1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
28 #include <pcap-stdinc.h>
35 #ifdef HAVE_SYS_BITYPES_H
36 #include <sys/bitypes.h>
38 #include <sys/types.h>
39 #include <sys/socket.h>
45 #include <sys/param.h>
48 #include <netinet/in.h>
49 #include <arpa/inet.h>
65 #include "ethertype.h"
69 #include "ieee80211.h"
71 #include "sunatmpos.h"
74 #include "pcap/ipnet.h"
80 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
81 #include <linux/types.h>
82 #include <linux/if_packet.h>
83 #include <linux/filter.h>
86 #ifdef HAVE_NET_PFVAR_H
87 #include <sys/socket.h>
89 #include <net/pfvar.h>
90 #include <net/if_pflog.h>
94 #define offsetof(s, e) ((size_t)&((s *)0)->e)
99 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
105 u_int8_t u6_addr8
[16];
106 u_int16_t u6_addr16
[8];
107 u_int32_t u6_addr32
[4];
109 #define s6_addr in6_u.u6_addr8
110 #define s6_addr16 in6_u.u6_addr16
111 #define s6_addr32 in6_u.u6_addr32
112 #define s6_addr64 in6_u.u6_addr64
115 typedef unsigned short sa_family_t
;
117 #define __SOCKADDR_COMMON(sa_prefix) \
118 sa_family_t sa_prefix##family
120 /* Ditto, for IPv6. */
123 __SOCKADDR_COMMON (sin6_
);
124 u_int16_t sin6_port
; /* Transport layer port # */
125 u_int32_t sin6_flowinfo
; /* IPv6 flow information */
126 struct in6_addr sin6_addr
; /* IPv6 address */
129 #ifndef EAI_ADDRFAMILY
131 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
132 int ai_family
; /* PF_xxx */
133 int ai_socktype
; /* SOCK_xxx */
134 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
135 size_t ai_addrlen
; /* length of ai_addr */
136 char *ai_canonname
; /* canonical name for hostname */
137 struct sockaddr
*ai_addr
; /* binary address */
138 struct addrinfo
*ai_next
; /* next structure in linked list */
140 #endif /* EAI_ADDRFAMILY */
141 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
143 #include <netdb.h> /* for "struct addrinfo" */
146 #include <pcap/namedb.h>
148 #include "nametoaddr.h"
150 #define ETHERMTU 1500
152 #ifndef ETHERTYPE_TEB
153 #define ETHERTYPE_TEB 0x6558
156 #ifndef IPPROTO_HOPOPTS
157 #define IPPROTO_HOPOPTS 0
159 #ifndef IPPROTO_ROUTING
160 #define IPPROTO_ROUTING 43
162 #ifndef IPPROTO_FRAGMENT
163 #define IPPROTO_FRAGMENT 44
165 #ifndef IPPROTO_DSTOPTS
166 #define IPPROTO_DSTOPTS 60
169 #define IPPROTO_SCTP 132
172 #define GENEVE_PORT 6081
174 #ifdef HAVE_OS_PROTO_H
175 #include "os-proto.h"
178 #define JMP(c) ((c)|BPF_JMP|BPF_K)
181 * "Push" the current value of the link-layer header type and link-layer
182 * header offset onto a "stack", and set a new value. (It's not a
183 * full-blown stack; we keep only the top two items.)
185 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
187 (cs)->prevlinktype = (cs)->linktype; \
188 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
189 (cs)->linktype = (new_linktype); \
190 (cs)->off_linkhdr.is_variable = (new_is_variable); \
191 (cs)->off_linkhdr.constant_part = (new_constant_part); \
192 (cs)->off_linkhdr.reg = (new_reg); \
193 (cs)->is_geneve = 0; \
197 * Offset "not set" value.
199 #define OFFSET_NOT_SET 0xffffffffU
202 * Absolute offsets, which are offsets from the beginning of the raw
203 * packet data, are, in the general case, the sum of a variable value
204 * and a constant value; the variable value may be absent, in which
205 * case the offset is only the constant value, and the constant value
206 * may be zero, in which case the offset is only the variable value.
208 * bpf_abs_offset is a structure containing all that information:
210 * is_variable is 1 if there's a variable part.
212 * constant_part is the constant part of the value, possibly zero;
214 * if is_variable is 1, reg is the register number for a register
215 * containing the variable value if the register has been assigned,
225 * Value passed to gen_load_a() to indicate what the offset argument
226 * is relative to the beginning of.
229 OR_PACKET
, /* full packet data */
230 OR_LINKHDR
, /* link-layer header */
231 OR_PREVLINKHDR
, /* previous link-layer header */
232 OR_LLC
, /* 802.2 LLC header */
233 OR_PREVMPLSHDR
, /* previous MPLS header */
234 OR_LINKTYPE
, /* link-layer type */
235 OR_LINKPL
, /* link-layer payload */
236 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
237 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
238 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
242 * We divy out chunks of memory rather than call malloc each time so
243 * we don't have to worry about leaking memory. It's probably
244 * not a big deal if all this memory was wasted but if this ever
245 * goes into a library that would probably not be a good idea.
247 * XXX - this *is* in a library....
250 #define CHUNK0SIZE 1024
256 /* Code generator state */
258 struct _compiler_state
{
268 int outermostlinktype
;
273 /* Hack for handling VLAN and MPLS stacks. */
274 u_int label_stack_depth
;
275 u_int vlan_stack_depth
;
282 * As errors are handled by a longjmp, anything allocated must
283 * be freed in the longjmp handler, so it must be reachable
286 * One thing that's allocated is the result of pcap_nametoaddrinfo();
287 * it must be freed with freeaddrinfo(). This variable points to
288 * any addrinfo structure that would need to be freed.
294 * Various code constructs need to know the layout of the packet.
295 * These values give the necessary offsets from the beginning
296 * of the packet data.
300 * Absolute offset of the beginning of the link-layer header.
302 bpf_abs_offset off_linkhdr
;
305 * If we're checking a link-layer header for a packet encapsulated
306 * in another protocol layer, this is the equivalent information
307 * for the previous layers' link-layer header from the beginning
308 * of the raw packet data.
310 bpf_abs_offset off_prevlinkhdr
;
313 * This is the equivalent information for the outermost layers'
316 bpf_abs_offset off_outermostlinkhdr
;
319 * Absolute offset of the beginning of the link-layer payload.
321 bpf_abs_offset off_linkpl
;
324 * "off_linktype" is the offset to information in the link-layer
325 * header giving the packet type. This is an absolute offset
326 * from the beginning of the packet.
328 * For Ethernet, it's the offset of the Ethernet type field; this
329 * means that it must have a value that skips VLAN tags.
331 * For link-layer types that always use 802.2 headers, it's the
332 * offset of the LLC header; this means that it must have a value
333 * that skips VLAN tags.
335 * For PPP, it's the offset of the PPP type field.
337 * For Cisco HDLC, it's the offset of the CHDLC type field.
339 * For BSD loopback, it's the offset of the AF_ value.
341 * For Linux cooked sockets, it's the offset of the type field.
343 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
344 * encapsulation, in which case, IP is assumed.
346 bpf_abs_offset off_linktype
;
349 * TRUE if the link layer includes an ATM pseudo-header.
354 * TRUE if "geneve" appeared in the filter; it causes us to
355 * generate code that checks for a Geneve header and assume
356 * that later filters apply to the encapsulated payload.
361 * These are offsets for the ATM pseudo-header.
368 * These are offsets for the MTP2 fields.
374 * These are offsets for the MTP3 fields.
382 * This is the offset of the first byte after the ATM pseudo_header,
383 * or -1 if there is no ATM pseudo-header.
388 * These are offsets to the beginning of the network-layer header.
389 * They are relative to the beginning of the link-layer payload
390 * (i.e., they don't include off_linkhdr.constant_part or
391 * off_linkpl.constant_part).
393 * If the link layer never uses 802.2 LLC:
395 * "off_nl" and "off_nl_nosnap" are the same.
397 * If the link layer always uses 802.2 LLC:
399 * "off_nl" is the offset if there's a SNAP header following
402 * "off_nl_nosnap" is the offset if there's no SNAP header.
404 * If the link layer is Ethernet:
406 * "off_nl" is the offset if the packet is an Ethernet II packet
407 * (we assume no 802.3+802.2+SNAP);
409 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
410 * with an 802.2 header following it.
416 * Here we handle simple allocation of the scratch registers.
417 * If too many registers are alloc'd, the allocator punts.
419 int regused
[BPF_MEMWORDS
];
425 struct chunk chunks
[NCHUNKS
];
430 bpf_syntax_error(compiler_state_t
*cstate
, const char *msg
)
432 bpf_error(cstate
, "syntax error in filter expression: %s", msg
);
438 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
443 if (cstate
->bpf_pcap
!= NULL
)
444 (void)pcap_vsnprintf(pcap_geterr(cstate
->bpf_pcap
),
445 PCAP_ERRBUF_SIZE
, fmt
, ap
);
447 longjmp(cstate
->top_ctx
, 1);
451 static void init_linktype(compiler_state_t
*, pcap_t
*);
453 static void init_regs(compiler_state_t
*);
454 static int alloc_reg(compiler_state_t
*);
455 static void free_reg(compiler_state_t
*, int);
457 static void initchunks(compiler_state_t
*cstate
);
458 static void *newchunk(compiler_state_t
*cstate
, size_t);
459 static void freechunks(compiler_state_t
*cstate
);
460 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
461 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
462 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
463 static inline void syntax(compiler_state_t
*cstate
);
465 static void backpatch(struct block
*, struct block
*);
466 static void merge(struct block
*, struct block
*);
467 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
469 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
471 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
473 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
475 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
477 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
478 u_int
, bpf_int32
, bpf_u_int32
);
479 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
480 u_int
, const u_char
*);
481 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, bpf_u_int32
,
482 bpf_u_int32
, bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
483 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
485 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
487 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
488 static struct block
*gen_uncond(compiler_state_t
*, int);
489 static inline struct block
*gen_true(compiler_state_t
*);
490 static inline struct block
*gen_false(compiler_state_t
*);
491 static struct block
*gen_ether_linktype(compiler_state_t
*, int);
492 static struct block
*gen_ipnet_linktype(compiler_state_t
*, int);
493 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, int);
494 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
495 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
496 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
497 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
498 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
499 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
501 static int ethertype_to_ppptype(int);
502 static struct block
*gen_linktype(compiler_state_t
*, int);
503 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
504 static struct block
*gen_llc_linktype(compiler_state_t
*, int);
505 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
506 int, int, u_int
, u_int
);
508 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
509 struct in6_addr
*, int, int, u_int
, u_int
);
511 static struct block
*gen_ahostop(compiler_state_t
*, const u_char
*, int);
512 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
513 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
514 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
515 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
516 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
517 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
518 static struct block
*gen_mpls_linktype(compiler_state_t
*, int);
519 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
522 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
523 struct in6_addr
*, int, int, int);
526 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
528 static struct block
*gen_ipfrag(compiler_state_t
*);
529 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_int32
);
530 static struct block
*gen_portrangeatom(compiler_state_t
*, int, bpf_int32
,
532 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_int32
);
533 static struct block
*gen_portrangeatom6(compiler_state_t
*, int, bpf_int32
,
535 struct block
*gen_portop(compiler_state_t
*, int, int, int);
536 static struct block
*gen_port(compiler_state_t
*, int, int, int);
537 struct block
*gen_portrangeop(compiler_state_t
*, int, int, int, int);
538 static struct block
*gen_portrange(compiler_state_t
*, int, int, int, int);
539 struct block
*gen_portop6(compiler_state_t
*, int, int, int);
540 static struct block
*gen_port6(compiler_state_t
*, int, int, int);
541 struct block
*gen_portrangeop6(compiler_state_t
*, int, int, int, int);
542 static struct block
*gen_portrange6(compiler_state_t
*, int, int, int, int);
543 static int lookup_proto(compiler_state_t
*, const char *, int);
544 static struct block
*gen_protochain(compiler_state_t
*, int, int, int);
545 static struct block
*gen_proto(compiler_state_t
*, int, int, int);
546 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
547 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
548 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
549 static struct block
*gen_len(compiler_state_t
*, int, int);
550 static struct block
*gen_check_802_11_data_frame(compiler_state_t
*);
551 static struct block
*gen_geneve_ll_check(compiler_state_t
*cstate
);
553 static struct block
*gen_ppi_dlt_check(compiler_state_t
*);
554 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
557 initchunks(compiler_state_t
*cstate
)
561 for (i
= 0; i
< NCHUNKS
; i
++) {
562 cstate
->chunks
[i
].n_left
= 0;
563 cstate
->chunks
[i
].m
= NULL
;
565 cstate
->cur_chunk
= 0;
569 newchunk(compiler_state_t
*cstate
, size_t n
)
576 /* XXX Round up to nearest long. */
577 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
579 /* XXX Round up to structure boundary. */
583 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
584 if (n
> cp
->n_left
) {
585 ++cp
, k
= ++cstate
->cur_chunk
;
587 bpf_error(cstate
, "out of memory");
588 size
= CHUNK0SIZE
<< k
;
589 cp
->m
= (void *)malloc(size
);
591 bpf_error(cstate
, "out of memory");
592 memset((char *)cp
->m
, 0, size
);
595 bpf_error(cstate
, "out of memory");
598 return (void *)((char *)cp
->m
+ cp
->n_left
);
602 freechunks(compiler_state_t
*cstate
)
606 for (i
= 0; i
< NCHUNKS
; ++i
)
607 if (cstate
->chunks
[i
].m
!= NULL
)
608 free(cstate
->chunks
[i
].m
);
612 * A strdup whose allocations are freed after code generation is over.
615 sdup(compiler_state_t
*cstate
, const char *s
)
617 size_t n
= strlen(s
) + 1;
618 char *cp
= newchunk(cstate
, n
);
624 static inline struct block
*
625 new_block(compiler_state_t
*cstate
, int code
)
629 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
636 static inline struct slist
*
637 new_stmt(compiler_state_t
*cstate
, int code
)
641 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
647 static struct block
*
648 gen_retblk(compiler_state_t
*cstate
, int v
)
650 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
657 syntax(compiler_state_t
*cstate
)
659 bpf_error(cstate
, "syntax error in filter expression");
663 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
664 const char *buf
, int optimize
, bpf_u_int32 mask
)
666 compiler_state_t cstate
;
667 const char * volatile xbuf
= buf
;
668 yyscan_t scanner
= NULL
;
669 YY_BUFFER_STATE in_buffer
= NULL
;
682 * If this pcap_t hasn't been activated, it doesn't have a
683 * link-layer type, so we can't use it.
686 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
687 "not-yet-activated pcap_t passed to pcap_compile");
692 cstate
.no_optimize
= 0;
694 cstate
.ic
.root
= NULL
;
695 cstate
.ic
.cur_mark
= 0;
699 if (setjmp(cstate
.top_ctx
)) {
701 if (cstate
.ai
!= NULL
)
702 freeaddrinfo(cstate
.ai
);
708 cstate
.netmask
= mask
;
710 cstate
.snaplen
= pcap_snapshot(p
);
711 if (cstate
.snaplen
== 0) {
712 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
713 "snaplen of 0 rejects all packets");
718 if (pcap_lex_init(&scanner
) != 0)
719 bpf_error(&cstate
, "can't initialize scanner: %s", pcap_strerror(errno
));
720 in_buffer
= pcap__scan_string(xbuf
? xbuf
: "", scanner
);
723 * Associate the compiler state with the lexical analyzer
726 pcap_set_extra(&cstate
, scanner
);
728 init_linktype(&cstate
, p
);
729 (void)pcap_parse(scanner
, &cstate
);
731 if (cstate
.ic
.root
== NULL
)
732 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
734 if (optimize
&& !cstate
.no_optimize
) {
735 bpf_optimize(&cstate
, &cstate
.ic
);
736 if (cstate
.ic
.root
== NULL
||
737 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0))
738 bpf_error(&cstate
, "expression rejects all packets");
740 program
->bf_insns
= icode_to_fcode(&cstate
, &cstate
.ic
, cstate
.ic
.root
, &len
);
741 program
->bf_len
= len
;
743 rc
= 0; /* We're all okay */
747 * Clean up everything for the lexical analyzer.
749 if (in_buffer
!= NULL
)
750 pcap__delete_buffer(in_buffer
, scanner
);
752 pcap_lex_destroy(scanner
);
755 * Clean up our own allocated memory.
763 * entry point for using the compiler with no pcap open
764 * pass in all the stuff that is needed explicitly instead.
767 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
768 struct bpf_program
*program
,
769 const char *buf
, int optimize
, bpf_u_int32 mask
)
774 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
777 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
783 * Clean up a "struct bpf_program" by freeing all the memory allocated
787 pcap_freecode(struct bpf_program
*program
)
790 if (program
->bf_insns
!= NULL
) {
791 free((char *)program
->bf_insns
);
792 program
->bf_insns
= NULL
;
797 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
798 * which of the jt and jf fields has been resolved and which is a pointer
799 * back to another unresolved block (or nil). At least one of the fields
800 * in each block is already resolved.
803 backpatch(list
, target
)
804 struct block
*list
, *target
;
821 * Merge the lists in b0 and b1, using the 'sense' field to indicate
822 * which of jt and jf is the link.
826 struct block
*b0
, *b1
;
828 register struct block
**p
= &b0
;
830 /* Find end of list. */
832 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
834 /* Concatenate the lists. */
839 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
841 struct block
*ppi_dlt_check
;
844 * Insert before the statements of the first (root) block any
845 * statements needed to load the lengths of any variable-length
846 * headers into registers.
848 * XXX - a fancier strategy would be to insert those before the
849 * statements of all blocks that use those lengths and that
850 * have no predecessors that use them, so that we only compute
851 * the lengths if we need them. There might be even better
852 * approaches than that.
854 * However, those strategies would be more complicated, and
855 * as we don't generate code to compute a length if the
856 * program has no tests that use the length, and as most
857 * tests will probably use those lengths, we would just
858 * postpone computing the lengths so that it's not done
859 * for tests that fail early, and it's not clear that's
862 insert_compute_vloffsets(cstate
, p
->head
);
865 * For DLT_PPI captures, generate a check of the per-packet
866 * DLT value to make sure it's DLT_IEEE802_11.
868 * XXX - TurboCap cards use DLT_PPI for Ethernet.
869 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
870 * with appropriate Ethernet information and use that rather
871 * than using something such as DLT_PPI where you don't know
872 * the link-layer header type until runtime, which, in the
873 * general case, would force us to generate both Ethernet *and*
874 * 802.11 code (*and* anything else for which PPI is used)
875 * and choose between them early in the BPF program?
877 ppi_dlt_check
= gen_ppi_dlt_check(cstate
);
878 if (ppi_dlt_check
!= NULL
)
879 gen_and(ppi_dlt_check
, p
);
881 backpatch(p
, gen_retblk(cstate
, cstate
->snaplen
));
882 p
->sense
= !p
->sense
;
883 backpatch(p
, gen_retblk(cstate
, 0));
884 cstate
->ic
.root
= p
->head
;
889 struct block
*b0
, *b1
;
891 backpatch(b0
, b1
->head
);
892 b0
->sense
= !b0
->sense
;
893 b1
->sense
= !b1
->sense
;
895 b1
->sense
= !b1
->sense
;
901 struct block
*b0
, *b1
;
903 b0
->sense
= !b0
->sense
;
904 backpatch(b0
, b1
->head
);
905 b0
->sense
= !b0
->sense
;
914 b
->sense
= !b
->sense
;
917 static struct block
*
918 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
919 u_int size
, bpf_int32 v
)
921 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
924 static struct block
*
925 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
926 u_int size
, bpf_int32 v
)
928 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
931 static struct block
*
932 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
933 u_int size
, bpf_int32 v
)
935 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
938 static struct block
*
939 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
940 u_int size
, bpf_int32 v
)
942 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
945 static struct block
*
946 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
947 u_int size
, bpf_int32 v
)
949 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
952 static struct block
*
953 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
954 u_int size
, bpf_int32 v
, bpf_u_int32 mask
)
956 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
959 static struct block
*
960 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
961 u_int size
, const u_char
*v
)
963 register struct block
*b
, *tmp
;
967 register const u_char
*p
= &v
[size
- 4];
968 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
969 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
971 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
, w
);
978 register const u_char
*p
= &v
[size
- 2];
979 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
981 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
, w
);
988 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
997 * AND the field of size "size" at offset "offset" relative to the header
998 * specified by "offrel" with "mask", and compare it with the value "v"
999 * with the test specified by "jtype"; if "reverse" is true, the test
1000 * should test the opposite of "jtype".
1002 static struct block
*
1003 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, bpf_u_int32 offset
,
1004 bpf_u_int32 size
, bpf_u_int32 mask
, bpf_u_int32 jtype
, int reverse
,
1007 struct slist
*s
, *s2
;
1010 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1012 if (mask
!= 0xffffffff) {
1013 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1018 b
= new_block(cstate
, JMP(jtype
));
1021 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
1027 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1029 cstate
->pcap_fddipad
= p
->fddipad
;
1032 * We start out with only one link-layer header.
1034 cstate
->outermostlinktype
= pcap_datalink(p
);
1035 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1036 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1037 cstate
->off_outermostlinkhdr
.reg
= -1;
1039 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1040 cstate
->off_prevlinkhdr
.constant_part
= 0;
1041 cstate
->off_prevlinkhdr
.is_variable
= 0;
1042 cstate
->off_prevlinkhdr
.reg
= -1;
1044 cstate
->linktype
= cstate
->outermostlinktype
;
1045 cstate
->off_linkhdr
.constant_part
= 0;
1046 cstate
->off_linkhdr
.is_variable
= 0;
1047 cstate
->off_linkhdr
.reg
= -1;
1052 cstate
->off_linkpl
.constant_part
= 0;
1053 cstate
->off_linkpl
.is_variable
= 0;
1054 cstate
->off_linkpl
.reg
= -1;
1056 cstate
->off_linktype
.constant_part
= 0;
1057 cstate
->off_linktype
.is_variable
= 0;
1058 cstate
->off_linktype
.reg
= -1;
1061 * Assume it's not raw ATM with a pseudo-header, for now.
1064 cstate
->off_vpi
= -1;
1065 cstate
->off_vci
= -1;
1066 cstate
->off_proto
= -1;
1067 cstate
->off_payload
= -1;
1072 cstate
->is_geneve
= 0;
1075 * And assume we're not doing SS7.
1077 cstate
->off_li
= -1;
1078 cstate
->off_li_hsl
= -1;
1079 cstate
->off_sio
= -1;
1080 cstate
->off_opc
= -1;
1081 cstate
->off_dpc
= -1;
1082 cstate
->off_sls
= -1;
1084 cstate
->label_stack_depth
= 0;
1085 cstate
->vlan_stack_depth
= 0;
1087 switch (cstate
->linktype
) {
1090 cstate
->off_linktype
.constant_part
= 2;
1091 cstate
->off_linkpl
.constant_part
= 6;
1092 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1093 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1096 case DLT_ARCNET_LINUX
:
1097 cstate
->off_linktype
.constant_part
= 4;
1098 cstate
->off_linkpl
.constant_part
= 8;
1099 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1100 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1104 cstate
->off_linktype
.constant_part
= 12;
1105 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1106 cstate
->off_nl
= 0; /* Ethernet II */
1107 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1112 * SLIP doesn't have a link level type. The 16 byte
1113 * header is hacked into our SLIP driver.
1115 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1116 cstate
->off_linkpl
.constant_part
= 16;
1118 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1121 case DLT_SLIP_BSDOS
:
1122 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1123 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1125 cstate
->off_linkpl
.constant_part
= 24;
1127 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1132 cstate
->off_linktype
.constant_part
= 0;
1133 cstate
->off_linkpl
.constant_part
= 4;
1135 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1139 cstate
->off_linktype
.constant_part
= 0;
1140 cstate
->off_linkpl
.constant_part
= 12;
1142 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1147 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1148 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1149 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1150 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1152 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1157 * This does no include the Ethernet header, and
1158 * only covers session state.
1160 cstate
->off_linktype
.constant_part
= 6;
1161 cstate
->off_linkpl
.constant_part
= 8;
1163 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1167 cstate
->off_linktype
.constant_part
= 5;
1168 cstate
->off_linkpl
.constant_part
= 24;
1170 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1175 * FDDI doesn't really have a link-level type field.
1176 * We set "off_linktype" to the offset of the LLC header.
1178 * To check for Ethernet types, we assume that SSAP = SNAP
1179 * is being used and pick out the encapsulated Ethernet type.
1180 * XXX - should we generate code to check for SNAP?
1182 cstate
->off_linktype
.constant_part
= 13;
1183 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1184 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1185 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1186 cstate
->off_nl
= 8; /* 802.2+SNAP */
1187 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1192 * Token Ring doesn't really have a link-level type field.
1193 * We set "off_linktype" to the offset of the LLC header.
1195 * To check for Ethernet types, we assume that SSAP = SNAP
1196 * is being used and pick out the encapsulated Ethernet type.
1197 * XXX - should we generate code to check for SNAP?
1199 * XXX - the header is actually variable-length.
1200 * Some various Linux patched versions gave 38
1201 * as "off_linktype" and 40 as "off_nl"; however,
1202 * if a token ring packet has *no* routing
1203 * information, i.e. is not source-routed, the correct
1204 * values are 20 and 22, as they are in the vanilla code.
1206 * A packet is source-routed iff the uppermost bit
1207 * of the first byte of the source address, at an
1208 * offset of 8, has the uppermost bit set. If the
1209 * packet is source-routed, the total number of bytes
1210 * of routing information is 2 plus bits 0x1F00 of
1211 * the 16-bit value at an offset of 14 (shifted right
1212 * 8 - figure out which byte that is).
1214 cstate
->off_linktype
.constant_part
= 14;
1215 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1216 cstate
->off_nl
= 8; /* 802.2+SNAP */
1217 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1220 case DLT_PRISM_HEADER
:
1221 case DLT_IEEE802_11_RADIO_AVS
:
1222 case DLT_IEEE802_11_RADIO
:
1223 cstate
->off_linkhdr
.is_variable
= 1;
1224 /* Fall through, 802.11 doesn't have a variable link
1225 * prefix but is otherwise the same. */
1227 case DLT_IEEE802_11
:
1229 * 802.11 doesn't really have a link-level type field.
1230 * We set "off_linktype.constant_part" to the offset of
1233 * To check for Ethernet types, we assume that SSAP = SNAP
1234 * is being used and pick out the encapsulated Ethernet type.
1235 * XXX - should we generate code to check for SNAP?
1237 * We also handle variable-length radio headers here.
1238 * The Prism header is in theory variable-length, but in
1239 * practice it's always 144 bytes long. However, some
1240 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1241 * sometimes or always supply an AVS header, so we
1242 * have to check whether the radio header is a Prism
1243 * header or an AVS header, so, in practice, it's
1246 cstate
->off_linktype
.constant_part
= 24;
1247 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1248 cstate
->off_linkpl
.is_variable
= 1;
1249 cstate
->off_nl
= 8; /* 802.2+SNAP */
1250 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1255 * At the moment we treat PPI the same way that we treat
1256 * normal Radiotap encoded packets. The difference is in
1257 * the function that generates the code at the beginning
1258 * to compute the header length. Since this code generator
1259 * of PPI supports bare 802.11 encapsulation only (i.e.
1260 * the encapsulated DLT should be DLT_IEEE802_11) we
1261 * generate code to check for this too.
1263 cstate
->off_linktype
.constant_part
= 24;
1264 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1265 cstate
->off_linkpl
.is_variable
= 1;
1266 cstate
->off_linkhdr
.is_variable
= 1;
1267 cstate
->off_nl
= 8; /* 802.2+SNAP */
1268 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1271 case DLT_ATM_RFC1483
:
1272 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1274 * assume routed, non-ISO PDUs
1275 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1277 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1278 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1279 * latter would presumably be treated the way PPPoE
1280 * should be, so you can do "pppoe and udp port 2049"
1281 * or "pppoa and tcp port 80" and have it check for
1282 * PPPo{A,E} and a PPP protocol of IP and....
1284 cstate
->off_linktype
.constant_part
= 0;
1285 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1286 cstate
->off_nl
= 8; /* 802.2+SNAP */
1287 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1292 * Full Frontal ATM; you get AALn PDUs with an ATM
1296 cstate
->off_vpi
= SUNATM_VPI_POS
;
1297 cstate
->off_vci
= SUNATM_VCI_POS
;
1298 cstate
->off_proto
= PROTO_POS
;
1299 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1300 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1301 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1302 cstate
->off_nl
= 8; /* 802.2+SNAP */
1303 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1309 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1310 cstate
->off_linkpl
.constant_part
= 0;
1312 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1315 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1316 cstate
->off_linktype
.constant_part
= 14;
1317 cstate
->off_linkpl
.constant_part
= 16;
1319 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1324 * LocalTalk does have a 1-byte type field in the LLAP header,
1325 * but really it just indicates whether there is a "short" or
1326 * "long" DDP packet following.
1328 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1329 cstate
->off_linkpl
.constant_part
= 0;
1331 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1334 case DLT_IP_OVER_FC
:
1336 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1337 * link-level type field. We set "off_linktype" to the
1338 * offset of the LLC header.
1340 * To check for Ethernet types, we assume that SSAP = SNAP
1341 * is being used and pick out the encapsulated Ethernet type.
1342 * XXX - should we generate code to check for SNAP? RFC
1343 * 2625 says SNAP should be used.
1345 cstate
->off_linktype
.constant_part
= 16;
1346 cstate
->off_linkpl
.constant_part
= 16;
1347 cstate
->off_nl
= 8; /* 802.2+SNAP */
1348 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1353 * XXX - we should set this to handle SNAP-encapsulated
1354 * frames (NLPID of 0x80).
1356 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1357 cstate
->off_linkpl
.constant_part
= 0;
1359 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1363 * the only BPF-interesting FRF.16 frames are non-control frames;
1364 * Frame Relay has a variable length link-layer
1365 * so lets start with offset 4 for now and increments later on (FIXME);
1368 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1369 cstate
->off_linkpl
.constant_part
= 0;
1371 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1374 case DLT_APPLE_IP_OVER_IEEE1394
:
1375 cstate
->off_linktype
.constant_part
= 16;
1376 cstate
->off_linkpl
.constant_part
= 18;
1378 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1381 case DLT_SYMANTEC_FIREWALL
:
1382 cstate
->off_linktype
.constant_part
= 6;
1383 cstate
->off_linkpl
.constant_part
= 44;
1384 cstate
->off_nl
= 0; /* Ethernet II */
1385 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1388 #ifdef HAVE_NET_PFVAR_H
1390 cstate
->off_linktype
.constant_part
= 0;
1391 cstate
->off_linkpl
.constant_part
= PFLOG_HDRLEN
;
1393 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1397 case DLT_JUNIPER_MFR
:
1398 case DLT_JUNIPER_MLFR
:
1399 case DLT_JUNIPER_MLPPP
:
1400 case DLT_JUNIPER_PPP
:
1401 case DLT_JUNIPER_CHDLC
:
1402 case DLT_JUNIPER_FRELAY
:
1403 cstate
->off_linktype
.constant_part
= 4;
1404 cstate
->off_linkpl
.constant_part
= 4;
1406 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1409 case DLT_JUNIPER_ATM1
:
1410 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1411 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1413 cstate
->off_nl_nosnap
= 10;
1416 case DLT_JUNIPER_ATM2
:
1417 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1418 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1420 cstate
->off_nl_nosnap
= 10;
1423 /* frames captured on a Juniper PPPoE service PIC
1424 * contain raw ethernet frames */
1425 case DLT_JUNIPER_PPPOE
:
1426 case DLT_JUNIPER_ETHER
:
1427 cstate
->off_linkpl
.constant_part
= 14;
1428 cstate
->off_linktype
.constant_part
= 16;
1429 cstate
->off_nl
= 18; /* Ethernet II */
1430 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1433 case DLT_JUNIPER_PPPOE_ATM
:
1434 cstate
->off_linktype
.constant_part
= 4;
1435 cstate
->off_linkpl
.constant_part
= 6;
1437 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1440 case DLT_JUNIPER_GGSN
:
1441 cstate
->off_linktype
.constant_part
= 6;
1442 cstate
->off_linkpl
.constant_part
= 12;
1444 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1447 case DLT_JUNIPER_ES
:
1448 cstate
->off_linktype
.constant_part
= 6;
1449 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1450 cstate
->off_nl
= -1; /* not really a network layer but raw IP addresses */
1451 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1454 case DLT_JUNIPER_MONITOR
:
1455 cstate
->off_linktype
.constant_part
= 12;
1456 cstate
->off_linkpl
.constant_part
= 12;
1457 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1458 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1461 case DLT_BACNET_MS_TP
:
1462 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1463 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1464 cstate
->off_nl
= -1;
1465 cstate
->off_nl_nosnap
= -1;
1468 case DLT_JUNIPER_SERVICES
:
1469 cstate
->off_linktype
.constant_part
= 12;
1470 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1471 cstate
->off_nl
= -1; /* L3 proto location dep. on cookie type */
1472 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1475 case DLT_JUNIPER_VP
:
1476 cstate
->off_linktype
.constant_part
= 18;
1477 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1478 cstate
->off_nl
= -1;
1479 cstate
->off_nl_nosnap
= -1;
1482 case DLT_JUNIPER_ST
:
1483 cstate
->off_linktype
.constant_part
= 18;
1484 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1485 cstate
->off_nl
= -1;
1486 cstate
->off_nl_nosnap
= -1;
1489 case DLT_JUNIPER_ISM
:
1490 cstate
->off_linktype
.constant_part
= 8;
1491 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1492 cstate
->off_nl
= -1;
1493 cstate
->off_nl_nosnap
= -1;
1496 case DLT_JUNIPER_VS
:
1497 case DLT_JUNIPER_SRX_E2E
:
1498 case DLT_JUNIPER_FIBRECHANNEL
:
1499 case DLT_JUNIPER_ATM_CEMIC
:
1500 cstate
->off_linktype
.constant_part
= 8;
1501 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1502 cstate
->off_nl
= -1;
1503 cstate
->off_nl_nosnap
= -1;
1508 cstate
->off_li_hsl
= 4;
1509 cstate
->off_sio
= 3;
1510 cstate
->off_opc
= 4;
1511 cstate
->off_dpc
= 4;
1512 cstate
->off_sls
= 7;
1513 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1514 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1515 cstate
->off_nl
= -1;
1516 cstate
->off_nl_nosnap
= -1;
1519 case DLT_MTP2_WITH_PHDR
:
1521 cstate
->off_li_hsl
= 8;
1522 cstate
->off_sio
= 7;
1523 cstate
->off_opc
= 8;
1524 cstate
->off_dpc
= 8;
1525 cstate
->off_sls
= 11;
1526 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1527 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1528 cstate
->off_nl
= -1;
1529 cstate
->off_nl_nosnap
= -1;
1533 cstate
->off_li
= 22;
1534 cstate
->off_li_hsl
= 24;
1535 cstate
->off_sio
= 23;
1536 cstate
->off_opc
= 24;
1537 cstate
->off_dpc
= 24;
1538 cstate
->off_sls
= 27;
1539 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1540 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1541 cstate
->off_nl
= -1;
1542 cstate
->off_nl_nosnap
= -1;
1546 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1547 cstate
->off_linkpl
.constant_part
= 4;
1549 cstate
->off_nl_nosnap
= 0;
1554 * Currently, only raw "link[N:M]" filtering is supported.
1556 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
1557 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1558 cstate
->off_nl
= -1; /* variable, min 16, max 71 steps of 7 */
1559 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1563 cstate
->off_linktype
.constant_part
= 1;
1564 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
1566 cstate
->off_nl_nosnap
= -1;
1569 case DLT_NETANALYZER
:
1570 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
1571 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1572 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
1573 cstate
->off_nl
= 0; /* Ethernet II */
1574 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1577 case DLT_NETANALYZER_TRANSPARENT
:
1578 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1579 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1580 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1581 cstate
->off_nl
= 0; /* Ethernet II */
1582 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1587 * For values in the range in which we've assigned new
1588 * DLT_ values, only raw "link[N:M]" filtering is supported.
1590 if (cstate
->linktype
>= DLT_MATCHING_MIN
&&
1591 cstate
->linktype
<= DLT_MATCHING_MAX
) {
1592 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1593 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1594 cstate
->off_nl
= -1;
1595 cstate
->off_nl_nosnap
= -1;
1597 bpf_error(cstate
, "unknown data link type %d", cstate
->linktype
);
1602 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
1606 * Load a value relative to the specified absolute offset.
1608 static struct slist
*
1609 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
1610 u_int offset
, u_int size
)
1612 struct slist
*s
, *s2
;
1614 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
1617 * If "s" is non-null, it has code to arrange that the X register
1618 * contains the variable part of the absolute offset, so we
1619 * generate a load relative to that, with an offset of
1620 * abs_offset->constant_part + offset.
1622 * Otherwise, we can do an absolute load with an offset of
1623 * abs_offset->constant_part + offset.
1627 * "s" points to a list of statements that puts the
1628 * variable part of the absolute offset into the X register.
1629 * Do an indirect load, to use the X register as an offset.
1631 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1632 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
1636 * There is no variable part of the absolute offset, so
1637 * just do an absolute load.
1639 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1640 s
->s
.k
= abs_offset
->constant_part
+ offset
;
1646 * Load a value relative to the beginning of the specified header.
1648 static struct slist
*
1649 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1652 struct slist
*s
, *s2
;
1657 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1662 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
1665 case OR_PREVLINKHDR
:
1666 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
1670 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
1673 case OR_PREVMPLSHDR
:
1674 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
1678 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
1681 case OR_LINKPL_NOSNAP
:
1682 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
1686 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
1691 * Load the X register with the length of the IPv4 header
1692 * (plus the offset of the link-layer header, if it's
1693 * preceded by a variable-length header such as a radio
1694 * header), in bytes.
1696 s
= gen_loadx_iphdrlen(cstate
);
1699 * Load the item at {offset of the link-layer payload} +
1700 * {offset, relative to the start of the link-layer
1701 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1702 * {specified offset}.
1704 * If the offset of the link-layer payload is variable,
1705 * the variable part of that offset is included in the
1706 * value in the X register, and we include the constant
1707 * part in the offset of the load.
1709 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1710 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
1715 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
1726 * Generate code to load into the X register the sum of the length of
1727 * the IPv4 header and the variable part of the offset of the link-layer
1730 static struct slist
*
1731 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
1733 struct slist
*s
, *s2
;
1735 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
1738 * The offset of the link-layer payload has a variable
1739 * part. "s" points to a list of statements that put
1740 * the variable part of that offset into the X register.
1742 * The 4*([k]&0xf) addressing mode can't be used, as we
1743 * don't have a constant offset, so we have to load the
1744 * value in question into the A register and add to it
1745 * the value from the X register.
1747 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
1748 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1750 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1753 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
1758 * The A register now contains the length of the IP header.
1759 * We need to add to it the variable part of the offset of
1760 * the link-layer payload, which is still in the X
1761 * register, and move the result into the X register.
1763 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
1764 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
1767 * The offset of the link-layer payload is a constant,
1768 * so no code was generated to load the (non-existent)
1769 * variable part of that offset.
1771 * This means we can use the 4*([k]&0xf) addressing
1772 * mode. Load the length of the IPv4 header, which
1773 * is at an offset of cstate->off_nl from the beginning of
1774 * the link-layer payload, and thus at an offset of
1775 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1776 * of the raw packet data, using that addressing mode.
1778 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
1779 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1784 static struct block
*
1785 gen_uncond(compiler_state_t
*cstate
, int rsense
)
1790 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
1792 b
= new_block(cstate
, JMP(BPF_JEQ
));
1798 static inline struct block
*
1799 gen_true(compiler_state_t
*cstate
)
1801 return gen_uncond(cstate
, 1);
1804 static inline struct block
*
1805 gen_false(compiler_state_t
*cstate
)
1807 return gen_uncond(cstate
, 0);
1811 * Byte-swap a 32-bit number.
1812 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1813 * big-endian platforms.)
1815 #define SWAPLONG(y) \
1816 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1819 * Generate code to match a particular packet type.
1821 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1822 * value, if <= ETHERMTU. We use that to determine whether to
1823 * match the type/length field or to check the type/length field for
1824 * a value <= ETHERMTU to see whether it's a type field and then do
1825 * the appropriate test.
1827 static struct block
*
1828 gen_ether_linktype(compiler_state_t
*cstate
, int proto
)
1830 struct block
*b0
, *b1
;
1836 case LLCSAP_NETBEUI
:
1838 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1839 * so we check the DSAP and SSAP.
1841 * LLCSAP_IP checks for IP-over-802.2, rather
1842 * than IP-over-Ethernet or IP-over-SNAP.
1844 * XXX - should we check both the DSAP and the
1845 * SSAP, like this, or should we check just the
1846 * DSAP, as we do for other types <= ETHERMTU
1847 * (i.e., other SAP values)?
1849 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1851 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
1852 ((proto
<< 8) | proto
));
1860 * Ethernet_II frames, which are Ethernet
1861 * frames with a frame type of ETHERTYPE_IPX;
1863 * Ethernet_802.3 frames, which are 802.3
1864 * frames (i.e., the type/length field is
1865 * a length field, <= ETHERMTU, rather than
1866 * a type field) with the first two bytes
1867 * after the Ethernet/802.3 header being
1870 * Ethernet_802.2 frames, which are 802.3
1871 * frames with an 802.2 LLC header and
1872 * with the IPX LSAP as the DSAP in the LLC
1875 * Ethernet_SNAP frames, which are 802.3
1876 * frames with an LLC header and a SNAP
1877 * header and with an OUI of 0x000000
1878 * (encapsulated Ethernet) and a protocol
1879 * ID of ETHERTYPE_IPX in the SNAP header.
1881 * XXX - should we generate the same code both
1882 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1886 * This generates code to check both for the
1887 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1889 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1890 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
1894 * Now we add code to check for SNAP frames with
1895 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1897 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
1901 * Now we generate code to check for 802.3
1902 * frames in general.
1904 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1908 * Now add the check for 802.3 frames before the
1909 * check for Ethernet_802.2 and Ethernet_802.3,
1910 * as those checks should only be done on 802.3
1911 * frames, not on Ethernet frames.
1916 * Now add the check for Ethernet_II frames, and
1917 * do that before checking for the other frame
1920 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1924 case ETHERTYPE_ATALK
:
1925 case ETHERTYPE_AARP
:
1927 * EtherTalk (AppleTalk protocols on Ethernet link
1928 * layer) may use 802.2 encapsulation.
1932 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1933 * we check for an Ethernet type field less than
1934 * 1500, which means it's an 802.3 length field.
1936 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1940 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1941 * SNAP packets with an organization code of
1942 * 0x080007 (Apple, for Appletalk) and a protocol
1943 * type of ETHERTYPE_ATALK (Appletalk).
1945 * 802.2-encapsulated ETHERTYPE_AARP packets are
1946 * SNAP packets with an organization code of
1947 * 0x000000 (encapsulated Ethernet) and a protocol
1948 * type of ETHERTYPE_AARP (Appletalk ARP).
1950 if (proto
== ETHERTYPE_ATALK
)
1951 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
1952 else /* proto == ETHERTYPE_AARP */
1953 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
1957 * Check for Ethernet encapsulation (Ethertalk
1958 * phase 1?); we just check for the Ethernet
1961 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
1967 if (proto
<= ETHERMTU
) {
1969 * This is an LLC SAP value, so the frames
1970 * that match would be 802.2 frames.
1971 * Check that the frame is an 802.2 frame
1972 * (i.e., that the length/type field is
1973 * a length field, <= ETHERMTU) and
1974 * then check the DSAP.
1976 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1978 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, (bpf_int32
)proto
);
1983 * This is an Ethernet type, so compare
1984 * the length/type field with it (if
1985 * the frame is an 802.2 frame, the length
1986 * field will be <= ETHERMTU, and, as
1987 * "proto" is > ETHERMTU, this test
1988 * will fail and the frame won't match,
1989 * which is what we want).
1991 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
1998 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1999 * or IPv6 then we have an error.
2001 static struct block
*
2002 gen_ipnet_linktype(compiler_state_t
*cstate
, int proto
)
2007 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, (bpf_int32
)IPH_AF_INET
);
2010 case ETHERTYPE_IPV6
:
2011 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
2012 (bpf_int32
)IPH_AF_INET6
);
2019 return gen_false(cstate
);
2023 * Generate code to match a particular packet type.
2025 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2026 * value, if <= ETHERMTU. We use that to determine whether to
2027 * match the type field or to check the type field for the special
2028 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2030 static struct block
*
2031 gen_linux_sll_linktype(compiler_state_t
*cstate
, int proto
)
2033 struct block
*b0
, *b1
;
2039 case LLCSAP_NETBEUI
:
2041 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2042 * so we check the DSAP and SSAP.
2044 * LLCSAP_IP checks for IP-over-802.2, rather
2045 * than IP-over-Ethernet or IP-over-SNAP.
2047 * XXX - should we check both the DSAP and the
2048 * SSAP, like this, or should we check just the
2049 * DSAP, as we do for other types <= ETHERMTU
2050 * (i.e., other SAP values)?
2052 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2053 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
2054 ((proto
<< 8) | proto
));
2060 * Ethernet_II frames, which are Ethernet
2061 * frames with a frame type of ETHERTYPE_IPX;
2063 * Ethernet_802.3 frames, which have a frame
2064 * type of LINUX_SLL_P_802_3;
2066 * Ethernet_802.2 frames, which are 802.3
2067 * frames with an 802.2 LLC header (i.e, have
2068 * a frame type of LINUX_SLL_P_802_2) and
2069 * with the IPX LSAP as the DSAP in the LLC
2072 * Ethernet_SNAP frames, which are 802.3
2073 * frames with an LLC header and a SNAP
2074 * header and with an OUI of 0x000000
2075 * (encapsulated Ethernet) and a protocol
2076 * ID of ETHERTYPE_IPX in the SNAP header.
2078 * First, do the checks on LINUX_SLL_P_802_2
2079 * frames; generate the check for either
2080 * Ethernet_802.2 or Ethernet_SNAP frames, and
2081 * then put a check for LINUX_SLL_P_802_2 frames
2084 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
2085 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2087 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2091 * Now check for 802.3 frames and OR that with
2092 * the previous test.
2094 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2098 * Now add the check for Ethernet_II frames, and
2099 * do that before checking for the other frame
2102 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
2106 case ETHERTYPE_ATALK
:
2107 case ETHERTYPE_AARP
:
2109 * EtherTalk (AppleTalk protocols on Ethernet link
2110 * layer) may use 802.2 encapsulation.
2114 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2115 * we check for the 802.2 protocol type in the
2116 * "Ethernet type" field.
2118 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2121 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2122 * SNAP packets with an organization code of
2123 * 0x080007 (Apple, for Appletalk) and a protocol
2124 * type of ETHERTYPE_ATALK (Appletalk).
2126 * 802.2-encapsulated ETHERTYPE_AARP packets are
2127 * SNAP packets with an organization code of
2128 * 0x000000 (encapsulated Ethernet) and a protocol
2129 * type of ETHERTYPE_AARP (Appletalk ARP).
2131 if (proto
== ETHERTYPE_ATALK
)
2132 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2133 else /* proto == ETHERTYPE_AARP */
2134 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2138 * Check for Ethernet encapsulation (Ethertalk
2139 * phase 1?); we just check for the Ethernet
2142 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2148 if (proto
<= ETHERMTU
) {
2150 * This is an LLC SAP value, so the frames
2151 * that match would be 802.2 frames.
2152 * Check for the 802.2 protocol type
2153 * in the "Ethernet type" field, and
2154 * then check the DSAP.
2156 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2157 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2163 * This is an Ethernet type, so compare
2164 * the length/type field with it (if
2165 * the frame is an 802.2 frame, the length
2166 * field will be <= ETHERMTU, and, as
2167 * "proto" is > ETHERMTU, this test
2168 * will fail and the frame won't match,
2169 * which is what we want).
2171 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2176 static struct slist
*
2177 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2179 struct slist
*s1
, *s2
;
2180 struct slist
*sjeq_avs_cookie
;
2181 struct slist
*sjcommon
;
2184 * This code is not compatible with the optimizer, as
2185 * we are generating jmp instructions within a normal
2186 * slist of instructions
2188 cstate
->no_optimize
= 1;
2191 * Generate code to load the length of the radio header into
2192 * the register assigned to hold that length, if one has been
2193 * assigned. (If one hasn't been assigned, no code we've
2194 * generated uses that prefix, so we don't need to generate any
2197 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2198 * or always use the AVS header rather than the Prism header.
2199 * We load a 4-byte big-endian value at the beginning of the
2200 * raw packet data, and see whether, when masked with 0xFFFFF000,
2201 * it's equal to 0x80211000. If so, that indicates that it's
2202 * an AVS header (the masked-out bits are the version number).
2203 * Otherwise, it's a Prism header.
2205 * XXX - the Prism header is also, in theory, variable-length,
2206 * but no known software generates headers that aren't 144
2209 if (cstate
->off_linkhdr
.reg
!= -1) {
2213 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2217 * AND it with 0xFFFFF000.
2219 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2220 s2
->s
.k
= 0xFFFFF000;
2224 * Compare with 0x80211000.
2226 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2227 sjeq_avs_cookie
->s
.k
= 0x80211000;
2228 sappend(s1
, sjeq_avs_cookie
);
2233 * The 4 bytes at an offset of 4 from the beginning of
2234 * the AVS header are the length of the AVS header.
2235 * That field is big-endian.
2237 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2240 sjeq_avs_cookie
->s
.jt
= s2
;
2243 * Now jump to the code to allocate a register
2244 * into which to save the header length and
2245 * store the length there. (The "jump always"
2246 * instruction needs to have the k field set;
2247 * it's added to the PC, so, as we're jumping
2248 * over a single instruction, it should be 1.)
2250 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2252 sappend(s1
, sjcommon
);
2255 * Now for the code that handles the Prism header.
2256 * Just load the length of the Prism header (144)
2257 * into the A register. Have the test for an AVS
2258 * header branch here if we don't have an AVS header.
2260 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2263 sjeq_avs_cookie
->s
.jf
= s2
;
2266 * Now allocate a register to hold that value and store
2267 * it. The code for the AVS header will jump here after
2268 * loading the length of the AVS header.
2270 s2
= new_stmt(cstate
, BPF_ST
);
2271 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2273 sjcommon
->s
.jf
= s2
;
2276 * Now move it into the X register.
2278 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2286 static struct slist
*
2287 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2289 struct slist
*s1
, *s2
;
2292 * Generate code to load the length of the AVS header into
2293 * the register assigned to hold that length, if one has been
2294 * assigned. (If one hasn't been assigned, no code we've
2295 * generated uses that prefix, so we don't need to generate any
2298 if (cstate
->off_linkhdr
.reg
!= -1) {
2300 * The 4 bytes at an offset of 4 from the beginning of
2301 * the AVS header are the length of the AVS header.
2302 * That field is big-endian.
2304 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2308 * Now allocate a register to hold that value and store
2311 s2
= new_stmt(cstate
, BPF_ST
);
2312 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2316 * Now move it into the X register.
2318 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2326 static struct slist
*
2327 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2329 struct slist
*s1
, *s2
;
2332 * Generate code to load the length of the radiotap header into
2333 * the register assigned to hold that length, if one has been
2334 * assigned. (If one hasn't been assigned, no code we've
2335 * generated uses that prefix, so we don't need to generate any
2338 if (cstate
->off_linkhdr
.reg
!= -1) {
2340 * The 2 bytes at offsets of 2 and 3 from the beginning
2341 * of the radiotap header are the length of the radiotap
2342 * header; unfortunately, it's little-endian, so we have
2343 * to load it a byte at a time and construct the value.
2347 * Load the high-order byte, at an offset of 3, shift it
2348 * left a byte, and put the result in the X register.
2350 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2352 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2355 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2359 * Load the next byte, at an offset of 2, and OR the
2360 * value from the X register into it.
2362 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2365 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2369 * Now allocate a register to hold that value and store
2372 s2
= new_stmt(cstate
, BPF_ST
);
2373 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2377 * Now move it into the X register.
2379 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2388 * At the moment we treat PPI as normal Radiotap encoded
2389 * packets. The difference is in the function that generates
2390 * the code at the beginning to compute the header length.
2391 * Since this code generator of PPI supports bare 802.11
2392 * encapsulation only (i.e. the encapsulated DLT should be
2393 * DLT_IEEE802_11) we generate code to check for this too;
2394 * that's done in finish_parse().
2396 static struct slist
*
2397 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2399 struct slist
*s1
, *s2
;
2402 * Generate code to load the length of the radiotap header
2403 * into the register assigned to hold that length, if one has
2406 if (cstate
->off_linkhdr
.reg
!= -1) {
2408 * The 2 bytes at offsets of 2 and 3 from the beginning
2409 * of the radiotap header are the length of the radiotap
2410 * header; unfortunately, it's little-endian, so we have
2411 * to load it a byte at a time and construct the value.
2415 * Load the high-order byte, at an offset of 3, shift it
2416 * left a byte, and put the result in the X register.
2418 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2420 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2423 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2427 * Load the next byte, at an offset of 2, and OR the
2428 * value from the X register into it.
2430 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2433 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2437 * Now allocate a register to hold that value and store
2440 s2
= new_stmt(cstate
, BPF_ST
);
2441 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2445 * Now move it into the X register.
2447 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2456 * Load a value relative to the beginning of the link-layer header after the 802.11
2457 * header, i.e. LLC_SNAP.
2458 * The link-layer header doesn't necessarily begin at the beginning
2459 * of the packet data; there might be a variable-length prefix containing
2460 * radio information.
2462 static struct slist
*
2463 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
2466 struct slist
*sjset_data_frame_1
;
2467 struct slist
*sjset_data_frame_2
;
2468 struct slist
*sjset_qos
;
2469 struct slist
*sjset_radiotap_flags_present
;
2470 struct slist
*sjset_radiotap_ext_present
;
2471 struct slist
*sjset_radiotap_tsft_present
;
2472 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2473 struct slist
*s_roundup
;
2475 if (cstate
->off_linkpl
.reg
== -1) {
2477 * No register has been assigned to the offset of
2478 * the link-layer payload, which means nobody needs
2479 * it; don't bother computing it - just return
2480 * what we already have.
2486 * This code is not compatible with the optimizer, as
2487 * we are generating jmp instructions within a normal
2488 * slist of instructions
2490 cstate
->no_optimize
= 1;
2493 * If "s" is non-null, it has code to arrange that the X register
2494 * contains the length of the prefix preceding the link-layer
2497 * Otherwise, the length of the prefix preceding the link-layer
2498 * header is "off_outermostlinkhdr.constant_part".
2502 * There is no variable-length header preceding the
2503 * link-layer header.
2505 * Load the length of the fixed-length prefix preceding
2506 * the link-layer header (if any) into the X register,
2507 * and store it in the cstate->off_linkpl.reg register.
2508 * That length is off_outermostlinkhdr.constant_part.
2510 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
2511 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
2515 * The X register contains the offset of the beginning of the
2516 * link-layer header; add 24, which is the minimum length
2517 * of the MAC header for a data frame, to that, and store it
2518 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2519 * which is at the offset in the X register, with an indexed load.
2521 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
2523 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2526 s2
= new_stmt(cstate
, BPF_ST
);
2527 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2530 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2535 * Check the Frame Control field to see if this is a data frame;
2536 * a data frame has the 0x08 bit (b3) in that field set and the
2537 * 0x04 bit (b2) clear.
2539 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
2540 sjset_data_frame_1
->s
.k
= 0x08;
2541 sappend(s
, sjset_data_frame_1
);
2544 * If b3 is set, test b2, otherwise go to the first statement of
2545 * the rest of the program.
2547 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
2548 sjset_data_frame_2
->s
.k
= 0x04;
2549 sappend(s
, sjset_data_frame_2
);
2550 sjset_data_frame_1
->s
.jf
= snext
;
2553 * If b2 is not set, this is a data frame; test the QoS bit.
2554 * Otherwise, go to the first statement of the rest of the
2557 sjset_data_frame_2
->s
.jt
= snext
;
2558 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
2559 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2560 sappend(s
, sjset_qos
);
2563 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2565 * Otherwise, go to the first statement of the rest of the
2568 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2569 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2571 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2574 s2
= new_stmt(cstate
, BPF_ST
);
2575 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2579 * If we have a radiotap header, look at it to see whether
2580 * there's Atheros padding between the MAC-layer header
2583 * Note: all of the fields in the radiotap header are
2584 * little-endian, so we byte-swap all of the values
2585 * we test against, as they will be loaded as big-endian
2588 * XXX - in the general case, we would have to scan through
2589 * *all* the presence bits, if there's more than one word of
2590 * presence bits. That would require a loop, meaning that
2591 * we wouldn't be able to run the filter in the kernel.
2593 * We assume here that the Atheros adapters that insert the
2594 * annoying padding don't have multiple antennae and therefore
2595 * do not generate radiotap headers with multiple presence words.
2597 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
2599 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2600 * in the first presence flag word?
2602 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
2606 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2607 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
2608 sappend(s
, sjset_radiotap_flags_present
);
2611 * If not, skip all of this.
2613 sjset_radiotap_flags_present
->s
.jf
= snext
;
2616 * Otherwise, is the "extension" bit set in that word?
2618 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2619 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
2620 sappend(s
, sjset_radiotap_ext_present
);
2621 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
2624 * If so, skip all of this.
2626 sjset_radiotap_ext_present
->s
.jt
= snext
;
2629 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2631 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2632 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
2633 sappend(s
, sjset_radiotap_tsft_present
);
2634 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
2637 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2638 * at an offset of 16 from the beginning of the raw packet
2639 * data (8 bytes for the radiotap header and 8 bytes for
2642 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2645 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2648 sjset_radiotap_tsft_present
->s
.jt
= s2
;
2650 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2651 sjset_tsft_datapad
->s
.k
= 0x20;
2652 sappend(s
, sjset_tsft_datapad
);
2655 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2656 * at an offset of 8 from the beginning of the raw packet
2657 * data (8 bytes for the radiotap header).
2659 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2662 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2665 sjset_radiotap_tsft_present
->s
.jf
= s2
;
2667 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2668 sjset_notsft_datapad
->s
.k
= 0x20;
2669 sappend(s
, sjset_notsft_datapad
);
2672 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2673 * set, round the length of the 802.11 header to
2674 * a multiple of 4. Do that by adding 3 and then
2675 * dividing by and multiplying by 4, which we do by
2678 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2679 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
2680 sappend(s
, s_roundup
);
2681 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2684 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
2687 s2
= new_stmt(cstate
, BPF_ST
);
2688 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2691 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2692 sjset_tsft_datapad
->s
.jf
= snext
;
2693 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2694 sjset_notsft_datapad
->s
.jf
= snext
;
2696 sjset_qos
->s
.jf
= snext
;
2702 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
2706 /* There is an implicit dependency between the link
2707 * payload and link header since the payload computation
2708 * includes the variable part of the header. Therefore,
2709 * if nobody else has allocated a register for the link
2710 * header and we need it, do it now. */
2711 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
2712 cstate
->off_linkhdr
.reg
== -1)
2713 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
2716 * For link-layer types that have a variable-length header
2717 * preceding the link-layer header, generate code to load
2718 * the offset of the link-layer header into the register
2719 * assigned to that offset, if any.
2721 * XXX - this, and the next switch statement, won't handle
2722 * encapsulation of 802.11 or 802.11+radio information in
2723 * some other protocol stack. That's significantly more
2726 switch (cstate
->outermostlinktype
) {
2728 case DLT_PRISM_HEADER
:
2729 s
= gen_load_prism_llprefixlen(cstate
);
2732 case DLT_IEEE802_11_RADIO_AVS
:
2733 s
= gen_load_avs_llprefixlen(cstate
);
2736 case DLT_IEEE802_11_RADIO
:
2737 s
= gen_load_radiotap_llprefixlen(cstate
);
2741 s
= gen_load_ppi_llprefixlen(cstate
);
2750 * For link-layer types that have a variable-length link-layer
2751 * header, generate code to load the offset of the link-layer
2752 * payload into the register assigned to that offset, if any.
2754 switch (cstate
->outermostlinktype
) {
2756 case DLT_IEEE802_11
:
2757 case DLT_PRISM_HEADER
:
2758 case DLT_IEEE802_11_RADIO_AVS
:
2759 case DLT_IEEE802_11_RADIO
:
2761 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
2766 * If we have any offset-loading code, append all the
2767 * existing statements in the block to those statements,
2768 * and make the resulting list the list of statements
2772 sappend(s
, b
->stmts
);
2777 static struct block
*
2778 gen_ppi_dlt_check(compiler_state_t
*cstate
)
2780 struct slist
*s_load_dlt
;
2783 if (cstate
->linktype
== DLT_PPI
)
2785 /* Create the statements that check for the DLT
2787 s_load_dlt
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2788 s_load_dlt
->s
.k
= 4;
2790 b
= new_block(cstate
, JMP(BPF_JEQ
));
2792 b
->stmts
= s_load_dlt
;
2793 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2804 * Take an absolute offset, and:
2806 * if it has no variable part, return NULL;
2808 * if it has a variable part, generate code to load the register
2809 * containing that variable part into the X register, returning
2810 * a pointer to that code - if no register for that offset has
2811 * been allocated, allocate it first.
2813 * (The code to set that register will be generated later, but will
2814 * be placed earlier in the code sequence.)
2816 static struct slist
*
2817 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
2821 if (off
->is_variable
) {
2822 if (off
->reg
== -1) {
2824 * We haven't yet assigned a register for the
2825 * variable part of the offset of the link-layer
2826 * header; allocate one.
2828 off
->reg
= alloc_reg(cstate
);
2832 * Load the register containing the variable part of the
2833 * offset of the link-layer header into the X register.
2835 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
2840 * That offset isn't variable, there's no variable part,
2841 * so we don't need to generate any code.
2848 * Map an Ethernet type to the equivalent PPP type.
2851 ethertype_to_ppptype(proto
)
2860 case ETHERTYPE_IPV6
:
2868 case ETHERTYPE_ATALK
:
2882 * I'm assuming the "Bridging PDU"s that go
2883 * over PPP are Spanning Tree Protocol
2897 * Generate any tests that, for encapsulation of a link-layer packet
2898 * inside another protocol stack, need to be done to check for those
2899 * link-layer packets (and that haven't already been done by a check
2900 * for that encapsulation).
2902 static struct block
*
2903 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
2907 if (cstate
->is_geneve
)
2908 return gen_geneve_ll_check(cstate
);
2910 switch (cstate
->prevlinktype
) {
2914 * This is LANE-encapsulated Ethernet; check that the LANE
2915 * packet doesn't begin with an LE Control marker, i.e.
2916 * that it's data, not a control message.
2918 * (We've already generated a test for LANE.)
2920 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
2926 * No such tests are necessary.
2934 * Generate code to match a particular packet type by matching the
2935 * link-layer type field or fields in the 802.2 LLC header.
2937 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2938 * value, if <= ETHERMTU.
2940 static struct block
*
2941 gen_linktype(compiler_state_t
*cstate
, int proto
)
2943 struct block
*b0
, *b1
, *b2
;
2944 const char *description
;
2946 /* are we checking MPLS-encapsulated packets? */
2947 if (cstate
->label_stack_depth
> 0) {
2951 /* FIXME add other L3 proto IDs */
2952 return gen_mpls_linktype(cstate
, Q_IP
);
2954 case ETHERTYPE_IPV6
:
2956 /* FIXME add other L3 proto IDs */
2957 return gen_mpls_linktype(cstate
, Q_IPV6
);
2960 bpf_error(cstate
, "unsupported protocol over mpls");
2965 switch (cstate
->linktype
) {
2968 case DLT_NETANALYZER
:
2969 case DLT_NETANALYZER_TRANSPARENT
:
2970 /* Geneve has an EtherType regardless of whether there is an
2972 if (!cstate
->is_geneve
)
2973 b0
= gen_prevlinkhdr_check(cstate
);
2977 b1
= gen_ether_linktype(cstate
, proto
);
2988 proto
= (proto
<< 8 | LLCSAP_ISONS
);
2992 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2998 case DLT_IEEE802_11
:
2999 case DLT_PRISM_HEADER
:
3000 case DLT_IEEE802_11_RADIO_AVS
:
3001 case DLT_IEEE802_11_RADIO
:
3004 * Check that we have a data frame.
3006 b0
= gen_check_802_11_data_frame(cstate
);
3009 * Now check for the specified link-layer type.
3011 b1
= gen_llc_linktype(cstate
, proto
);
3019 * XXX - check for LLC frames.
3021 return gen_llc_linktype(cstate
, proto
);
3027 * XXX - check for LLC PDUs, as per IEEE 802.5.
3029 return gen_llc_linktype(cstate
, proto
);
3033 case DLT_ATM_RFC1483
:
3035 case DLT_IP_OVER_FC
:
3036 return gen_llc_linktype(cstate
, proto
);
3042 * Check for an LLC-encapsulated version of this protocol;
3043 * if we were checking for LANE, linktype would no longer
3046 * Check for LLC encapsulation and then check the protocol.
3048 b0
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3049 b1
= gen_llc_linktype(cstate
, proto
);
3056 return gen_linux_sll_linktype(cstate
, proto
);
3061 case DLT_SLIP_BSDOS
:
3064 * These types don't provide any type field; packets
3065 * are always IPv4 or IPv6.
3067 * XXX - for IPv4, check for a version number of 4, and,
3068 * for IPv6, check for a version number of 6?
3073 /* Check for a version number of 4. */
3074 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3076 case ETHERTYPE_IPV6
:
3077 /* Check for a version number of 6. */
3078 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3081 return gen_false(cstate
); /* always false */
3088 * Raw IPv4, so no type field.
3090 if (proto
== ETHERTYPE_IP
)
3091 return gen_true(cstate
); /* always true */
3093 /* Checking for something other than IPv4; always false */
3094 return gen_false(cstate
);
3100 * Raw IPv6, so no type field.
3102 if (proto
== ETHERTYPE_IPV6
)
3103 return gen_true(cstate
); /* always true */
3105 /* Checking for something other than IPv6; always false */
3106 return gen_false(cstate
);
3112 case DLT_PPP_SERIAL
:
3115 * We use Ethernet protocol types inside libpcap;
3116 * map them to the corresponding PPP protocol types.
3118 proto
= ethertype_to_ppptype(proto
);
3119 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3125 * We use Ethernet protocol types inside libpcap;
3126 * map them to the corresponding PPP protocol types.
3132 * Also check for Van Jacobson-compressed IP.
3133 * XXX - do this for other forms of PPP?
3135 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3136 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3138 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3143 proto
= ethertype_to_ppptype(proto
);
3144 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3154 * For DLT_NULL, the link-layer header is a 32-bit
3155 * word containing an AF_ value in *host* byte order,
3156 * and for DLT_ENC, the link-layer header begins
3157 * with a 32-bit work containing an AF_ value in
3160 * In addition, if we're reading a saved capture file,
3161 * the host byte order in the capture may not be the
3162 * same as the host byte order on this machine.
3164 * For DLT_LOOP, the link-layer header is a 32-bit
3165 * word containing an AF_ value in *network* byte order.
3167 * XXX - AF_ values may, unfortunately, be platform-
3168 * dependent; for example, FreeBSD's AF_INET6 is 24
3169 * whilst NetBSD's and OpenBSD's is 26.
3171 * This means that, when reading a capture file, just
3172 * checking for our AF_INET6 value won't work if the
3173 * capture file came from another OS.
3182 case ETHERTYPE_IPV6
:
3189 * Not a type on which we support filtering.
3190 * XXX - support those that have AF_ values
3191 * #defined on this platform, at least?
3193 return gen_false(cstate
);
3196 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
3198 * The AF_ value is in host byte order, but
3199 * the BPF interpreter will convert it to
3200 * network byte order.
3202 * If this is a save file, and it's from a
3203 * machine with the opposite byte order to
3204 * ours, we byte-swap the AF_ value.
3206 * Then we run it through "htonl()", and
3207 * generate code to compare against the result.
3209 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
3210 proto
= SWAPLONG(proto
);
3211 proto
= htonl(proto
);
3213 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, (bpf_int32
)proto
));
3215 #ifdef HAVE_NET_PFVAR_H
3218 * af field is host byte order in contrast to the rest of
3221 if (proto
== ETHERTYPE_IP
)
3222 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3223 BPF_B
, (bpf_int32
)AF_INET
));
3224 else if (proto
== ETHERTYPE_IPV6
)
3225 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3226 BPF_B
, (bpf_int32
)AF_INET6
));
3228 return gen_false(cstate
);
3231 #endif /* HAVE_NET_PFVAR_H */
3234 case DLT_ARCNET_LINUX
:
3236 * XXX should we check for first fragment if the protocol
3242 return gen_false(cstate
);
3244 case ETHERTYPE_IPV6
:
3245 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3246 (bpf_int32
)ARCTYPE_INET6
));
3249 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3250 (bpf_int32
)ARCTYPE_IP
);
3251 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3252 (bpf_int32
)ARCTYPE_IP_OLD
);
3257 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3258 (bpf_int32
)ARCTYPE_ARP
);
3259 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3260 (bpf_int32
)ARCTYPE_ARP_OLD
);
3264 case ETHERTYPE_REVARP
:
3265 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3266 (bpf_int32
)ARCTYPE_REVARP
));
3268 case ETHERTYPE_ATALK
:
3269 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3270 (bpf_int32
)ARCTYPE_ATALK
));
3277 case ETHERTYPE_ATALK
:
3278 return gen_true(cstate
);
3280 return gen_false(cstate
);
3287 * XXX - assumes a 2-byte Frame Relay header with
3288 * DLCI and flags. What if the address is longer?
3294 * Check for the special NLPID for IP.
3296 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3298 case ETHERTYPE_IPV6
:
3300 * Check for the special NLPID for IPv6.
3302 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3306 * Check for several OSI protocols.
3308 * Frame Relay packets typically have an OSI
3309 * NLPID at the beginning; we check for each
3312 * What we check for is the NLPID and a frame
3313 * control field of UI, i.e. 0x03 followed
3316 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3317 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3318 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3324 return gen_false(cstate
);
3330 bpf_error(cstate
, "Multi-link Frame Relay link-layer type filtering not implemented");
3332 case DLT_JUNIPER_MFR
:
3333 case DLT_JUNIPER_MLFR
:
3334 case DLT_JUNIPER_MLPPP
:
3335 case DLT_JUNIPER_ATM1
:
3336 case DLT_JUNIPER_ATM2
:
3337 case DLT_JUNIPER_PPPOE
:
3338 case DLT_JUNIPER_PPPOE_ATM
:
3339 case DLT_JUNIPER_GGSN
:
3340 case DLT_JUNIPER_ES
:
3341 case DLT_JUNIPER_MONITOR
:
3342 case DLT_JUNIPER_SERVICES
:
3343 case DLT_JUNIPER_ETHER
:
3344 case DLT_JUNIPER_PPP
:
3345 case DLT_JUNIPER_FRELAY
:
3346 case DLT_JUNIPER_CHDLC
:
3347 case DLT_JUNIPER_VP
:
3348 case DLT_JUNIPER_ST
:
3349 case DLT_JUNIPER_ISM
:
3350 case DLT_JUNIPER_VS
:
3351 case DLT_JUNIPER_SRX_E2E
:
3352 case DLT_JUNIPER_FIBRECHANNEL
:
3353 case DLT_JUNIPER_ATM_CEMIC
:
3355 /* just lets verify the magic number for now -
3356 * on ATM we may have up to 6 different encapsulations on the wire
3357 * and need a lot of heuristics to figure out that the payload
3360 * FIXME encapsulation specific BPF_ filters
3362 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3364 case DLT_BACNET_MS_TP
:
3365 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3368 return gen_ipnet_linktype(cstate
, proto
);
3370 case DLT_LINUX_IRDA
:
3371 bpf_error(cstate
, "IrDA link-layer type filtering not implemented");
3374 bpf_error(cstate
, "DOCSIS link-layer type filtering not implemented");
3377 case DLT_MTP2_WITH_PHDR
:
3378 bpf_error(cstate
, "MTP2 link-layer type filtering not implemented");
3381 bpf_error(cstate
, "ERF link-layer type filtering not implemented");
3384 bpf_error(cstate
, "PFSYNC link-layer type filtering not implemented");
3386 case DLT_LINUX_LAPD
:
3387 bpf_error(cstate
, "LAPD link-layer type filtering not implemented");
3389 case DLT_USB_FREEBSD
:
3391 case DLT_USB_LINUX_MMAPPED
:
3393 bpf_error(cstate
, "USB link-layer type filtering not implemented");
3395 case DLT_BLUETOOTH_HCI_H4
:
3396 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3397 bpf_error(cstate
, "Bluetooth link-layer type filtering not implemented");
3400 case DLT_CAN_SOCKETCAN_BIGENDIAN
:
3401 case DLT_CAN_SOCKETCAN_HOSTENDIAN
:
3402 bpf_error(cstate
, "CAN link-layer type filtering not implemented");
3404 case DLT_IEEE802_15_4
:
3405 case DLT_IEEE802_15_4_LINUX
:
3406 case DLT_IEEE802_15_4_NONASK_PHY
:
3407 case DLT_IEEE802_15_4_NOFCS
:
3408 bpf_error(cstate
, "IEEE 802.15.4 link-layer type filtering not implemented");
3410 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3411 bpf_error(cstate
, "IEEE 802.16 link-layer type filtering not implemented");
3414 bpf_error(cstate
, "SITA link-layer type filtering not implemented");
3417 bpf_error(cstate
, "RAIF1 link-layer type filtering not implemented");
3420 bpf_error(cstate
, "IPMB link-layer type filtering not implemented");
3423 bpf_error(cstate
, "AX.25 link-layer type filtering not implemented");
3426 /* Using the fixed-size NFLOG header it is possible to tell only
3427 * the address family of the packet, other meaningful data is
3428 * either missing or behind TLVs.
3430 bpf_error(cstate
, "NFLOG link-layer type filtering not implemented");
3434 * Does this link-layer header type have a field
3435 * indicating the type of the next protocol? If
3436 * so, off_linktype.constant_part will be the offset of that
3437 * field in the packet; if not, it will be OFFSET_NOT_SET.
3439 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3441 * Yes; assume it's an Ethernet type. (If
3442 * it's not, it needs to be handled specially
3445 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3448 * No; report an error.
3450 description
= pcap_datalink_val_to_description(cstate
->linktype
);
3451 if (description
!= NULL
) {
3452 bpf_error(cstate
, "%s link-layer type filtering not implemented",
3455 bpf_error(cstate
, "DLT %u link-layer type filtering not implemented",
3464 * Check for an LLC SNAP packet with a given organization code and
3465 * protocol type; we check the entire contents of the 802.2 LLC and
3466 * snap headers, checking for DSAP and SSAP of SNAP and a control
3467 * field of 0x03 in the LLC header, and for the specified organization
3468 * code and protocol type in the SNAP header.
3470 static struct block
*
3471 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
3473 u_char snapblock
[8];
3475 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3476 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3477 snapblock
[2] = 0x03; /* control = UI */
3478 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
3479 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
3480 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
3481 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
3482 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
3483 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
3487 * Generate code to match frames with an LLC header.
3490 gen_llc(compiler_state_t
*cstate
)
3492 struct block
*b0
, *b1
;
3494 switch (cstate
->linktype
) {
3498 * We check for an Ethernet type field less than
3499 * 1500, which means it's an 802.3 length field.
3501 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
3505 * Now check for the purported DSAP and SSAP not being
3506 * 0xFF, to rule out NetWare-over-802.3.
3508 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
3515 * We check for LLC traffic.
3517 b0
= gen_atmtype_abbrev(cstate
, A_LLC
);
3520 case DLT_IEEE802
: /* Token Ring */
3522 * XXX - check for LLC frames.
3524 return gen_true(cstate
);
3528 * XXX - check for LLC frames.
3530 return gen_true(cstate
);
3532 case DLT_ATM_RFC1483
:
3534 * For LLC encapsulation, these are defined to have an
3537 * For VC encapsulation, they don't, but there's no
3538 * way to check for that; the protocol used on the VC
3539 * is negotiated out of band.
3541 return gen_true(cstate
);
3543 case DLT_IEEE802_11
:
3544 case DLT_PRISM_HEADER
:
3545 case DLT_IEEE802_11_RADIO
:
3546 case DLT_IEEE802_11_RADIO_AVS
:
3549 * Check that we have a data frame.
3551 b0
= gen_check_802_11_data_frame(cstate
);
3555 bpf_error(cstate
, "'llc' not supported for linktype %d", cstate
->linktype
);
3561 gen_llc_i(compiler_state_t
*cstate
)
3563 struct block
*b0
, *b1
;
3567 * Check whether this is an LLC frame.
3569 b0
= gen_llc(cstate
);
3572 * Load the control byte and test the low-order bit; it must
3573 * be clear for I frames.
3575 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
3576 b1
= new_block(cstate
, JMP(BPF_JSET
));
3585 gen_llc_s(compiler_state_t
*cstate
)
3587 struct block
*b0
, *b1
;
3590 * Check whether this is an LLC frame.
3592 b0
= gen_llc(cstate
);
3595 * Now compare the low-order 2 bit of the control byte against
3596 * the appropriate value for S frames.
3598 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
3604 gen_llc_u(compiler_state_t
*cstate
)
3606 struct block
*b0
, *b1
;
3609 * Check whether this is an LLC frame.
3611 b0
= gen_llc(cstate
);
3614 * Now compare the low-order 2 bit of the control byte against
3615 * the appropriate value for U frames.
3617 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
3623 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3625 struct block
*b0
, *b1
;
3628 * Check whether this is an LLC frame.
3630 b0
= gen_llc(cstate
);
3633 * Now check for an S frame with the appropriate type.
3635 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
3641 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3643 struct block
*b0
, *b1
;
3646 * Check whether this is an LLC frame.
3648 b0
= gen_llc(cstate
);
3651 * Now check for a U frame with the appropriate type.
3653 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
3659 * Generate code to match a particular packet type, for link-layer types
3660 * using 802.2 LLC headers.
3662 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3663 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3665 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3666 * value, if <= ETHERMTU. We use that to determine whether to
3667 * match the DSAP or both DSAP and LSAP or to check the OUI and
3668 * protocol ID in a SNAP header.
3670 static struct block
*
3671 gen_llc_linktype(compiler_state_t
*cstate
, int proto
)
3674 * XXX - handle token-ring variable-length header.
3680 case LLCSAP_NETBEUI
:
3682 * XXX - should we check both the DSAP and the
3683 * SSAP, like this, or should we check just the
3684 * DSAP, as we do for other SAP values?
3686 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
3687 ((proto
<< 8) | proto
));
3691 * XXX - are there ever SNAP frames for IPX on
3692 * non-Ethernet 802.x networks?
3694 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
,
3695 (bpf_int32
)LLCSAP_IPX
);
3697 case ETHERTYPE_ATALK
:
3699 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3700 * SNAP packets with an organization code of
3701 * 0x080007 (Apple, for Appletalk) and a protocol
3702 * type of ETHERTYPE_ATALK (Appletalk).
3704 * XXX - check for an organization code of
3705 * encapsulated Ethernet as well?
3707 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
3711 * XXX - we don't have to check for IPX 802.3
3712 * here, but should we check for the IPX Ethertype?
3714 if (proto
<= ETHERMTU
) {
3716 * This is an LLC SAP value, so check
3719 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)proto
);
3722 * This is an Ethernet type; we assume that it's
3723 * unlikely that it'll appear in the right place
3724 * at random, and therefore check only the
3725 * location that would hold the Ethernet type
3726 * in a SNAP frame with an organization code of
3727 * 0x000000 (encapsulated Ethernet).
3729 * XXX - if we were to check for the SNAP DSAP and
3730 * LSAP, as per XXX, and were also to check for an
3731 * organization code of 0x000000 (encapsulated
3732 * Ethernet), we'd do
3734 * return gen_snap(cstate, 0x000000, proto);
3736 * here; for now, we don't, as per the above.
3737 * I don't know whether it's worth the extra CPU
3738 * time to do the right check or not.
3740 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, (bpf_int32
)proto
);
3745 static struct block
*
3746 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
3747 int dir
, int proto
, u_int src_off
, u_int dst_off
)
3749 struct block
*b0
, *b1
;
3763 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3764 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3770 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3771 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3778 b0
= gen_linktype(cstate
, proto
);
3779 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
3785 static struct block
*
3786 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
3787 struct in6_addr
*mask
, int dir
, int proto
, u_int src_off
, u_int dst_off
)
3789 struct block
*b0
, *b1
;
3804 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3805 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3811 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3812 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3819 /* this order is important */
3820 a
= (u_int32_t
*)addr
;
3821 m
= (u_int32_t
*)mask
;
3822 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
3823 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
3825 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
3827 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
3829 b0
= gen_linktype(cstate
, proto
);
3835 static struct block
*
3836 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3838 register struct block
*b0
, *b1
;
3842 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
3845 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
3848 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3849 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3855 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3856 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3861 bpf_error(cstate
, "'addr1' is only supported on 802.11 with 802.11 headers");
3865 bpf_error(cstate
, "'addr2' is only supported on 802.11 with 802.11 headers");
3869 bpf_error(cstate
, "'addr3' is only supported on 802.11 with 802.11 headers");
3873 bpf_error(cstate
, "'addr4' is only supported on 802.11 with 802.11 headers");
3877 bpf_error(cstate
, "'ra' is only supported on 802.11 with 802.11 headers");
3881 bpf_error(cstate
, "'ta' is only supported on 802.11 with 802.11 headers");
3889 * Like gen_ehostop, but for DLT_FDDI
3891 static struct block
*
3892 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3894 struct block
*b0
, *b1
;
3898 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
3901 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
3904 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
3905 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
3911 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
3912 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
3917 bpf_error(cstate
, "'addr1' is only supported on 802.11");
3921 bpf_error(cstate
, "'addr2' is only supported on 802.11");
3925 bpf_error(cstate
, "'addr3' is only supported on 802.11");
3929 bpf_error(cstate
, "'addr4' is only supported on 802.11");
3933 bpf_error(cstate
, "'ra' is only supported on 802.11");
3937 bpf_error(cstate
, "'ta' is only supported on 802.11");
3945 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3947 static struct block
*
3948 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3950 register struct block
*b0
, *b1
;
3954 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
3957 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
3960 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
3961 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
3967 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
3968 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
3973 bpf_error(cstate
, "'addr1' is only supported on 802.11");
3977 bpf_error(cstate
, "'addr2' is only supported on 802.11");
3981 bpf_error(cstate
, "'addr3' is only supported on 802.11");
3985 bpf_error(cstate
, "'addr4' is only supported on 802.11");
3989 bpf_error(cstate
, "'ra' is only supported on 802.11");
3993 bpf_error(cstate
, "'ta' is only supported on 802.11");
4001 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4002 * various 802.11 + radio headers.
4004 static struct block
*
4005 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4007 register struct block
*b0
, *b1
, *b2
;
4008 register struct slist
*s
;
4010 #ifdef ENABLE_WLAN_FILTERING_PATCH
4013 * We need to disable the optimizer because the optimizer is buggy
4014 * and wipes out some LD instructions generated by the below
4015 * code to validate the Frame Control bits
4017 cstate
->no_optimize
= 1;
4018 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4025 * For control frames, there is no SA.
4027 * For management frames, SA is at an
4028 * offset of 10 from the beginning of
4031 * For data frames, SA is at an offset
4032 * of 10 from the beginning of the packet
4033 * if From DS is clear, at an offset of
4034 * 16 from the beginning of the packet
4035 * if From DS is set and To DS is clear,
4036 * and an offset of 24 from the beginning
4037 * of the packet if From DS is set and To DS
4042 * Generate the tests to be done for data frames
4045 * First, check for To DS set, i.e. check "link[1] & 0x01".
4047 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4048 b1
= new_block(cstate
, JMP(BPF_JSET
));
4049 b1
->s
.k
= 0x01; /* To DS */
4053 * If To DS is set, the SA is at 24.
4055 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4059 * Now, check for To DS not set, i.e. check
4060 * "!(link[1] & 0x01)".
4062 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4063 b2
= new_block(cstate
, JMP(BPF_JSET
));
4064 b2
->s
.k
= 0x01; /* To DS */
4069 * If To DS is not set, the SA is at 16.
4071 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4075 * Now OR together the last two checks. That gives
4076 * the complete set of checks for data frames with
4082 * Now check for From DS being set, and AND that with
4083 * the ORed-together checks.
4085 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4086 b1
= new_block(cstate
, JMP(BPF_JSET
));
4087 b1
->s
.k
= 0x02; /* From DS */
4092 * Now check for data frames with From DS not set.
4094 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4095 b2
= new_block(cstate
, JMP(BPF_JSET
));
4096 b2
->s
.k
= 0x02; /* From DS */
4101 * If From DS isn't set, the SA is at 10.
4103 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4107 * Now OR together the checks for data frames with
4108 * From DS not set and for data frames with From DS
4109 * set; that gives the checks done for data frames.
4114 * Now check for a data frame.
4115 * I.e, check "link[0] & 0x08".
4117 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4118 b1
= new_block(cstate
, JMP(BPF_JSET
));
4123 * AND that with the checks done for data frames.
4128 * If the high-order bit of the type value is 0, this
4129 * is a management frame.
4130 * I.e, check "!(link[0] & 0x08)".
4132 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4133 b2
= new_block(cstate
, JMP(BPF_JSET
));
4139 * For management frames, the SA is at 10.
4141 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4145 * OR that with the checks done for data frames.
4146 * That gives the checks done for management and
4152 * If the low-order bit of the type value is 1,
4153 * this is either a control frame or a frame
4154 * with a reserved type, and thus not a
4157 * I.e., check "!(link[0] & 0x04)".
4159 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4160 b1
= new_block(cstate
, JMP(BPF_JSET
));
4166 * AND that with the checks for data and management
4176 * For control frames, there is no DA.
4178 * For management frames, DA is at an
4179 * offset of 4 from the beginning of
4182 * For data frames, DA is at an offset
4183 * of 4 from the beginning of the packet
4184 * if To DS is clear and at an offset of
4185 * 16 from the beginning of the packet
4190 * Generate the tests to be done for data frames.
4192 * First, check for To DS set, i.e. "link[1] & 0x01".
4194 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4195 b1
= new_block(cstate
, JMP(BPF_JSET
));
4196 b1
->s
.k
= 0x01; /* To DS */
4200 * If To DS is set, the DA is at 16.
4202 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4206 * Now, check for To DS not set, i.e. check
4207 * "!(link[1] & 0x01)".
4209 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4210 b2
= new_block(cstate
, JMP(BPF_JSET
));
4211 b2
->s
.k
= 0x01; /* To DS */
4216 * If To DS is not set, the DA is at 4.
4218 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4222 * Now OR together the last two checks. That gives
4223 * the complete set of checks for data frames.
4228 * Now check for a data frame.
4229 * I.e, check "link[0] & 0x08".
4231 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4232 b1
= new_block(cstate
, JMP(BPF_JSET
));
4237 * AND that with the checks done for data frames.
4242 * If the high-order bit of the type value is 0, this
4243 * is a management frame.
4244 * I.e, check "!(link[0] & 0x08)".
4246 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4247 b2
= new_block(cstate
, JMP(BPF_JSET
));
4253 * For management frames, the DA is at 4.
4255 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4259 * OR that with the checks done for data frames.
4260 * That gives the checks done for management and
4266 * If the low-order bit of the type value is 1,
4267 * this is either a control frame or a frame
4268 * with a reserved type, and thus not a
4271 * I.e., check "!(link[0] & 0x04)".
4273 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4274 b1
= new_block(cstate
, JMP(BPF_JSET
));
4280 * AND that with the checks for data and management
4288 * Not present in management frames; addr1 in other
4293 * If the high-order bit of the type value is 0, this
4294 * is a management frame.
4295 * I.e, check "(link[0] & 0x08)".
4297 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4298 b1
= new_block(cstate
, JMP(BPF_JSET
));
4305 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4308 * AND that with the check of addr1.
4315 * Not present in management frames; addr2, if present,
4320 * Not present in CTS or ACK control frames.
4322 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4323 IEEE80211_FC0_TYPE_MASK
);
4325 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4326 IEEE80211_FC0_SUBTYPE_MASK
);
4328 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4329 IEEE80211_FC0_SUBTYPE_MASK
);
4335 * If the high-order bit of the type value is 0, this
4336 * is a management frame.
4337 * I.e, check "(link[0] & 0x08)".
4339 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4340 b1
= new_block(cstate
, JMP(BPF_JSET
));
4345 * AND that with the check for frames other than
4346 * CTS and ACK frames.
4353 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4358 * XXX - add BSSID keyword?
4361 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4365 * Not present in CTS or ACK control frames.
4367 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4368 IEEE80211_FC0_TYPE_MASK
);
4370 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4371 IEEE80211_FC0_SUBTYPE_MASK
);
4373 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4374 IEEE80211_FC0_SUBTYPE_MASK
);
4378 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4384 * Not present in control frames.
4386 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4387 IEEE80211_FC0_TYPE_MASK
);
4389 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4395 * Present only if the direction mask has both "From DS"
4396 * and "To DS" set. Neither control frames nor management
4397 * frames should have both of those set, so we don't
4398 * check the frame type.
4400 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4401 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4402 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4407 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4408 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4414 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4415 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4424 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4425 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4426 * as the RFC states.)
4428 static struct block
*
4429 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4431 register struct block
*b0
, *b1
;
4435 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4438 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4441 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4442 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4448 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4449 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4454 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4458 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4462 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4466 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4470 bpf_error(cstate
, "'ra' is only supported on 802.11");
4474 bpf_error(cstate
, "'ta' is only supported on 802.11");
4482 * This is quite tricky because there may be pad bytes in front of the
4483 * DECNET header, and then there are two possible data packet formats that
4484 * carry both src and dst addresses, plus 5 packet types in a format that
4485 * carries only the src node, plus 2 types that use a different format and
4486 * also carry just the src node.
4490 * Instead of doing those all right, we just look for data packets with
4491 * 0 or 1 bytes of padding. If you want to look at other packets, that
4492 * will require a lot more hacking.
4494 * To add support for filtering on DECNET "areas" (network numbers)
4495 * one would want to add a "mask" argument to this routine. That would
4496 * make the filter even more inefficient, although one could be clever
4497 * and not generate masking instructions if the mask is 0xFFFF.
4499 static struct block
*
4500 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4502 struct block
*b0
, *b1
, *b2
, *tmp
;
4503 u_int offset_lh
; /* offset if long header is received */
4504 u_int offset_sh
; /* offset if short header is received */
4509 offset_sh
= 1; /* follows flags */
4510 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4514 offset_sh
= 3; /* follows flags, dstnode */
4515 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4519 /* Inefficient because we do our Calvinball dance twice */
4520 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4521 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4527 /* Inefficient because we do our Calvinball dance twice */
4528 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4529 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4534 bpf_error(cstate
, "ISO host filtering not implemented");
4539 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
4540 /* Check for pad = 1, long header case */
4541 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4542 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4543 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4544 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4546 /* Check for pad = 0, long header case */
4547 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4548 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4551 /* Check for pad = 1, short header case */
4552 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4553 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4554 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4557 /* Check for pad = 0, short header case */
4558 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4559 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4563 /* Combine with test for cstate->linktype */
4569 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4570 * test the bottom-of-stack bit, and then check the version number
4571 * field in the IP header.
4573 static struct block
*
4574 gen_mpls_linktype(compiler_state_t
*cstate
, int proto
)
4576 struct block
*b0
, *b1
;
4581 /* match the bottom-of-stack bit */
4582 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4583 /* match the IPv4 version number */
4584 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
4589 /* match the bottom-of-stack bit */
4590 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4591 /* match the IPv4 version number */
4592 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
4601 static struct block
*
4602 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4603 int proto
, int dir
, int type
)
4605 struct block
*b0
, *b1
;
4606 const char *typestr
;
4616 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
4618 * Only check for non-IPv4 addresses if we're not
4619 * checking MPLS-encapsulated packets.
4621 if (cstate
->label_stack_depth
== 0) {
4622 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
4624 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
4630 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4633 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4636 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4639 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4642 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4645 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4648 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4651 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4654 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4657 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4660 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4663 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4666 bpf_error(cstate
, "ATALK host filtering not implemented");
4669 bpf_error(cstate
, "AARP host filtering not implemented");
4672 return gen_dnhostop(cstate
, addr
, dir
);
4675 bpf_error(cstate
, "SCA host filtering not implemented");
4678 bpf_error(cstate
, "LAT host filtering not implemented");
4681 bpf_error(cstate
, "MOPDL host filtering not implemented");
4684 bpf_error(cstate
, "MOPRC host filtering not implemented");
4687 bpf_error(cstate
, "'ip6' modifier applied to ip host");
4690 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4693 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4696 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4699 bpf_error(cstate
, "ISO host filtering not implemented");
4702 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4705 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4708 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4711 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4714 bpf_error(cstate
, "IPX host filtering not implemented");
4717 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4720 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4729 static struct block
*
4730 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4731 struct in6_addr
*mask
, int proto
, int dir
, int type
)
4733 const char *typestr
;
4743 return gen_host6(cstate
, addr
, mask
, Q_IPV6
, dir
, type
);
4746 bpf_error(cstate
, "link-layer modifier applied to ip6 %s", typestr
);
4749 bpf_error(cstate
, "'ip' modifier applied to ip6 %s", typestr
);
4752 bpf_error(cstate
, "'rarp' modifier applied to ip6 %s", typestr
);
4755 bpf_error(cstate
, "'arp' modifier applied to ip6 %s", typestr
);
4758 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4761 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4764 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4767 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4770 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4773 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4776 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4779 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4782 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4785 bpf_error(cstate
, "ATALK host filtering not implemented");
4788 bpf_error(cstate
, "AARP host filtering not implemented");
4791 bpf_error(cstate
, "'decnet' modifier applied to ip6 %s", typestr
);
4794 bpf_error(cstate
, "SCA host filtering not implemented");
4797 bpf_error(cstate
, "LAT host filtering not implemented");
4800 bpf_error(cstate
, "MOPDL host filtering not implemented");
4803 bpf_error(cstate
, "MOPRC host filtering not implemented");
4806 return gen_hostop6(cstate
, addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
4809 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4812 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4815 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4818 bpf_error(cstate
, "ISO host filtering not implemented");
4821 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4824 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4827 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4830 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4833 bpf_error(cstate
, "IPX host filtering not implemented");
4836 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4839 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4849 static struct block
*
4850 gen_gateway(eaddr
, alist
, proto
, dir
)
4851 const u_char
*eaddr
;
4852 bpf_u_int32
**alist
;
4856 struct block
*b0
, *b1
, *tmp
;
4859 bpf_error(cstate
, "direction applied to 'gateway'");
4866 switch (cstate
->linktype
) {
4868 case DLT_NETANALYZER
:
4869 case DLT_NETANALYZER_TRANSPARENT
:
4870 b1
= gen_prevlinkhdr_check(cstate
);
4871 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
4876 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
4879 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
4881 case DLT_IEEE802_11
:
4882 case DLT_PRISM_HEADER
:
4883 case DLT_IEEE802_11_RADIO_AVS
:
4884 case DLT_IEEE802_11_RADIO
:
4886 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
4890 * This is LLC-multiplexed traffic; if it were
4891 * LANE, cstate->linktype would have been set to
4895 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4897 case DLT_IP_OVER_FC
:
4898 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
4902 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4904 b1
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
, Q_HOST
);
4906 tmp
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
,
4915 bpf_error(cstate
, "illegal modifier of 'gateway'");
4921 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
4929 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
4930 b0
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
4935 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
4936 b0
= gen_proto(cstate
, IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
4941 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
4942 b0
= gen_proto(cstate
, IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
4947 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
4950 #ifndef IPPROTO_IGMP
4951 #define IPPROTO_IGMP 2
4955 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
4958 #ifndef IPPROTO_IGRP
4959 #define IPPROTO_IGRP 9
4962 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
4966 #define IPPROTO_PIM 103
4970 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
4971 b0
= gen_proto(cstate
, IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
4975 #ifndef IPPROTO_VRRP
4976 #define IPPROTO_VRRP 112
4980 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
4983 #ifndef IPPROTO_CARP
4984 #define IPPROTO_CARP 112
4988 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
4992 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
4996 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5000 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5004 bpf_error(cstate
, "link layer applied in wrong context");
5007 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5011 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5015 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5019 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5023 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5027 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5031 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5035 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5038 #ifndef IPPROTO_ICMPV6
5039 #define IPPROTO_ICMPV6 58
5042 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
5046 #define IPPROTO_AH 51
5049 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
5050 b0
= gen_proto(cstate
, IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
5055 #define IPPROTO_ESP 50
5058 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
5059 b0
= gen_proto(cstate
, IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
5064 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5068 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
5072 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5075 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5076 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5077 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5079 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5081 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5083 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5087 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5088 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5089 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5091 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5093 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5095 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5099 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5100 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5101 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5103 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
5108 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5109 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5114 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5115 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5117 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5119 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5124 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5125 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5130 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5131 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5136 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
5140 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5144 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5148 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5152 bpf_error(cstate
, "'radio' is not a valid protocol type");
5160 static struct block
*
5161 gen_ipfrag(compiler_state_t
*cstate
)
5166 /* not IPv4 frag other than the first frag */
5167 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5168 b
= new_block(cstate
, JMP(BPF_JSET
));
5177 * Generate a comparison to a port value in the transport-layer header
5178 * at the specified offset from the beginning of that header.
5180 * XXX - this handles a variable-length prefix preceding the link-layer
5181 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5182 * variable-length link-layer headers (such as Token Ring or 802.11
5185 static struct block
*
5186 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5188 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5191 static struct block
*
5192 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5194 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5198 gen_portop(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5200 struct block
*b0
, *b1
, *tmp
;
5202 /* ip proto 'proto' and not a fragment other than the first fragment */
5203 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5204 b0
= gen_ipfrag(cstate
);
5209 b1
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5213 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5218 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5219 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5224 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5225 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5237 static struct block
*
5238 gen_port(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5240 struct block
*b0
, *b1
, *tmp
;
5245 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5246 * not LLC encapsulation with LLCSAP_IP.
5248 * For IEEE 802 networks - which includes 802.5 token ring
5249 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5250 * says that SNAP encapsulation is used, not LLC encapsulation
5253 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5254 * RFC 2225 say that SNAP encapsulation is used, not LLC
5255 * encapsulation with LLCSAP_IP.
5257 * So we always check for ETHERTYPE_IP.
5259 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5265 b1
= gen_portop(cstate
, port
, ip_proto
, dir
);
5269 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5270 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5272 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5284 gen_portop6(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5286 struct block
*b0
, *b1
, *tmp
;
5288 /* ip6 proto 'proto' */
5289 /* XXX - catch the first fragment of a fragmented packet? */
5290 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5294 b1
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5298 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5303 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5304 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5309 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5310 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5322 static struct block
*
5323 gen_port6(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5325 struct block
*b0
, *b1
, *tmp
;
5327 /* link proto ip6 */
5328 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5334 b1
= gen_portop6(cstate
, port
, ip_proto
, dir
);
5338 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5339 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5341 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5352 /* gen_portrange code */
5353 static struct block
*
5354 gen_portrangeatom(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5357 struct block
*b1
, *b2
;
5361 * Reverse the order of the ports, so v1 is the lower one.
5370 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5371 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5379 gen_portrangeop(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5382 struct block
*b0
, *b1
, *tmp
;
5384 /* ip proto 'proto' and not a fragment other than the first fragment */
5385 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5386 b0
= gen_ipfrag(cstate
);
5391 b1
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5395 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5400 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5401 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5406 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5407 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5419 static struct block
*
5420 gen_portrange(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5423 struct block
*b0
, *b1
, *tmp
;
5426 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5432 b1
= gen_portrangeop(cstate
, port1
, port2
, ip_proto
, dir
);
5436 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5437 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5439 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5450 static struct block
*
5451 gen_portrangeatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5454 struct block
*b1
, *b2
;
5458 * Reverse the order of the ports, so v1 is the lower one.
5467 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5468 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5476 gen_portrangeop6(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5479 struct block
*b0
, *b1
, *tmp
;
5481 /* ip6 proto 'proto' */
5482 /* XXX - catch the first fragment of a fragmented packet? */
5483 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5487 b1
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5491 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5496 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5497 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5502 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5503 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5515 static struct block
*
5516 gen_portrange6(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5519 struct block
*b0
, *b1
, *tmp
;
5521 /* link proto ip6 */
5522 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5528 b1
= gen_portrangeop6(cstate
, port1
, port2
, ip_proto
, dir
);
5532 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5533 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5535 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5547 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5556 v
= pcap_nametoproto(name
);
5557 if (v
== PROTO_UNDEF
)
5558 bpf_error(cstate
, "unknown ip proto '%s'", name
);
5562 /* XXX should look up h/w protocol type based on cstate->linktype */
5563 v
= pcap_nametoeproto(name
);
5564 if (v
== PROTO_UNDEF
) {
5565 v
= pcap_nametollc(name
);
5566 if (v
== PROTO_UNDEF
)
5567 bpf_error(cstate
, "unknown ether proto '%s'", name
);
5572 if (strcmp(name
, "esis") == 0)
5574 else if (strcmp(name
, "isis") == 0)
5576 else if (strcmp(name
, "clnp") == 0)
5579 bpf_error(cstate
, "unknown osi proto '%s'", name
);
5599 static struct block
*
5600 gen_protochain(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
5602 #ifdef NO_PROTOCHAIN
5603 return gen_proto(cstate
, v
, proto
, dir
);
5605 struct block
*b0
, *b
;
5606 struct slist
*s
[100];
5607 int fix2
, fix3
, fix4
, fix5
;
5608 int ahcheck
, again
, end
;
5610 int reg2
= alloc_reg(cstate
);
5612 memset(s
, 0, sizeof(s
));
5613 fix3
= fix4
= fix5
= 0;
5620 b0
= gen_protochain(cstate
, v
, Q_IP
, dir
);
5621 b
= gen_protochain(cstate
, v
, Q_IPV6
, dir
);
5625 bpf_error(cstate
, "bad protocol applied for 'protochain'");
5630 * We don't handle variable-length prefixes before the link-layer
5631 * header, or variable-length link-layer headers, here yet.
5632 * We might want to add BPF instructions to do the protochain
5633 * work, to simplify that and, on platforms that have a BPF
5634 * interpreter with the new instructions, let the filtering
5635 * be done in the kernel. (We already require a modified BPF
5636 * engine to do the protochain stuff, to support backward
5637 * branches, and backward branch support is unlikely to appear
5638 * in kernel BPF engines.)
5640 if (cstate
->off_linkpl
.is_variable
)
5641 bpf_error(cstate
, "'protochain' not supported with variable length headers");
5643 cstate
->no_optimize
= 1; /*this code is not compatible with optimzer yet */
5646 * s[0] is a dummy entry to protect other BPF insn from damage
5647 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5648 * hard to find interdependency made by jump table fixup.
5651 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
5656 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5659 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5660 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
5662 /* X = ip->ip_hl << 2 */
5663 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
5664 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5669 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5671 /* A = ip6->ip_nxt */
5672 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5673 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
5675 /* X = sizeof(struct ip6_hdr) */
5676 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
5682 bpf_error(cstate
, "unsupported proto to gen_protochain");
5686 /* again: if (A == v) goto end; else fall through; */
5688 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5690 s
[i
]->s
.jt
= NULL
; /*later*/
5691 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5695 #ifndef IPPROTO_NONE
5696 #define IPPROTO_NONE 59
5698 /* if (A == IPPROTO_NONE) goto end */
5699 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5700 s
[i
]->s
.jt
= NULL
; /*later*/
5701 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5702 s
[i
]->s
.k
= IPPROTO_NONE
;
5703 s
[fix5
]->s
.jf
= s
[i
];
5707 if (proto
== Q_IPV6
) {
5708 int v6start
, v6end
, v6advance
, j
;
5711 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5712 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5713 s
[i
]->s
.jt
= NULL
; /*later*/
5714 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5715 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
5716 s
[fix2
]->s
.jf
= s
[i
];
5718 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5719 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5720 s
[i
]->s
.jt
= NULL
; /*later*/
5721 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5722 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
5724 /* if (A == IPPROTO_ROUTING) goto v6advance */
5725 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5726 s
[i
]->s
.jt
= NULL
; /*later*/
5727 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5728 s
[i
]->s
.k
= IPPROTO_ROUTING
;
5730 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5731 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5732 s
[i
]->s
.jt
= NULL
; /*later*/
5733 s
[i
]->s
.jf
= NULL
; /*later*/
5734 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
5744 * A = P[X + packet head];
5745 * X = X + (P[X + packet head + 1] + 1) * 8;
5747 /* A = P[X + packet head] */
5748 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5749 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5752 s
[i
] = new_stmt(cstate
, BPF_ST
);
5755 /* A = P[X + packet head + 1]; */
5756 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5757 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
5760 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5764 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5768 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
5772 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5775 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5779 /* goto again; (must use BPF_JA for backward jump) */
5780 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5781 s
[i
]->s
.k
= again
- i
- 1;
5782 s
[i
- 1]->s
.jf
= s
[i
];
5786 for (j
= v6start
; j
<= v6end
; j
++)
5787 s
[j
]->s
.jt
= s
[v6advance
];
5790 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5792 s
[fix2
]->s
.jf
= s
[i
];
5798 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5799 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5800 s
[i
]->s
.jt
= NULL
; /*later*/
5801 s
[i
]->s
.jf
= NULL
; /*later*/
5802 s
[i
]->s
.k
= IPPROTO_AH
;
5804 s
[fix3
]->s
.jf
= s
[ahcheck
];
5811 * X = X + (P[X + 1] + 2) * 4;
5814 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5816 /* A = P[X + packet head]; */
5817 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5818 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5821 s
[i
] = new_stmt(cstate
, BPF_ST
);
5825 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5828 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5832 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5834 /* A = P[X + packet head] */
5835 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5836 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5839 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5843 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5847 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5850 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5854 /* goto again; (must use BPF_JA for backward jump) */
5855 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5856 s
[i
]->s
.k
= again
- i
- 1;
5861 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5863 s
[fix2
]->s
.jt
= s
[end
];
5864 s
[fix4
]->s
.jf
= s
[end
];
5865 s
[fix5
]->s
.jt
= s
[end
];
5872 for (i
= 0; i
< max
- 1; i
++)
5873 s
[i
]->next
= s
[i
+ 1];
5874 s
[max
- 1]->next
= NULL
;
5879 b
= new_block(cstate
, JMP(BPF_JEQ
));
5880 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
5883 free_reg(cstate
, reg2
);
5890 static struct block
*
5891 gen_check_802_11_data_frame(compiler_state_t
*cstate
)
5894 struct block
*b0
, *b1
;
5897 * A data frame has the 0x08 bit (b3) in the frame control field set
5898 * and the 0x04 bit (b2) clear.
5900 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
5901 b0
= new_block(cstate
, JMP(BPF_JSET
));
5905 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
5906 b1
= new_block(cstate
, JMP(BPF_JSET
));
5917 * Generate code that checks whether the packet is a packet for protocol
5918 * <proto> and whether the type field in that protocol's header has
5919 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5920 * IP packet and checks the protocol number in the IP header against <v>.
5922 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5923 * against Q_IP and Q_IPV6.
5925 static struct block
*
5926 gen_proto(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
5928 struct block
*b0
, *b1
;
5933 if (dir
!= Q_DEFAULT
)
5934 bpf_error(cstate
, "direction applied to 'proto'");
5938 b0
= gen_proto(cstate
, v
, Q_IP
, dir
);
5939 b1
= gen_proto(cstate
, v
, Q_IPV6
, dir
);
5945 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5946 * not LLC encapsulation with LLCSAP_IP.
5948 * For IEEE 802 networks - which includes 802.5 token ring
5949 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5950 * says that SNAP encapsulation is used, not LLC encapsulation
5953 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5954 * RFC 2225 say that SNAP encapsulation is used, not LLC
5955 * encapsulation with LLCSAP_IP.
5957 * So we always check for ETHERTYPE_IP.
5959 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5961 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)v
);
5963 b1
= gen_protochain(cstate
, v
, Q_IP
);
5969 switch (cstate
->linktype
) {
5973 * Frame Relay packets typically have an OSI
5974 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
5975 * generates code to check for all the OSI
5976 * NLPIDs, so calling it and then adding a check
5977 * for the particular NLPID for which we're
5978 * looking is bogus, as we can just check for
5981 * What we check for is the NLPID and a frame
5982 * control field value of UI, i.e. 0x03 followed
5985 * XXX - assumes a 2-byte Frame Relay header with
5986 * DLCI and flags. What if the address is longer?
5988 * XXX - what about SNAP-encapsulated frames?
5990 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
5996 * Cisco uses an Ethertype lookalike - for OSI,
5999 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6000 /* OSI in C-HDLC is stuffed with a fudge byte */
6001 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, (long)v
);
6006 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6007 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, (long)v
);
6013 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
6015 * 4 is the offset of the PDU type relative to the IS-IS
6018 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 4, BPF_B
, (long)v
);
6023 bpf_error(cstate
, "arp does not encapsulate another protocol");
6027 bpf_error(cstate
, "rarp does not encapsulate another protocol");
6031 bpf_error(cstate
, "atalk encapsulation is not specifiable");
6035 bpf_error(cstate
, "decnet encapsulation is not specifiable");
6039 bpf_error(cstate
, "sca does not encapsulate another protocol");
6043 bpf_error(cstate
, "lat does not encapsulate another protocol");
6047 bpf_error(cstate
, "moprc does not encapsulate another protocol");
6051 bpf_error(cstate
, "mopdl does not encapsulate another protocol");
6055 return gen_linktype(cstate
, v
);
6058 bpf_error(cstate
, "'udp proto' is bogus");
6062 bpf_error(cstate
, "'tcp proto' is bogus");
6066 bpf_error(cstate
, "'sctp proto' is bogus");
6070 bpf_error(cstate
, "'icmp proto' is bogus");
6074 bpf_error(cstate
, "'igmp proto' is bogus");
6078 bpf_error(cstate
, "'igrp proto' is bogus");
6082 bpf_error(cstate
, "'pim proto' is bogus");
6086 bpf_error(cstate
, "'vrrp proto' is bogus");
6090 bpf_error(cstate
, "'carp proto' is bogus");
6094 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6097 * Also check for a fragment header before the final
6100 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6101 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, (bpf_int32
)v
);
6103 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)v
);
6106 b1
= gen_protochain(cstate
, v
, Q_IPV6
);
6112 bpf_error(cstate
, "'icmp6 proto' is bogus");
6115 bpf_error(cstate
, "'ah proto' is bogus");
6118 bpf_error(cstate
, "'ah proto' is bogus");
6121 bpf_error(cstate
, "'stp proto' is bogus");
6124 bpf_error(cstate
, "'ipx proto' is bogus");
6127 bpf_error(cstate
, "'netbeui proto' is bogus");
6130 bpf_error(cstate
, "'radio proto' is bogus");
6140 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6142 int proto
= q
.proto
;
6146 bpf_u_int32 mask
, addr
;
6148 bpf_u_int32
**alist
;
6151 struct sockaddr_in
*sin4
;
6152 struct sockaddr_in6
*sin6
;
6153 struct addrinfo
*res
, *res0
;
6154 struct in6_addr mask128
;
6156 struct block
*b
, *tmp
;
6157 int port
, real_proto
;
6163 addr
= pcap_nametonetaddr(name
);
6165 bpf_error(cstate
, "unknown network '%s'", name
);
6166 /* Left justify network addr and calculate its network mask */
6168 while (addr
&& (addr
& 0xff000000) == 0) {
6172 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6176 if (proto
== Q_LINK
) {
6177 switch (cstate
->linktype
) {
6180 case DLT_NETANALYZER
:
6181 case DLT_NETANALYZER_TRANSPARENT
:
6182 eaddr
= pcap_ether_hostton(name
);
6185 "unknown ether host '%s'", name
);
6186 tmp
= gen_prevlinkhdr_check(cstate
);
6187 b
= gen_ehostop(cstate
, eaddr
, dir
);
6194 eaddr
= pcap_ether_hostton(name
);
6197 "unknown FDDI host '%s'", name
);
6198 b
= gen_fhostop(cstate
, eaddr
, dir
);
6203 eaddr
= pcap_ether_hostton(name
);
6206 "unknown token ring host '%s'", name
);
6207 b
= gen_thostop(cstate
, eaddr
, dir
);
6211 case DLT_IEEE802_11
:
6212 case DLT_PRISM_HEADER
:
6213 case DLT_IEEE802_11_RADIO_AVS
:
6214 case DLT_IEEE802_11_RADIO
:
6216 eaddr
= pcap_ether_hostton(name
);
6219 "unknown 802.11 host '%s'", name
);
6220 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6224 case DLT_IP_OVER_FC
:
6225 eaddr
= pcap_ether_hostton(name
);
6228 "unknown Fibre Channel host '%s'", name
);
6229 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6234 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6235 } else if (proto
== Q_DECNET
) {
6236 unsigned short dn_addr
;
6238 if (!__pcap_nametodnaddr(name
, &dn_addr
)) {
6240 bpf_error(cstate
, "unknown decnet host name '%s'\n", name
);
6242 bpf_error(cstate
, "decnet name support not included, '%s' cannot be translated\n",
6247 * I don't think DECNET hosts can be multihomed, so
6248 * there is no need to build up a list of addresses
6250 return (gen_host(cstate
, dn_addr
, 0, proto
, dir
, q
.addr
));
6253 alist
= pcap_nametoaddr(name
);
6254 if (alist
== NULL
|| *alist
== NULL
)
6255 bpf_error(cstate
, "unknown host '%s'", name
);
6257 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6258 tproto
== Q_DEFAULT
)
6260 b
= gen_host(cstate
, **alist
++, 0xffffffff, tproto
, dir
, q
.addr
);
6262 tmp
= gen_host(cstate
, **alist
++, 0xffffffff,
6263 tproto
, dir
, q
.addr
);
6269 memset(&mask128
, 0xff, sizeof(mask128
));
6270 res0
= res
= pcap_nametoaddrinfo(name
);
6272 bpf_error(cstate
, "unknown host '%s'", name
);
6275 tproto
= tproto6
= proto
;
6276 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6277 tproto
== Q_DEFAULT
) {
6281 for (res
= res0
; res
; res
= res
->ai_next
) {
6282 switch (res
->ai_family
) {
6284 if (tproto
== Q_IPV6
)
6287 sin4
= (struct sockaddr_in
*)
6289 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6290 0xffffffff, tproto
, dir
, q
.addr
);
6293 if (tproto6
== Q_IP
)
6296 sin6
= (struct sockaddr_in6
*)
6298 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6299 &mask128
, tproto6
, dir
, q
.addr
);
6311 bpf_error(cstate
, "unknown host '%s'%s", name
,
6312 (proto
== Q_DEFAULT
)
6314 : " for specified address family");
6321 if (proto
!= Q_DEFAULT
&&
6322 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6323 bpf_error(cstate
, "illegal qualifier of 'port'");
6324 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6325 bpf_error(cstate
, "unknown port '%s'", name
);
6326 if (proto
== Q_UDP
) {
6327 if (real_proto
== IPPROTO_TCP
)
6328 bpf_error(cstate
, "port '%s' is tcp", name
);
6329 else if (real_proto
== IPPROTO_SCTP
)
6330 bpf_error(cstate
, "port '%s' is sctp", name
);
6332 /* override PROTO_UNDEF */
6333 real_proto
= IPPROTO_UDP
;
6335 if (proto
== Q_TCP
) {
6336 if (real_proto
== IPPROTO_UDP
)
6337 bpf_error(cstate
, "port '%s' is udp", name
);
6339 else if (real_proto
== IPPROTO_SCTP
)
6340 bpf_error(cstate
, "port '%s' is sctp", name
);
6342 /* override PROTO_UNDEF */
6343 real_proto
= IPPROTO_TCP
;
6345 if (proto
== Q_SCTP
) {
6346 if (real_proto
== IPPROTO_UDP
)
6347 bpf_error(cstate
, "port '%s' is udp", name
);
6349 else if (real_proto
== IPPROTO_TCP
)
6350 bpf_error(cstate
, "port '%s' is tcp", name
);
6352 /* override PROTO_UNDEF */
6353 real_proto
= IPPROTO_SCTP
;
6356 bpf_error(cstate
, "illegal port number %d < 0", port
);
6358 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6359 b
= gen_port(cstate
, port
, real_proto
, dir
);
6360 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
6364 if (proto
!= Q_DEFAULT
&&
6365 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6366 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6367 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6368 bpf_error(cstate
, "unknown port in range '%s'", name
);
6369 if (proto
== Q_UDP
) {
6370 if (real_proto
== IPPROTO_TCP
)
6371 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6372 else if (real_proto
== IPPROTO_SCTP
)
6373 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6375 /* override PROTO_UNDEF */
6376 real_proto
= IPPROTO_UDP
;
6378 if (proto
== Q_TCP
) {
6379 if (real_proto
== IPPROTO_UDP
)
6380 bpf_error(cstate
, "port in range '%s' is udp", name
);
6381 else if (real_proto
== IPPROTO_SCTP
)
6382 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6384 /* override PROTO_UNDEF */
6385 real_proto
= IPPROTO_TCP
;
6387 if (proto
== Q_SCTP
) {
6388 if (real_proto
== IPPROTO_UDP
)
6389 bpf_error(cstate
, "port in range '%s' is udp", name
);
6390 else if (real_proto
== IPPROTO_TCP
)
6391 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6393 /* override PROTO_UNDEF */
6394 real_proto
= IPPROTO_SCTP
;
6397 bpf_error(cstate
, "illegal port number %d < 0", port1
);
6399 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6401 bpf_error(cstate
, "illegal port number %d < 0", port2
);
6403 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6405 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
6406 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
6411 eaddr
= pcap_ether_hostton(name
);
6413 bpf_error(cstate
, "unknown ether host: %s", name
);
6415 alist
= pcap_nametoaddr(name
);
6416 if (alist
== NULL
|| *alist
== NULL
)
6417 bpf_error(cstate
, "unknown host '%s'", name
);
6418 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
6422 bpf_error(cstate
, "'gateway' not supported in this configuration");
6426 real_proto
= lookup_proto(cstate
, name
, proto
);
6427 if (real_proto
>= 0)
6428 return gen_proto(cstate
, real_proto
, proto
, dir
);
6430 bpf_error(cstate
, "unknown protocol: %s", name
);
6433 real_proto
= lookup_proto(cstate
, name
, proto
);
6434 if (real_proto
>= 0)
6435 return gen_protochain(cstate
, real_proto
, proto
, dir
);
6437 bpf_error(cstate
, "unknown protocol: %s", name
);
6448 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6449 unsigned int masklen
, struct qual q
)
6451 register int nlen
, mlen
;
6454 nlen
= __pcap_atoin(s1
, &n
);
6455 /* Promote short ipaddr */
6459 mlen
= __pcap_atoin(s2
, &m
);
6460 /* Promote short ipaddr */
6463 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
6466 /* Convert mask len to mask */
6468 bpf_error(cstate
, "mask length must be <= 32");
6471 * X << 32 is not guaranteed by C to be 0; it's
6476 m
= 0xffffffff << (32 - masklen
);
6478 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
6485 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
6488 bpf_error(cstate
, "Mask syntax for networks only");
6496 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
6499 int proto
= q
.proto
;
6505 else if (q
.proto
== Q_DECNET
) {
6506 vlen
= __pcap_atodn(s
, &v
);
6508 bpf_error(cstate
, "malformed decnet address '%s'", s
);
6510 vlen
= __pcap_atoin(s
, &v
);
6517 if (proto
== Q_DECNET
)
6518 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
6519 else if (proto
== Q_LINK
) {
6520 bpf_error(cstate
, "illegal link layer address");
6523 if (s
== NULL
&& q
.addr
== Q_NET
) {
6524 /* Promote short net number */
6525 while (v
&& (v
& 0xff000000) == 0) {
6530 /* Promote short ipaddr */
6532 mask
<<= 32 - vlen
;
6534 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
6539 proto
= IPPROTO_UDP
;
6540 else if (proto
== Q_TCP
)
6541 proto
= IPPROTO_TCP
;
6542 else if (proto
== Q_SCTP
)
6543 proto
= IPPROTO_SCTP
;
6544 else if (proto
== Q_DEFAULT
)
6545 proto
= PROTO_UNDEF
;
6547 bpf_error(cstate
, "illegal qualifier of 'port'");
6550 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6554 b
= gen_port(cstate
, (int)v
, proto
, dir
);
6555 gen_or(gen_port6(cstate
, (int)v
, proto
, dir
), b
);
6561 proto
= IPPROTO_UDP
;
6562 else if (proto
== Q_TCP
)
6563 proto
= IPPROTO_TCP
;
6564 else if (proto
== Q_SCTP
)
6565 proto
= IPPROTO_SCTP
;
6566 else if (proto
== Q_DEFAULT
)
6567 proto
= PROTO_UNDEF
;
6569 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6572 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6576 b
= gen_portrange(cstate
, (int)v
, (int)v
, proto
, dir
);
6577 gen_or(gen_portrange6(cstate
, (int)v
, (int)v
, proto
, dir
), b
);
6582 bpf_error(cstate
, "'gateway' requires a name");
6586 return gen_proto(cstate
, (int)v
, proto
, dir
);
6589 return gen_protochain(cstate
, (int)v
, proto
, dir
);
6604 gen_mcode6(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6605 unsigned int masklen
, struct qual q
)
6607 struct addrinfo
*res
;
6608 struct in6_addr
*addr
;
6609 struct in6_addr mask
;
6614 bpf_error(cstate
, "no mask %s supported", s2
);
6616 res
= pcap_nametoaddrinfo(s1
);
6618 bpf_error(cstate
, "invalid ip6 address %s", s1
);
6621 bpf_error(cstate
, "%s resolved to multiple address", s1
);
6622 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
6624 if (sizeof(mask
) * 8 < masklen
)
6625 bpf_error(cstate
, "mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
6626 memset(&mask
, 0, sizeof(mask
));
6627 memset(&mask
, 0xff, masklen
/ 8);
6629 mask
.s6_addr
[masklen
/ 8] =
6630 (0xff << (8 - masklen
% 8)) & 0xff;
6633 a
= (u_int32_t
*)addr
;
6634 m
= (u_int32_t
*)&mask
;
6635 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
6636 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
6637 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s1
, masklen
);
6645 bpf_error(cstate
, "Mask syntax for networks only");
6649 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
6655 bpf_error(cstate
, "invalid qualifier against IPv6 address");
6663 gen_ecode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
6665 struct block
*b
, *tmp
;
6667 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6668 switch (cstate
->linktype
) {
6670 case DLT_NETANALYZER
:
6671 case DLT_NETANALYZER_TRANSPARENT
:
6672 tmp
= gen_prevlinkhdr_check(cstate
);
6673 b
= gen_ehostop(cstate
, eaddr
, (int)q
.dir
);
6678 return gen_fhostop(cstate
, eaddr
, (int)q
.dir
);
6680 return gen_thostop(cstate
, eaddr
, (int)q
.dir
);
6681 case DLT_IEEE802_11
:
6682 case DLT_PRISM_HEADER
:
6683 case DLT_IEEE802_11_RADIO_AVS
:
6684 case DLT_IEEE802_11_RADIO
:
6686 return gen_wlanhostop(cstate
, eaddr
, (int)q
.dir
);
6687 case DLT_IP_OVER_FC
:
6688 return gen_ipfchostop(cstate
, eaddr
, (int)q
.dir
);
6690 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6694 bpf_error(cstate
, "ethernet address used in non-ether expression");
6701 struct slist
*s0
, *s1
;
6704 * This is definitely not the best way to do this, but the
6705 * lists will rarely get long.
6712 static struct slist
*
6713 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
6717 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
6722 static struct slist
*
6723 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
6727 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6733 * Modify "index" to use the value stored into its register as an
6734 * offset relative to the beginning of the header for the protocol
6735 * "proto", and allocate a register and put an item "size" bytes long
6736 * (1, 2, or 4) at that offset into that register, making it the register
6740 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
, int size
)
6742 struct slist
*s
, *tmp
;
6744 int regno
= alloc_reg(cstate
);
6746 free_reg(cstate
, inst
->regno
);
6750 bpf_error(cstate
, "data size must be 1, 2, or 4");
6766 bpf_error(cstate
, "unsupported index operation");
6770 * The offset is relative to the beginning of the packet
6771 * data, if we have a radio header. (If we don't, this
6774 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
6775 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
6776 cstate
->linktype
!= DLT_PRISM_HEADER
)
6777 bpf_error(cstate
, "radio information not present in capture");
6780 * Load into the X register the offset computed into the
6781 * register specified by "index".
6783 s
= xfer_to_x(cstate
, inst
);
6786 * Load the item at that offset.
6788 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6790 sappend(inst
->s
, s
);
6795 * The offset is relative to the beginning of
6796 * the link-layer header.
6798 * XXX - what about ATM LANE? Should the index be
6799 * relative to the beginning of the AAL5 frame, so
6800 * that 0 refers to the beginning of the LE Control
6801 * field, or relative to the beginning of the LAN
6802 * frame, so that 0 refers, for Ethernet LANE, to
6803 * the beginning of the destination address?
6805 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
6808 * If "s" is non-null, it has code to arrange that the
6809 * X register contains the length of the prefix preceding
6810 * the link-layer header. Add to it the offset computed
6811 * into the register specified by "index", and move that
6812 * into the X register. Otherwise, just load into the X
6813 * register the offset computed into the register specified
6817 sappend(s
, xfer_to_a(cstate
, inst
));
6818 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6819 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6821 s
= xfer_to_x(cstate
, inst
);
6824 * Load the item at the sum of the offset we've put in the
6825 * X register and the offset of the start of the link
6826 * layer header (which is 0 if the radio header is
6827 * variable-length; that header length is what we put
6828 * into the X register and then added to the index).
6830 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6831 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
6833 sappend(inst
->s
, s
);
6847 * The offset is relative to the beginning of
6848 * the network-layer header.
6849 * XXX - are there any cases where we want
6850 * cstate->off_nl_nosnap?
6852 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
6855 * If "s" is non-null, it has code to arrange that the
6856 * X register contains the variable part of the offset
6857 * of the link-layer payload. Add to it the offset
6858 * computed into the register specified by "index",
6859 * and move that into the X register. Otherwise, just
6860 * load into the X register the offset computed into
6861 * the register specified by "index".
6864 sappend(s
, xfer_to_a(cstate
, inst
));
6865 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6866 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6868 s
= xfer_to_x(cstate
, inst
);
6871 * Load the item at the sum of the offset we've put in the
6872 * X register, the offset of the start of the network
6873 * layer header from the beginning of the link-layer
6874 * payload, and the constant part of the offset of the
6875 * start of the link-layer payload.
6877 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6878 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6880 sappend(inst
->s
, s
);
6883 * Do the computation only if the packet contains
6884 * the protocol in question.
6886 b
= gen_proto_abbrev(cstate
, proto
);
6888 gen_and(inst
->b
, b
);
6902 * The offset is relative to the beginning of
6903 * the transport-layer header.
6905 * Load the X register with the length of the IPv4 header
6906 * (plus the offset of the link-layer header, if it's
6907 * a variable-length header), in bytes.
6909 * XXX - are there any cases where we want
6910 * cstate->off_nl_nosnap?
6911 * XXX - we should, if we're built with
6912 * IPv6 support, generate code to load either
6913 * IPv4, IPv6, or both, as appropriate.
6915 s
= gen_loadx_iphdrlen(cstate
);
6918 * The X register now contains the sum of the variable
6919 * part of the offset of the link-layer payload and the
6920 * length of the network-layer header.
6922 * Load into the A register the offset relative to
6923 * the beginning of the transport layer header,
6924 * add the X register to that, move that to the
6925 * X register, and load with an offset from the
6926 * X register equal to the sum of the constant part of
6927 * the offset of the link-layer payload and the offset,
6928 * relative to the beginning of the link-layer payload,
6929 * of the network-layer header.
6931 sappend(s
, xfer_to_a(cstate
, inst
));
6932 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6933 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6934 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
));
6935 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6936 sappend(inst
->s
, s
);
6939 * Do the computation only if the packet contains
6940 * the protocol in question - which is true only
6941 * if this is an IP datagram and is the first or
6942 * only fragment of that datagram.
6944 gen_and(gen_proto_abbrev(cstate
, proto
), b
= gen_ipfrag(cstate
));
6946 gen_and(inst
->b
, b
);
6947 gen_and(gen_proto_abbrev(cstate
, Q_IP
), b
);
6951 bpf_error(cstate
, "IPv6 upper-layer protocol is not supported by proto[x]");
6954 inst
->regno
= regno
;
6955 s
= new_stmt(cstate
, BPF_ST
);
6957 sappend(inst
->s
, s
);
6963 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
6964 struct arth
*a1
, int reversed
)
6966 struct slist
*s0
, *s1
, *s2
;
6967 struct block
*b
, *tmp
;
6969 s0
= xfer_to_x(cstate
, a1
);
6970 s1
= xfer_to_a(cstate
, a0
);
6971 if (code
== BPF_JEQ
) {
6972 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
6973 b
= new_block(cstate
, JMP(code
));
6977 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
6983 sappend(a0
->s
, a1
->s
);
6987 free_reg(cstate
, a0
->regno
);
6988 free_reg(cstate
, a1
->regno
);
6990 /* 'and' together protocol checks */
6993 gen_and(a0
->b
, tmp
= a1
->b
);
7007 gen_loadlen(compiler_state_t
*cstate
)
7009 int regno
= alloc_reg(cstate
);
7010 struct arth
*a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7013 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7014 s
->next
= new_stmt(cstate
, BPF_ST
);
7015 s
->next
->s
.k
= regno
;
7023 gen_loadi(compiler_state_t
*cstate
, int val
)
7029 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7031 reg
= alloc_reg(cstate
);
7033 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7035 s
->next
= new_stmt(cstate
, BPF_ST
);
7044 gen_neg(compiler_state_t
*cstate
, struct arth
*a
)
7048 s
= xfer_to_a(cstate
, a
);
7050 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7053 s
= new_stmt(cstate
, BPF_ST
);
7061 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7064 struct slist
*s0
, *s1
, *s2
;
7067 * Disallow division by, or modulus by, zero; we do this here
7068 * so that it gets done even if the optimizer is disabled.
7070 if (code
== BPF_DIV
) {
7071 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7072 bpf_error(cstate
, "division by zero");
7073 } else if (code
== BPF_MOD
) {
7074 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7075 bpf_error(cstate
, "modulus by zero");
7077 s0
= xfer_to_x(cstate
, a1
);
7078 s1
= xfer_to_a(cstate
, a0
);
7079 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7084 sappend(a0
->s
, a1
->s
);
7086 free_reg(cstate
, a0
->regno
);
7087 free_reg(cstate
, a1
->regno
);
7089 s0
= new_stmt(cstate
, BPF_ST
);
7090 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7097 * Initialize the table of used registers and the current register.
7100 init_regs(compiler_state_t
*cstate
)
7103 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7107 * Return the next free register.
7110 alloc_reg(compiler_state_t
*cstate
)
7112 int n
= BPF_MEMWORDS
;
7115 if (cstate
->regused
[cstate
->curreg
])
7116 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7118 cstate
->regused
[cstate
->curreg
] = 1;
7119 return cstate
->curreg
;
7122 bpf_error(cstate
, "too many registers needed to evaluate expression");
7128 * Return a register to the table so it can
7132 free_reg(compiler_state_t
*cstate
, int n
)
7134 cstate
->regused
[n
] = 0;
7137 static struct block
*
7138 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7143 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7144 b
= new_block(cstate
, JMP(jmp
));
7152 gen_greater(compiler_state_t
*cstate
, int n
)
7154 return gen_len(cstate
, BPF_JGE
, n
);
7158 * Actually, this is less than or equal.
7161 gen_less(compiler_state_t
*cstate
, int n
)
7165 b
= gen_len(cstate
, BPF_JGT
, n
);
7172 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7173 * the beginning of the link-layer header.
7174 * XXX - that means you can't test values in the radiotap header, but
7175 * as that header is difficult if not impossible to parse generally
7176 * without a loop, that might not be a severe problem. A new keyword
7177 * "radio" could be added for that, although what you'd really want
7178 * would be a way of testing particular radio header values, which
7179 * would generate code appropriate to the radio header in question.
7182 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, int val
)
7192 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7195 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7199 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7203 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7207 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7211 b
= new_block(cstate
, JMP(BPF_JEQ
));
7218 static const u_char abroadcast
[] = { 0x0 };
7221 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7223 bpf_u_int32 hostmask
;
7224 struct block
*b0
, *b1
, *b2
;
7225 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7231 switch (cstate
->linktype
) {
7233 case DLT_ARCNET_LINUX
:
7234 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7236 case DLT_NETANALYZER
:
7237 case DLT_NETANALYZER_TRANSPARENT
:
7238 b1
= gen_prevlinkhdr_check(cstate
);
7239 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
7244 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
7246 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
7247 case DLT_IEEE802_11
:
7248 case DLT_PRISM_HEADER
:
7249 case DLT_IEEE802_11_RADIO_AVS
:
7250 case DLT_IEEE802_11_RADIO
:
7252 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
7253 case DLT_IP_OVER_FC
:
7254 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
7256 bpf_error(cstate
, "not a broadcast link");
7262 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7263 * as an indication that we don't know the netmask, and fail
7266 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7267 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7268 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7269 hostmask
= ~cstate
->netmask
;
7270 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7271 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
,
7272 (bpf_int32
)(~0 & hostmask
), hostmask
);
7277 bpf_error(cstate
, "only link-layer/IP broadcast filters supported");
7283 * Generate code to test the low-order bit of a MAC address (that's
7284 * the bottom bit of the *first* byte).
7286 static struct block
*
7287 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7289 register struct block
*b0
;
7290 register struct slist
*s
;
7292 /* link[offset] & 1 != 0 */
7293 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7294 b0
= new_block(cstate
, JMP(BPF_JSET
));
7301 gen_multicast(compiler_state_t
*cstate
, int proto
)
7303 register struct block
*b0
, *b1
, *b2
;
7304 register struct slist
*s
;
7310 switch (cstate
->linktype
) {
7312 case DLT_ARCNET_LINUX
:
7313 /* all ARCnet multicasts use the same address */
7314 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7316 case DLT_NETANALYZER
:
7317 case DLT_NETANALYZER_TRANSPARENT
:
7318 b1
= gen_prevlinkhdr_check(cstate
);
7319 /* ether[0] & 1 != 0 */
7320 b0
= gen_mac_multicast(cstate
, 0);
7326 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7328 * XXX - was that referring to bit-order issues?
7330 /* fddi[1] & 1 != 0 */
7331 return gen_mac_multicast(cstate
, 1);
7333 /* tr[2] & 1 != 0 */
7334 return gen_mac_multicast(cstate
, 2);
7335 case DLT_IEEE802_11
:
7336 case DLT_PRISM_HEADER
:
7337 case DLT_IEEE802_11_RADIO_AVS
:
7338 case DLT_IEEE802_11_RADIO
:
7343 * For control frames, there is no DA.
7345 * For management frames, DA is at an
7346 * offset of 4 from the beginning of
7349 * For data frames, DA is at an offset
7350 * of 4 from the beginning of the packet
7351 * if To DS is clear and at an offset of
7352 * 16 from the beginning of the packet
7357 * Generate the tests to be done for data frames.
7359 * First, check for To DS set, i.e. "link[1] & 0x01".
7361 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7362 b1
= new_block(cstate
, JMP(BPF_JSET
));
7363 b1
->s
.k
= 0x01; /* To DS */
7367 * If To DS is set, the DA is at 16.
7369 b0
= gen_mac_multicast(cstate
, 16);
7373 * Now, check for To DS not set, i.e. check
7374 * "!(link[1] & 0x01)".
7376 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7377 b2
= new_block(cstate
, JMP(BPF_JSET
));
7378 b2
->s
.k
= 0x01; /* To DS */
7383 * If To DS is not set, the DA is at 4.
7385 b1
= gen_mac_multicast(cstate
, 4);
7389 * Now OR together the last two checks. That gives
7390 * the complete set of checks for data frames.
7395 * Now check for a data frame.
7396 * I.e, check "link[0] & 0x08".
7398 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7399 b1
= new_block(cstate
, JMP(BPF_JSET
));
7404 * AND that with the checks done for data frames.
7409 * If the high-order bit of the type value is 0, this
7410 * is a management frame.
7411 * I.e, check "!(link[0] & 0x08)".
7413 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7414 b2
= new_block(cstate
, JMP(BPF_JSET
));
7420 * For management frames, the DA is at 4.
7422 b1
= gen_mac_multicast(cstate
, 4);
7426 * OR that with the checks done for data frames.
7427 * That gives the checks done for management and
7433 * If the low-order bit of the type value is 1,
7434 * this is either a control frame or a frame
7435 * with a reserved type, and thus not a
7438 * I.e., check "!(link[0] & 0x04)".
7440 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7441 b1
= new_block(cstate
, JMP(BPF_JSET
));
7447 * AND that with the checks for data and management
7452 case DLT_IP_OVER_FC
:
7453 b0
= gen_mac_multicast(cstate
, 2);
7458 /* Link not known to support multicasts */
7462 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7463 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, (bpf_int32
)224);
7468 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
7469 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, (bpf_int32
)255);
7473 bpf_error(cstate
, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7479 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7480 * Outbound traffic is sent by this machine, while inbound traffic is
7481 * sent by a remote machine (and may include packets destined for a
7482 * unicast or multicast link-layer address we are not subscribing to).
7483 * These are the same definitions implemented by pcap_setdirection().
7484 * Capturing only unicast traffic destined for this host is probably
7485 * better accomplished using a higher-layer filter.
7488 gen_inbound(compiler_state_t
*cstate
, int dir
)
7490 register struct block
*b0
;
7493 * Only some data link types support inbound/outbound qualifiers.
7495 switch (cstate
->linktype
) {
7497 b0
= gen_relation(cstate
, BPF_JEQ
,
7498 gen_load(cstate
, Q_LINK
, gen_loadi(cstate
, 0), 1),
7499 gen_loadi(cstate
, 0),
7505 /* match outgoing packets */
7506 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_OUTBOUND
);
7508 /* match incoming packets */
7509 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_INBOUND
);
7514 /* match outgoing packets */
7515 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
7517 /* to filter on inbound traffic, invert the match */
7522 #ifdef HAVE_NET_PFVAR_H
7524 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
7525 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
7531 /* match outgoing packets */
7532 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_OUT
);
7534 /* match incoming packets */
7535 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_IN
);
7539 case DLT_JUNIPER_MFR
:
7540 case DLT_JUNIPER_MLFR
:
7541 case DLT_JUNIPER_MLPPP
:
7542 case DLT_JUNIPER_ATM1
:
7543 case DLT_JUNIPER_ATM2
:
7544 case DLT_JUNIPER_PPPOE
:
7545 case DLT_JUNIPER_PPPOE_ATM
:
7546 case DLT_JUNIPER_GGSN
:
7547 case DLT_JUNIPER_ES
:
7548 case DLT_JUNIPER_MONITOR
:
7549 case DLT_JUNIPER_SERVICES
:
7550 case DLT_JUNIPER_ETHER
:
7551 case DLT_JUNIPER_PPP
:
7552 case DLT_JUNIPER_FRELAY
:
7553 case DLT_JUNIPER_CHDLC
:
7554 case DLT_JUNIPER_VP
:
7555 case DLT_JUNIPER_ST
:
7556 case DLT_JUNIPER_ISM
:
7557 case DLT_JUNIPER_VS
:
7558 case DLT_JUNIPER_SRX_E2E
:
7559 case DLT_JUNIPER_FIBRECHANNEL
:
7560 case DLT_JUNIPER_ATM_CEMIC
:
7562 /* juniper flags (including direction) are stored
7563 * the byte after the 3-byte magic number */
7565 /* match outgoing packets */
7566 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 0, 0x01);
7568 /* match incoming packets */
7569 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 1, 0x01);
7575 * If we have packet meta-data indicating a direction,
7576 * check it, otherwise give up as this link-layer type
7577 * has nothing in the packet data.
7579 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7581 * This is Linux with PF_PACKET support.
7582 * If this is a *live* capture, we can look at
7583 * special meta-data in the filter expression;
7584 * if it's a savefile, we can't.
7586 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
7587 /* We have a FILE *, so this is a savefile */
7588 bpf_error(cstate
, "inbound/outbound not supported on linktype %d when reading savefiles",
7593 /* match outgoing packets */
7594 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
7597 /* to filter on inbound traffic, invert the match */
7600 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7601 bpf_error(cstate
, "inbound/outbound not supported on linktype %d",
7605 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7610 #ifdef HAVE_NET_PFVAR_H
7611 /* PF firewall log matched interface */
7613 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7618 if (cstate
->linktype
!= DLT_PFLOG
) {
7619 bpf_error(cstate
, "ifname supported only on PF linktype");
7622 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
7623 off
= offsetof(struct pfloghdr
, ifname
);
7624 if (strlen(ifname
) >= len
) {
7625 bpf_error(cstate
, "ifname interface names can only be %d characters",
7629 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, strlen(ifname
), (const u_char
*)ifname
);
7633 /* PF firewall log ruleset name */
7635 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7639 if (cstate
->linktype
!= DLT_PFLOG
) {
7640 bpf_error(cstate
, "ruleset supported only on PF linktype");
7644 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
7645 bpf_error(cstate
, "ruleset names can only be %ld characters",
7646 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
7650 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
7651 strlen(ruleset
), (const u_char
*)ruleset
);
7655 /* PF firewall log rule number */
7657 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7661 if (cstate
->linktype
!= DLT_PFLOG
) {
7662 bpf_error(cstate
, "rnr supported only on PF linktype");
7666 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
7671 /* PF firewall log sub-rule number */
7673 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7677 if (cstate
->linktype
!= DLT_PFLOG
) {
7678 bpf_error(cstate
, "srnr supported only on PF linktype");
7682 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
7687 /* PF firewall log reason code */
7689 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7693 if (cstate
->linktype
!= DLT_PFLOG
) {
7694 bpf_error(cstate
, "reason supported only on PF linktype");
7698 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
7703 /* PF firewall log action */
7705 gen_pf_action(compiler_state_t
*cstate
, int action
)
7709 if (cstate
->linktype
!= DLT_PFLOG
) {
7710 bpf_error(cstate
, "action supported only on PF linktype");
7714 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
7718 #else /* !HAVE_NET_PFVAR_H */
7720 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7722 bpf_error(cstate
, "libpcap was compiled without pf support");
7728 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7730 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7736 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7738 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7744 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7746 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7752 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7754 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7760 gen_pf_action(compiler_state_t
*cstate
, int action
)
7762 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7766 #endif /* HAVE_NET_PFVAR_H */
7768 /* IEEE 802.11 wireless header */
7770 gen_p80211_type(compiler_state_t
*cstate
, int type
, int mask
)
7774 switch (cstate
->linktype
) {
7776 case DLT_IEEE802_11
:
7777 case DLT_PRISM_HEADER
:
7778 case DLT_IEEE802_11_RADIO_AVS
:
7779 case DLT_IEEE802_11_RADIO
:
7780 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, (bpf_int32
)type
,
7785 bpf_error(cstate
, "802.11 link-layer types supported only on 802.11");
7793 gen_p80211_fcdir(compiler_state_t
*cstate
, int fcdir
)
7797 switch (cstate
->linktype
) {
7799 case DLT_IEEE802_11
:
7800 case DLT_PRISM_HEADER
:
7801 case DLT_IEEE802_11_RADIO_AVS
:
7802 case DLT_IEEE802_11_RADIO
:
7806 bpf_error(cstate
, "frame direction supported only with 802.11 headers");
7810 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, (bpf_int32
)fcdir
,
7811 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
7817 gen_acode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
7819 switch (cstate
->linktype
) {
7822 case DLT_ARCNET_LINUX
:
7823 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
7825 return (gen_ahostop(cstate
, eaddr
, (int)q
.dir
));
7827 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7833 bpf_error(cstate
, "aid supported only on ARCnet");
7836 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7841 static struct block
*
7842 gen_ahostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
7844 register struct block
*b0
, *b1
;
7847 /* src comes first, different from Ethernet */
7849 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 1, eaddr
);
7852 return gen_bcmp(cstate
, OR_LINKHDR
, 1, 1, eaddr
);
7855 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7856 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7862 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7863 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7868 bpf_error(cstate
, "'addr1' is only supported on 802.11");
7872 bpf_error(cstate
, "'addr2' is only supported on 802.11");
7876 bpf_error(cstate
, "'addr3' is only supported on 802.11");
7880 bpf_error(cstate
, "'addr4' is only supported on 802.11");
7884 bpf_error(cstate
, "'ra' is only supported on 802.11");
7888 bpf_error(cstate
, "'ta' is only supported on 802.11");
7895 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7896 static struct block
*
7897 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
7899 struct block
*b0
, *b1
;
7902 /* generate new filter code based on extracting packet
7904 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
7905 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
7907 b0
= new_block(cstate
, JMP(BPF_JEQ
));
7911 if (vlan_num
>= 0) {
7912 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
7913 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG
;
7915 b1
= new_block(cstate
, JMP(BPF_JEQ
));
7917 b1
->s
.k
= (bpf_int32
) vlan_num
;
7927 static struct block
*
7928 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
7930 struct block
*b0
, *b1
;
7932 /* check for VLAN, including QinQ */
7933 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
7934 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
7937 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
7941 /* If a specific VLAN is requested, check VLAN id */
7942 if (vlan_num
>= 0) {
7943 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
,
7944 (bpf_int32
)vlan_num
, 0x0fff);
7950 * The payload follows the full header, including the
7951 * VLAN tags, so skip past this VLAN tag.
7953 cstate
->off_linkpl
.constant_part
+= 4;
7956 * The link-layer type information follows the VLAN tags, so
7957 * skip past this VLAN tag.
7959 cstate
->off_linktype
.constant_part
+= 4;
7965 * support IEEE 802.1Q VLAN trunk over ethernet
7968 gen_vlan(compiler_state_t
*cstate
, int vlan_num
)
7972 /* can't check for VLAN-encapsulated packets inside MPLS */
7973 if (cstate
->label_stack_depth
> 0)
7974 bpf_error(cstate
, "no VLAN match after MPLS");
7977 * Check for a VLAN packet, and then change the offsets to point
7978 * to the type and data fields within the VLAN packet. Just
7979 * increment the offsets, so that we can support a hierarchy, e.g.
7980 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7983 * XXX - this is a bit of a kludge. If we were to split the
7984 * compiler into a parser that parses an expression and
7985 * generates an expression tree, and a code generator that
7986 * takes an expression tree (which could come from our
7987 * parser or from some other parser) and generates BPF code,
7988 * we could perhaps make the offsets parameters of routines
7989 * and, in the handler for an "AND" node, pass to subnodes
7990 * other than the VLAN node the adjusted offsets.
7992 * This would mean that "vlan" would, instead of changing the
7993 * behavior of *all* tests after it, change only the behavior
7994 * of tests ANDed with it. That would change the documented
7995 * semantics of "vlan", which might break some expressions.
7996 * However, it would mean that "(vlan and ip) or ip" would check
7997 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7998 * checking only for VLAN-encapsulated IP, so that could still
7999 * be considered worth doing; it wouldn't break expressions
8000 * that are of the form "vlan and ..." or "vlan N and ...",
8001 * which I suspect are the most common expressions involving
8002 * "vlan". "vlan or ..." doesn't necessarily do what the user
8003 * would really want, now, as all the "or ..." tests would
8004 * be done assuming a VLAN, even though the "or" could be viewed
8005 * as meaning "or, if this isn't a VLAN packet...".
8007 switch (cstate
->linktype
) {
8010 case DLT_NETANALYZER
:
8011 case DLT_NETANALYZER_TRANSPARENT
:
8012 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8013 /* Verify that this is the outer part of the packet and
8014 * not encapsulated somehow. */
8015 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8016 cstate
->off_linkhdr
.constant_part
==
8017 cstate
->off_outermostlinkhdr
.constant_part
) {
8019 * Do we need special VLAN handling?
8021 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8022 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
);
8024 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8027 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8030 case DLT_IEEE802_11
:
8031 case DLT_PRISM_HEADER
:
8032 case DLT_IEEE802_11_RADIO_AVS
:
8033 case DLT_IEEE802_11_RADIO
:
8034 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8038 bpf_error(cstate
, "no VLAN support for data link type %d",
8043 cstate
->vlan_stack_depth
++;
8052 gen_mpls(compiler_state_t
*cstate
, int label_num
)
8054 struct block
*b0
, *b1
;
8056 if (cstate
->label_stack_depth
> 0) {
8057 /* just match the bottom-of-stack bit clear */
8058 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
8061 * We're not in an MPLS stack yet, so check the link-layer
8062 * type against MPLS.
8064 switch (cstate
->linktype
) {
8066 case DLT_C_HDLC
: /* fall through */
8068 case DLT_NETANALYZER
:
8069 case DLT_NETANALYZER_TRANSPARENT
:
8070 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
8074 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
8077 /* FIXME add other DLT_s ...
8078 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8079 * leave it for now */
8082 bpf_error(cstate
, "no MPLS support for data link type %d",
8090 /* If a specific MPLS label is requested, check it */
8091 if (label_num
>= 0) {
8092 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8093 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, (bpf_int32
)label_num
,
8094 0xfffff000); /* only compare the first 20 bits */
8100 * Change the offsets to point to the type and data fields within
8101 * the MPLS packet. Just increment the offsets, so that we
8102 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8103 * capture packets with an outer label of 100000 and an inner
8106 * Increment the MPLS stack depth as well; this indicates that
8107 * we're checking MPLS-encapsulated headers, to make sure higher
8108 * level code generators don't try to match against IP-related
8109 * protocols such as Q_ARP, Q_RARP etc.
8111 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8113 cstate
->off_nl_nosnap
+= 4;
8114 cstate
->off_nl
+= 4;
8115 cstate
->label_stack_depth
++;
8120 * Support PPPOE discovery and session.
8123 gen_pppoed(compiler_state_t
*cstate
)
8125 /* check for PPPoE discovery */
8126 return gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOED
);
8130 gen_pppoes(compiler_state_t
*cstate
, int sess_num
)
8132 struct block
*b0
, *b1
;
8135 * Test against the PPPoE session link-layer type.
8137 b0
= gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOES
);
8139 /* If a specific session is requested, check PPPoE session id */
8140 if (sess_num
>= 0) {
8141 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
,
8142 (bpf_int32
)sess_num
, 0x0000ffff);
8148 * Change the offsets to point to the type and data fields within
8149 * the PPP packet, and note that this is PPPoE rather than
8152 * XXX - this is a bit of a kludge. If we were to split the
8153 * compiler into a parser that parses an expression and
8154 * generates an expression tree, and a code generator that
8155 * takes an expression tree (which could come from our
8156 * parser or from some other parser) and generates BPF code,
8157 * we could perhaps make the offsets parameters of routines
8158 * and, in the handler for an "AND" node, pass to subnodes
8159 * other than the PPPoE node the adjusted offsets.
8161 * This would mean that "pppoes" would, instead of changing the
8162 * behavior of *all* tests after it, change only the behavior
8163 * of tests ANDed with it. That would change the documented
8164 * semantics of "pppoes", which might break some expressions.
8165 * However, it would mean that "(pppoes and ip) or ip" would check
8166 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8167 * checking only for VLAN-encapsulated IP, so that could still
8168 * be considered worth doing; it wouldn't break expressions
8169 * that are of the form "pppoes and ..." which I suspect are the
8170 * most common expressions involving "pppoes". "pppoes or ..."
8171 * doesn't necessarily do what the user would really want, now,
8172 * as all the "or ..." tests would be done assuming PPPoE, even
8173 * though the "or" could be viewed as meaning "or, if this isn't
8174 * a PPPoE packet...".
8176 * The "network-layer" protocol is PPPoE, which has a 6-byte
8177 * PPPoE header, followed by a PPP packet.
8179 * There is no HDLC encapsulation for the PPP packet (it's
8180 * encapsulated in PPPoES instead), so the link-layer type
8181 * starts at the first byte of the PPP packet. For PPPoE,
8182 * that offset is relative to the beginning of the total
8183 * link-layer payload, including any 802.2 LLC header, so
8184 * it's 6 bytes past cstate->off_nl.
8186 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
8187 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
8188 cstate
->off_linkpl
.reg
);
8190 cstate
->off_linktype
= cstate
->off_linkhdr
;
8191 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
8194 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
8199 /* Check that this is Geneve and the VNI is correct if
8200 * specified. Parameterized to handle both IPv4 and IPv6. */
8201 static struct block
*
8202 gen_geneve_check(compiler_state_t
*cstate
,
8203 struct block
*(*gen_portfn
)(compiler_state_t
*, int, int, int),
8204 enum e_offrel offrel
, int vni
)
8206 struct block
*b0
, *b1
;
8208 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
8210 /* Check that we are operating on version 0. Otherwise, we
8211 * can't decode the rest of the fields. The version is 2 bits
8212 * in the first byte of the Geneve header. */
8213 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, (bpf_int32
)0, 0xc0);
8218 vni
<<= 8; /* VNI is in the upper 3 bytes */
8219 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, (bpf_int32
)vni
,
8228 /* The IPv4 and IPv6 Geneve checks need to do two things:
8229 * - Verify that this actually is Geneve with the right VNI.
8230 * - Place the IP header length (plus variable link prefix if
8231 * needed) into register A to be used later to compute
8232 * the inner packet offsets. */
8233 static struct block
*
8234 gen_geneve4(compiler_state_t
*cstate
, int vni
)
8236 struct block
*b0
, *b1
;
8237 struct slist
*s
, *s1
;
8239 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
);
8241 /* Load the IP header length into A. */
8242 s
= gen_loadx_iphdrlen(cstate
);
8244 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8247 /* Forcibly append these statements to the true condition
8248 * of the protocol check by creating a new block that is
8249 * always true and ANDing them. */
8250 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8259 static struct block
*
8260 gen_geneve6(compiler_state_t
*cstate
, int vni
)
8262 struct block
*b0
, *b1
;
8263 struct slist
*s
, *s1
;
8265 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
);
8267 /* Load the IP header length. We need to account for a
8268 * variable length link prefix if there is one. */
8269 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
8271 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8275 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8279 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8283 /* Forcibly append these statements to the true condition
8284 * of the protocol check by creating a new block that is
8285 * always true and ANDing them. */
8286 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8289 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8298 /* We need to store three values based on the Geneve header::
8299 * - The offset of the linktype.
8300 * - The offset of the end of the Geneve header.
8301 * - The offset of the end of the encapsulated MAC header. */
8302 static struct slist
*
8303 gen_geneve_offsets(compiler_state_t
*cstate
)
8305 struct slist
*s
, *s1
, *s_proto
;
8307 /* First we need to calculate the offset of the Geneve header
8308 * itself. This is composed of the IP header previously calculated
8309 * (include any variable link prefix) and stored in A plus the
8310 * fixed sized headers (fixed link prefix, MAC length, and UDP
8312 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8313 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
8315 /* Stash this in X since we'll need it later. */
8316 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8319 /* The EtherType in Geneve is 2 bytes in. Calculate this and
8321 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8325 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
8326 cstate
->off_linktype
.is_variable
= 1;
8327 cstate
->off_linktype
.constant_part
= 0;
8329 s1
= new_stmt(cstate
, BPF_ST
);
8330 s1
->s
.k
= cstate
->off_linktype
.reg
;
8333 /* Load the Geneve option length and mask and shift to get the
8334 * number of bytes. It is stored in the first byte of the Geneve
8336 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
8340 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8344 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
8348 /* Add in the rest of the Geneve base header. */
8349 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8353 /* Add the Geneve header length to its offset and store. */
8354 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8358 /* Set the encapsulated type as Ethernet. Even though we may
8359 * not actually have Ethernet inside there are two reasons this
8361 * - The linktype field is always in EtherType format regardless
8362 * of whether it is in Geneve or an inner Ethernet frame.
8363 * - The only link layer that we have specific support for is
8364 * Ethernet. We will confirm that the packet actually is
8365 * Ethernet at runtime before executing these checks. */
8366 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
8368 s1
= new_stmt(cstate
, BPF_ST
);
8369 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8372 /* Calculate whether we have an Ethernet header or just raw IP/
8373 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8374 * and linktype by 14 bytes so that the network header can be found
8375 * seamlessly. Otherwise, keep what we've calculated already. */
8377 /* We have a bare jmp so we can't use the optimizer. */
8378 cstate
->no_optimize
= 1;
8380 /* Load the EtherType in the Geneve header, 2 bytes in. */
8381 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
8385 /* Load X with the end of the Geneve header. */
8386 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8387 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8390 /* Check if the EtherType is Transparent Ethernet Bridging. At the
8391 * end of this check, we should have the total length in X. In
8392 * the non-Ethernet case, it's already there. */
8393 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
8394 s_proto
->s
.k
= ETHERTYPE_TEB
;
8395 sappend(s
, s_proto
);
8397 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8401 /* Since this is Ethernet, use the EtherType of the payload
8402 * directly as the linktype. Overwrite what we already have. */
8403 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8407 s1
= new_stmt(cstate
, BPF_ST
);
8408 s1
->s
.k
= cstate
->off_linktype
.reg
;
8411 /* Advance two bytes further to get the end of the Ethernet
8413 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8417 /* Move the result to X. */
8418 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8421 /* Store the final result of our linkpl calculation. */
8422 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
8423 cstate
->off_linkpl
.is_variable
= 1;
8424 cstate
->off_linkpl
.constant_part
= 0;
8426 s1
= new_stmt(cstate
, BPF_STX
);
8427 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8436 /* Check to see if this is a Geneve packet. */
8438 gen_geneve(compiler_state_t
*cstate
, int vni
)
8440 struct block
*b0
, *b1
;
8443 b0
= gen_geneve4(cstate
, vni
);
8444 b1
= gen_geneve6(cstate
, vni
);
8449 /* Later filters should act on the payload of the Geneve frame,
8450 * update all of the header pointers. Attach this code so that
8451 * it gets executed in the event that the Geneve filter matches. */
8452 s
= gen_geneve_offsets(cstate
);
8454 b1
= gen_true(cstate
);
8455 sappend(s
, b1
->stmts
);
8460 cstate
->is_geneve
= 1;
8465 /* Check that the encapsulated frame has a link layer header
8466 * for Ethernet filters. */
8467 static struct block
*
8468 gen_geneve_ll_check(compiler_state_t
*cstate
)
8471 struct slist
*s
, *s1
;
8473 /* The easiest way to see if there is a link layer present
8474 * is to check if the link layer header and payload are not
8477 /* Geneve always generates pure variable offsets so we can
8478 * compare only the registers. */
8479 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8480 s
->s
.k
= cstate
->off_linkhdr
.reg
;
8482 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8483 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8486 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8495 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
, bpf_int32 jvalue
,
8496 bpf_u_int32 jtype
, int reverse
)
8503 if (!cstate
->is_atm
)
8504 bpf_error(cstate
, "'vpi' supported only on raw ATM");
8505 if (cstate
->off_vpi
== (u_int
)-1)
8507 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
, 0xffffffff, jtype
,
8512 if (!cstate
->is_atm
)
8513 bpf_error(cstate
, "'vci' supported only on raw ATM");
8514 if (cstate
->off_vci
== (u_int
)-1)
8516 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
, 0xffffffff, jtype
,
8521 if (cstate
->off_proto
== (u_int
)-1)
8522 abort(); /* XXX - this isn't on FreeBSD */
8523 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0x0f, jtype
,
8528 if (cstate
->off_payload
== (u_int
)-1)
8530 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
8531 0xffffffff, jtype
, reverse
, jvalue
);
8535 if (!cstate
->is_atm
)
8536 bpf_error(cstate
, "'callref' supported only on raw ATM");
8537 if (cstate
->off_proto
== (u_int
)-1)
8539 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0xffffffff,
8540 jtype
, reverse
, jvalue
);
8550 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
8552 struct block
*b0
, *b1
;
8557 /* Get all packets in Meta signalling Circuit */
8558 if (!cstate
->is_atm
)
8559 bpf_error(cstate
, "'metac' supported only on raw ATM");
8560 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8561 b1
= gen_atmfield_code(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
8566 /* Get all packets in Broadcast Circuit*/
8567 if (!cstate
->is_atm
)
8568 bpf_error(cstate
, "'bcc' supported only on raw ATM");
8569 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8570 b1
= gen_atmfield_code(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
8575 /* Get all cells in Segment OAM F4 circuit*/
8576 if (!cstate
->is_atm
)
8577 bpf_error(cstate
, "'oam4sc' supported only on raw ATM");
8578 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8579 b1
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
8584 /* Get all cells in End-to-End OAM F4 Circuit*/
8585 if (!cstate
->is_atm
)
8586 bpf_error(cstate
, "'oam4ec' supported only on raw ATM");
8587 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8588 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
8593 /* Get all packets in connection Signalling Circuit */
8594 if (!cstate
->is_atm
)
8595 bpf_error(cstate
, "'sc' supported only on raw ATM");
8596 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8597 b1
= gen_atmfield_code(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
8602 /* Get all packets in ILMI Circuit */
8603 if (!cstate
->is_atm
)
8604 bpf_error(cstate
, "'ilmic' supported only on raw ATM");
8605 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8606 b1
= gen_atmfield_code(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
8611 /* Get all LANE packets */
8612 if (!cstate
->is_atm
)
8613 bpf_error(cstate
, "'lane' supported only on raw ATM");
8614 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
8617 * Arrange that all subsequent tests assume LANE
8618 * rather than LLC-encapsulated packets, and set
8619 * the offsets appropriately for LANE-encapsulated
8622 * We assume LANE means Ethernet, not Token Ring.
8624 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
8625 cstate
->off_payload
+ 2, /* Ethernet header */
8627 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
8628 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
8629 cstate
->off_nl
= 0; /* Ethernet II */
8630 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
8634 /* Get all LLC-encapsulated packets */
8635 if (!cstate
->is_atm
)
8636 bpf_error(cstate
, "'llc' supported only on raw ATM");
8637 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
8638 cstate
->linktype
= cstate
->prevlinktype
;
8648 * Filtering for MTP2 messages based on li value
8649 * FISU, length is null
8650 * LSSU, length is 1 or 2
8651 * MSU, length is 3 or more
8652 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8655 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
8657 struct block
*b0
, *b1
;
8662 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8663 (cstate
->linktype
!= DLT_ERF
) &&
8664 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8665 bpf_error(cstate
, "'fisu' supported only on MTP2");
8666 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8667 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
8671 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8672 (cstate
->linktype
!= DLT_ERF
) &&
8673 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8674 bpf_error(cstate
, "'lssu' supported only on MTP2");
8675 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
8676 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
8681 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8682 (cstate
->linktype
!= DLT_ERF
) &&
8683 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8684 bpf_error(cstate
, "'msu' supported only on MTP2");
8685 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
8689 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8690 (cstate
->linktype
!= DLT_ERF
) &&
8691 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8692 bpf_error(cstate
, "'hfisu' supported only on MTP2_HSL");
8693 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8694 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JEQ
, 0, 0);
8698 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8699 (cstate
->linktype
!= DLT_ERF
) &&
8700 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8701 bpf_error(cstate
, "'hlssu' supported only on MTP2_HSL");
8702 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 1, 0x0100);
8703 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0);
8708 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8709 (cstate
->linktype
!= DLT_ERF
) &&
8710 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8711 bpf_error(cstate
, "'hmsu' supported only on MTP2_HSL");
8712 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0x0100);
8722 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
, bpf_u_int32 jvalue
,
8723 bpf_u_int32 jtype
, int reverse
)
8726 bpf_u_int32 val1
, val2
, val3
;
8727 u_int newoff_sio
= cstate
->off_sio
;
8728 u_int newoff_opc
= cstate
->off_opc
;
8729 u_int newoff_dpc
= cstate
->off_dpc
;
8730 u_int newoff_sls
= cstate
->off_sls
;
8732 switch (mtp3field
) {
8735 newoff_sio
+= 3; /* offset for MTP2_HSL */
8739 if (cstate
->off_sio
== (u_int
)-1)
8740 bpf_error(cstate
, "'sio' supported only on SS7");
8741 /* sio coded on 1 byte so max value 255 */
8743 bpf_error(cstate
, "sio value %u too big; max value = 255",
8745 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, 0xffffffff,
8746 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8752 if (cstate
->off_opc
== (u_int
)-1)
8753 bpf_error(cstate
, "'opc' supported only on SS7");
8754 /* opc coded on 14 bits so max value 16383 */
8756 bpf_error(cstate
, "opc value %u too big; max value = 16383",
8758 /* the following instructions are made to convert jvalue
8759 * to the form used to write opc in an ss7 message*/
8760 val1
= jvalue
& 0x00003c00;
8762 val2
= jvalue
& 0x000003fc;
8764 val3
= jvalue
& 0x00000003;
8766 jvalue
= val1
+ val2
+ val3
;
8767 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
, 0x00c0ff0f,
8768 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8776 if (cstate
->off_dpc
== (u_int
)-1)
8777 bpf_error(cstate
, "'dpc' supported only on SS7");
8778 /* dpc coded on 14 bits so max value 16383 */
8780 bpf_error(cstate
, "dpc value %u too big; max value = 16383",
8782 /* the following instructions are made to convert jvalue
8783 * to the forme used to write dpc in an ss7 message*/
8784 val1
= jvalue
& 0x000000ff;
8786 val2
= jvalue
& 0x00003f00;
8788 jvalue
= val1
+ val2
;
8789 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_W
, 0xff3f0000,
8790 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8796 if (cstate
->off_sls
== (u_int
)-1)
8797 bpf_error(cstate
, "'sls' supported only on SS7");
8798 /* sls coded on 4 bits so max value 15 */
8800 bpf_error(cstate
, "sls value %u too big; max value = 15",
8802 /* the following instruction is made to convert jvalue
8803 * to the forme used to write sls in an ss7 message*/
8804 jvalue
= jvalue
<< 4;
8805 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
, 0xf0,
8806 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
8815 static struct block
*
8816 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
8821 * Q.2931 signalling protocol messages for handling virtual circuits
8822 * establishment and teardown
8827 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
8831 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
8835 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
8839 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
8843 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
8846 case A_RELEASE_DONE
:
8847 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
8857 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
8859 struct block
*b0
, *b1
;
8864 if (!cstate
->is_atm
)
8865 bpf_error(cstate
, "'oam' supported only on raw ATM");
8866 b1
= gen_atmmulti_abbrev(cstate
, A_OAMF4
);
8870 if (!cstate
->is_atm
)
8871 bpf_error(cstate
, "'oamf4' supported only on raw ATM");
8873 b0
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
8874 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
8876 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8882 * Get Q.2931 signalling messages for switched
8883 * virtual connection
8885 if (!cstate
->is_atm
)
8886 bpf_error(cstate
, "'connectmsg' supported only on raw ATM");
8887 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
8888 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
8890 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
8892 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
8894 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
8896 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
8898 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
8903 if (!cstate
->is_atm
)
8904 bpf_error(cstate
, "'metaconnect' supported only on raw ATM");
8905 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
8906 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
8908 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
8910 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
8912 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
8914 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);