2 * Copyright (c) 1993, 1994, 1995, 1996, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22 static const char rcsid
[] _U_
=
23 "@(#) $Header: /tcpdump/master/libpcap/pcap-bpf.c,v 1.116 2008-09-16 18:42:29 guy Exp $ (LBL)";
30 #include <sys/param.h> /* optionally get BSD define */
31 #ifdef HAVE_ZEROCOPY_BPF
35 #include <sys/socket.h>
37 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>.
39 * We include <sys/ioctl.h> as it might be necessary to declare ioctl();
40 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls -
41 * we could include <sys/sockio.h>, but if we're already including
42 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms,
43 * there's not much point in doing so.
45 * If we have <sys/ioccom.h>, we include it as well, to handle systems
46 * such as Solaris which don't arrange to include <sys/ioccom.h> if you
47 * include <sys/ioctl.h>
49 #include <sys/ioctl.h>
50 #ifdef HAVE_SYS_IOCCOM_H
51 #include <sys/ioccom.h>
53 #include <sys/utsname.h>
55 #ifdef HAVE_ZEROCOPY_BPF
56 #include <machine/atomic.h>
64 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the
65 * native OS version, as we need "struct bpf_config" from it.
67 #define PCAP_DONT_INCLUDE_PCAP_BPF_H
69 #include <sys/types.h>
72 * Prevent bpf.h from redefining the DLT_ values to their
73 * IFT_ values, as we're going to return the standard libpcap
74 * values, not IBM's non-standard IFT_ values.
80 #include <net/if_types.h> /* for IFT_ values */
81 #include <sys/sysconfig.h>
82 #include <sys/device.h>
83 #include <sys/cfgodm.h>
87 #define domakedev makedev64
88 #define getmajor major64
89 #define bpf_hdr bpf_hdr32
91 #define domakedev makedev
92 #define getmajor major
93 #endif /* __64BIT__ */
95 #define BPF_NAME "bpf"
97 #define DRIVER_PATH "/usr/lib/drivers"
98 #define BPF_NODE "/dev/bpf"
99 static int bpfloadedflag
= 0;
100 static int odmlockid
= 0;
102 static int bpf_load(char *errbuf
);
119 #ifdef HAVE_NET_IF_MEDIA_H
120 # include <net/if_media.h>
123 #include "pcap-int.h"
126 #include "pcap-dag.h"
127 #endif /* HAVE_DAG_API */
129 #ifdef HAVE_OS_PROTO_H
130 #include "os-proto.h"
134 # if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__)
135 #define HAVE_BSD_IEEE80211
138 # if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
139 static int find_802_11(struct bpf_dltlist
*);
141 # ifdef HAVE_BSD_IEEE80211
142 static int monitor_mode(pcap_t
*, int);
145 # if defined(__APPLE__)
146 static void remove_en(pcap_t
*);
147 static void remove_802_11(pcap_t
*);
150 # endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */
152 #endif /* BIOCGDLTLIST */
155 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably
156 * don't get DLT_DOCSIS defined.
159 #define DLT_DOCSIS 143
163 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s
164 * defined, even though some of them are used by various Airport drivers.
166 #ifndef DLT_PRISM_HEADER
167 #define DLT_PRISM_HEADER 119
169 #ifndef DLT_AIRONET_HEADER
170 #define DLT_AIRONET_HEADER 120
172 #ifndef DLT_IEEE802_11_RADIO
173 #define DLT_IEEE802_11_RADIO 127
175 #ifndef DLT_IEEE802_11_RADIO_AVS
176 #define DLT_IEEE802_11_RADIO_AVS 163
179 static int pcap_can_set_rfmon_bpf(pcap_t
*p
);
180 static int pcap_activate_bpf(pcap_t
*p
);
181 static int pcap_setfilter_bpf(pcap_t
*p
, struct bpf_program
*fp
);
182 static int pcap_setdirection_bpf(pcap_t
*, pcap_direction_t
);
183 static int pcap_set_datalink_bpf(pcap_t
*p
, int dlt
);
185 #ifdef HAVE_ZEROCOPY_BPF
187 * For zerocopy bpf, we need to override the setnonblock/getnonblock routines
188 * so we don't call select(2) if the pcap handle is in non-blocking mode. We
189 * preserve the timeout supplied by pcap_open functions to make sure it
190 * does not get clobbered if the pcap handle moves between blocking and non-
194 pcap_getnonblock_zbuf(pcap_t
*p
, char *errbuf
)
197 * Use a negative value for the timeout to represent that the
198 * pcap handle is in non-blocking mode.
200 return (p
->md
.timeout
< 0);
204 pcap_setnonblock_zbuf(pcap_t
*p
, int nonblock
, char *errbuf
)
207 * Map each value to the corresponding 2's complement, to
208 * preserve the timeout value provided with pcap_set_timeout.
209 * (from pcap-linux.c).
212 if (p
->md
.timeout
>= 0) {
214 * Timeout is non-negative, so we're not already
215 * in non-blocking mode; set it to the 2's
216 * complement, to make it negative, as an
217 * indication that we're in non-blocking mode.
219 p
->md
.timeout
= p
->md
.timeout
* -1 - 1;
222 if (p
->md
.timeout
< 0) {
224 * Timeout is negative, so we're not already
225 * in blocking mode; reverse the previous
226 * operation, to make the timeout non-negative
229 p
->md
.timeout
= (p
->md
.timeout
+ 1) * -1;
236 * Zero-copy specific close method. Un-map the shared buffers then call
237 * pcap_cleanup_live_common.
240 pcap_cleanup_zbuf(pcap_t
*p
)
243 * Delete the mappings. Note that p->buffer gets initialized to one
244 * of the mmapped regions in this case, so do not try and free it
245 * directly; null it out so that pcap_cleanup_live_common() doesn't
248 if (p
->md
.zbuf1
!= MAP_FAILED
&& p
->md
.zbuf1
!= NULL
)
249 (void) munmap(p
->md
.zbuf1
, p
->md
.zbufsize
);
250 if (p
->md
.zbuf2
!= MAP_FAILED
&& p
->md
.zbuf2
!= NULL
)
251 (void) munmap(p
->md
.zbuf2
, p
->md
.zbufsize
);
253 pcap_cleanup_live_common(p
);
257 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in
258 * shared memory buffers.
260 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer,
261 * and set up p->buffer and cc to reflect one if available. Notice that if
262 * there was no prior buffer, we select zbuf1 as this will be the first
263 * buffer filled for a fresh BPF session.
266 pcap_next_zbuf_shm(pcap_t
*p
, int *cc
)
268 struct bpf_zbuf_header
*bzh
;
270 if (p
->md
.zbuffer
== p
->md
.zbuf2
|| p
->md
.zbuffer
== NULL
) {
271 bzh
= (struct bpf_zbuf_header
*)p
->md
.zbuf1
;
272 if (bzh
->bzh_user_gen
!=
273 atomic_load_acq_int(&bzh
->bzh_kernel_gen
)) {
275 p
->md
.zbuffer
= (u_char
*)p
->md
.zbuf1
;
276 p
->buffer
= p
->md
.zbuffer
+ sizeof(*bzh
);
277 *cc
= bzh
->bzh_kernel_len
;
280 } else if (p
->md
.zbuffer
== p
->md
.zbuf1
) {
281 bzh
= (struct bpf_zbuf_header
*)p
->md
.zbuf2
;
282 if (bzh
->bzh_user_gen
!=
283 atomic_load_acq_int(&bzh
->bzh_kernel_gen
)) {
285 p
->md
.zbuffer
= (u_char
*)p
->md
.zbuf2
;
286 p
->buffer
= p
->md
.zbuffer
+ sizeof(*bzh
);
287 *cc
= bzh
->bzh_kernel_len
;
296 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using
297 * select() for data or a timeout, and possibly force rotation of the buffer
298 * in the event we time out or are in immediate mode. Invoke the shared
299 * memory check before doing system calls in order to avoid doing avoidable
303 pcap_next_zbuf(pcap_t
*p
, int *cc
)
312 #define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000))
314 * Start out by seeing whether anything is waiting by checking the
315 * next shared memory buffer for data.
317 data
= pcap_next_zbuf_shm(p
, cc
);
321 * If a previous sleep was interrupted due to signal delivery, make
322 * sure that the timeout gets adjusted accordingly. This requires
323 * that we analyze when the timeout should be been expired, and
324 * subtract the current time from that. If after this operation,
325 * our timeout is less then or equal to zero, handle it like a
328 tmout
= p
->md
.timeout
;
330 (void) clock_gettime(CLOCK_MONOTONIC
, &cur
);
331 if (p
->md
.interrupted
&& p
->md
.timeout
) {
332 expire
= TSTOMILLI(&p
->md
.firstsel
) + p
->md
.timeout
;
333 tmout
= expire
- TSTOMILLI(&cur
);
336 p
->md
.interrupted
= 0;
337 data
= pcap_next_zbuf_shm(p
, cc
);
340 if (ioctl(p
->fd
, BIOCROTZBUF
, &bz
) < 0) {
341 (void) snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
342 "BIOCROTZBUF: %s", strerror(errno
));
345 return (pcap_next_zbuf_shm(p
, cc
));
349 * No data in the buffer, so must use select() to wait for data or
350 * the next timeout. Note that we only call select if the handle
351 * is in blocking mode.
353 if (p
->md
.timeout
>= 0) {
355 FD_SET(p
->fd
, &r_set
);
357 tv
.tv_sec
= tmout
/ 1000;
358 tv
.tv_usec
= (tmout
* 1000) % 1000000;
360 r
= select(p
->fd
+ 1, &r_set
, NULL
, NULL
,
361 p
->md
.timeout
!= 0 ? &tv
: NULL
);
362 if (r
< 0 && errno
== EINTR
) {
363 if (!p
->md
.interrupted
&& p
->md
.timeout
) {
364 p
->md
.interrupted
= 1;
365 p
->md
.firstsel
= cur
;
369 (void) snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
370 "select: %s", strerror(errno
));
374 p
->md
.interrupted
= 0;
376 * Check again for data, which may exist now that we've either been
377 * woken up as a result of data or timed out. Try the "there's data"
378 * case first since it doesn't require a system call.
380 data
= pcap_next_zbuf_shm(p
, cc
);
384 * Try forcing a buffer rotation to dislodge timed out or immediate
387 if (ioctl(p
->fd
, BIOCROTZBUF
, &bz
) < 0) {
388 (void) snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
389 "BIOCROTZBUF: %s", strerror(errno
));
392 return (pcap_next_zbuf_shm(p
, cc
));
396 * Notify kernel that we are done with the buffer. We don't reset zbuffer so
397 * that we know which buffer to use next time around.
400 pcap_ack_zbuf(pcap_t
*p
)
403 atomic_store_rel_int(&p
->md
.bzh
->bzh_user_gen
,
404 p
->md
.bzh
->bzh_kernel_gen
);
412 pcap_create(const char *device
, char *ebuf
)
417 if (strstr(device
, "dag"))
418 return (dag_create(device
, ebuf
));
419 #endif /* HAVE_DAG_API */
421 p
= pcap_create_common(device
, ebuf
);
425 p
->activate_op
= pcap_activate_bpf
;
426 p
->can_set_rfmon_op
= pcap_can_set_rfmon_bpf
;
434 #ifdef HAVE_CLONING_BPF
435 static const char device
[] = "/dev/bpf";
438 char device
[sizeof "/dev/bpf0000000000"];
443 * Load the bpf driver, if it isn't already loaded,
444 * and create the BPF device entries, if they don't
447 if (bpf_load(p
->errbuf
) == PCAP_ERROR
)
451 #ifdef HAVE_CLONING_BPF
452 if ((fd
= open(device
, O_RDWR
)) == -1 &&
453 (errno
!= EACCES
|| (fd
= open(device
, O_RDONLY
)) == -1)) {
455 fd
= PCAP_ERROR_PERM_DENIED
;
458 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
459 "(cannot open device) %s: %s", device
, pcap_strerror(errno
));
463 * Go through all the minors and find one that isn't in use.
466 (void)snprintf(device
, sizeof(device
), "/dev/bpf%d", n
++);
468 * Initially try a read/write open (to allow the inject
469 * method to work). If that fails due to permission
470 * issues, fall back to read-only. This allows a
471 * non-root user to be granted specific access to pcap
472 * capabilities via file permissions.
474 * XXX - we should have an API that has a flag that
475 * controls whether to open read-only or read-write,
476 * so that denial of permission to send (or inability
477 * to send, if sending packets isn't supported on
478 * the device in question) can be indicated at open
481 fd
= open(device
, O_RDWR
);
482 if (fd
== -1 && errno
== EACCES
)
483 fd
= open(device
, O_RDONLY
);
484 } while (fd
< 0 && errno
== EBUSY
);
487 * XXX better message for all minors used
491 fd
= PCAP_ERROR_PERM_DENIED
;
494 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "(no devices found) %s: %s",
495 device
, pcap_strerror(errno
));
504 get_dlt_list(int fd
, int v
, struct bpf_dltlist
*bdlp
, char *ebuf
)
506 memset(bdlp
, 0, sizeof(*bdlp
));
507 if (ioctl(fd
, BIOCGDLTLIST
, (caddr_t
)bdlp
) == 0) {
511 bdlp
->bfl_list
= (u_int
*) malloc(sizeof(u_int
) * (bdlp
->bfl_len
+ 1));
512 if (bdlp
->bfl_list
== NULL
) {
513 (void)snprintf(ebuf
, PCAP_ERRBUF_SIZE
, "malloc: %s",
514 pcap_strerror(errno
));
518 if (ioctl(fd
, BIOCGDLTLIST
, (caddr_t
)bdlp
) < 0) {
519 (void)snprintf(ebuf
, PCAP_ERRBUF_SIZE
,
520 "BIOCGDLTLIST: %s", pcap_strerror(errno
));
521 free(bdlp
->bfl_list
);
526 * OK, for real Ethernet devices, add DLT_DOCSIS to the
527 * list, so that an application can let you choose it,
528 * in case you're capturing DOCSIS traffic that a Cisco
529 * Cable Modem Termination System is putting out onto
530 * an Ethernet (it doesn't put an Ethernet header onto
531 * the wire, it puts raw DOCSIS frames out on the wire
532 * inside the low-level Ethernet framing).
534 * A "real Ethernet device" is defined here as a device
535 * that has a link-layer type of DLT_EN10MB and that has
536 * no alternate link-layer types; that's done to exclude
537 * 802.11 interfaces (which might or might not be the
538 * right thing to do, but I suspect it is - Ethernet <->
539 * 802.11 bridges would probably badly mishandle frames
540 * that don't have Ethernet headers).
542 if (v
== DLT_EN10MB
) {
544 for (i
= 0; i
< bdlp
->bfl_len
; i
++) {
545 if (bdlp
->bfl_list
[i
] != DLT_EN10MB
) {
552 * We reserved one more slot at the end of
555 bdlp
->bfl_list
[bdlp
->bfl_len
] = DLT_DOCSIS
;
561 * EINVAL just means "we don't support this ioctl on
562 * this device"; don't treat it as an error.
564 if (errno
!= EINVAL
) {
565 (void)snprintf(ebuf
, PCAP_ERRBUF_SIZE
,
566 "BIOCGDLTLIST: %s", pcap_strerror(errno
));
575 pcap_can_set_rfmon_bpf(pcap_t
*p
)
577 #if defined(__APPLE__)
578 struct utsname osinfo
;
582 struct bpf_dltlist bdl
;
586 * The joys of monitor mode on OS X.
588 * Prior to 10.4, it's not supported at all.
590 * In 10.4, if adapter enN supports monitor mode, there's a
591 * wltN adapter corresponding to it; you open it, instead of
592 * enN, to get monitor mode. You get whatever link-layer
593 * headers it supplies.
595 * In 10.5, and, we assume, later releases, if adapter enN
596 * supports monitor mode, it offers, among its selectable
597 * DLT_ values, values that let you get the 802.11 header;
598 * selecting one of those values puts the adapter into monitor
599 * mode (i.e., you can't get 802.11 headers except in monitor
600 * mode, and you can't get Ethernet headers in monitor mode).
602 if (uname(&osinfo
) == -1) {
604 * Can't get the OS version; just say "no".
609 * We assume osinfo.sysname is "Darwin", because
610 * __APPLE__ is defined. We just check the version.
612 if (osinfo
.release
[0] < '8' && osinfo
.release
[1] == '.') {
614 * 10.3 (Darwin 7.x) or earlier.
615 * Monitor mode not supported.
619 if (osinfo
.release
[0] == '8' && osinfo
.release
[1] == '.') {
621 * 10.4 (Darwin 8.x). s/en/wlt/, and check
622 * whether the device exists.
624 if (strncmp(p
->opt
.source
, "en", 2) != 0) {
626 * Not an enN device; no monitor mode.
630 fd
= socket(AF_INET
, SOCK_DGRAM
, 0);
632 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
633 "socket: %s", pcap_strerror(errno
));
636 strlcpy(ifr
.ifr_name
, "wlt", sizeof(ifr
.ifr_name
));
637 strlcat(ifr
.ifr_name
, p
->opt
.source
+ 2, sizeof(ifr
.ifr_name
));
638 if (ioctl(fd
, SIOCGIFFLAGS
, (char *)&ifr
) < 0) {
651 * Everything else is 10.5 or later; for those,
652 * we just open the enN device, and check whether
653 * we have any 802.11 devices.
655 * First, open a BPF device.
662 * Now bind to the device.
664 (void)strncpy(ifr
.ifr_name
, p
->opt
.source
, sizeof(ifr
.ifr_name
));
665 if (ioctl(fd
, BIOCSETIF
, (caddr_t
)&ifr
) < 0) {
666 if (errno
== ENETDOWN
) {
668 * Return a "network down" indication, so that
669 * the application can report that rather than
670 * saying we had a mysterious failure and
671 * suggest that they report a problem to the
672 * libpcap developers.
675 return (PCAP_ERROR_IFACE_NOT_UP
);
677 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
679 p
->opt
.source
, pcap_strerror(errno
));
686 * We know the default link type -- now determine all the DLTs
687 * this interface supports. If this fails with EINVAL, it's
688 * not fatal; we just don't get to use the feature later.
689 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL
690 * as the default DLT for this adapter.)
692 if (get_dlt_list(fd
, DLT_NULL
, &bdl
, p
->errbuf
) == PCAP_ERROR
) {
696 if (find_802_11(&bdl
) != -1) {
698 * We have an 802.11 DLT, so we can set monitor mode.
705 #endif /* BIOCGDLTLIST */
707 #elif defined(HAVE_BSD_IEEE80211)
710 ret
= monitor_mode(p
, 0);
711 if (ret
== PCAP_ERROR_RFMON_NOTSUP
)
712 return (0); /* not an error, just a "can't do" */
714 return (1); /* success */
722 pcap_stats_bpf(pcap_t
*p
, struct pcap_stat
*ps
)
727 * "ps_recv" counts packets handed to the filter, not packets
728 * that passed the filter. This includes packets later dropped
729 * because we ran out of buffer space.
731 * "ps_drop" counts packets dropped inside the BPF device
732 * because we ran out of buffer space. It doesn't count
733 * packets dropped by the interface driver. It counts
734 * only packets that passed the filter.
736 * Both statistics include packets not yet read from the kernel
737 * by libpcap, and thus not yet seen by the application.
739 if (ioctl(p
->fd
, BIOCGSTATS
, (caddr_t
)&s
) < 0) {
740 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCGSTATS: %s",
741 pcap_strerror(errno
));
745 ps
->ps_recv
= s
.bs_recv
;
746 ps
->ps_drop
= s
.bs_drop
;
751 pcap_read_bpf(pcap_t
*p
, int cnt
, pcap_handler callback
, u_char
*user
)
755 register u_char
*bp
, *ep
;
760 #ifdef HAVE_ZEROCOPY_BPF
766 * Has "pcap_breakloop()" been called?
770 * Yes - clear the flag that indicates that it
771 * has, and return PCAP_ERROR_BREAK to indicate
772 * that we were told to break out of the loop.
775 return (PCAP_ERROR_BREAK
);
780 * When reading without zero-copy from a file descriptor, we
781 * use a single buffer and return a length of data in the
782 * buffer. With zero-copy, we update the p->buffer pointer
783 * to point at whatever underlying buffer contains the next
784 * data and update cc to reflect the data found in the
787 #ifdef HAVE_ZEROCOPY_BPF
788 if (p
->md
.zerocopy
) {
789 if (p
->buffer
!= NULL
)
791 i
= pcap_next_zbuf(p
, &cc
);
799 cc
= read(p
->fd
, (char *)p
->buffer
, p
->bufsize
);
802 /* Don't choke when we get ptraced */
811 * Sigh. More AIX wonderfulness.
813 * For some unknown reason the uiomove()
814 * operation in the bpf kernel extension
815 * used to copy the buffer into user
816 * space sometimes returns EFAULT. I have
817 * no idea why this is the case given that
818 * a kernel debugger shows the user buffer
819 * is correct. This problem appears to
820 * be mostly mitigated by the memset of
821 * the buffer before it is first used.
822 * Very strange.... Shaun Clowes
824 * In any case this means that we shouldn't
825 * treat EFAULT as a fatal error; as we
826 * don't have an API for returning
827 * a "some packets were dropped since
828 * the last packet you saw" indication,
829 * we just ignore EFAULT and keep reading.
836 #if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4)
838 * Due to a SunOS bug, after 2^31 bytes, the kernel
839 * file offset overflows and read fails with EINVAL.
840 * The lseek() to 0 will fix things.
843 if (lseek(p
->fd
, 0L, SEEK_CUR
) +
845 (void)lseek(p
->fd
, 0L, SEEK_SET
);
851 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "read: %s",
852 pcap_strerror(errno
));
860 * Loop through each packet.
862 #define bhp ((struct bpf_hdr *)bp)
868 register int caplen
, hdrlen
;
871 * Has "pcap_breakloop()" been called?
872 * If so, return immediately - if we haven't read any
873 * packets, clear the flag and return PCAP_ERROR_BREAK
874 * to indicate that we were told to break out of the loop,
875 * otherwise leave the flag set, so that the *next* call
876 * will break out of the loop without having read any
877 * packets, and return the number of packets we've
883 return (PCAP_ERROR_BREAK
);
891 caplen
= bhp
->bh_caplen
;
892 hdrlen
= bhp
->bh_hdrlen
;
895 * Short-circuit evaluation: if using BPF filter
896 * in kernel, no need to do it now - we already know
897 * the packet passed the filter.
900 * Note: the filter code was generated assuming
901 * that p->fddipad was the amount of padding
902 * before the header, as that's what's required
903 * in the kernel, so we run the filter before
904 * skipping that padding.
908 bpf_filter(p
->fcode
.bf_insns
, datap
, bhp
->bh_datalen
, caplen
)) {
909 struct pcap_pkthdr pkthdr
;
911 pkthdr
.ts
.tv_sec
= bhp
->bh_tstamp
.tv_sec
;
914 * AIX's BPF returns seconds/nanoseconds time
915 * stamps, not seconds/microseconds time stamps.
917 pkthdr
.ts
.tv_usec
= bhp
->bh_tstamp
.tv_usec
/1000;
919 pkthdr
.ts
.tv_usec
= bhp
->bh_tstamp
.tv_usec
;
923 pkthdr
.caplen
= caplen
- pad
;
926 if (bhp
->bh_datalen
> pad
)
927 pkthdr
.len
= bhp
->bh_datalen
- pad
;
932 pkthdr
.caplen
= caplen
;
933 pkthdr
.len
= bhp
->bh_datalen
;
935 (*callback
)(user
, &pkthdr
, datap
);
936 bp
+= BPF_WORDALIGN(caplen
+ hdrlen
);
937 if (++n
>= cnt
&& cnt
> 0) {
946 bp
+= BPF_WORDALIGN(caplen
+ hdrlen
);
955 pcap_inject_bpf(pcap_t
*p
, const void *buf
, size_t size
)
959 ret
= write(p
->fd
, buf
, size
);
961 if (ret
== -1 && errno
== EAFNOSUPPORT
) {
963 * In Mac OS X, there's a bug wherein setting the
964 * BIOCSHDRCMPLT flag causes writes to fail; see,
967 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch
969 * So, if, on OS X, we get EAFNOSUPPORT from the write, we
970 * assume it's due to that bug, and turn off that flag
971 * and try again. If we succeed, it either means that
972 * somebody applied the fix from that URL, or other patches
975 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/
977 * and are running a Darwin kernel with those fixes, or
978 * that Apple fixed the problem in some OS X release.
980 u_int spoof_eth_src
= 0;
982 if (ioctl(p
->fd
, BIOCSHDRCMPLT
, &spoof_eth_src
) == -1) {
983 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
984 "send: can't turn off BIOCSHDRCMPLT: %s",
985 pcap_strerror(errno
));
990 * Now try the write again.
992 ret
= write(p
->fd
, buf
, size
);
994 #endif /* __APPLE__ */
996 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "send: %s",
997 pcap_strerror(errno
));
1005 bpf_odminit(char *errbuf
)
1009 if (odm_initialize() == -1) {
1010 if (odm_err_msg(odmerrno
, &errstr
) == -1)
1011 errstr
= "Unknown error";
1012 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1013 "bpf_load: odm_initialize failed: %s",
1015 return (PCAP_ERROR
);
1018 if ((odmlockid
= odm_lock("/etc/objrepos/config_lock", ODM_WAIT
)) == -1) {
1019 if (odm_err_msg(odmerrno
, &errstr
) == -1)
1020 errstr
= "Unknown error";
1021 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1022 "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s",
1024 return (PCAP_ERROR
);
1031 bpf_odmcleanup(char *errbuf
)
1035 if (odm_unlock(odmlockid
) == -1) {
1036 if (odm_err_msg(odmerrno
, &errstr
) == -1)
1037 errstr
= "Unknown error";
1038 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1039 "bpf_load: odm_unlock failed: %s",
1041 return (PCAP_ERROR
);
1044 if (odm_terminate() == -1) {
1045 if (odm_err_msg(odmerrno
, &errstr
) == -1)
1046 errstr
= "Unknown error";
1047 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1048 "bpf_load: odm_terminate failed: %s",
1050 return (PCAP_ERROR
);
1057 bpf_load(char *errbuf
)
1061 int numminors
, i
, rc
;
1064 struct bpf_config cfg_bpf
;
1065 struct cfg_load cfg_ld
;
1066 struct cfg_kmod cfg_km
;
1069 * This is very very close to what happens in the real implementation
1070 * but I've fixed some (unlikely) bug situations.
1075 if (bpf_odminit(errbuf
) == PCAP_ERROR
)
1076 return (PCAP_ERROR
);
1078 major
= genmajor(BPF_NAME
);
1080 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1081 "bpf_load: genmajor failed: %s", pcap_strerror(errno
));
1082 return (PCAP_ERROR
);
1085 minors
= getminor(major
, &numminors
, BPF_NAME
);
1087 minors
= genminor("bpf", major
, 0, BPF_MINORS
, 1, 1);
1089 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1090 "bpf_load: genminor failed: %s",
1091 pcap_strerror(errno
));
1092 return (PCAP_ERROR
);
1096 if (bpf_odmcleanup(errbuf
) == PCAP_ERROR
)
1097 return (PCAP_ERROR
);
1099 rc
= stat(BPF_NODE
"0", &sbuf
);
1100 if (rc
== -1 && errno
!= ENOENT
) {
1101 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1102 "bpf_load: can't stat %s: %s",
1103 BPF_NODE
"0", pcap_strerror(errno
));
1104 return (PCAP_ERROR
);
1107 if (rc
== -1 || getmajor(sbuf
.st_rdev
) != major
) {
1108 for (i
= 0; i
< BPF_MINORS
; i
++) {
1109 sprintf(buf
, "%s%d", BPF_NODE
, i
);
1111 if (mknod(buf
, S_IRUSR
| S_IFCHR
, domakedev(major
, i
)) == -1) {
1112 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1113 "bpf_load: can't mknod %s: %s",
1114 buf
, pcap_strerror(errno
));
1115 return (PCAP_ERROR
);
1120 /* Check if the driver is loaded */
1121 memset(&cfg_ld
, 0x0, sizeof(cfg_ld
));
1123 sprintf(cfg_ld
.path
, "%s/%s", DRIVER_PATH
, BPF_NAME
);
1124 if ((sysconfig(SYS_QUERYLOAD
, (void *)&cfg_ld
, sizeof(cfg_ld
)) == -1) ||
1125 (cfg_ld
.kmid
== 0)) {
1126 /* Driver isn't loaded, load it now */
1127 if (sysconfig(SYS_SINGLELOAD
, (void *)&cfg_ld
, sizeof(cfg_ld
)) == -1) {
1128 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1129 "bpf_load: could not load driver: %s",
1131 return (PCAP_ERROR
);
1135 /* Configure the driver */
1136 cfg_km
.cmd
= CFG_INIT
;
1137 cfg_km
.kmid
= cfg_ld
.kmid
;
1138 cfg_km
.mdilen
= sizeof(cfg_bpf
);
1139 cfg_km
.mdiptr
= (void *)&cfg_bpf
;
1140 for (i
= 0; i
< BPF_MINORS
; i
++) {
1141 cfg_bpf
.devno
= domakedev(major
, i
);
1142 if (sysconfig(SYS_CFGKMOD
, (void *)&cfg_km
, sizeof(cfg_km
)) == -1) {
1143 snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
1144 "bpf_load: could not configure driver: %s",
1146 return (PCAP_ERROR
);
1157 * Turn off rfmon mode if necessary.
1160 pcap_cleanup_bpf(pcap_t
*p
)
1162 #ifdef HAVE_BSD_IEEE80211
1164 struct ifmediareq req
;
1168 if (p
->md
.must_do_on_close
!= 0) {
1170 * There's something we have to do when closing this
1173 #ifdef HAVE_BSD_IEEE80211
1174 if (p
->md
.must_do_on_close
& MUST_CLEAR_RFMON
) {
1176 * We put the interface into rfmon mode;
1177 * take it out of rfmon mode.
1179 * XXX - if somebody else wants it in rfmon
1180 * mode, this code cannot know that, so it'll take
1181 * it out of rfmon mode.
1183 sock
= socket(AF_INET
, SOCK_DGRAM
, 0);
1186 "Can't restore interface flags (socket() failed: %s).\n"
1187 "Please adjust manually.\n",
1190 memset(&req
, 0, sizeof(req
));
1191 strncpy(req
.ifm_name
, p
->md
.device
,
1192 sizeof(req
.ifm_name
));
1193 if (ioctl(sock
, SIOCGIFMEDIA
, &req
) < 0) {
1195 "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n"
1196 "Please adjust manually.\n",
1199 if (req
.ifm_current
& IFM_IEEE80211_MONITOR
) {
1201 * Rfmon mode is currently on;
1204 memset(&ifr
, 0, sizeof(ifr
));
1205 (void)strncpy(ifr
.ifr_name
,
1207 sizeof(ifr
.ifr_name
));
1209 req
.ifm_current
& ~IFM_IEEE80211_MONITOR
;
1210 if (ioctl(sock
, SIOCSIFMEDIA
,
1213 "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n"
1214 "Please adjust manually.\n",
1222 #endif /* HAVE_BSD_IEEE80211 */
1225 * Take this pcap out of the list of pcaps for which we
1226 * have to take the interface out of some mode.
1228 pcap_remove_from_pcaps_to_close(p
);
1229 p
->md
.must_do_on_close
= 0;
1232 #ifdef HAVE_ZEROCOPY_BPF
1234 * In zero-copy mode, p->buffer is just a pointer into one of the two
1235 * memory-mapped buffers, so no need to free it.
1237 if (p
->md
.zerocopy
) {
1238 if (p
->md
.zbuf1
!= MAP_FAILED
&& p
->md
.zbuf1
!= NULL
)
1239 munmap(p
->md
.zbuf1
, p
->md
.zbufsize
);
1240 if (p
->md
.zbuf2
!= MAP_FAILED
&& p
->md
.zbuf2
!= NULL
)
1241 munmap(p
->md
.zbuf2
, p
->md
.zbufsize
);
1244 if (p
->md
.device
!= NULL
) {
1246 p
->md
.device
= NULL
;
1248 pcap_cleanup_live_common(p
);
1252 check_setif_failure(pcap_t
*p
, int error
)
1260 if (error
== ENXIO
) {
1262 * No such device exists.
1265 if (p
->opt
.rfmon
&& strncmp(p
->opt
.source
, "wlt", 3) == 0) {
1267 * Monitor mode was requested, and we're trying
1268 * to open a "wltN" device. Assume that this
1269 * is 10.4 and that we were asked to open an
1270 * "enN" device; if that device exists, return
1271 * "monitor mode not supported on the device".
1273 fd
= socket(AF_INET
, SOCK_DGRAM
, 0);
1275 strlcpy(ifr
.ifr_name
, "en",
1276 sizeof(ifr
.ifr_name
));
1277 strlcat(ifr
.ifr_name
, p
->opt
.source
+ 3,
1278 sizeof(ifr
.ifr_name
));
1279 if (ioctl(fd
, SIOCGIFFLAGS
, (char *)&ifr
) < 0) {
1281 * We assume this failed because
1282 * the underlying device doesn't
1285 err
= PCAP_ERROR_NO_SUCH_DEVICE
;
1286 strcpy(p
->errbuf
, "");
1289 * The underlying "enN" device
1290 * exists, but there's no
1291 * corresponding "wltN" device;
1292 * that means that the "enN"
1293 * device doesn't support
1294 * monitor mode, probably because
1295 * it's an Ethernet device rather
1296 * than a wireless device.
1298 err
= PCAP_ERROR_RFMON_NOTSUP
;
1303 * We can't find out whether there's
1304 * an underlying "enN" device, so
1305 * just report "no such device".
1307 err
= PCAP_ERROR_NO_SUCH_DEVICE
;
1308 strcpy(p
->errbuf
, "");
1316 strcpy(p
->errbuf
, "");
1317 return (PCAP_ERROR_NO_SUCH_DEVICE
);
1318 } else if (errno
== ENETDOWN
) {
1320 * Return a "network down" indication, so that
1321 * the application can report that rather than
1322 * saying we had a mysterious failure and
1323 * suggest that they report a problem to the
1324 * libpcap developers.
1326 return (PCAP_ERROR_IFACE_NOT_UP
);
1329 * Some other error; fill in the error string, and
1330 * return PCAP_ERROR.
1332 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSETIF: %s: %s",
1333 p
->opt
.source
, pcap_strerror(errno
));
1334 return (PCAP_ERROR
);
1339 pcap_activate_bpf(pcap_t
*p
)
1344 struct bpf_version bv
;
1347 char *wltdev
= NULL
;
1350 struct bpf_dltlist bdl
;
1351 #if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
1354 #endif /* BIOCGDLTLIST */
1355 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
1356 u_int spoof_eth_src
= 1;
1359 struct bpf_insn total_insn
;
1360 struct bpf_program total_prog
;
1361 struct utsname osinfo
;
1362 int have_osinfo
= 0;
1363 #ifdef HAVE_ZEROCOPY_BPF
1365 u_int bufmode
, zbufmax
;
1376 if (ioctl(fd
, BIOCVERSION
, (caddr_t
)&bv
) < 0) {
1377 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCVERSION: %s",
1378 pcap_strerror(errno
));
1379 status
= PCAP_ERROR
;
1382 if (bv
.bv_major
!= BPF_MAJOR_VERSION
||
1383 bv
.bv_minor
< BPF_MINOR_VERSION
) {
1384 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1385 "kernel bpf filter out of date");
1386 status
= PCAP_ERROR
;
1390 p
->md
.device
= strdup(p
->opt
.source
);
1391 if (p
->md
.device
== NULL
) {
1392 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "strdup: %s",
1393 pcap_strerror(errno
));
1394 status
= PCAP_ERROR
;
1399 * Attempt to find out the version of the OS on which we're running.
1401 if (uname(&osinfo
) == 0)
1406 * See comment in pcap_can_set_rfmon_bpf() for an explanation
1407 * of why we check the version number.
1412 * We assume osinfo.sysname is "Darwin", because
1413 * __APPLE__ is defined. We just check the version.
1415 if (osinfo
.release
[0] < '8' &&
1416 osinfo
.release
[1] == '.') {
1418 * 10.3 (Darwin 7.x) or earlier.
1420 status
= PCAP_ERROR_RFMON_NOTSUP
;
1423 if (osinfo
.release
[0] == '8' &&
1424 osinfo
.release
[1] == '.') {
1426 * 10.4 (Darwin 8.x). s/en/wlt/
1428 if (strncmp(p
->opt
.source
, "en", 2) != 0) {
1430 * Not an enN device; check
1431 * whether the device even exists.
1433 sockfd
= socket(AF_INET
, SOCK_DGRAM
, 0);
1435 strlcpy(ifr
.ifr_name
,
1437 sizeof(ifr
.ifr_name
));
1438 if (ioctl(sockfd
, SIOCGIFFLAGS
,
1439 (char *)&ifr
) < 0) {
1447 status
= PCAP_ERROR_NO_SUCH_DEVICE
;
1448 strcpy(p
->errbuf
, "");
1450 status
= PCAP_ERROR_RFMON_NOTSUP
;
1454 * We can't find out whether
1455 * the device exists, so just
1456 * report "no such device".
1458 status
= PCAP_ERROR_NO_SUCH_DEVICE
;
1459 strcpy(p
->errbuf
, "");
1463 wltdev
= malloc(strlen(p
->opt
.source
) + 2);
1464 if (wltdev
== NULL
) {
1465 (void)snprintf(p
->errbuf
,
1466 PCAP_ERRBUF_SIZE
, "malloc: %s",
1467 pcap_strerror(errno
));
1468 status
= PCAP_ERROR
;
1471 strcpy(wltdev
, "wlt");
1472 strcat(wltdev
, p
->opt
.source
+ 2);
1473 free(p
->opt
.source
);
1474 p
->opt
.source
= wltdev
;
1477 * Everything else is 10.5 or later; for those,
1478 * we just open the enN device, and set the DLT.
1482 #endif /* __APPLE__ */
1483 #ifdef HAVE_ZEROCOPY_BPF
1485 * If the BPF extension to set buffer mode is present, try setting
1486 * the mode to zero-copy. If that fails, use regular buffering. If
1487 * it succeeds but other setup fails, return an error to the user.
1489 bufmode
= BPF_BUFMODE_ZBUF
;
1490 if (ioctl(fd
, BIOCSETBUFMODE
, (caddr_t
)&bufmode
) == 0) {
1492 * We have zerocopy BPF; use it.
1497 * Set the cleanup and set/get nonblocking mode ops
1498 * as appropriate for zero-copy mode.
1500 p
->cleanup_op
= pcap_cleanup_zbuf
;
1501 p
->setnonblock_op
= pcap_setnonblock_zbuf
;
1502 p
->getnonblock_op
= pcap_getnonblock_zbuf
;
1505 * How to pick a buffer size: first, query the maximum buffer
1506 * size supported by zero-copy. This also lets us quickly
1507 * determine whether the kernel generally supports zero-copy.
1508 * Then, if a buffer size was specified, use that, otherwise
1509 * query the default buffer size, which reflects kernel
1510 * policy for a desired default. Round to the nearest page
1513 if (ioctl(fd
, BIOCGETZMAX
, (caddr_t
)&zbufmax
) < 0) {
1514 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCGETZMAX: %s",
1515 pcap_strerror(errno
));
1519 if (p
->opt
.buffer_size
!= 0) {
1521 * A buffer size was explicitly specified; use it.
1523 v
= p
->opt
.buffer_size
;
1525 if ((ioctl(fd
, BIOCGBLEN
, (caddr_t
)&v
) < 0) ||
1530 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */
1532 p
->md
.zbufsize
= roundup(v
, getpagesize());
1533 if (p
->md
.zbufsize
> zbufmax
)
1534 p
->md
.zbufsize
= zbufmax
;
1535 p
->md
.zbuf1
= mmap(NULL
, p
->md
.zbufsize
, PROT_READ
| PROT_WRITE
,
1537 p
->md
.zbuf2
= mmap(NULL
, p
->md
.zbufsize
, PROT_READ
| PROT_WRITE
,
1539 if (p
->md
.zbuf1
== MAP_FAILED
|| p
->md
.zbuf2
== MAP_FAILED
) {
1540 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "mmap: %s",
1541 pcap_strerror(errno
));
1544 bzero(&bz
, sizeof(bz
));
1545 bz
.bz_bufa
= p
->md
.zbuf1
;
1546 bz
.bz_bufb
= p
->md
.zbuf2
;
1547 bz
.bz_buflen
= p
->md
.zbufsize
;
1548 if (ioctl(fd
, BIOCSETZBUF
, (caddr_t
)&bz
) < 0) {
1549 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSETZBUF: %s",
1550 pcap_strerror(errno
));
1553 (void)strncpy(ifr
.ifr_name
, p
->opt
.source
, sizeof(ifr
.ifr_name
));
1554 if (ioctl(fd
, BIOCSETIF
, (caddr_t
)&ifr
) < 0) {
1555 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSETIF: %s: %s",
1556 p
->opt
.source
, pcap_strerror(errno
));
1559 v
= p
->md
.zbufsize
- sizeof(struct bpf_zbuf_header
);
1564 * We don't have zerocopy BPF.
1565 * Set the buffer size.
1567 if (p
->opt
.buffer_size
!= 0) {
1569 * A buffer size was explicitly specified; use it.
1571 if (ioctl(fd
, BIOCSBLEN
,
1572 (caddr_t
)&p
->opt
.buffer_size
) < 0) {
1573 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1574 "BIOCSBLEN: %s: %s", p
->opt
.source
,
1575 pcap_strerror(errno
));
1576 status
= PCAP_ERROR
;
1581 * Now bind to the device.
1583 (void)strncpy(ifr
.ifr_name
, p
->opt
.source
,
1584 sizeof(ifr
.ifr_name
));
1585 if (ioctl(fd
, BIOCSETIF
, (caddr_t
)&ifr
) < 0) {
1586 status
= check_setif_failure(p
, errno
);
1591 * No buffer size was explicitly specified.
1593 * Try finding a good size for the buffer; 32768 may
1594 * be too big, so keep cutting it in half until we
1595 * find a size that works, or run out of sizes to try.
1596 * If the default is larger, don't make it smaller.
1598 if ((ioctl(fd
, BIOCGBLEN
, (caddr_t
)&v
) < 0) ||
1601 for ( ; v
!= 0; v
>>= 1) {
1603 * Ignore the return value - this is because the
1604 * call fails on BPF systems that don't have
1605 * kernel malloc. And if the call fails, it's
1606 * no big deal, we just continue to use the
1607 * standard buffer size.
1609 (void) ioctl(fd
, BIOCSBLEN
, (caddr_t
)&v
);
1611 (void)strncpy(ifr
.ifr_name
, p
->opt
.source
,
1612 sizeof(ifr
.ifr_name
));
1613 if (ioctl(fd
, BIOCSETIF
, (caddr_t
)&ifr
) >= 0)
1614 break; /* that size worked; we're done */
1616 if (errno
!= ENOBUFS
) {
1617 status
= check_setif_failure(p
, errno
);
1623 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1624 "BIOCSBLEN: %s: No buffer size worked",
1626 status
= PCAP_ERROR
;
1632 /* Get the data link layer type. */
1633 if (ioctl(fd
, BIOCGDLT
, (caddr_t
)&v
) < 0) {
1634 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCGDLT: %s",
1635 pcap_strerror(errno
));
1636 status
= PCAP_ERROR
;
1642 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT.
1665 * We don't know what to map this to yet.
1667 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "unknown interface type %u",
1669 status
= PCAP_ERROR
;
1673 #if _BSDI_VERSION - 0 >= 199510
1674 /* The SLIP and PPP link layer header changed in BSD/OS 2.1 */
1689 case 12: /*DLT_C_HDLC*/
1697 * We know the default link type -- now determine all the DLTs
1698 * this interface supports. If this fails with EINVAL, it's
1699 * not fatal; we just don't get to use the feature later.
1701 if (get_dlt_list(fd
, v
, &bdl
, p
->errbuf
) == -1) {
1702 status
= PCAP_ERROR
;
1705 p
->dlt_count
= bdl
.bfl_len
;
1706 p
->dlt_list
= bdl
.bfl_list
;
1710 * Monitor mode fun, continued.
1712 * For 10.5 and, we're assuming, later releases, as noted above,
1713 * 802.1 adapters that support monitor mode offer both DLT_EN10MB,
1714 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information
1715 * DLT_ value. Choosing one of the 802.11 DLT_ values will turn
1718 * Therefore, if the user asked for monitor mode, we filter out
1719 * the DLT_EN10MB value, as you can't get that in monitor mode,
1720 * and, if the user didn't ask for monitor mode, we filter out
1721 * the 802.11 DLT_ values, because selecting those will turn
1722 * monitor mode on. Then, for monitor mode, if an 802.11-plus-
1723 * radio DLT_ value is offered, we try to select that, otherwise
1724 * we try to select DLT_IEEE802_11.
1727 if (isdigit((unsigned)osinfo
.release
[0]) &&
1728 (osinfo
.release
[0] == '9' ||
1729 isdigit((unsigned)osinfo
.release
[1]))) {
1731 * 10.5 (Darwin 9.x), or later.
1733 new_dlt
= find_802_11(&bdl
);
1734 if (new_dlt
!= -1) {
1736 * We have at least one 802.11 DLT_ value,
1737 * so this is an 802.11 interface.
1738 * new_dlt is the best of the 802.11
1739 * DLT_ values in the list.
1743 * Our caller wants monitor mode.
1744 * Purge DLT_EN10MB from the list
1745 * of link-layer types, as selecting
1746 * it will keep monitor mode off.
1751 * If the new mode we want isn't
1752 * the default mode, attempt to
1753 * select the new mode.
1756 if (ioctl(p
->fd
, BIOCSDLT
,
1768 * Our caller doesn't want
1769 * monitor mode. Unless this
1770 * is being done by pcap_open_live(),
1771 * purge the 802.11 link-layer types
1772 * from the list, as selecting
1773 * one of them will turn monitor
1782 * The caller requested monitor
1783 * mode, but we have no 802.11
1784 * link-layer types, so they
1787 status
= PCAP_ERROR_RFMON_NOTSUP
;
1793 #elif defined(HAVE_BSD_IEEE80211)
1795 * *BSD with the new 802.11 ioctls.
1796 * Do we want monitor mode?
1800 * Try to put the interface into monitor mode.
1802 status
= monitor_mode(p
, 1);
1811 * We're in monitor mode.
1812 * Try to find the best 802.11 DLT_ value and, if we
1813 * succeed, try to switch to that mode if we're not
1814 * already in that mode.
1816 new_dlt
= find_802_11(&bdl
);
1817 if (new_dlt
!= -1) {
1819 * We have at least one 802.11 DLT_ value.
1820 * new_dlt is the best of the 802.11
1821 * DLT_ values in the list.
1823 * If the new mode we want isn't the default mode,
1824 * attempt to select the new mode.
1827 if (ioctl(p
->fd
, BIOCSDLT
, &new_dlt
) != -1) {
1829 * We succeeded; make this the
1837 #endif /* various platforms */
1838 #endif /* BIOCGDLTLIST */
1841 * If this is an Ethernet device, and we don't have a DLT_ list,
1842 * give it a list with DLT_EN10MB and DLT_DOCSIS. (That'd give
1843 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to
1844 * do, but there's not much we can do about that without finding
1845 * some other way of determining whether it's an Ethernet or 802.11
1848 if (v
== DLT_EN10MB
&& p
->dlt_count
== 0) {
1849 p
->dlt_list
= (u_int
*) malloc(sizeof(u_int
) * 2);
1851 * If that fails, just leave the list empty.
1853 if (p
->dlt_list
!= NULL
) {
1854 p
->dlt_list
[0] = DLT_EN10MB
;
1855 p
->dlt_list
[1] = DLT_DOCSIS
;
1861 p
->fddipad
= PCAP_FDDIPAD
;
1867 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
1869 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so
1870 * the link-layer source address isn't forcibly overwritten.
1871 * (Should we ignore errors? Should we do this only if
1872 * we're open for writing?)
1874 * XXX - I seem to remember some packet-sending bug in some
1875 * BSDs - check CVS log for "bpf.c"?
1877 if (ioctl(fd
, BIOCSHDRCMPLT
, &spoof_eth_src
) == -1) {
1878 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1879 "BIOCSHDRCMPLT: %s", pcap_strerror(errno
));
1880 status
= PCAP_ERROR
;
1885 #ifdef HAVE_ZEROCOPY_BPF
1886 if (p
->md
.timeout
!= 0 && !p
->md
.zerocopy
) {
1888 if (p
->md
.timeout
) {
1891 * XXX - is this seconds/nanoseconds in AIX?
1892 * (Treating it as such doesn't fix the timeout
1893 * problem described below.)
1896 to
.tv_sec
= p
->md
.timeout
/ 1000;
1897 to
.tv_usec
= (p
->md
.timeout
* 1000) % 1000000;
1898 if (ioctl(p
->fd
, BIOCSRTIMEOUT
, (caddr_t
)&to
) < 0) {
1899 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSRTIMEOUT: %s",
1900 pcap_strerror(errno
));
1901 status
= PCAP_ERROR
;
1907 #ifdef BIOCIMMEDIATE
1909 * Darren Reed notes that
1911 * On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the
1912 * timeout appears to be ignored and it waits until the buffer
1913 * is filled before returning. The result of not having it
1914 * set is almost worse than useless if your BPF filter
1915 * is reducing things to only a few packets (i.e. one every
1918 * so we turn BIOCIMMEDIATE mode on if this is AIX.
1920 * We don't turn it on for other platforms, as that means we
1921 * get woken up for every packet, which may not be what we want;
1922 * in the Winter 1993 USENIX paper on BPF, they say:
1924 * Since a process might want to look at every packet on a
1925 * network and the time between packets can be only a few
1926 * microseconds, it is not possible to do a read system call
1927 * per packet and BPF must collect the data from several
1928 * packets and return it as a unit when the monitoring
1929 * application does a read.
1931 * which I infer is the reason for the timeout - it means we
1932 * wait that amount of time, in the hopes that more packets
1933 * will arrive and we'll get them all with one read.
1935 * Setting BIOCIMMEDIATE mode on FreeBSD (and probably other
1936 * BSDs) causes the timeout to be ignored.
1938 * On the other hand, some platforms (e.g., Linux) don't support
1939 * timeouts, they just hand stuff to you as soon as it arrives;
1940 * if that doesn't cause a problem on those platforms, it may
1941 * be OK to have BIOCIMMEDIATE mode on BSD as well.
1943 * (Note, though, that applications may depend on the read
1944 * completing, even if no packets have arrived, when the timeout
1945 * expires, e.g. GUI applications that have to check for input
1946 * while waiting for packets to arrive; a non-zero timeout
1947 * prevents "select()" from working right on FreeBSD and
1948 * possibly other BSDs, as the timer doesn't start until a
1949 * "read()" is done, so the timer isn't in effect if the
1950 * application is blocked on a "select()", and the "select()"
1951 * doesn't get woken up for a BPF device until the buffer
1955 if (ioctl(p
->fd
, BIOCIMMEDIATE
, &v
) < 0) {
1956 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCIMMEDIATE: %s",
1957 pcap_strerror(errno
));
1958 status
= PCAP_ERROR
;
1961 #endif /* BIOCIMMEDIATE */
1964 if (p
->opt
.promisc
) {
1965 /* set promiscuous mode, just warn if it fails */
1966 if (ioctl(p
->fd
, BIOCPROMISC
, NULL
) < 0) {
1967 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCPROMISC: %s",
1968 pcap_strerror(errno
));
1969 status
= PCAP_WARNING_PROMISC_NOTSUP
;
1973 if (ioctl(fd
, BIOCGBLEN
, (caddr_t
)&v
) < 0) {
1974 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCGBLEN: %s",
1975 pcap_strerror(errno
));
1976 status
= PCAP_ERROR
;
1980 #ifdef HAVE_ZEROCOPY_BPF
1981 if (!p
->md
.zerocopy
) {
1983 p
->buffer
= (u_char
*)malloc(p
->bufsize
);
1984 if (p
->buffer
== NULL
) {
1985 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "malloc: %s",
1986 pcap_strerror(errno
));
1987 status
= PCAP_ERROR
;
1991 /* For some strange reason this seems to prevent the EFAULT
1992 * problems we have experienced from AIX BPF. */
1993 memset(p
->buffer
, 0x0, p
->bufsize
);
1995 #ifdef HAVE_ZEROCOPY_BPF
2000 * If there's no filter program installed, there's
2001 * no indication to the kernel of what the snapshot
2002 * length should be, so no snapshotting is done.
2004 * Therefore, when we open the device, we install
2005 * an "accept everything" filter with the specified
2008 total_insn
.code
= (u_short
)(BPF_RET
| BPF_K
);
2011 total_insn
.k
= p
->snapshot
;
2013 total_prog
.bf_len
= 1;
2014 total_prog
.bf_insns
= &total_insn
;
2015 if (ioctl(p
->fd
, BIOCSETF
, (caddr_t
)&total_prog
) < 0) {
2016 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSETF: %s",
2017 pcap_strerror(errno
));
2018 status
= PCAP_ERROR
;
2023 * On most BPF platforms, either you can do a "select()" or
2024 * "poll()" on a BPF file descriptor and it works correctly,
2025 * or you can do it and it will return "readable" if the
2026 * hold buffer is full but not if the timeout expires *and*
2027 * a non-blocking read will, if the hold buffer is empty
2028 * but the store buffer isn't empty, rotate the buffers
2029 * and return what packets are available.
2031 * In the latter case, the fact that a non-blocking read
2032 * will give you the available packets means you can work
2033 * around the failure of "select()" and "poll()" to wake up
2034 * and return "readable" when the timeout expires by using
2035 * the timeout as the "select()" or "poll()" timeout, putting
2036 * the BPF descriptor into non-blocking mode, and read from
2037 * it regardless of whether "select()" reports it as readable
2040 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()"
2041 * won't wake up and return "readable" if the timer expires
2042 * and non-blocking reads return EWOULDBLOCK if the hold
2043 * buffer is empty, even if the store buffer is non-empty.
2045 * This means the workaround in question won't work.
2047 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd"
2048 * to -1, which means "sorry, you can't use 'select()' or 'poll()'
2049 * here". On all other BPF platforms, we set it to the FD for
2050 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking
2051 * read will, if the hold buffer is empty and the store buffer
2052 * isn't empty, rotate the buffers and return what packets are
2053 * there (and in sufficiently recent versions of OpenBSD
2054 * "select()" and "poll()" should work correctly).
2056 * XXX - what about AIX?
2058 p
->selectable_fd
= p
->fd
; /* assume select() works until we know otherwise */
2061 * We can check what OS this is.
2063 if (strcmp(osinfo
.sysname
, "FreeBSD") == 0) {
2064 if (strncmp(osinfo
.release
, "4.3-", 4) == 0 ||
2065 strncmp(osinfo
.release
, "4.4-", 4) == 0)
2066 p
->selectable_fd
= -1;
2070 p
->read_op
= pcap_read_bpf
;
2071 p
->inject_op
= pcap_inject_bpf
;
2072 p
->setfilter_op
= pcap_setfilter_bpf
;
2073 p
->setdirection_op
= pcap_setdirection_bpf
;
2074 p
->set_datalink_op
= pcap_set_datalink_bpf
;
2075 p
->getnonblock_op
= pcap_getnonblock_fd
;
2076 p
->setnonblock_op
= pcap_setnonblock_fd
;
2077 p
->stats_op
= pcap_stats_bpf
;
2078 p
->cleanup_op
= pcap_cleanup_bpf
;
2082 pcap_cleanup_bpf(p
);
2087 pcap_platform_finddevs(pcap_if_t
**alldevsp
, char *errbuf
)
2090 if (dag_platform_finddevs(alldevsp
, errbuf
) < 0)
2092 #endif /* HAVE_DAG_API */
2097 #ifdef HAVE_BSD_IEEE80211
2099 monitor_mode(pcap_t
*p
, int set
)
2102 struct ifmediareq req
;
2108 sock
= socket(AF_INET
, SOCK_DGRAM
, 0);
2110 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "can't open socket: %s",
2111 pcap_strerror(errno
));
2112 return (PCAP_ERROR
);
2115 memset(&req
, 0, sizeof req
);
2116 strncpy(req
.ifm_name
, p
->opt
.source
, sizeof req
.ifm_name
);
2119 * Find out how many media types we have.
2121 if (ioctl(sock
, SIOCGIFMEDIA
, &req
) < 0) {
2123 * Can't get the media types.
2125 if (errno
== EINVAL
) {
2127 * Interface doesn't support SIOC{G,S}IFMEDIA.
2130 return (PCAP_ERROR_RFMON_NOTSUP
);
2132 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "SIOCGIFMEDIA 1: %s",
2133 pcap_strerror(errno
));
2135 return (PCAP_ERROR
);
2137 if (req
.ifm_count
== 0) {
2142 return (PCAP_ERROR_RFMON_NOTSUP
);
2146 * Allocate a buffer to hold all the media types, and
2147 * get the media types.
2149 media_list
= malloc(req
.ifm_count
* sizeof(int));
2150 if (media_list
== NULL
) {
2151 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "malloc: %s",
2152 pcap_strerror(errno
));
2154 return (PCAP_ERROR
);
2156 req
.ifm_ulist
= media_list
;
2157 if (ioctl(sock
, SIOCGIFMEDIA
, &req
) < 0) {
2158 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "SIOCGIFMEDIA: %s",
2159 pcap_strerror(errno
));
2162 return (PCAP_ERROR
);
2166 * Look for an 802.11 "automatic" media type.
2167 * We assume that all 802.11 adapters have that media type,
2168 * and that it will carry the monitor mode supported flag.
2171 for (i
= 0; i
< req
.ifm_count
; i
++) {
2172 if (IFM_TYPE(media_list
[i
]) == IFM_IEEE80211
2173 && IFM_SUBTYPE(media_list
[i
]) == IFM_AUTO
) {
2174 /* OK, does it do monitor mode? */
2175 if (media_list
[i
] & IFM_IEEE80211_MONITOR
) {
2184 * This adapter doesn't support monitor mode.
2187 return (PCAP_ERROR_RFMON_NOTSUP
);
2192 * Don't just check whether we can enable monitor mode,
2193 * do so, if it's not already enabled.
2195 if ((req
.ifm_current
& IFM_IEEE80211_MONITOR
) == 0) {
2197 * Monitor mode isn't currently on, so turn it on,
2198 * and remember that we should turn it off when the
2203 * If we haven't already done so, arrange to have
2204 * "pcap_close_all()" called when we exit.
2206 if (!pcap_do_addexit(p
)) {
2208 * "atexit()" failed; don't put the interface
2209 * in monitor mode, just give up.
2211 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
2214 return (PCAP_ERROR
);
2216 memset(&ifr
, 0, sizeof(ifr
));
2217 (void)strncpy(ifr
.ifr_name
, p
->opt
.source
,
2218 sizeof(ifr
.ifr_name
));
2219 ifr
.ifr_media
= req
.ifm_current
| IFM_IEEE80211_MONITOR
;
2220 if (ioctl(sock
, SIOCSIFMEDIA
, &ifr
) == -1) {
2221 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
2222 "SIOCSIFMEDIA: %s", pcap_strerror(errno
));
2224 return (PCAP_ERROR
);
2227 p
->md
.must_do_on_close
|= MUST_CLEAR_RFMON
;
2230 * Add this to the list of pcaps to close when we exit.
2232 pcap_add_to_pcaps_to_close(p
);
2237 #endif /* HAVE_BSD_IEEE80211 */
2239 #if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211))
2241 * Check whether we have any 802.11 link-layer types; return the best
2242 * of the 802.11 link-layer types if we find one, and return -1
2245 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the
2246 * best 802.11 link-layer type; any of the other 802.11-plus-radio
2247 * headers are second-best; 802.11 with no radio information is
2251 find_802_11(struct bpf_dltlist
*bdlp
)
2257 * Scan the list of DLT_ values, looking for 802.11 values,
2258 * and, if we find any, choose the best of them.
2261 for (i
= 0; i
< bdlp
->bfl_len
; i
++) {
2262 switch (bdlp
->bfl_list
[i
]) {
2264 case DLT_IEEE802_11
:
2266 * 802.11, but no radio.
2268 * Offer this, and select it as the new mode
2269 * unless we've already found an 802.11
2270 * header with radio information.
2273 new_dlt
= bdlp
->bfl_list
[i
];
2276 case DLT_PRISM_HEADER
:
2277 case DLT_AIRONET_HEADER
:
2278 case DLT_IEEE802_11_RADIO_AVS
:
2280 * 802.11 with radio, but not radiotap.
2282 * Offer this, and select it as the new mode
2283 * unless we've already found the radiotap DLT_.
2285 if (new_dlt
!= DLT_IEEE802_11_RADIO
)
2286 new_dlt
= bdlp
->bfl_list
[i
];
2289 case DLT_IEEE802_11_RADIO
:
2291 * 802.11 with radiotap.
2293 * Offer this, and select it as the new mode.
2295 new_dlt
= bdlp
->bfl_list
[i
];
2308 #endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */
2310 #if defined(__APPLE__) && defined(BIOCGDLTLIST)
2312 * Remove DLT_EN10MB from the list of DLT_ values.
2315 remove_en(pcap_t
*p
)
2320 * Scan the list of DLT_ values and discard DLT_EN10MB.
2323 for (i
= 0; i
< p
->dlt_count
; i
++) {
2324 switch (p
->dlt_list
[i
]) {
2328 * Don't offer this one.
2334 * Just copy this mode over.
2340 * Copy this DLT_ value to its new position.
2342 p
->dlt_list
[j
] = p
->dlt_list
[i
];
2347 * Set the DLT_ count to the number of entries we copied.
2353 * Remove DLT_EN10MB from the list of DLT_ values, and look for the
2354 * best 802.11 link-layer type in that list and return it.
2355 * Radiotap is better than anything else; 802.11 with any other radio
2356 * header is better than 802.11 with no radio header.
2359 remove_802_11(pcap_t
*p
)
2364 * Scan the list of DLT_ values and discard 802.11 values.
2367 for (i
= 0; i
< p
->dlt_count
; i
++) {
2368 switch (p
->dlt_list
[i
]) {
2370 case DLT_IEEE802_11
:
2371 case DLT_PRISM_HEADER
:
2372 case DLT_AIRONET_HEADER
:
2373 case DLT_IEEE802_11_RADIO
:
2374 case DLT_IEEE802_11_RADIO_AVS
:
2376 * 802.11. Don't offer this one.
2382 * Just copy this mode over.
2388 * Copy this DLT_ value to its new position.
2390 p
->dlt_list
[j
] = p
->dlt_list
[i
];
2395 * Set the DLT_ count to the number of entries we copied.
2399 #endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */
2402 pcap_setfilter_bpf(pcap_t
*p
, struct bpf_program
*fp
)
2405 * Free any user-mode filter we might happen to have installed.
2407 pcap_freecode(&p
->fcode
);
2410 * Try to install the kernel filter.
2412 if (ioctl(p
->fd
, BIOCSETF
, (caddr_t
)fp
) == 0) {
2416 p
->md
.use_bpf
= 1; /* filtering in the kernel */
2419 * Discard any previously-received packets, as they might
2420 * have passed whatever filter was formerly in effect, but
2421 * might not pass this filter (BIOCSETF discards packets
2422 * buffered in the kernel, so you can lose packets in any
2432 * If it failed with EINVAL, that's probably because the program
2433 * is invalid or too big. Validate it ourselves; if we like it
2434 * (we currently allow backward branches, to support protochain),
2435 * run it in userland. (There's no notion of "too big" for
2438 * Otherwise, just give up.
2439 * XXX - if the copy of the program into the kernel failed,
2440 * we will get EINVAL rather than, say, EFAULT on at least
2443 if (errno
!= EINVAL
) {
2444 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
, "BIOCSETF: %s",
2445 pcap_strerror(errno
));
2450 * install_bpf_program() validates the program.
2452 * XXX - what if we already have a filter in the kernel?
2454 if (install_bpf_program(p
, fp
) < 0)
2456 p
->md
.use_bpf
= 0; /* filtering in userland */
2461 * Set direction flag: Which packets do we accept on a forwarding
2462 * single device? IN, OUT or both?
2465 pcap_setdirection_bpf(pcap_t
*p
, pcap_direction_t d
)
2467 #if defined(BIOCSDIRECTION)
2470 direction
= (d
== PCAP_D_IN
) ? BPF_D_IN
:
2471 ((d
== PCAP_D_OUT
) ? BPF_D_OUT
: BPF_D_INOUT
);
2472 if (ioctl(p
->fd
, BIOCSDIRECTION
, &direction
) == -1) {
2473 (void) snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2474 "Cannot set direction to %s: %s",
2475 (d
== PCAP_D_IN
) ? "PCAP_D_IN" :
2476 ((d
== PCAP_D_OUT
) ? "PCAP_D_OUT" : "PCAP_D_INOUT"),
2481 #elif defined(BIOCSSEESENT)
2485 * We don't support PCAP_D_OUT.
2487 if (d
== PCAP_D_OUT
) {
2488 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2489 "Setting direction to PCAP_D_OUT is not supported on BPF");
2493 seesent
= (d
== PCAP_D_INOUT
);
2494 if (ioctl(p
->fd
, BIOCSSEESENT
, &seesent
) == -1) {
2495 (void) snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2496 "Cannot set direction to %s: %s",
2497 (d
== PCAP_D_INOUT
) ? "PCAP_D_INOUT" : "PCAP_D_IN",
2503 (void) snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2504 "This system doesn't support BIOCSSEESENT, so the direction can't be set");
2510 pcap_set_datalink_bpf(pcap_t
*p
, int dlt
)
2513 if (ioctl(p
->fd
, BIOCSDLT
, &dlt
) == -1) {
2514 (void) snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2515 "Cannot set DLT %d: %s", dlt
, strerror(errno
));