1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <pcap-types.h>
31 #include <sys/socket.h>
34 #include <sys/param.h>
37 #include <netinet/in.h>
38 #include <arpa/inet.h>
55 #include "ethertype.h"
59 #include "ieee80211.h"
61 #include "sunatmpos.h"
64 #include "pcap/ipnet.h"
70 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
71 #include <linux/types.h>
72 #include <linux/if_packet.h>
73 #include <linux/filter.h>
76 #ifdef HAVE_NET_PFVAR_H
77 #include <sys/socket.h>
79 #include <net/pfvar.h>
80 #include <net/if_pflog.h>
84 #define offsetof(s, e) ((size_t)&((s *)0)->e)
89 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
96 uint16_t u6_addr16
[8];
97 uint32_t u6_addr32
[4];
99 #define s6_addr in6_u.u6_addr8
100 #define s6_addr16 in6_u.u6_addr16
101 #define s6_addr32 in6_u.u6_addr32
102 #define s6_addr64 in6_u.u6_addr64
105 typedef unsigned short sa_family_t
;
107 #define __SOCKADDR_COMMON(sa_prefix) \
108 sa_family_t sa_prefix##family
110 /* Ditto, for IPv6. */
113 __SOCKADDR_COMMON (sin6_
);
114 uint16_t sin6_port
; /* Transport layer port # */
115 uint32_t sin6_flowinfo
; /* IPv6 flow information */
116 struct in6_addr sin6_addr
; /* IPv6 address */
119 #ifndef EAI_ADDRFAMILY
121 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
122 int ai_family
; /* PF_xxx */
123 int ai_socktype
; /* SOCK_xxx */
124 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
125 size_t ai_addrlen
; /* length of ai_addr */
126 char *ai_canonname
; /* canonical name for hostname */
127 struct sockaddr
*ai_addr
; /* binary address */
128 struct addrinfo
*ai_next
; /* next structure in linked list */
130 #endif /* EAI_ADDRFAMILY */
131 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
134 #include <netdb.h> /* for "struct addrinfo" */
136 #include <pcap/namedb.h>
138 #include "nametoaddr.h"
140 #define ETHERMTU 1500
142 #ifndef ETHERTYPE_TEB
143 #define ETHERTYPE_TEB 0x6558
146 #ifndef IPPROTO_HOPOPTS
147 #define IPPROTO_HOPOPTS 0
149 #ifndef IPPROTO_ROUTING
150 #define IPPROTO_ROUTING 43
152 #ifndef IPPROTO_FRAGMENT
153 #define IPPROTO_FRAGMENT 44
155 #ifndef IPPROTO_DSTOPTS
156 #define IPPROTO_DSTOPTS 60
159 #define IPPROTO_SCTP 132
162 #define GENEVE_PORT 6081
164 #ifdef HAVE_OS_PROTO_H
165 #include "os-proto.h"
168 #define JMP(c) ((c)|BPF_JMP|BPF_K)
171 * "Push" the current value of the link-layer header type and link-layer
172 * header offset onto a "stack", and set a new value. (It's not a
173 * full-blown stack; we keep only the top two items.)
175 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
177 (cs)->prevlinktype = (cs)->linktype; \
178 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
179 (cs)->linktype = (new_linktype); \
180 (cs)->off_linkhdr.is_variable = (new_is_variable); \
181 (cs)->off_linkhdr.constant_part = (new_constant_part); \
182 (cs)->off_linkhdr.reg = (new_reg); \
183 (cs)->is_geneve = 0; \
187 * Offset "not set" value.
189 #define OFFSET_NOT_SET 0xffffffffU
192 * Absolute offsets, which are offsets from the beginning of the raw
193 * packet data, are, in the general case, the sum of a variable value
194 * and a constant value; the variable value may be absent, in which
195 * case the offset is only the constant value, and the constant value
196 * may be zero, in which case the offset is only the variable value.
198 * bpf_abs_offset is a structure containing all that information:
200 * is_variable is 1 if there's a variable part.
202 * constant_part is the constant part of the value, possibly zero;
204 * if is_variable is 1, reg is the register number for a register
205 * containing the variable value if the register has been assigned,
215 * Value passed to gen_load_a() to indicate what the offset argument
216 * is relative to the beginning of.
219 OR_PACKET
, /* full packet data */
220 OR_LINKHDR
, /* link-layer header */
221 OR_PREVLINKHDR
, /* previous link-layer header */
222 OR_LLC
, /* 802.2 LLC header */
223 OR_PREVMPLSHDR
, /* previous MPLS header */
224 OR_LINKTYPE
, /* link-layer type */
225 OR_LINKPL
, /* link-layer payload */
226 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
227 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
228 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
232 * We divy out chunks of memory rather than call malloc each time so
233 * we don't have to worry about leaking memory. It's probably
234 * not a big deal if all this memory was wasted but if this ever
235 * goes into a library that would probably not be a good idea.
237 * XXX - this *is* in a library....
240 #define CHUNK0SIZE 1024
246 /* Code generator state */
248 struct _compiler_state
{
258 int outermostlinktype
;
263 /* Hack for handling VLAN and MPLS stacks. */
264 u_int label_stack_depth
;
265 u_int vlan_stack_depth
;
271 * As errors are handled by a longjmp, anything allocated must
272 * be freed in the longjmp handler, so it must be reachable
275 * One thing that's allocated is the result of pcap_nametoaddrinfo();
276 * it must be freed with freeaddrinfo(). This variable points to
277 * any addrinfo structure that would need to be freed.
282 * Another thing that's allocated is the result of pcap_ether_aton();
283 * it must be freed with free(). This variable points to any
284 * address that would need to be freed.
289 * Various code constructs need to know the layout of the packet.
290 * These values give the necessary offsets from the beginning
291 * of the packet data.
295 * Absolute offset of the beginning of the link-layer header.
297 bpf_abs_offset off_linkhdr
;
300 * If we're checking a link-layer header for a packet encapsulated
301 * in another protocol layer, this is the equivalent information
302 * for the previous layers' link-layer header from the beginning
303 * of the raw packet data.
305 bpf_abs_offset off_prevlinkhdr
;
308 * This is the equivalent information for the outermost layers'
311 bpf_abs_offset off_outermostlinkhdr
;
314 * Absolute offset of the beginning of the link-layer payload.
316 bpf_abs_offset off_linkpl
;
319 * "off_linktype" is the offset to information in the link-layer
320 * header giving the packet type. This is an absolute offset
321 * from the beginning of the packet.
323 * For Ethernet, it's the offset of the Ethernet type field; this
324 * means that it must have a value that skips VLAN tags.
326 * For link-layer types that always use 802.2 headers, it's the
327 * offset of the LLC header; this means that it must have a value
328 * that skips VLAN tags.
330 * For PPP, it's the offset of the PPP type field.
332 * For Cisco HDLC, it's the offset of the CHDLC type field.
334 * For BSD loopback, it's the offset of the AF_ value.
336 * For Linux cooked sockets, it's the offset of the type field.
338 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
339 * encapsulation, in which case, IP is assumed.
341 bpf_abs_offset off_linktype
;
344 * TRUE if the link layer includes an ATM pseudo-header.
349 * TRUE if "geneve" appeared in the filter; it causes us to
350 * generate code that checks for a Geneve header and assume
351 * that later filters apply to the encapsulated payload.
356 * TRUE if we need variable length part of VLAN offset
358 int is_vlan_vloffset
;
361 * These are offsets for the ATM pseudo-header.
368 * These are offsets for the MTP2 fields.
374 * These are offsets for the MTP3 fields.
382 * This is the offset of the first byte after the ATM pseudo_header,
383 * or -1 if there is no ATM pseudo-header.
388 * These are offsets to the beginning of the network-layer header.
389 * They are relative to the beginning of the link-layer payload
390 * (i.e., they don't include off_linkhdr.constant_part or
391 * off_linkpl.constant_part).
393 * If the link layer never uses 802.2 LLC:
395 * "off_nl" and "off_nl_nosnap" are the same.
397 * If the link layer always uses 802.2 LLC:
399 * "off_nl" is the offset if there's a SNAP header following
402 * "off_nl_nosnap" is the offset if there's no SNAP header.
404 * If the link layer is Ethernet:
406 * "off_nl" is the offset if the packet is an Ethernet II packet
407 * (we assume no 802.3+802.2+SNAP);
409 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
410 * with an 802.2 header following it.
416 * Here we handle simple allocation of the scratch registers.
417 * If too many registers are alloc'd, the allocator punts.
419 int regused
[BPF_MEMWORDS
];
425 struct chunk chunks
[NCHUNKS
];
430 * For use by routines outside this file.
434 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
439 (void)pcap_vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
445 * For use *ONLY* in routines in this file.
447 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
448 PCAP_PRINTFLIKE(2, 3);
451 static void PCAP_NORETURN
452 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
457 (void)pcap_vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
460 longjmp(cstate
->top_ctx
, 1);
464 static int init_linktype(compiler_state_t
*, pcap_t
*);
466 static void init_regs(compiler_state_t
*);
467 static int alloc_reg(compiler_state_t
*);
468 static void free_reg(compiler_state_t
*, int);
470 static void initchunks(compiler_state_t
*cstate
);
471 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
472 static void *newchunk(compiler_state_t
*cstate
, size_t);
473 static void freechunks(compiler_state_t
*cstate
);
474 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
475 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
476 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
477 static inline void syntax(compiler_state_t
*cstate
);
479 static void backpatch(struct block
*, struct block
*);
480 static void merge(struct block
*, struct block
*);
481 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
483 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
485 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
487 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
489 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
491 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
492 u_int
, bpf_int32
, bpf_u_int32
);
493 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
494 u_int
, const u_char
*);
495 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, bpf_u_int32
,
496 bpf_u_int32
, bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
497 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
499 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
501 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
502 static struct block
*gen_uncond(compiler_state_t
*, int);
503 static inline struct block
*gen_true(compiler_state_t
*);
504 static inline struct block
*gen_false(compiler_state_t
*);
505 static struct block
*gen_ether_linktype(compiler_state_t
*, int);
506 static struct block
*gen_ipnet_linktype(compiler_state_t
*, int);
507 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, int);
508 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
509 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
510 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
511 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
512 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
513 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
515 static int ethertype_to_ppptype(int);
516 static struct block
*gen_linktype(compiler_state_t
*, int);
517 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
518 static struct block
*gen_llc_linktype(compiler_state_t
*, int);
519 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
520 int, int, u_int
, u_int
);
522 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
523 struct in6_addr
*, int, int, u_int
, u_int
);
525 static struct block
*gen_ahostop(compiler_state_t
*, const u_char
*, int);
526 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
527 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
528 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
529 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
530 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
531 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
532 static struct block
*gen_mpls_linktype(compiler_state_t
*, int);
533 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
536 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
537 struct in6_addr
*, int, int, int);
540 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
541 struct addrinfo
*, int, int);
543 static struct block
*gen_ipfrag(compiler_state_t
*);
544 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_int32
);
545 static struct block
*gen_portrangeatom(compiler_state_t
*, int, bpf_int32
,
547 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_int32
);
548 static struct block
*gen_portrangeatom6(compiler_state_t
*, int, bpf_int32
,
550 struct block
*gen_portop(compiler_state_t
*, int, int, int);
551 static struct block
*gen_port(compiler_state_t
*, int, int, int);
552 struct block
*gen_portrangeop(compiler_state_t
*, int, int, int, int);
553 static struct block
*gen_portrange(compiler_state_t
*, int, int, int, int);
554 struct block
*gen_portop6(compiler_state_t
*, int, int, int);
555 static struct block
*gen_port6(compiler_state_t
*, int, int, int);
556 struct block
*gen_portrangeop6(compiler_state_t
*, int, int, int, int);
557 static struct block
*gen_portrange6(compiler_state_t
*, int, int, int, int);
558 static int lookup_proto(compiler_state_t
*, const char *, int);
559 static struct block
*gen_protochain(compiler_state_t
*, int, int, int);
560 static struct block
*gen_proto(compiler_state_t
*, int, int, int);
561 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
562 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
563 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
564 static struct block
*gen_len(compiler_state_t
*, int, int);
565 static struct block
*gen_check_802_11_data_frame(compiler_state_t
*);
566 static struct block
*gen_geneve_ll_check(compiler_state_t
*cstate
);
568 static struct block
*gen_ppi_dlt_check(compiler_state_t
*);
569 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
570 bpf_int32
, bpf_u_int32
, int);
571 static struct block
*gen_atmtype_llc(compiler_state_t
*);
572 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
575 initchunks(compiler_state_t
*cstate
)
579 for (i
= 0; i
< NCHUNKS
; i
++) {
580 cstate
->chunks
[i
].n_left
= 0;
581 cstate
->chunks
[i
].m
= NULL
;
583 cstate
->cur_chunk
= 0;
587 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
594 /* XXX Round up to nearest long. */
595 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
597 /* XXX Round up to structure boundary. */
601 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
602 if (n
> cp
->n_left
) {
604 k
= ++cstate
->cur_chunk
;
606 bpf_set_error(cstate
, "out of memory");
609 size
= CHUNK0SIZE
<< k
;
610 cp
->m
= (void *)malloc(size
);
612 bpf_set_error(cstate
, "out of memory");
615 memset((char *)cp
->m
, 0, size
);
618 bpf_set_error(cstate
, "out of memory");
623 return (void *)((char *)cp
->m
+ cp
->n_left
);
627 newchunk(compiler_state_t
*cstate
, size_t n
)
631 p
= newchunk_nolongjmp(cstate
, n
);
633 longjmp(cstate
->top_ctx
, 1);
640 freechunks(compiler_state_t
*cstate
)
644 for (i
= 0; i
< NCHUNKS
; ++i
)
645 if (cstate
->chunks
[i
].m
!= NULL
)
646 free(cstate
->chunks
[i
].m
);
650 * A strdup whose allocations are freed after code generation is over.
651 * This is used by the lexical analyzer, so it can't longjmp; it just
652 * returns NULL on an allocation error, and the callers must check
656 sdup(compiler_state_t
*cstate
, const char *s
)
658 size_t n
= strlen(s
) + 1;
659 char *cp
= newchunk_nolongjmp(cstate
, n
);
663 pcap_strlcpy(cp
, s
, n
);
667 static inline struct block
*
668 new_block(compiler_state_t
*cstate
, int code
)
672 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
679 static inline struct slist
*
680 new_stmt(compiler_state_t
*cstate
, int code
)
684 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
690 static struct block
*
691 gen_retblk(compiler_state_t
*cstate
, int v
)
693 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
699 static inline PCAP_NORETURN_DEF
void
700 syntax(compiler_state_t
*cstate
)
702 bpf_error(cstate
, "syntax error in filter expression");
706 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
707 const char *buf
, int optimize
, bpf_u_int32 mask
)
712 compiler_state_t cstate
;
713 const char * volatile xbuf
= buf
;
714 yyscan_t scanner
= NULL
;
715 volatile YY_BUFFER_STATE in_buffer
= NULL
;
720 * If this pcap_t hasn't been activated, it doesn't have a
721 * link-layer type, so we can't use it.
724 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
725 "not-yet-activated pcap_t passed to pcap_compile");
737 * If the device on which we're capturing need to be notified
738 * that a new filter is being compiled, do so.
740 * This allows them to save a copy of it, in case, for example,
741 * they're implementing a form of remote packet capture, and
742 * want the remote machine to filter out the packets in which
743 * it's sending the packets it's captured.
745 * XXX - the fact that we happen to be compiling a filter
746 * doesn't necessarily mean we'll be installing it as the
747 * filter for this pcap_t; we might be running it from userland
748 * on captured packets to do packet classification. We really
749 * need a better way of handling this, but this is all that
750 * the WinPcap code did.
752 if (p
->save_current_filter_op
!= NULL
)
753 (p
->save_current_filter_op
)(p
, buf
);
757 cstate
.no_optimize
= 0;
762 cstate
.ic
.root
= NULL
;
763 cstate
.ic
.cur_mark
= 0;
767 cstate
.netmask
= mask
;
769 cstate
.snaplen
= pcap_snapshot(p
);
770 if (cstate
.snaplen
== 0) {
771 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
772 "snaplen of 0 rejects all packets");
777 if (pcap_lex_init(&scanner
) != 0)
778 pcap_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
779 errno
, "can't initialize scanner");
780 in_buffer
= pcap__scan_string(xbuf
? xbuf
: "", scanner
);
783 * Associate the compiler state with the lexical analyzer
786 pcap_set_extra(&cstate
, scanner
);
788 if (init_linktype(&cstate
, p
) == -1) {
792 if (pcap_parse(scanner
, &cstate
) != 0) {
794 if (cstate
.ai
!= NULL
)
795 freeaddrinfo(cstate
.ai
);
797 if (cstate
.e
!= NULL
)
803 if (cstate
.ic
.root
== NULL
) {
805 * Catch errors reported by gen_retblk().
807 if (setjmp(cstate
.top_ctx
)) {
811 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
814 if (optimize
&& !cstate
.no_optimize
) {
815 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
820 if (cstate
.ic
.root
== NULL
||
821 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
822 (void)pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
823 "expression rejects all packets");
828 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
829 cstate
.ic
.root
, &len
, p
->errbuf
);
830 if (program
->bf_insns
== NULL
) {
835 program
->bf_len
= len
;
837 rc
= 0; /* We're all okay */
841 * Clean up everything for the lexical analyzer.
843 if (in_buffer
!= NULL
)
844 pcap__delete_buffer(in_buffer
, scanner
);
846 pcap_lex_destroy(scanner
);
849 * Clean up our own allocated memory.
857 * entry point for using the compiler with no pcap open
858 * pass in all the stuff that is needed explicitly instead.
861 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
862 struct bpf_program
*program
,
863 const char *buf
, int optimize
, bpf_u_int32 mask
)
868 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
871 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
877 * Clean up a "struct bpf_program" by freeing all the memory allocated
881 pcap_freecode(struct bpf_program
*program
)
884 if (program
->bf_insns
!= NULL
) {
885 free((char *)program
->bf_insns
);
886 program
->bf_insns
= NULL
;
891 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
892 * which of the jt and jf fields has been resolved and which is a pointer
893 * back to another unresolved block (or nil). At least one of the fields
894 * in each block is already resolved.
897 backpatch(struct block
*list
, struct block
*target
)
914 * Merge the lists in b0 and b1, using the 'sense' field to indicate
915 * which of jt and jf is the link.
918 merge(struct block
*b0
, struct block
*b1
)
920 register struct block
**p
= &b0
;
922 /* Find end of list. */
924 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
926 /* Concatenate the lists. */
931 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
933 struct block
*ppi_dlt_check
;
936 * Insert before the statements of the first (root) block any
937 * statements needed to load the lengths of any variable-length
938 * headers into registers.
940 * XXX - a fancier strategy would be to insert those before the
941 * statements of all blocks that use those lengths and that
942 * have no predecessors that use them, so that we only compute
943 * the lengths if we need them. There might be even better
944 * approaches than that.
946 * However, those strategies would be more complicated, and
947 * as we don't generate code to compute a length if the
948 * program has no tests that use the length, and as most
949 * tests will probably use those lengths, we would just
950 * postpone computing the lengths so that it's not done
951 * for tests that fail early, and it's not clear that's
954 insert_compute_vloffsets(cstate
, p
->head
);
957 * For DLT_PPI captures, generate a check of the per-packet
958 * DLT value to make sure it's DLT_IEEE802_11.
960 * XXX - TurboCap cards use DLT_PPI for Ethernet.
961 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
962 * with appropriate Ethernet information and use that rather
963 * than using something such as DLT_PPI where you don't know
964 * the link-layer header type until runtime, which, in the
965 * general case, would force us to generate both Ethernet *and*
966 * 802.11 code (*and* anything else for which PPI is used)
967 * and choose between them early in the BPF program?
969 ppi_dlt_check
= gen_ppi_dlt_check(cstate
);
970 if (ppi_dlt_check
!= NULL
)
971 gen_and(ppi_dlt_check
, p
);
973 backpatch(p
, gen_retblk(cstate
, cstate
->snaplen
));
974 p
->sense
= !p
->sense
;
975 backpatch(p
, gen_retblk(cstate
, 0));
976 cstate
->ic
.root
= p
->head
;
980 gen_and(struct block
*b0
, struct block
*b1
)
982 backpatch(b0
, b1
->head
);
983 b0
->sense
= !b0
->sense
;
984 b1
->sense
= !b1
->sense
;
986 b1
->sense
= !b1
->sense
;
991 gen_or(struct block
*b0
, struct block
*b1
)
993 b0
->sense
= !b0
->sense
;
994 backpatch(b0
, b1
->head
);
995 b0
->sense
= !b0
->sense
;
1001 gen_not(struct block
*b
)
1003 b
->sense
= !b
->sense
;
1006 static struct block
*
1007 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1008 u_int size
, bpf_int32 v
)
1010 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1013 static struct block
*
1014 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1015 u_int size
, bpf_int32 v
)
1017 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1020 static struct block
*
1021 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1022 u_int size
, bpf_int32 v
)
1024 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1027 static struct block
*
1028 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1029 u_int size
, bpf_int32 v
)
1031 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1034 static struct block
*
1035 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1036 u_int size
, bpf_int32 v
)
1038 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1041 static struct block
*
1042 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1043 u_int size
, bpf_int32 v
, bpf_u_int32 mask
)
1045 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1048 static struct block
*
1049 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1050 u_int size
, const u_char
*v
)
1052 register struct block
*b
, *tmp
;
1055 * XXX - the actual *instructions* do unsigned comparisons on
1056 * most platforms, and the load instructions don't do sign
1057 * extension, so gen_cmp() should really take an unsigned
1060 * As the load instructons also don't do sign-extension, we
1061 * fetch the values from the byte array as unsigned. We don't
1062 * want to use the signed versions of the extract calls.
1066 register const u_char
*p
= &v
[size
- 4];
1068 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1069 (bpf_int32
)EXTRACT_BE_U_4(p
));
1076 register const u_char
*p
= &v
[size
- 2];
1078 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1079 (bpf_int32
)EXTRACT_BE_U_2(p
));
1086 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
1095 * AND the field of size "size" at offset "offset" relative to the header
1096 * specified by "offrel" with "mask", and compare it with the value "v"
1097 * with the test specified by "jtype"; if "reverse" is true, the test
1098 * should test the opposite of "jtype".
1100 static struct block
*
1101 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, bpf_u_int32 offset
,
1102 bpf_u_int32 size
, bpf_u_int32 mask
, bpf_u_int32 jtype
, int reverse
,
1105 struct slist
*s
, *s2
;
1108 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1110 if (mask
!= 0xffffffff) {
1111 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1116 b
= new_block(cstate
, JMP(jtype
));
1119 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
1125 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1127 cstate
->pcap_fddipad
= p
->fddipad
;
1130 * We start out with only one link-layer header.
1132 cstate
->outermostlinktype
= pcap_datalink(p
);
1133 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1134 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1135 cstate
->off_outermostlinkhdr
.reg
= -1;
1137 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1138 cstate
->off_prevlinkhdr
.constant_part
= 0;
1139 cstate
->off_prevlinkhdr
.is_variable
= 0;
1140 cstate
->off_prevlinkhdr
.reg
= -1;
1142 cstate
->linktype
= cstate
->outermostlinktype
;
1143 cstate
->off_linkhdr
.constant_part
= 0;
1144 cstate
->off_linkhdr
.is_variable
= 0;
1145 cstate
->off_linkhdr
.reg
= -1;
1150 cstate
->off_linkpl
.constant_part
= 0;
1151 cstate
->off_linkpl
.is_variable
= 0;
1152 cstate
->off_linkpl
.reg
= -1;
1154 cstate
->off_linktype
.constant_part
= 0;
1155 cstate
->off_linktype
.is_variable
= 0;
1156 cstate
->off_linktype
.reg
= -1;
1159 * Assume it's not raw ATM with a pseudo-header, for now.
1162 cstate
->off_vpi
= OFFSET_NOT_SET
;
1163 cstate
->off_vci
= OFFSET_NOT_SET
;
1164 cstate
->off_proto
= OFFSET_NOT_SET
;
1165 cstate
->off_payload
= OFFSET_NOT_SET
;
1170 cstate
->is_geneve
= 0;
1173 * No variable length VLAN offset by default
1175 cstate
->is_vlan_vloffset
= 0;
1178 * And assume we're not doing SS7.
1180 cstate
->off_li
= OFFSET_NOT_SET
;
1181 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1182 cstate
->off_sio
= OFFSET_NOT_SET
;
1183 cstate
->off_opc
= OFFSET_NOT_SET
;
1184 cstate
->off_dpc
= OFFSET_NOT_SET
;
1185 cstate
->off_sls
= OFFSET_NOT_SET
;
1187 cstate
->label_stack_depth
= 0;
1188 cstate
->vlan_stack_depth
= 0;
1190 switch (cstate
->linktype
) {
1193 cstate
->off_linktype
.constant_part
= 2;
1194 cstate
->off_linkpl
.constant_part
= 6;
1195 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1196 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1199 case DLT_ARCNET_LINUX
:
1200 cstate
->off_linktype
.constant_part
= 4;
1201 cstate
->off_linkpl
.constant_part
= 8;
1202 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1203 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1207 cstate
->off_linktype
.constant_part
= 12;
1208 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1209 cstate
->off_nl
= 0; /* Ethernet II */
1210 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1215 * SLIP doesn't have a link level type. The 16 byte
1216 * header is hacked into our SLIP driver.
1218 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1219 cstate
->off_linkpl
.constant_part
= 16;
1221 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1224 case DLT_SLIP_BSDOS
:
1225 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1226 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1228 cstate
->off_linkpl
.constant_part
= 24;
1230 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1235 cstate
->off_linktype
.constant_part
= 0;
1236 cstate
->off_linkpl
.constant_part
= 4;
1238 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1242 cstate
->off_linktype
.constant_part
= 0;
1243 cstate
->off_linkpl
.constant_part
= 12;
1245 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1250 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1251 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1252 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1253 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1255 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1260 * This does no include the Ethernet header, and
1261 * only covers session state.
1263 cstate
->off_linktype
.constant_part
= 6;
1264 cstate
->off_linkpl
.constant_part
= 8;
1266 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1270 cstate
->off_linktype
.constant_part
= 5;
1271 cstate
->off_linkpl
.constant_part
= 24;
1273 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1278 * FDDI doesn't really have a link-level type field.
1279 * We set "off_linktype" to the offset of the LLC header.
1281 * To check for Ethernet types, we assume that SSAP = SNAP
1282 * is being used and pick out the encapsulated Ethernet type.
1283 * XXX - should we generate code to check for SNAP?
1285 cstate
->off_linktype
.constant_part
= 13;
1286 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1287 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1288 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1289 cstate
->off_nl
= 8; /* 802.2+SNAP */
1290 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1295 * Token Ring doesn't really have a link-level type field.
1296 * We set "off_linktype" to the offset of the LLC header.
1298 * To check for Ethernet types, we assume that SSAP = SNAP
1299 * is being used and pick out the encapsulated Ethernet type.
1300 * XXX - should we generate code to check for SNAP?
1302 * XXX - the header is actually variable-length.
1303 * Some various Linux patched versions gave 38
1304 * as "off_linktype" and 40 as "off_nl"; however,
1305 * if a token ring packet has *no* routing
1306 * information, i.e. is not source-routed, the correct
1307 * values are 20 and 22, as they are in the vanilla code.
1309 * A packet is source-routed iff the uppermost bit
1310 * of the first byte of the source address, at an
1311 * offset of 8, has the uppermost bit set. If the
1312 * packet is source-routed, the total number of bytes
1313 * of routing information is 2 plus bits 0x1F00 of
1314 * the 16-bit value at an offset of 14 (shifted right
1315 * 8 - figure out which byte that is).
1317 cstate
->off_linktype
.constant_part
= 14;
1318 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1319 cstate
->off_nl
= 8; /* 802.2+SNAP */
1320 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1323 case DLT_PRISM_HEADER
:
1324 case DLT_IEEE802_11_RADIO_AVS
:
1325 case DLT_IEEE802_11_RADIO
:
1326 cstate
->off_linkhdr
.is_variable
= 1;
1327 /* Fall through, 802.11 doesn't have a variable link
1328 * prefix but is otherwise the same. */
1330 case DLT_IEEE802_11
:
1332 * 802.11 doesn't really have a link-level type field.
1333 * We set "off_linktype.constant_part" to the offset of
1336 * To check for Ethernet types, we assume that SSAP = SNAP
1337 * is being used and pick out the encapsulated Ethernet type.
1338 * XXX - should we generate code to check for SNAP?
1340 * We also handle variable-length radio headers here.
1341 * The Prism header is in theory variable-length, but in
1342 * practice it's always 144 bytes long. However, some
1343 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1344 * sometimes or always supply an AVS header, so we
1345 * have to check whether the radio header is a Prism
1346 * header or an AVS header, so, in practice, it's
1349 cstate
->off_linktype
.constant_part
= 24;
1350 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1351 cstate
->off_linkpl
.is_variable
= 1;
1352 cstate
->off_nl
= 8; /* 802.2+SNAP */
1353 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1358 * At the moment we treat PPI the same way that we treat
1359 * normal Radiotap encoded packets. The difference is in
1360 * the function that generates the code at the beginning
1361 * to compute the header length. Since this code generator
1362 * of PPI supports bare 802.11 encapsulation only (i.e.
1363 * the encapsulated DLT should be DLT_IEEE802_11) we
1364 * generate code to check for this too.
1366 cstate
->off_linktype
.constant_part
= 24;
1367 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1368 cstate
->off_linkpl
.is_variable
= 1;
1369 cstate
->off_linkhdr
.is_variable
= 1;
1370 cstate
->off_nl
= 8; /* 802.2+SNAP */
1371 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1374 case DLT_ATM_RFC1483
:
1375 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1377 * assume routed, non-ISO PDUs
1378 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1380 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1381 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1382 * latter would presumably be treated the way PPPoE
1383 * should be, so you can do "pppoe and udp port 2049"
1384 * or "pppoa and tcp port 80" and have it check for
1385 * PPPo{A,E} and a PPP protocol of IP and....
1387 cstate
->off_linktype
.constant_part
= 0;
1388 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1389 cstate
->off_nl
= 8; /* 802.2+SNAP */
1390 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1395 * Full Frontal ATM; you get AALn PDUs with an ATM
1399 cstate
->off_vpi
= SUNATM_VPI_POS
;
1400 cstate
->off_vci
= SUNATM_VCI_POS
;
1401 cstate
->off_proto
= PROTO_POS
;
1402 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1403 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1404 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1405 cstate
->off_nl
= 8; /* 802.2+SNAP */
1406 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1412 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1413 cstate
->off_linkpl
.constant_part
= 0;
1415 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1418 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1419 cstate
->off_linktype
.constant_part
= 14;
1420 cstate
->off_linkpl
.constant_part
= 16;
1422 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1425 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1426 cstate
->off_linktype
.constant_part
= 0;
1427 cstate
->off_linkpl
.constant_part
= 20;
1429 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1434 * LocalTalk does have a 1-byte type field in the LLAP header,
1435 * but really it just indicates whether there is a "short" or
1436 * "long" DDP packet following.
1438 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1439 cstate
->off_linkpl
.constant_part
= 0;
1441 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1444 case DLT_IP_OVER_FC
:
1446 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1447 * link-level type field. We set "off_linktype" to the
1448 * offset of the LLC header.
1450 * To check for Ethernet types, we assume that SSAP = SNAP
1451 * is being used and pick out the encapsulated Ethernet type.
1452 * XXX - should we generate code to check for SNAP? RFC
1453 * 2625 says SNAP should be used.
1455 cstate
->off_linktype
.constant_part
= 16;
1456 cstate
->off_linkpl
.constant_part
= 16;
1457 cstate
->off_nl
= 8; /* 802.2+SNAP */
1458 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1463 * XXX - we should set this to handle SNAP-encapsulated
1464 * frames (NLPID of 0x80).
1466 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1467 cstate
->off_linkpl
.constant_part
= 0;
1469 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1473 * the only BPF-interesting FRF.16 frames are non-control frames;
1474 * Frame Relay has a variable length link-layer
1475 * so lets start with offset 4 for now and increments later on (FIXME);
1478 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1479 cstate
->off_linkpl
.constant_part
= 0;
1481 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1484 case DLT_APPLE_IP_OVER_IEEE1394
:
1485 cstate
->off_linktype
.constant_part
= 16;
1486 cstate
->off_linkpl
.constant_part
= 18;
1488 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1491 case DLT_SYMANTEC_FIREWALL
:
1492 cstate
->off_linktype
.constant_part
= 6;
1493 cstate
->off_linkpl
.constant_part
= 44;
1494 cstate
->off_nl
= 0; /* Ethernet II */
1495 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1498 #ifdef HAVE_NET_PFVAR_H
1500 cstate
->off_linktype
.constant_part
= 0;
1501 cstate
->off_linkpl
.constant_part
= PFLOG_HDRLEN
;
1503 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1507 case DLT_JUNIPER_MFR
:
1508 case DLT_JUNIPER_MLFR
:
1509 case DLT_JUNIPER_MLPPP
:
1510 case DLT_JUNIPER_PPP
:
1511 case DLT_JUNIPER_CHDLC
:
1512 case DLT_JUNIPER_FRELAY
:
1513 cstate
->off_linktype
.constant_part
= 4;
1514 cstate
->off_linkpl
.constant_part
= 4;
1516 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1519 case DLT_JUNIPER_ATM1
:
1520 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1521 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1523 cstate
->off_nl_nosnap
= 10;
1526 case DLT_JUNIPER_ATM2
:
1527 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1528 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1530 cstate
->off_nl_nosnap
= 10;
1533 /* frames captured on a Juniper PPPoE service PIC
1534 * contain raw ethernet frames */
1535 case DLT_JUNIPER_PPPOE
:
1536 case DLT_JUNIPER_ETHER
:
1537 cstate
->off_linkpl
.constant_part
= 14;
1538 cstate
->off_linktype
.constant_part
= 16;
1539 cstate
->off_nl
= 18; /* Ethernet II */
1540 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1543 case DLT_JUNIPER_PPPOE_ATM
:
1544 cstate
->off_linktype
.constant_part
= 4;
1545 cstate
->off_linkpl
.constant_part
= 6;
1547 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1550 case DLT_JUNIPER_GGSN
:
1551 cstate
->off_linktype
.constant_part
= 6;
1552 cstate
->off_linkpl
.constant_part
= 12;
1554 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1557 case DLT_JUNIPER_ES
:
1558 cstate
->off_linktype
.constant_part
= 6;
1559 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1560 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1561 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1564 case DLT_JUNIPER_MONITOR
:
1565 cstate
->off_linktype
.constant_part
= 12;
1566 cstate
->off_linkpl
.constant_part
= 12;
1567 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1568 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1571 case DLT_BACNET_MS_TP
:
1572 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1573 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1574 cstate
->off_nl
= OFFSET_NOT_SET
;
1575 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1578 case DLT_JUNIPER_SERVICES
:
1579 cstate
->off_linktype
.constant_part
= 12;
1580 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1581 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1582 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1585 case DLT_JUNIPER_VP
:
1586 cstate
->off_linktype
.constant_part
= 18;
1587 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1588 cstate
->off_nl
= OFFSET_NOT_SET
;
1589 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1592 case DLT_JUNIPER_ST
:
1593 cstate
->off_linktype
.constant_part
= 18;
1594 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1595 cstate
->off_nl
= OFFSET_NOT_SET
;
1596 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1599 case DLT_JUNIPER_ISM
:
1600 cstate
->off_linktype
.constant_part
= 8;
1601 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1602 cstate
->off_nl
= OFFSET_NOT_SET
;
1603 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1606 case DLT_JUNIPER_VS
:
1607 case DLT_JUNIPER_SRX_E2E
:
1608 case DLT_JUNIPER_FIBRECHANNEL
:
1609 case DLT_JUNIPER_ATM_CEMIC
:
1610 cstate
->off_linktype
.constant_part
= 8;
1611 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1612 cstate
->off_nl
= OFFSET_NOT_SET
;
1613 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1618 cstate
->off_li_hsl
= 4;
1619 cstate
->off_sio
= 3;
1620 cstate
->off_opc
= 4;
1621 cstate
->off_dpc
= 4;
1622 cstate
->off_sls
= 7;
1623 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1624 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1625 cstate
->off_nl
= OFFSET_NOT_SET
;
1626 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1629 case DLT_MTP2_WITH_PHDR
:
1631 cstate
->off_li_hsl
= 8;
1632 cstate
->off_sio
= 7;
1633 cstate
->off_opc
= 8;
1634 cstate
->off_dpc
= 8;
1635 cstate
->off_sls
= 11;
1636 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1637 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1638 cstate
->off_nl
= OFFSET_NOT_SET
;
1639 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1643 cstate
->off_li
= 22;
1644 cstate
->off_li_hsl
= 24;
1645 cstate
->off_sio
= 23;
1646 cstate
->off_opc
= 24;
1647 cstate
->off_dpc
= 24;
1648 cstate
->off_sls
= 27;
1649 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1650 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1651 cstate
->off_nl
= OFFSET_NOT_SET
;
1652 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1656 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1657 cstate
->off_linkpl
.constant_part
= 4;
1659 cstate
->off_nl_nosnap
= 0;
1664 * Currently, only raw "link[N:M]" filtering is supported.
1666 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
1667 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1668 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
1669 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1673 cstate
->off_linktype
.constant_part
= 1;
1674 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
1676 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1679 case DLT_NETANALYZER
:
1680 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
1681 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1682 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
1683 cstate
->off_nl
= 0; /* Ethernet II */
1684 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1687 case DLT_NETANALYZER_TRANSPARENT
:
1688 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1689 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1690 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1691 cstate
->off_nl
= 0; /* Ethernet II */
1692 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1697 * For values in the range in which we've assigned new
1698 * DLT_ values, only raw "link[N:M]" filtering is supported.
1700 if (cstate
->linktype
>= DLT_MATCHING_MIN
&&
1701 cstate
->linktype
<= DLT_MATCHING_MAX
) {
1702 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1703 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1704 cstate
->off_nl
= OFFSET_NOT_SET
;
1705 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1707 bpf_set_error(cstate
, "unknown data link type %d", cstate
->linktype
);
1713 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
1718 * Load a value relative to the specified absolute offset.
1720 static struct slist
*
1721 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
1722 u_int offset
, u_int size
)
1724 struct slist
*s
, *s2
;
1726 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
1729 * If "s" is non-null, it has code to arrange that the X register
1730 * contains the variable part of the absolute offset, so we
1731 * generate a load relative to that, with an offset of
1732 * abs_offset->constant_part + offset.
1734 * Otherwise, we can do an absolute load with an offset of
1735 * abs_offset->constant_part + offset.
1739 * "s" points to a list of statements that puts the
1740 * variable part of the absolute offset into the X register.
1741 * Do an indirect load, to use the X register as an offset.
1743 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1744 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
1748 * There is no variable part of the absolute offset, so
1749 * just do an absolute load.
1751 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1752 s
->s
.k
= abs_offset
->constant_part
+ offset
;
1758 * Load a value relative to the beginning of the specified header.
1760 static struct slist
*
1761 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1764 struct slist
*s
, *s2
;
1769 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1774 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
1777 case OR_PREVLINKHDR
:
1778 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
1782 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
1785 case OR_PREVMPLSHDR
:
1786 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
1790 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
1793 case OR_LINKPL_NOSNAP
:
1794 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
1798 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
1803 * Load the X register with the length of the IPv4 header
1804 * (plus the offset of the link-layer header, if it's
1805 * preceded by a variable-length header such as a radio
1806 * header), in bytes.
1808 s
= gen_loadx_iphdrlen(cstate
);
1811 * Load the item at {offset of the link-layer payload} +
1812 * {offset, relative to the start of the link-layer
1813 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1814 * {specified offset}.
1816 * If the offset of the link-layer payload is variable,
1817 * the variable part of that offset is included in the
1818 * value in the X register, and we include the constant
1819 * part in the offset of the load.
1821 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1822 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
1827 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
1838 * Generate code to load into the X register the sum of the length of
1839 * the IPv4 header and the variable part of the offset of the link-layer
1842 static struct slist
*
1843 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
1845 struct slist
*s
, *s2
;
1847 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
1850 * The offset of the link-layer payload has a variable
1851 * part. "s" points to a list of statements that put
1852 * the variable part of that offset into the X register.
1854 * The 4*([k]&0xf) addressing mode can't be used, as we
1855 * don't have a constant offset, so we have to load the
1856 * value in question into the A register and add to it
1857 * the value from the X register.
1859 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
1860 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1862 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1865 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
1870 * The A register now contains the length of the IP header.
1871 * We need to add to it the variable part of the offset of
1872 * the link-layer payload, which is still in the X
1873 * register, and move the result into the X register.
1875 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
1876 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
1879 * The offset of the link-layer payload is a constant,
1880 * so no code was generated to load the (non-existent)
1881 * variable part of that offset.
1883 * This means we can use the 4*([k]&0xf) addressing
1884 * mode. Load the length of the IPv4 header, which
1885 * is at an offset of cstate->off_nl from the beginning of
1886 * the link-layer payload, and thus at an offset of
1887 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1888 * of the raw packet data, using that addressing mode.
1890 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
1891 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1897 static struct block
*
1898 gen_uncond(compiler_state_t
*cstate
, int rsense
)
1903 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
1905 b
= new_block(cstate
, JMP(BPF_JEQ
));
1911 static inline struct block
*
1912 gen_true(compiler_state_t
*cstate
)
1914 return gen_uncond(cstate
, 1);
1917 static inline struct block
*
1918 gen_false(compiler_state_t
*cstate
)
1920 return gen_uncond(cstate
, 0);
1924 * Byte-swap a 32-bit number.
1925 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1926 * big-endian platforms.)
1928 #define SWAPLONG(y) \
1929 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1932 * Generate code to match a particular packet type.
1934 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1935 * value, if <= ETHERMTU. We use that to determine whether to
1936 * match the type/length field or to check the type/length field for
1937 * a value <= ETHERMTU to see whether it's a type field and then do
1938 * the appropriate test.
1940 static struct block
*
1941 gen_ether_linktype(compiler_state_t
*cstate
, int proto
)
1943 struct block
*b0
, *b1
;
1949 case LLCSAP_NETBEUI
:
1951 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1952 * so we check the DSAP and SSAP.
1954 * LLCSAP_IP checks for IP-over-802.2, rather
1955 * than IP-over-Ethernet or IP-over-SNAP.
1957 * XXX - should we check both the DSAP and the
1958 * SSAP, like this, or should we check just the
1959 * DSAP, as we do for other types <= ETHERMTU
1960 * (i.e., other SAP values)?
1962 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1964 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
1965 ((proto
<< 8) | proto
));
1973 * Ethernet_II frames, which are Ethernet
1974 * frames with a frame type of ETHERTYPE_IPX;
1976 * Ethernet_802.3 frames, which are 802.3
1977 * frames (i.e., the type/length field is
1978 * a length field, <= ETHERMTU, rather than
1979 * a type field) with the first two bytes
1980 * after the Ethernet/802.3 header being
1983 * Ethernet_802.2 frames, which are 802.3
1984 * frames with an 802.2 LLC header and
1985 * with the IPX LSAP as the DSAP in the LLC
1988 * Ethernet_SNAP frames, which are 802.3
1989 * frames with an LLC header and a SNAP
1990 * header and with an OUI of 0x000000
1991 * (encapsulated Ethernet) and a protocol
1992 * ID of ETHERTYPE_IPX in the SNAP header.
1994 * XXX - should we generate the same code both
1995 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1999 * This generates code to check both for the
2000 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2002 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
2003 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
2007 * Now we add code to check for SNAP frames with
2008 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2010 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2014 * Now we generate code to check for 802.3
2015 * frames in general.
2017 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2021 * Now add the check for 802.3 frames before the
2022 * check for Ethernet_802.2 and Ethernet_802.3,
2023 * as those checks should only be done on 802.3
2024 * frames, not on Ethernet frames.
2029 * Now add the check for Ethernet_II frames, and
2030 * do that before checking for the other frame
2033 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
2037 case ETHERTYPE_ATALK
:
2038 case ETHERTYPE_AARP
:
2040 * EtherTalk (AppleTalk protocols on Ethernet link
2041 * layer) may use 802.2 encapsulation.
2045 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2046 * we check for an Ethernet type field less than
2047 * 1500, which means it's an 802.3 length field.
2049 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2053 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2054 * SNAP packets with an organization code of
2055 * 0x080007 (Apple, for Appletalk) and a protocol
2056 * type of ETHERTYPE_ATALK (Appletalk).
2058 * 802.2-encapsulated ETHERTYPE_AARP packets are
2059 * SNAP packets with an organization code of
2060 * 0x000000 (encapsulated Ethernet) and a protocol
2061 * type of ETHERTYPE_AARP (Appletalk ARP).
2063 if (proto
== ETHERTYPE_ATALK
)
2064 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2065 else /* proto == ETHERTYPE_AARP */
2066 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2070 * Check for Ethernet encapsulation (Ethertalk
2071 * phase 1?); we just check for the Ethernet
2074 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2080 if (proto
<= ETHERMTU
) {
2082 * This is an LLC SAP value, so the frames
2083 * that match would be 802.2 frames.
2084 * Check that the frame is an 802.2 frame
2085 * (i.e., that the length/type field is
2086 * a length field, <= ETHERMTU) and
2087 * then check the DSAP.
2089 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2091 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, (bpf_int32
)proto
);
2096 * This is an Ethernet type, so compare
2097 * the length/type field with it (if
2098 * the frame is an 802.2 frame, the length
2099 * field will be <= ETHERMTU, and, as
2100 * "proto" is > ETHERMTU, this test
2101 * will fail and the frame won't match,
2102 * which is what we want).
2104 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
2110 static struct block
*
2111 gen_loopback_linktype(compiler_state_t
*cstate
, int proto
)
2114 * For DLT_NULL, the link-layer header is a 32-bit word
2115 * containing an AF_ value in *host* byte order, and for
2116 * DLT_ENC, the link-layer header begins with a 32-bit
2117 * word containing an AF_ value in host byte order.
2119 * In addition, if we're reading a saved capture file,
2120 * the host byte order in the capture may not be the
2121 * same as the host byte order on this machine.
2123 * For DLT_LOOP, the link-layer header is a 32-bit
2124 * word containing an AF_ value in *network* byte order.
2126 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2128 * The AF_ value is in host byte order, but the BPF
2129 * interpreter will convert it to network byte order.
2131 * If this is a save file, and it's from a machine
2132 * with the opposite byte order to ours, we byte-swap
2135 * Then we run it through "htonl()", and generate
2136 * code to compare against the result.
2138 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2139 proto
= SWAPLONG(proto
);
2140 proto
= htonl(proto
);
2142 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, (bpf_int32
)proto
));
2146 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2147 * or IPv6 then we have an error.
2149 static struct block
*
2150 gen_ipnet_linktype(compiler_state_t
*cstate
, int proto
)
2155 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, (bpf_int32
)IPH_AF_INET
);
2158 case ETHERTYPE_IPV6
:
2159 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
2160 (bpf_int32
)IPH_AF_INET6
);
2167 return gen_false(cstate
);
2171 * Generate code to match a particular packet type.
2173 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2174 * value, if <= ETHERMTU. We use that to determine whether to
2175 * match the type field or to check the type field for the special
2176 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2178 static struct block
*
2179 gen_linux_sll_linktype(compiler_state_t
*cstate
, int proto
)
2181 struct block
*b0
, *b1
;
2187 case LLCSAP_NETBEUI
:
2189 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2190 * so we check the DSAP and SSAP.
2192 * LLCSAP_IP checks for IP-over-802.2, rather
2193 * than IP-over-Ethernet or IP-over-SNAP.
2195 * XXX - should we check both the DSAP and the
2196 * SSAP, like this, or should we check just the
2197 * DSAP, as we do for other types <= ETHERMTU
2198 * (i.e., other SAP values)?
2200 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2201 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
2202 ((proto
<< 8) | proto
));
2208 * Ethernet_II frames, which are Ethernet
2209 * frames with a frame type of ETHERTYPE_IPX;
2211 * Ethernet_802.3 frames, which have a frame
2212 * type of LINUX_SLL_P_802_3;
2214 * Ethernet_802.2 frames, which are 802.3
2215 * frames with an 802.2 LLC header (i.e, have
2216 * a frame type of LINUX_SLL_P_802_2) and
2217 * with the IPX LSAP as the DSAP in the LLC
2220 * Ethernet_SNAP frames, which are 802.3
2221 * frames with an LLC header and a SNAP
2222 * header and with an OUI of 0x000000
2223 * (encapsulated Ethernet) and a protocol
2224 * ID of ETHERTYPE_IPX in the SNAP header.
2226 * First, do the checks on LINUX_SLL_P_802_2
2227 * frames; generate the check for either
2228 * Ethernet_802.2 or Ethernet_SNAP frames, and
2229 * then put a check for LINUX_SLL_P_802_2 frames
2232 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
2233 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2235 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2239 * Now check for 802.3 frames and OR that with
2240 * the previous test.
2242 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2246 * Now add the check for Ethernet_II frames, and
2247 * do that before checking for the other frame
2250 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
2254 case ETHERTYPE_ATALK
:
2255 case ETHERTYPE_AARP
:
2257 * EtherTalk (AppleTalk protocols on Ethernet link
2258 * layer) may use 802.2 encapsulation.
2262 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2263 * we check for the 802.2 protocol type in the
2264 * "Ethernet type" field.
2266 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2269 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2270 * SNAP packets with an organization code of
2271 * 0x080007 (Apple, for Appletalk) and a protocol
2272 * type of ETHERTYPE_ATALK (Appletalk).
2274 * 802.2-encapsulated ETHERTYPE_AARP packets are
2275 * SNAP packets with an organization code of
2276 * 0x000000 (encapsulated Ethernet) and a protocol
2277 * type of ETHERTYPE_AARP (Appletalk ARP).
2279 if (proto
== ETHERTYPE_ATALK
)
2280 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2281 else /* proto == ETHERTYPE_AARP */
2282 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2286 * Check for Ethernet encapsulation (Ethertalk
2287 * phase 1?); we just check for the Ethernet
2290 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2296 if (proto
<= ETHERMTU
) {
2298 * This is an LLC SAP value, so the frames
2299 * that match would be 802.2 frames.
2300 * Check for the 802.2 protocol type
2301 * in the "Ethernet type" field, and
2302 * then check the DSAP.
2304 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2305 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2311 * This is an Ethernet type, so compare
2312 * the length/type field with it (if
2313 * the frame is an 802.2 frame, the length
2314 * field will be <= ETHERMTU, and, as
2315 * "proto" is > ETHERMTU, this test
2316 * will fail and the frame won't match,
2317 * which is what we want).
2319 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2324 static struct slist
*
2325 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2327 struct slist
*s1
, *s2
;
2328 struct slist
*sjeq_avs_cookie
;
2329 struct slist
*sjcommon
;
2332 * This code is not compatible with the optimizer, as
2333 * we are generating jmp instructions within a normal
2334 * slist of instructions
2336 cstate
->no_optimize
= 1;
2339 * Generate code to load the length of the radio header into
2340 * the register assigned to hold that length, if one has been
2341 * assigned. (If one hasn't been assigned, no code we've
2342 * generated uses that prefix, so we don't need to generate any
2345 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2346 * or always use the AVS header rather than the Prism header.
2347 * We load a 4-byte big-endian value at the beginning of the
2348 * raw packet data, and see whether, when masked with 0xFFFFF000,
2349 * it's equal to 0x80211000. If so, that indicates that it's
2350 * an AVS header (the masked-out bits are the version number).
2351 * Otherwise, it's a Prism header.
2353 * XXX - the Prism header is also, in theory, variable-length,
2354 * but no known software generates headers that aren't 144
2357 if (cstate
->off_linkhdr
.reg
!= -1) {
2361 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2365 * AND it with 0xFFFFF000.
2367 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2368 s2
->s
.k
= 0xFFFFF000;
2372 * Compare with 0x80211000.
2374 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2375 sjeq_avs_cookie
->s
.k
= 0x80211000;
2376 sappend(s1
, sjeq_avs_cookie
);
2381 * The 4 bytes at an offset of 4 from the beginning of
2382 * the AVS header are the length of the AVS header.
2383 * That field is big-endian.
2385 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2388 sjeq_avs_cookie
->s
.jt
= s2
;
2391 * Now jump to the code to allocate a register
2392 * into which to save the header length and
2393 * store the length there. (The "jump always"
2394 * instruction needs to have the k field set;
2395 * it's added to the PC, so, as we're jumping
2396 * over a single instruction, it should be 1.)
2398 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2400 sappend(s1
, sjcommon
);
2403 * Now for the code that handles the Prism header.
2404 * Just load the length of the Prism header (144)
2405 * into the A register. Have the test for an AVS
2406 * header branch here if we don't have an AVS header.
2408 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2411 sjeq_avs_cookie
->s
.jf
= s2
;
2414 * Now allocate a register to hold that value and store
2415 * it. The code for the AVS header will jump here after
2416 * loading the length of the AVS header.
2418 s2
= new_stmt(cstate
, BPF_ST
);
2419 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2421 sjcommon
->s
.jf
= s2
;
2424 * Now move it into the X register.
2426 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2434 static struct slist
*
2435 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2437 struct slist
*s1
, *s2
;
2440 * Generate code to load the length of the AVS header into
2441 * the register assigned to hold that length, if one has been
2442 * assigned. (If one hasn't been assigned, no code we've
2443 * generated uses that prefix, so we don't need to generate any
2446 if (cstate
->off_linkhdr
.reg
!= -1) {
2448 * The 4 bytes at an offset of 4 from the beginning of
2449 * the AVS header are the length of the AVS header.
2450 * That field is big-endian.
2452 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2456 * Now allocate a register to hold that value and store
2459 s2
= new_stmt(cstate
, BPF_ST
);
2460 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2464 * Now move it into the X register.
2466 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2474 static struct slist
*
2475 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2477 struct slist
*s1
, *s2
;
2480 * Generate code to load the length of the radiotap header into
2481 * the register assigned to hold that length, if one has been
2482 * assigned. (If one hasn't been assigned, no code we've
2483 * generated uses that prefix, so we don't need to generate any
2486 if (cstate
->off_linkhdr
.reg
!= -1) {
2488 * The 2 bytes at offsets of 2 and 3 from the beginning
2489 * of the radiotap header are the length of the radiotap
2490 * header; unfortunately, it's little-endian, so we have
2491 * to load it a byte at a time and construct the value.
2495 * Load the high-order byte, at an offset of 3, shift it
2496 * left a byte, and put the result in the X register.
2498 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2500 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2503 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2507 * Load the next byte, at an offset of 2, and OR the
2508 * value from the X register into it.
2510 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2513 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2517 * Now allocate a register to hold that value and store
2520 s2
= new_stmt(cstate
, BPF_ST
);
2521 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2525 * Now move it into the X register.
2527 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2536 * At the moment we treat PPI as normal Radiotap encoded
2537 * packets. The difference is in the function that generates
2538 * the code at the beginning to compute the header length.
2539 * Since this code generator of PPI supports bare 802.11
2540 * encapsulation only (i.e. the encapsulated DLT should be
2541 * DLT_IEEE802_11) we generate code to check for this too;
2542 * that's done in finish_parse().
2544 static struct slist
*
2545 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2547 struct slist
*s1
, *s2
;
2550 * Generate code to load the length of the radiotap header
2551 * into the register assigned to hold that length, if one has
2554 if (cstate
->off_linkhdr
.reg
!= -1) {
2556 * The 2 bytes at offsets of 2 and 3 from the beginning
2557 * of the radiotap header are the length of the radiotap
2558 * header; unfortunately, it's little-endian, so we have
2559 * to load it a byte at a time and construct the value.
2563 * Load the high-order byte, at an offset of 3, shift it
2564 * left a byte, and put the result in the X register.
2566 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2568 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2571 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2575 * Load the next byte, at an offset of 2, and OR the
2576 * value from the X register into it.
2578 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2581 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2585 * Now allocate a register to hold that value and store
2588 s2
= new_stmt(cstate
, BPF_ST
);
2589 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2593 * Now move it into the X register.
2595 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2604 * Load a value relative to the beginning of the link-layer header after the 802.11
2605 * header, i.e. LLC_SNAP.
2606 * The link-layer header doesn't necessarily begin at the beginning
2607 * of the packet data; there might be a variable-length prefix containing
2608 * radio information.
2610 static struct slist
*
2611 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
2614 struct slist
*sjset_data_frame_1
;
2615 struct slist
*sjset_data_frame_2
;
2616 struct slist
*sjset_qos
;
2617 struct slist
*sjset_radiotap_flags_present
;
2618 struct slist
*sjset_radiotap_ext_present
;
2619 struct slist
*sjset_radiotap_tsft_present
;
2620 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2621 struct slist
*s_roundup
;
2623 if (cstate
->off_linkpl
.reg
== -1) {
2625 * No register has been assigned to the offset of
2626 * the link-layer payload, which means nobody needs
2627 * it; don't bother computing it - just return
2628 * what we already have.
2634 * This code is not compatible with the optimizer, as
2635 * we are generating jmp instructions within a normal
2636 * slist of instructions
2638 cstate
->no_optimize
= 1;
2641 * If "s" is non-null, it has code to arrange that the X register
2642 * contains the length of the prefix preceding the link-layer
2645 * Otherwise, the length of the prefix preceding the link-layer
2646 * header is "off_outermostlinkhdr.constant_part".
2650 * There is no variable-length header preceding the
2651 * link-layer header.
2653 * Load the length of the fixed-length prefix preceding
2654 * the link-layer header (if any) into the X register,
2655 * and store it in the cstate->off_linkpl.reg register.
2656 * That length is off_outermostlinkhdr.constant_part.
2658 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
2659 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
2663 * The X register contains the offset of the beginning of the
2664 * link-layer header; add 24, which is the minimum length
2665 * of the MAC header for a data frame, to that, and store it
2666 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2667 * which is at the offset in the X register, with an indexed load.
2669 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
2671 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2674 s2
= new_stmt(cstate
, BPF_ST
);
2675 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2678 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2683 * Check the Frame Control field to see if this is a data frame;
2684 * a data frame has the 0x08 bit (b3) in that field set and the
2685 * 0x04 bit (b2) clear.
2687 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
2688 sjset_data_frame_1
->s
.k
= 0x08;
2689 sappend(s
, sjset_data_frame_1
);
2692 * If b3 is set, test b2, otherwise go to the first statement of
2693 * the rest of the program.
2695 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
2696 sjset_data_frame_2
->s
.k
= 0x04;
2697 sappend(s
, sjset_data_frame_2
);
2698 sjset_data_frame_1
->s
.jf
= snext
;
2701 * If b2 is not set, this is a data frame; test the QoS bit.
2702 * Otherwise, go to the first statement of the rest of the
2705 sjset_data_frame_2
->s
.jt
= snext
;
2706 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
2707 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2708 sappend(s
, sjset_qos
);
2711 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2713 * Otherwise, go to the first statement of the rest of the
2716 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2717 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2719 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2722 s2
= new_stmt(cstate
, BPF_ST
);
2723 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2727 * If we have a radiotap header, look at it to see whether
2728 * there's Atheros padding between the MAC-layer header
2731 * Note: all of the fields in the radiotap header are
2732 * little-endian, so we byte-swap all of the values
2733 * we test against, as they will be loaded as big-endian
2736 * XXX - in the general case, we would have to scan through
2737 * *all* the presence bits, if there's more than one word of
2738 * presence bits. That would require a loop, meaning that
2739 * we wouldn't be able to run the filter in the kernel.
2741 * We assume here that the Atheros adapters that insert the
2742 * annoying padding don't have multiple antennae and therefore
2743 * do not generate radiotap headers with multiple presence words.
2745 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
2747 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2748 * in the first presence flag word?
2750 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
2754 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2755 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
2756 sappend(s
, sjset_radiotap_flags_present
);
2759 * If not, skip all of this.
2761 sjset_radiotap_flags_present
->s
.jf
= snext
;
2764 * Otherwise, is the "extension" bit set in that word?
2766 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2767 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
2768 sappend(s
, sjset_radiotap_ext_present
);
2769 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
2772 * If so, skip all of this.
2774 sjset_radiotap_ext_present
->s
.jt
= snext
;
2777 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2779 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2780 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
2781 sappend(s
, sjset_radiotap_tsft_present
);
2782 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
2785 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2786 * at an offset of 16 from the beginning of the raw packet
2787 * data (8 bytes for the radiotap header and 8 bytes for
2790 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2793 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2796 sjset_radiotap_tsft_present
->s
.jt
= s2
;
2798 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2799 sjset_tsft_datapad
->s
.k
= 0x20;
2800 sappend(s
, sjset_tsft_datapad
);
2803 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2804 * at an offset of 8 from the beginning of the raw packet
2805 * data (8 bytes for the radiotap header).
2807 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2810 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2813 sjset_radiotap_tsft_present
->s
.jf
= s2
;
2815 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2816 sjset_notsft_datapad
->s
.k
= 0x20;
2817 sappend(s
, sjset_notsft_datapad
);
2820 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2821 * set, round the length of the 802.11 header to
2822 * a multiple of 4. Do that by adding 3 and then
2823 * dividing by and multiplying by 4, which we do by
2826 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2827 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
2828 sappend(s
, s_roundup
);
2829 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2832 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
2835 s2
= new_stmt(cstate
, BPF_ST
);
2836 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2839 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2840 sjset_tsft_datapad
->s
.jf
= snext
;
2841 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2842 sjset_notsft_datapad
->s
.jf
= snext
;
2844 sjset_qos
->s
.jf
= snext
;
2850 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
2854 /* There is an implicit dependency between the link
2855 * payload and link header since the payload computation
2856 * includes the variable part of the header. Therefore,
2857 * if nobody else has allocated a register for the link
2858 * header and we need it, do it now. */
2859 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
2860 cstate
->off_linkhdr
.reg
== -1)
2861 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
2864 * For link-layer types that have a variable-length header
2865 * preceding the link-layer header, generate code to load
2866 * the offset of the link-layer header into the register
2867 * assigned to that offset, if any.
2869 * XXX - this, and the next switch statement, won't handle
2870 * encapsulation of 802.11 or 802.11+radio information in
2871 * some other protocol stack. That's significantly more
2874 switch (cstate
->outermostlinktype
) {
2876 case DLT_PRISM_HEADER
:
2877 s
= gen_load_prism_llprefixlen(cstate
);
2880 case DLT_IEEE802_11_RADIO_AVS
:
2881 s
= gen_load_avs_llprefixlen(cstate
);
2884 case DLT_IEEE802_11_RADIO
:
2885 s
= gen_load_radiotap_llprefixlen(cstate
);
2889 s
= gen_load_ppi_llprefixlen(cstate
);
2898 * For link-layer types that have a variable-length link-layer
2899 * header, generate code to load the offset of the link-layer
2900 * payload into the register assigned to that offset, if any.
2902 switch (cstate
->outermostlinktype
) {
2904 case DLT_IEEE802_11
:
2905 case DLT_PRISM_HEADER
:
2906 case DLT_IEEE802_11_RADIO_AVS
:
2907 case DLT_IEEE802_11_RADIO
:
2909 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
2914 * If there there is no initialization yet and we need variable
2915 * length offsets for VLAN, initialize them to zero
2917 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
2920 if (cstate
->off_linkpl
.reg
== -1)
2921 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
2922 if (cstate
->off_linktype
.reg
== -1)
2923 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
2925 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2927 s2
= new_stmt(cstate
, BPF_ST
);
2928 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2930 s2
= new_stmt(cstate
, BPF_ST
);
2931 s2
->s
.k
= cstate
->off_linktype
.reg
;
2936 * If we have any offset-loading code, append all the
2937 * existing statements in the block to those statements,
2938 * and make the resulting list the list of statements
2942 sappend(s
, b
->stmts
);
2947 static struct block
*
2948 gen_ppi_dlt_check(compiler_state_t
*cstate
)
2950 struct slist
*s_load_dlt
;
2953 if (cstate
->linktype
== DLT_PPI
)
2955 /* Create the statements that check for the DLT
2957 s_load_dlt
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2958 s_load_dlt
->s
.k
= 4;
2960 b
= new_block(cstate
, JMP(BPF_JEQ
));
2962 b
->stmts
= s_load_dlt
;
2963 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2974 * Take an absolute offset, and:
2976 * if it has no variable part, return NULL;
2978 * if it has a variable part, generate code to load the register
2979 * containing that variable part into the X register, returning
2980 * a pointer to that code - if no register for that offset has
2981 * been allocated, allocate it first.
2983 * (The code to set that register will be generated later, but will
2984 * be placed earlier in the code sequence.)
2986 static struct slist
*
2987 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
2991 if (off
->is_variable
) {
2992 if (off
->reg
== -1) {
2994 * We haven't yet assigned a register for the
2995 * variable part of the offset of the link-layer
2996 * header; allocate one.
2998 off
->reg
= alloc_reg(cstate
);
3002 * Load the register containing the variable part of the
3003 * offset of the link-layer header into the X register.
3005 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3010 * That offset isn't variable, there's no variable part,
3011 * so we don't need to generate any code.
3018 * Map an Ethernet type to the equivalent PPP type.
3021 ethertype_to_ppptype(int proto
)
3029 case ETHERTYPE_IPV6
:
3037 case ETHERTYPE_ATALK
:
3051 * I'm assuming the "Bridging PDU"s that go
3052 * over PPP are Spanning Tree Protocol
3066 * Generate any tests that, for encapsulation of a link-layer packet
3067 * inside another protocol stack, need to be done to check for those
3068 * link-layer packets (and that haven't already been done by a check
3069 * for that encapsulation).
3071 static struct block
*
3072 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3076 if (cstate
->is_geneve
)
3077 return gen_geneve_ll_check(cstate
);
3079 switch (cstate
->prevlinktype
) {
3083 * This is LANE-encapsulated Ethernet; check that the LANE
3084 * packet doesn't begin with an LE Control marker, i.e.
3085 * that it's data, not a control message.
3087 * (We've already generated a test for LANE.)
3089 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3095 * No such tests are necessary.
3103 * The three different values we should check for when checking for an
3104 * IPv6 packet with DLT_NULL.
3106 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3107 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3108 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3111 * Generate code to match a particular packet type by matching the
3112 * link-layer type field or fields in the 802.2 LLC header.
3114 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3115 * value, if <= ETHERMTU.
3117 static struct block
*
3118 gen_linktype(compiler_state_t
*cstate
, int proto
)
3120 struct block
*b0
, *b1
, *b2
;
3121 const char *description
;
3123 /* are we checking MPLS-encapsulated packets? */
3124 if (cstate
->label_stack_depth
> 0) {
3128 /* FIXME add other L3 proto IDs */
3129 return gen_mpls_linktype(cstate
, Q_IP
);
3131 case ETHERTYPE_IPV6
:
3133 /* FIXME add other L3 proto IDs */
3134 return gen_mpls_linktype(cstate
, Q_IPV6
);
3137 bpf_error(cstate
, "unsupported protocol over mpls");
3142 switch (cstate
->linktype
) {
3145 case DLT_NETANALYZER
:
3146 case DLT_NETANALYZER_TRANSPARENT
:
3147 /* Geneve has an EtherType regardless of whether there is an
3149 if (!cstate
->is_geneve
)
3150 b0
= gen_prevlinkhdr_check(cstate
);
3154 b1
= gen_ether_linktype(cstate
, proto
);
3165 proto
= (proto
<< 8 | LLCSAP_ISONS
);
3169 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3175 case DLT_IEEE802_11
:
3176 case DLT_PRISM_HEADER
:
3177 case DLT_IEEE802_11_RADIO_AVS
:
3178 case DLT_IEEE802_11_RADIO
:
3181 * Check that we have a data frame.
3183 b0
= gen_check_802_11_data_frame(cstate
);
3186 * Now check for the specified link-layer type.
3188 b1
= gen_llc_linktype(cstate
, proto
);
3196 * XXX - check for LLC frames.
3198 return gen_llc_linktype(cstate
, proto
);
3204 * XXX - check for LLC PDUs, as per IEEE 802.5.
3206 return gen_llc_linktype(cstate
, proto
);
3210 case DLT_ATM_RFC1483
:
3212 case DLT_IP_OVER_FC
:
3213 return gen_llc_linktype(cstate
, proto
);
3219 * Check for an LLC-encapsulated version of this protocol;
3220 * if we were checking for LANE, linktype would no longer
3223 * Check for LLC encapsulation and then check the protocol.
3225 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3226 b1
= gen_llc_linktype(cstate
, proto
);
3233 return gen_linux_sll_linktype(cstate
, proto
);
3238 case DLT_SLIP_BSDOS
:
3241 * These types don't provide any type field; packets
3242 * are always IPv4 or IPv6.
3244 * XXX - for IPv4, check for a version number of 4, and,
3245 * for IPv6, check for a version number of 6?
3250 /* Check for a version number of 4. */
3251 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3253 case ETHERTYPE_IPV6
:
3254 /* Check for a version number of 6. */
3255 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3258 return gen_false(cstate
); /* always false */
3265 * Raw IPv4, so no type field.
3267 if (proto
== ETHERTYPE_IP
)
3268 return gen_true(cstate
); /* always true */
3270 /* Checking for something other than IPv4; always false */
3271 return gen_false(cstate
);
3277 * Raw IPv6, so no type field.
3279 if (proto
== ETHERTYPE_IPV6
)
3280 return gen_true(cstate
); /* always true */
3282 /* Checking for something other than IPv6; always false */
3283 return gen_false(cstate
);
3289 case DLT_PPP_SERIAL
:
3292 * We use Ethernet protocol types inside libpcap;
3293 * map them to the corresponding PPP protocol types.
3295 proto
= ethertype_to_ppptype(proto
);
3296 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3302 * We use Ethernet protocol types inside libpcap;
3303 * map them to the corresponding PPP protocol types.
3309 * Also check for Van Jacobson-compressed IP.
3310 * XXX - do this for other forms of PPP?
3312 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3313 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3315 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3320 proto
= ethertype_to_ppptype(proto
);
3321 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3333 return (gen_loopback_linktype(cstate
, AF_INET
));
3335 case ETHERTYPE_IPV6
:
3337 * AF_ values may, unfortunately, be platform-
3338 * dependent; AF_INET isn't, because everybody
3339 * used 4.2BSD's value, but AF_INET6 is, because
3340 * 4.2BSD didn't have a value for it (given that
3341 * IPv6 didn't exist back in the early 1980's),
3342 * and they all picked their own values.
3344 * This means that, if we're reading from a
3345 * savefile, we need to check for all the
3348 * If we're doing a live capture, we only need
3349 * to check for this platform's value; however,
3350 * Npcap uses 24, which isn't Windows's AF_INET6
3351 * value. (Given the multiple different values,
3352 * programs that read pcap files shouldn't be
3353 * checking for their platform's AF_INET6 value
3354 * anyway, they should check for all of the
3355 * possible values. and they might as well do
3356 * that even for live captures.)
3358 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3360 * Savefile - check for all three
3361 * possible IPv6 values.
3363 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3364 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3366 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3371 * Live capture, so we only need to
3372 * check for the value used on this
3377 * Npcap doesn't use Windows's AF_INET6,
3378 * as that collides with AF_IPX on
3379 * some BSDs (both have the value 23).
3380 * Instead, it uses 24.
3382 return (gen_loopback_linktype(cstate
, 24));
3385 return (gen_loopback_linktype(cstate
, AF_INET6
));
3386 #else /* AF_INET6 */
3388 * I guess this platform doesn't support
3389 * IPv6, so we just reject all packets.
3391 return gen_false(cstate
);
3392 #endif /* AF_INET6 */
3398 * Not a type on which we support filtering.
3399 * XXX - support those that have AF_ values
3400 * #defined on this platform, at least?
3402 return gen_false(cstate
);
3405 #ifdef HAVE_NET_PFVAR_H
3408 * af field is host byte order in contrast to the rest of
3411 if (proto
== ETHERTYPE_IP
)
3412 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3413 BPF_B
, (bpf_int32
)AF_INET
));
3414 else if (proto
== ETHERTYPE_IPV6
)
3415 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3416 BPF_B
, (bpf_int32
)AF_INET6
));
3418 return gen_false(cstate
);
3421 #endif /* HAVE_NET_PFVAR_H */
3424 case DLT_ARCNET_LINUX
:
3426 * XXX should we check for first fragment if the protocol
3432 return gen_false(cstate
);
3434 case ETHERTYPE_IPV6
:
3435 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3436 (bpf_int32
)ARCTYPE_INET6
));
3439 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3440 (bpf_int32
)ARCTYPE_IP
);
3441 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3442 (bpf_int32
)ARCTYPE_IP_OLD
);
3447 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3448 (bpf_int32
)ARCTYPE_ARP
);
3449 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3450 (bpf_int32
)ARCTYPE_ARP_OLD
);
3454 case ETHERTYPE_REVARP
:
3455 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3456 (bpf_int32
)ARCTYPE_REVARP
));
3458 case ETHERTYPE_ATALK
:
3459 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3460 (bpf_int32
)ARCTYPE_ATALK
));
3467 case ETHERTYPE_ATALK
:
3468 return gen_true(cstate
);
3470 return gen_false(cstate
);
3477 * XXX - assumes a 2-byte Frame Relay header with
3478 * DLCI and flags. What if the address is longer?
3484 * Check for the special NLPID for IP.
3486 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3488 case ETHERTYPE_IPV6
:
3490 * Check for the special NLPID for IPv6.
3492 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3496 * Check for several OSI protocols.
3498 * Frame Relay packets typically have an OSI
3499 * NLPID at the beginning; we check for each
3502 * What we check for is the NLPID and a frame
3503 * control field of UI, i.e. 0x03 followed
3506 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3507 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3508 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3514 return gen_false(cstate
);
3520 bpf_error(cstate
, "Multi-link Frame Relay link-layer type filtering not implemented");
3522 case DLT_JUNIPER_MFR
:
3523 case DLT_JUNIPER_MLFR
:
3524 case DLT_JUNIPER_MLPPP
:
3525 case DLT_JUNIPER_ATM1
:
3526 case DLT_JUNIPER_ATM2
:
3527 case DLT_JUNIPER_PPPOE
:
3528 case DLT_JUNIPER_PPPOE_ATM
:
3529 case DLT_JUNIPER_GGSN
:
3530 case DLT_JUNIPER_ES
:
3531 case DLT_JUNIPER_MONITOR
:
3532 case DLT_JUNIPER_SERVICES
:
3533 case DLT_JUNIPER_ETHER
:
3534 case DLT_JUNIPER_PPP
:
3535 case DLT_JUNIPER_FRELAY
:
3536 case DLT_JUNIPER_CHDLC
:
3537 case DLT_JUNIPER_VP
:
3538 case DLT_JUNIPER_ST
:
3539 case DLT_JUNIPER_ISM
:
3540 case DLT_JUNIPER_VS
:
3541 case DLT_JUNIPER_SRX_E2E
:
3542 case DLT_JUNIPER_FIBRECHANNEL
:
3543 case DLT_JUNIPER_ATM_CEMIC
:
3545 /* just lets verify the magic number for now -
3546 * on ATM we may have up to 6 different encapsulations on the wire
3547 * and need a lot of heuristics to figure out that the payload
3550 * FIXME encapsulation specific BPF_ filters
3552 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3554 case DLT_BACNET_MS_TP
:
3555 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3558 return gen_ipnet_linktype(cstate
, proto
);
3560 case DLT_LINUX_IRDA
:
3561 bpf_error(cstate
, "IrDA link-layer type filtering not implemented");
3564 bpf_error(cstate
, "DOCSIS link-layer type filtering not implemented");
3567 case DLT_MTP2_WITH_PHDR
:
3568 bpf_error(cstate
, "MTP2 link-layer type filtering not implemented");
3571 bpf_error(cstate
, "ERF link-layer type filtering not implemented");
3574 bpf_error(cstate
, "PFSYNC link-layer type filtering not implemented");
3576 case DLT_LINUX_LAPD
:
3577 bpf_error(cstate
, "LAPD link-layer type filtering not implemented");
3579 case DLT_USB_FREEBSD
:
3581 case DLT_USB_LINUX_MMAPPED
:
3583 bpf_error(cstate
, "USB link-layer type filtering not implemented");
3585 case DLT_BLUETOOTH_HCI_H4
:
3586 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3587 bpf_error(cstate
, "Bluetooth link-layer type filtering not implemented");
3590 case DLT_CAN_SOCKETCAN
:
3591 bpf_error(cstate
, "CAN link-layer type filtering not implemented");
3593 case DLT_IEEE802_15_4
:
3594 case DLT_IEEE802_15_4_LINUX
:
3595 case DLT_IEEE802_15_4_NONASK_PHY
:
3596 case DLT_IEEE802_15_4_NOFCS
:
3597 bpf_error(cstate
, "IEEE 802.15.4 link-layer type filtering not implemented");
3599 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3600 bpf_error(cstate
, "IEEE 802.16 link-layer type filtering not implemented");
3603 bpf_error(cstate
, "SITA link-layer type filtering not implemented");
3606 bpf_error(cstate
, "RAIF1 link-layer type filtering not implemented");
3609 bpf_error(cstate
, "IPMB link-layer type filtering not implemented");
3612 bpf_error(cstate
, "AX.25 link-layer type filtering not implemented");
3615 /* Using the fixed-size NFLOG header it is possible to tell only
3616 * the address family of the packet, other meaningful data is
3617 * either missing or behind TLVs.
3619 bpf_error(cstate
, "NFLOG link-layer type filtering not implemented");
3623 * Does this link-layer header type have a field
3624 * indicating the type of the next protocol? If
3625 * so, off_linktype.constant_part will be the offset of that
3626 * field in the packet; if not, it will be OFFSET_NOT_SET.
3628 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3630 * Yes; assume it's an Ethernet type. (If
3631 * it's not, it needs to be handled specially
3634 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3637 * No; report an error.
3639 description
= pcap_datalink_val_to_description(cstate
->linktype
);
3640 if (description
!= NULL
) {
3641 bpf_error(cstate
, "%s link-layer type filtering not implemented",
3644 bpf_error(cstate
, "DLT %u link-layer type filtering not implemented",
3653 * Check for an LLC SNAP packet with a given organization code and
3654 * protocol type; we check the entire contents of the 802.2 LLC and
3655 * snap headers, checking for DSAP and SSAP of SNAP and a control
3656 * field of 0x03 in the LLC header, and for the specified organization
3657 * code and protocol type in the SNAP header.
3659 static struct block
*
3660 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
3662 u_char snapblock
[8];
3664 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3665 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3666 snapblock
[2] = 0x03; /* control = UI */
3667 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
3668 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
3669 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
3670 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
3671 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
3672 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
3676 * Generate code to match frames with an LLC header.
3678 static struct block
*
3679 gen_llc_internal(compiler_state_t
*cstate
)
3681 struct block
*b0
, *b1
;
3683 switch (cstate
->linktype
) {
3687 * We check for an Ethernet type field less than
3688 * 1500, which means it's an 802.3 length field.
3690 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
3694 * Now check for the purported DSAP and SSAP not being
3695 * 0xFF, to rule out NetWare-over-802.3.
3697 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
3704 * We check for LLC traffic.
3706 b0
= gen_atmtype_llc(cstate
);
3709 case DLT_IEEE802
: /* Token Ring */
3711 * XXX - check for LLC frames.
3713 return gen_true(cstate
);
3717 * XXX - check for LLC frames.
3719 return gen_true(cstate
);
3721 case DLT_ATM_RFC1483
:
3723 * For LLC encapsulation, these are defined to have an
3726 * For VC encapsulation, they don't, but there's no
3727 * way to check for that; the protocol used on the VC
3728 * is negotiated out of band.
3730 return gen_true(cstate
);
3732 case DLT_IEEE802_11
:
3733 case DLT_PRISM_HEADER
:
3734 case DLT_IEEE802_11_RADIO
:
3735 case DLT_IEEE802_11_RADIO_AVS
:
3738 * Check that we have a data frame.
3740 b0
= gen_check_802_11_data_frame(cstate
);
3744 bpf_error(cstate
, "'llc' not supported for linktype %d", cstate
->linktype
);
3750 gen_llc(compiler_state_t
*cstate
)
3753 * Catch errors reported by us and routines below us, and return NULL
3756 if (setjmp(cstate
->top_ctx
))
3759 return gen_llc_internal(cstate
);
3763 gen_llc_i(compiler_state_t
*cstate
)
3765 struct block
*b0
, *b1
;
3769 * Catch errors reported by us and routines below us, and return NULL
3772 if (setjmp(cstate
->top_ctx
))
3776 * Check whether this is an LLC frame.
3778 b0
= gen_llc_internal(cstate
);
3781 * Load the control byte and test the low-order bit; it must
3782 * be clear for I frames.
3784 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
3785 b1
= new_block(cstate
, JMP(BPF_JSET
));
3794 gen_llc_s(compiler_state_t
*cstate
)
3796 struct block
*b0
, *b1
;
3799 * Catch errors reported by us and routines below us, and return NULL
3802 if (setjmp(cstate
->top_ctx
))
3806 * Check whether this is an LLC frame.
3808 b0
= gen_llc_internal(cstate
);
3811 * Now compare the low-order 2 bit of the control byte against
3812 * the appropriate value for S frames.
3814 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
3820 gen_llc_u(compiler_state_t
*cstate
)
3822 struct block
*b0
, *b1
;
3825 * Catch errors reported by us and routines below us, and return NULL
3828 if (setjmp(cstate
->top_ctx
))
3832 * Check whether this is an LLC frame.
3834 b0
= gen_llc_internal(cstate
);
3837 * Now compare the low-order 2 bit of the control byte against
3838 * the appropriate value for U frames.
3840 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
3846 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3848 struct block
*b0
, *b1
;
3851 * Catch errors reported by us and routines below us, and return NULL
3854 if (setjmp(cstate
->top_ctx
))
3858 * Check whether this is an LLC frame.
3860 b0
= gen_llc_internal(cstate
);
3863 * Now check for an S frame with the appropriate type.
3865 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
3871 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3873 struct block
*b0
, *b1
;
3876 * Catch errors reported by us and routines below us, and return NULL
3879 if (setjmp(cstate
->top_ctx
))
3883 * Check whether this is an LLC frame.
3885 b0
= gen_llc_internal(cstate
);
3888 * Now check for a U frame with the appropriate type.
3890 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
3896 * Generate code to match a particular packet type, for link-layer types
3897 * using 802.2 LLC headers.
3899 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3900 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3902 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3903 * value, if <= ETHERMTU. We use that to determine whether to
3904 * match the DSAP or both DSAP and LSAP or to check the OUI and
3905 * protocol ID in a SNAP header.
3907 static struct block
*
3908 gen_llc_linktype(compiler_state_t
*cstate
, int proto
)
3911 * XXX - handle token-ring variable-length header.
3917 case LLCSAP_NETBEUI
:
3919 * XXX - should we check both the DSAP and the
3920 * SSAP, like this, or should we check just the
3921 * DSAP, as we do for other SAP values?
3923 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
3924 ((proto
<< 8) | proto
));
3928 * XXX - are there ever SNAP frames for IPX on
3929 * non-Ethernet 802.x networks?
3931 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
,
3932 (bpf_int32
)LLCSAP_IPX
);
3934 case ETHERTYPE_ATALK
:
3936 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3937 * SNAP packets with an organization code of
3938 * 0x080007 (Apple, for Appletalk) and a protocol
3939 * type of ETHERTYPE_ATALK (Appletalk).
3941 * XXX - check for an organization code of
3942 * encapsulated Ethernet as well?
3944 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
3948 * XXX - we don't have to check for IPX 802.3
3949 * here, but should we check for the IPX Ethertype?
3951 if (proto
<= ETHERMTU
) {
3953 * This is an LLC SAP value, so check
3956 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)proto
);
3959 * This is an Ethernet type; we assume that it's
3960 * unlikely that it'll appear in the right place
3961 * at random, and therefore check only the
3962 * location that would hold the Ethernet type
3963 * in a SNAP frame with an organization code of
3964 * 0x000000 (encapsulated Ethernet).
3966 * XXX - if we were to check for the SNAP DSAP and
3967 * LSAP, as per XXX, and were also to check for an
3968 * organization code of 0x000000 (encapsulated
3969 * Ethernet), we'd do
3971 * return gen_snap(cstate, 0x000000, proto);
3973 * here; for now, we don't, as per the above.
3974 * I don't know whether it's worth the extra CPU
3975 * time to do the right check or not.
3977 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, (bpf_int32
)proto
);
3982 static struct block
*
3983 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
3984 int dir
, int proto
, u_int src_off
, u_int dst_off
)
3986 struct block
*b0
, *b1
;
4000 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
4001 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
4007 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
4008 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
4013 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4017 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4021 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4025 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4029 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4033 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4039 b0
= gen_linktype(cstate
, proto
);
4040 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
4046 static struct block
*
4047 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4048 struct in6_addr
*mask
, int dir
, int proto
, u_int src_off
, u_int dst_off
)
4050 struct block
*b0
, *b1
;
4065 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
4066 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
4072 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
4073 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
4078 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4082 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4086 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4090 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4094 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4098 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4104 /* this order is important */
4105 a
= (uint32_t *)addr
;
4106 m
= (uint32_t *)mask
;
4107 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4108 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4110 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4112 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4114 b0
= gen_linktype(cstate
, proto
);
4120 static struct block
*
4121 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4123 register struct block
*b0
, *b1
;
4127 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4130 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4133 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4134 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4140 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4141 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4146 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4150 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4154 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4158 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4162 bpf_error(cstate
, "'ra' is only supported on 802.11 with 802.11 headers");
4166 bpf_error(cstate
, "'ta' is only supported on 802.11 with 802.11 headers");
4174 * Like gen_ehostop, but for DLT_FDDI
4176 static struct block
*
4177 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4179 struct block
*b0
, *b1
;
4183 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4186 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4189 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4190 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4196 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4197 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4202 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4206 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4210 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4214 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4218 bpf_error(cstate
, "'ra' is only supported on 802.11");
4222 bpf_error(cstate
, "'ta' is only supported on 802.11");
4230 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4232 static struct block
*
4233 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4235 register struct block
*b0
, *b1
;
4239 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4242 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4245 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4246 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4252 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4253 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4258 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4262 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4266 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4270 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4274 bpf_error(cstate
, "'ra' is only supported on 802.11");
4278 bpf_error(cstate
, "'ta' is only supported on 802.11");
4286 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4287 * various 802.11 + radio headers.
4289 static struct block
*
4290 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4292 register struct block
*b0
, *b1
, *b2
;
4293 register struct slist
*s
;
4295 #ifdef ENABLE_WLAN_FILTERING_PATCH
4298 * We need to disable the optimizer because the optimizer is buggy
4299 * and wipes out some LD instructions generated by the below
4300 * code to validate the Frame Control bits
4302 cstate
->no_optimize
= 1;
4303 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4310 * For control frames, there is no SA.
4312 * For management frames, SA is at an
4313 * offset of 10 from the beginning of
4316 * For data frames, SA is at an offset
4317 * of 10 from the beginning of the packet
4318 * if From DS is clear, at an offset of
4319 * 16 from the beginning of the packet
4320 * if From DS is set and To DS is clear,
4321 * and an offset of 24 from the beginning
4322 * of the packet if From DS is set and To DS
4327 * Generate the tests to be done for data frames
4330 * First, check for To DS set, i.e. check "link[1] & 0x01".
4332 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4333 b1
= new_block(cstate
, JMP(BPF_JSET
));
4334 b1
->s
.k
= 0x01; /* To DS */
4338 * If To DS is set, the SA is at 24.
4340 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4344 * Now, check for To DS not set, i.e. check
4345 * "!(link[1] & 0x01)".
4347 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4348 b2
= new_block(cstate
, JMP(BPF_JSET
));
4349 b2
->s
.k
= 0x01; /* To DS */
4354 * If To DS is not set, the SA is at 16.
4356 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4360 * Now OR together the last two checks. That gives
4361 * the complete set of checks for data frames with
4367 * Now check for From DS being set, and AND that with
4368 * the ORed-together checks.
4370 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4371 b1
= new_block(cstate
, JMP(BPF_JSET
));
4372 b1
->s
.k
= 0x02; /* From DS */
4377 * Now check for data frames with From DS not set.
4379 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4380 b2
= new_block(cstate
, JMP(BPF_JSET
));
4381 b2
->s
.k
= 0x02; /* From DS */
4386 * If From DS isn't set, the SA is at 10.
4388 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4392 * Now OR together the checks for data frames with
4393 * From DS not set and for data frames with From DS
4394 * set; that gives the checks done for data frames.
4399 * Now check for a data frame.
4400 * I.e, check "link[0] & 0x08".
4402 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4403 b1
= new_block(cstate
, JMP(BPF_JSET
));
4408 * AND that with the checks done for data frames.
4413 * If the high-order bit of the type value is 0, this
4414 * is a management frame.
4415 * I.e, check "!(link[0] & 0x08)".
4417 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4418 b2
= new_block(cstate
, JMP(BPF_JSET
));
4424 * For management frames, the SA is at 10.
4426 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4430 * OR that with the checks done for data frames.
4431 * That gives the checks done for management and
4437 * If the low-order bit of the type value is 1,
4438 * this is either a control frame or a frame
4439 * with a reserved type, and thus not a
4442 * I.e., check "!(link[0] & 0x04)".
4444 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4445 b1
= new_block(cstate
, JMP(BPF_JSET
));
4451 * AND that with the checks for data and management
4461 * For control frames, there is no DA.
4463 * For management frames, DA is at an
4464 * offset of 4 from the beginning of
4467 * For data frames, DA is at an offset
4468 * of 4 from the beginning of the packet
4469 * if To DS is clear and at an offset of
4470 * 16 from the beginning of the packet
4475 * Generate the tests to be done for data frames.
4477 * First, check for To DS set, i.e. "link[1] & 0x01".
4479 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4480 b1
= new_block(cstate
, JMP(BPF_JSET
));
4481 b1
->s
.k
= 0x01; /* To DS */
4485 * If To DS is set, the DA is at 16.
4487 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4491 * Now, check for To DS not set, i.e. check
4492 * "!(link[1] & 0x01)".
4494 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4495 b2
= new_block(cstate
, JMP(BPF_JSET
));
4496 b2
->s
.k
= 0x01; /* To DS */
4501 * If To DS is not set, the DA is at 4.
4503 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4507 * Now OR together the last two checks. That gives
4508 * the complete set of checks for data frames.
4513 * Now check for a data frame.
4514 * I.e, check "link[0] & 0x08".
4516 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4517 b1
= new_block(cstate
, JMP(BPF_JSET
));
4522 * AND that with the checks done for data frames.
4527 * If the high-order bit of the type value is 0, this
4528 * is a management frame.
4529 * I.e, check "!(link[0] & 0x08)".
4531 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4532 b2
= new_block(cstate
, JMP(BPF_JSET
));
4538 * For management frames, the DA is at 4.
4540 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4544 * OR that with the checks done for data frames.
4545 * That gives the checks done for management and
4551 * If the low-order bit of the type value is 1,
4552 * this is either a control frame or a frame
4553 * with a reserved type, and thus not a
4556 * I.e., check "!(link[0] & 0x04)".
4558 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4559 b1
= new_block(cstate
, JMP(BPF_JSET
));
4565 * AND that with the checks for data and management
4572 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4573 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4579 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4580 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4585 * XXX - add BSSID keyword?
4588 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4592 * Not present in CTS or ACK control frames.
4594 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4595 IEEE80211_FC0_TYPE_MASK
);
4597 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4598 IEEE80211_FC0_SUBTYPE_MASK
);
4600 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4601 IEEE80211_FC0_SUBTYPE_MASK
);
4605 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4611 * Not present in control frames.
4613 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4614 IEEE80211_FC0_TYPE_MASK
);
4616 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4622 * Present only if the direction mask has both "From DS"
4623 * and "To DS" set. Neither control frames nor management
4624 * frames should have both of those set, so we don't
4625 * check the frame type.
4627 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4628 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4629 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4635 * Not present in management frames; addr1 in other
4640 * If the high-order bit of the type value is 0, this
4641 * is a management frame.
4642 * I.e, check "(link[0] & 0x08)".
4644 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4645 b1
= new_block(cstate
, JMP(BPF_JSET
));
4652 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4655 * AND that with the check of addr1.
4662 * Not present in management frames; addr2, if present,
4667 * Not present in CTS or ACK control frames.
4669 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4670 IEEE80211_FC0_TYPE_MASK
);
4672 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4673 IEEE80211_FC0_SUBTYPE_MASK
);
4675 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4676 IEEE80211_FC0_SUBTYPE_MASK
);
4682 * If the high-order bit of the type value is 0, this
4683 * is a management frame.
4684 * I.e, check "(link[0] & 0x08)".
4686 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4687 b1
= new_block(cstate
, JMP(BPF_JSET
));
4692 * AND that with the check for frames other than
4693 * CTS and ACK frames.
4700 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4709 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4710 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4711 * as the RFC states.)
4713 static struct block
*
4714 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4716 register struct block
*b0
, *b1
;
4720 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4723 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4726 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4727 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4733 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4734 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4739 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
4743 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
4747 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
4751 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
4755 bpf_error(cstate
, "'ra' is only supported on 802.11");
4759 bpf_error(cstate
, "'ta' is only supported on 802.11");
4767 * This is quite tricky because there may be pad bytes in front of the
4768 * DECNET header, and then there are two possible data packet formats that
4769 * carry both src and dst addresses, plus 5 packet types in a format that
4770 * carries only the src node, plus 2 types that use a different format and
4771 * also carry just the src node.
4775 * Instead of doing those all right, we just look for data packets with
4776 * 0 or 1 bytes of padding. If you want to look at other packets, that
4777 * will require a lot more hacking.
4779 * To add support for filtering on DECNET "areas" (network numbers)
4780 * one would want to add a "mask" argument to this routine. That would
4781 * make the filter even more inefficient, although one could be clever
4782 * and not generate masking instructions if the mask is 0xFFFF.
4784 static struct block
*
4785 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4787 struct block
*b0
, *b1
, *b2
, *tmp
;
4788 u_int offset_lh
; /* offset if long header is received */
4789 u_int offset_sh
; /* offset if short header is received */
4794 offset_sh
= 1; /* follows flags */
4795 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4799 offset_sh
= 3; /* follows flags, dstnode */
4800 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4804 /* Inefficient because we do our Calvinball dance twice */
4805 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4806 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4812 /* Inefficient because we do our Calvinball dance twice */
4813 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4814 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4819 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4823 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4827 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4831 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4835 bpf_error(cstate
, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4839 bpf_error(cstate
, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4845 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
4846 /* Check for pad = 1, long header case */
4847 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4848 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4849 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4850 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4852 /* Check for pad = 0, long header case */
4853 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4854 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4857 /* Check for pad = 1, short header case */
4858 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4859 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4860 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4863 /* Check for pad = 0, short header case */
4864 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4865 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4869 /* Combine with test for cstate->linktype */
4875 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4876 * test the bottom-of-stack bit, and then check the version number
4877 * field in the IP header.
4879 static struct block
*
4880 gen_mpls_linktype(compiler_state_t
*cstate
, int proto
)
4882 struct block
*b0
, *b1
;
4887 /* match the bottom-of-stack bit */
4888 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
4889 /* match the IPv4 version number */
4890 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
4895 /* match the bottom-of-stack bit */
4896 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
4897 /* match the IPv4 version number */
4898 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
4907 static struct block
*
4908 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4909 int proto
, int dir
, int type
)
4911 struct block
*b0
, *b1
;
4912 const char *typestr
;
4922 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
4924 * Only check for non-IPv4 addresses if we're not
4925 * checking MPLS-encapsulated packets.
4927 if (cstate
->label_stack_depth
== 0) {
4928 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
4930 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
4936 bpf_error(cstate
, "link-layer modifier applied to %s", typestr
);
4939 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4942 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4945 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4948 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4951 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4954 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4957 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4960 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4963 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4966 bpf_error(cstate
, "AppleTalk host filtering not implemented");
4969 return gen_dnhostop(cstate
, addr
, dir
);
4972 bpf_error(cstate
, "LAT host filtering not implemented");
4975 bpf_error(cstate
, "SCA host filtering not implemented");
4978 bpf_error(cstate
, "MOPRC host filtering not implemented");
4981 bpf_error(cstate
, "MOPDL host filtering not implemented");
4984 bpf_error(cstate
, "'ip6' modifier applied to ip host");
4987 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4990 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4993 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4996 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4999 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
5002 bpf_error(cstate
, "AARP host filtering not implemented");
5005 bpf_error(cstate
, "ISO host filtering not implemented");
5008 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
5011 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
5014 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
5017 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
5020 bpf_error(cstate
, "IPX host filtering not implemented");
5023 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
5026 bpf_error(cstate
, "'l1' modifier applied to %s", typestr
);
5029 bpf_error(cstate
, "'l2' modifier applied to %s", typestr
);
5032 bpf_error(cstate
, "'iih' modifier applied to %s", typestr
);
5035 bpf_error(cstate
, "'snp' modifier applied to %s", typestr
);
5038 bpf_error(cstate
, "'csnp' modifier applied to %s", typestr
);
5041 bpf_error(cstate
, "'psnp' modifier applied to %s", typestr
);
5044 bpf_error(cstate
, "'lsp' modifier applied to %s", typestr
);
5047 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
5050 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
5059 static struct block
*
5060 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5061 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5063 const char *typestr
;
5073 return gen_host6(cstate
, addr
, mask
, Q_IPV6
, dir
, type
);
5076 bpf_error(cstate
, "link-layer modifier applied to ip6 %s", typestr
);
5079 bpf_error(cstate
, "'ip' modifier applied to ip6 %s", typestr
);
5082 bpf_error(cstate
, "'rarp' modifier applied to ip6 %s", typestr
);
5085 bpf_error(cstate
, "'arp' modifier applied to ip6 %s", typestr
);
5088 bpf_error(cstate
, "'sctp' modifier applied to ip6 %s", typestr
);
5091 bpf_error(cstate
, "'tcp' modifier applied to ip6 %s", typestr
);
5094 bpf_error(cstate
, "'udp' modifier applied to ip6 %s", typestr
);
5097 bpf_error(cstate
, "'icmp' modifier applied to ip6 %s", typestr
);
5100 bpf_error(cstate
, "'igmp' modifier applied to ip6 %s", typestr
);
5103 bpf_error(cstate
, "'igrp' modifier applied to ip6 %s", typestr
);
5106 bpf_error(cstate
, "AppleTalk modifier applied to ip6 %s", typestr
);
5109 bpf_error(cstate
, "'decnet' modifier applied to ip6 %s", typestr
);
5112 bpf_error(cstate
, "'lat' modifier applied to ip6 %s", typestr
);
5115 bpf_error(cstate
, "'sca' modifier applied to ip6 %s", typestr
);
5118 bpf_error(cstate
, "'moprc' modifier applied to ip6 %s", typestr
);
5121 bpf_error(cstate
, "'mopdl' modifier applied to ip6 %s", typestr
);
5124 return gen_hostop6(cstate
, addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
5127 bpf_error(cstate
, "'icmp6' modifier applied to ip6 %s", typestr
);
5130 bpf_error(cstate
, "'ah' modifier applied to ip6 %s", typestr
);
5133 bpf_error(cstate
, "'esp' modifier applied to ip6 %s", typestr
);
5136 bpf_error(cstate
, "'pim' modifier applied to ip6 %s", typestr
);
5139 bpf_error(cstate
, "'vrrp' modifier applied to ip6 %s", typestr
);
5142 bpf_error(cstate
, "'aarp' modifier applied to ip6 %s", typestr
);
5145 bpf_error(cstate
, "'iso' modifier applied to ip6 %s", typestr
);
5148 bpf_error(cstate
, "'esis' modifier applied to ip6 %s", typestr
);
5151 bpf_error(cstate
, "'isis' modifier applied to ip6 %s", typestr
);
5154 bpf_error(cstate
, "'clnp' modifier applied to ip6 %s", typestr
);
5157 bpf_error(cstate
, "'stp' modifier applied to ip6 %s", typestr
);
5160 bpf_error(cstate
, "'ipx' modifier applied to ip6 %s", typestr
);
5163 bpf_error(cstate
, "'netbeui' modifier applied to ip6 %s", typestr
);
5166 bpf_error(cstate
, "'l1' modifier applied to ip6 %s", typestr
);
5169 bpf_error(cstate
, "'l2' modifier applied to ip6 %s", typestr
);
5172 bpf_error(cstate
, "'iih' modifier applied to ip6 %s", typestr
);
5175 bpf_error(cstate
, "'snp' modifier applied to ip6 %s", typestr
);
5178 bpf_error(cstate
, "'csnp' modifier applied to ip6 %s", typestr
);
5181 bpf_error(cstate
, "'psnp' modifier applied to ip6 %s", typestr
);
5184 bpf_error(cstate
, "'lsp' modifier applied to ip6 %s", typestr
);
5187 bpf_error(cstate
, "'radio' modifier applied to ip6 %s", typestr
);
5190 bpf_error(cstate
, "'carp' modifier applied to ip6 %s", typestr
);
5200 static struct block
*
5201 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5202 struct addrinfo
*alist
, int proto
, int dir
)
5204 struct block
*b0
, *b1
, *tmp
;
5205 struct addrinfo
*ai
;
5206 struct sockaddr_in
*sin
;
5209 bpf_error(cstate
, "direction applied to 'gateway'");
5216 switch (cstate
->linktype
) {
5218 case DLT_NETANALYZER
:
5219 case DLT_NETANALYZER_TRANSPARENT
:
5220 b1
= gen_prevlinkhdr_check(cstate
);
5221 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5226 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5229 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5231 case DLT_IEEE802_11
:
5232 case DLT_PRISM_HEADER
:
5233 case DLT_IEEE802_11_RADIO_AVS
:
5234 case DLT_IEEE802_11_RADIO
:
5236 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5240 * This is LLC-multiplexed traffic; if it were
5241 * LANE, cstate->linktype would have been set to
5245 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5247 case DLT_IP_OVER_FC
:
5248 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5252 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5255 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5257 * Does it have an address?
5259 if (ai
->ai_addr
!= NULL
) {
5261 * Yes. Is it an IPv4 address?
5263 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5265 * Generate an entry for it.
5267 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5268 tmp
= gen_host(cstate
,
5269 ntohl(sin
->sin_addr
.s_addr
),
5270 0xffffffff, proto
, Q_OR
, Q_HOST
);
5272 * Is it the *first* IPv4 address?
5276 * Yes, so start with it.
5281 * No, so OR it into the
5293 * No IPv4 addresses found.
5301 bpf_error(cstate
, "illegal modifier of 'gateway'");
5306 static struct block
*
5307 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5315 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
5316 b0
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
5321 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
5322 b0
= gen_proto(cstate
, IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
5327 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
5328 b0
= gen_proto(cstate
, IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
5333 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
5336 #ifndef IPPROTO_IGMP
5337 #define IPPROTO_IGMP 2
5341 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
5344 #ifndef IPPROTO_IGRP
5345 #define IPPROTO_IGRP 9
5348 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
5352 #define IPPROTO_PIM 103
5356 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
5357 b0
= gen_proto(cstate
, IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
5361 #ifndef IPPROTO_VRRP
5362 #define IPPROTO_VRRP 112
5366 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
5369 #ifndef IPPROTO_CARP
5370 #define IPPROTO_CARP 112
5374 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
5378 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5382 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5386 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5390 bpf_error(cstate
, "link layer applied in wrong context");
5393 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5397 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5401 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5405 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5409 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5413 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5417 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5421 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5424 #ifndef IPPROTO_ICMPV6
5425 #define IPPROTO_ICMPV6 58
5428 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
5432 #define IPPROTO_AH 51
5435 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
5436 b0
= gen_proto(cstate
, IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
5441 #define IPPROTO_ESP 50
5444 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
5445 b0
= gen_proto(cstate
, IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
5450 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5454 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
5458 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5461 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5462 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5463 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5465 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5467 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5469 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5473 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5474 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5475 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5477 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5479 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5481 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5485 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5486 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5487 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5489 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
5494 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5495 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5500 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5501 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5503 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5505 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5510 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5511 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5516 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5517 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5522 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
5526 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5530 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5534 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5538 bpf_error(cstate
, "'radio' is not a valid protocol type");
5547 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5550 * Catch errors reported by us and routines below us, and return NULL
5553 if (setjmp(cstate
->top_ctx
))
5556 return gen_proto_abbrev_internal(cstate
, proto
);
5559 static struct block
*
5560 gen_ipfrag(compiler_state_t
*cstate
)
5565 /* not IPv4 frag other than the first frag */
5566 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5567 b
= new_block(cstate
, JMP(BPF_JSET
));
5576 * Generate a comparison to a port value in the transport-layer header
5577 * at the specified offset from the beginning of that header.
5579 * XXX - this handles a variable-length prefix preceding the link-layer
5580 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5581 * variable-length link-layer headers (such as Token Ring or 802.11
5584 static struct block
*
5585 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5587 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5590 static struct block
*
5591 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5593 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5597 gen_portop(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5599 struct block
*b0
, *b1
, *tmp
;
5601 /* ip proto 'proto' and not a fragment other than the first fragment */
5602 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5603 b0
= gen_ipfrag(cstate
);
5608 b1
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5612 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5616 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5617 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5623 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5624 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5629 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for ports");
5633 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for ports");
5637 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for ports");
5641 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for ports");
5645 bpf_error(cstate
, "'ra' is not a valid qualifier for ports");
5649 bpf_error(cstate
, "'ta' is not a valid qualifier for ports");
5660 static struct block
*
5661 gen_port(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5663 struct block
*b0
, *b1
, *tmp
;
5668 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5669 * not LLC encapsulation with LLCSAP_IP.
5671 * For IEEE 802 networks - which includes 802.5 token ring
5672 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5673 * says that SNAP encapsulation is used, not LLC encapsulation
5676 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5677 * RFC 2225 say that SNAP encapsulation is used, not LLC
5678 * encapsulation with LLCSAP_IP.
5680 * So we always check for ETHERTYPE_IP.
5682 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5688 b1
= gen_portop(cstate
, port
, ip_proto
, dir
);
5692 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5693 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5695 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5707 gen_portop6(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5709 struct block
*b0
, *b1
, *tmp
;
5711 /* ip6 proto 'proto' */
5712 /* XXX - catch the first fragment of a fragmented packet? */
5713 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5717 b1
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5721 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5725 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5726 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5732 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5733 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5745 static struct block
*
5746 gen_port6(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5748 struct block
*b0
, *b1
, *tmp
;
5750 /* link proto ip6 */
5751 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5757 b1
= gen_portop6(cstate
, port
, ip_proto
, dir
);
5761 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5762 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5764 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5775 /* gen_portrange code */
5776 static struct block
*
5777 gen_portrangeatom(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5780 struct block
*b1
, *b2
;
5784 * Reverse the order of the ports, so v1 is the lower one.
5793 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5794 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5802 gen_portrangeop(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5805 struct block
*b0
, *b1
, *tmp
;
5807 /* ip proto 'proto' and not a fragment other than the first fragment */
5808 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5809 b0
= gen_ipfrag(cstate
);
5814 b1
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5818 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5822 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5823 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5829 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5830 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5835 bpf_error(cstate
, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5839 bpf_error(cstate
, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5843 bpf_error(cstate
, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5847 bpf_error(cstate
, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5851 bpf_error(cstate
, "'ra' is not a valid qualifier for port ranges");
5855 bpf_error(cstate
, "'ta' is not a valid qualifier for port ranges");
5866 static struct block
*
5867 gen_portrange(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5870 struct block
*b0
, *b1
, *tmp
;
5873 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5879 b1
= gen_portrangeop(cstate
, port1
, port2
, ip_proto
, dir
);
5883 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5884 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5886 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5897 static struct block
*
5898 gen_portrangeatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5901 struct block
*b1
, *b2
;
5905 * Reverse the order of the ports, so v1 is the lower one.
5914 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5915 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5923 gen_portrangeop6(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5926 struct block
*b0
, *b1
, *tmp
;
5928 /* ip6 proto 'proto' */
5929 /* XXX - catch the first fragment of a fragmented packet? */
5930 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5934 b1
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5938 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5942 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5943 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5949 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5950 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5962 static struct block
*
5963 gen_portrange6(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5966 struct block
*b0
, *b1
, *tmp
;
5968 /* link proto ip6 */
5969 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5975 b1
= gen_portrangeop6(cstate
, port1
, port2
, ip_proto
, dir
);
5979 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5980 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5982 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5994 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6003 v
= pcap_nametoproto(name
);
6004 if (v
== PROTO_UNDEF
)
6005 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6009 /* XXX should look up h/w protocol type based on cstate->linktype */
6010 v
= pcap_nametoeproto(name
);
6011 if (v
== PROTO_UNDEF
) {
6012 v
= pcap_nametollc(name
);
6013 if (v
== PROTO_UNDEF
)
6014 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6019 if (strcmp(name
, "esis") == 0)
6021 else if (strcmp(name
, "isis") == 0)
6023 else if (strcmp(name
, "clnp") == 0)
6026 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6038 gen_joinsp(struct stmt
**s
, int n
)
6044 static struct block
*
6045 gen_protochain(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
6047 #ifdef NO_PROTOCHAIN
6048 return gen_proto(cstate
, v
, proto
, dir
);
6050 struct block
*b0
, *b
;
6051 struct slist
*s
[100];
6052 int fix2
, fix3
, fix4
, fix5
;
6053 int ahcheck
, again
, end
;
6055 int reg2
= alloc_reg(cstate
);
6057 memset(s
, 0, sizeof(s
));
6058 fix3
= fix4
= fix5
= 0;
6065 b0
= gen_protochain(cstate
, v
, Q_IP
, dir
);
6066 b
= gen_protochain(cstate
, v
, Q_IPV6
, dir
);
6070 bpf_error(cstate
, "bad protocol applied for 'protochain'");
6075 * We don't handle variable-length prefixes before the link-layer
6076 * header, or variable-length link-layer headers, here yet.
6077 * We might want to add BPF instructions to do the protochain
6078 * work, to simplify that and, on platforms that have a BPF
6079 * interpreter with the new instructions, let the filtering
6080 * be done in the kernel. (We already require a modified BPF
6081 * engine to do the protochain stuff, to support backward
6082 * branches, and backward branch support is unlikely to appear
6083 * in kernel BPF engines.)
6085 if (cstate
->off_linkpl
.is_variable
)
6086 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6088 cstate
->no_optimize
= 1; /* this code is not compatible with optimizer yet */
6091 * s[0] is a dummy entry to protect other BPF insn from damage
6092 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6093 * hard to find interdependency made by jump table fixup.
6096 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6101 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6104 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6105 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6107 /* X = ip->ip_hl << 2 */
6108 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6109 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6114 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6116 /* A = ip6->ip_nxt */
6117 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6118 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6120 /* X = sizeof(struct ip6_hdr) */
6121 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6127 bpf_error(cstate
, "unsupported proto to gen_protochain");
6131 /* again: if (A == v) goto end; else fall through; */
6133 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6135 s
[i
]->s
.jt
= NULL
; /*later*/
6136 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6140 #ifndef IPPROTO_NONE
6141 #define IPPROTO_NONE 59
6143 /* if (A == IPPROTO_NONE) goto end */
6144 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6145 s
[i
]->s
.jt
= NULL
; /*later*/
6146 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6147 s
[i
]->s
.k
= IPPROTO_NONE
;
6148 s
[fix5
]->s
.jf
= s
[i
];
6152 if (proto
== Q_IPV6
) {
6153 int v6start
, v6end
, v6advance
, j
;
6156 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6157 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6158 s
[i
]->s
.jt
= NULL
; /*later*/
6159 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6160 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6161 s
[fix2
]->s
.jf
= s
[i
];
6163 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6164 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6165 s
[i
]->s
.jt
= NULL
; /*later*/
6166 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6167 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6169 /* if (A == IPPROTO_ROUTING) goto v6advance */
6170 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6171 s
[i
]->s
.jt
= NULL
; /*later*/
6172 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6173 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6175 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6176 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6177 s
[i
]->s
.jt
= NULL
; /*later*/
6178 s
[i
]->s
.jf
= NULL
; /*later*/
6179 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6189 * A = P[X + packet head];
6190 * X = X + (P[X + packet head + 1] + 1) * 8;
6192 /* A = P[X + packet head] */
6193 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6194 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6197 s
[i
] = new_stmt(cstate
, BPF_ST
);
6200 /* A = P[X + packet head + 1]; */
6201 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6202 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6205 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6209 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6213 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6217 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6220 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6224 /* goto again; (must use BPF_JA for backward jump) */
6225 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6226 s
[i
]->s
.k
= again
- i
- 1;
6227 s
[i
- 1]->s
.jf
= s
[i
];
6231 for (j
= v6start
; j
<= v6end
; j
++)
6232 s
[j
]->s
.jt
= s
[v6advance
];
6235 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6237 s
[fix2
]->s
.jf
= s
[i
];
6243 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6244 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6245 s
[i
]->s
.jt
= NULL
; /*later*/
6246 s
[i
]->s
.jf
= NULL
; /*later*/
6247 s
[i
]->s
.k
= IPPROTO_AH
;
6249 s
[fix3
]->s
.jf
= s
[ahcheck
];
6256 * X = X + (P[X + 1] + 2) * 4;
6259 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6261 /* A = P[X + packet head]; */
6262 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6263 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6266 s
[i
] = new_stmt(cstate
, BPF_ST
);
6270 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6273 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6277 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6279 /* A = P[X + packet head] */
6280 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6281 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6284 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6288 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6292 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6295 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6299 /* goto again; (must use BPF_JA for backward jump) */
6300 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6301 s
[i
]->s
.k
= again
- i
- 1;
6306 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6308 s
[fix2
]->s
.jt
= s
[end
];
6309 s
[fix4
]->s
.jf
= s
[end
];
6310 s
[fix5
]->s
.jt
= s
[end
];
6317 for (i
= 0; i
< max
- 1; i
++)
6318 s
[i
]->next
= s
[i
+ 1];
6319 s
[max
- 1]->next
= NULL
;
6324 b
= new_block(cstate
, JMP(BPF_JEQ
));
6325 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
6328 free_reg(cstate
, reg2
);
6335 static struct block
*
6336 gen_check_802_11_data_frame(compiler_state_t
*cstate
)
6339 struct block
*b0
, *b1
;
6342 * A data frame has the 0x08 bit (b3) in the frame control field set
6343 * and the 0x04 bit (b2) clear.
6345 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
6346 b0
= new_block(cstate
, JMP(BPF_JSET
));
6350 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
6351 b1
= new_block(cstate
, JMP(BPF_JSET
));
6362 * Generate code that checks whether the packet is a packet for protocol
6363 * <proto> and whether the type field in that protocol's header has
6364 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6365 * IP packet and checks the protocol number in the IP header against <v>.
6367 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6368 * against Q_IP and Q_IPV6.
6370 static struct block
*
6371 gen_proto(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
6373 struct block
*b0
, *b1
;
6378 if (dir
!= Q_DEFAULT
)
6379 bpf_error(cstate
, "direction applied to 'proto'");
6383 b0
= gen_proto(cstate
, v
, Q_IP
, dir
);
6384 b1
= gen_proto(cstate
, v
, Q_IPV6
, dir
);
6389 return gen_linktype(cstate
, v
);
6393 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6394 * not LLC encapsulation with LLCSAP_IP.
6396 * For IEEE 802 networks - which includes 802.5 token ring
6397 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6398 * says that SNAP encapsulation is used, not LLC encapsulation
6401 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6402 * RFC 2225 say that SNAP encapsulation is used, not LLC
6403 * encapsulation with LLCSAP_IP.
6405 * So we always check for ETHERTYPE_IP.
6407 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6409 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)v
);
6411 b1
= gen_protochain(cstate
, v
, Q_IP
);
6417 bpf_error(cstate
, "arp does not encapsulate another protocol");
6421 bpf_error(cstate
, "rarp does not encapsulate another protocol");
6425 bpf_error(cstate
, "'sctp proto' is bogus");
6429 bpf_error(cstate
, "'tcp proto' is bogus");
6433 bpf_error(cstate
, "'udp proto' is bogus");
6437 bpf_error(cstate
, "'icmp proto' is bogus");
6441 bpf_error(cstate
, "'igmp proto' is bogus");
6445 bpf_error(cstate
, "'igrp proto' is bogus");
6449 bpf_error(cstate
, "AppleTalk encapsulation is not specifiable");
6453 bpf_error(cstate
, "DECNET encapsulation is not specifiable");
6457 bpf_error(cstate
, "LAT does not encapsulate another protocol");
6461 bpf_error(cstate
, "SCA does not encapsulate another protocol");
6465 bpf_error(cstate
, "MOPRC does not encapsulate another protocol");
6469 bpf_error(cstate
, "MOPDL does not encapsulate another protocol");
6473 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6476 * Also check for a fragment header before the final
6479 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6480 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, (bpf_int32
)v
);
6482 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)v
);
6485 b1
= gen_protochain(cstate
, v
, Q_IPV6
);
6491 bpf_error(cstate
, "'icmp6 proto' is bogus");
6495 bpf_error(cstate
, "'ah proto' is bogus");
6499 bpf_error(cstate
, "'ah proto' is bogus");
6503 bpf_error(cstate
, "'pim proto' is bogus");
6507 bpf_error(cstate
, "'vrrp proto' is bogus");
6511 bpf_error(cstate
, "'aarp proto' is bogus");
6515 switch (cstate
->linktype
) {
6519 * Frame Relay packets typically have an OSI
6520 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6521 * generates code to check for all the OSI
6522 * NLPIDs, so calling it and then adding a check
6523 * for the particular NLPID for which we're
6524 * looking is bogus, as we can just check for
6527 * What we check for is the NLPID and a frame
6528 * control field value of UI, i.e. 0x03 followed
6531 * XXX - assumes a 2-byte Frame Relay header with
6532 * DLCI and flags. What if the address is longer?
6534 * XXX - what about SNAP-encapsulated frames?
6536 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6542 * Cisco uses an Ethertype lookalike - for OSI,
6545 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6546 /* OSI in C-HDLC is stuffed with a fudge byte */
6547 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, (bpf_int32
)v
);
6552 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6553 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, (bpf_int32
)v
);
6559 bpf_error(cstate
, "'esis proto' is bogus");
6563 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
6565 * 4 is the offset of the PDU type relative to the IS-IS
6568 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 4, BPF_B
, (bpf_int32
)v
);
6573 bpf_error(cstate
, "'clnp proto' is not supported");
6577 bpf_error(cstate
, "'stp proto' is bogus");
6581 bpf_error(cstate
, "'ipx proto' is bogus");
6585 bpf_error(cstate
, "'netbeui proto' is bogus");
6589 bpf_error(cstate
, "'l1 proto' is bogus");
6593 bpf_error(cstate
, "'l2 proto' is bogus");
6597 bpf_error(cstate
, "'iih proto' is bogus");
6601 bpf_error(cstate
, "'snp proto' is bogus");
6605 bpf_error(cstate
, "'csnp proto' is bogus");
6609 bpf_error(cstate
, "'psnp proto' is bogus");
6613 bpf_error(cstate
, "'lsp proto' is bogus");
6617 bpf_error(cstate
, "'radio proto' is bogus");
6621 bpf_error(cstate
, "'carp proto' is bogus");
6632 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6634 int proto
= q
.proto
;
6638 bpf_u_int32 mask
, addr
;
6639 struct addrinfo
*res
, *res0
;
6640 struct sockaddr_in
*sin4
;
6643 struct sockaddr_in6
*sin6
;
6644 struct in6_addr mask128
;
6646 struct block
*b
, *tmp
;
6647 int port
, real_proto
;
6651 * Catch errors reported by us and routines below us, and return NULL
6654 if (setjmp(cstate
->top_ctx
))
6660 addr
= pcap_nametonetaddr(name
);
6662 bpf_error(cstate
, "unknown network '%s'", name
);
6663 /* Left justify network addr and calculate its network mask */
6665 while (addr
&& (addr
& 0xff000000) == 0) {
6669 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6673 if (proto
== Q_LINK
) {
6674 switch (cstate
->linktype
) {
6677 case DLT_NETANALYZER
:
6678 case DLT_NETANALYZER_TRANSPARENT
:
6679 eaddr
= pcap_ether_hostton(name
);
6682 "unknown ether host '%s'", name
);
6683 tmp
= gen_prevlinkhdr_check(cstate
);
6684 b
= gen_ehostop(cstate
, eaddr
, dir
);
6691 eaddr
= pcap_ether_hostton(name
);
6694 "unknown FDDI host '%s'", name
);
6695 b
= gen_fhostop(cstate
, eaddr
, dir
);
6700 eaddr
= pcap_ether_hostton(name
);
6703 "unknown token ring host '%s'", name
);
6704 b
= gen_thostop(cstate
, eaddr
, dir
);
6708 case DLT_IEEE802_11
:
6709 case DLT_PRISM_HEADER
:
6710 case DLT_IEEE802_11_RADIO_AVS
:
6711 case DLT_IEEE802_11_RADIO
:
6713 eaddr
= pcap_ether_hostton(name
);
6716 "unknown 802.11 host '%s'", name
);
6717 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6721 case DLT_IP_OVER_FC
:
6722 eaddr
= pcap_ether_hostton(name
);
6725 "unknown Fibre Channel host '%s'", name
);
6726 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6731 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6732 } else if (proto
== Q_DECNET
) {
6733 unsigned short dn_addr
;
6735 if (!__pcap_nametodnaddr(name
, &dn_addr
)) {
6737 bpf_error(cstate
, "unknown decnet host name '%s'\n", name
);
6739 bpf_error(cstate
, "decnet name support not included, '%s' cannot be translated\n",
6744 * I don't think DECNET hosts can be multihomed, so
6745 * there is no need to build up a list of addresses
6747 return (gen_host(cstate
, dn_addr
, 0, proto
, dir
, q
.addr
));
6750 memset(&mask128
, 0xff, sizeof(mask128
));
6752 res0
= res
= pcap_nametoaddrinfo(name
);
6754 bpf_error(cstate
, "unknown host '%s'", name
);
6761 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6762 tproto
== Q_DEFAULT
) {
6768 for (res
= res0
; res
; res
= res
->ai_next
) {
6769 switch (res
->ai_family
) {
6772 if (tproto
== Q_IPV6
)
6776 sin4
= (struct sockaddr_in
*)
6778 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6779 0xffffffff, tproto
, dir
, q
.addr
);
6783 if (tproto6
== Q_IP
)
6786 sin6
= (struct sockaddr_in6
*)
6788 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6789 &mask128
, tproto6
, dir
, q
.addr
);
6802 bpf_error(cstate
, "unknown host '%s'%s", name
,
6803 (proto
== Q_DEFAULT
)
6805 : " for specified address family");
6811 if (proto
!= Q_DEFAULT
&&
6812 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6813 bpf_error(cstate
, "illegal qualifier of 'port'");
6814 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6815 bpf_error(cstate
, "unknown port '%s'", name
);
6816 if (proto
== Q_UDP
) {
6817 if (real_proto
== IPPROTO_TCP
)
6818 bpf_error(cstate
, "port '%s' is tcp", name
);
6819 else if (real_proto
== IPPROTO_SCTP
)
6820 bpf_error(cstate
, "port '%s' is sctp", name
);
6822 /* override PROTO_UNDEF */
6823 real_proto
= IPPROTO_UDP
;
6825 if (proto
== Q_TCP
) {
6826 if (real_proto
== IPPROTO_UDP
)
6827 bpf_error(cstate
, "port '%s' is udp", name
);
6829 else if (real_proto
== IPPROTO_SCTP
)
6830 bpf_error(cstate
, "port '%s' is sctp", name
);
6832 /* override PROTO_UNDEF */
6833 real_proto
= IPPROTO_TCP
;
6835 if (proto
== Q_SCTP
) {
6836 if (real_proto
== IPPROTO_UDP
)
6837 bpf_error(cstate
, "port '%s' is udp", name
);
6839 else if (real_proto
== IPPROTO_TCP
)
6840 bpf_error(cstate
, "port '%s' is tcp", name
);
6842 /* override PROTO_UNDEF */
6843 real_proto
= IPPROTO_SCTP
;
6846 bpf_error(cstate
, "illegal port number %d < 0", port
);
6848 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6849 b
= gen_port(cstate
, port
, real_proto
, dir
);
6850 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
6854 if (proto
!= Q_DEFAULT
&&
6855 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6856 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6857 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6858 bpf_error(cstate
, "unknown port in range '%s'", name
);
6859 if (proto
== Q_UDP
) {
6860 if (real_proto
== IPPROTO_TCP
)
6861 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6862 else if (real_proto
== IPPROTO_SCTP
)
6863 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6865 /* override PROTO_UNDEF */
6866 real_proto
= IPPROTO_UDP
;
6868 if (proto
== Q_TCP
) {
6869 if (real_proto
== IPPROTO_UDP
)
6870 bpf_error(cstate
, "port in range '%s' is udp", name
);
6871 else if (real_proto
== IPPROTO_SCTP
)
6872 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6874 /* override PROTO_UNDEF */
6875 real_proto
= IPPROTO_TCP
;
6877 if (proto
== Q_SCTP
) {
6878 if (real_proto
== IPPROTO_UDP
)
6879 bpf_error(cstate
, "port in range '%s' is udp", name
);
6880 else if (real_proto
== IPPROTO_TCP
)
6881 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6883 /* override PROTO_UNDEF */
6884 real_proto
= IPPROTO_SCTP
;
6887 bpf_error(cstate
, "illegal port number %d < 0", port1
);
6889 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6891 bpf_error(cstate
, "illegal port number %d < 0", port2
);
6893 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6895 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
6896 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
6901 eaddr
= pcap_ether_hostton(name
);
6903 bpf_error(cstate
, "unknown ether host: %s", name
);
6905 res
= pcap_nametoaddrinfo(name
);
6908 bpf_error(cstate
, "unknown host '%s'", name
);
6909 b
= gen_gateway(cstate
, eaddr
, res
, proto
, dir
);
6913 bpf_error(cstate
, "unknown host '%s'", name
);
6916 bpf_error(cstate
, "'gateway' not supported in this configuration");
6920 real_proto
= lookup_proto(cstate
, name
, proto
);
6921 if (real_proto
>= 0)
6922 return gen_proto(cstate
, real_proto
, proto
, dir
);
6924 bpf_error(cstate
, "unknown protocol: %s", name
);
6927 real_proto
= lookup_proto(cstate
, name
, proto
);
6928 if (real_proto
>= 0)
6929 return gen_protochain(cstate
, real_proto
, proto
, dir
);
6931 bpf_error(cstate
, "unknown protocol: %s", name
);
6942 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6943 unsigned int masklen
, struct qual q
)
6945 register int nlen
, mlen
;
6949 * Catch errors reported by us and routines below us, and return NULL
6952 if (setjmp(cstate
->top_ctx
))
6955 nlen
= __pcap_atoin(s1
, &n
);
6956 /* Promote short ipaddr */
6960 mlen
= __pcap_atoin(s2
, &m
);
6961 /* Promote short ipaddr */
6964 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
6967 /* Convert mask len to mask */
6969 bpf_error(cstate
, "mask length must be <= 32");
6972 * X << 32 is not guaranteed by C to be 0; it's
6977 m
= 0xffffffff << (32 - masklen
);
6979 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
6986 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
6989 bpf_error(cstate
, "Mask syntax for networks only");
6996 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7004 * Catch errors reported by us and routines below us, and return NULL
7007 if (setjmp(cstate
->top_ctx
))
7014 else if (q
.proto
== Q_DECNET
) {
7015 vlen
= __pcap_atodn(s
, &v
);
7017 bpf_error(cstate
, "malformed decnet address '%s'", s
);
7019 vlen
= __pcap_atoin(s
, &v
);
7026 if (proto
== Q_DECNET
)
7027 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7028 else if (proto
== Q_LINK
) {
7029 bpf_error(cstate
, "illegal link layer address");
7032 if (s
== NULL
&& q
.addr
== Q_NET
) {
7033 /* Promote short net number */
7034 while (v
&& (v
& 0xff000000) == 0) {
7039 /* Promote short ipaddr */
7041 mask
<<= 32 - vlen
;
7043 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7048 proto
= IPPROTO_UDP
;
7049 else if (proto
== Q_TCP
)
7050 proto
= IPPROTO_TCP
;
7051 else if (proto
== Q_SCTP
)
7052 proto
= IPPROTO_SCTP
;
7053 else if (proto
== Q_DEFAULT
)
7054 proto
= PROTO_UNDEF
;
7056 bpf_error(cstate
, "illegal qualifier of 'port'");
7059 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7063 b
= gen_port(cstate
, (int)v
, proto
, dir
);
7064 gen_or(gen_port6(cstate
, (int)v
, proto
, dir
), b
);
7070 proto
= IPPROTO_UDP
;
7071 else if (proto
== Q_TCP
)
7072 proto
= IPPROTO_TCP
;
7073 else if (proto
== Q_SCTP
)
7074 proto
= IPPROTO_SCTP
;
7075 else if (proto
== Q_DEFAULT
)
7076 proto
= PROTO_UNDEF
;
7078 bpf_error(cstate
, "illegal qualifier of 'portrange'");
7081 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7085 b
= gen_portrange(cstate
, (int)v
, (int)v
, proto
, dir
);
7086 gen_or(gen_portrange6(cstate
, (int)v
, (int)v
, proto
, dir
), b
);
7091 bpf_error(cstate
, "'gateway' requires a name");
7095 return gen_proto(cstate
, (int)v
, proto
, dir
);
7098 return gen_protochain(cstate
, (int)v
, proto
, dir
);
7113 gen_mcode6(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7114 unsigned int masklen
, struct qual q
)
7116 struct addrinfo
*res
;
7117 struct in6_addr
*addr
;
7118 struct in6_addr mask
;
7123 * Catch errors reported by us and routines below us, and return NULL
7126 if (setjmp(cstate
->top_ctx
))
7130 bpf_error(cstate
, "no mask %s supported", s2
);
7132 res
= pcap_nametoaddrinfo(s1
);
7134 bpf_error(cstate
, "invalid ip6 address %s", s1
);
7137 bpf_error(cstate
, "%s resolved to multiple address", s1
);
7138 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7140 if (sizeof(mask
) * 8 < masklen
)
7141 bpf_error(cstate
, "mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
7142 memset(&mask
, 0, sizeof(mask
));
7143 memset(&mask
, 0xff, masklen
/ 8);
7145 mask
.s6_addr
[masklen
/ 8] =
7146 (0xff << (8 - masklen
% 8)) & 0xff;
7149 a
= (uint32_t *)addr
;
7150 m
= (uint32_t *)&mask
;
7151 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7152 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7153 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s1
, masklen
);
7161 bpf_error(cstate
, "Mask syntax for networks only");
7165 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7171 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7178 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7180 struct block
*b
, *tmp
;
7183 * Catch errors reported by us and routines below us, and return NULL
7186 if (setjmp(cstate
->top_ctx
))
7189 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7190 cstate
->e
= pcap_ether_aton(s
);
7191 if (cstate
->e
== NULL
)
7192 bpf_error(cstate
, "malloc");
7193 switch (cstate
->linktype
) {
7195 case DLT_NETANALYZER
:
7196 case DLT_NETANALYZER_TRANSPARENT
:
7197 tmp
= gen_prevlinkhdr_check(cstate
);
7198 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7203 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7206 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7208 case DLT_IEEE802_11
:
7209 case DLT_PRISM_HEADER
:
7210 case DLT_IEEE802_11_RADIO_AVS
:
7211 case DLT_IEEE802_11_RADIO
:
7213 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7215 case DLT_IP_OVER_FC
:
7216 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7221 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7229 bpf_error(cstate
, "ethernet address used in non-ether expression");
7234 sappend(struct slist
*s0
, struct slist
*s1
)
7237 * This is definitely not the best way to do this, but the
7238 * lists will rarely get long.
7245 static struct slist
*
7246 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7250 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7255 static struct slist
*
7256 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7260 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7266 * Modify "index" to use the value stored into its register as an
7267 * offset relative to the beginning of the header for the protocol
7268 * "proto", and allocate a register and put an item "size" bytes long
7269 * (1, 2, or 4) at that offset into that register, making it the register
7272 static struct arth
*
7273 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
, int size
)
7275 struct slist
*s
, *tmp
;
7277 int regno
= alloc_reg(cstate
);
7279 free_reg(cstate
, inst
->regno
);
7283 bpf_error(cstate
, "data size must be 1, 2, or 4");
7299 bpf_error(cstate
, "unsupported index operation");
7303 * The offset is relative to the beginning of the packet
7304 * data, if we have a radio header. (If we don't, this
7307 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7308 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7309 cstate
->linktype
!= DLT_PRISM_HEADER
)
7310 bpf_error(cstate
, "radio information not present in capture");
7313 * Load into the X register the offset computed into the
7314 * register specified by "index".
7316 s
= xfer_to_x(cstate
, inst
);
7319 * Load the item at that offset.
7321 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
7323 sappend(inst
->s
, s
);
7328 * The offset is relative to the beginning of
7329 * the link-layer header.
7331 * XXX - what about ATM LANE? Should the index be
7332 * relative to the beginning of the AAL5 frame, so
7333 * that 0 refers to the beginning of the LE Control
7334 * field, or relative to the beginning of the LAN
7335 * frame, so that 0 refers, for Ethernet LANE, to
7336 * the beginning of the destination address?
7338 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7341 * If "s" is non-null, it has code to arrange that the
7342 * X register contains the length of the prefix preceding
7343 * the link-layer header. Add to it the offset computed
7344 * into the register specified by "index", and move that
7345 * into the X register. Otherwise, just load into the X
7346 * register the offset computed into the register specified
7350 sappend(s
, xfer_to_a(cstate
, inst
));
7351 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7352 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7354 s
= xfer_to_x(cstate
, inst
);
7357 * Load the item at the sum of the offset we've put in the
7358 * X register and the offset of the start of the link
7359 * layer header (which is 0 if the radio header is
7360 * variable-length; that header length is what we put
7361 * into the X register and then added to the index).
7363 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
7364 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7366 sappend(inst
->s
, s
);
7380 * The offset is relative to the beginning of
7381 * the network-layer header.
7382 * XXX - are there any cases where we want
7383 * cstate->off_nl_nosnap?
7385 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7388 * If "s" is non-null, it has code to arrange that the
7389 * X register contains the variable part of the offset
7390 * of the link-layer payload. Add to it the offset
7391 * computed into the register specified by "index",
7392 * and move that into the X register. Otherwise, just
7393 * load into the X register the offset computed into
7394 * the register specified by "index".
7397 sappend(s
, xfer_to_a(cstate
, inst
));
7398 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7399 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7401 s
= xfer_to_x(cstate
, inst
);
7404 * Load the item at the sum of the offset we've put in the
7405 * X register, the offset of the start of the network
7406 * layer header from the beginning of the link-layer
7407 * payload, and the constant part of the offset of the
7408 * start of the link-layer payload.
7410 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
7411 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7413 sappend(inst
->s
, s
);
7416 * Do the computation only if the packet contains
7417 * the protocol in question.
7419 b
= gen_proto_abbrev_internal(cstate
, proto
);
7421 gen_and(inst
->b
, b
);
7435 * The offset is relative to the beginning of
7436 * the transport-layer header.
7438 * Load the X register with the length of the IPv4 header
7439 * (plus the offset of the link-layer header, if it's
7440 * a variable-length header), in bytes.
7442 * XXX - are there any cases where we want
7443 * cstate->off_nl_nosnap?
7444 * XXX - we should, if we're built with
7445 * IPv6 support, generate code to load either
7446 * IPv4, IPv6, or both, as appropriate.
7448 s
= gen_loadx_iphdrlen(cstate
);
7451 * The X register now contains the sum of the variable
7452 * part of the offset of the link-layer payload and the
7453 * length of the network-layer header.
7455 * Load into the A register the offset relative to
7456 * the beginning of the transport layer header,
7457 * add the X register to that, move that to the
7458 * X register, and load with an offset from the
7459 * X register equal to the sum of the constant part of
7460 * the offset of the link-layer payload and the offset,
7461 * relative to the beginning of the link-layer payload,
7462 * of the network-layer header.
7464 sappend(s
, xfer_to_a(cstate
, inst
));
7465 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7466 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7467 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
));
7468 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7469 sappend(inst
->s
, s
);
7472 * Do the computation only if the packet contains
7473 * the protocol in question - which is true only
7474 * if this is an IP datagram and is the first or
7475 * only fragment of that datagram.
7477 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7479 gen_and(inst
->b
, b
);
7480 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7485 * Do the computation only if the packet contains
7486 * the protocol in question.
7488 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7490 gen_and(inst
->b
, b
);
7495 * Check if we have an icmp6 next header
7497 b
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, 58);
7499 gen_and(inst
->b
, b
);
7504 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7506 * If "s" is non-null, it has code to arrange that the
7507 * X register contains the variable part of the offset
7508 * of the link-layer payload. Add to it the offset
7509 * computed into the register specified by "index",
7510 * and move that into the X register. Otherwise, just
7511 * load into the X register the offset computed into
7512 * the register specified by "index".
7515 sappend(s
, xfer_to_a(cstate
, inst
));
7516 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7517 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7519 s
= xfer_to_x(cstate
, inst
);
7523 * Load the item at the sum of the offset we've put in the
7524 * X register, the offset of the start of the network
7525 * layer header from the beginning of the link-layer
7526 * payload, and the constant part of the offset of the
7527 * start of the link-layer payload.
7529 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
7530 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7533 sappend(inst
->s
, s
);
7537 inst
->regno
= regno
;
7538 s
= new_stmt(cstate
, BPF_ST
);
7540 sappend(inst
->s
, s
);
7546 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
, int size
)
7549 * Catch errors reported by us and routines below us, and return NULL
7552 if (setjmp(cstate
->top_ctx
))
7555 return gen_load_internal(cstate
, proto
, inst
, size
);
7558 static struct block
*
7559 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7560 struct arth
*a1
, int reversed
)
7562 struct slist
*s0
, *s1
, *s2
;
7563 struct block
*b
, *tmp
;
7565 s0
= xfer_to_x(cstate
, a1
);
7566 s1
= xfer_to_a(cstate
, a0
);
7567 if (code
== BPF_JEQ
) {
7568 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7569 b
= new_block(cstate
, JMP(code
));
7573 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7579 sappend(a0
->s
, a1
->s
);
7583 free_reg(cstate
, a0
->regno
);
7584 free_reg(cstate
, a1
->regno
);
7586 /* 'and' together protocol checks */
7589 gen_and(a0
->b
, tmp
= a1
->b
);
7603 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7604 struct arth
*a1
, int reversed
)
7607 * Catch errors reported by us and routines below us, and return NULL
7610 if (setjmp(cstate
->top_ctx
))
7613 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7617 gen_loadlen(compiler_state_t
*cstate
)
7624 * Catch errors reported by us and routines below us, and return NULL
7627 if (setjmp(cstate
->top_ctx
))
7630 regno
= alloc_reg(cstate
);
7631 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7632 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7633 s
->next
= new_stmt(cstate
, BPF_ST
);
7634 s
->next
->s
.k
= regno
;
7641 static struct arth
*
7642 gen_loadi_internal(compiler_state_t
*cstate
, int val
)
7648 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7650 reg
= alloc_reg(cstate
);
7652 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7654 s
->next
= new_stmt(cstate
, BPF_ST
);
7663 gen_loadi(compiler_state_t
*cstate
, int val
)
7666 * Catch errors reported by us and routines below us, and return NULL
7669 if (setjmp(cstate
->top_ctx
))
7672 return gen_loadi_internal(cstate
, val
);
7676 gen_neg(compiler_state_t
*cstate
, struct arth
*a
)
7681 * Catch errors reported by us and routines below us, and return NULL
7684 if (setjmp(cstate
->top_ctx
))
7687 s
= xfer_to_a(cstate
, a
);
7689 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7692 s
= new_stmt(cstate
, BPF_ST
);
7700 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7703 struct slist
*s0
, *s1
, *s2
;
7706 * Catch errors reported by us and routines below us, and return NULL
7709 if (setjmp(cstate
->top_ctx
))
7713 * Disallow division by, or modulus by, zero; we do this here
7714 * so that it gets done even if the optimizer is disabled.
7716 * Also disallow shifts by a value greater than 31; we do this
7717 * here, for the same reason.
7719 if (code
== BPF_DIV
) {
7720 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7721 bpf_error(cstate
, "division by zero");
7722 } else if (code
== BPF_MOD
) {
7723 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7724 bpf_error(cstate
, "modulus by zero");
7725 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7727 * XXX - we need to make up our minds as to what integers
7728 * are signed and what integers are unsigned in BPF programs
7731 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
7732 (a1
->s
->s
.k
< 0 || a1
->s
->s
.k
> 31))
7733 bpf_error(cstate
, "shift by more than 31 bits");
7735 s0
= xfer_to_x(cstate
, a1
);
7736 s1
= xfer_to_a(cstate
, a0
);
7737 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7742 sappend(a0
->s
, a1
->s
);
7744 free_reg(cstate
, a0
->regno
);
7745 free_reg(cstate
, a1
->regno
);
7747 s0
= new_stmt(cstate
, BPF_ST
);
7748 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7755 * Initialize the table of used registers and the current register.
7758 init_regs(compiler_state_t
*cstate
)
7761 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7765 * Return the next free register.
7768 alloc_reg(compiler_state_t
*cstate
)
7770 int n
= BPF_MEMWORDS
;
7773 if (cstate
->regused
[cstate
->curreg
])
7774 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7776 cstate
->regused
[cstate
->curreg
] = 1;
7777 return cstate
->curreg
;
7780 bpf_error(cstate
, "too many registers needed to evaluate expression");
7785 * Return a register to the table so it can
7789 free_reg(compiler_state_t
*cstate
, int n
)
7791 cstate
->regused
[n
] = 0;
7794 static struct block
*
7795 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7800 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7801 b
= new_block(cstate
, JMP(jmp
));
7809 gen_greater(compiler_state_t
*cstate
, int n
)
7812 * Catch errors reported by us and routines below us, and return NULL
7815 if (setjmp(cstate
->top_ctx
))
7818 return gen_len(cstate
, BPF_JGE
, n
);
7822 * Actually, this is less than or equal.
7825 gen_less(compiler_state_t
*cstate
, int n
)
7830 * Catch errors reported by us and routines below us, and return NULL
7833 if (setjmp(cstate
->top_ctx
))
7836 b
= gen_len(cstate
, BPF_JGT
, n
);
7843 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7844 * the beginning of the link-layer header.
7845 * XXX - that means you can't test values in the radiotap header, but
7846 * as that header is difficult if not impossible to parse generally
7847 * without a loop, that might not be a severe problem. A new keyword
7848 * "radio" could be added for that, although what you'd really want
7849 * would be a way of testing particular radio header values, which
7850 * would generate code appropriate to the radio header in question.
7853 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, int val
)
7859 * Catch errors reported by us and routines below us, and return NULL
7862 if (setjmp(cstate
->top_ctx
))
7870 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7873 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7877 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7881 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7885 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7889 b
= new_block(cstate
, JMP(BPF_JEQ
));
7896 static const u_char abroadcast
[] = { 0x0 };
7899 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7901 bpf_u_int32 hostmask
;
7902 struct block
*b0
, *b1
, *b2
;
7903 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7906 * Catch errors reported by us and routines below us, and return NULL
7909 if (setjmp(cstate
->top_ctx
))
7916 switch (cstate
->linktype
) {
7918 case DLT_ARCNET_LINUX
:
7919 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7921 case DLT_NETANALYZER
:
7922 case DLT_NETANALYZER_TRANSPARENT
:
7923 b1
= gen_prevlinkhdr_check(cstate
);
7924 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
7929 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
7931 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
7932 case DLT_IEEE802_11
:
7933 case DLT_PRISM_HEADER
:
7934 case DLT_IEEE802_11_RADIO_AVS
:
7935 case DLT_IEEE802_11_RADIO
:
7937 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
7938 case DLT_IP_OVER_FC
:
7939 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
7941 bpf_error(cstate
, "not a broadcast link");
7947 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7948 * as an indication that we don't know the netmask, and fail
7951 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7952 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7953 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7954 hostmask
= ~cstate
->netmask
;
7955 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7956 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
,
7957 (bpf_int32
)(~0 & hostmask
), hostmask
);
7962 bpf_error(cstate
, "only link-layer/IP broadcast filters supported");
7967 * Generate code to test the low-order bit of a MAC address (that's
7968 * the bottom bit of the *first* byte).
7970 static struct block
*
7971 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7973 register struct block
*b0
;
7974 register struct slist
*s
;
7976 /* link[offset] & 1 != 0 */
7977 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7978 b0
= new_block(cstate
, JMP(BPF_JSET
));
7985 gen_multicast(compiler_state_t
*cstate
, int proto
)
7987 register struct block
*b0
, *b1
, *b2
;
7988 register struct slist
*s
;
7991 * Catch errors reported by us and routines below us, and return NULL
7994 if (setjmp(cstate
->top_ctx
))
8001 switch (cstate
->linktype
) {
8003 case DLT_ARCNET_LINUX
:
8004 /* all ARCnet multicasts use the same address */
8005 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
8007 case DLT_NETANALYZER
:
8008 case DLT_NETANALYZER_TRANSPARENT
:
8009 b1
= gen_prevlinkhdr_check(cstate
);
8010 /* ether[0] & 1 != 0 */
8011 b0
= gen_mac_multicast(cstate
, 0);
8017 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8019 * XXX - was that referring to bit-order issues?
8021 /* fddi[1] & 1 != 0 */
8022 return gen_mac_multicast(cstate
, 1);
8024 /* tr[2] & 1 != 0 */
8025 return gen_mac_multicast(cstate
, 2);
8026 case DLT_IEEE802_11
:
8027 case DLT_PRISM_HEADER
:
8028 case DLT_IEEE802_11_RADIO_AVS
:
8029 case DLT_IEEE802_11_RADIO
:
8034 * For control frames, there is no DA.
8036 * For management frames, DA is at an
8037 * offset of 4 from the beginning of
8040 * For data frames, DA is at an offset
8041 * of 4 from the beginning of the packet
8042 * if To DS is clear and at an offset of
8043 * 16 from the beginning of the packet
8048 * Generate the tests to be done for data frames.
8050 * First, check for To DS set, i.e. "link[1] & 0x01".
8052 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8053 b1
= new_block(cstate
, JMP(BPF_JSET
));
8054 b1
->s
.k
= 0x01; /* To DS */
8058 * If To DS is set, the DA is at 16.
8060 b0
= gen_mac_multicast(cstate
, 16);
8064 * Now, check for To DS not set, i.e. check
8065 * "!(link[1] & 0x01)".
8067 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8068 b2
= new_block(cstate
, JMP(BPF_JSET
));
8069 b2
->s
.k
= 0x01; /* To DS */
8074 * If To DS is not set, the DA is at 4.
8076 b1
= gen_mac_multicast(cstate
, 4);
8080 * Now OR together the last two checks. That gives
8081 * the complete set of checks for data frames.
8086 * Now check for a data frame.
8087 * I.e, check "link[0] & 0x08".
8089 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8090 b1
= new_block(cstate
, JMP(BPF_JSET
));
8095 * AND that with the checks done for data frames.
8100 * If the high-order bit of the type value is 0, this
8101 * is a management frame.
8102 * I.e, check "!(link[0] & 0x08)".
8104 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8105 b2
= new_block(cstate
, JMP(BPF_JSET
));
8111 * For management frames, the DA is at 4.
8113 b1
= gen_mac_multicast(cstate
, 4);
8117 * OR that with the checks done for data frames.
8118 * That gives the checks done for management and
8124 * If the low-order bit of the type value is 1,
8125 * this is either a control frame or a frame
8126 * with a reserved type, and thus not a
8129 * I.e., check "!(link[0] & 0x04)".
8131 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8132 b1
= new_block(cstate
, JMP(BPF_JSET
));
8138 * AND that with the checks for data and management
8143 case DLT_IP_OVER_FC
:
8144 b0
= gen_mac_multicast(cstate
, 2);
8149 /* Link not known to support multicasts */
8153 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8154 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, (bpf_int32
)224);
8159 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8160 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, (bpf_int32
)255);
8164 bpf_error(cstate
, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8169 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8170 * Outbound traffic is sent by this machine, while inbound traffic is
8171 * sent by a remote machine (and may include packets destined for a
8172 * unicast or multicast link-layer address we are not subscribing to).
8173 * These are the same definitions implemented by pcap_setdirection().
8174 * Capturing only unicast traffic destined for this host is probably
8175 * better accomplished using a higher-layer filter.
8178 gen_inbound(compiler_state_t
*cstate
, int dir
)
8180 register struct block
*b0
;
8183 * Catch errors reported by us and routines below us, and return NULL
8186 if (setjmp(cstate
->top_ctx
))
8190 * Only some data link types support inbound/outbound qualifiers.
8192 switch (cstate
->linktype
) {
8194 b0
= gen_relation_internal(cstate
, BPF_JEQ
,
8195 gen_load_internal(cstate
, Q_LINK
, gen_loadi_internal(cstate
, 0), 1),
8196 gen_loadi_internal(cstate
, 0),
8202 /* match outgoing packets */
8203 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_OUTBOUND
);
8205 /* match incoming packets */
8206 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_INBOUND
);
8211 /* match outgoing packets */
8212 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8214 /* to filter on inbound traffic, invert the match */
8219 case DLT_LINUX_SLL2
:
8220 /* match outgoing packets */
8221 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8223 /* to filter on inbound traffic, invert the match */
8228 #ifdef HAVE_NET_PFVAR_H
8230 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8231 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
8237 /* match outgoing packets */
8238 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_OUT
);
8240 /* match incoming packets */
8241 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_IN
);
8245 case DLT_JUNIPER_MFR
:
8246 case DLT_JUNIPER_MLFR
:
8247 case DLT_JUNIPER_MLPPP
:
8248 case DLT_JUNIPER_ATM1
:
8249 case DLT_JUNIPER_ATM2
:
8250 case DLT_JUNIPER_PPPOE
:
8251 case DLT_JUNIPER_PPPOE_ATM
:
8252 case DLT_JUNIPER_GGSN
:
8253 case DLT_JUNIPER_ES
:
8254 case DLT_JUNIPER_MONITOR
:
8255 case DLT_JUNIPER_SERVICES
:
8256 case DLT_JUNIPER_ETHER
:
8257 case DLT_JUNIPER_PPP
:
8258 case DLT_JUNIPER_FRELAY
:
8259 case DLT_JUNIPER_CHDLC
:
8260 case DLT_JUNIPER_VP
:
8261 case DLT_JUNIPER_ST
:
8262 case DLT_JUNIPER_ISM
:
8263 case DLT_JUNIPER_VS
:
8264 case DLT_JUNIPER_SRX_E2E
:
8265 case DLT_JUNIPER_FIBRECHANNEL
:
8266 case DLT_JUNIPER_ATM_CEMIC
:
8268 /* juniper flags (including direction) are stored
8269 * the byte after the 3-byte magic number */
8271 /* match outgoing packets */
8272 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 0, 0x01);
8274 /* match incoming packets */
8275 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 1, 0x01);
8281 * If we have packet meta-data indicating a direction,
8282 * and that metadata can be checked by BPF code, check
8283 * it. Otherwise, give up, as this link-layer type has
8284 * nothing in the packet data.
8286 * Currently, the only platform where a BPF filter can
8287 * check that metadata is Linux with the in-kernel
8288 * BPF interpreter. If other packet capture mechanisms
8289 * and BPF filters also supported this, it would be
8290 * nice. It would be even better if they made that
8291 * metadata available so that we could provide it
8292 * with newer capture APIs, allowing it to be saved
8295 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
8297 * This is Linux with PF_PACKET support.
8298 * If this is a *live* capture, we can look at
8299 * special meta-data in the filter expression;
8300 * if it's a savefile, we can't.
8302 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
8303 /* We have a FILE *, so this is a savefile */
8304 bpf_error(cstate
, "inbound/outbound not supported on linktype %d when reading savefiles",
8309 /* match outgoing packets */
8310 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8313 /* to filter on inbound traffic, invert the match */
8316 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8317 bpf_error(cstate
, "inbound/outbound not supported on linktype %d",
8320 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8325 #ifdef HAVE_NET_PFVAR_H
8326 /* PF firewall log matched interface */
8328 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8334 * Catch errors reported by us and routines below us, and return NULL
8337 if (setjmp(cstate
->top_ctx
))
8340 if (cstate
->linktype
!= DLT_PFLOG
) {
8341 bpf_error(cstate
, "ifname supported only on PF linktype");
8344 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8345 off
= offsetof(struct pfloghdr
, ifname
);
8346 if (strlen(ifname
) >= len
) {
8347 bpf_error(cstate
, "ifname interface names can only be %d characters",
8351 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, strlen(ifname
), (const u_char
*)ifname
);
8355 /* PF firewall log ruleset name */
8357 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8362 * Catch errors reported by us and routines below us, and return NULL
8365 if (setjmp(cstate
->top_ctx
))
8368 if (cstate
->linktype
!= DLT_PFLOG
) {
8369 bpf_error(cstate
, "ruleset supported only on PF linktype");
8373 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8374 bpf_error(cstate
, "ruleset names can only be %ld characters",
8375 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8379 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8380 strlen(ruleset
), (const u_char
*)ruleset
);
8384 /* PF firewall log rule number */
8386 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8391 * Catch errors reported by us and routines below us, and return NULL
8394 if (setjmp(cstate
->top_ctx
))
8397 if (cstate
->linktype
!= DLT_PFLOG
) {
8398 bpf_error(cstate
, "rnr supported only on PF linktype");
8402 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8407 /* PF firewall log sub-rule number */
8409 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8414 * Catch errors reported by us and routines below us, and return NULL
8417 if (setjmp(cstate
->top_ctx
))
8420 if (cstate
->linktype
!= DLT_PFLOG
) {
8421 bpf_error(cstate
, "srnr supported only on PF linktype");
8425 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8430 /* PF firewall log reason code */
8432 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8437 * Catch errors reported by us and routines below us, and return NULL
8440 if (setjmp(cstate
->top_ctx
))
8443 if (cstate
->linktype
!= DLT_PFLOG
) {
8444 bpf_error(cstate
, "reason supported only on PF linktype");
8448 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8453 /* PF firewall log action */
8455 gen_pf_action(compiler_state_t
*cstate
, int action
)
8460 * Catch errors reported by us and routines below us, and return NULL
8463 if (setjmp(cstate
->top_ctx
))
8466 if (cstate
->linktype
!= DLT_PFLOG
) {
8467 bpf_error(cstate
, "action supported only on PF linktype");
8471 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8475 #else /* !HAVE_NET_PFVAR_H */
8477 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname _U_
)
8480 * Catch errors reported by us and routines below us, and return NULL
8483 if (setjmp(cstate
->top_ctx
))
8486 bpf_error(cstate
, "libpcap was compiled without pf support");
8491 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset _U_
)
8494 * Catch errors reported by us and routines below us, and return NULL
8497 if (setjmp(cstate
->top_ctx
))
8500 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
8505 gen_pf_rnr(compiler_state_t
*cstate
, int rnr _U_
)
8508 * Catch errors reported by us and routines below us, and return NULL
8511 if (setjmp(cstate
->top_ctx
))
8514 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
8519 gen_pf_srnr(compiler_state_t
*cstate
, int srnr _U_
)
8522 * Catch errors reported by us and routines below us, and return NULL
8525 if (setjmp(cstate
->top_ctx
))
8528 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
8533 gen_pf_reason(compiler_state_t
*cstate
, int reason _U_
)
8536 * Catch errors reported by us and routines below us, and return NULL
8539 if (setjmp(cstate
->top_ctx
))
8542 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
8547 gen_pf_action(compiler_state_t
*cstate
, int action _U_
)
8550 * Catch errors reported by us and routines below us, and return NULL
8553 if (setjmp(cstate
->top_ctx
))
8556 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
8559 #endif /* HAVE_NET_PFVAR_H */
8561 /* IEEE 802.11 wireless header */
8563 gen_p80211_type(compiler_state_t
*cstate
, int type
, int mask
)
8568 * Catch errors reported by us and routines below us, and return NULL
8571 if (setjmp(cstate
->top_ctx
))
8574 switch (cstate
->linktype
) {
8576 case DLT_IEEE802_11
:
8577 case DLT_PRISM_HEADER
:
8578 case DLT_IEEE802_11_RADIO_AVS
:
8579 case DLT_IEEE802_11_RADIO
:
8580 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, (bpf_int32
)type
,
8585 bpf_error(cstate
, "802.11 link-layer types supported only on 802.11");
8593 gen_p80211_fcdir(compiler_state_t
*cstate
, int fcdir
)
8598 * Catch errors reported by us and routines below us, and return NULL
8601 if (setjmp(cstate
->top_ctx
))
8604 switch (cstate
->linktype
) {
8606 case DLT_IEEE802_11
:
8607 case DLT_PRISM_HEADER
:
8608 case DLT_IEEE802_11_RADIO_AVS
:
8609 case DLT_IEEE802_11_RADIO
:
8613 bpf_error(cstate
, "frame direction supported only with 802.11 headers");
8617 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, (bpf_int32
)fcdir
,
8618 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
8624 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8629 * Catch errors reported by us and routines below us, and return NULL
8632 if (setjmp(cstate
->top_ctx
))
8635 switch (cstate
->linktype
) {
8638 case DLT_ARCNET_LINUX
:
8639 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8640 q
.proto
== Q_LINK
) {
8641 cstate
->e
= pcap_ether_aton(s
);
8642 if (cstate
->e
== NULL
)
8643 bpf_error(cstate
, "malloc");
8644 b
= gen_ahostop(cstate
, cstate
->e
, (int)q
.dir
);
8649 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8655 bpf_error(cstate
, "aid supported only on ARCnet");
8660 static struct block
*
8661 gen_ahostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
8663 register struct block
*b0
, *b1
;
8666 /* src comes first, different from Ethernet */
8668 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 1, eaddr
);
8671 return gen_bcmp(cstate
, OR_LINKHDR
, 1, 1, eaddr
);
8674 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8675 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8681 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8682 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8687 bpf_error(cstate
, "'addr1' and 'address1' are only supported on 802.11");
8691 bpf_error(cstate
, "'addr2' and 'address2' are only supported on 802.11");
8695 bpf_error(cstate
, "'addr3' and 'address3' are only supported on 802.11");
8699 bpf_error(cstate
, "'addr4' and 'address4' are only supported on 802.11");
8703 bpf_error(cstate
, "'ra' is only supported on 802.11");
8707 bpf_error(cstate
, "'ta' is only supported on 802.11");
8714 static struct block
*
8715 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8717 struct block
*b0
, *b1
;
8719 /* check for VLAN, including QinQ */
8720 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8721 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8724 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8730 static struct block
*
8731 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8733 if (vlan_num
> 0x0fff) {
8734 bpf_error(cstate
, "VLAN tag %u greater than maximum %u",
8737 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, (bpf_int32
)vlan_num
, 0x0fff);
8740 static struct block
*
8741 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8744 struct block
*b0
, *b1
;
8746 b0
= gen_vlan_tpid_test(cstate
);
8749 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8755 * Both payload and link header type follow the VLAN tags so that
8756 * both need to be updated.
8758 cstate
->off_linkpl
.constant_part
+= 4;
8759 cstate
->off_linktype
.constant_part
+= 4;
8764 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8765 /* add v to variable part of off */
8767 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
, int v
, struct slist
*s
)
8771 if (!off
->is_variable
)
8772 off
->is_variable
= 1;
8774 off
->reg
= alloc_reg(cstate
);
8776 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8779 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8782 s2
= new_stmt(cstate
, BPF_ST
);
8788 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8789 * and link type offsets first
8792 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8796 /* offset determined at run time, shift variable part */
8798 cstate
->is_vlan_vloffset
= 1;
8799 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8800 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8802 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8803 sappend(s
.next
, b_tpid
->head
->stmts
);
8804 b_tpid
->head
->stmts
= s
.next
;
8808 * patch block b_vid (VLAN id test) to load VID value either from packet
8809 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8812 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8814 struct slist
*s
, *s2
, *sjeq
;
8817 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8818 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
8820 /* true -> next instructions, false -> beginning of b_vid */
8821 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8823 sjeq
->s
.jf
= b_vid
->stmts
;
8826 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8827 s2
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG
;
8831 /* Jump to the test in b_vid. We need to jump one instruction before
8832 * the end of the b_vid block so that we only skip loading the TCI
8833 * from packet data and not the 'and' instruction extractging VID.
8836 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8838 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8842 /* insert our statements at the beginning of b_vid */
8843 sappend(s
, b_vid
->stmts
);
8848 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8849 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8850 * tag can be either in metadata or in packet data; therefore if the
8851 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8852 * header for VLAN tag. As the decision is done at run time, we need
8853 * update variable part of the offsets
8855 static struct block
*
8856 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8859 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8862 /* generate new filter code based on extracting packet
8864 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8865 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
8867 b0
= new_block(cstate
, JMP(BPF_JEQ
));
8872 * This is tricky. We need to insert the statements updating variable
8873 * parts of offsets before the the traditional TPID and VID tests so
8874 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8875 * we do not want this update to affect those checks. That's why we
8876 * generate both test blocks first and insert the statements updating
8877 * variable parts of both offsets after that. This wouldn't work if
8878 * there already were variable length link header when entering this
8879 * function but gen_vlan_bpf_extensions() isn't called in that case.
8881 b_tpid
= gen_vlan_tpid_test(cstate
);
8883 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
8885 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
8890 gen_vlan_patch_vid_test(cstate
, b_vid
);
8900 * support IEEE 802.1Q VLAN trunk over ethernet
8903 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
8908 * Catch errors reported by us and routines below us, and return NULL
8911 if (setjmp(cstate
->top_ctx
))
8914 /* can't check for VLAN-encapsulated packets inside MPLS */
8915 if (cstate
->label_stack_depth
> 0)
8916 bpf_error(cstate
, "no VLAN match after MPLS");
8919 * Check for a VLAN packet, and then change the offsets to point
8920 * to the type and data fields within the VLAN packet. Just
8921 * increment the offsets, so that we can support a hierarchy, e.g.
8922 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8925 * XXX - this is a bit of a kludge. If we were to split the
8926 * compiler into a parser that parses an expression and
8927 * generates an expression tree, and a code generator that
8928 * takes an expression tree (which could come from our
8929 * parser or from some other parser) and generates BPF code,
8930 * we could perhaps make the offsets parameters of routines
8931 * and, in the handler for an "AND" node, pass to subnodes
8932 * other than the VLAN node the adjusted offsets.
8934 * This would mean that "vlan" would, instead of changing the
8935 * behavior of *all* tests after it, change only the behavior
8936 * of tests ANDed with it. That would change the documented
8937 * semantics of "vlan", which might break some expressions.
8938 * However, it would mean that "(vlan and ip) or ip" would check
8939 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8940 * checking only for VLAN-encapsulated IP, so that could still
8941 * be considered worth doing; it wouldn't break expressions
8942 * that are of the form "vlan and ..." or "vlan N and ...",
8943 * which I suspect are the most common expressions involving
8944 * "vlan". "vlan or ..." doesn't necessarily do what the user
8945 * would really want, now, as all the "or ..." tests would
8946 * be done assuming a VLAN, even though the "or" could be viewed
8947 * as meaning "or, if this isn't a VLAN packet...".
8949 switch (cstate
->linktype
) {
8952 case DLT_NETANALYZER
:
8953 case DLT_NETANALYZER_TRANSPARENT
:
8954 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8955 /* Verify that this is the outer part of the packet and
8956 * not encapsulated somehow. */
8957 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8958 cstate
->off_linkhdr
.constant_part
==
8959 cstate
->off_outermostlinkhdr
.constant_part
) {
8961 * Do we need special VLAN handling?
8963 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8964 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
8967 b0
= gen_vlan_no_bpf_extensions(cstate
,
8968 vlan_num
, has_vlan_tag
);
8971 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
8975 case DLT_IEEE802_11
:
8976 case DLT_PRISM_HEADER
:
8977 case DLT_IEEE802_11_RADIO_AVS
:
8978 case DLT_IEEE802_11_RADIO
:
8979 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
8983 bpf_error(cstate
, "no VLAN support for data link type %d",
8988 cstate
->vlan_stack_depth
++;
8997 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
8999 struct block
*b0
, *b1
;
9002 * Catch errors reported by us and routines below us, and return NULL
9005 if (setjmp(cstate
->top_ctx
))
9008 if (cstate
->label_stack_depth
> 0) {
9009 /* just match the bottom-of-stack bit clear */
9010 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9013 * We're not in an MPLS stack yet, so check the link-layer
9014 * type against MPLS.
9016 switch (cstate
->linktype
) {
9018 case DLT_C_HDLC
: /* fall through */
9020 case DLT_NETANALYZER
:
9021 case DLT_NETANALYZER_TRANSPARENT
:
9022 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9026 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9029 /* FIXME add other DLT_s ...
9030 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9031 * leave it for now */
9034 bpf_error(cstate
, "no MPLS support for data link type %d",
9041 /* If a specific MPLS label is requested, check it */
9042 if (has_label_num
) {
9043 if (label_num
> 0xFFFFF) {
9044 bpf_error(cstate
, "MPLS label %u greater than maximum %u",
9045 label_num
, 0xFFFFF);
9047 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9048 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, (bpf_int32
)label_num
,
9049 0xfffff000); /* only compare the first 20 bits */
9055 * Change the offsets to point to the type and data fields within
9056 * the MPLS packet. Just increment the offsets, so that we
9057 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9058 * capture packets with an outer label of 100000 and an inner
9061 * Increment the MPLS stack depth as well; this indicates that
9062 * we're checking MPLS-encapsulated headers, to make sure higher
9063 * level code generators don't try to match against IP-related
9064 * protocols such as Q_ARP, Q_RARP etc.
9066 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9068 cstate
->off_nl_nosnap
+= 4;
9069 cstate
->off_nl
+= 4;
9070 cstate
->label_stack_depth
++;
9075 * Support PPPOE discovery and session.
9078 gen_pppoed(compiler_state_t
*cstate
)
9081 * Catch errors reported by us and routines below us, and return NULL
9084 if (setjmp(cstate
->top_ctx
))
9087 /* check for PPPoE discovery */
9088 return gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOED
);
9092 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9094 struct block
*b0
, *b1
;
9097 * Catch errors reported by us and routines below us, and return NULL
9100 if (setjmp(cstate
->top_ctx
))
9104 * Test against the PPPoE session link-layer type.
9106 b0
= gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOES
);
9108 /* If a specific session is requested, check PPPoE session id */
9110 if (sess_num
> 0x0000ffff) {
9111 bpf_error(cstate
, "PPPoE session number %u greater than maximum %u",
9112 sess_num
, 0x0000ffff);
9114 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
,
9115 (bpf_int32
)sess_num
, 0x0000ffff);
9121 * Change the offsets to point to the type and data fields within
9122 * the PPP packet, and note that this is PPPoE rather than
9125 * XXX - this is a bit of a kludge. If we were to split the
9126 * compiler into a parser that parses an expression and
9127 * generates an expression tree, and a code generator that
9128 * takes an expression tree (which could come from our
9129 * parser or from some other parser) and generates BPF code,
9130 * we could perhaps make the offsets parameters of routines
9131 * and, in the handler for an "AND" node, pass to subnodes
9132 * other than the PPPoE node the adjusted offsets.
9134 * This would mean that "pppoes" would, instead of changing the
9135 * behavior of *all* tests after it, change only the behavior
9136 * of tests ANDed with it. That would change the documented
9137 * semantics of "pppoes", which might break some expressions.
9138 * However, it would mean that "(pppoes and ip) or ip" would check
9139 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9140 * checking only for VLAN-encapsulated IP, so that could still
9141 * be considered worth doing; it wouldn't break expressions
9142 * that are of the form "pppoes and ..." which I suspect are the
9143 * most common expressions involving "pppoes". "pppoes or ..."
9144 * doesn't necessarily do what the user would really want, now,
9145 * as all the "or ..." tests would be done assuming PPPoE, even
9146 * though the "or" could be viewed as meaning "or, if this isn't
9147 * a PPPoE packet...".
9149 * The "network-layer" protocol is PPPoE, which has a 6-byte
9150 * PPPoE header, followed by a PPP packet.
9152 * There is no HDLC encapsulation for the PPP packet (it's
9153 * encapsulated in PPPoES instead), so the link-layer type
9154 * starts at the first byte of the PPP packet. For PPPoE,
9155 * that offset is relative to the beginning of the total
9156 * link-layer payload, including any 802.2 LLC header, so
9157 * it's 6 bytes past cstate->off_nl.
9159 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9160 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9161 cstate
->off_linkpl
.reg
);
9163 cstate
->off_linktype
= cstate
->off_linkhdr
;
9164 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9167 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9172 /* Check that this is Geneve and the VNI is correct if
9173 * specified. Parameterized to handle both IPv4 and IPv6. */
9174 static struct block
*
9175 gen_geneve_check(compiler_state_t
*cstate
,
9176 struct block
*(*gen_portfn
)(compiler_state_t
*, int, int, int),
9177 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9179 struct block
*b0
, *b1
;
9181 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9183 /* Check that we are operating on version 0. Otherwise, we
9184 * can't decode the rest of the fields. The version is 2 bits
9185 * in the first byte of the Geneve header. */
9186 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, (bpf_int32
)0, 0xc0);
9191 if (vni
> 0xffffff) {
9192 bpf_error(cstate
, "Geneve VNI %u greater than maximum %u",
9195 vni
<<= 8; /* VNI is in the upper 3 bytes */
9196 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, (bpf_int32
)vni
,
9205 /* The IPv4 and IPv6 Geneve checks need to do two things:
9206 * - Verify that this actually is Geneve with the right VNI.
9207 * - Place the IP header length (plus variable link prefix if
9208 * needed) into register A to be used later to compute
9209 * the inner packet offsets. */
9210 static struct block
*
9211 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9213 struct block
*b0
, *b1
;
9214 struct slist
*s
, *s1
;
9216 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9218 /* Load the IP header length into A. */
9219 s
= gen_loadx_iphdrlen(cstate
);
9221 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9224 /* Forcibly append these statements to the true condition
9225 * of the protocol check by creating a new block that is
9226 * always true and ANDing them. */
9227 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9236 static struct block
*
9237 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9239 struct block
*b0
, *b1
;
9240 struct slist
*s
, *s1
;
9242 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9244 /* Load the IP header length. We need to account for a
9245 * variable length link prefix if there is one. */
9246 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9248 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9252 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9256 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9260 /* Forcibly append these statements to the true condition
9261 * of the protocol check by creating a new block that is
9262 * always true and ANDing them. */
9263 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9266 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9275 /* We need to store three values based on the Geneve header::
9276 * - The offset of the linktype.
9277 * - The offset of the end of the Geneve header.
9278 * - The offset of the end of the encapsulated MAC header. */
9279 static struct slist
*
9280 gen_geneve_offsets(compiler_state_t
*cstate
)
9282 struct slist
*s
, *s1
, *s_proto
;
9284 /* First we need to calculate the offset of the Geneve header
9285 * itself. This is composed of the IP header previously calculated
9286 * (include any variable link prefix) and stored in A plus the
9287 * fixed sized headers (fixed link prefix, MAC length, and UDP
9289 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9290 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9292 /* Stash this in X since we'll need it later. */
9293 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9296 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9298 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9302 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9303 cstate
->off_linktype
.is_variable
= 1;
9304 cstate
->off_linktype
.constant_part
= 0;
9306 s1
= new_stmt(cstate
, BPF_ST
);
9307 s1
->s
.k
= cstate
->off_linktype
.reg
;
9310 /* Load the Geneve option length and mask and shift to get the
9311 * number of bytes. It is stored in the first byte of the Geneve
9313 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9317 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9321 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9325 /* Add in the rest of the Geneve base header. */
9326 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9330 /* Add the Geneve header length to its offset and store. */
9331 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9335 /* Set the encapsulated type as Ethernet. Even though we may
9336 * not actually have Ethernet inside there are two reasons this
9338 * - The linktype field is always in EtherType format regardless
9339 * of whether it is in Geneve or an inner Ethernet frame.
9340 * - The only link layer that we have specific support for is
9341 * Ethernet. We will confirm that the packet actually is
9342 * Ethernet at runtime before executing these checks. */
9343 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9345 s1
= new_stmt(cstate
, BPF_ST
);
9346 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9349 /* Calculate whether we have an Ethernet header or just raw IP/
9350 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9351 * and linktype by 14 bytes so that the network header can be found
9352 * seamlessly. Otherwise, keep what we've calculated already. */
9354 /* We have a bare jmp so we can't use the optimizer. */
9355 cstate
->no_optimize
= 1;
9357 /* Load the EtherType in the Geneve header, 2 bytes in. */
9358 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9362 /* Load X with the end of the Geneve header. */
9363 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9364 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9367 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9368 * end of this check, we should have the total length in X. In
9369 * the non-Ethernet case, it's already there. */
9370 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9371 s_proto
->s
.k
= ETHERTYPE_TEB
;
9372 sappend(s
, s_proto
);
9374 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9378 /* Since this is Ethernet, use the EtherType of the payload
9379 * directly as the linktype. Overwrite what we already have. */
9380 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9384 s1
= new_stmt(cstate
, BPF_ST
);
9385 s1
->s
.k
= cstate
->off_linktype
.reg
;
9388 /* Advance two bytes further to get the end of the Ethernet
9390 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9394 /* Move the result to X. */
9395 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9398 /* Store the final result of our linkpl calculation. */
9399 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9400 cstate
->off_linkpl
.is_variable
= 1;
9401 cstate
->off_linkpl
.constant_part
= 0;
9403 s1
= new_stmt(cstate
, BPF_STX
);
9404 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9413 /* Check to see if this is a Geneve packet. */
9415 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9417 struct block
*b0
, *b1
;
9421 * Catch errors reported by us and routines below us, and return NULL
9424 if (setjmp(cstate
->top_ctx
))
9427 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9428 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9433 /* Later filters should act on the payload of the Geneve frame,
9434 * update all of the header pointers. Attach this code so that
9435 * it gets executed in the event that the Geneve filter matches. */
9436 s
= gen_geneve_offsets(cstate
);
9438 b1
= gen_true(cstate
);
9439 sappend(s
, b1
->stmts
);
9444 cstate
->is_geneve
= 1;
9449 /* Check that the encapsulated frame has a link layer header
9450 * for Ethernet filters. */
9451 static struct block
*
9452 gen_geneve_ll_check(compiler_state_t
*cstate
)
9455 struct slist
*s
, *s1
;
9457 /* The easiest way to see if there is a link layer present
9458 * is to check if the link layer header and payload are not
9461 /* Geneve always generates pure variable offsets so we can
9462 * compare only the registers. */
9463 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9464 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9466 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9467 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9470 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9478 static struct block
*
9479 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9480 bpf_int32 jvalue
, bpf_u_int32 jtype
, int reverse
)
9487 if (!cstate
->is_atm
)
9488 bpf_error(cstate
, "'vpi' supported only on raw ATM");
9489 if (cstate
->off_vpi
== OFFSET_NOT_SET
)
9491 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
, 0xffffffff, jtype
,
9496 if (!cstate
->is_atm
)
9497 bpf_error(cstate
, "'vci' supported only on raw ATM");
9498 if (cstate
->off_vci
== OFFSET_NOT_SET
)
9500 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
, 0xffffffff, jtype
,
9505 if (cstate
->off_proto
== OFFSET_NOT_SET
)
9506 abort(); /* XXX - this isn't on FreeBSD */
9507 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0x0f, jtype
,
9512 if (cstate
->off_payload
== OFFSET_NOT_SET
)
9514 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9515 0xffffffff, jtype
, reverse
, jvalue
);
9519 if (!cstate
->is_atm
)
9520 bpf_error(cstate
, "'callref' supported only on raw ATM");
9521 if (cstate
->off_proto
== OFFSET_NOT_SET
)
9523 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0xffffffff,
9524 jtype
, reverse
, jvalue
);
9533 static struct block
*
9534 gen_atmtype_metac(compiler_state_t
*cstate
)
9536 struct block
*b0
, *b1
;
9538 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9539 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9544 static struct block
*
9545 gen_atmtype_sc(compiler_state_t
*cstate
)
9547 struct block
*b0
, *b1
;
9549 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9550 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9555 static struct block
*
9556 gen_atmtype_llc(compiler_state_t
*cstate
)
9560 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9561 cstate
->linktype
= cstate
->prevlinktype
;
9566 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9567 bpf_int32 jvalue
, bpf_u_int32 jtype
, int reverse
)
9570 * Catch errors reported by us and routines below us, and return NULL
9573 if (setjmp(cstate
->top_ctx
))
9576 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9581 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9583 struct block
*b0
, *b1
;
9586 * Catch errors reported by us and routines below us, and return NULL
9589 if (setjmp(cstate
->top_ctx
))
9595 /* Get all packets in Meta signalling Circuit */
9596 if (!cstate
->is_atm
)
9597 bpf_error(cstate
, "'metac' supported only on raw ATM");
9598 b1
= gen_atmtype_metac(cstate
);
9602 /* Get all packets in Broadcast Circuit*/
9603 if (!cstate
->is_atm
)
9604 bpf_error(cstate
, "'bcc' supported only on raw ATM");
9605 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9606 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9611 /* Get all cells in Segment OAM F4 circuit*/
9612 if (!cstate
->is_atm
)
9613 bpf_error(cstate
, "'oam4sc' supported only on raw ATM");
9614 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9615 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9620 /* Get all cells in End-to-End OAM F4 Circuit*/
9621 if (!cstate
->is_atm
)
9622 bpf_error(cstate
, "'oam4ec' supported only on raw ATM");
9623 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9624 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9629 /* Get all packets in connection Signalling Circuit */
9630 if (!cstate
->is_atm
)
9631 bpf_error(cstate
, "'sc' supported only on raw ATM");
9632 b1
= gen_atmtype_sc(cstate
);
9636 /* Get all packets in ILMI Circuit */
9637 if (!cstate
->is_atm
)
9638 bpf_error(cstate
, "'ilmic' supported only on raw ATM");
9639 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9640 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
9645 /* Get all LANE packets */
9646 if (!cstate
->is_atm
)
9647 bpf_error(cstate
, "'lane' supported only on raw ATM");
9648 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
9651 * Arrange that all subsequent tests assume LANE
9652 * rather than LLC-encapsulated packets, and set
9653 * the offsets appropriately for LANE-encapsulated
9656 * We assume LANE means Ethernet, not Token Ring.
9658 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9659 cstate
->off_payload
+ 2, /* Ethernet header */
9661 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9662 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9663 cstate
->off_nl
= 0; /* Ethernet II */
9664 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9668 /* Get all LLC-encapsulated packets */
9669 if (!cstate
->is_atm
)
9670 bpf_error(cstate
, "'llc' supported only on raw ATM");
9671 b1
= gen_atmtype_llc(cstate
);
9681 * Filtering for MTP2 messages based on li value
9682 * FISU, length is null
9683 * LSSU, length is 1 or 2
9684 * MSU, length is 3 or more
9685 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9688 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9690 struct block
*b0
, *b1
;
9693 * Catch errors reported by us and routines below us, and return NULL
9696 if (setjmp(cstate
->top_ctx
))
9702 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9703 (cstate
->linktype
!= DLT_ERF
) &&
9704 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9705 bpf_error(cstate
, "'fisu' supported only on MTP2");
9706 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9707 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
9711 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9712 (cstate
->linktype
!= DLT_ERF
) &&
9713 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9714 bpf_error(cstate
, "'lssu' supported only on MTP2");
9715 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
9716 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
9721 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9722 (cstate
->linktype
!= DLT_ERF
) &&
9723 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9724 bpf_error(cstate
, "'msu' supported only on MTP2");
9725 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
9729 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9730 (cstate
->linktype
!= DLT_ERF
) &&
9731 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9732 bpf_error(cstate
, "'hfisu' supported only on MTP2_HSL");
9733 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9734 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JEQ
, 0, 0);
9738 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9739 (cstate
->linktype
!= DLT_ERF
) &&
9740 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9741 bpf_error(cstate
, "'hlssu' supported only on MTP2_HSL");
9742 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 1, 0x0100);
9743 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0);
9748 if ( (cstate
->linktype
!= DLT_MTP2
) &&
9749 (cstate
->linktype
!= DLT_ERF
) &&
9750 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
9751 bpf_error(cstate
, "'hmsu' supported only on MTP2_HSL");
9752 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0x0100);
9762 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
, bpf_u_int32 jvalue
,
9763 bpf_u_int32 jtype
, int reverse
)
9766 bpf_u_int32 val1
, val2
, val3
;
9773 * Catch errors reported by us and routines below us, and return NULL
9776 if (setjmp(cstate
->top_ctx
))
9779 newoff_sio
= cstate
->off_sio
;
9780 newoff_opc
= cstate
->off_opc
;
9781 newoff_dpc
= cstate
->off_dpc
;
9782 newoff_sls
= cstate
->off_sls
;
9783 switch (mtp3field
) {
9786 newoff_sio
+= 3; /* offset for MTP2_HSL */
9790 if (cstate
->off_sio
== OFFSET_NOT_SET
)
9791 bpf_error(cstate
, "'sio' supported only on SS7");
9792 /* sio coded on 1 byte so max value 255 */
9794 bpf_error(cstate
, "sio value %u too big; max value = 255",
9796 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, 0xffffffff,
9797 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
9803 if (cstate
->off_opc
== OFFSET_NOT_SET
)
9804 bpf_error(cstate
, "'opc' supported only on SS7");
9805 /* opc coded on 14 bits so max value 16383 */
9807 bpf_error(cstate
, "opc value %u too big; max value = 16383",
9809 /* the following instructions are made to convert jvalue
9810 * to the form used to write opc in an ss7 message*/
9811 val1
= jvalue
& 0x00003c00;
9813 val2
= jvalue
& 0x000003fc;
9815 val3
= jvalue
& 0x00000003;
9817 jvalue
= val1
+ val2
+ val3
;
9818 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
, 0x00c0ff0f,
9819 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
9827 if (cstate
->off_dpc
== OFFSET_NOT_SET
)
9828 bpf_error(cstate
, "'dpc' supported only on SS7");
9829 /* dpc coded on 14 bits so max value 16383 */
9831 bpf_error(cstate
, "dpc value %u too big; max value = 16383",
9833 /* the following instructions are made to convert jvalue
9834 * to the forme used to write dpc in an ss7 message*/
9835 val1
= jvalue
& 0x000000ff;
9837 val2
= jvalue
& 0x00003f00;
9839 jvalue
= val1
+ val2
;
9840 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_W
, 0xff3f0000,
9841 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
9847 if (cstate
->off_sls
== OFFSET_NOT_SET
)
9848 bpf_error(cstate
, "'sls' supported only on SS7");
9849 /* sls coded on 4 bits so max value 15 */
9851 bpf_error(cstate
, "sls value %u too big; max value = 15",
9853 /* the following instruction is made to convert jvalue
9854 * to the forme used to write sls in an ss7 message*/
9855 jvalue
= jvalue
<< 4;
9856 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
, 0xf0,
9857 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
9866 static struct block
*
9867 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
9872 * Q.2931 signalling protocol messages for handling virtual circuits
9873 * establishment and teardown
9878 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
9882 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
9886 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
9890 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
9894 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
9897 case A_RELEASE_DONE
:
9898 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
9908 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
9910 struct block
*b0
, *b1
;
9913 * Catch errors reported by us and routines below us, and return NULL
9916 if (setjmp(cstate
->top_ctx
))
9922 if (!cstate
->is_atm
)
9923 bpf_error(cstate
, "'oam' supported only on raw ATM");
9925 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9926 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9928 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9933 if (!cstate
->is_atm
)
9934 bpf_error(cstate
, "'oamf4' supported only on raw ATM");
9936 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9937 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9939 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9945 * Get Q.2931 signalling messages for switched
9946 * virtual connection
9948 if (!cstate
->is_atm
)
9949 bpf_error(cstate
, "'connectmsg' supported only on raw ATM");
9950 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
9951 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
9953 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
9955 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
9957 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
9959 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
9961 b0
= gen_atmtype_sc(cstate
);
9966 if (!cstate
->is_atm
)
9967 bpf_error(cstate
, "'metaconnect' supported only on raw ATM");
9968 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
9969 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
9971 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
9973 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
9975 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
9977 b0
= gen_atmtype_metac(cstate
);