]>
The Tcpdump Group git mirrors - libpcap/blob - optimize.c
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for tcpdump intermediate representation.
24 static const char rcsid
[] =
25 "@(#) $Header: /tcpdump/master/libpcap/optimize.c,v 1.65 2000-10-28 00:01:27 guy Exp $ (LBL)";
32 #include <sys/types.h>
45 #ifdef HAVE_OS_PROTO_H
53 #define A_ATOM BPF_MEMWORDS
54 #define X_ATOM (BPF_MEMWORDS+1)
59 * This define is used to represent *both* the accumulator and
60 * x register in use-def computations.
61 * Currently, the use-def code assumes only one definition per instruction.
63 #define AX_ATOM N_ATOMS
66 * A flag to indicate that further optimization is needed.
67 * Iterative passes are continued until a given pass yields no
73 * A block is marked if only if its mark equals the current mark.
74 * Rather than traverse the code array, marking each item, 'cur_mark' is
75 * incremented. This automatically makes each element unmarked.
78 #define isMarked(p) ((p)->mark == cur_mark)
79 #define unMarkAll() cur_mark += 1
80 #define Mark(p) ((p)->mark = cur_mark)
82 static void opt_init(struct block
*);
83 static void opt_cleanup(void);
85 static void make_marks(struct block
*);
86 static void mark_code(struct block
*);
88 static void intern_blocks(struct block
*);
90 static int eq_slist(struct slist
*, struct slist
*);
92 static void find_levels_r(struct block
*);
94 static void find_levels(struct block
*);
95 static void find_dom(struct block
*);
96 static void propedom(struct edge
*);
97 static void find_edom(struct block
*);
98 static void find_closure(struct block
*);
99 static int atomuse(struct stmt
*);
100 static int atomdef(struct stmt
*);
101 static void compute_local_ud(struct block
*);
102 static void find_ud(struct block
*);
103 static void init_val(void);
104 static int F(int, int, int);
105 static inline void vstore(struct stmt
*, int *, int, int);
106 static void opt_blk(struct block
*, int);
107 static int use_conflict(struct block
*, struct block
*);
108 static void opt_j(struct edge
*);
109 static void or_pullup(struct block
*);
110 static void and_pullup(struct block
*);
111 static void opt_blks(struct block
*, int);
112 static inline void link_inedge(struct edge
*, struct block
*);
113 static void find_inedges(struct block
*);
114 static void opt_root(struct block
**);
115 static void opt_loop(struct block
*, int);
116 static void fold_op(struct stmt
*, int, int);
117 static inline struct slist
*this_op(struct slist
*);
118 static void opt_not(struct block
*);
119 static void opt_peep(struct block
*);
120 static void opt_stmt(struct stmt
*, int[], int);
121 static void deadstmt(struct stmt
*, struct stmt
*[]);
122 static void opt_deadstores(struct block
*);
123 static void opt_blk(struct block
*, int);
124 static int use_conflict(struct block
*, struct block
*);
125 static void opt_j(struct edge
*);
126 static struct block
*fold_edge(struct block
*, struct edge
*);
127 static inline int eq_blk(struct block
*, struct block
*);
128 static int slength(struct slist
*);
129 static int count_blocks(struct block
*);
130 static void number_blks_r(struct block
*);
131 static int count_stmts(struct block
*);
132 static int convert_code_r(struct block
*);
134 static void opt_dump(struct block
*);
138 struct block
**blocks
;
143 * A bit vector set representation of the dominators.
144 * We round up the set size to the next power of two.
146 static int nodewords
;
147 static int edgewords
;
148 struct block
**levels
;
150 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
152 * True if a is in uset {p}
154 #define SET_MEMBER(p, a) \
155 ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
160 #define SET_INSERT(p, a) \
161 (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
164 * Delete 'a' from uset p.
166 #define SET_DELETE(p, a) \
167 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
172 #define SET_INTERSECT(a, b, n)\
174 register bpf_u_int32 *_x = a, *_y = b;\
175 register int _n = n;\
176 while (--_n >= 0) *_x++ &= *_y++;\
182 #define SET_SUBTRACT(a, b, n)\
184 register bpf_u_int32 *_x = a, *_y = b;\
185 register int _n = n;\
186 while (--_n >= 0) *_x++ &=~ *_y++;\
192 #define SET_UNION(a, b, n)\
194 register bpf_u_int32 *_x = a, *_y = b;\
195 register int _n = n;\
196 while (--_n >= 0) *_x++ |= *_y++;\
199 static uset all_dom_sets
;
200 static uset all_closure_sets
;
201 static uset all_edge_sets
;
204 #define MAX(a,b) ((a)>(b)?(a):(b))
220 find_levels_r(JT(b
));
221 find_levels_r(JF(b
));
222 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
226 b
->link
= levels
[level
];
231 * Level graph. The levels go from 0 at the leaves to
232 * N_LEVELS at the root. The levels[] array points to the
233 * first node of the level list, whose elements are linked
234 * with the 'link' field of the struct block.
240 memset((char *)levels
, 0, n_blocks
* sizeof(*levels
));
246 * Find dominator relationships.
247 * Assumes graph has been leveled.
258 * Initialize sets to contain all nodes.
261 i
= n_blocks
* nodewords
;
264 /* Root starts off empty. */
265 for (i
= nodewords
; --i
>= 0;)
268 /* root->level is the highest level no found. */
269 for (i
= root
->level
; i
>= 0; --i
) {
270 for (b
= levels
[i
]; b
; b
= b
->link
) {
271 SET_INSERT(b
->dom
, b
->id
);
274 SET_INTERSECT(JT(b
)->dom
, b
->dom
, nodewords
);
275 SET_INTERSECT(JF(b
)->dom
, b
->dom
, nodewords
);
284 SET_INSERT(ep
->edom
, ep
->id
);
286 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, edgewords
);
287 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, edgewords
);
292 * Compute edge dominators.
293 * Assumes graph has been leveled and predecessors established.
304 for (i
= n_edges
* edgewords
; --i
>= 0; )
307 /* root->level is the highest level no found. */
308 memset(root
->et
.edom
, 0, edgewords
* sizeof(*(uset
)0));
309 memset(root
->ef
.edom
, 0, edgewords
* sizeof(*(uset
)0));
310 for (i
= root
->level
; i
>= 0; --i
) {
311 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
319 * Find the backwards transitive closure of the flow graph. These sets
320 * are backwards in the sense that we find the set of nodes that reach
321 * a given node, not the set of nodes that can be reached by a node.
323 * Assumes graph has been leveled.
333 * Initialize sets to contain no nodes.
335 memset((char *)all_closure_sets
, 0,
336 n_blocks
* nodewords
* sizeof(*all_closure_sets
));
338 /* root->level is the highest level no found. */
339 for (i
= root
->level
; i
>= 0; --i
) {
340 for (b
= levels
[i
]; b
; b
= b
->link
) {
341 SET_INSERT(b
->closure
, b
->id
);
344 SET_UNION(JT(b
)->closure
, b
->closure
, nodewords
);
345 SET_UNION(JF(b
)->closure
, b
->closure
, nodewords
);
351 * Return the register number that is used by s. If A and X are both
352 * used, return AX_ATOM. If no register is used, return -1.
354 * The implementation should probably change to an array access.
360 register int c
= s
->code
;
365 switch (BPF_CLASS(c
)) {
368 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
369 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
373 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
374 (BPF_MODE(c
) == BPF_MEM
) ? s
->k
: -1;
384 if (BPF_SRC(c
) == BPF_X
)
389 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
396 * Return the register number that is defined by 's'. We assume that
397 * a single stmt cannot define more than one register. If no register
398 * is defined, return -1.
400 * The implementation should probably change to an array access.
409 switch (BPF_CLASS(s
->code
)) {
423 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
433 atomset def
= 0, use
= 0, kill
= 0;
436 for (s
= b
->stmts
; s
; s
= s
->next
) {
437 if (s
->s
.code
== NOP
)
439 atom
= atomuse(&s
->s
);
441 if (atom
== AX_ATOM
) {
442 if (!ATOMELEM(def
, X_ATOM
))
443 use
|= ATOMMASK(X_ATOM
);
444 if (!ATOMELEM(def
, A_ATOM
))
445 use
|= ATOMMASK(A_ATOM
);
447 else if (atom
< N_ATOMS
) {
448 if (!ATOMELEM(def
, atom
))
449 use
|= ATOMMASK(atom
);
454 atom
= atomdef(&s
->s
);
456 if (!ATOMELEM(use
, atom
))
457 kill
|= ATOMMASK(atom
);
458 def
|= ATOMMASK(atom
);
461 if (!ATOMELEM(def
, A_ATOM
) && BPF_CLASS(b
->s
.code
) == BPF_JMP
)
462 use
|= ATOMMASK(A_ATOM
);
470 * Assume graph is already leveled.
480 * root->level is the highest level no found;
481 * count down from there.
483 maxlevel
= root
->level
;
484 for (i
= maxlevel
; i
>= 0; --i
)
485 for (p
= levels
[i
]; p
; p
= p
->link
) {
490 for (i
= 1; i
<= maxlevel
; ++i
) {
491 for (p
= levels
[i
]; p
; p
= p
->link
) {
492 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
493 p
->in_use
|= p
->out_use
&~ p
->kill
;
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme. Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
508 struct valnode
*next
;
512 static struct valnode
*hashtbl
[MODULUS
];
516 /* Integer constants mapped with the load immediate opcode. */
517 #define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
524 struct vmapinfo
*vmap
;
525 struct valnode
*vnode_base
;
526 struct valnode
*next_vnode
;
532 next_vnode
= vnode_base
;
533 memset((char *)vmap
, 0, maxval
* sizeof(*vmap
));
534 memset((char *)hashtbl
, 0, sizeof hashtbl
);
537 /* Because we really don't have an IR, this stuff is a little messy. */
547 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
550 for (p
= hashtbl
[hash
]; p
; p
= p
->next
)
551 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
555 if (BPF_MODE(code
) == BPF_IMM
&&
556 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
557 vmap
[val
].const_val
= v0
;
558 vmap
[val
].is_const
= 1;
565 p
->next
= hashtbl
[hash
];
572 vstore(s
, valp
, newval
, alter
)
578 if (alter
&& *valp
== newval
)
591 a
= vmap
[v0
].const_val
;
592 b
= vmap
[v1
].const_val
;
594 switch (BPF_OP(s
->code
)) {
609 bpf_error("division by zero");
637 s
->code
= BPF_LD
|BPF_IMM
;
641 static inline struct slist
*
645 while (s
!= 0 && s
->s
.code
== NOP
)
654 struct block
*tmp
= JT(b
);
665 struct slist
*next
, *last
;
677 next
= this_op(s
->next
);
683 * st M[k] --> st M[k]
686 if (s
->s
.code
== BPF_ST
&&
687 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
688 s
->s
.k
== next
->s
.k
) {
690 next
->s
.code
= BPF_MISC
|BPF_TAX
;
696 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
697 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
698 s
->s
.code
= BPF_LDX
|BPF_IMM
;
699 next
->s
.code
= BPF_MISC
|BPF_TXA
;
703 * This is an ugly special case, but it happens
704 * when you say tcp[k] or udp[k] where k is a constant.
706 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
707 struct slist
*add
, *tax
, *ild
;
710 * Check that X isn't used on exit from this
711 * block (which the optimizer might cause).
712 * We know the code generator won't generate
713 * any local dependencies.
715 if (ATOMELEM(b
->out_use
, X_ATOM
))
718 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
721 add
= this_op(next
->next
);
722 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
725 tax
= this_op(add
->next
);
726 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
729 ild
= this_op(tax
->next
);
730 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
731 BPF_MODE(ild
->s
.code
) != BPF_IND
)
734 * XXX We need to check that X is not
735 * subsequently used. We know we can eliminate the
736 * accumulator modifications since it is defined
737 * by the last stmt of this sequence.
739 * We want to turn this sequence:
742 * (005) ldxms [14] {next} -- optional
745 * (008) ild [x+0] {ild}
747 * into this sequence:
765 * If we have a subtract to do a comparison, and the X register
766 * is a known constant, we can merge this value into the
769 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
) &&
770 !ATOMELEM(b
->out_use
, A_ATOM
)) {
771 val
= b
->val
[X_ATOM
];
772 if (vmap
[val
].is_const
) {
775 b
->s
.k
+= vmap
[val
].const_val
;
776 op
= BPF_OP(b
->s
.code
);
777 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
778 struct block
*t
= JT(b
);
781 b
->s
.k
+= 0x80000000;
785 } else if (b
->s
.k
== 0) {
791 b
->s
.code
= BPF_CLASS(b
->s
.code
) | BPF_OP(b
->s
.code
) |
797 * Likewise, a constant subtract can be simplified.
799 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
) &&
800 !ATOMELEM(b
->out_use
, A_ATOM
)) {
805 op
= BPF_OP(b
->s
.code
);
806 if (op
== BPF_JGT
|| op
== BPF_JGE
) {
807 struct block
*t
= JT(b
);
810 b
->s
.k
+= 0x80000000;
818 if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
819 !ATOMELEM(b
->out_use
, A_ATOM
) && b
->s
.k
== 0) {
821 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
827 * If the accumulator is a known constant, we can compute the
830 val
= b
->val
[A_ATOM
];
831 if (vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
832 bpf_int32 v
= vmap
[val
].const_val
;
833 switch (BPF_OP(b
->s
.code
)) {
840 v
= (unsigned)v
> b
->s
.k
;
844 v
= (unsigned)v
>= b
->s
.k
;
864 * Compute the symbolic value of expression of 's', and update
865 * anything it defines in the value table 'val'. If 'alter' is true,
866 * do various optimizations. This code would be cleaner if symbolic
867 * evaluation and code transformations weren't folded together.
870 opt_stmt(s
, val
, alter
)
880 case BPF_LD
|BPF_ABS
|BPF_W
:
881 case BPF_LD
|BPF_ABS
|BPF_H
:
882 case BPF_LD
|BPF_ABS
|BPF_B
:
883 v
= F(s
->code
, s
->k
, 0L);
884 vstore(s
, &val
[A_ATOM
], v
, alter
);
887 case BPF_LD
|BPF_IND
|BPF_W
:
888 case BPF_LD
|BPF_IND
|BPF_H
:
889 case BPF_LD
|BPF_IND
|BPF_B
:
891 if (alter
&& vmap
[v
].is_const
) {
892 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
893 s
->k
+= vmap
[v
].const_val
;
894 v
= F(s
->code
, s
->k
, 0L);
898 v
= F(s
->code
, s
->k
, v
);
899 vstore(s
, &val
[A_ATOM
], v
, alter
);
903 v
= F(s
->code
, 0L, 0L);
904 vstore(s
, &val
[A_ATOM
], v
, alter
);
909 vstore(s
, &val
[A_ATOM
], v
, alter
);
912 case BPF_LDX
|BPF_IMM
:
914 vstore(s
, &val
[X_ATOM
], v
, alter
);
917 case BPF_LDX
|BPF_MSH
|BPF_B
:
918 v
= F(s
->code
, s
->k
, 0L);
919 vstore(s
, &val
[X_ATOM
], v
, alter
);
922 case BPF_ALU
|BPF_NEG
:
923 if (alter
&& vmap
[val
[A_ATOM
]].is_const
) {
924 s
->code
= BPF_LD
|BPF_IMM
;
925 s
->k
= -vmap
[val
[A_ATOM
]].const_val
;
926 val
[A_ATOM
] = K(s
->k
);
929 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], 0L);
932 case BPF_ALU
|BPF_ADD
|BPF_K
:
933 case BPF_ALU
|BPF_SUB
|BPF_K
:
934 case BPF_ALU
|BPF_MUL
|BPF_K
:
935 case BPF_ALU
|BPF_DIV
|BPF_K
:
936 case BPF_ALU
|BPF_AND
|BPF_K
:
937 case BPF_ALU
|BPF_OR
|BPF_K
:
938 case BPF_ALU
|BPF_LSH
|BPF_K
:
939 case BPF_ALU
|BPF_RSH
|BPF_K
:
940 op
= BPF_OP(s
->code
);
943 if (op
== BPF_ADD
|| op
== BPF_SUB
||
944 op
== BPF_LSH
|| op
== BPF_RSH
||
949 if (op
== BPF_MUL
|| op
== BPF_AND
) {
950 s
->code
= BPF_LD
|BPF_IMM
;
951 val
[A_ATOM
] = K(s
->k
);
955 if (vmap
[val
[A_ATOM
]].is_const
) {
956 fold_op(s
, val
[A_ATOM
], K(s
->k
));
957 val
[A_ATOM
] = K(s
->k
);
961 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], K(s
->k
));
964 case BPF_ALU
|BPF_ADD
|BPF_X
:
965 case BPF_ALU
|BPF_SUB
|BPF_X
:
966 case BPF_ALU
|BPF_MUL
|BPF_X
:
967 case BPF_ALU
|BPF_DIV
|BPF_X
:
968 case BPF_ALU
|BPF_AND
|BPF_X
:
969 case BPF_ALU
|BPF_OR
|BPF_X
:
970 case BPF_ALU
|BPF_LSH
|BPF_X
:
971 case BPF_ALU
|BPF_RSH
|BPF_X
:
972 op
= BPF_OP(s
->code
);
973 if (alter
&& vmap
[val
[X_ATOM
]].is_const
) {
974 if (vmap
[val
[A_ATOM
]].is_const
) {
975 fold_op(s
, val
[A_ATOM
], val
[X_ATOM
]);
976 val
[A_ATOM
] = K(s
->k
);
979 s
->code
= BPF_ALU
|BPF_K
|op
;
980 s
->k
= vmap
[val
[X_ATOM
]].const_val
;
983 F(s
->code
, val
[A_ATOM
], K(s
->k
));
988 * Check if we're doing something to an accumulator
989 * that is 0, and simplify. This may not seem like
990 * much of a simplification but it could open up further
992 * XXX We could also check for mul by 1, and -1, etc.
994 if (alter
&& vmap
[val
[A_ATOM
]].is_const
995 && vmap
[val
[A_ATOM
]].const_val
== 0) {
996 if (op
== BPF_ADD
|| op
== BPF_OR
||
997 op
== BPF_LSH
|| op
== BPF_RSH
|| op
== BPF_SUB
) {
998 s
->code
= BPF_MISC
|BPF_TXA
;
999 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1002 else if (op
== BPF_MUL
|| op
== BPF_DIV
||
1004 s
->code
= BPF_LD
|BPF_IMM
;
1006 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1009 else if (op
== BPF_NEG
) {
1014 val
[A_ATOM
] = F(s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1017 case BPF_MISC
|BPF_TXA
:
1018 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1021 case BPF_LD
|BPF_MEM
:
1023 if (alter
&& vmap
[v
].is_const
) {
1024 s
->code
= BPF_LD
|BPF_IMM
;
1025 s
->k
= vmap
[v
].const_val
;
1028 vstore(s
, &val
[A_ATOM
], v
, alter
);
1031 case BPF_MISC
|BPF_TAX
:
1032 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1035 case BPF_LDX
|BPF_MEM
:
1037 if (alter
&& vmap
[v
].is_const
) {
1038 s
->code
= BPF_LDX
|BPF_IMM
;
1039 s
->k
= vmap
[v
].const_val
;
1042 vstore(s
, &val
[X_ATOM
], v
, alter
);
1046 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1050 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1057 register struct stmt
*s
;
1058 register struct stmt
*last
[];
1064 if (atom
== AX_ATOM
) {
1075 last
[atom
]->code
= NOP
;
1083 register struct block
*b
;
1085 register struct slist
*s
;
1087 struct stmt
*last
[N_ATOMS
];
1089 memset((char *)last
, 0, sizeof last
);
1091 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1092 deadstmt(&s
->s
, last
);
1093 deadstmt(&b
->s
, last
);
1095 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1096 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1097 last
[atom
]->code
= NOP
;
1103 opt_blk(b
, do_stmts
)
1113 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1114 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1121 * Initialize the atom values.
1122 * If we have no predecessors, everything is undefined.
1123 * Otherwise, we inherent our values from our predecessors.
1124 * If any register has an ambiguous value (i.e. control paths are
1125 * merging) give it the undefined value of 0.
1129 memset((char *)b
->val
, 0, sizeof(b
->val
));
1131 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1132 while ((p
= p
->next
) != NULL
) {
1133 for (i
= 0; i
< N_ATOMS
; ++i
)
1134 if (b
->val
[i
] != p
->pred
->val
[i
])
1138 aval
= b
->val
[A_ATOM
];
1139 for (s
= b
->stmts
; s
; s
= s
->next
)
1140 opt_stmt(&s
->s
, b
->val
, do_stmts
);
1143 * This is a special case: if we don't use anything from this
1144 * block, and we load the accumulator with value that is
1145 * already there, or if this block is a return,
1146 * eliminate all the statements.
1149 ((b
->out_use
== 0 && aval
!= 0 &&b
->val
[A_ATOM
] == aval
) ||
1150 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1151 if (b
->stmts
!= 0) {
1160 * Set up values for branch optimizer.
1162 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1163 b
->oval
= K(b
->s
.k
);
1165 b
->oval
= b
->val
[X_ATOM
];
1166 b
->et
.code
= b
->s
.code
;
1167 b
->ef
.code
= -b
->s
.code
;
1171 * Return true if any register that is used on exit from 'succ', has
1172 * an exit value that is different from the corresponding exit value
1176 use_conflict(b
, succ
)
1177 struct block
*b
, *succ
;
1180 atomset use
= succ
->out_use
;
1185 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1186 if (ATOMELEM(use
, atom
))
1187 if (b
->val
[atom
] != succ
->val
[atom
])
1192 static struct block
*
1193 fold_edge(child
, ep
)
1194 struct block
*child
;
1198 int aval0
, aval1
, oval0
, oval1
;
1199 int code
= ep
->code
;
1207 if (child
->s
.code
!= code
)
1210 aval0
= child
->val
[A_ATOM
];
1211 oval0
= child
->oval
;
1212 aval1
= ep
->pred
->val
[A_ATOM
];
1213 oval1
= ep
->pred
->oval
;
1220 * The operands are identical, so the
1221 * result is true if a true branch was
1222 * taken to get here, otherwise false.
1224 return sense
? JT(child
) : JF(child
);
1226 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1228 * At this point, we only know the comparison if we
1229 * came down the true branch, and it was an equality
1230 * comparison with a constant. We rely on the fact that
1231 * distinct constants have distinct value numbers.
1243 register struct block
*target
;
1245 if (JT(ep
->succ
) == 0)
1248 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1250 * Common branch targets can be eliminated, provided
1251 * there is no data dependency.
1253 if (!use_conflict(ep
->pred
, ep
->succ
->et
.succ
)) {
1255 ep
->succ
= JT(ep
->succ
);
1259 * For each edge dominator that matches the successor of this
1260 * edge, promote the edge successor to the its grandchild.
1262 * XXX We violate the set abstraction here in favor a reasonably
1266 for (i
= 0; i
< edgewords
; ++i
) {
1267 register bpf_u_int32 x
= ep
->edom
[i
];
1272 k
+= i
* BITS_PER_WORD
;
1274 target
= fold_edge(ep
->succ
, edges
[k
]);
1276 * Check that there is no data dependency between
1277 * nodes that will be violated if we move the edge.
1279 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1282 if (JT(target
) != 0)
1284 * Start over unless we hit a leaf.
1300 struct block
**diffp
, **samep
;
1308 * Make sure each predecessor loads the same value.
1311 val
= ep
->pred
->val
[A_ATOM
];
1312 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1313 if (val
!= ep
->pred
->val
[A_ATOM
])
1316 if (JT(b
->in_edges
->pred
) == b
)
1317 diffp
= &JT(b
->in_edges
->pred
);
1319 diffp
= &JF(b
->in_edges
->pred
);
1326 if (JT(*diffp
) != JT(b
))
1329 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1332 if ((*diffp
)->val
[A_ATOM
] != val
)
1335 diffp
= &JF(*diffp
);
1338 samep
= &JF(*diffp
);
1343 if (JT(*samep
) != JT(b
))
1346 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1349 if ((*samep
)->val
[A_ATOM
] == val
)
1352 /* XXX Need to check that there are no data dependencies
1353 between dp0 and dp1. Currently, the code generator
1354 will not produce such dependencies. */
1355 samep
= &JF(*samep
);
1358 /* XXX This doesn't cover everything. */
1359 for (i
= 0; i
< N_ATOMS
; ++i
)
1360 if ((*samep
)->val
[i
] != pred
->val
[i
])
1363 /* Pull up the node. */
1369 * At the top of the chain, each predecessor needs to point at the
1370 * pulled up node. Inside the chain, there is only one predecessor
1374 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1375 if (JT(ep
->pred
) == b
)
1376 JT(ep
->pred
) = pull
;
1378 JF(ep
->pred
) = pull
;
1393 struct block
**diffp
, **samep
;
1401 * Make sure each predecessor loads the same value.
1403 val
= ep
->pred
->val
[A_ATOM
];
1404 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1405 if (val
!= ep
->pred
->val
[A_ATOM
])
1408 if (JT(b
->in_edges
->pred
) == b
)
1409 diffp
= &JT(b
->in_edges
->pred
);
1411 diffp
= &JF(b
->in_edges
->pred
);
1418 if (JF(*diffp
) != JF(b
))
1421 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1424 if ((*diffp
)->val
[A_ATOM
] != val
)
1427 diffp
= &JT(*diffp
);
1430 samep
= &JT(*diffp
);
1435 if (JF(*samep
) != JF(b
))
1438 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1441 if ((*samep
)->val
[A_ATOM
] == val
)
1444 /* XXX Need to check that there are no data dependencies
1445 between diffp and samep. Currently, the code generator
1446 will not produce such dependencies. */
1447 samep
= &JT(*samep
);
1450 /* XXX This doesn't cover everything. */
1451 for (i
= 0; i
< N_ATOMS
; ++i
)
1452 if ((*samep
)->val
[i
] != pred
->val
[i
])
1455 /* Pull up the node. */
1461 * At the top of the chain, each predecessor needs to point at the
1462 * pulled up node. Inside the chain, there is only one predecessor
1466 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1467 if (JT(ep
->pred
) == b
)
1468 JT(ep
->pred
) = pull
;
1470 JF(ep
->pred
) = pull
;
1480 opt_blks(root
, do_stmts
)
1488 maxlevel
= root
->level
;
1489 for (i
= maxlevel
; i
>= 0; --i
)
1490 for (p
= levels
[i
]; p
; p
= p
->link
)
1491 opt_blk(p
, do_stmts
);
1495 * No point trying to move branches; it can't possibly
1496 * make a difference at this point.
1500 for (i
= 1; i
<= maxlevel
; ++i
) {
1501 for (p
= levels
[i
]; p
; p
= p
->link
) {
1506 for (i
= 1; i
<= maxlevel
; ++i
) {
1507 for (p
= levels
[i
]; p
; p
= p
->link
) {
1515 link_inedge(parent
, child
)
1516 struct edge
*parent
;
1517 struct block
*child
;
1519 parent
->next
= child
->in_edges
;
1520 child
->in_edges
= parent
;
1530 for (i
= 0; i
< n_blocks
; ++i
)
1531 blocks
[i
]->in_edges
= 0;
1534 * Traverse the graph, adding each edge to the predecessor
1535 * list of its successors. Skip the leaves (i.e. level 0).
1537 for (i
= root
->level
; i
> 0; --i
) {
1538 for (b
= levels
[i
]; b
!= 0; b
= b
->link
) {
1539 link_inedge(&b
->et
, JT(b
));
1540 link_inedge(&b
->ef
, JF(b
));
1549 struct slist
*tmp
, *s
;
1553 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
1562 * If the root node is a return, then there is no
1563 * point executing any statements (since the bpf machine
1564 * has no side effects).
1566 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
1571 opt_loop(root
, do_stmts
)
1588 opt_blks(root
, do_stmts
);
1597 * Optimize the filter code in its dag representation.
1601 struct block
**rootp
;
1610 intern_blocks(root
);
1621 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
1629 * Mark code array such that isMarked(i) is true
1630 * only for nodes that are alive.
1641 * True iff the two stmt lists load the same value from the packet into
1646 struct slist
*x
, *y
;
1649 while (x
&& x
->s
.code
== NOP
)
1651 while (y
&& y
->s
.code
== NOP
)
1657 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
1666 struct block
*b0
, *b1
;
1668 if (b0
->s
.code
== b1
->s
.code
&&
1669 b0
->s
.k
== b1
->s
.k
&&
1670 b0
->et
.succ
== b1
->et
.succ
&&
1671 b0
->ef
.succ
== b1
->ef
.succ
)
1672 return eq_slist(b0
->stmts
, b1
->stmts
);
1685 for (i
= 0; i
< n_blocks
; ++i
)
1686 blocks
[i
]->link
= 0;
1690 for (i
= n_blocks
- 1; --i
>= 0; ) {
1691 if (!isMarked(blocks
[i
]))
1693 for (j
= i
+ 1; j
< n_blocks
; ++j
) {
1694 if (!isMarked(blocks
[j
]))
1696 if (eq_blk(blocks
[i
], blocks
[j
])) {
1697 blocks
[i
]->link
= blocks
[j
]->link
?
1698 blocks
[j
]->link
: blocks
[j
];
1703 for (i
= 0; i
< n_blocks
; ++i
) {
1709 JT(p
) = JT(p
)->link
;
1713 JF(p
) = JF(p
)->link
;
1723 free((void *)vnode_base
);
1725 free((void *)edges
);
1726 free((void *)space
);
1727 free((void *)levels
);
1728 free((void *)blocks
);
1732 * Return the number of stmts in 's'.
1740 for (; s
; s
= s
->next
)
1741 if (s
->s
.code
!= NOP
)
1747 * Return the number of nodes reachable by 'p'.
1748 * All nodes should be initially unmarked.
1754 if (p
== 0 || isMarked(p
))
1757 return count_blocks(JT(p
)) + count_blocks(JF(p
)) + 1;
1761 * Do a depth first search on the flow graph, numbering the
1762 * the basic blocks, and entering them into the 'blocks' array.`
1770 if (p
== 0 || isMarked(p
))
1778 number_blks_r(JT(p
));
1779 number_blks_r(JF(p
));
1783 * Return the number of stmts in the flowgraph reachable by 'p'.
1784 * The nodes should be unmarked before calling.
1792 if (p
== 0 || isMarked(p
))
1795 n
= count_stmts(JT(p
)) + count_stmts(JF(p
));
1796 return slength(p
->stmts
) + n
+ 1;
1800 * Allocate memory. All allocation is done before optimization
1801 * is begun. A linear bound on the size of all data structures is computed
1802 * from the total number of blocks and/or statements.
1809 int i
, n
, max_stmts
;
1812 * First, count the blocks, so we can malloc an array to map
1813 * block number to block. Then, put the blocks into the array.
1816 n
= count_blocks(root
);
1817 blocks
= (struct block
**)malloc(n
* sizeof(*blocks
));
1820 number_blks_r(root
);
1822 n_edges
= 2 * n_blocks
;
1823 edges
= (struct edge
**)malloc(n_edges
* sizeof(*edges
));
1826 * The number of levels is bounded by the number of nodes.
1828 levels
= (struct block
**)malloc(n_blocks
* sizeof(*levels
));
1830 edgewords
= n_edges
/ (8 * sizeof(bpf_u_int32
)) + 1;
1831 nodewords
= n_blocks
/ (8 * sizeof(bpf_u_int32
)) + 1;
1834 space
= (bpf_u_int32
*)malloc(2 * n_blocks
* nodewords
* sizeof(*space
)
1835 + n_edges
* edgewords
* sizeof(*space
));
1838 for (i
= 0; i
< n
; ++i
) {
1842 all_closure_sets
= p
;
1843 for (i
= 0; i
< n
; ++i
) {
1844 blocks
[i
]->closure
= p
;
1848 for (i
= 0; i
< n
; ++i
) {
1849 register struct block
*b
= blocks
[i
];
1857 b
->ef
.id
= n_blocks
+ i
;
1858 edges
[n_blocks
+ i
] = &b
->ef
;
1863 for (i
= 0; i
< n
; ++i
)
1864 max_stmts
+= slength(blocks
[i
]->stmts
) + 1;
1866 * We allocate at most 3 value numbers per statement,
1867 * so this is an upper bound on the number of valnodes
1870 maxval
= 3 * max_stmts
;
1871 vmap
= (struct vmapinfo
*)malloc(maxval
* sizeof(*vmap
));
1872 vnode_base
= (struct valnode
*)malloc(maxval
* sizeof(*vnode_base
));
1876 * Some pointers used to convert the basic block form of the code,
1877 * into the array form that BPF requires. 'fstart' will point to
1878 * the malloc'd array while 'ftail' is used during the recursive traversal.
1880 static struct bpf_insn
*fstart
;
1881 static struct bpf_insn
*ftail
;
1888 * Returns true if successful. Returns false if a branch has
1889 * an offset that is too large. If so, we have marked that
1890 * branch so that on a subsequent iteration, it will be treated
1897 struct bpf_insn
*dst
;
1901 int extrajmps
; /* number of extra jumps inserted */
1902 struct slist
**offset
= NULL
;
1904 if (p
== 0 || isMarked(p
))
1908 if (convert_code_r(JF(p
)) == 0)
1910 if (convert_code_r(JT(p
)) == 0)
1913 slen
= slength(p
->stmts
);
1914 dst
= ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
1915 /* inflate length by any extra jumps */
1917 p
->offset
= dst
- fstart
;
1919 /* generate offset[] for convenience */
1921 offset
= (struct slist
**)calloc(sizeof(struct slist
*), slen
);
1923 bpf_error("not enough core");
1928 for (off
= 0; off
< slen
&& src
; off
++) {
1930 printf("off=%d src=%x\n", off
, src
);
1937 for (src
= p
->stmts
; src
; src
= src
->next
) {
1938 if (src
->s
.code
== NOP
)
1940 dst
->code
= (u_short
)src
->s
.code
;
1943 /* fill block-local relative jump */
1944 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
1946 if (src
->s
.jt
|| src
->s
.jf
) {
1947 bpf_error("illegal jmp destination");
1953 if (off
== slen
- 2) /*???*/
1959 char *ljerr
= "%s for block-local relative jump: off=%d";
1962 printf("code=%x off=%d %x %x\n", src
->s
.code
,
1963 off
, src
->s
.jt
, src
->s
.jf
);
1966 if (!src
->s
.jt
|| !src
->s
.jf
) {
1967 bpf_error(ljerr
, "no jmp destination", off
);
1972 for (i
= 0; i
< slen
; i
++) {
1973 if (offset
[i
] == src
->s
.jt
) {
1975 bpf_error(ljerr
, "multiple matches", off
);
1979 dst
->jt
= i
- off
- 1;
1982 if (offset
[i
] == src
->s
.jf
) {
1984 bpf_error(ljerr
, "multiple matches", off
);
1987 dst
->jf
= i
- off
- 1;
1992 bpf_error(ljerr
, "no destination found", off
);
2004 bids
[dst
- fstart
] = p
->id
+ 1;
2006 dst
->code
= (u_short
)p
->s
.code
;
2010 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2012 /* offset too large for branch, must add a jump */
2013 if (p
->longjt
== 0) {
2014 /* mark this instruction and retry */
2018 /* branch if T to following jump */
2019 dst
->jt
= extrajmps
;
2021 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2022 dst
[extrajmps
].k
= off
- extrajmps
;
2026 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2028 /* offset too large for branch, must add a jump */
2029 if (p
->longjf
== 0) {
2030 /* mark this instruction and retry */
2034 /* branch if F to following jump */
2035 /* if two jumps are inserted, F goes to second one */
2036 dst
->jf
= extrajmps
;
2038 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2039 dst
[extrajmps
].k
= off
- extrajmps
;
2049 * Convert flowgraph intermediate representation to the
2050 * BPF array representation. Set *lenp to the number of instructions.
2053 icode_to_fcode(root
, lenp
)
2058 struct bpf_insn
*fp
;
2061 * Loop doing convert_codr_r() until no branches remain
2062 * with too-large offsets.
2066 n
= *lenp
= count_stmts(root
);
2068 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2069 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2074 if (convert_code_r(root
))
2083 * Make a copy of a BPF program and put it in the "fcode" member of
2086 * If we fail to allocate memory for the copy, fill in the "errbuf"
2087 * member of the "pcap_t" with an error message, and return -1;
2088 * otherwise, return 0.
2091 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2096 * Free up any already installed program.
2098 pcap_freecode(&p
->fcode
);
2100 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2101 p
->fcode
.bf_len
= fp
->bf_len
;
2102 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2103 if (p
->fcode
.bf_insns
== NULL
) {
2104 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2105 "malloc: %s", pcap_strerror(errno
));
2108 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2117 struct bpf_program f
;
2119 memset(bids
, 0, sizeof bids
);
2120 f
.bf_insns
= icode_to_fcode(root
, &f
.bf_len
);
2123 free((char *)f
.bf_insns
);