1082 cstate
->off_vpi
= -1;
1083 cstate
->off_vci
= -1;
1084 cstate
->off_proto
= -1;
1085 cstate
->off_payload
= -1;
1090 cstate
->is_geneve
= 0;
1093 * No variable length VLAN offset by default
1095 cstate
->is_vlan_vloffset
= 0;
1098 * And assume we're not doing SS7.
1100 cstate
->off_li
= -1;
1101 cstate
->off_li_hsl
= -1;
1102 cstate
->off_sio
= -1;
1103 cstate
->off_opc
= -1;
1104 cstate
->off_dpc
= -1;
1105 cstate
->off_sls
= -1;
1107 cstate
->label_stack_depth
= 0;
1108 cstate
->vlan_stack_depth
= 0;
1110 switch (cstate
->linktype
) {
1113 cstate
->off_linktype
.constant_part
= 2;
1114 cstate
->off_linkpl
.constant_part
= 6;
1115 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1116 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1119 case DLT_ARCNET_LINUX
:
1120 cstate
->off_linktype
.constant_part
= 4;
1121 cstate
->off_linkpl
.constant_part
= 8;
1122 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1123 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1127 cstate
->off_linktype
.constant_part
= 12;
1128 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1129 cstate
->off_nl
= 0; /* Ethernet II */
1130 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1135 * SLIP doesn't have a link level type. The 16 byte
1136 * header is hacked into our SLIP driver.
1138 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1139 cstate
->off_linkpl
.constant_part
= 16;
1141 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1144 case DLT_SLIP_BSDOS
:
1145 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1146 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1148 cstate
->off_linkpl
.constant_part
= 24;
1150 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1155 cstate
->off_linktype
.constant_part
= 0;
1156 cstate
->off_linkpl
.constant_part
= 4;
1158 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1162 cstate
->off_linktype
.constant_part
= 0;
1163 cstate
->off_linkpl
.constant_part
= 12;
1165 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1170 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1171 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1172 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1173 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1175 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1180 * This does no include the Ethernet header, and
1181 * only covers session state.
1183 cstate
->off_linktype
.constant_part
= 6;
1184 cstate
->off_linkpl
.constant_part
= 8;
1186 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1190 cstate
->off_linktype
.constant_part
= 5;
1191 cstate
->off_linkpl
.constant_part
= 24;
1193 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1198 * FDDI doesn't really have a link-level type field.
1199 * We set "off_linktype" to the offset of the LLC header.
1201 * To check for Ethernet types, we assume that SSAP = SNAP
1202 * is being used and pick out the encapsulated Ethernet type.
1203 * XXX - should we generate code to check for SNAP?
1205 cstate
->off_linktype
.constant_part
= 13;
1206 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1207 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1208 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1209 cstate
->off_nl
= 8; /* 802.2+SNAP */
1210 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1215 * Token Ring doesn't really have a link-level type field.
1216 * We set "off_linktype" to the offset of the LLC header.
1218 * To check for Ethernet types, we assume that SSAP = SNAP
1219 * is being used and pick out the encapsulated Ethernet type.
1220 * XXX - should we generate code to check for SNAP?
1222 * XXX - the header is actually variable-length.
1223 * Some various Linux patched versions gave 38
1224 * as "off_linktype" and 40 as "off_nl"; however,
1225 * if a token ring packet has *no* routing
1226 * information, i.e. is not source-routed, the correct
1227 * values are 20 and 22, as they are in the vanilla code.
1229 * A packet is source-routed iff the uppermost bit
1230 * of the first byte of the source address, at an
1231 * offset of 8, has the uppermost bit set. If the
1232 * packet is source-routed, the total number of bytes
1233 * of routing information is 2 plus bits 0x1F00 of
1234 * the 16-bit value at an offset of 14 (shifted right
1235 * 8 - figure out which byte that is).
1237 cstate
->off_linktype
.constant_part
= 14;
1238 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1239 cstate
->off_nl
= 8; /* 802.2+SNAP */
1240 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1243 case DLT_PRISM_HEADER
:
1244 case DLT_IEEE802_11_RADIO_AVS
:
1245 case DLT_IEEE802_11_RADIO
:
1246 cstate
->off_linkhdr
.is_variable
= 1;
1247 /* Fall through, 802.11 doesn't have a variable link
1248 * prefix but is otherwise the same. */
1250 case DLT_IEEE802_11
:
1252 * 802.11 doesn't really have a link-level type field.
1253 * We set "off_linktype.constant_part" to the offset of
1256 * To check for Ethernet types, we assume that SSAP = SNAP
1257 * is being used and pick out the encapsulated Ethernet type.
1258 * XXX - should we generate code to check for SNAP?
1260 * We also handle variable-length radio headers here.
1261 * The Prism header is in theory variable-length, but in
1262 * practice it's always 144 bytes long. However, some
1263 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1264 * sometimes or always supply an AVS header, so we
1265 * have to check whether the radio header is a Prism
1266 * header or an AVS header, so, in practice, it's
1269 cstate
->off_linktype
.constant_part
= 24;
1270 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1271 cstate
->off_linkpl
.is_variable
= 1;
1272 cstate
->off_nl
= 8; /* 802.2+SNAP */
1273 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1278 * At the moment we treat PPI the same way that we treat
1279 * normal Radiotap encoded packets. The difference is in
1280 * the function that generates the code at the beginning
1281 * to compute the header length. Since this code generator
1282 * of PPI supports bare 802.11 encapsulation only (i.e.
1283 * the encapsulated DLT should be DLT_IEEE802_11) we
1284 * generate code to check for this too.
1286 cstate
->off_linktype
.constant_part
= 24;
1287 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1288 cstate
->off_linkpl
.is_variable
= 1;
1289 cstate
->off_linkhdr
.is_variable
= 1;
1290 cstate
->off_nl
= 8; /* 802.2+SNAP */
1291 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1294 case DLT_ATM_RFC1483
:
1295 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1297 * assume routed, non-ISO PDUs
1298 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1300 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1301 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1302 * latter would presumably be treated the way PPPoE
1303 * should be, so you can do "pppoe and udp port 2049"
1304 * or "pppoa and tcp port 80" and have it check for
1305 * PPPo{A,E} and a PPP protocol of IP and....
1307 cstate
->off_linktype
.constant_part
= 0;
1308 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1309 cstate
->off_nl
= 8; /* 802.2+SNAP */
1310 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1315 * Full Frontal ATM; you get AALn PDUs with an ATM
1319 cstate
->off_vpi
= SUNATM_VPI_POS
;
1320 cstate
->off_vci
= SUNATM_VCI_POS
;
1321 cstate
->off_proto
= PROTO_POS
;
1322 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1323 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1324 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1325 cstate
->off_nl
= 8; /* 802.2+SNAP */
1326 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1332 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1333 cstate
->off_linkpl
.constant_part
= 0;
1335 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1338 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1339 cstate
->off_linktype
.constant_part
= 14;
1340 cstate
->off_linkpl
.constant_part
= 16;
1342 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1347 * LocalTalk does have a 1-byte type field in the LLAP header,
1348 * but really it just indicates whether there is a "short" or
1349 * "long" DDP packet following.
1351 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1352 cstate
->off_linkpl
.constant_part
= 0;
1354 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1357 case DLT_IP_OVER_FC
:
1359 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1360 * link-level type field. We set "off_linktype" to the
1361 * offset of the LLC header.
1363 * To check for Ethernet types, we assume that SSAP = SNAP
1364 * is being used and pick out the encapsulated Ethernet type.
1365 * XXX - should we generate code to check for SNAP? RFC
1366 * 2625 says SNAP should be used.
1368 cstate
->off_linktype
.constant_part
= 16;
1369 cstate
->off_linkpl
.constant_part
= 16;
1370 cstate
->off_nl
= 8; /* 802.2+SNAP */
1371 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1376 * XXX - we should set this to handle SNAP-encapsulated
1377 * frames (NLPID of 0x80).
1379 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1380 cstate
->off_linkpl
.constant_part
= 0;
1382 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1386 * the only BPF-interesting FRF.16 frames are non-control frames;
1387 * Frame Relay has a variable length link-layer
1388 * so lets start with offset 4 for now and increments later on (FIXME);
1391 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1392 cstate
->off_linkpl
.constant_part
= 0;
1394 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1397 case DLT_APPLE_IP_OVER_IEEE1394
:
1398 cstate
->off_linktype
.constant_part
= 16;
1399 cstate
->off_linkpl
.constant_part
= 18;
1401 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1404 case DLT_SYMANTEC_FIREWALL
:
1405 cstate
->off_linktype
.constant_part
= 6;
1406 cstate
->off_linkpl
.constant_part
= 44;
1407 cstate
->off_nl
= 0; /* Ethernet II */
1408 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1411 #ifdef HAVE_NET_PFVAR_H
1413 cstate
->off_linktype
.constant_part
= 0;
1414 cstate
->off_linkpl
.constant_part
= PFLOG_HDRLEN
;
1416 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1420 case DLT_JUNIPER_MFR
:
1421 case DLT_JUNIPER_MLFR
:
1422 case DLT_JUNIPER_MLPPP
:
1423 case DLT_JUNIPER_PPP
:
1424 case DLT_JUNIPER_CHDLC
:
1425 case DLT_JUNIPER_FRELAY
:
1426 cstate
->off_linktype
.constant_part
= 4;
1427 cstate
->off_linkpl
.constant_part
= 4;
1429 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1432 case DLT_JUNIPER_ATM1
:
1433 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1434 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1436 cstate
->off_nl_nosnap
= 10;
1439 case DLT_JUNIPER_ATM2
:
1440 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1441 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1443 cstate
->off_nl_nosnap
= 10;
1446 /* frames captured on a Juniper PPPoE service PIC
1447 * contain raw ethernet frames */
1448 case DLT_JUNIPER_PPPOE
:
1449 case DLT_JUNIPER_ETHER
:
1450 cstate
->off_linkpl
.constant_part
= 14;
1451 cstate
->off_linktype
.constant_part
= 16;
1452 cstate
->off_nl
= 18; /* Ethernet II */
1453 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1456 case DLT_JUNIPER_PPPOE_ATM
:
1457 cstate
->off_linktype
.constant_part
= 4;
1458 cstate
->off_linkpl
.constant_part
= 6;
1460 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1463 case DLT_JUNIPER_GGSN
:
1464 cstate
->off_linktype
.constant_part
= 6;
1465 cstate
->off_linkpl
.constant_part
= 12;
1467 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1470 case DLT_JUNIPER_ES
:
1471 cstate
->off_linktype
.constant_part
= 6;
1472 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1473 cstate
->off_nl
= -1; /* not really a network layer but raw IP addresses */
1474 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1477 case DLT_JUNIPER_MONITOR
:
1478 cstate
->off_linktype
.constant_part
= 12;
1479 cstate
->off_linkpl
.constant_part
= 12;
1480 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1481 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1484 case DLT_BACNET_MS_TP
:
1485 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1486 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1487 cstate
->off_nl
= -1;
1488 cstate
->off_nl_nosnap
= -1;
1491 case DLT_JUNIPER_SERVICES
:
1492 cstate
->off_linktype
.constant_part
= 12;
1493 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1494 cstate
->off_nl
= -1; /* L3 proto location dep. on cookie type */
1495 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1498 case DLT_JUNIPER_VP
:
1499 cstate
->off_linktype
.constant_part
= 18;
1500 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1501 cstate
->off_nl
= -1;
1502 cstate
->off_nl_nosnap
= -1;
1505 case DLT_JUNIPER_ST
:
1506 cstate
->off_linktype
.constant_part
= 18;
1507 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1508 cstate
->off_nl
= -1;
1509 cstate
->off_nl_nosnap
= -1;
1512 case DLT_JUNIPER_ISM
:
1513 cstate
->off_linktype
.constant_part
= 8;
1514 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1515 cstate
->off_nl
= -1;
1516 cstate
->off_nl_nosnap
= -1;
1519 case DLT_JUNIPER_VS
:
1520 case DLT_JUNIPER_SRX_E2E
:
1521 case DLT_JUNIPER_FIBRECHANNEL
:
1522 case DLT_JUNIPER_ATM_CEMIC
:
1523 cstate
->off_linktype
.constant_part
= 8;
1524 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1525 cstate
->off_nl
= -1;
1526 cstate
->off_nl_nosnap
= -1;
1531 cstate
->off_li_hsl
= 4;
1532 cstate
->off_sio
= 3;
1533 cstate
->off_opc
= 4;
1534 cstate
->off_dpc
= 4;
1535 cstate
->off_sls
= 7;
1536 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1537 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1538 cstate
->off_nl
= -1;
1539 cstate
->off_nl_nosnap
= -1;
1542 case DLT_MTP2_WITH_PHDR
:
1544 cstate
->off_li_hsl
= 8;
1545 cstate
->off_sio
= 7;
1546 cstate
->off_opc
= 8;
1547 cstate
->off_dpc
= 8;
1548 cstate
->off_sls
= 11;
1549 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1550 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1551 cstate
->off_nl
= -1;
1552 cstate
->off_nl_nosnap
= -1;
1556 cstate
->off_li
= 22;
1557 cstate
->off_li_hsl
= 24;
1558 cstate
->off_sio
= 23;
1559 cstate
->off_opc
= 24;
1560 cstate
->off_dpc
= 24;
1561 cstate
->off_sls
= 27;
1562 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1563 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1564 cstate
->off_nl
= -1;
1565 cstate
->off_nl_nosnap
= -1;
1569 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1570 cstate
->off_linkpl
.constant_part
= 4;
1572 cstate
->off_nl_nosnap
= 0;
1577 * Currently, only raw "link[N:M]" filtering is supported.
1579 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
1580 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1581 cstate
->off_nl
= -1; /* variable, min 16, max 71 steps of 7 */
1582 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1586 cstate
->off_linktype
.constant_part
= 1;
1587 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
1589 cstate
->off_nl_nosnap
= -1;
1592 case DLT_NETANALYZER
:
1593 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
1594 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1595 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
1596 cstate
->off_nl
= 0; /* Ethernet II */
1597 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1600 case DLT_NETANALYZER_TRANSPARENT
:
1601 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1602 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1603 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1604 cstate
->off_nl
= 0; /* Ethernet II */
1605 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1610 * For values in the range in which we've assigned new
1611 * DLT_ values, only raw "link[N:M]" filtering is supported.
1613 if (cstate
->linktype
>= DLT_MATCHING_MIN
&&
1614 cstate
->linktype
<= DLT_MATCHING_MAX
) {
1615 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1616 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1617 cstate
->off_nl
= -1;
1618 cstate
->off_nl_nosnap
= -1;
1620 bpf_error(cstate
, "unknown data link type %d", cstate
->linktype
);
1625 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
1629 * Load a value relative to the specified absolute offset.
1631 static struct slist
*
1632 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
1633 u_int offset
, u_int size
)
1635 struct slist
*s
, *s2
;
1637 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
1640 * If "s" is non-null, it has code to arrange that the X register
1641 * contains the variable part of the absolute offset, so we
1642 * generate a load relative to that, with an offset of
1643 * abs_offset->constant_part + offset.
1645 * Otherwise, we can do an absolute load with an offset of
1646 * abs_offset->constant_part + offset.
1650 * "s" points to a list of statements that puts the
1651 * variable part of the absolute offset into the X register.
1652 * Do an indirect load, to use the X register as an offset.
1654 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1655 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
1659 * There is no variable part of the absolute offset, so
1660 * just do an absolute load.
1662 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1663 s
->s
.k
= abs_offset
->constant_part
+ offset
;
1669 * Load a value relative to the beginning of the specified header.
1671 static struct slist
*
1672 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1675 struct slist
*s
, *s2
;
1680 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1685 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
1688 case OR_PREVLINKHDR
:
1689 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
1693 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
1696 case OR_PREVMPLSHDR
:
1697 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
1701 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
1704 case OR_LINKPL_NOSNAP
:
1705 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
1709 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
1714 * Load the X register with the length of the IPv4 header
1715 * (plus the offset of the link-layer header, if it's
1716 * preceded by a variable-length header such as a radio
1717 * header), in bytes.
1719 s
= gen_loadx_iphdrlen(cstate
);
1722 * Load the item at {offset of the link-layer payload} +
1723 * {offset, relative to the start of the link-layer
1724 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1725 * {specified offset}.
1727 * If the offset of the link-layer payload is variable,
1728 * the variable part of that offset is included in the
1729 * value in the X register, and we include the constant
1730 * part in the offset of the load.
1732 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1733 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
1738 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
1749 * Generate code to load into the X register the sum of the length of
1750 * the IPv4 header and the variable part of the offset of the link-layer
1753 static struct slist
*
1754 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
1756 struct slist
*s
, *s2
;
1758 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
1761 * The offset of the link-layer payload has a variable
1762 * part. "s" points to a list of statements that put
1763 * the variable part of that offset into the X register.
1765 * The 4*([k]&0xf) addressing mode can't be used, as we
1766 * don't have a constant offset, so we have to load the
1767 * value in question into the A register and add to it
1768 * the value from the X register.
1770 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
1771 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1773 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1776 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
1781 * The A register now contains the length of the IP header.
1782 * We need to add to it the variable part of the offset of
1783 * the link-layer payload, which is still in the X
1784 * register, and move the result into the X register.
1786 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
1787 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
1790 * The offset of the link-layer payload is a constant,
1791 * so no code was generated to load the (non-existent)
1792 * variable part of that offset.
1794 * This means we can use the 4*([k]&0xf) addressing
1795 * mode. Load the length of the IPv4 header, which
1796 * is at an offset of cstate->off_nl from the beginning of
1797 * the link-layer payload, and thus at an offset of
1798 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1799 * of the raw packet data, using that addressing mode.
1801 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
1802 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1807 static struct block
*
1808 gen_uncond(compiler_state_t
*cstate
, int rsense
)
1813 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
1815 b
= new_block(cstate
, JMP(BPF_JEQ
));
1821 static inline struct block
*
1822 gen_true(compiler_state_t
*cstate
)
1824 return gen_uncond(cstate
, 1);
1827 static inline struct block
*
1828 gen_false(compiler_state_t
*cstate
)
1830 return gen_uncond(cstate
, 0);
1834 * Byte-swap a 32-bit number.
1835 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1836 * big-endian platforms.)
1838 #define SWAPLONG(y) \
1839 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1842 * Generate code to match a particular packet type.
1844 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1845 * value, if <= ETHERMTU. We use that to determine whether to
1846 * match the type/length field or to check the type/length field for
1847 * a value <= ETHERMTU to see whether it's a type field and then do
1848 * the appropriate test.
1850 static struct block
*
1851 gen_ether_linktype(compiler_state_t
*cstate
, int proto
)
1853 struct block
*b0
, *b1
;
1859 case LLCSAP_NETBEUI
:
1861 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1862 * so we check the DSAP and SSAP.
1864 * LLCSAP_IP checks for IP-over-802.2, rather
1865 * than IP-over-Ethernet or IP-over-SNAP.
1867 * XXX - should we check both the DSAP and the
1868 * SSAP, like this, or should we check just the
1869 * DSAP, as we do for other types <= ETHERMTU
1870 * (i.e., other SAP values)?
1872 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1874 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
1875 ((proto
<< 8) | proto
));
1883 * Ethernet_II frames, which are Ethernet
1884 * frames with a frame type of ETHERTYPE_IPX;
1886 * Ethernet_802.3 frames, which are 802.3
1887 * frames (i.e., the type/length field is
1888 * a length field, <= ETHERMTU, rather than
1889 * a type field) with the first two bytes
1890 * after the Ethernet/802.3 header being
1893 * Ethernet_802.2 frames, which are 802.3
1894 * frames with an 802.2 LLC header and
1895 * with the IPX LSAP as the DSAP in the LLC
1898 * Ethernet_SNAP frames, which are 802.3
1899 * frames with an LLC header and a SNAP
1900 * header and with an OUI of 0x000000
1901 * (encapsulated Ethernet) and a protocol
1902 * ID of ETHERTYPE_IPX in the SNAP header.
1904 * XXX - should we generate the same code both
1905 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1909 * This generates code to check both for the
1910 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1912 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1913 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
1917 * Now we add code to check for SNAP frames with
1918 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1920 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
1924 * Now we generate code to check for 802.3
1925 * frames in general.
1927 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1931 * Now add the check for 802.3 frames before the
1932 * check for Ethernet_802.2 and Ethernet_802.3,
1933 * as those checks should only be done on 802.3
1934 * frames, not on Ethernet frames.
1939 * Now add the check for Ethernet_II frames, and
1940 * do that before checking for the other frame
1943 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1947 case ETHERTYPE_ATALK
:
1948 case ETHERTYPE_AARP
:
1950 * EtherTalk (AppleTalk protocols on Ethernet link
1951 * layer) may use 802.2 encapsulation.
1955 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1956 * we check for an Ethernet type field less than
1957 * 1500, which means it's an 802.3 length field.
1959 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1963 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1964 * SNAP packets with an organization code of
1965 * 0x080007 (Apple, for Appletalk) and a protocol
1966 * type of ETHERTYPE_ATALK (Appletalk).
1968 * 802.2-encapsulated ETHERTYPE_AARP packets are
1969 * SNAP packets with an organization code of
1970 * 0x000000 (encapsulated Ethernet) and a protocol
1971 * type of ETHERTYPE_AARP (Appletalk ARP).
1973 if (proto
== ETHERTYPE_ATALK
)
1974 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
1975 else /* proto == ETHERTYPE_AARP */
1976 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
1980 * Check for Ethernet encapsulation (Ethertalk
1981 * phase 1?); we just check for the Ethernet
1984 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
1990 if (proto
<= ETHERMTU
) {
1992 * This is an LLC SAP value, so the frames
1993 * that match would be 802.2 frames.
1994 * Check that the frame is an 802.2 frame
1995 * (i.e., that the length/type field is
1996 * a length field, <= ETHERMTU) and
1997 * then check the DSAP.
1999 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2001 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, (bpf_int32
)proto
);
2006 * This is an Ethernet type, so compare
2007 * the length/type field with it (if
2008 * the frame is an 802.2 frame, the length
2009 * field will be <= ETHERMTU, and, as
2010 * "proto" is > ETHERMTU, this test
2011 * will fail and the frame won't match,
2012 * which is what we want).
2014 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
2020 static struct block
*
2021 gen_loopback_linktype(compiler_state_t
*cstate
, int proto
)
2024 * For DLT_NULL, the link-layer header is a 32-bit word
2025 * containing an AF_ value in *host* byte order, and for
2026 * DLT_ENC, the link-layer header begins with a 32-bit
2027 * word containing an AF_ value in host byte order.
2029 * In addition, if we're reading a saved capture file,
2030 * the host byte order in the capture may not be the
2031 * same as the host byte order on this machine.
2033 * For DLT_LOOP, the link-layer header is a 32-bit
2034 * word containing an AF_ value in *network* byte order.
2036 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2038 * The AF_ value is in host byte order, but the BPF
2039 * interpreter will convert it to network byte order.
2041 * If this is a save file, and it's from a machine
2042 * with the opposite byte order to ours, we byte-swap
2045 * Then we run it through "htonl()", and generate
2046 * code to compare against the result.
2048 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2049 proto
= SWAPLONG(proto
);
2050 proto
= htonl(proto
);
2052 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, (bpf_int32
)proto
));
2056 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2057 * or IPv6 then we have an error.
2059 static struct block
*
2060 gen_ipnet_linktype(compiler_state_t
*cstate
, int proto
)
2065 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, (bpf_int32
)IPH_AF_INET
);
2068 case ETHERTYPE_IPV6
:
2069 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
2070 (bpf_int32
)IPH_AF_INET6
);
2077 return gen_false(cstate
);
2081 * Generate code to match a particular packet type.
2083 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2084 * value, if <= ETHERMTU. We use that to determine whether to
2085 * match the type field or to check the type field for the special
2086 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2088 static struct block
*
2089 gen_linux_sll_linktype(compiler_state_t
*cstate
, int proto
)
2091 struct block
*b0
, *b1
;
2097 case LLCSAP_NETBEUI
:
2099 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2100 * so we check the DSAP and SSAP.
2102 * LLCSAP_IP checks for IP-over-802.2, rather
2103 * than IP-over-Ethernet or IP-over-SNAP.
2105 * XXX - should we check both the DSAP and the
2106 * SSAP, like this, or should we check just the
2107 * DSAP, as we do for other types <= ETHERMTU
2108 * (i.e., other SAP values)?
2110 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2111 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
2112 ((proto
<< 8) | proto
));
2118 * Ethernet_II frames, which are Ethernet
2119 * frames with a frame type of ETHERTYPE_IPX;
2121 * Ethernet_802.3 frames, which have a frame
2122 * type of LINUX_SLL_P_802_3;
2124 * Ethernet_802.2 frames, which are 802.3
2125 * frames with an 802.2 LLC header (i.e, have
2126 * a frame type of LINUX_SLL_P_802_2) and
2127 * with the IPX LSAP as the DSAP in the LLC
2130 * Ethernet_SNAP frames, which are 802.3
2131 * frames with an LLC header and a SNAP
2132 * header and with an OUI of 0x000000
2133 * (encapsulated Ethernet) and a protocol
2134 * ID of ETHERTYPE_IPX in the SNAP header.
2136 * First, do the checks on LINUX_SLL_P_802_2
2137 * frames; generate the check for either
2138 * Ethernet_802.2 or Ethernet_SNAP frames, and
2139 * then put a check for LINUX_SLL_P_802_2 frames
2142 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
2143 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2145 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2149 * Now check for 802.3 frames and OR that with
2150 * the previous test.
2152 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2156 * Now add the check for Ethernet_II frames, and
2157 * do that before checking for the other frame
2160 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
2164 case ETHERTYPE_ATALK
:
2165 case ETHERTYPE_AARP
:
2167 * EtherTalk (AppleTalk protocols on Ethernet link
2168 * layer) may use 802.2 encapsulation.
2172 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2173 * we check for the 802.2 protocol type in the
2174 * "Ethernet type" field.
2176 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2179 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2180 * SNAP packets with an organization code of
2181 * 0x080007 (Apple, for Appletalk) and a protocol
2182 * type of ETHERTYPE_ATALK (Appletalk).
2184 * 802.2-encapsulated ETHERTYPE_AARP packets are
2185 * SNAP packets with an organization code of
2186 * 0x000000 (encapsulated Ethernet) and a protocol
2187 * type of ETHERTYPE_AARP (Appletalk ARP).
2189 if (proto
== ETHERTYPE_ATALK
)
2190 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2191 else /* proto == ETHERTYPE_AARP */
2192 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2196 * Check for Ethernet encapsulation (Ethertalk
2197 * phase 1?); we just check for the Ethernet
2200 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2206 if (proto
<= ETHERMTU
) {
2208 * This is an LLC SAP value, so the frames
2209 * that match would be 802.2 frames.
2210 * Check for the 802.2 protocol type
2211 * in the "Ethernet type" field, and
2212 * then check the DSAP.
2214 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2215 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2221 * This is an Ethernet type, so compare
2222 * the length/type field with it (if
2223 * the frame is an 802.2 frame, the length
2224 * field will be <= ETHERMTU, and, as
2225 * "proto" is > ETHERMTU, this test
2226 * will fail and the frame won't match,
2227 * which is what we want).
2229 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2234 static struct slist
*
2235 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2237 struct slist
*s1
, *s2
;
2238 struct slist
*sjeq_avs_cookie
;
2239 struct slist
*sjcommon
;
2242 * This code is not compatible with the optimizer, as
2243 * we are generating jmp instructions within a normal
2244 * slist of instructions
2246 cstate
->no_optimize
= 1;
2249 * Generate code to load the length of the radio header into
2250 * the register assigned to hold that length, if one has been
2251 * assigned. (If one hasn't been assigned, no code we've
2252 * generated uses that prefix, so we don't need to generate any
2255 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2256 * or always use the AVS header rather than the Prism header.
2257 * We load a 4-byte big-endian value at the beginning of the
2258 * raw packet data, and see whether, when masked with 0xFFFFF000,
2259 * it's equal to 0x80211000. If so, that indicates that it's
2260 * an AVS header (the masked-out bits are the version number).
2261 * Otherwise, it's a Prism header.
2263 * XXX - the Prism header is also, in theory, variable-length,
2264 * but no known software generates headers that aren't 144
2267 if (cstate
->off_linkhdr
.reg
!= -1) {
2271 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2275 * AND it with 0xFFFFF000.
2277 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2278 s2
->s
.k
= 0xFFFFF000;
2282 * Compare with 0x80211000.
2284 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2285 sjeq_avs_cookie
->s
.k
= 0x80211000;
2286 sappend(s1
, sjeq_avs_cookie
);
2291 * The 4 bytes at an offset of 4 from the beginning of
2292 * the AVS header are the length of the AVS header.
2293 * That field is big-endian.
2295 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2298 sjeq_avs_cookie
->s
.jt
= s2
;
2301 * Now jump to the code to allocate a register
2302 * into which to save the header length and
2303 * store the length there. (The "jump always"
2304 * instruction needs to have the k field set;
2305 * it's added to the PC, so, as we're jumping
2306 * over a single instruction, it should be 1.)
2308 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2310 sappend(s1
, sjcommon
);
2313 * Now for the code that handles the Prism header.
2314 * Just load the length of the Prism header (144)
2315 * into the A register. Have the test for an AVS
2316 * header branch here if we don't have an AVS header.
2318 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2321 sjeq_avs_cookie
->s
.jf
= s2
;
2324 * Now allocate a register to hold that value and store
2325 * it. The code for the AVS header will jump here after
2326 * loading the length of the AVS header.
2328 s2
= new_stmt(cstate
, BPF_ST
);
2329 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2331 sjcommon
->s
.jf
= s2
;
2334 * Now move it into the X register.
2336 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2344 static struct slist
*
2345 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2347 struct slist
*s1
, *s2
;
2350 * Generate code to load the length of the AVS header into
2351 * the register assigned to hold that length, if one has been
2352 * assigned. (If one hasn't been assigned, no code we've
2353 * generated uses that prefix, so we don't need to generate any
2356 if (cstate
->off_linkhdr
.reg
!= -1) {
2358 * The 4 bytes at an offset of 4 from the beginning of
2359 * the AVS header are the length of the AVS header.
2360 * That field is big-endian.
2362 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2366 * Now allocate a register to hold that value and store
2369 s2
= new_stmt(cstate
, BPF_ST
);
2370 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2374 * Now move it into the X register.
2376 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2384 static struct slist
*
2385 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2387 struct slist
*s1
, *s2
;
2390 * Generate code to load the length of the radiotap header into
2391 * the register assigned to hold that length, if one has been
2392 * assigned. (If one hasn't been assigned, no code we've
2393 * generated uses that prefix, so we don't need to generate any
2396 if (cstate
->off_linkhdr
.reg
!= -1) {
2398 * The 2 bytes at offsets of 2 and 3 from the beginning
2399 * of the radiotap header are the length of the radiotap
2400 * header; unfortunately, it's little-endian, so we have
2401 * to load it a byte at a time and construct the value.
2405 * Load the high-order byte, at an offset of 3, shift it
2406 * left a byte, and put the result in the X register.
2408 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2410 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2413 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2417 * Load the next byte, at an offset of 2, and OR the
2418 * value from the X register into it.
2420 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2423 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2427 * Now allocate a register to hold that value and store
2430 s2
= new_stmt(cstate
, BPF_ST
);
2431 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2435 * Now move it into the X register.
2437 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2446 * At the moment we treat PPI as normal Radiotap encoded
2447 * packets. The difference is in the function that generates
2448 * the code at the beginning to compute the header length.
2449 * Since this code generator of PPI supports bare 802.11
2450 * encapsulation only (i.e. the encapsulated DLT should be
2451 * DLT_IEEE802_11) we generate code to check for this too;
2452 * that's done in finish_parse().
2454 static struct slist
*
2455 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2457 struct slist
*s1
, *s2
;
2460 * Generate code to load the length of the radiotap header
2461 * into the register assigned to hold that length, if one has
2464 if (cstate
->off_linkhdr
.reg
!= -1) {
2466 * The 2 bytes at offsets of 2 and 3 from the beginning
2467 * of the radiotap header are the length of the radiotap
2468 * header; unfortunately, it's little-endian, so we have
2469 * to load it a byte at a time and construct the value.
2473 * Load the high-order byte, at an offset of 3, shift it
2474 * left a byte, and put the result in the X register.
2476 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2478 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2481 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2485 * Load the next byte, at an offset of 2, and OR the
2486 * value from the X register into it.
2488 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2491 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2495 * Now allocate a register to hold that value and store
2498 s2
= new_stmt(cstate
, BPF_ST
);
2499 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2503 * Now move it into the X register.
2505 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2514 * Load a value relative to the beginning of the link-layer header after the 802.11
2515 * header, i.e. LLC_SNAP.
2516 * The link-layer header doesn't necessarily begin at the beginning
2517 * of the packet data; there might be a variable-length prefix containing
2518 * radio information.
2520 static struct slist
*
2521 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
2524 struct slist
*sjset_data_frame_1
;
2525 struct slist
*sjset_data_frame_2
;
2526 struct slist
*sjset_qos
;
2527 struct slist
*sjset_radiotap_flags_present
;
2528 struct slist
*sjset_radiotap_ext_present
;
2529 struct slist
*sjset_radiotap_tsft_present
;
2530 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2531 struct slist
*s_roundup
;
2533 if (cstate
->off_linkpl
.reg
== -1) {
2535 * No register has been assigned to the offset of
2536 * the link-layer payload, which means nobody needs
2537 * it; don't bother computing it - just return
2538 * what we already have.
2544 * This code is not compatible with the optimizer, as
2545 * we are generating jmp instructions within a normal
2546 * slist of instructions
2548 cstate
->no_optimize
= 1;
2551 * If "s" is non-null, it has code to arrange that the X register
2552 * contains the length of the prefix preceding the link-layer
2555 * Otherwise, the length of the prefix preceding the link-layer
2556 * header is "off_outermostlinkhdr.constant_part".
2560 * There is no variable-length header preceding the
2561 * link-layer header.
2563 * Load the length of the fixed-length prefix preceding
2564 * the link-layer header (if any) into the X register,
2565 * and store it in the cstate->off_linkpl.reg register.
2566 * That length is off_outermostlinkhdr.constant_part.
2568 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
2569 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
2573 * The X register contains the offset of the beginning of the
2574 * link-layer header; add 24, which is the minimum length
2575 * of the MAC header for a data frame, to that, and store it
2576 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2577 * which is at the offset in the X register, with an indexed load.
2579 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
2581 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2584 s2
= new_stmt(cstate
, BPF_ST
);
2585 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2588 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2593 * Check the Frame Control field to see if this is a data frame;
2594 * a data frame has the 0x08 bit (b3) in that field set and the
2595 * 0x04 bit (b2) clear.
2597 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
2598 sjset_data_frame_1
->s
.k
= 0x08;
2599 sappend(s
, sjset_data_frame_1
);
2602 * If b3 is set, test b2, otherwise go to the first statement of
2603 * the rest of the program.
2605 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
2606 sjset_data_frame_2
->s
.k
= 0x04;
2607 sappend(s
, sjset_data_frame_2
);
2608 sjset_data_frame_1
->s
.jf
= snext
;
2611 * If b2 is not set, this is a data frame; test the QoS bit.
2612 * Otherwise, go to the first statement of the rest of the
2615 sjset_data_frame_2
->s
.jt
= snext
;
2616 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
2617 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2618 sappend(s
, sjset_qos
);
2621 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2623 * Otherwise, go to the first statement of the rest of the
2626 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2627 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2629 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2632 s2
= new_stmt(cstate
, BPF_ST
);
2633 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2637 * If we have a radiotap header, look at it to see whether
2638 * there's Atheros padding between the MAC-layer header
2641 * Note: all of the fields in the radiotap header are
2642 * little-endian, so we byte-swap all of the values
2643 * we test against, as they will be loaded as big-endian
2646 * XXX - in the general case, we would have to scan through
2647 * *all* the presence bits, if there's more than one word of
2648 * presence bits. That would require a loop, meaning that
2649 * we wouldn't be able to run the filter in the kernel.
2651 * We assume here that the Atheros adapters that insert the
2652 * annoying padding don't have multiple antennae and therefore
2653 * do not generate radiotap headers with multiple presence words.
2655 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
2657 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2658 * in the first presence flag word?
2660 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
2664 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2665 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
2666 sappend(s
, sjset_radiotap_flags_present
);
2669 * If not, skip all of this.
2671 sjset_radiotap_flags_present
->s
.jf
= snext
;
2674 * Otherwise, is the "extension" bit set in that word?
2676 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2677 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
2678 sappend(s
, sjset_radiotap_ext_present
);
2679 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
2682 * If so, skip all of this.
2684 sjset_radiotap_ext_present
->s
.jt
= snext
;
2687 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2689 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2690 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
2691 sappend(s
, sjset_radiotap_tsft_present
);
2692 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
2695 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2696 * at an offset of 16 from the beginning of the raw packet
2697 * data (8 bytes for the radiotap header and 8 bytes for
2700 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2703 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2706 sjset_radiotap_tsft_present
->s
.jt
= s2
;
2708 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2709 sjset_tsft_datapad
->s
.k
= 0x20;
2710 sappend(s
, sjset_tsft_datapad
);
2713 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2714 * at an offset of 8 from the beginning of the raw packet
2715 * data (8 bytes for the radiotap header).
2717 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2720 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2723 sjset_radiotap_tsft_present
->s
.jf
= s2
;
2725 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2726 sjset_notsft_datapad
->s
.k
= 0x20;
2727 sappend(s
, sjset_notsft_datapad
);
2730 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2731 * set, round the length of the 802.11 header to
2732 * a multiple of 4. Do that by adding 3 and then
2733 * dividing by and multiplying by 4, which we do by
2736 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2737 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
2738 sappend(s
, s_roundup
);
2739 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2742 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
2745 s2
= new_stmt(cstate
, BPF_ST
);
2746 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2749 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2750 sjset_tsft_datapad
->s
.jf
= snext
;
2751 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2752 sjset_notsft_datapad
->s
.jf
= snext
;
2754 sjset_qos
->s
.jf
= snext
;
2760 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
2764 /* There is an implicit dependency between the link
2765 * payload and link header since the payload computation
2766 * includes the variable part of the header. Therefore,
2767 * if nobody else has allocated a register for the link
2768 * header and we need it, do it now. */
2769 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
2770 cstate
->off_linkhdr
.reg
== -1)
2771 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
2774 * For link-layer types that have a variable-length header
2775 * preceding the link-layer header, generate code to load
2776 * the offset of the link-layer header into the register
2777 * assigned to that offset, if any.
2779 * XXX - this, and the next switch statement, won't handle
2780 * encapsulation of 802.11 or 802.11+radio information in
2781 * some other protocol stack. That's significantly more
2784 switch (cstate
->outermostlinktype
) {
2786 case DLT_PRISM_HEADER
:
2787 s
= gen_load_prism_llprefixlen(cstate
);
2790 case DLT_IEEE802_11_RADIO_AVS
:
2791 s
= gen_load_avs_llprefixlen(cstate
);
2794 case DLT_IEEE802_11_RADIO
:
2795 s
= gen_load_radiotap_llprefixlen(cstate
);
2799 s
= gen_load_ppi_llprefixlen(cstate
);
2808 * For link-layer types that have a variable-length link-layer
2809 * header, generate code to load the offset of the link-layer
2810 * payload into the register assigned to that offset, if any.
2812 switch (cstate
->outermostlinktype
) {
2814 case DLT_IEEE802_11
:
2815 case DLT_PRISM_HEADER
:
2816 case DLT_IEEE802_11_RADIO_AVS
:
2817 case DLT_IEEE802_11_RADIO
:
2819 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
2824 * If there there is no initialization yet and we need variable
2825 * length offsets for VLAN, initialize them to zero
2827 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
2830 if (cstate
->off_linkpl
.reg
== -1)
2831 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
2832 if (cstate
->off_linktype
.reg
== -1)
2833 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
2835 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2837 s2
= new_stmt(cstate
, BPF_ST
);
2838 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2840 s2
= new_stmt(cstate
, BPF_ST
);
2841 s2
->s
.k
= cstate
->off_linktype
.reg
;
2846 * If we have any offset-loading code, append all the
2847 * existing statements in the block to those statements,
2848 * and make the resulting list the list of statements
2852 sappend(s
, b
->stmts
);
2857 static struct block
*
2858 gen_ppi_dlt_check(compiler_state_t
*cstate
)
2860 struct slist
*s_load_dlt
;
2863 if (cstate
->linktype
== DLT_PPI
)
2865 /* Create the statements that check for the DLT
2867 s_load_dlt
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2868 s_load_dlt
->s
.k
= 4;
2870 b
= new_block(cstate
, JMP(BPF_JEQ
));
2872 b
->stmts
= s_load_dlt
;
2873 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2884 * Take an absolute offset, and:
2886 * if it has no variable part, return NULL;
2888 * if it has a variable part, generate code to load the register
2889 * containing that variable part into the X register, returning
2890 * a pointer to that code - if no register for that offset has
2891 * been allocated, allocate it first.
2893 * (The code to set that register will be generated later, but will
2894 * be placed earlier in the code sequence.)
2896 static struct slist
*
2897 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
2901 if (off
->is_variable
) {
2902 if (off
->reg
== -1) {
2904 * We haven't yet assigned a register for the
2905 * variable part of the offset of the link-layer
2906 * header; allocate one.
2908 off
->reg
= alloc_reg(cstate
);
2912 * Load the register containing the variable part of the
2913 * offset of the link-layer header into the X register.
2915 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
2920 * That offset isn't variable, there's no variable part,
2921 * so we don't need to generate any code.
2928 * Map an Ethernet type to the equivalent PPP type.
2931 ethertype_to_ppptype(proto
)
2940 case ETHERTYPE_IPV6
:
2948 case ETHERTYPE_ATALK
:
2962 * I'm assuming the "Bridging PDU"s that go
2963 * over PPP are Spanning Tree Protocol
2977 * Generate any tests that, for encapsulation of a link-layer packet
2978 * inside another protocol stack, need to be done to check for those
2979 * link-layer packets (and that haven't already been done by a check
2980 * for that encapsulation).
2982 static struct block
*
2983 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
2987 if (cstate
->is_geneve
)
2988 return gen_geneve_ll_check(cstate
);
2990 switch (cstate
->prevlinktype
) {
2994 * This is LANE-encapsulated Ethernet; check that the LANE
2995 * packet doesn't begin with an LE Control marker, i.e.
2996 * that it's data, not a control message.
2998 * (We've already generated a test for LANE.)
3000 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3006 * No such tests are necessary.
3014 * The three different values we should check for when checking for an
3015 * IPv6 packet with DLT_NULL.
3017 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3018 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3019 #define BSD_AFNUM_INET6_DARWIN 30 /* OS X, iOS, other Darwin-based OSes */
3022 * Generate code to match a particular packet type by matching the
3023 * link-layer type field or fields in the 802.2 LLC header.
3025 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3026 * value, if <= ETHERMTU.
3028 static struct block
*
3029 gen_linktype(compiler_state_t
*cstate
, int proto
)
3031 struct block
*b0
, *b1
, *b2
;
3032 const char *description
;
3034 /* are we checking MPLS-encapsulated packets? */
3035 if (cstate
->label_stack_depth
> 0) {
3039 /* FIXME add other L3 proto IDs */
3040 return gen_mpls_linktype(cstate
, Q_IP
);
3042 case ETHERTYPE_IPV6
:
3044 /* FIXME add other L3 proto IDs */
3045 return gen_mpls_linktype(cstate
, Q_IPV6
);
3048 bpf_error(cstate
, "unsupported protocol over mpls");
3053 switch (cstate
->linktype
) {
3056 case DLT_NETANALYZER
:
3057 case DLT_NETANALYZER_TRANSPARENT
:
3058 /* Geneve has an EtherType regardless of whether there is an
3060 if (!cstate
->is_geneve
)
3061 b0
= gen_prevlinkhdr_check(cstate
);
3065 b1
= gen_ether_linktype(cstate
, proto
);
3076 proto
= (proto
<< 8 | LLCSAP_ISONS
);
3080 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3086 case DLT_IEEE802_11
:
3087 case DLT_PRISM_HEADER
:
3088 case DLT_IEEE802_11_RADIO_AVS
:
3089 case DLT_IEEE802_11_RADIO
:
3092 * Check that we have a data frame.
3094 b0
= gen_check_802_11_data_frame(cstate
);
3097 * Now check for the specified link-layer type.
3099 b1
= gen_llc_linktype(cstate
, proto
);
3107 * XXX - check for LLC frames.
3109 return gen_llc_linktype(cstate
, proto
);
3115 * XXX - check for LLC PDUs, as per IEEE 802.5.
3117 return gen_llc_linktype(cstate
, proto
);
3121 case DLT_ATM_RFC1483
:
3123 case DLT_IP_OVER_FC
:
3124 return gen_llc_linktype(cstate
, proto
);
3130 * Check for an LLC-encapsulated version of this protocol;
3131 * if we were checking for LANE, linktype would no longer
3134 * Check for LLC encapsulation and then check the protocol.
3136 b0
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3137 b1
= gen_llc_linktype(cstate
, proto
);
3144 return gen_linux_sll_linktype(cstate
, proto
);
3149 case DLT_SLIP_BSDOS
:
3152 * These types don't provide any type field; packets
3153 * are always IPv4 or IPv6.
3155 * XXX - for IPv4, check for a version number of 4, and,
3156 * for IPv6, check for a version number of 6?
3161 /* Check for a version number of 4. */
3162 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3164 case ETHERTYPE_IPV6
:
3165 /* Check for a version number of 6. */
3166 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3169 return gen_false(cstate
); /* always false */
3176 * Raw IPv4, so no type field.
3178 if (proto
== ETHERTYPE_IP
)
3179 return gen_true(cstate
); /* always true */
3181 /* Checking for something other than IPv4; always false */
3182 return gen_false(cstate
);
3188 * Raw IPv6, so no type field.
3190 if (proto
== ETHERTYPE_IPV6
)
3191 return gen_true(cstate
); /* always true */
3193 /* Checking for something other than IPv6; always false */
3194 return gen_false(cstate
);
3200 case DLT_PPP_SERIAL
:
3203 * We use Ethernet protocol types inside libpcap;
3204 * map them to the corresponding PPP protocol types.
3206 proto
= ethertype_to_ppptype(proto
);
3207 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3213 * We use Ethernet protocol types inside libpcap;
3214 * map them to the corresponding PPP protocol types.
3220 * Also check for Van Jacobson-compressed IP.
3221 * XXX - do this for other forms of PPP?
3223 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3224 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3226 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3231 proto
= ethertype_to_ppptype(proto
);
3232 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3244 return (gen_loopback_linktype(cstate
, AF_INET
));
3246 case ETHERTYPE_IPV6
:
3248 * AF_ values may, unfortunately, be platform-
3249 * dependent; AF_INET isn't, because everybody
3250 * used 4.2BSD's value, but AF_INET6 is, because
3251 * 4.2BSD didn't have a value for it (given that
3252 * IPv6 didn't exist back in the early 1980's),
3253 * and they all picked their own values.
3255 * This means that, if we're reading from a
3256 * savefile, we need to check for all the
3259 * If we're doing a live capture, we only need
3260 * to check for this platform's value; however,
3261 * Npcap uses 24, which isn't Windows's AF_INET6
3262 * value. (Given the multiple different values,
3263 * programs that read pcap files shouldn't be
3264 * checking for their platform's AF_INET6 value
3265 * anyway, they should check for all of the
3266 * possible values. and they might as well do
3267 * that even for live captures.)
3269 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3271 * Savefile - check for all three
3272 * possible IPv6 values.
3274 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3275 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3277 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3282 * Live capture, so we only need to
3283 * check for the value used on this
3288 * Npcap doesn't use Windows's AF_INET6,
3289 * as that collides with AF_IPX on
3290 * some BSDs (both have the value 23).
3291 * Instead, it uses 24.
3293 return (gen_loopback_linktype(cstate
, 24));
3296 return (gen_loopback_linktype(cstate
, AF_INET6
));
3297 #else /* AF_INET6 */
3299 * I guess this platform doesn't support
3300 * IPv6, so we just reject all packets.
3302 return gen_false(cstate
);
3303 #endif /* AF_INET6 */
3309 * Not a type on which we support filtering.
3310 * XXX - support those that have AF_ values
3311 * #defined on this platform, at least?
3313 return gen_false(cstate
);
3316 #ifdef HAVE_NET_PFVAR_H
3319 * af field is host byte order in contrast to the rest of
3322 if (proto
== ETHERTYPE_IP
)
3323 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3324 BPF_B
, (bpf_int32
)AF_INET
));
3325 else if (proto
== ETHERTYPE_IPV6
)
3326 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3327 BPF_B
, (bpf_int32
)AF_INET6
));
3329 return gen_false(cstate
);
3332 #endif /* HAVE_NET_PFVAR_H */
3335 case DLT_ARCNET_LINUX
:
3337 * XXX should we check for first fragment if the protocol
3343 return gen_false(cstate
);
3345 case ETHERTYPE_IPV6
:
3346 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3347 (bpf_int32
)ARCTYPE_INET6
));
3350 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3351 (bpf_int32
)ARCTYPE_IP
);
3352 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3353 (bpf_int32
)ARCTYPE_IP_OLD
);
3358 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3359 (bpf_int32
)ARCTYPE_ARP
);
3360 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3361 (bpf_int32
)ARCTYPE_ARP_OLD
);
3365 case ETHERTYPE_REVARP
:
3366 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3367 (bpf_int32
)ARCTYPE_REVARP
));
3369 case ETHERTYPE_ATALK
:
3370 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3371 (bpf_int32
)ARCTYPE_ATALK
));
3378 case ETHERTYPE_ATALK
:
3379 return gen_true(cstate
);
3381 return gen_false(cstate
);
3388 * XXX - assumes a 2-byte Frame Relay header with
3389 * DLCI and flags. What if the address is longer?
3395 * Check for the special NLPID for IP.
3397 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3399 case ETHERTYPE_IPV6
:
3401 * Check for the special NLPID for IPv6.
3403 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3407 * Check for several OSI protocols.
3409 * Frame Relay packets typically have an OSI
3410 * NLPID at the beginning; we check for each
3413 * What we check for is the NLPID and a frame
3414 * control field of UI, i.e. 0x03 followed
3417 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3418 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3419 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3425 return gen_false(cstate
);
3431 bpf_error(cstate
, "Multi-link Frame Relay link-layer type filtering not implemented");
3433 case DLT_JUNIPER_MFR
:
3434 case DLT_JUNIPER_MLFR
:
3435 case DLT_JUNIPER_MLPPP
:
3436 case DLT_JUNIPER_ATM1
:
3437 case DLT_JUNIPER_ATM2
:
3438 case DLT_JUNIPER_PPPOE
:
3439 case DLT_JUNIPER_PPPOE_ATM
:
3440 case DLT_JUNIPER_GGSN
:
3441 case DLT_JUNIPER_ES
:
3442 case DLT_JUNIPER_MONITOR
:
3443 case DLT_JUNIPER_SERVICES
:
3444 case DLT_JUNIPER_ETHER
:
3445 case DLT_JUNIPER_PPP
:
3446 case DLT_JUNIPER_FRELAY
:
3447 case DLT_JUNIPER_CHDLC
:
3448 case DLT_JUNIPER_VP
:
3449 case DLT_JUNIPER_ST
:
3450 case DLT_JUNIPER_ISM
:
3451 case DLT_JUNIPER_VS
:
3452 case DLT_JUNIPER_SRX_E2E
:
3453 case DLT_JUNIPER_FIBRECHANNEL
:
3454 case DLT_JUNIPER_ATM_CEMIC
:
3456 /* just lets verify the magic number for now -
3457 * on ATM we may have up to 6 different encapsulations on the wire
3458 * and need a lot of heuristics to figure out that the payload
3461 * FIXME encapsulation specific BPF_ filters
3463 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3465 case DLT_BACNET_MS_TP
:
3466 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3469 return gen_ipnet_linktype(cstate
, proto
);
3471 case DLT_LINUX_IRDA
:
3472 bpf_error(cstate
, "IrDA link-layer type filtering not implemented");
3475 bpf_error(cstate
, "DOCSIS link-layer type filtering not implemented");
3478 case DLT_MTP2_WITH_PHDR
:
3479 bpf_error(cstate
, "MTP2 link-layer type filtering not implemented");
3482 bpf_error(cstate
, "ERF link-layer type filtering not implemented");
3485 bpf_error(cstate
, "PFSYNC link-layer type filtering not implemented");
3487 case DLT_LINUX_LAPD
:
3488 bpf_error(cstate
, "LAPD link-layer type filtering not implemented");
3490 case DLT_USB_FREEBSD
:
3492 case DLT_USB_LINUX_MMAPPED
:
3494 bpf_error(cstate
, "USB link-layer type filtering not implemented");
3496 case DLT_BLUETOOTH_HCI_H4
:
3497 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3498 bpf_error(cstate
, "Bluetooth link-layer type filtering not implemented");
3501 case DLT_CAN_SOCKETCAN
:
3502 bpf_error(cstate
, "CAN link-layer type filtering not implemented");
3504 case DLT_IEEE802_15_4
:
3505 case DLT_IEEE802_15_4_LINUX
:
3506 case DLT_IEEE802_15_4_NONASK_PHY
:
3507 case DLT_IEEE802_15_4_NOFCS
:
3508 bpf_error(cstate
, "IEEE 802.15.4 link-layer type filtering not implemented");
3510 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3511 bpf_error(cstate
, "IEEE 802.16 link-layer type filtering not implemented");
3514 bpf_error(cstate
, "SITA link-layer type filtering not implemented");
3517 bpf_error(cstate
, "RAIF1 link-layer type filtering not implemented");
3520 bpf_error(cstate
, "IPMB link-layer type filtering not implemented");
3523 bpf_error(cstate
, "AX.25 link-layer type filtering not implemented");
3526 /* Using the fixed-size NFLOG header it is possible to tell only
3527 * the address family of the packet, other meaningful data is
3528 * either missing or behind TLVs.
3530 bpf_error(cstate
, "NFLOG link-layer type filtering not implemented");
3534 * Does this link-layer header type have a field
3535 * indicating the type of the next protocol? If
3536 * so, off_linktype.constant_part will be the offset of that
3537 * field in the packet; if not, it will be OFFSET_NOT_SET.
3539 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3541 * Yes; assume it's an Ethernet type. (If
3542 * it's not, it needs to be handled specially
3545 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3548 * No; report an error.
3550 description
= pcap_datalink_val_to_description(cstate
->linktype
);
3551 if (description
!= NULL
) {
3552 bpf_error(cstate
, "%s link-layer type filtering not implemented",
3555 bpf_error(cstate
, "DLT %u link-layer type filtering not implemented",
3564 * Check for an LLC SNAP packet with a given organization code and
3565 * protocol type; we check the entire contents of the 802.2 LLC and
3566 * snap headers, checking for DSAP and SSAP of SNAP and a control
3567 * field of 0x03 in the LLC header, and for the specified organization
3568 * code and protocol type in the SNAP header.
3570 static struct block
*
3571 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
3573 u_char snapblock
[8];
3575 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3576 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3577 snapblock
[2] = 0x03; /* control = UI */
3578 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
3579 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
3580 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
3581 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
3582 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
3583 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
3587 * Generate code to match frames with an LLC header.
3590 gen_llc(compiler_state_t
*cstate
)
3592 struct block
*b0
, *b1
;
3594 switch (cstate
->linktype
) {
3598 * We check for an Ethernet type field less than
3599 * 1500, which means it's an 802.3 length field.
3601 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
3605 * Now check for the purported DSAP and SSAP not being
3606 * 0xFF, to rule out NetWare-over-802.3.
3608 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
3615 * We check for LLC traffic.
3617 b0
= gen_atmtype_abbrev(cstate
, A_LLC
);
3620 case DLT_IEEE802
: /* Token Ring */
3622 * XXX - check for LLC frames.
3624 return gen_true(cstate
);
3628 * XXX - check for LLC frames.
3630 return gen_true(cstate
);
3632 case DLT_ATM_RFC1483
:
3634 * For LLC encapsulation, these are defined to have an
3637 * For VC encapsulation, they don't, but there's no
3638 * way to check for that; the protocol used on the VC
3639 * is negotiated out of band.
3641 return gen_true(cstate
);
3643 case DLT_IEEE802_11
:
3644 case DLT_PRISM_HEADER
:
3645 case DLT_IEEE802_11_RADIO
:
3646 case DLT_IEEE802_11_RADIO_AVS
:
3649 * Check that we have a data frame.
3651 b0
= gen_check_802_11_data_frame(cstate
);
3655 bpf_error(cstate
, "'llc' not supported for linktype %d", cstate
->linktype
);
3661 gen_llc_i(compiler_state_t
*cstate
)
3663 struct block
*b0
, *b1
;
3667 * Check whether this is an LLC frame.
3669 b0
= gen_llc(cstate
);
3672 * Load the control byte and test the low-order bit; it must
3673 * be clear for I frames.
3675 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
3676 b1
= new_block(cstate
, JMP(BPF_JSET
));
3685 gen_llc_s(compiler_state_t
*cstate
)
3687 struct block
*b0
, *b1
;
3690 * Check whether this is an LLC frame.
3692 b0
= gen_llc(cstate
);
3695 * Now compare the low-order 2 bit of the control byte against
3696 * the appropriate value for S frames.
3698 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
3704 gen_llc_u(compiler_state_t
*cstate
)
3706 struct block
*b0
, *b1
;
3709 * Check whether this is an LLC frame.
3711 b0
= gen_llc(cstate
);
3714 * Now compare the low-order 2 bit of the control byte against
3715 * the appropriate value for U frames.
3717 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
3723 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3725 struct block
*b0
, *b1
;
3728 * Check whether this is an LLC frame.
3730 b0
= gen_llc(cstate
);
3733 * Now check for an S frame with the appropriate type.
3735 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
3741 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3743 struct block
*b0
, *b1
;
3746 * Check whether this is an LLC frame.
3748 b0
= gen_llc(cstate
);
3751 * Now check for a U frame with the appropriate type.
3753 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
3759 * Generate code to match a particular packet type, for link-layer types
3760 * using 802.2 LLC headers.
3762 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3763 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3765 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3766 * value, if <= ETHERMTU. We use that to determine whether to
3767 * match the DSAP or both DSAP and LSAP or to check the OUI and
3768 * protocol ID in a SNAP header.
3770 static struct block
*
3771 gen_llc_linktype(compiler_state_t
*cstate
, int proto
)
3774 * XXX - handle token-ring variable-length header.
3780 case LLCSAP_NETBEUI
:
3782 * XXX - should we check both the DSAP and the
3783 * SSAP, like this, or should we check just the
3784 * DSAP, as we do for other SAP values?
3786 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
3787 ((proto
<< 8) | proto
));
3791 * XXX - are there ever SNAP frames for IPX on
3792 * non-Ethernet 802.x networks?
3794 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
,
3795 (bpf_int32
)LLCSAP_IPX
);
3797 case ETHERTYPE_ATALK
:
3799 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3800 * SNAP packets with an organization code of
3801 * 0x080007 (Apple, for Appletalk) and a protocol
3802 * type of ETHERTYPE_ATALK (Appletalk).
3804 * XXX - check for an organization code of
3805 * encapsulated Ethernet as well?
3807 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
3811 * XXX - we don't have to check for IPX 802.3
3812 * here, but should we check for the IPX Ethertype?
3814 if (proto
<= ETHERMTU
) {
3816 * This is an LLC SAP value, so check
3819 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)proto
);
3822 * This is an Ethernet type; we assume that it's
3823 * unlikely that it'll appear in the right place
3824 * at random, and therefore check only the
3825 * location that would hold the Ethernet type
3826 * in a SNAP frame with an organization code of
3827 * 0x000000 (encapsulated Ethernet).
3829 * XXX - if we were to check for the SNAP DSAP and
3830 * LSAP, as per XXX, and were also to check for an
3831 * organization code of 0x000000 (encapsulated
3832 * Ethernet), we'd do
3834 * return gen_snap(cstate, 0x000000, proto);
3836 * here; for now, we don't, as per the above.
3837 * I don't know whether it's worth the extra CPU
3838 * time to do the right check or not.
3840 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, (bpf_int32
)proto
);
3845 static struct block
*
3846 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
3847 int dir
, int proto
, u_int src_off
, u_int dst_off
)
3849 struct block
*b0
, *b1
;
3863 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3864 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3870 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3871 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3878 b0
= gen_linktype(cstate
, proto
);
3879 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
3885 static struct block
*
3886 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
3887 struct in6_addr
*mask
, int dir
, int proto
, u_int src_off
, u_int dst_off
)
3889 struct block
*b0
, *b1
;
3904 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3905 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3911 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3912 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3919 /* this order is important */
3920 a
= (uint32_t *)addr
;
3921 m
= (uint32_t *)mask
;
3922 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
3923 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
3925 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
3927 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
3929 b0
= gen_linktype(cstate
, proto
);
3935 static struct block
*
3936 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3938 register struct block
*b0
, *b1
;
3942 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
3945 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
3948 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3949 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3955 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3956 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3961 bpf_error(cstate
, "'addr1' is only supported on 802.11 with 802.11 headers");
3965 bpf_error(cstate
, "'addr2' is only supported on 802.11 with 802.11 headers");
3969 bpf_error(cstate
, "'addr3' is only supported on 802.11 with 802.11 headers");
3973 bpf_error(cstate
, "'addr4' is only supported on 802.11 with 802.11 headers");
3977 bpf_error(cstate
, "'ra' is only supported on 802.11 with 802.11 headers");
3981 bpf_error(cstate
, "'ta' is only supported on 802.11 with 802.11 headers");
3989 * Like gen_ehostop, but for DLT_FDDI
3991 static struct block
*
3992 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3994 struct block
*b0
, *b1
;
3998 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4001 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4004 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4005 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4011 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4012 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4017 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4021 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4025 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4029 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4033 bpf_error(cstate
, "'ra' is only supported on 802.11");
4037 bpf_error(cstate
, "'ta' is only supported on 802.11");
4045 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4047 static struct block
*
4048 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4050 register struct block
*b0
, *b1
;
4054 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4057 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4060 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4061 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4067 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4068 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4073 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4077 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4081 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4085 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4089 bpf_error(cstate
, "'ra' is only supported on 802.11");
4093 bpf_error(cstate
, "'ta' is only supported on 802.11");
4101 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4102 * various 802.11 + radio headers.
4104 static struct block
*
4105 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4107 register struct block
*b0
, *b1
, *b2
;
4108 register struct slist
*s
;
4110 #ifdef ENABLE_WLAN_FILTERING_PATCH
4113 * We need to disable the optimizer because the optimizer is buggy
4114 * and wipes out some LD instructions generated by the below
4115 * code to validate the Frame Control bits
4117 cstate
->no_optimize
= 1;
4118 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4125 * For control frames, there is no SA.
4127 * For management frames, SA is at an
4128 * offset of 10 from the beginning of
4131 * For data frames, SA is at an offset
4132 * of 10 from the beginning of the packet
4133 * if From DS is clear, at an offset of
4134 * 16 from the beginning of the packet
4135 * if From DS is set and To DS is clear,
4136 * and an offset of 24 from the beginning
4137 * of the packet if From DS is set and To DS
4142 * Generate the tests to be done for data frames
4145 * First, check for To DS set, i.e. check "link[1] & 0x01".
4147 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4148 b1
= new_block(cstate
, JMP(BPF_JSET
));
4149 b1
->s
.k
= 0x01; /* To DS */
4153 * If To DS is set, the SA is at 24.
4155 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4159 * Now, check for To DS not set, i.e. check
4160 * "!(link[1] & 0x01)".
4162 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4163 b2
= new_block(cstate
, JMP(BPF_JSET
));
4164 b2
->s
.k
= 0x01; /* To DS */
4169 * If To DS is not set, the SA is at 16.
4171 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4175 * Now OR together the last two checks. That gives
4176 * the complete set of checks for data frames with
4182 * Now check for From DS being set, and AND that with
4183 * the ORed-together checks.
4185 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4186 b1
= new_block(cstate
, JMP(BPF_JSET
));
4187 b1
->s
.k
= 0x02; /* From DS */
4192 * Now check for data frames with From DS not set.
4194 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4195 b2
= new_block(cstate
, JMP(BPF_JSET
));
4196 b2
->s
.k
= 0x02; /* From DS */
4201 * If From DS isn't set, the SA is at 10.
4203 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4207 * Now OR together the checks for data frames with
4208 * From DS not set and for data frames with From DS
4209 * set; that gives the checks done for data frames.
4214 * Now check for a data frame.
4215 * I.e, check "link[0] & 0x08".
4217 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4218 b1
= new_block(cstate
, JMP(BPF_JSET
));
4223 * AND that with the checks done for data frames.
4228 * If the high-order bit of the type value is 0, this
4229 * is a management frame.
4230 * I.e, check "!(link[0] & 0x08)".
4232 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4233 b2
= new_block(cstate
, JMP(BPF_JSET
));
4239 * For management frames, the SA is at 10.
4241 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4245 * OR that with the checks done for data frames.
4246 * That gives the checks done for management and
4252 * If the low-order bit of the type value is 1,
4253 * this is either a control frame or a frame
4254 * with a reserved type, and thus not a
4257 * I.e., check "!(link[0] & 0x04)".
4259 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4260 b1
= new_block(cstate
, JMP(BPF_JSET
));
4266 * AND that with the checks for data and management
4276 * For control frames, there is no DA.
4278 * For management frames, DA is at an
4279 * offset of 4 from the beginning of
4282 * For data frames, DA is at an offset
4283 * of 4 from the beginning of the packet
4284 * if To DS is clear and at an offset of
4285 * 16 from the beginning of the packet
4290 * Generate the tests to be done for data frames.
4292 * First, check for To DS set, i.e. "link[1] & 0x01".
4294 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4295 b1
= new_block(cstate
, JMP(BPF_JSET
));
4296 b1
->s
.k
= 0x01; /* To DS */
4300 * If To DS is set, the DA is at 16.
4302 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4306 * Now, check for To DS not set, i.e. check
4307 * "!(link[1] & 0x01)".
4309 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4310 b2
= new_block(cstate
, JMP(BPF_JSET
));
4311 b2
->s
.k
= 0x01; /* To DS */
4316 * If To DS is not set, the DA is at 4.
4318 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4322 * Now OR together the last two checks. That gives
4323 * the complete set of checks for data frames.
4328 * Now check for a data frame.
4329 * I.e, check "link[0] & 0x08".
4331 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4332 b1
= new_block(cstate
, JMP(BPF_JSET
));
4337 * AND that with the checks done for data frames.
4342 * If the high-order bit of the type value is 0, this
4343 * is a management frame.
4344 * I.e, check "!(link[0] & 0x08)".
4346 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4347 b2
= new_block(cstate
, JMP(BPF_JSET
));
4353 * For management frames, the DA is at 4.
4355 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4359 * OR that with the checks done for data frames.
4360 * That gives the checks done for management and
4366 * If the low-order bit of the type value is 1,
4367 * this is either a control frame or a frame
4368 * with a reserved type, and thus not a
4371 * I.e., check "!(link[0] & 0x04)".
4373 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4374 b1
= new_block(cstate
, JMP(BPF_JSET
));
4380 * AND that with the checks for data and management
4388 * Not present in management frames; addr1 in other
4393 * If the high-order bit of the type value is 0, this
4394 * is a management frame.
4395 * I.e, check "(link[0] & 0x08)".
4397 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4398 b1
= new_block(cstate
, JMP(BPF_JSET
));
4405 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4408 * AND that with the check of addr1.
4415 * Not present in management frames; addr2, if present,
4420 * Not present in CTS or ACK control frames.
4422 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4423 IEEE80211_FC0_TYPE_MASK
);
4425 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4426 IEEE80211_FC0_SUBTYPE_MASK
);
4428 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4429 IEEE80211_FC0_SUBTYPE_MASK
);
4435 * If the high-order bit of the type value is 0, this
4436 * is a management frame.
4437 * I.e, check "(link[0] & 0x08)".
4439 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4440 b1
= new_block(cstate
, JMP(BPF_JSET
));
4445 * AND that with the check for frames other than
4446 * CTS and ACK frames.
4453 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4458 * XXX - add BSSID keyword?
4461 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4465 * Not present in CTS or ACK control frames.
4467 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4468 IEEE80211_FC0_TYPE_MASK
);
4470 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4471 IEEE80211_FC0_SUBTYPE_MASK
);
4473 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4474 IEEE80211_FC0_SUBTYPE_MASK
);
4478 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4484 * Not present in control frames.
4486 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4487 IEEE80211_FC0_TYPE_MASK
);
4489 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4495 * Present only if the direction mask has both "From DS"
4496 * and "To DS" set. Neither control frames nor management
4497 * frames should have both of those set, so we don't
4498 * check the frame type.
4500 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4501 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4502 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4507 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4508 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4514 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4515 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4524 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4525 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4526 * as the RFC states.)
4528 static struct block
*
4529 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4531 register struct block
*b0
, *b1
;
4535 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4538 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4541 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4542 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4548 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4549 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4554 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4558 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4562 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4566 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4570 bpf_error(cstate
, "'ra' is only supported on 802.11");
4574 bpf_error(cstate
, "'ta' is only supported on 802.11");
4582 * This is quite tricky because there may be pad bytes in front of the
4583 * DECNET header, and then there are two possible data packet formats that
4584 * carry both src and dst addresses, plus 5 packet types in a format that
4585 * carries only the src node, plus 2 types that use a different format and
4586 * also carry just the src node.
4590 * Instead of doing those all right, we just look for data packets with
4591 * 0 or 1 bytes of padding. If you want to look at other packets, that
4592 * will require a lot more hacking.
4594 * To add support for filtering on DECNET "areas" (network numbers)
4595 * one would want to add a "mask" argument to this routine. That would
4596 * make the filter even more inefficient, although one could be clever
4597 * and not generate masking instructions if the mask is 0xFFFF.
4599 static struct block
*
4600 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4602 struct block
*b0
, *b1
, *b2
, *tmp
;
4603 u_int offset_lh
; /* offset if long header is received */
4604 u_int offset_sh
; /* offset if short header is received */
4609 offset_sh
= 1; /* follows flags */
4610 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4614 offset_sh
= 3; /* follows flags, dstnode */
4615 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4619 /* Inefficient because we do our Calvinball dance twice */
4620 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4621 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4627 /* Inefficient because we do our Calvinball dance twice */
4628 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4629 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4634 bpf_error(cstate
, "ISO host filtering not implemented");
4639 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
4640 /* Check for pad = 1, long header case */
4641 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4642 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4643 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4644 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4646 /* Check for pad = 0, long header case */
4647 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4648 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4651 /* Check for pad = 1, short header case */
4652 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4653 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4654 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4657 /* Check for pad = 0, short header case */
4658 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4659 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4663 /* Combine with test for cstate->linktype */
4669 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4670 * test the bottom-of-stack bit, and then check the version number
4671 * field in the IP header.
4673 static struct block
*
4674 gen_mpls_linktype(compiler_state_t
*cstate
, int proto
)
4676 struct block
*b0
, *b1
;
4681 /* match the bottom-of-stack bit */
4682 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4683 /* match the IPv4 version number */
4684 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
4689 /* match the bottom-of-stack bit */
4690 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4691 /* match the IPv4 version number */
4692 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
4701 static struct block
*
4702 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4703 int proto
, int dir
, int type
)
4705 struct block
*b0
, *b1
;
4706 const char *typestr
;
4716 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
4718 * Only check for non-IPv4 addresses if we're not
4719 * checking MPLS-encapsulated packets.
4721 if (cstate
->label_stack_depth
== 0) {
4722 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
4724 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
4730 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4733 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4736 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4739 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4742 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4745 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4748 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4751 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4754 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4757 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4760 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4763 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4766 bpf_error(cstate
, "ATALK host filtering not implemented");
4769 bpf_error(cstate
, "AARP host filtering not implemented");
4772 return gen_dnhostop(cstate
, addr
, dir
);
4775 bpf_error(cstate
, "SCA host filtering not implemented");
4778 bpf_error(cstate
, "LAT host filtering not implemented");
4781 bpf_error(cstate
, "MOPDL host filtering not implemented");
4784 bpf_error(cstate
, "MOPRC host filtering not implemented");
4787 bpf_error(cstate
, "'ip6' modifier applied to ip host");
4790 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4793 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4796 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4799 bpf_error(cstate
, "ISO host filtering not implemented");
4802 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4805 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4808 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4811 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4814 bpf_error(cstate
, "IPX host filtering not implemented");
4817 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4820 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4829 static struct block
*
4830 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4831 struct in6_addr
*mask
, int proto
, int dir
, int type
)
4833 const char *typestr
;
4843 return gen_host6(cstate
, addr
, mask
, Q_IPV6
, dir
, type
);
4846 bpf_error(cstate
, "link-layer modifier applied to ip6 %s", typestr
);
4849 bpf_error(cstate
, "'ip' modifier applied to ip6 %s", typestr
);
4852 bpf_error(cstate
, "'rarp' modifier applied to ip6 %s", typestr
);
4855 bpf_error(cstate
, "'arp' modifier applied to ip6 %s", typestr
);
4858 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4861 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4864 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4867 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4870 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4873 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4876 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4879 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4882 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4885 bpf_error(cstate
, "ATALK host filtering not implemented");
4888 bpf_error(cstate
, "AARP host filtering not implemented");
4891 bpf_error(cstate
, "'decnet' modifier applied to ip6 %s", typestr
);
4894 bpf_error(cstate
, "SCA host filtering not implemented");
4897 bpf_error(cstate
, "LAT host filtering not implemented");
4900 bpf_error(cstate
, "MOPDL host filtering not implemented");
4903 bpf_error(cstate
, "MOPRC host filtering not implemented");
4906 return gen_hostop6(cstate
, addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
4909 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4912 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4915 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4918 bpf_error(cstate
, "ISO host filtering not implemented");
4921 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4924 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4927 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4930 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4933 bpf_error(cstate
, "IPX host filtering not implemented");
4936 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4939 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4949 static struct block
*
4950 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
, bpf_u_int32
**alist
,
4953 struct block
*b0
, *b1
, *tmp
;
4956 bpf_error(cstate
, "direction applied to 'gateway'");
4963 switch (cstate
->linktype
) {
4965 case DLT_NETANALYZER
:
4966 case DLT_NETANALYZER_TRANSPARENT
:
4967 b1
= gen_prevlinkhdr_check(cstate
);
4968 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
4973 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
4976 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
4978 case DLT_IEEE802_11
:
4979 case DLT_PRISM_HEADER
:
4980 case DLT_IEEE802_11_RADIO_AVS
:
4981 case DLT_IEEE802_11_RADIO
:
4983 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
4987 * This is LLC-multiplexed traffic; if it were
4988 * LANE, cstate->linktype would have been set to
4992 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4994 case DLT_IP_OVER_FC
:
4995 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
4999 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5001 b1
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
, Q_HOST
);
5003 tmp
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
,
5012 bpf_error(cstate
, "illegal modifier of 'gateway'");
5018 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5026 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
5027 b0
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
5032 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
5033 b0
= gen_proto(cstate
, IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
5038 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
5039 b0
= gen_proto(cstate
, IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
5044 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
5047 #ifndef IPPROTO_IGMP
5048 #define IPPROTO_IGMP 2
5052 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
5055 #ifndef IPPROTO_IGRP
5056 #define IPPROTO_IGRP 9
5059 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
5063 #define IPPROTO_PIM 103
5067 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
5068 b0
= gen_proto(cstate
, IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
5072 #ifndef IPPROTO_VRRP
5073 #define IPPROTO_VRRP 112
5077 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
5080 #ifndef IPPROTO_CARP
5081 #define IPPROTO_CARP 112
5085 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
5089 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5093 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5097 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5101 bpf_error(cstate
, "link layer applied in wrong context");
5104 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5108 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5112 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5116 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5120 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5124 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5128 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5132 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5135 #ifndef IPPROTO_ICMPV6
5136 #define IPPROTO_ICMPV6 58
5139 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
5143 #define IPPROTO_AH 51
5146 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
5147 b0
= gen_proto(cstate
, IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
5152 #define IPPROTO_ESP 50
5155 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
5156 b0
= gen_proto(cstate
, IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
5161 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5165 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
5169 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5172 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5173 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5174 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5176 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5178 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5180 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5184 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5185 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5186 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5188 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5190 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5192 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5196 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5197 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5198 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5200 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
5205 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5206 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5211 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5212 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5214 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5216 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5221 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5222 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5227 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5228 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5233 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
5237 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5241 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5245 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5249 bpf_error(cstate
, "'radio' is not a valid protocol type");
5257 static struct block
*
5258 gen_ipfrag(compiler_state_t
*cstate
)
5263 /* not IPv4 frag other than the first frag */
5264 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5265 b
= new_block(cstate
, JMP(BPF_JSET
));
5274 * Generate a comparison to a port value in the transport-layer header
5275 * at the specified offset from the beginning of that header.
5277 * XXX - this handles a variable-length prefix preceding the link-layer
5278 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5279 * variable-length link-layer headers (such as Token Ring or 802.11
5282 static struct block
*
5283 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5285 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5288 static struct block
*
5289 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5291 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5295 gen_portop(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5297 struct block
*b0
, *b1
, *tmp
;
5299 /* ip proto 'proto' and not a fragment other than the first fragment */
5300 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5301 b0
= gen_ipfrag(cstate
);
5306 b1
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5310 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5315 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5316 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5321 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5322 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5334 static struct block
*
5335 gen_port(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5337 struct block
*b0
, *b1
, *tmp
;
5342 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5343 * not LLC encapsulation with LLCSAP_IP.
5345 * For IEEE 802 networks - which includes 802.5 token ring
5346 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5347 * says that SNAP encapsulation is used, not LLC encapsulation
5350 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5351 * RFC 2225 say that SNAP encapsulation is used, not LLC
5352 * encapsulation with LLCSAP_IP.
5354 * So we always check for ETHERTYPE_IP.
5356 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5362 b1
= gen_portop(cstate
, port
, ip_proto
, dir
);
5366 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5367 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5369 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5381 gen_portop6(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5383 struct block
*b0
, *b1
, *tmp
;
5385 /* ip6 proto 'proto' */
5386 /* XXX - catch the first fragment of a fragmented packet? */
5387 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5391 b1
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5395 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5400 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5401 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5406 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5407 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5419 static struct block
*
5420 gen_port6(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5422 struct block
*b0
, *b1
, *tmp
;
5424 /* link proto ip6 */
5425 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5431 b1
= gen_portop6(cstate
, port
, ip_proto
, dir
);
5435 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5436 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5438 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5449 /* gen_portrange code */
5450 static struct block
*
5451 gen_portrangeatom(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5454 struct block
*b1
, *b2
;
5458 * Reverse the order of the ports, so v1 is the lower one.
5467 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5468 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5476 gen_portrangeop(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5479 struct block
*b0
, *b1
, *tmp
;
5481 /* ip proto 'proto' and not a fragment other than the first fragment */
5482 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5483 b0
= gen_ipfrag(cstate
);
5488 b1
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5492 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5497 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5498 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5503 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5504 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5516 static struct block
*
5517 gen_portrange(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5520 struct block
*b0
, *b1
, *tmp
;
5523 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5529 b1
= gen_portrangeop(cstate
, port1
, port2
, ip_proto
, dir
);
5533 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5534 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5536 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5547 static struct block
*
5548 gen_portrangeatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5551 struct block
*b1
, *b2
;
5555 * Reverse the order of the ports, so v1 is the lower one.
5564 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5565 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5573 gen_portrangeop6(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5576 struct block
*b0
, *b1
, *tmp
;
5578 /* ip6 proto 'proto' */
5579 /* XXX - catch the first fragment of a fragmented packet? */
5580 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5584 b1
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5588 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5593 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5594 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5599 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5600 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5612 static struct block
*
5613 gen_portrange6(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5616 struct block
*b0
, *b1
, *tmp
;
5618 /* link proto ip6 */
5619 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5625 b1
= gen_portrangeop6(cstate
, port1
, port2
, ip_proto
, dir
);
5629 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5630 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5632 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5644 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5653 v
= pcap_nametoproto(name
);
5654 if (v
== PROTO_UNDEF
)
5655 bpf_error(cstate
, "unknown ip proto '%s'", name
);
5659 /* XXX should look up h/w protocol type based on cstate->linktype */
5660 v
= pcap_nametoeproto(name
);
5661 if (v
== PROTO_UNDEF
) {
5662 v
= pcap_nametollc(name
);
5663 if (v
== PROTO_UNDEF
)
5664 bpf_error(cstate
, "unknown ether proto '%s'", name
);
5669 if (strcmp(name
, "esis") == 0)
5671 else if (strcmp(name
, "isis") == 0)
5673 else if (strcmp(name
, "clnp") == 0)
5676 bpf_error(cstate
, "unknown osi proto '%s'", name
);
5696 static struct block
*
5697 gen_protochain(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
5699 #ifdef NO_PROTOCHAIN
5700 return gen_proto(cstate
, v
, proto
, dir
);
5702 struct block
*b0
, *b
;
5703 struct slist
*s
[100];
5704 int fix2
, fix3
, fix4
, fix5
;
5705 int ahcheck
, again
, end
;
5707 int reg2
= alloc_reg(cstate
);
5709 memset(s
, 0, sizeof(s
));
5710 fix3
= fix4
= fix5
= 0;
5717 b0
= gen_protochain(cstate
, v
, Q_IP
, dir
);
5718 b
= gen_protochain(cstate
, v
, Q_IPV6
, dir
);
5722 bpf_error(cstate
, "bad protocol applied for 'protochain'");
5727 * We don't handle variable-length prefixes before the link-layer
5728 * header, or variable-length link-layer headers, here yet.
5729 * We might want to add BPF instructions to do the protochain
5730 * work, to simplify that and, on platforms that have a BPF
5731 * interpreter with the new instructions, let the filtering
5732 * be done in the kernel. (We already require a modified BPF
5733 * engine to do the protochain stuff, to support backward
5734 * branches, and backward branch support is unlikely to appear
5735 * in kernel BPF engines.)
5737 if (cstate
->off_linkpl
.is_variable
)
5738 bpf_error(cstate
, "'protochain' not supported with variable length headers");
5740 cstate
->no_optimize
= 1; /*this code is not compatible with optimzer yet */
5743 * s[0] is a dummy entry to protect other BPF insn from damage
5744 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5745 * hard to find interdependency made by jump table fixup.
5748 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
5753 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5756 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5757 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
5759 /* X = ip->ip_hl << 2 */
5760 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
5761 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5766 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5768 /* A = ip6->ip_nxt */
5769 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5770 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
5772 /* X = sizeof(struct ip6_hdr) */
5773 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
5779 bpf_error(cstate
, "unsupported proto to gen_protochain");
5783 /* again: if (A == v) goto end; else fall through; */
5785 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5787 s
[i
]->s
.jt
= NULL
; /*later*/
5788 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5792 #ifndef IPPROTO_NONE
5793 #define IPPROTO_NONE 59
5795 /* if (A == IPPROTO_NONE) goto end */
5796 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5797 s
[i
]->s
.jt
= NULL
; /*later*/
5798 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5799 s
[i
]->s
.k
= IPPROTO_NONE
;
5800 s
[fix5
]->s
.jf
= s
[i
];
5804 if (proto
== Q_IPV6
) {
5805 int v6start
, v6end
, v6advance
, j
;
5808 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5809 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5810 s
[i
]->s
.jt
= NULL
; /*later*/
5811 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5812 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
5813 s
[fix2
]->s
.jf
= s
[i
];
5815 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5816 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5817 s
[i
]->s
.jt
= NULL
; /*later*/
5818 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5819 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
5821 /* if (A == IPPROTO_ROUTING) goto v6advance */
5822 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5823 s
[i
]->s
.jt
= NULL
; /*later*/
5824 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5825 s
[i
]->s
.k
= IPPROTO_ROUTING
;
5827 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5828 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5829 s
[i
]->s
.jt
= NULL
; /*later*/
5830 s
[i
]->s
.jf
= NULL
; /*later*/
5831 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
5841 * A = P[X + packet head];
5842 * X = X + (P[X + packet head + 1] + 1) * 8;
5844 /* A = P[X + packet head] */
5845 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5846 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5849 s
[i
] = new_stmt(cstate
, BPF_ST
);
5852 /* A = P[X + packet head + 1]; */
5853 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5854 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
5857 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5861 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5865 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
5869 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5872 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5876 /* goto again; (must use BPF_JA for backward jump) */
5877 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5878 s
[i
]->s
.k
= again
- i
- 1;
5879 s
[i
- 1]->s
.jf
= s
[i
];
5883 for (j
= v6start
; j
<= v6end
; j
++)
5884 s
[j
]->s
.jt
= s
[v6advance
];
5887 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5889 s
[fix2
]->s
.jf
= s
[i
];
5895 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5896 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5897 s
[i
]->s
.jt
= NULL
; /*later*/
5898 s
[i
]->s
.jf
= NULL
; /*later*/
5899 s
[i
]->s
.k
= IPPROTO_AH
;
5901 s
[fix3
]->s
.jf
= s
[ahcheck
];
5908 * X = X + (P[X + 1] + 2) * 4;
5911 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5913 /* A = P[X + packet head]; */
5914 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5915 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5918 s
[i
] = new_stmt(cstate
, BPF_ST
);
5922 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5925 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5929 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5931 /* A = P[X + packet head] */
5932 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5933 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5936 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5940 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5944 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5947 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5951 /* goto again; (must use BPF_JA for backward jump) */
5952 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5953 s
[i
]->s
.k
= again
- i
- 1;
5958 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5960 s
[fix2
]->s
.jt
= s
[end
];
5961 s
[fix4
]->s
.jf
= s
[end
];
5962 s
[fix5
]->s
.jt
= s
[end
];
5969 for (i
= 0; i
< max
- 1; i
++)
5970 s
[i
]->next
= s
[i
+ 1];
5971 s
[max
- 1]->next
= NULL
;
5976 b
= new_block(cstate
, JMP(BPF_JEQ
));
5977 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
5980 free_reg(cstate
, reg2
);
5987 static struct block
*
5988 gen_check_802_11_data_frame(compiler_state_t
*cstate
)
5991 struct block
*b0
, *b1
;
5994 * A data frame has the 0x08 bit (b3) in the frame control field set
5995 * and the 0x04 bit (b2) clear.
5997 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
5998 b0
= new_block(cstate
, JMP(BPF_JSET
));
6002 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
6003 b1
= new_block(cstate
, JMP(BPF_JSET
));
6014 * Generate code that checks whether the packet is a packet for protocol
6015 * <proto> and whether the type field in that protocol's header has
6016 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6017 * IP packet and checks the protocol number in the IP header against <v>.
6019 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6020 * against Q_IP and Q_IPV6.
6022 static struct block
*
6023 gen_proto(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
6025 struct block
*b0
, *b1
;
6030 if (dir
!= Q_DEFAULT
)
6031 bpf_error(cstate
, "direction applied to 'proto'");
6035 b0
= gen_proto(cstate
, v
, Q_IP
, dir
);
6036 b1
= gen_proto(cstate
, v
, Q_IPV6
, dir
);
6042 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6043 * not LLC encapsulation with LLCSAP_IP.
6045 * For IEEE 802 networks - which includes 802.5 token ring
6046 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6047 * says that SNAP encapsulation is used, not LLC encapsulation
6050 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6051 * RFC 2225 say that SNAP encapsulation is used, not LLC
6052 * encapsulation with LLCSAP_IP.
6054 * So we always check for ETHERTYPE_IP.
6056 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6058 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)v
);
6060 b1
= gen_protochain(cstate
, v
, Q_IP
);
6066 switch (cstate
->linktype
) {
6070 * Frame Relay packets typically have an OSI
6071 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6072 * generates code to check for all the OSI
6073 * NLPIDs, so calling it and then adding a check
6074 * for the particular NLPID for which we're
6075 * looking is bogus, as we can just check for
6078 * What we check for is the NLPID and a frame
6079 * control field value of UI, i.e. 0x03 followed
6082 * XXX - assumes a 2-byte Frame Relay header with
6083 * DLCI and flags. What if the address is longer?
6085 * XXX - what about SNAP-encapsulated frames?
6087 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6093 * Cisco uses an Ethertype lookalike - for OSI,
6096 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6097 /* OSI in C-HDLC is stuffed with a fudge byte */
6098 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, (long)v
);
6103 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6104 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, (long)v
);
6110 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
6112 * 4 is the offset of the PDU type relative to the IS-IS
6115 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 4, BPF_B
, (long)v
);
6120 bpf_error(cstate
, "arp does not encapsulate another protocol");
6124 bpf_error(cstate
, "rarp does not encapsulate another protocol");
6128 bpf_error(cstate
, "atalk encapsulation is not specifiable");
6132 bpf_error(cstate
, "decnet encapsulation is not specifiable");
6136 bpf_error(cstate
, "sca does not encapsulate another protocol");
6140 bpf_error(cstate
, "lat does not encapsulate another protocol");
6144 bpf_error(cstate
, "moprc does not encapsulate another protocol");
6148 bpf_error(cstate
, "mopdl does not encapsulate another protocol");
6152 return gen_linktype(cstate
, v
);
6155 bpf_error(cstate
, "'udp proto' is bogus");
6159 bpf_error(cstate
, "'tcp proto' is bogus");
6163 bpf_error(cstate
, "'sctp proto' is bogus");
6167 bpf_error(cstate
, "'icmp proto' is bogus");
6171 bpf_error(cstate
, "'igmp proto' is bogus");
6175 bpf_error(cstate
, "'igrp proto' is bogus");
6179 bpf_error(cstate
, "'pim proto' is bogus");
6183 bpf_error(cstate
, "'vrrp proto' is bogus");
6187 bpf_error(cstate
, "'carp proto' is bogus");
6191 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6194 * Also check for a fragment header before the final
6197 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6198 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, (bpf_int32
)v
);
6200 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)v
);
6203 b1
= gen_protochain(cstate
, v
, Q_IPV6
);
6209 bpf_error(cstate
, "'icmp6 proto' is bogus");
6212 bpf_error(cstate
, "'ah proto' is bogus");
6215 bpf_error(cstate
, "'ah proto' is bogus");
6218 bpf_error(cstate
, "'stp proto' is bogus");
6221 bpf_error(cstate
, "'ipx proto' is bogus");
6224 bpf_error(cstate
, "'netbeui proto' is bogus");
6227 bpf_error(cstate
, "'radio proto' is bogus");
6237 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6239 int proto
= q
.proto
;
6243 bpf_u_int32 mask
, addr
;
6245 bpf_u_int32
**alist
;
6248 struct sockaddr_in
*sin4
;
6249 struct sockaddr_in6
*sin6
;
6250 struct addrinfo
*res
, *res0
;
6251 struct in6_addr mask128
;
6253 struct block
*b
, *tmp
;
6254 int port
, real_proto
;
6260 addr
= pcap_nametonetaddr(name
);
6262 bpf_error(cstate
, "unknown network '%s'", name
);
6263 /* Left justify network addr and calculate its network mask */
6265 while (addr
&& (addr
& 0xff000000) == 0) {
6269 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6273 if (proto
== Q_LINK
) {
6274 switch (cstate
->linktype
) {
6277 case DLT_NETANALYZER
:
6278 case DLT_NETANALYZER_TRANSPARENT
:
6279 eaddr
= pcap_ether_hostton(name
);
6282 "unknown ether host '%s'", name
);
6283 tmp
= gen_prevlinkhdr_check(cstate
);
6284 b
= gen_ehostop(cstate
, eaddr
, dir
);
6291 eaddr
= pcap_ether_hostton(name
);
6294 "unknown FDDI host '%s'", name
);
6295 b
= gen_fhostop(cstate
, eaddr
, dir
);
6300 eaddr
= pcap_ether_hostton(name
);
6303 "unknown token ring host '%s'", name
);
6304 b
= gen_thostop(cstate
, eaddr
, dir
);
6308 case DLT_IEEE802_11
:
6309 case DLT_PRISM_HEADER
:
6310 case DLT_IEEE802_11_RADIO_AVS
:
6311 case DLT_IEEE802_11_RADIO
:
6313 eaddr
= pcap_ether_hostton(name
);
6316 "unknown 802.11 host '%s'", name
);
6317 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6321 case DLT_IP_OVER_FC
:
6322 eaddr
= pcap_ether_hostton(name
);
6325 "unknown Fibre Channel host '%s'", name
);
6326 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6331 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6332 } else if (proto
== Q_DECNET
) {
6333 unsigned short dn_addr
;
6335 if (!__pcap_nametodnaddr(name
, &dn_addr
)) {
6337 bpf_error(cstate
, "unknown decnet host name '%s'\n", name
);
6339 bpf_error(cstate
, "decnet name support not included, '%s' cannot be translated\n",
6344 * I don't think DECNET hosts can be multihomed, so
6345 * there is no need to build up a list of addresses
6347 return (gen_host(cstate
, dn_addr
, 0, proto
, dir
, q
.addr
));
6350 alist
= pcap_nametoaddr(name
);
6351 if (alist
== NULL
|| *alist
== NULL
)
6352 bpf_error(cstate
, "unknown host '%s'", name
);
6354 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6355 tproto
== Q_DEFAULT
)
6357 b
= gen_host(cstate
, **alist
++, 0xffffffff, tproto
, dir
, q
.addr
);
6359 tmp
= gen_host(cstate
, **alist
++, 0xffffffff,
6360 tproto
, dir
, q
.addr
);
6366 memset(&mask128
, 0xff, sizeof(mask128
));
6367 res0
= res
= pcap_nametoaddrinfo(name
);
6369 bpf_error(cstate
, "unknown host '%s'", name
);
6372 tproto
= tproto6
= proto
;
6373 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6374 tproto
== Q_DEFAULT
) {
6378 for (res
= res0
; res
; res
= res
->ai_next
) {
6379 switch (res
->ai_family
) {
6381 if (tproto
== Q_IPV6
)
6384 sin4
= (struct sockaddr_in
*)
6386 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6387 0xffffffff, tproto
, dir
, q
.addr
);
6390 if (tproto6
== Q_IP
)
6393 sin6
= (struct sockaddr_in6
*)
6395 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6396 &mask128
, tproto6
, dir
, q
.addr
);
6408 bpf_error(cstate
, "unknown host '%s'%s", name
,
6409 (proto
== Q_DEFAULT
)
6411 : " for specified address family");
6418 if (proto
!= Q_DEFAULT
&&
6419 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6420 bpf_error(cstate
, "illegal qualifier of 'port'");
6421 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6422 bpf_error(cstate
, "unknown port '%s'", name
);
6423 if (proto
== Q_UDP
) {
6424 if (real_proto
== IPPROTO_TCP
)
6425 bpf_error(cstate
, "port '%s' is tcp", name
);
6426 else if (real_proto
== IPPROTO_SCTP
)
6427 bpf_error(cstate
, "port '%s' is sctp", name
);
6429 /* override PROTO_UNDEF */
6430 real_proto
= IPPROTO_UDP
;
6432 if (proto
== Q_TCP
) {
6433 if (real_proto
== IPPROTO_UDP
)
6434 bpf_error(cstate
, "port '%s' is udp", name
);
6436 else if (real_proto
== IPPROTO_SCTP
)
6437 bpf_error(cstate
, "port '%s' is sctp", name
);
6439 /* override PROTO_UNDEF */
6440 real_proto
= IPPROTO_TCP
;
6442 if (proto
== Q_SCTP
) {
6443 if (real_proto
== IPPROTO_UDP
)
6444 bpf_error(cstate
, "port '%s' is udp", name
);
6446 else if (real_proto
== IPPROTO_TCP
)
6447 bpf_error(cstate
, "port '%s' is tcp", name
);
6449 /* override PROTO_UNDEF */
6450 real_proto
= IPPROTO_SCTP
;
6453 bpf_error(cstate
, "illegal port number %d < 0", port
);
6455 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6456 b
= gen_port(cstate
, port
, real_proto
, dir
);
6457 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
6461 if (proto
!= Q_DEFAULT
&&
6462 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6463 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6464 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6465 bpf_error(cstate
, "unknown port in range '%s'", name
);
6466 if (proto
== Q_UDP
) {
6467 if (real_proto
== IPPROTO_TCP
)
6468 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6469 else if (real_proto
== IPPROTO_SCTP
)
6470 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6472 /* override PROTO_UNDEF */
6473 real_proto
= IPPROTO_UDP
;
6475 if (proto
== Q_TCP
) {
6476 if (real_proto
== IPPROTO_UDP
)
6477 bpf_error(cstate
, "port in range '%s' is udp", name
);
6478 else if (real_proto
== IPPROTO_SCTP
)
6479 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6481 /* override PROTO_UNDEF */
6482 real_proto
= IPPROTO_TCP
;
6484 if (proto
== Q_SCTP
) {
6485 if (real_proto
== IPPROTO_UDP
)
6486 bpf_error(cstate
, "port in range '%s' is udp", name
);
6487 else if (real_proto
== IPPROTO_TCP
)
6488 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6490 /* override PROTO_UNDEF */
6491 real_proto
= IPPROTO_SCTP
;
6494 bpf_error(cstate
, "illegal port number %d < 0", port1
);
6496 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6498 bpf_error(cstate
, "illegal port number %d < 0", port2
);
6500 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6502 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
6503 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
6508 eaddr
= pcap_ether_hostton(name
);
6510 bpf_error(cstate
, "unknown ether host: %s", name
);
6512 alist
= pcap_nametoaddr(name
);
6513 if (alist
== NULL
|| *alist
== NULL
)
6514 bpf_error(cstate
, "unknown host '%s'", name
);
6515 b
= gen_gateway(cstate
, eaddr
, alist
, proto
, dir
);
6519 bpf_error(cstate
, "'gateway' not supported in this configuration");
6523 real_proto
= lookup_proto(cstate
, name
, proto
);
6524 if (real_proto
>= 0)
6525 return gen_proto(cstate
, real_proto
, proto
, dir
);
6527 bpf_error(cstate
, "unknown protocol: %s", name
);
6530 real_proto
= lookup_proto(cstate
, name
, proto
);
6531 if (real_proto
>= 0)
6532 return gen_protochain(cstate
, real_proto
, proto
, dir
);
6534 bpf_error(cstate
, "unknown protocol: %s", name
);
6545 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6546 unsigned int masklen
, struct qual q
)
6548 register int nlen
, mlen
;
6551 nlen
= __pcap_atoin(s1
, &n
);
6552 /* Promote short ipaddr */
6556 mlen
= __pcap_atoin(s2
, &m
);
6557 /* Promote short ipaddr */
6560 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
6563 /* Convert mask len to mask */
6565 bpf_error(cstate
, "mask length must be <= 32");
6568 * X << 32 is not guaranteed by C to be 0; it's
6573 m
= 0xffffffff << (32 - masklen
);
6575 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
6582 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
6585 bpf_error(cstate
, "Mask syntax for networks only");
6593 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
6596 int proto
= q
.proto
;
6602 else if (q
.proto
== Q_DECNET
) {
6603 vlen
= __pcap_atodn(s
, &v
);
6605 bpf_error(cstate
, "malformed decnet address '%s'", s
);
6607 vlen
= __pcap_atoin(s
, &v
);
6614 if (proto
== Q_DECNET
)
6615 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
6616 else if (proto
== Q_LINK
) {
6617 bpf_error(cstate
, "illegal link layer address");
6620 if (s
== NULL
&& q
.addr
== Q_NET
) {
6621 /* Promote short net number */
6622 while (v
&& (v
& 0xff000000) == 0) {
6627 /* Promote short ipaddr */
6629 mask
<<= 32 - vlen
;
6631 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
6636 proto
= IPPROTO_UDP
;
6637 else if (proto
== Q_TCP
)
6638 proto
= IPPROTO_TCP
;
6639 else if (proto
== Q_SCTP
)
6640 proto
= IPPROTO_SCTP
;
6641 else if (proto
== Q_DEFAULT
)
6642 proto
= PROTO_UNDEF
;
6644 bpf_error(cstate
, "illegal qualifier of 'port'");
6647 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6651 b
= gen_port(cstate
, (int)v
, proto
, dir
);
6652 gen_or(gen_port6(cstate
, (int)v
, proto
, dir
), b
);
6658 proto
= IPPROTO_UDP
;
6659 else if (proto
== Q_TCP
)
6660 proto
= IPPROTO_TCP
;
6661 else if (proto
== Q_SCTP
)
6662 proto
= IPPROTO_SCTP
;
6663 else if (proto
== Q_DEFAULT
)
6664 proto
= PROTO_UNDEF
;
6666 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6669 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6673 b
= gen_portrange(cstate
, (int)v
, (int)v
, proto
, dir
);
6674 gen_or(gen_portrange6(cstate
, (int)v
, (int)v
, proto
, dir
), b
);
6679 bpf_error(cstate
, "'gateway' requires a name");
6683 return gen_proto(cstate
, (int)v
, proto
, dir
);
6686 return gen_protochain(cstate
, (int)v
, proto
, dir
);
6701 gen_mcode6(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6702 unsigned int masklen
, struct qual q
)
6704 struct addrinfo
*res
;
6705 struct in6_addr
*addr
;
6706 struct in6_addr mask
;
6711 bpf_error(cstate
, "no mask %s supported", s2
);
6713 res
= pcap_nametoaddrinfo(s1
);
6715 bpf_error(cstate
, "invalid ip6 address %s", s1
);
6718 bpf_error(cstate
, "%s resolved to multiple address", s1
);
6719 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
6721 if (sizeof(mask
) * 8 < masklen
)
6722 bpf_error(cstate
, "mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
6723 memset(&mask
, 0, sizeof(mask
));
6724 memset(&mask
, 0xff, masklen
/ 8);
6726 mask
.s6_addr
[masklen
/ 8] =
6727 (0xff << (8 - masklen
% 8)) & 0xff;
6730 a
= (uint32_t *)addr
;
6731 m
= (uint32_t *)&mask
;
6732 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
6733 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
6734 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s1
, masklen
);
6742 bpf_error(cstate
, "Mask syntax for networks only");
6746 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
6752 bpf_error(cstate
, "invalid qualifier against IPv6 address");
6760 gen_ecode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
6762 struct block
*b
, *tmp
;
6764 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6765 switch (cstate
->linktype
) {
6767 case DLT_NETANALYZER
:
6768 case DLT_NETANALYZER_TRANSPARENT
:
6769 tmp
= gen_prevlinkhdr_check(cstate
);
6770 b
= gen_ehostop(cstate
, eaddr
, (int)q
.dir
);
6775 return gen_fhostop(cstate
, eaddr
, (int)q
.dir
);
6777 return gen_thostop(cstate
, eaddr
, (int)q
.dir
);
6778 case DLT_IEEE802_11
:
6779 case DLT_PRISM_HEADER
:
6780 case DLT_IEEE802_11_RADIO_AVS
:
6781 case DLT_IEEE802_11_RADIO
:
6783 return gen_wlanhostop(cstate
, eaddr
, (int)q
.dir
);
6784 case DLT_IP_OVER_FC
:
6785 return gen_ipfchostop(cstate
, eaddr
, (int)q
.dir
);
6787 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6791 bpf_error(cstate
, "ethernet address used in non-ether expression");
6798 struct slist
*s0
, *s1
;
6801 * This is definitely not the best way to do this, but the
6802 * lists will rarely get long.
6809 static struct slist
*
6810 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
6814 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
6819 static struct slist
*
6820 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
6824 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6830 * Modify "index" to use the value stored into its register as an
6831 * offset relative to the beginning of the header for the protocol
6832 * "proto", and allocate a register and put an item "size" bytes long
6833 * (1, 2, or 4) at that offset into that register, making it the register
6837 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
, int size
)
6839 struct slist
*s
, *tmp
;
6841 int regno
= alloc_reg(cstate
);
6843 free_reg(cstate
, inst
->regno
);
6847 bpf_error(cstate
, "data size must be 1, 2, or 4");
6863 bpf_error(cstate
, "unsupported index operation");
6867 * The offset is relative to the beginning of the packet
6868 * data, if we have a radio header. (If we don't, this
6871 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
6872 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
6873 cstate
->linktype
!= DLT_PRISM_HEADER
)
6874 bpf_error(cstate
, "radio information not present in capture");
6877 * Load into the X register the offset computed into the
6878 * register specified by "index".
6880 s
= xfer_to_x(cstate
, inst
);
6883 * Load the item at that offset.
6885 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6887 sappend(inst
->s
, s
);
6892 * The offset is relative to the beginning of
6893 * the link-layer header.
6895 * XXX - what about ATM LANE? Should the index be
6896 * relative to the beginning of the AAL5 frame, so
6897 * that 0 refers to the beginning of the LE Control
6898 * field, or relative to the beginning of the LAN
6899 * frame, so that 0 refers, for Ethernet LANE, to
6900 * the beginning of the destination address?
6902 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
6905 * If "s" is non-null, it has code to arrange that the
6906 * X register contains the length of the prefix preceding
6907 * the link-layer header. Add to it the offset computed
6908 * into the register specified by "index", and move that
6909 * into the X register. Otherwise, just load into the X
6910 * register the offset computed into the register specified
6914 sappend(s
, xfer_to_a(cstate
, inst
));
6915 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6916 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6918 s
= xfer_to_x(cstate
, inst
);
6921 * Load the item at the sum of the offset we've put in the
6922 * X register and the offset of the start of the link
6923 * layer header (which is 0 if the radio header is
6924 * variable-length; that header length is what we put
6925 * into the X register and then added to the index).
6927 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6928 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
6930 sappend(inst
->s
, s
);
6944 * The offset is relative to the beginning of
6945 * the network-layer header.
6946 * XXX - are there any cases where we want
6947 * cstate->off_nl_nosnap?
6949 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
6952 * If "s" is non-null, it has code to arrange that the
6953 * X register contains the variable part of the offset
6954 * of the link-layer payload. Add to it the offset
6955 * computed into the register specified by "index",
6956 * and move that into the X register. Otherwise, just
6957 * load into the X register the offset computed into
6958 * the register specified by "index".
6961 sappend(s
, xfer_to_a(cstate
, inst
));
6962 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6963 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6965 s
= xfer_to_x(cstate
, inst
);
6968 * Load the item at the sum of the offset we've put in the
6969 * X register, the offset of the start of the network
6970 * layer header from the beginning of the link-layer
6971 * payload, and the constant part of the offset of the
6972 * start of the link-layer payload.
6974 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6975 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6977 sappend(inst
->s
, s
);
6980 * Do the computation only if the packet contains
6981 * the protocol in question.
6983 b
= gen_proto_abbrev(cstate
, proto
);
6985 gen_and(inst
->b
, b
);
6999 * The offset is relative to the beginning of
7000 * the transport-layer header.
7002 * Load the X register with the length of the IPv4 header
7003 * (plus the offset of the link-layer header, if it's
7004 * a variable-length header), in bytes.
7006 * XXX - are there any cases where we want
7007 * cstate->off_nl_nosnap?
7008 * XXX - we should, if we're built with
7009 * IPv6 support, generate code to load either
7010 * IPv4, IPv6, or both, as appropriate.
7012 s
= gen_loadx_iphdrlen(cstate
);
7015 * The X register now contains the sum of the variable
7016 * part of the offset of the link-layer payload and the
7017 * length of the network-layer header.
7019 * Load into the A register the offset relative to
7020 * the beginning of the transport layer header,
7021 * add the X register to that, move that to the
7022 * X register, and load with an offset from the
7023 * X register equal to the sum of the constant part of
7024 * the offset of the link-layer payload and the offset,
7025 * relative to the beginning of the link-layer payload,
7026 * of the network-layer header.
7028 sappend(s
, xfer_to_a(cstate
, inst
));
7029 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7030 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7031 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
));
7032 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7033 sappend(inst
->s
, s
);
7036 * Do the computation only if the packet contains
7037 * the protocol in question - which is true only
7038 * if this is an IP datagram and is the first or
7039 * only fragment of that datagram.
7041 gen_and(gen_proto_abbrev(cstate
, proto
), b
= gen_ipfrag(cstate
));
7043 gen_and(inst
->b
, b
);
7044 gen_and(gen_proto_abbrev(cstate
, Q_IP
), b
);
7048 bpf_error(cstate
, "IPv6 upper-layer protocol is not supported by proto[x]");
7051 inst
->regno
= regno
;
7052 s
= new_stmt(cstate
, BPF_ST
);
7054 sappend(inst
->s
, s
);
7060 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7061 struct arth
*a1
, int reversed
)
7063 struct slist
*s0
, *s1
, *s2
;
7064 struct block
*b
, *tmp
;
7066 s0
= xfer_to_x(cstate
, a1
);
7067 s1
= xfer_to_a(cstate
, a0
);
7068 if (code
== BPF_JEQ
) {
7069 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7070 b
= new_block(cstate
, JMP(code
));
7074 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7080 sappend(a0
->s
, a1
->s
);
7084 free_reg(cstate
, a0
->regno
);
7085 free_reg(cstate
, a1
->regno
);
7087 /* 'and' together protocol checks */
7090 gen_and(a0
->b
, tmp
= a1
->b
);
7104 gen_loadlen(compiler_state_t
*cstate
)
7106 int regno
= alloc_reg(cstate
);
7107 struct arth
*a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7110 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7111 s
->next
= new_stmt(cstate
, BPF_ST
);
7112 s
->next
->s
.k
= regno
;
7120 gen_loadi(compiler_state_t
*cstate
, int val
)
7126 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7128 reg
= alloc_reg(cstate
);
7130 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7132 s
->next
= new_stmt(cstate
, BPF_ST
);
7141 gen_neg(compiler_state_t
*cstate
, struct arth
*a
)
7145 s
= xfer_to_a(cstate
, a
);
7147 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7150 s
= new_stmt(cstate
, BPF_ST
);
7158 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7161 struct slist
*s0
, *s1
, *s2
;
7164 * Disallow division by, or modulus by, zero; we do this here
7165 * so that it gets done even if the optimizer is disabled.
7167 if (code
== BPF_DIV
) {
7168 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7169 bpf_error(cstate
, "division by zero");
7170 } else if (code
== BPF_MOD
) {
7171 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7172 bpf_error(cstate
, "modulus by zero");
7174 s0
= xfer_to_x(cstate
, a1
);
7175 s1
= xfer_to_a(cstate
, a0
);
7176 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7181 sappend(a0
->s
, a1
->s
);
7183 free_reg(cstate
, a0
->regno
);
7184 free_reg(cstate
, a1
->regno
);
7186 s0
= new_stmt(cstate
, BPF_ST
);
7187 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7194 * Initialize the table of used registers and the current register.
7197 init_regs(compiler_state_t
*cstate
)
7200 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7204 * Return the next free register.
7207 alloc_reg(compiler_state_t
*cstate
)
7209 int n
= BPF_MEMWORDS
;
7212 if (cstate
->regused
[cstate
->curreg
])
7213 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7215 cstate
->regused
[cstate
->curreg
] = 1;
7216 return cstate
->curreg
;
7219 bpf_error(cstate
, "too many registers needed to evaluate expression");
7225 * Return a register to the table so it can
7229 free_reg(compiler_state_t
*cstate
, int n
)
7231 cstate
->regused
[n
] = 0;
7234 static struct block
*
7235 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7240 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7241 b
= new_block(cstate
, JMP(jmp
));
7249 gen_greater(compiler_state_t
*cstate
, int n
)
7251 return gen_len(cstate
, BPF_JGE
, n
);
7255 * Actually, this is less than or equal.
7258 gen_less(compiler_state_t
*cstate
, int n
)
7262 b
= gen_len(cstate
, BPF_JGT
, n
);
7269 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7270 * the beginning of the link-layer header.
7271 * XXX - that means you can't test values in the radiotap header, but
7272 * as that header is difficult if not impossible to parse generally
7273 * without a loop, that might not be a severe problem. A new keyword
7274 * "radio" could be added for that, although what you'd really want
7275 * would be a way of testing particular radio header values, which
7276 * would generate code appropriate to the radio header in question.
7279 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, int val
)
7289 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7292 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7296 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7300 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7304 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7308 b
= new_block(cstate
, JMP(BPF_JEQ
));
7315 static const u_char abroadcast
[] = { 0x0 };
7318 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7320 bpf_u_int32 hostmask
;
7321 struct block
*b0
, *b1
, *b2
;
7322 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7328 switch (cstate
->linktype
) {
7330 case DLT_ARCNET_LINUX
:
7331 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7333 case DLT_NETANALYZER
:
7334 case DLT_NETANALYZER_TRANSPARENT
:
7335 b1
= gen_prevlinkhdr_check(cstate
);
7336 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
7341 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
7343 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
7344 case DLT_IEEE802_11
:
7345 case DLT_PRISM_HEADER
:
7346 case DLT_IEEE802_11_RADIO_AVS
:
7347 case DLT_IEEE802_11_RADIO
:
7349 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
7350 case DLT_IP_OVER_FC
:
7351 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
7353 bpf_error(cstate
, "not a broadcast link");
7359 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7360 * as an indication that we don't know the netmask, and fail
7363 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7364 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7365 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7366 hostmask
= ~cstate
->netmask
;
7367 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7368 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
,
7369 (bpf_int32
)(~0 & hostmask
), hostmask
);
7374 bpf_error(cstate
, "only link-layer/IP broadcast filters supported");
7380 * Generate code to test the low-order bit of a MAC address (that's
7381 * the bottom bit of the *first* byte).
7383 static struct block
*
7384 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7386 register struct block
*b0
;
7387 register struct slist
*s
;
7389 /* link[offset] & 1 != 0 */
7390 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7391 b0
= new_block(cstate
, JMP(BPF_JSET
));
7398 gen_multicast(compiler_state_t
*cstate
, int proto
)
7400 register struct block
*b0
, *b1
, *b2
;
7401 register struct slist
*s
;
7407 switch (cstate
->linktype
) {
7409 case DLT_ARCNET_LINUX
:
7410 /* all ARCnet multicasts use the same address */
7411 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7413 case DLT_NETANALYZER
:
7414 case DLT_NETANALYZER_TRANSPARENT
:
7415 b1
= gen_prevlinkhdr_check(cstate
);
7416 /* ether[0] & 1 != 0 */
7417 b0
= gen_mac_multicast(cstate
, 0);
7423 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7425 * XXX - was that referring to bit-order issues?
7427 /* fddi[1] & 1 != 0 */
7428 return gen_mac_multicast(cstate
, 1);
7430 /* tr[2] & 1 != 0 */
7431 return gen_mac_multicast(cstate
, 2);
7432 case DLT_IEEE802_11
:
7433 case DLT_PRISM_HEADER
:
7434 case DLT_IEEE802_11_RADIO_AVS
:
7435 case DLT_IEEE802_11_RADIO
:
7440 * For control frames, there is no DA.
7442 * For management frames, DA is at an
7443 * offset of 4 from the beginning of
7446 * For data frames, DA is at an offset
7447 * of 4 from the beginning of the packet
7448 * if To DS is clear and at an offset of
7449 * 16 from the beginning of the packet
7454 * Generate the tests to be done for data frames.
7456 * First, check for To DS set, i.e. "link[1] & 0x01".
7458 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7459 b1
= new_block(cstate
, JMP(BPF_JSET
));
7460 b1
->s
.k
= 0x01; /* To DS */
7464 * If To DS is set, the DA is at 16.
7466 b0
= gen_mac_multicast(cstate
, 16);
7470 * Now, check for To DS not set, i.e. check
7471 * "!(link[1] & 0x01)".
7473 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7474 b2
= new_block(cstate
, JMP(BPF_JSET
));
7475 b2
->s
.k
= 0x01; /* To DS */
7480 * If To DS is not set, the DA is at 4.
7482 b1
= gen_mac_multicast(cstate
, 4);
7486 * Now OR together the last two checks. That gives
7487 * the complete set of checks for data frames.
7492 * Now check for a data frame.
7493 * I.e, check "link[0] & 0x08".
7495 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7496 b1
= new_block(cstate
, JMP(BPF_JSET
));
7501 * AND that with the checks done for data frames.
7506 * If the high-order bit of the type value is 0, this
7507 * is a management frame.
7508 * I.e, check "!(link[0] & 0x08)".
7510 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7511 b2
= new_block(cstate
, JMP(BPF_JSET
));
7517 * For management frames, the DA is at 4.
7519 b1
= gen_mac_multicast(cstate
, 4);
7523 * OR that with the checks done for data frames.
7524 * That gives the checks done for management and
7530 * If the low-order bit of the type value is 1,
7531 * this is either a control frame or a frame
7532 * with a reserved type, and thus not a
7535 * I.e., check "!(link[0] & 0x04)".
7537 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7538 b1
= new_block(cstate
, JMP(BPF_JSET
));
7544 * AND that with the checks for data and management
7549 case DLT_IP_OVER_FC
:
7550 b0
= gen_mac_multicast(cstate
, 2);
7555 /* Link not known to support multicasts */
7559 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7560 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, (bpf_int32
)224);
7565 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
7566 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, (bpf_int32
)255);
7570 bpf_error(cstate
, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7576 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7577 * Outbound traffic is sent by this machine, while inbound traffic is
7578 * sent by a remote machine (and may include packets destined for a
7579 * unicast or multicast link-layer address we are not subscribing to).
7580 * These are the same definitions implemented by pcap_setdirection().
7581 * Capturing only unicast traffic destined for this host is probably
7582 * better accomplished using a higher-layer filter.
7585 gen_inbound(compiler_state_t
*cstate
, int dir
)
7587 register struct block
*b0
;
7590 * Only some data link types support inbound/outbound qualifiers.
7592 switch (cstate
->linktype
) {
7594 b0
= gen_relation(cstate
, BPF_JEQ
,
7595 gen_load(cstate
, Q_LINK
, gen_loadi(cstate
, 0), 1),
7596 gen_loadi(cstate
, 0),
7602 /* match outgoing packets */
7603 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_OUTBOUND
);
7605 /* match incoming packets */
7606 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_INBOUND
);
7611 /* match outgoing packets */
7612 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
7614 /* to filter on inbound traffic, invert the match */
7619 #ifdef HAVE_NET_PFVAR_H
7621 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
7622 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
7628 /* match outgoing packets */
7629 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_OUT
);
7631 /* match incoming packets */
7632 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_IN
);
7636 case DLT_JUNIPER_MFR
:
7637 case DLT_JUNIPER_MLFR
:
7638 case DLT_JUNIPER_MLPPP
:
7639 case DLT_JUNIPER_ATM1
:
7640 case DLT_JUNIPER_ATM2
:
7641 case DLT_JUNIPER_PPPOE
:
7642 case DLT_JUNIPER_PPPOE_ATM
:
7643 case DLT_JUNIPER_GGSN
:
7644 case DLT_JUNIPER_ES
:
7645 case DLT_JUNIPER_MONITOR
:
7646 case DLT_JUNIPER_SERVICES
:
7647 case DLT_JUNIPER_ETHER
:
7648 case DLT_JUNIPER_PPP
:
7649 case DLT_JUNIPER_FRELAY
:
7650 case DLT_JUNIPER_CHDLC
:
7651 case DLT_JUNIPER_VP
:
7652 case DLT_JUNIPER_ST
:
7653 case DLT_JUNIPER_ISM
:
7654 case DLT_JUNIPER_VS
:
7655 case DLT_JUNIPER_SRX_E2E
:
7656 case DLT_JUNIPER_FIBRECHANNEL
:
7657 case DLT_JUNIPER_ATM_CEMIC
:
7659 /* juniper flags (including direction) are stored
7660 * the byte after the 3-byte magic number */
7662 /* match outgoing packets */
7663 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 0, 0x01);
7665 /* match incoming packets */
7666 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 1, 0x01);
7672 * If we have packet meta-data indicating a direction,
7673 * check it, otherwise give up as this link-layer type
7674 * has nothing in the packet data.
7676 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7678 * This is Linux with PF_PACKET support.
7679 * If this is a *live* capture, we can look at
7680 * special meta-data in the filter expression;
7681 * if it's a savefile, we can't.
7683 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
7684 /* We have a FILE *, so this is a savefile */
7685 bpf_error(cstate
, "inbound/outbound not supported on linktype %d when reading savefiles",
7690 /* match outgoing packets */
7691 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
7694 /* to filter on inbound traffic, invert the match */
7697 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7698 bpf_error(cstate
, "inbound/outbound not supported on linktype %d",
7702 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7707 #ifdef HAVE_NET_PFVAR_H
7708 /* PF firewall log matched interface */
7710 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7715 if (cstate
->linktype
!= DLT_PFLOG
) {
7716 bpf_error(cstate
, "ifname supported only on PF linktype");
7719 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
7720 off
= offsetof(struct pfloghdr
, ifname
);
7721 if (strlen(ifname
) >= len
) {
7722 bpf_error(cstate
, "ifname interface names can only be %d characters",
7726 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, strlen(ifname
), (const u_char
*)ifname
);
7730 /* PF firewall log ruleset name */
7732 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7736 if (cstate
->linktype
!= DLT_PFLOG
) {
7737 bpf_error(cstate
, "ruleset supported only on PF linktype");
7741 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
7742 bpf_error(cstate
, "ruleset names can only be %ld characters",
7743 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
7747 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
7748 strlen(ruleset
), (const u_char
*)ruleset
);
7752 /* PF firewall log rule number */
7754 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7758 if (cstate
->linktype
!= DLT_PFLOG
) {
7759 bpf_error(cstate
, "rnr supported only on PF linktype");
7763 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
7768 /* PF firewall log sub-rule number */
7770 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7774 if (cstate
->linktype
!= DLT_PFLOG
) {
7775 bpf_error(cstate
, "srnr supported only on PF linktype");
7779 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
7784 /* PF firewall log reason code */
7786 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7790 if (cstate
->linktype
!= DLT_PFLOG
) {
7791 bpf_error(cstate
, "reason supported only on PF linktype");
7795 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
7800 /* PF firewall log action */
7802 gen_pf_action(compiler_state_t
*cstate
, int action
)
7806 if (cstate
->linktype
!= DLT_PFLOG
) {
7807 bpf_error(cstate
, "action supported only on PF linktype");
7811 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
7815 #else /* !HAVE_NET_PFVAR_H */
7817 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7819 bpf_error(cstate
, "libpcap was compiled without pf support");
7825 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7827 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7833 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7835 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7841 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7843 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7849 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7851 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7857 gen_pf_action(compiler_state_t
*cstate
, int action
)
7859 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7863 #endif /* HAVE_NET_PFVAR_H */
7865 /* IEEE 802.11 wireless header */
7867 gen_p80211_type(compiler_state_t
*cstate
, int type
, int mask
)
7871 switch (cstate
->linktype
) {
7873 case DLT_IEEE802_11
:
7874 case DLT_PRISM_HEADER
:
7875 case DLT_IEEE802_11_RADIO_AVS
:
7876 case DLT_IEEE802_11_RADIO
:
7877 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, (bpf_int32
)type
,
7882 bpf_error(cstate
, "802.11 link-layer types supported only on 802.11");
7890 gen_p80211_fcdir(compiler_state_t
*cstate
, int fcdir
)
7894 switch (cstate
->linktype
) {
7896 case DLT_IEEE802_11
:
7897 case DLT_PRISM_HEADER
:
7898 case DLT_IEEE802_11_RADIO_AVS
:
7899 case DLT_IEEE802_11_RADIO
:
7903 bpf_error(cstate
, "frame direction supported only with 802.11 headers");
7907 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, (bpf_int32
)fcdir
,
7908 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
7914 gen_acode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
7916 switch (cstate
->linktype
) {
7919 case DLT_ARCNET_LINUX
:
7920 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
7922 return (gen_ahostop(cstate
, eaddr
, (int)q
.dir
));
7924 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7930 bpf_error(cstate
, "aid supported only on ARCnet");
7933 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7938 static struct block
*
7939 gen_ahostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
7941 register struct block
*b0
, *b1
;
7944 /* src comes first, different from Ethernet */
7946 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 1, eaddr
);
7949 return gen_bcmp(cstate
, OR_LINKHDR
, 1, 1, eaddr
);
7952 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7953 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7959 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7960 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7965 bpf_error(cstate
, "'addr1' is only supported on 802.11");
7969 bpf_error(cstate
, "'addr2' is only supported on 802.11");
7973 bpf_error(cstate
, "'addr3' is only supported on 802.11");
7977 bpf_error(cstate
, "'addr4' is only supported on 802.11");
7981 bpf_error(cstate
, "'ra' is only supported on 802.11");
7985 bpf_error(cstate
, "'ta' is only supported on 802.11");
7992 static struct block
*
7993 gen_vlan_tpid_test(compiler_state_t
*cstate
)
7995 struct block
*b0
, *b1
;
7997 /* check for VLAN, including QinQ */
7998 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
7999 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8002 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8008 static struct block
*
8009 gen_vlan_vid_test(compiler_state_t
*cstate
, int vlan_num
)
8011 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, (bpf_int32
)vlan_num
, 0x0fff);
8014 static struct block
*
8015 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
8017 struct block
*b0
, *b1
;
8019 b0
= gen_vlan_tpid_test(cstate
);
8021 if (vlan_num
>= 0) {
8022 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8028 * Both payload and link header type follow the VLAN tags so that
8029 * both need to be updated.
8031 cstate
->off_linkpl
.constant_part
+= 4;
8032 cstate
->off_linktype
.constant_part
+= 4;
8037 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8038 /* add v to variable part of off */
8040 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
, int v
, struct slist
*s
)
8044 if (!off
->is_variable
)
8045 off
->is_variable
= 1;
8047 off
->reg
= alloc_reg(cstate
);
8049 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8052 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8055 s2
= new_stmt(cstate
, BPF_ST
);
8061 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8062 * and link type offsets first
8065 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8069 /* offset determined at run time, shift variable part */
8071 cstate
->is_vlan_vloffset
= 1;
8072 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8073 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8075 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8076 sappend(s
.next
, b_tpid
->head
->stmts
);
8077 b_tpid
->head
->stmts
= s
.next
;
8081 * patch block b_vid (VLAN id test) to load VID value either from packet
8082 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8085 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8087 struct slist
*s
, *s2
, *sjeq
;
8090 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8091 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
8093 /* true -> next instructions, false -> beginning of b_vid */
8094 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8096 sjeq
->s
.jf
= b_vid
->stmts
;
8099 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8100 s2
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG
;
8104 /* jump to the test in b_vid (bypass loading VID from packet data) */
8106 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8108 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8112 /* insert our statements at the beginning of b_vid */
8113 sappend(s
, b_vid
->stmts
);
8118 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8119 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8120 * tag can be either in metadata or in packet data; therefore if the
8121 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8122 * header for VLAN tag. As the decision is done at run time, we need
8123 * update variable part of the offsets
8125 static struct block
*
8126 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
8128 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8131 /* generate new filter code based on extracting packet
8133 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8134 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
8136 b0
= new_block(cstate
, JMP(BPF_JEQ
));
8141 * This is tricky. We need to insert the statements updating variable
8142 * parts of offsets before the the traditional TPID and VID tests so
8143 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8144 * we do not want this update to affect those checks. That's why we
8145 * generate both test blocks first and insert the statements updating
8146 * variable parts of both offsets after that. This wouldn't work if
8147 * there already were variable length link header when entering this
8148 * function but gen_vlan_bpf_extensions() isn't called in that case.
8150 b_tpid
= gen_vlan_tpid_test(cstate
);
8152 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
8154 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
8158 if (vlan_num
>= 0) {
8159 gen_vlan_patch_vid_test(cstate
, b_vid
);
8169 * support IEEE 802.1Q VLAN trunk over ethernet
8172 gen_vlan(compiler_state_t
*cstate
, int vlan_num
)
8176 /* can't check for VLAN-encapsulated packets inside MPLS */
8177 if (cstate
->label_stack_depth
> 0)
8178 bpf_error(cstate
, "no VLAN match after MPLS");
8181 * Check for a VLAN packet, and then change the offsets to point
8182 * to the type and data fields within the VLAN packet. Just
8183 * increment the offsets, so that we can support a hierarchy, e.g.
8184 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8187 * XXX - this is a bit of a kludge. If we were to split the
8188 * compiler into a parser that parses an expression and
8189 * generates an expression tree, and a code generator that
8190 * takes an expression tree (which could come from our
8191 * parser or from some other parser) and generates BPF code,
8192 * we could perhaps make the offsets parameters of routines
8193 * and, in the handler for an "AND" node, pass to subnodes
8194 * other than the VLAN node the adjusted offsets.
8196 * This would mean that "vlan" would, instead of changing the
8197 * behavior of *all* tests after it, change only the behavior
8198 * of tests ANDed with it. That would change the documented
8199 * semantics of "vlan", which might break some expressions.
8200 * However, it would mean that "(vlan and ip) or ip" would check
8201 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8202 * checking only for VLAN-encapsulated IP, so that could still
8203 * be considered worth doing; it wouldn't break expressions
8204 * that are of the form "vlan and ..." or "vlan N and ...",
8205 * which I suspect are the most common expressions involving
8206 * "vlan". "vlan or ..." doesn't necessarily do what the user
8207 * would really want, now, as all the "or ..." tests would
8208 * be done assuming a VLAN, even though the "or" could be viewed
8209 * as meaning "or, if this isn't a VLAN packet...".
8211 switch (cstate
->linktype
) {
8214 case DLT_NETANALYZER
:
8215 case DLT_NETANALYZER_TRANSPARENT
:
8216 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8217 /* Verify that this is the outer part of the packet and
8218 * not encapsulated somehow. */
8219 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8220 cstate
->off_linkhdr
.constant_part
==
8221 cstate
->off_outermostlinkhdr
.constant_part
) {
8223 * Do we need special VLAN handling?
8225 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8226 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
);
8228 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8231 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8234 case DLT_IEEE802_11
:
8235 case DLT_PRISM_HEADER
:
8236 case DLT_IEEE802_11_RADIO_AVS
:
8237 case DLT_IEEE802_11_RADIO
:
8238 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8242 bpf_error(cstate
, "no VLAN support for data link type %d",
8247 cstate
->vlan_stack_depth
++;
8256 gen_mpls(compiler_state_t
*cstate
, int label_num
)
8258 struct block
*b0
, *b1
;
8260 if (cstate
->label_stack_depth
> 0) {
8261 /* just match the bottom-of-stack bit clear */
8262 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
8265 * We're not in an MPLS stack yet, so check the link-layer
8266 * type against MPLS.
8268 switch (cstate
->linktype
) {
8270 case DLT_C_HDLC
: /* fall through */
8272 case DLT_NETANALYZER
:
8273 case DLT_NETANALYZER_TRANSPARENT
:
8274 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
8278 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
8281 /* FIXME add other DLT_s ...
8282 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8283 * leave it for now */
8286 bpf_error(cstate
, "no MPLS support for data link type %d",
8294 /* If a specific MPLS label is requested, check it */
8295 if (label_num
>= 0) {
8296 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8297 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, (bpf_int32
)label_num
,
8298 0xfffff000); /* only compare the first 20 bits */
8304 * Change the offsets to point to the type and data fields within
8305 * the MPLS packet. Just increment the offsets, so that we
8306 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8307 * capture packets with an outer label of 100000 and an inner
8310 * Increment the MPLS stack depth as well; this indicates that
8311 * we're checking MPLS-encapsulated headers, to make sure higher
8312 * level code generators don't try to match against IP-related
8313 * protocols such as Q_ARP, Q_RARP etc.
8315 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8317 cstate
->off_nl_nosnap
+= 4;
8318 cstate
->off_nl
+= 4;
8319 cstate
->label_stack_depth
++;
8324 * Support PPPOE discovery and session.
8327 gen_pppoed(compiler_state_t
*cstate
)
8329 /* check for PPPoE discovery */
8330 return gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOED
);
8334 gen_pppoes(compiler_state_t
*cstate
, int sess_num
)
8336 struct block
*b0
, *b1
;
8339 * Test against the PPPoE session link-layer type.
8341 b0
= gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOES
);
8343 /* If a specific session is requested, check PPPoE session id */
8344 if (sess_num
>= 0) {
8345 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
,
8346 (bpf_int32
)sess_num
, 0x0000ffff);
8352 * Change the offsets to point to the type and data fields within
8353 * the PPP packet, and note that this is PPPoE rather than
8356 * XXX - this is a bit of a kludge. If we were to split the
8357 * compiler into a parser that parses an expression and
8358 * generates an expression tree, and a code generator that
8359 * takes an expression tree (which could come from our
8360 * parser or from some other parser) and generates BPF code,
8361 * we could perhaps make the offsets parameters of routines
8362 * and, in the handler for an "AND" node, pass to subnodes
8363 * other than the PPPoE node the adjusted offsets.
8365 * This would mean that "pppoes" would, instead of changing the
8366 * behavior of *all* tests after it, change only the behavior
8367 * of tests ANDed with it. That would change the documented
8368 * semantics of "pppoes", which might break some expressions.
8369 * However, it would mean that "(pppoes and ip) or ip" would check
8370 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8371 * checking only for VLAN-encapsulated IP, so that could still
8372 * be considered worth doing; it wouldn't break expressions
8373 * that are of the form "pppoes and ..." which I suspect are the
8374 * most common expressions involving "pppoes". "pppoes or ..."
8375 * doesn't necessarily do what the user would really want, now,
8376 * as all the "or ..." tests would be done assuming PPPoE, even
8377 * though the "or" could be viewed as meaning "or, if this isn't
8378 * a PPPoE packet...".
8380 * The "network-layer" protocol is PPPoE, which has a 6-byte
8381 * PPPoE header, followed by a PPP packet.
8383 * There is no HDLC encapsulation for the PPP packet (it's
8384 * encapsulated in PPPoES instead), so the link-layer type
8385 * starts at the first byte of the PPP packet. For PPPoE,
8386 * that offset is relative to the beginning of the total
8387 * link-layer payload, including any 802.2 LLC header, so
8388 * it's 6 bytes past cstate->off_nl.
8390 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
8391 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
8392 cstate
->off_linkpl
.reg
);
8394 cstate
->off_linktype
= cstate
->off_linkhdr
;
8395 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
8398 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
8403 /* Check that this is Geneve and the VNI is correct if
8404 * specified. Parameterized to handle both IPv4 and IPv6. */
8405 static struct block
*
8406 gen_geneve_check(compiler_state_t
*cstate
,
8407 struct block
*(*gen_portfn
)(compiler_state_t
*, int, int, int),
8408 enum e_offrel offrel
, int vni
)
8410 struct block
*b0
, *b1
;
8412 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
8414 /* Check that we are operating on version 0. Otherwise, we
8415 * can't decode the rest of the fields. The version is 2 bits
8416 * in the first byte of the Geneve header. */
8417 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, (bpf_int32
)0, 0xc0);
8422 vni
<<= 8; /* VNI is in the upper 3 bytes */
8423 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, (bpf_int32
)vni
,
8432 /* The IPv4 and IPv6 Geneve checks need to do two things:
8433 * - Verify that this actually is Geneve with the right VNI.
8434 * - Place the IP header length (plus variable link prefix if
8435 * needed) into register A to be used later to compute
8436 * the inner packet offsets. */
8437 static struct block
*
8438 gen_geneve4(compiler_state_t
*cstate
, int vni
)
8440 struct block
*b0
, *b1
;
8441 struct slist
*s
, *s1
;
8443 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
);
8445 /* Load the IP header length into A. */
8446 s
= gen_loadx_iphdrlen(cstate
);
8448 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8451 /* Forcibly append these statements to the true condition
8452 * of the protocol check by creating a new block that is
8453 * always true and ANDing them. */
8454 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8463 static struct block
*
8464 gen_geneve6(compiler_state_t
*cstate
, int vni
)
8466 struct block
*b0
, *b1
;
8467 struct slist
*s
, *s1
;
8469 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
);
8471 /* Load the IP header length. We need to account for a
8472 * variable length link prefix if there is one. */
8473 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
8475 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8479 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8483 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8487 /* Forcibly append these statements to the true condition
8488 * of the protocol check by creating a new block that is
8489 * always true and ANDing them. */
8490 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8493 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8502 /* We need to store three values based on the Geneve header::
8503 * - The offset of the linktype.
8504 * - The offset of the end of the Geneve header.
8505 * - The offset of the end of the encapsulated MAC header. */
8506 static struct slist
*
8507 gen_geneve_offsets(compiler_state_t
*cstate
)
8509 struct slist
*s
, *s1
, *s_proto
;
8511 /* First we need to calculate the offset of the Geneve header
8512 * itself. This is composed of the IP header previously calculated
8513 * (include any variable link prefix) and stored in A plus the
8514 * fixed sized headers (fixed link prefix, MAC length, and UDP
8516 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8517 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
8519 /* Stash this in X since we'll need it later. */
8520 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8523 /* The EtherType in Geneve is 2 bytes in. Calculate this and
8525 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8529 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
8530 cstate
->off_linktype
.is_variable
= 1;
8531 cstate
->off_linktype
.constant_part
= 0;
8533 s1
= new_stmt(cstate
, BPF_ST
);
8534 s1
->s
.k
= cstate
->off_linktype
.reg
;
8537 /* Load the Geneve option length and mask and shift to get the
8538 * number of bytes. It is stored in the first byte of the Geneve
8540 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
8544 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8548 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
8552 /* Add in the rest of the Geneve base header. */
8553 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8557 /* Add the Geneve header length to its offset and store. */
8558 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8562 /* Set the encapsulated type as Ethernet. Even though we may
8563 * not actually have Ethernet inside there are two reasons this
8565 * - The linktype field is always in EtherType format regardless
8566 * of whether it is in Geneve or an inner Ethernet frame.
8567 * - The only link layer that we have specific support for is
8568 * Ethernet. We will confirm that the packet actually is
8569 * Ethernet at runtime before executing these checks. */
8570 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
8572 s1
= new_stmt(cstate
, BPF_ST
);
8573 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8576 /* Calculate whether we have an Ethernet header or just raw IP/
8577 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8578 * and linktype by 14 bytes so that the network header can be found
8579 * seamlessly. Otherwise, keep what we've calculated already. */
8581 /* We have a bare jmp so we can't use the optimizer. */
8582 cstate
->no_optimize
= 1;
8584 /* Load the EtherType in the Geneve header, 2 bytes in. */
8585 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
8589 /* Load X with the end of the Geneve header. */
8590 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8591 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8594 /* Check if the EtherType is Transparent Ethernet Bridging. At the
8595 * end of this check, we should have the total length in X. In
8596 * the non-Ethernet case, it's already there. */
8597 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
8598 s_proto
->s
.k
= ETHERTYPE_TEB
;
8599 sappend(s
, s_proto
);
8601 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8605 /* Since this is Ethernet, use the EtherType of the payload
8606 * directly as the linktype. Overwrite what we already have. */
8607 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8611 s1
= new_stmt(cstate
, BPF_ST
);
8612 s1
->s
.k
= cstate
->off_linktype
.reg
;
8615 /* Advance two bytes further to get the end of the Ethernet
8617 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8621 /* Move the result to X. */
8622 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8625 /* Store the final result of our linkpl calculation. */
8626 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
8627 cstate
->off_linkpl
.is_variable
= 1;
8628 cstate
->off_linkpl
.constant_part
= 0;
8630 s1
= new_stmt(cstate
, BPF_STX
);
8631 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8640 /* Check to see if this is a Geneve packet. */
8642 gen_geneve(compiler_state_t
*cstate
, int vni
)
8644 struct block
*b0
, *b1
;
8647 b0
= gen_geneve4(cstate
, vni
);
8648 b1
= gen_geneve6(cstate
, vni
);
8653 /* Later filters should act on the payload of the Geneve frame,
8654 * update all of the header pointers. Attach this code so that
8655 * it gets executed in the event that the Geneve filter matches. */
8656 s
= gen_geneve_offsets(cstate
);
8658 b1
= gen_true(cstate
);
8659 sappend(s
, b1
->stmts
);
8664 cstate
->is_geneve
= 1;
8669 /* Check that the encapsulated frame has a link layer header
8670 * for Ethernet filters. */
8671 static struct block
*
8672 gen_geneve_ll_check(compiler_state_t
*cstate
)
8675 struct slist
*s
, *s1
;
8677 /* The easiest way to see if there is a link layer present
8678 * is to check if the link layer header and payload are not
8681 /* Geneve always generates pure variable offsets so we can
8682 * compare only the registers. */
8683 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8684 s
->s
.k
= cstate
->off_linkhdr
.reg
;
8686 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8687 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8690 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8699 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
, bpf_int32 jvalue
,
8700 bpf_u_int32 jtype
, int reverse
)
8707 if (!cstate
->is_atm
)
8708 bpf_error(cstate
, "'vpi' supported only on raw ATM");
8709 if (cstate
->off_vpi
== (u_int
)-1)
8711 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
, 0xffffffff, jtype
,
8716 if (!cstate
->is_atm
)
8717 bpf_error(cstate
, "'vci' supported only on raw ATM");
8718 if (cstate
->off_vci
== (u_int
)-1)
8720 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
, 0xffffffff, jtype
,
8725 if (cstate
->off_proto
== (u_int
)-1)
8726 abort(); /* XXX - this isn't on FreeBSD */
8727 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0x0f, jtype
,
8732 if (cstate
->off_payload
== (u_int
)-1)
8734 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
8735 0xffffffff, jtype
, reverse
, jvalue
);
8739 if (!cstate
->is_atm
)
8740 bpf_error(cstate
, "'callref' supported only on raw ATM");
8741 if (cstate
->off_proto
== (u_int
)-1)
8743 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0xffffffff,
8744 jtype
, reverse
, jvalue
);
8754 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
8756 struct block
*b0
, *b1
;
8761 /* Get all packets in Meta signalling Circuit */
8762 if (!cstate
->is_atm
)
8763 bpf_error(cstate
, "'metac' supported only on raw ATM");
8764 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8765 b1
= gen_atmfield_code(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
8770 /* Get all packets in Broadcast Circuit*/
8771 if (!cstate
->is_atm
)
8772 bpf_error(cstate
, "'bcc' supported only on raw ATM");
8773 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8774 b1
= gen_atmfield_code(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
8779 /* Get all cells in Segment OAM F4 circuit*/
8780 if (!cstate
->is_atm
)
8781 bpf_error(cstate
, "'oam4sc' supported only on raw ATM");
8782 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8783 b1
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
8788 /* Get all cells in End-to-End OAM F4 Circuit*/
8789 if (!cstate
->is_atm
)
8790 bpf_error(cstate
, "'oam4ec' supported only on raw ATM");
8791 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8792 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
8797 /* Get all packets in connection Signalling Circuit */
8798 if (!cstate
->is_atm
)
8799 bpf_error(cstate
, "'sc' supported only on raw ATM");
8800 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8801 b1
= gen_atmfield_code(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
8806 /* Get all packets in ILMI Circuit */
8807 if (!cstate
->is_atm
)
8808 bpf_error(cstate
, "'ilmic' supported only on raw ATM");
8809 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8810 b1
= gen_atmfield_code(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
8815 /* Get all LANE packets */
8816 if (!cstate
->is_atm
)
8817 bpf_error(cstate
, "'lane' supported only on raw ATM");
8818 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
8821 * Arrange that all subsequent tests assume LANE
8822 * rather than LLC-encapsulated packets, and set
8823 * the offsets appropriately for LANE-encapsulated
8826 * We assume LANE means Ethernet, not Token Ring.
8828 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
8829 cstate
->off_payload
+ 2, /* Ethernet header */
8831 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
8832 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
8833 cstate
->off_nl
= 0; /* Ethernet II */
8834 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
8838 /* Get all LLC-encapsulated packets */
8839 if (!cstate
->is_atm
)
8840 bpf_error(cstate
, "'llc' supported only on raw ATM");
8841 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
8842 cstate
->linktype
= cstate
->prevlinktype
;
8852 * Filtering for MTP2 messages based on li value
8853 * FISU, length is null
8854 * LSSU, length is 1 or 2
8855 * MSU, length is 3 or more
8856 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8859 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
8861 struct block
*b0
, *b1
;
8866 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8867 (cstate
->linktype
!= DLT_ERF
) &&
8868 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8869 bpf_error(cstate
, "'fisu' supported only on MTP2");
8870 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8871 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
8875 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8876 (cstate
->linktype
!= DLT_ERF
) &&
8877 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8878 bpf_error(cstate
, "'lssu' supported only on MTP2");
8879 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
8880 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
8885 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8886 (cstate
->linktype
!= DLT_ERF
) &&
8887 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8888 bpf_error(cstate
, "'msu' supported only on MTP2");
8889 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
8893 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8894 (cstate
->linktype
!= DLT_ERF
) &&
8895 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8896 bpf_error(cstate
, "'hfisu' supported only on MTP2_HSL");
8897 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8898 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JEQ
, 0, 0);
8902 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8903 (cstate
->linktype
!= DLT_ERF
) &&
8904 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8905 bpf_error(cstate
, "'hlssu' supported only on MTP2_HSL");
8906 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 1, 0x0100);
8907 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0);
8912 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8913 (cstate
->linktype
!= DLT_ERF
) &&
8914 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8915 bpf_error(cstate
, "'hmsu' supported only on MTP2_HSL");
8916 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0x0100);
8926 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
, bpf_u_int32 jvalue
,
8927 bpf_u_int32 jtype
, int reverse
)
8930 bpf_u_int32 val1
, val2
, val3
;
8931 u_int newoff_sio
= cstate
->off_sio
;
8932 u_int newoff_opc
= cstate
->off_opc
;
8933 u_int newoff_dpc
= cstate
->off_dpc
;
8934 u_int newoff_sls
= cstate
->off_sls
;
8936 switch (mtp3field
) {
8939 newoff_sio
+= 3; /* offset for MTP2_HSL */
8943 if (cstate
->off_sio
== (u_int
)-1)
8944 bpf_error(cstate
, "'sio' supported only on SS7");
8945 /* sio coded on 1 byte so max value 255 */
8947 bpf_error(cstate
, "sio value %u too big; max value = 255",
8949 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, 0xffffffff,
8950 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8956 if (cstate
->off_opc
== (u_int
)-1)
8957 bpf_error(cstate
, "'opc' supported only on SS7");
8958 /* opc coded on 14 bits so max value 16383 */
8960 bpf_error(cstate
, "opc value %u too big; max value = 16383",
8962 /* the following instructions are made to convert jvalue
8963 * to the form used to write opc in an ss7 message*/
8964 val1
= jvalue
& 0x00003c00;
8966 val2
= jvalue
& 0x000003fc;
8968 val3
= jvalue
& 0x00000003;
8970 jvalue
= val1
+ val2
+ val3
;
8971 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
, 0x00c0ff0f,
8972 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8980 if (cstate
->off_dpc
== (u_int
)-1)
8981 bpf_error(cstate
, "'dpc' supported only on SS7");
8982 /* dpc coded on 14 bits so max value 16383 */
8984 bpf_error(cstate
, "dpc value %u too big; max value = 16383",
8986 /* the following instructions are made to convert jvalue
8987 * to the forme used to write dpc in an ss7 message*/
8988 val1
= jvalue
& 0x000000ff;
8990 val2
= jvalue
& 0x00003f00;
8992 jvalue
= val1
+ val2
;
8993 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_W
, 0xff3f0000,
8994 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
9000 if (cstate
->off_sls
== (u_int
)-1)
9001 bpf_error(cstate
, "'sls' supported only on SS7");
9002 /* sls coded on 4 bits so max value 15 */
9004 bpf_error(cstate
, "sls value %u too big; max value = 15",
9006 /* the following instruction is made to convert jvalue
9007 * to the forme used to write sls in an ss7 message*/
9008 jvalue
= jvalue
<< 4;
9009 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
, 0xf0,
9010 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
9019 static struct block
*
9020 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
9025 * Q.2931 signalling protocol messages for handling virtual circuits
9026 * establishment and teardown
9031 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
9035 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
9039 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
9043 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
9047 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
9050 case A_RELEASE_DONE
:
9051 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
9061 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
9063 struct block
*b0
, *b1
;
9068 if (!cstate
->is_atm
)
9069 bpf_error(cstate
, "'oam' supported only on raw ATM");
9070 b1
= gen_atmmulti_abbrev(cstate
, A_OAMF4
);
9074 if (!cstate
->is_atm
)
9075 bpf_error(cstate
, "'oamf4' supported only on raw ATM");
9077 b0
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9078 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9080 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9086 * Get Q.2931 signalling messages for switched
9087 * virtual connection
9089 if (!cstate
->is_atm
)
9090 bpf_error(cstate
, "'connectmsg' supported only on raw ATM");
9091 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
9092 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
9094 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
9096 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
9098 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
9100 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
9102 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
9107 if (!cstate
->is_atm
)
9108 bpf_error(cstate
, "'metaconnect' supported only on raw ATM");
9109 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
9110 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
9112 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
9114 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
9116 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
9118 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);