]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Plug memory leaks from pcap_nametoaddrinfo() w/o INET6.
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #include <config.h>
23
24 #ifdef _WIN32
25 #include <ws2tcpip.h>
26 #else
27 #include <netinet/in.h>
28 #endif /* _WIN32 */
29
30 #include <stdlib.h>
31 #include <string.h>
32 #include <memory.h>
33 #include <setjmp.h>
34 #include <stdarg.h>
35 #include <stdio.h>
36 #include <stdint.h>
37 #include <stddef.h>
38
39 #include "pcap-int.h"
40
41 #include "extract.h"
42
43 #include "ethertype.h"
44 #include "llc.h"
45 #include "gencode.h"
46 #include "ieee80211.h"
47 #include "pflog.h"
48 #include "ppp.h"
49 #include "pcap/sll.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
53
54 #include "scanner.h"
55
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
60 #endif
61
62 #ifdef _WIN32
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
66 #endif
67 #ifdef INET6
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
69 /* IPv6 address */
70 struct in6_addr
71 {
72 union
73 {
74 uint8_t u6_addr8[16];
75 uint16_t u6_addr16[8];
76 uint32_t u6_addr32[4];
77 } in6_u;
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
82 };
83
84 typedef unsigned short sa_family_t;
85
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
88
89 /* Ditto, for IPv6. */
90 struct sockaddr_in6
91 {
92 __SOCKADDR_COMMON (sin6_);
93 uint16_t sin6_port; /* Transport layer port # */
94 uint32_t sin6_flowinfo; /* IPv6 flow information */
95 struct in6_addr sin6_addr; /* IPv6 address */
96 };
97
98 #ifndef EAI_ADDRFAMILY
99 struct addrinfo {
100 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family; /* PF_xxx */
102 int ai_socktype; /* SOCK_xxx */
103 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen; /* length of ai_addr */
105 char *ai_canonname; /* canonical name for hostname */
106 struct sockaddr *ai_addr; /* binary address */
107 struct addrinfo *ai_next; /* next structure in linked list */
108 };
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
111 #endif /* INET6 */
112 #else /* _WIN32 */
113 #include <netdb.h> /* for "struct addrinfo" */
114 #endif /* _WIN32 */
115 #include <pcap/namedb.h>
116
117 #include "nametoaddr.h"
118
119 #define ETHERMTU 1500
120
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
123 #endif
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
126 #endif
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
129 #endif
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
132 #endif
133 #ifndef IPPROTO_SCTP
134 #define IPPROTO_SCTP 132
135 #endif
136
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
139
140
141 /*
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
143 */
144
145 /* RFC 1051 */
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
148
149 /* RFC 1201 */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
153
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
157
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
160
161
162 /* Based on UNI3.1 standard by ATM Forum */
163
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
171
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
188
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
201
202 #define Q2931 0x09
203
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
210
211 /* format of signalling messages */
212 #define TYPE_POS 0
213 #define LEN_POS 2
214 #define FIELD_BEGIN_POS 4
215
216
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
222
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
228
229
230 /* Types missing from some systems */
231
232 /*
233 * Network layer protocol identifiers
234 */
235 #ifndef ISO8473_CLNP
236 #define ISO8473_CLNP 0x81
237 #endif
238 #ifndef ISO9542_ESIS
239 #define ISO9542_ESIS 0x82
240 #endif
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
243 #endif
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
246 #endif
247
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
257 /*
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
261 */
262 #define ISIS_PDU_TYPE_MAX 0x1FU
263
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
266 #endif
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
269 #endif
270
271 // Same as in tcpdump/print-sl.c.
272 #define SLIPDIR_IN 0
273 #define SLIPDIR_OUT 1
274
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
277 #endif
278
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
280
281 /*
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
285 */
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
287 { \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
295 }
296
297 /*
298 * Offset "not set" value.
299 */
300 #define OFFSET_NOT_SET 0xffffffffU
301
302 /*
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
308 *
309 * bpf_abs_offset is a structure containing all that information:
310 *
311 * is_variable is 1 if there's a variable part.
312 *
313 * constant_part is the constant part of the value, possibly zero;
314 *
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
317 * and -1 otherwise.
318 */
319 typedef struct {
320 int is_variable;
321 u_int constant_part;
322 int reg;
323 } bpf_abs_offset;
324
325 /*
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
328 */
329 enum e_offrel {
330 OR_PACKET, /* full packet data */
331 OR_LINKHDR, /* link-layer header */
332 OR_PREVLINKHDR, /* previous link-layer header */
333 OR_LLC, /* 802.2 LLC header */
334 OR_PREVMPLSHDR, /* previous MPLS header */
335 OR_LINKTYPE, /* link-layer type */
336 OR_LINKPL, /* link-layer payload */
337 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
340 };
341
342 /*
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
347 *
348 * XXX - this *is* in a library....
349 */
350 #define NCHUNKS 16
351 #define CHUNK0SIZE 1024
352 struct chunk {
353 size_t n_left;
354 void *m;
355 };
356
357 /*
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
360 * - a block
361 * - an slist
362 * - an arth
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
365 */
366 struct chunk_align {
367 char dummy;
368 union {
369 char c;
370 struct block b;
371 struct slist s;
372 struct arth a;
373 } u;
374 };
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
376
377 /* Code generator state */
378
379 struct _compiler_state {
380 jmp_buf top_ctx;
381 pcap_t *bpf_pcap;
382 int error_set;
383
384 struct icode ic;
385
386 int snaplen;
387
388 int linktype;
389 int prevlinktype;
390 int outermostlinktype;
391
392 bpf_u_int32 netmask;
393 int no_optimize;
394
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth;
397 u_int vlan_stack_depth;
398
399 /* XXX */
400 u_int pcap_fddipad;
401
402 /*
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
405 * from that handler.
406 *
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
410 */
411 struct addrinfo *ai;
412
413 /*
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
417 */
418 u_char *e;
419
420 /*
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
424 */
425
426 /*
427 * Absolute offset of the beginning of the link-layer header.
428 */
429 bpf_abs_offset off_linkhdr;
430
431 /*
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
436 */
437 bpf_abs_offset off_prevlinkhdr;
438
439 /*
440 * This is the equivalent information for the outermost layers'
441 * link-layer header.
442 */
443 bpf_abs_offset off_outermostlinkhdr;
444
445 /*
446 * Absolute offset of the beginning of the link-layer payload.
447 */
448 bpf_abs_offset off_linkpl;
449
450 /*
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
454 *
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
457 *
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
461 *
462 * For PPP, it's the offset of the PPP type field.
463 *
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
465 *
466 * For BSD loopback, it's the offset of the AF_ value.
467 *
468 * For Linux cooked sockets, it's the offset of the type field.
469 *
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
472 */
473 bpf_abs_offset off_linktype;
474
475 /*
476 * TRUE if the link layer includes an ATM pseudo-header.
477 */
478 int is_atm;
479
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
484 */
485 int is_encap;
486
487 /*
488 * TRUE if we need variable length part of VLAN offset
489 */
490 int is_vlan_vloffset;
491
492 /*
493 * These are offsets for the ATM pseudo-header.
494 */
495 u_int off_vpi;
496 u_int off_vci;
497 u_int off_proto;
498
499 /*
500 * These are offsets for the MTP2 fields.
501 */
502 u_int off_li;
503 u_int off_li_hsl;
504
505 /*
506 * These are offsets for the MTP3 fields.
507 */
508 u_int off_sio;
509 u_int off_opc;
510 u_int off_dpc;
511 u_int off_sls;
512
513 /*
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
516 */
517 u_int off_payload;
518
519 /*
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
524 *
525 * If the link layer never uses 802.2 LLC:
526 *
527 * "off_nl" and "off_nl_nosnap" are the same.
528 *
529 * If the link layer always uses 802.2 LLC:
530 *
531 * "off_nl" is the offset if there's a SNAP header following
532 * the 802.2 header;
533 *
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
535 *
536 * If the link layer is Ethernet:
537 *
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
540 *
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
543 */
544 u_int off_nl;
545 u_int off_nl_nosnap;
546
547 /*
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
550 */
551 int regused[BPF_MEMWORDS];
552 int curreg;
553
554 /*
555 * Memory chunks.
556 */
557 struct chunk chunks[NCHUNKS];
558 int cur_chunk;
559 };
560
561 /*
562 * For use by routines outside this file.
563 */
564 /* VARARGS */
565 void
566 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
567 {
568 va_list ap;
569
570 /*
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
577 * error.
578 */
579 if (!cstate->error_set) {
580 va_start(ap, fmt);
581 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
582 fmt, ap);
583 va_end(ap);
584 cstate->error_set = 1;
585 }
586 }
587
588 /*
589 * For use *ONLY* in routines in this file.
590 */
591 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
593
594 /* VARARGS */
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
597 {
598 va_list ap;
599
600 va_start(ap, fmt);
601 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
602 fmt, ap);
603 va_end(ap);
604 longjmp(cstate->top_ctx, 1);
605 /*NOTREACHED*/
606 #ifdef _AIX
607 PCAP_UNREACHABLE
608 #endif /* _AIX */
609 }
610
611 static int init_linktype(compiler_state_t *, pcap_t *);
612
613 static void init_regs(compiler_state_t *);
614 static int alloc_reg(compiler_state_t *);
615 static void free_reg(compiler_state_t *, int);
616
617 static void initchunks(compiler_state_t *cstate);
618 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
619 static void *newchunk(compiler_state_t *cstate, size_t);
620 static void freechunks(compiler_state_t *cstate);
621 static inline struct block *new_block(compiler_state_t *cstate, int);
622 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
623 static struct block *gen_retblk(compiler_state_t *cstate, int);
624 static inline void syntax(compiler_state_t *cstate);
625
626 static void backpatch(struct block *, struct block *);
627 static void merge(struct block *, struct block *);
628 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
629 u_int, bpf_u_int32);
630 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
631 u_int, bpf_u_int32);
632 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
633 u_int, bpf_u_int32);
634 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
635 u_int, bpf_u_int32);
636 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
637 u_int, bpf_u_int32);
638 static struct block *gen_cmp_ne(compiler_state_t *, enum e_offrel, u_int,
639 u_int size, bpf_u_int32);
640 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
641 u_int, bpf_u_int32, bpf_u_int32);
642 static struct block *gen_mcmp_ne(compiler_state_t *, enum e_offrel, u_int,
643 u_int, bpf_u_int32, bpf_u_int32);
644 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
645 u_int, const u_char *);
646 static struct block *gen_jmp(compiler_state_t *, int, bpf_u_int32,
647 struct slist *);
648 static struct block *gen_set(compiler_state_t *, bpf_u_int32, struct slist *);
649 static struct block *gen_unset(compiler_state_t *, bpf_u_int32, struct slist *);
650 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
651 u_int, bpf_u_int32, int, int, bpf_u_int32);
652 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
653 u_int, u_int);
654 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
655 u_int);
656 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
657 static struct block *gen_uncond(compiler_state_t *, int);
658 static inline struct block *gen_true(compiler_state_t *);
659 static inline struct block *gen_false(compiler_state_t *);
660 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
661 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
662 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
663 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
664 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
665 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
666 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
667 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
668 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
669 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
670 bpf_abs_offset *);
671 static uint16_t ethertype_to_ppptype(compiler_state_t *, bpf_u_int32);
672 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
673 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
674 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
675 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
676 int, u_int, u_int);
677 #ifdef INET6
678 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
679 struct in6_addr *, int, u_int, u_int);
680 #endif
681 static struct block *gen_ahostop(compiler_state_t *, const uint8_t, int);
682 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
683 static unsigned char is_mac48_linktype(const int);
684 static struct block *gen_mac48host(compiler_state_t *, const u_char *,
685 const u_char, const char *);
686 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
687 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
688 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
689 int, int, int);
690 #ifdef INET6
691 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
692 struct in6_addr *, int, int, int);
693 #endif
694 #ifndef INET6
695 static struct block *gen_gateway(compiler_state_t *, const u_char *,
696 struct addrinfo *, int);
697 #endif
698 static struct block *gen_ip_proto(compiler_state_t *, const uint8_t);
699 static struct block *gen_ip6_proto(compiler_state_t *, const uint8_t);
700 static struct block *gen_ipfrag(compiler_state_t *);
701 static struct block *gen_portatom(compiler_state_t *, int, uint16_t);
702 static struct block *gen_portrangeatom(compiler_state_t *, u_int, uint16_t,
703 uint16_t);
704 static struct block *gen_portatom6(compiler_state_t *, int, uint16_t);
705 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, uint16_t,
706 uint16_t);
707 static struct block *gen_port(compiler_state_t *, uint16_t, int, int);
708 static struct block *gen_port_common(compiler_state_t *, int, struct block *);
709 static struct block *gen_portrange(compiler_state_t *, uint16_t, uint16_t,
710 int, int);
711 static struct block *gen_port6(compiler_state_t *, uint16_t, int, int);
712 static struct block *gen_port6_common(compiler_state_t *, int, struct block *);
713 static struct block *gen_portrange6(compiler_state_t *, uint16_t, uint16_t,
714 int, int);
715 static int lookup_proto(compiler_state_t *, const char *, int);
716 #if !defined(NO_PROTOCHAIN)
717 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
718 #endif /* !defined(NO_PROTOCHAIN) */
719 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int);
720 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
721 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
722 static struct block *gen_mac_multicast(compiler_state_t *, int);
723 static struct block *gen_len(compiler_state_t *, int, int);
724 static struct block *gen_encap_ll_check(compiler_state_t *cstate);
725
726 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
727 bpf_u_int32, int, int);
728 static struct block *gen_atmtype_llc(compiler_state_t *);
729 static struct block *gen_msg_abbrev(compiler_state_t *, const uint8_t);
730 static struct block *gen_atm_prototype(compiler_state_t *, const uint8_t);
731 static struct block *gen_atm_vpi(compiler_state_t *, const uint8_t);
732 static struct block *gen_atm_vci(compiler_state_t *, const uint16_t);
733
734 static void
735 initchunks(compiler_state_t *cstate)
736 {
737 int i;
738
739 for (i = 0; i < NCHUNKS; i++) {
740 cstate->chunks[i].n_left = 0;
741 cstate->chunks[i].m = NULL;
742 }
743 cstate->cur_chunk = 0;
744 }
745
746 static void *
747 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
748 {
749 struct chunk *cp;
750 int k;
751 size_t size;
752
753 /* Round up to chunk alignment. */
754 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
755
756 cp = &cstate->chunks[cstate->cur_chunk];
757 if (n > cp->n_left) {
758 ++cp;
759 k = ++cstate->cur_chunk;
760 if (k >= NCHUNKS) {
761 bpf_set_error(cstate, "out of memory");
762 return (NULL);
763 }
764 size = CHUNK0SIZE << k;
765 cp->m = (void *)malloc(size);
766 if (cp->m == NULL) {
767 bpf_set_error(cstate, "out of memory");
768 return (NULL);
769 }
770 memset((char *)cp->m, 0, size);
771 cp->n_left = size;
772 if (n > size) {
773 bpf_set_error(cstate, "out of memory");
774 return (NULL);
775 }
776 }
777 cp->n_left -= n;
778 return (void *)((char *)cp->m + cp->n_left);
779 }
780
781 static void *
782 newchunk(compiler_state_t *cstate, size_t n)
783 {
784 void *p;
785
786 p = newchunk_nolongjmp(cstate, n);
787 if (p == NULL) {
788 longjmp(cstate->top_ctx, 1);
789 /*NOTREACHED*/
790 }
791 return (p);
792 }
793
794 static void
795 freechunks(compiler_state_t *cstate)
796 {
797 int i;
798
799 for (i = 0; i < NCHUNKS; ++i)
800 if (cstate->chunks[i].m != NULL)
801 free(cstate->chunks[i].m);
802 }
803
804 /*
805 * A strdup whose allocations are freed after code generation is over.
806 * This is used by the lexical analyzer, so it can't longjmp; it just
807 * returns NULL on an allocation error, and the callers must check
808 * for it.
809 */
810 char *
811 sdup(compiler_state_t *cstate, const char *s)
812 {
813 size_t n = strlen(s) + 1;
814 char *cp = newchunk_nolongjmp(cstate, n);
815
816 if (cp == NULL)
817 return (NULL);
818 pcapint_strlcpy(cp, s, n);
819 return (cp);
820 }
821
822 static inline struct block *
823 new_block(compiler_state_t *cstate, int code)
824 {
825 struct block *p;
826
827 p = (struct block *)newchunk(cstate, sizeof(*p));
828 p->s.code = code;
829 p->head = p;
830
831 return p;
832 }
833
834 static inline struct slist *
835 new_stmt(compiler_state_t *cstate, int code)
836 {
837 struct slist *p;
838
839 p = (struct slist *)newchunk(cstate, sizeof(*p));
840 p->s.code = code;
841
842 return p;
843 }
844
845 static struct block *
846 gen_retblk_internal(compiler_state_t *cstate, int v)
847 {
848 struct block *b = new_block(cstate, BPF_RET|BPF_K);
849
850 b->s.k = v;
851 return b;
852 }
853
854 static struct block *
855 gen_retblk(compiler_state_t *cstate, int v)
856 {
857 if (setjmp(cstate->top_ctx)) {
858 /*
859 * gen_retblk() only fails because a memory
860 * allocation failed in newchunk(), meaning
861 * that it can't return a pointer.
862 *
863 * Return NULL.
864 */
865 return NULL;
866 }
867 return gen_retblk_internal(cstate, v);
868 }
869
870 static inline PCAP_NORETURN_DEF void
871 syntax(compiler_state_t *cstate)
872 {
873 bpf_error(cstate, "syntax error in filter expression");
874 }
875
876 /*
877 * For the given integer return a string with the keyword (or the nominal
878 * keyword if there is more than one). This is a simpler version of tok2str()
879 * in tcpdump because in this problem space a valid integer value is not
880 * greater than 71.
881 */
882 static const char *
883 qual2kw(const char *kind, const unsigned id, const char *tokens[],
884 const size_t size)
885 {
886 static char buf[4][64];
887 static int idx = 0;
888
889 if (id < size && tokens[id])
890 return tokens[id];
891
892 char *ret = buf[idx];
893 idx = (idx + 1) % (sizeof(buf) / sizeof(buf[0]));
894 ret[0] = '\0'; // just in case
895 snprintf(ret, sizeof(buf[0]), "<invalid %s %u>", kind, id);
896 return ret;
897 }
898
899 // protocol qualifier keywords
900 static const char *
901 pqkw(const unsigned id)
902 {
903 const char * tokens[] = {
904 [Q_LINK] = "link",
905 [Q_IP] = "ip",
906 [Q_ARP] = "arp",
907 [Q_RARP] = "rarp",
908 [Q_SCTP] = "sctp",
909 [Q_TCP] = "tcp",
910 [Q_UDP] = "udp",
911 [Q_ICMP] = "icmp",
912 [Q_IGMP] = "igmp",
913 [Q_IGRP] = "igrp",
914 [Q_ATALK] = "atalk",
915 [Q_DECNET] = "decnet",
916 [Q_LAT] = "lat",
917 [Q_SCA] = "sca",
918 [Q_MOPRC] = "moprc",
919 [Q_MOPDL] = "mopdl",
920 [Q_IPV6] = "ip6",
921 [Q_ICMPV6] = "icmp6",
922 [Q_AH] = "ah",
923 [Q_ESP] = "esp",
924 [Q_PIM] = "pim",
925 [Q_VRRP] = "vrrp",
926 [Q_AARP] = "aarp",
927 [Q_ISO] = "iso",
928 [Q_ESIS] = "esis",
929 [Q_ISIS] = "isis",
930 [Q_CLNP] = "clnp",
931 [Q_STP] = "stp",
932 [Q_IPX] = "ipx",
933 [Q_NETBEUI] = "netbeui",
934 [Q_ISIS_L1] = "l1",
935 [Q_ISIS_L2] = "l2",
936 [Q_ISIS_IIH] = "iih",
937 [Q_ISIS_SNP] = "snp",
938 [Q_ISIS_CSNP] = "csnp",
939 [Q_ISIS_PSNP] = "psnp",
940 [Q_ISIS_LSP] = "lsp",
941 [Q_RADIO] = "radio",
942 [Q_CARP] = "carp",
943 };
944 return qual2kw("proto", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
945 }
946
947 // direction qualifier keywords
948 static const char *
949 dqkw(const unsigned id)
950 {
951 const char * map[] = {
952 [Q_SRC] = "src",
953 [Q_DST] = "dst",
954 [Q_OR] = "src or dst",
955 [Q_AND] = "src and dst",
956 [Q_ADDR1] = "addr1",
957 [Q_ADDR2] = "addr2",
958 [Q_ADDR3] = "addr3",
959 [Q_ADDR4] = "addr4",
960 [Q_RA] = "ra",
961 [Q_TA] = "ta",
962 };
963 return qual2kw("dir", id, map, sizeof(map) / sizeof(map[0]));
964 }
965
966 // ATM keywords
967 static const char *
968 atmkw(const unsigned id)
969 {
970 const char * tokens[] = {
971 [A_METAC] = "metac",
972 [A_BCC] = "bcc",
973 [A_OAMF4SC] = "oamf4sc",
974 [A_OAMF4EC] = "oamf4ec",
975 [A_SC] = "sc",
976 [A_ILMIC] = "ilmic",
977 [A_OAM] = "oam",
978 [A_OAMF4] = "oamf4",
979 [A_LANE] = "lane",
980 [A_VPI] = "vpi",
981 [A_VCI] = "vci",
982 [A_CONNECTMSG] = "connectmsg",
983 [A_METACONNECT] = "metaconnect",
984 };
985 return qual2kw("ATM keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
986 }
987
988 // SS7 keywords
989 static const char *
990 ss7kw(const unsigned id)
991 {
992 const char * tokens[] = {
993 [M_FISU] = "fisu",
994 [M_LSSU] = "lssu",
995 [M_MSU] = "msu",
996 [MH_FISU] = "hfisu",
997 [MH_LSSU] = "hlssu",
998 [MH_MSU] = "hmsu",
999 [M_SIO] = "sio",
1000 [M_OPC] = "opc",
1001 [M_DPC] = "dpc",
1002 [M_SLS] = "sls",
1003 [MH_SIO] = "hsio",
1004 [MH_OPC] = "hopc",
1005 [MH_DPC] = "hdpc",
1006 [MH_SLS] = "hsls",
1007 };
1008 return qual2kw("MTP keyword", id, tokens, sizeof(tokens) / sizeof(tokens[0]));
1009 }
1010
1011 static PCAP_NORETURN_DEF void
1012 fail_kw_on_dlt(compiler_state_t *cstate, const char *keyword)
1013 {
1014 bpf_error(cstate, "'%s' not supported on %s", keyword,
1015 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
1016 }
1017
1018 static void
1019 assert_pflog(compiler_state_t *cstate, const char *kw)
1020 {
1021 if (cstate->linktype != DLT_PFLOG)
1022 bpf_error(cstate, "'%s' supported only on PFLOG linktype", kw);
1023 }
1024
1025 static void
1026 assert_atm(compiler_state_t *cstate, const char *kw)
1027 {
1028 /*
1029 * Belt and braces: init_linktype() sets either all of these struct
1030 * members (for DLT_SUNATM) or none (otherwise).
1031 */
1032 if (cstate->linktype != DLT_SUNATM ||
1033 ! cstate->is_atm ||
1034 cstate->off_vpi == OFFSET_NOT_SET ||
1035 cstate->off_vci == OFFSET_NOT_SET ||
1036 cstate->off_proto == OFFSET_NOT_SET ||
1037 cstate->off_payload == OFFSET_NOT_SET)
1038 bpf_error(cstate, "'%s' supported only on SUNATM", kw);
1039 }
1040
1041 static void
1042 assert_ss7(compiler_state_t *cstate, const char *kw)
1043 {
1044 switch (cstate->linktype) {
1045 case DLT_MTP2:
1046 case DLT_ERF:
1047 case DLT_MTP2_WITH_PHDR:
1048 // Belt and braces, same as in assert_atm().
1049 if (cstate->off_sio != OFFSET_NOT_SET &&
1050 cstate->off_opc != OFFSET_NOT_SET &&
1051 cstate->off_dpc != OFFSET_NOT_SET &&
1052 cstate->off_sls != OFFSET_NOT_SET)
1053 return;
1054 }
1055 bpf_error(cstate, "'%s' supported only on SS7", kw);
1056 }
1057
1058 static void
1059 assert_maxval(compiler_state_t *cstate, const char *name,
1060 const bpf_u_int32 val, const bpf_u_int32 maxval)
1061 {
1062 if (val > maxval)
1063 bpf_error(cstate, "%s %u greater than maximum %u",
1064 name, val, maxval);
1065 }
1066
1067 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1068 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1069 #define ERRSTR_UNKNOWN_MAC48HOST "unknown Ethernet-like host '%s'"
1070
1071 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1072 static int
1073 port_pq_to_ipproto(compiler_state_t *cstate, const int proto, const char *kw)
1074 {
1075 switch (proto) {
1076 case Q_UDP:
1077 return IPPROTO_UDP;
1078 case Q_TCP:
1079 return IPPROTO_TCP;
1080 case Q_SCTP:
1081 return IPPROTO_SCTP;
1082 case Q_DEFAULT:
1083 return PROTO_UNDEF;
1084 }
1085 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), kw);
1086 }
1087
1088 int
1089 pcap_compile(pcap_t *p, struct bpf_program *program,
1090 const char *buf, int optimize, bpf_u_int32 mask)
1091 {
1092 #ifdef _WIN32
1093 int err;
1094 WSADATA wsaData;
1095 #endif
1096 compiler_state_t cstate;
1097 yyscan_t scanner = NULL;
1098 YY_BUFFER_STATE in_buffer = NULL;
1099 u_int len;
1100 int rc;
1101
1102 /*
1103 * If this pcap_t hasn't been activated, it doesn't have a
1104 * link-layer type, so we can't use it.
1105 */
1106 if (!p->activated) {
1107 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1108 "not-yet-activated pcap_t passed to pcap_compile");
1109 return (PCAP_ERROR);
1110 }
1111
1112 #ifdef _WIN32
1113 /*
1114 * Initialize Winsock, asking for the latest version (2.2),
1115 * as we may be calling Winsock routines to translate
1116 * host names to addresses.
1117 */
1118 err = WSAStartup(MAKEWORD(2, 2), &wsaData);
1119 if (err != 0) {
1120 pcapint_fmt_errmsg_for_win32_err(p->errbuf, PCAP_ERRBUF_SIZE,
1121 err, "Error calling WSAStartup()");
1122 return (PCAP_ERROR);
1123 }
1124 #endif
1125
1126 #ifdef ENABLE_REMOTE
1127 /*
1128 * If the device on which we're capturing need to be notified
1129 * that a new filter is being compiled, do so.
1130 *
1131 * This allows them to save a copy of it, in case, for example,
1132 * they're implementing a form of remote packet capture, and
1133 * want the remote machine to filter out the packets in which
1134 * it's sending the packets it's captured.
1135 *
1136 * XXX - the fact that we happen to be compiling a filter
1137 * doesn't necessarily mean we'll be installing it as the
1138 * filter for this pcap_t; we might be running it from userland
1139 * on captured packets to do packet classification. We really
1140 * need a better way of handling this, but this is all that
1141 * the WinPcap remote capture code did.
1142 */
1143 if (p->save_current_filter_op != NULL)
1144 (p->save_current_filter_op)(p, buf);
1145 #endif
1146
1147 initchunks(&cstate);
1148 cstate.no_optimize = 0;
1149 cstate.ai = NULL;
1150 cstate.e = NULL;
1151 cstate.ic.root = NULL;
1152 cstate.ic.cur_mark = 0;
1153 cstate.bpf_pcap = p;
1154 cstate.error_set = 0;
1155 init_regs(&cstate);
1156
1157 cstate.netmask = mask;
1158
1159 cstate.snaplen = pcap_snapshot(p);
1160 if (cstate.snaplen == 0) {
1161 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1162 "snaplen of 0 rejects all packets");
1163 rc = PCAP_ERROR;
1164 goto quit;
1165 }
1166
1167 if (pcap_lex_init(&scanner) != 0) {
1168 pcapint_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
1169 errno, "can't initialize scanner");
1170 rc = PCAP_ERROR;
1171 goto quit;
1172 }
1173 in_buffer = pcap__scan_string(buf ? buf : "", scanner);
1174
1175 /*
1176 * Associate the compiler state with the lexical analyzer
1177 * state.
1178 */
1179 pcap_set_extra(&cstate, scanner);
1180
1181 if (init_linktype(&cstate, p) == -1) {
1182 rc = PCAP_ERROR;
1183 goto quit;
1184 }
1185 if (pcap_parse(scanner, &cstate) != 0) {
1186 if (cstate.ai != NULL)
1187 freeaddrinfo(cstate.ai);
1188 if (cstate.e != NULL)
1189 free(cstate.e);
1190 rc = PCAP_ERROR;
1191 goto quit;
1192 }
1193
1194 if (cstate.ic.root == NULL) {
1195 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
1196
1197 /*
1198 * Catch errors reported by gen_retblk().
1199 */
1200 if (cstate.ic.root== NULL) {
1201 rc = PCAP_ERROR;
1202 goto quit;
1203 }
1204 }
1205
1206 if (optimize && !cstate.no_optimize) {
1207 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
1208 /* Failure */
1209 rc = PCAP_ERROR;
1210 goto quit;
1211 }
1212 if (cstate.ic.root == NULL ||
1213 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
1214 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1215 "expression rejects all packets");
1216 rc = PCAP_ERROR;
1217 goto quit;
1218 }
1219 }
1220 program->bf_insns = icode_to_fcode(&cstate.ic,
1221 cstate.ic.root, &len, p->errbuf);
1222 if (program->bf_insns == NULL) {
1223 /* Failure */
1224 rc = PCAP_ERROR;
1225 goto quit;
1226 }
1227 program->bf_len = len;
1228
1229 rc = 0; /* We're all okay */
1230
1231 quit:
1232 /*
1233 * Clean up everything for the lexical analyzer.
1234 */
1235 if (in_buffer != NULL)
1236 pcap__delete_buffer(in_buffer, scanner);
1237 if (scanner != NULL)
1238 pcap_lex_destroy(scanner);
1239
1240 /*
1241 * Clean up our own allocated memory.
1242 */
1243 freechunks(&cstate);
1244
1245 #ifdef _WIN32
1246 WSACleanup();
1247 #endif
1248
1249 return (rc);
1250 }
1251
1252 /*
1253 * entry point for using the compiler with no pcap open
1254 * pass in all the stuff that is needed explicitly instead.
1255 */
1256 int
1257 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
1258 struct bpf_program *program,
1259 const char *buf, int optimize, bpf_u_int32 mask)
1260 {
1261 pcap_t *p;
1262 int ret;
1263
1264 p = pcap_open_dead(linktype_arg, snaplen_arg);
1265 if (p == NULL)
1266 return (PCAP_ERROR);
1267 ret = pcap_compile(p, program, buf, optimize, mask);
1268 pcap_close(p);
1269 return (ret);
1270 }
1271
1272 /*
1273 * Clean up a "struct bpf_program" by freeing all the memory allocated
1274 * in it.
1275 */
1276 void
1277 pcap_freecode(struct bpf_program *program)
1278 {
1279 program->bf_len = 0;
1280 if (program->bf_insns != NULL) {
1281 free((char *)program->bf_insns);
1282 program->bf_insns = NULL;
1283 }
1284 }
1285
1286 /*
1287 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1288 * which of the jt and jf fields has been resolved and which is a pointer
1289 * back to another unresolved block (or nil). At least one of the fields
1290 * in each block is already resolved.
1291 */
1292 static void
1293 backpatch(struct block *list, struct block *target)
1294 {
1295 struct block *next;
1296
1297 while (list) {
1298 if (!list->sense) {
1299 next = JT(list);
1300 JT(list) = target;
1301 } else {
1302 next = JF(list);
1303 JF(list) = target;
1304 }
1305 list = next;
1306 }
1307 }
1308
1309 /*
1310 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1311 * which of jt and jf is the link.
1312 */
1313 static void
1314 merge(struct block *b0, struct block *b1)
1315 {
1316 register struct block **p = &b0;
1317
1318 /* Find end of list. */
1319 while (*p)
1320 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
1321
1322 /* Concatenate the lists. */
1323 *p = b1;
1324 }
1325
1326 int
1327 finish_parse(compiler_state_t *cstate, struct block *p)
1328 {
1329 /*
1330 * Catch errors reported by us and routines below us, and return -1
1331 * on an error.
1332 */
1333 if (setjmp(cstate->top_ctx))
1334 return (-1);
1335
1336 /*
1337 * Insert before the statements of the first (root) block any
1338 * statements needed to load the lengths of any variable-length
1339 * headers into registers.
1340 *
1341 * XXX - a fancier strategy would be to insert those before the
1342 * statements of all blocks that use those lengths and that
1343 * have no predecessors that use them, so that we only compute
1344 * the lengths if we need them. There might be even better
1345 * approaches than that.
1346 *
1347 * However, those strategies would be more complicated, and
1348 * as we don't generate code to compute a length if the
1349 * program has no tests that use the length, and as most
1350 * tests will probably use those lengths, we would just
1351 * postpone computing the lengths so that it's not done
1352 * for tests that fail early, and it's not clear that's
1353 * worth the effort.
1354 */
1355 insert_compute_vloffsets(cstate, p->head);
1356
1357 /*
1358 * For DLT_PPI captures, generate a check of the per-packet
1359 * DLT value to make sure it's DLT_IEEE802_11.
1360 *
1361 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1362 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1363 * with appropriate Ethernet information and use that rather
1364 * than using something such as DLT_PPI where you don't know
1365 * the link-layer header type until runtime, which, in the
1366 * general case, would force us to generate both Ethernet *and*
1367 * 802.11 code (*and* anything else for which PPI is used)
1368 * and choose between them early in the BPF program?
1369 */
1370 if (cstate->linktype == DLT_PPI) {
1371 struct block *ppi_dlt_check = gen_cmp(cstate, OR_PACKET,
1372 4, BPF_W, SWAPLONG(DLT_IEEE802_11));
1373 gen_and(ppi_dlt_check, p);
1374 }
1375
1376 backpatch(p, gen_retblk_internal(cstate, cstate->snaplen));
1377 p->sense = !p->sense;
1378 backpatch(p, gen_retblk_internal(cstate, 0));
1379 cstate->ic.root = p->head;
1380 return (0);
1381 }
1382
1383 void
1384 gen_and(struct block *b0, struct block *b1)
1385 {
1386 backpatch(b0, b1->head);
1387 b0->sense = !b0->sense;
1388 b1->sense = !b1->sense;
1389 merge(b1, b0);
1390 b1->sense = !b1->sense;
1391 b1->head = b0->head;
1392 }
1393
1394 void
1395 gen_or(struct block *b0, struct block *b1)
1396 {
1397 b0->sense = !b0->sense;
1398 backpatch(b0, b1->head);
1399 b0->sense = !b0->sense;
1400 merge(b1, b0);
1401 b1->head = b0->head;
1402 }
1403
1404 void
1405 gen_not(struct block *b)
1406 {
1407 b->sense = !b->sense;
1408 }
1409
1410 static struct block *
1411 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1412 u_int size, bpf_u_int32 v)
1413 {
1414 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1415 }
1416
1417 static struct block *
1418 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1419 u_int size, bpf_u_int32 v)
1420 {
1421 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1422 }
1423
1424 static struct block *
1425 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1426 u_int size, bpf_u_int32 v)
1427 {
1428 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1429 }
1430
1431 static struct block *
1432 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1433 u_int size, bpf_u_int32 v)
1434 {
1435 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1436 }
1437
1438 static struct block *
1439 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1440 u_int size, bpf_u_int32 v)
1441 {
1442 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1443 }
1444
1445 static struct block *
1446 gen_cmp_ne(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1447 u_int size, bpf_u_int32 v)
1448 {
1449 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 1, v);
1450 }
1451
1452 static struct block *
1453 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1454 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1455 {
1456 /*
1457 * For any A: if mask == 0, it means A & mask == 0, so the result is
1458 * true iff v == 0. In this case ideally the caller should have
1459 * skipped this invocation and have fewer statement blocks to juggle.
1460 * If the caller could have skipped, but has not, produce a block with
1461 * fewer statements.
1462 *
1463 * This could be done in gen_ncmp() in a more generic way, but this
1464 * function is the only code path that can have mask == 0.
1465 */
1466 if (mask == 0)
1467 return v ? gen_false(cstate) : gen_true(cstate);
1468
1469 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1470 }
1471
1472 static struct block *
1473 gen_mcmp_ne(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1474 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1475 {
1476 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 1, v);
1477 }
1478
1479 static struct block *
1480 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1481 u_int size, const u_char *v)
1482 {
1483 register struct block *b, *tmp;
1484
1485 b = NULL;
1486 while (size >= 4) {
1487 register const u_char *p = &v[size - 4];
1488
1489 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1490 EXTRACT_BE_U_4(p));
1491 if (b != NULL)
1492 gen_and(b, tmp);
1493 b = tmp;
1494 size -= 4;
1495 }
1496 while (size >= 2) {
1497 register const u_char *p = &v[size - 2];
1498
1499 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1500 EXTRACT_BE_U_2(p));
1501 if (b != NULL)
1502 gen_and(b, tmp);
1503 b = tmp;
1504 size -= 2;
1505 }
1506 if (size > 0) {
1507 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1508 if (b != NULL)
1509 gen_and(b, tmp);
1510 b = tmp;
1511 }
1512 return b;
1513 }
1514
1515 static struct block *
1516 gen_jmp(compiler_state_t *cstate, int jtype, bpf_u_int32 v, struct slist *stmts)
1517 {
1518 struct block *b = new_block(cstate, JMP(jtype));
1519 b->s.k = v;
1520 b->stmts = stmts;
1521 return b;
1522 }
1523
1524 static struct block *
1525 gen_set(compiler_state_t *cstate, bpf_u_int32 v, struct slist *stmts)
1526 {
1527 return gen_jmp(cstate, BPF_JSET, v, stmts);
1528 }
1529
1530 static struct block *
1531 gen_unset(compiler_state_t *cstate, bpf_u_int32 v, struct slist *stmts)
1532 {
1533 struct block *b = gen_set(cstate, v, stmts);
1534 gen_not(b);
1535 return b;
1536 }
1537
1538 /*
1539 * AND the field of size "size" at offset "offset" relative to the header
1540 * specified by "offrel" with "mask", and compare it with the value "v"
1541 * with the test specified by "jtype"; if "reverse" is true, the test
1542 * should test the opposite of "jtype".
1543 */
1544 static struct block *
1545 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1546 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1547 bpf_u_int32 v)
1548 {
1549 struct slist *s, *s2;
1550 struct block *b;
1551
1552 s = gen_load_a(cstate, offrel, offset, size);
1553
1554 if (mask != 0xffffffff) {
1555 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1556 s2->s.k = mask;
1557 sappend(s, s2);
1558 }
1559
1560 b = gen_jmp(cstate, jtype, v, s);
1561 if (reverse)
1562 gen_not(b);
1563 return b;
1564 }
1565
1566 static int
1567 init_linktype(compiler_state_t *cstate, pcap_t *p)
1568 {
1569 cstate->pcap_fddipad = p->fddipad;
1570
1571 /*
1572 * We start out with only one link-layer header.
1573 */
1574 cstate->outermostlinktype = pcap_datalink(p);
1575 cstate->off_outermostlinkhdr.constant_part = 0;
1576 cstate->off_outermostlinkhdr.is_variable = 0;
1577 cstate->off_outermostlinkhdr.reg = -1;
1578
1579 cstate->prevlinktype = cstate->outermostlinktype;
1580 cstate->off_prevlinkhdr.constant_part = 0;
1581 cstate->off_prevlinkhdr.is_variable = 0;
1582 cstate->off_prevlinkhdr.reg = -1;
1583
1584 cstate->linktype = cstate->outermostlinktype;
1585 cstate->off_linkhdr.constant_part = 0;
1586 cstate->off_linkhdr.is_variable = 0;
1587 cstate->off_linkhdr.reg = -1;
1588
1589 /*
1590 * XXX
1591 */
1592 cstate->off_linkpl.constant_part = 0;
1593 cstate->off_linkpl.is_variable = 0;
1594 cstate->off_linkpl.reg = -1;
1595
1596 cstate->off_linktype.constant_part = 0;
1597 cstate->off_linktype.is_variable = 0;
1598 cstate->off_linktype.reg = -1;
1599
1600 /*
1601 * Assume it's not raw ATM with a pseudo-header, for now.
1602 */
1603 cstate->is_atm = 0;
1604 cstate->off_vpi = OFFSET_NOT_SET;
1605 cstate->off_vci = OFFSET_NOT_SET;
1606 cstate->off_proto = OFFSET_NOT_SET;
1607 cstate->off_payload = OFFSET_NOT_SET;
1608
1609 /*
1610 * And not encapsulated with either Geneve or VXLAN.
1611 */
1612 cstate->is_encap = 0;
1613
1614 /*
1615 * No variable length VLAN offset by default
1616 */
1617 cstate->is_vlan_vloffset = 0;
1618
1619 /*
1620 * And assume we're not doing SS7.
1621 */
1622 cstate->off_li = OFFSET_NOT_SET;
1623 cstate->off_li_hsl = OFFSET_NOT_SET;
1624 cstate->off_sio = OFFSET_NOT_SET;
1625 cstate->off_opc = OFFSET_NOT_SET;
1626 cstate->off_dpc = OFFSET_NOT_SET;
1627 cstate->off_sls = OFFSET_NOT_SET;
1628
1629 cstate->label_stack_depth = 0;
1630 cstate->vlan_stack_depth = 0;
1631
1632 switch (cstate->linktype) {
1633
1634 case DLT_ARCNET:
1635 cstate->off_linktype.constant_part = 2;
1636 cstate->off_linkpl.constant_part = 6;
1637 cstate->off_nl = 0; /* XXX in reality, variable! */
1638 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1639 break;
1640
1641 case DLT_ARCNET_LINUX:
1642 cstate->off_linktype.constant_part = 4;
1643 cstate->off_linkpl.constant_part = 8;
1644 cstate->off_nl = 0; /* XXX in reality, variable! */
1645 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1646 break;
1647
1648 case DLT_EN10MB:
1649 cstate->off_linktype.constant_part = 12;
1650 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1651 cstate->off_nl = 0; /* Ethernet II */
1652 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1653 break;
1654
1655 case DLT_SLIP:
1656 /*
1657 * SLIP doesn't have a link level type. The 16 byte
1658 * header is hacked into our SLIP driver.
1659 */
1660 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1661 cstate->off_linkpl.constant_part = 16;
1662 cstate->off_nl = 0;
1663 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1664 break;
1665
1666 case DLT_SLIP_BSDOS:
1667 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1668 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1669 /* XXX end */
1670 cstate->off_linkpl.constant_part = 24;
1671 cstate->off_nl = 0;
1672 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1673 break;
1674
1675 case DLT_NULL:
1676 case DLT_LOOP:
1677 cstate->off_linktype.constant_part = 0;
1678 cstate->off_linkpl.constant_part = 4;
1679 cstate->off_nl = 0;
1680 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1681 break;
1682
1683 case DLT_ENC:
1684 cstate->off_linktype.constant_part = 0;
1685 cstate->off_linkpl.constant_part = 12;
1686 cstate->off_nl = 0;
1687 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1688 break;
1689
1690 case DLT_PPP:
1691 case DLT_PPP_PPPD:
1692 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1693 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1694 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1695 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1696 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1697 cstate->off_nl = 0;
1698 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1699 break;
1700
1701 case DLT_PPP_ETHER:
1702 /*
1703 * This does not include the Ethernet header, and
1704 * only covers session state.
1705 */
1706 cstate->off_linktype.constant_part = 6;
1707 cstate->off_linkpl.constant_part = 8;
1708 cstate->off_nl = 0;
1709 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1710 break;
1711
1712 case DLT_PPP_BSDOS:
1713 cstate->off_linktype.constant_part = 5;
1714 cstate->off_linkpl.constant_part = 24;
1715 cstate->off_nl = 0;
1716 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1717 break;
1718
1719 case DLT_FDDI:
1720 /*
1721 * FDDI doesn't really have a link-level type field.
1722 * We set "off_linktype" to the offset of the LLC header.
1723 *
1724 * To check for Ethernet types, we assume that SSAP = SNAP
1725 * is being used and pick out the encapsulated Ethernet type.
1726 * XXX - should we generate code to check for SNAP?
1727 */
1728 cstate->off_linktype.constant_part = 13;
1729 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1730 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1731 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1732 cstate->off_nl = 8; /* 802.2+SNAP */
1733 cstate->off_nl_nosnap = 3; /* 802.2 */
1734 break;
1735
1736 case DLT_IEEE802:
1737 /*
1738 * Token Ring doesn't really have a link-level type field.
1739 * We set "off_linktype" to the offset of the LLC header.
1740 *
1741 * To check for Ethernet types, we assume that SSAP = SNAP
1742 * is being used and pick out the encapsulated Ethernet type.
1743 * XXX - should we generate code to check for SNAP?
1744 *
1745 * XXX - the header is actually variable-length.
1746 * Some various Linux patched versions gave 38
1747 * as "off_linktype" and 40 as "off_nl"; however,
1748 * if a token ring packet has *no* routing
1749 * information, i.e. is not source-routed, the correct
1750 * values are 20 and 22, as they are in the vanilla code.
1751 *
1752 * A packet is source-routed iff the uppermost bit
1753 * of the first byte of the source address, at an
1754 * offset of 8, has the uppermost bit set. If the
1755 * packet is source-routed, the total number of bytes
1756 * of routing information is 2 plus bits 0x1F00 of
1757 * the 16-bit value at an offset of 14 (shifted right
1758 * 8 - figure out which byte that is).
1759 */
1760 cstate->off_linktype.constant_part = 14;
1761 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1762 cstate->off_nl = 8; /* 802.2+SNAP */
1763 cstate->off_nl_nosnap = 3; /* 802.2 */
1764 break;
1765
1766 case DLT_PRISM_HEADER:
1767 case DLT_IEEE802_11_RADIO_AVS:
1768 case DLT_IEEE802_11_RADIO:
1769 cstate->off_linkhdr.is_variable = 1;
1770 /* Fall through, 802.11 doesn't have a variable link
1771 * prefix but is otherwise the same. */
1772 /* FALLTHROUGH */
1773
1774 case DLT_IEEE802_11:
1775 /*
1776 * 802.11 doesn't really have a link-level type field.
1777 * We set "off_linktype.constant_part" to the offset of
1778 * the LLC header.
1779 *
1780 * To check for Ethernet types, we assume that SSAP = SNAP
1781 * is being used and pick out the encapsulated Ethernet type.
1782 * XXX - should we generate code to check for SNAP?
1783 *
1784 * We also handle variable-length radio headers here.
1785 * The Prism header is in theory variable-length, but in
1786 * practice it's always 144 bytes long. However, some
1787 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1788 * sometimes or always supply an AVS header, so we
1789 * have to check whether the radio header is a Prism
1790 * header or an AVS header, so, in practice, it's
1791 * variable-length.
1792 */
1793 cstate->off_linktype.constant_part = 24;
1794 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1795 cstate->off_linkpl.is_variable = 1;
1796 cstate->off_nl = 8; /* 802.2+SNAP */
1797 cstate->off_nl_nosnap = 3; /* 802.2 */
1798 break;
1799
1800 case DLT_PPI:
1801 /*
1802 * At the moment we treat PPI the same way that we treat
1803 * normal Radiotap encoded packets. The difference is in
1804 * the function that generates the code at the beginning
1805 * to compute the header length. Since this code generator
1806 * of PPI supports bare 802.11 encapsulation only (i.e.
1807 * the encapsulated DLT should be DLT_IEEE802_11) we
1808 * generate code to check for this too.
1809 */
1810 cstate->off_linktype.constant_part = 24;
1811 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1812 cstate->off_linkpl.is_variable = 1;
1813 cstate->off_linkhdr.is_variable = 1;
1814 cstate->off_nl = 8; /* 802.2+SNAP */
1815 cstate->off_nl_nosnap = 3; /* 802.2 */
1816 break;
1817
1818 case DLT_ATM_RFC1483:
1819 case DLT_ATM_CLIP: /* Linux ATM defines this */
1820 /*
1821 * assume routed, non-ISO PDUs
1822 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1823 *
1824 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1825 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1826 * latter would presumably be treated the way PPPoE
1827 * should be, so you can do "pppoe and udp port 2049"
1828 * or "pppoa and tcp port 80" and have it check for
1829 * PPPo{A,E} and a PPP protocol of IP and....
1830 */
1831 cstate->off_linktype.constant_part = 0;
1832 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1833 cstate->off_nl = 8; /* 802.2+SNAP */
1834 cstate->off_nl_nosnap = 3; /* 802.2 */
1835 break;
1836
1837 case DLT_SUNATM:
1838 /*
1839 * Full Frontal ATM; you get AALn PDUs with an ATM
1840 * pseudo-header.
1841 */
1842 cstate->is_atm = 1;
1843 cstate->off_vpi = SUNATM_VPI_POS;
1844 cstate->off_vci = SUNATM_VCI_POS;
1845 cstate->off_proto = PROTO_POS;
1846 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1847 cstate->off_linktype.constant_part = cstate->off_payload;
1848 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1849 cstate->off_nl = 8; /* 802.2+SNAP */
1850 cstate->off_nl_nosnap = 3; /* 802.2 */
1851 break;
1852
1853 case DLT_RAW:
1854 case DLT_IPV4:
1855 case DLT_IPV6:
1856 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1857 cstate->off_linkpl.constant_part = 0;
1858 cstate->off_nl = 0;
1859 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1860 break;
1861
1862 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1863 cstate->off_linktype.constant_part = 14;
1864 cstate->off_linkpl.constant_part = 16;
1865 cstate->off_nl = 0;
1866 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1867 break;
1868
1869 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1870 cstate->off_linktype.constant_part = 0;
1871 cstate->off_linkpl.constant_part = 20;
1872 cstate->off_nl = 0;
1873 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1874 break;
1875
1876 case DLT_LTALK:
1877 /*
1878 * LocalTalk does have a 1-byte type field in the LLAP header,
1879 * but really it just indicates whether there is a "short" or
1880 * "long" DDP packet following.
1881 */
1882 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1883 cstate->off_linkpl.constant_part = 0;
1884 cstate->off_nl = 0;
1885 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1886 break;
1887
1888 case DLT_IP_OVER_FC:
1889 /*
1890 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1891 * link-level type field. We set "off_linktype" to the
1892 * offset of the LLC header.
1893 *
1894 * To check for Ethernet types, we assume that SSAP = SNAP
1895 * is being used and pick out the encapsulated Ethernet type.
1896 * XXX - should we generate code to check for SNAP? RFC
1897 * 2625 says SNAP should be used.
1898 */
1899 cstate->off_linktype.constant_part = 16;
1900 cstate->off_linkpl.constant_part = 16;
1901 cstate->off_nl = 8; /* 802.2+SNAP */
1902 cstate->off_nl_nosnap = 3; /* 802.2 */
1903 break;
1904
1905 case DLT_FRELAY:
1906 /*
1907 * XXX - we should set this to handle SNAP-encapsulated
1908 * frames (NLPID of 0x80).
1909 */
1910 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1911 cstate->off_linkpl.constant_part = 0;
1912 cstate->off_nl = 0;
1913 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1914 break;
1915
1916 /*
1917 * the only BPF-interesting FRF.16 frames are non-control frames;
1918 * Frame Relay has a variable length link-layer
1919 * so lets start with offset 4 for now and increments later on (FIXME);
1920 */
1921 case DLT_MFR:
1922 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1923 cstate->off_linkpl.constant_part = 0;
1924 cstate->off_nl = 4;
1925 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1926 break;
1927
1928 case DLT_APPLE_IP_OVER_IEEE1394:
1929 cstate->off_linktype.constant_part = 16;
1930 cstate->off_linkpl.constant_part = 18;
1931 cstate->off_nl = 0;
1932 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1933 break;
1934
1935 case DLT_SYMANTEC_FIREWALL:
1936 cstate->off_linktype.constant_part = 6;
1937 cstate->off_linkpl.constant_part = 44;
1938 cstate->off_nl = 0; /* Ethernet II */
1939 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1940 break;
1941
1942 case DLT_PFLOG:
1943 cstate->off_linktype.constant_part = 0;
1944 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1945 cstate->off_linkpl.is_variable = 1;
1946 cstate->off_nl = 0;
1947 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1948 break;
1949
1950 case DLT_JUNIPER_MFR:
1951 case DLT_JUNIPER_MLFR:
1952 case DLT_JUNIPER_MLPPP:
1953 case DLT_JUNIPER_PPP:
1954 case DLT_JUNIPER_CHDLC:
1955 case DLT_JUNIPER_FRELAY:
1956 cstate->off_linktype.constant_part = 4;
1957 cstate->off_linkpl.constant_part = 4;
1958 cstate->off_nl = 0;
1959 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1960 break;
1961
1962 case DLT_JUNIPER_ATM1:
1963 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1964 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1965 cstate->off_nl = 0;
1966 cstate->off_nl_nosnap = 10;
1967 break;
1968
1969 case DLT_JUNIPER_ATM2:
1970 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1971 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1972 cstate->off_nl = 0;
1973 cstate->off_nl_nosnap = 10;
1974 break;
1975
1976 /* frames captured on a Juniper PPPoE service PIC
1977 * contain raw ethernet frames */
1978 case DLT_JUNIPER_PPPOE:
1979 case DLT_JUNIPER_ETHER:
1980 cstate->off_linkpl.constant_part = 14;
1981 cstate->off_linktype.constant_part = 16;
1982 cstate->off_nl = 18; /* Ethernet II */
1983 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1984 break;
1985
1986 case DLT_JUNIPER_PPPOE_ATM:
1987 cstate->off_linktype.constant_part = 4;
1988 cstate->off_linkpl.constant_part = 6;
1989 cstate->off_nl = 0;
1990 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1991 break;
1992
1993 case DLT_JUNIPER_GGSN:
1994 cstate->off_linktype.constant_part = 6;
1995 cstate->off_linkpl.constant_part = 12;
1996 cstate->off_nl = 0;
1997 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1998 break;
1999
2000 case DLT_JUNIPER_ES:
2001 cstate->off_linktype.constant_part = 6;
2002 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
2003 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
2004 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2005 break;
2006
2007 case DLT_JUNIPER_MONITOR:
2008 cstate->off_linktype.constant_part = 12;
2009 cstate->off_linkpl.constant_part = 12;
2010 cstate->off_nl = 0; /* raw IP/IP6 header */
2011 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2012 break;
2013
2014 case DLT_BACNET_MS_TP:
2015 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2016 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2017 cstate->off_nl = OFFSET_NOT_SET;
2018 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2019 break;
2020
2021 case DLT_JUNIPER_SERVICES:
2022 cstate->off_linktype.constant_part = 12;
2023 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
2024 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
2025 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2026 break;
2027
2028 case DLT_JUNIPER_VP:
2029 cstate->off_linktype.constant_part = 18;
2030 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2031 cstate->off_nl = OFFSET_NOT_SET;
2032 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2033 break;
2034
2035 case DLT_JUNIPER_ST:
2036 cstate->off_linktype.constant_part = 18;
2037 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2038 cstate->off_nl = OFFSET_NOT_SET;
2039 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2040 break;
2041
2042 case DLT_JUNIPER_ISM:
2043 cstate->off_linktype.constant_part = 8;
2044 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2045 cstate->off_nl = OFFSET_NOT_SET;
2046 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2047 break;
2048
2049 case DLT_JUNIPER_VS:
2050 case DLT_JUNIPER_SRX_E2E:
2051 case DLT_JUNIPER_FIBRECHANNEL:
2052 case DLT_JUNIPER_ATM_CEMIC:
2053 cstate->off_linktype.constant_part = 8;
2054 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2055 cstate->off_nl = OFFSET_NOT_SET;
2056 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2057 break;
2058
2059 case DLT_MTP2:
2060 cstate->off_li = 2;
2061 cstate->off_li_hsl = 4;
2062 cstate->off_sio = 3;
2063 cstate->off_opc = 4;
2064 cstate->off_dpc = 4;
2065 cstate->off_sls = 7;
2066 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2067 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2068 cstate->off_nl = OFFSET_NOT_SET;
2069 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2070 break;
2071
2072 case DLT_MTP2_WITH_PHDR:
2073 cstate->off_li = 6;
2074 cstate->off_li_hsl = 8;
2075 cstate->off_sio = 7;
2076 cstate->off_opc = 8;
2077 cstate->off_dpc = 8;
2078 cstate->off_sls = 11;
2079 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2080 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2081 cstate->off_nl = OFFSET_NOT_SET;
2082 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2083 break;
2084
2085 case DLT_ERF:
2086 cstate->off_li = 22;
2087 cstate->off_li_hsl = 24;
2088 cstate->off_sio = 23;
2089 cstate->off_opc = 24;
2090 cstate->off_dpc = 24;
2091 cstate->off_sls = 27;
2092 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2093 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2094 cstate->off_nl = OFFSET_NOT_SET;
2095 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2096 break;
2097
2098 case DLT_PFSYNC:
2099 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2100 cstate->off_linkpl.constant_part = 4;
2101 cstate->off_nl = 0;
2102 cstate->off_nl_nosnap = 0;
2103 break;
2104
2105 case DLT_AX25_KISS:
2106 /*
2107 * Currently, only raw "link[N:M]" filtering is supported.
2108 */
2109 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
2110 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2111 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
2112 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
2113 break;
2114
2115 case DLT_IPNET:
2116 cstate->off_linktype.constant_part = 1;
2117 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
2118 cstate->off_nl = 0;
2119 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2120 break;
2121
2122 case DLT_NETANALYZER:
2123 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
2124 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2125 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
2126 cstate->off_nl = 0; /* Ethernet II */
2127 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2128 break;
2129
2130 case DLT_NETANALYZER_TRANSPARENT:
2131 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2132 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
2133 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2134 cstate->off_nl = 0; /* Ethernet II */
2135 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
2136 break;
2137
2138 default:
2139 /*
2140 * For values in the range in which we've assigned new
2141 * DLT_ values, only raw "link[N:M]" filtering is supported.
2142 */
2143 if (cstate->linktype >= DLT_HIGH_MATCHING_MIN &&
2144 cstate->linktype <= DLT_HIGH_MATCHING_MAX) {
2145 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
2146 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
2147 cstate->off_nl = OFFSET_NOT_SET;
2148 cstate->off_nl_nosnap = OFFSET_NOT_SET;
2149 } else {
2150 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
2151 cstate->linktype, DLT_HIGH_MATCHING_MIN, DLT_HIGH_MATCHING_MAX);
2152 return (-1);
2153 }
2154 break;
2155 }
2156
2157 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
2158 return (0);
2159 }
2160
2161 /*
2162 * Load a value relative to the specified absolute offset.
2163 */
2164 static struct slist *
2165 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
2166 u_int offset, u_int size)
2167 {
2168 struct slist *s, *s2;
2169
2170 s = gen_abs_offset_varpart(cstate, abs_offset);
2171
2172 /*
2173 * If "s" is non-null, it has code to arrange that the X register
2174 * contains the variable part of the absolute offset, so we
2175 * generate a load relative to that, with an offset of
2176 * abs_offset->constant_part + offset.
2177 *
2178 * Otherwise, we can do an absolute load with an offset of
2179 * abs_offset->constant_part + offset.
2180 */
2181 if (s != NULL) {
2182 /*
2183 * "s" points to a list of statements that puts the
2184 * variable part of the absolute offset into the X register.
2185 * Do an indirect load, to use the X register as an offset.
2186 */
2187 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2188 s2->s.k = abs_offset->constant_part + offset;
2189 sappend(s, s2);
2190 } else {
2191 /*
2192 * There is no variable part of the absolute offset, so
2193 * just do an absolute load.
2194 */
2195 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2196 s->s.k = abs_offset->constant_part + offset;
2197 }
2198 return s;
2199 }
2200
2201 /*
2202 * Load a value relative to the beginning of the specified header.
2203 */
2204 static struct slist *
2205 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
2206 u_int size)
2207 {
2208 struct slist *s, *s2;
2209
2210 /*
2211 * Squelch warnings from compilers that *don't* assume that
2212 * offrel always has a valid enum value and therefore don't
2213 * assume that we'll always go through one of the case arms.
2214 *
2215 * If we have a default case, compilers that *do* assume that
2216 * will then complain about the default case code being
2217 * unreachable.
2218 *
2219 * Damned if you do, damned if you don't.
2220 */
2221 s = NULL;
2222
2223 switch (offrel) {
2224
2225 case OR_PACKET:
2226 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
2227 s->s.k = offset;
2228 break;
2229
2230 case OR_LINKHDR:
2231 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
2232 break;
2233
2234 case OR_PREVLINKHDR:
2235 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
2236 break;
2237
2238 case OR_LLC:
2239 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
2240 break;
2241
2242 case OR_PREVMPLSHDR:
2243 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
2244 break;
2245
2246 case OR_LINKPL:
2247 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
2248 break;
2249
2250 case OR_LINKPL_NOSNAP:
2251 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
2252 break;
2253
2254 case OR_LINKTYPE:
2255 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
2256 break;
2257
2258 case OR_TRAN_IPV4:
2259 /*
2260 * Load the X register with the length of the IPv4 header
2261 * (plus the offset of the link-layer header, if it's
2262 * preceded by a variable-length header such as a radio
2263 * header), in bytes.
2264 */
2265 s = gen_loadx_iphdrlen(cstate);
2266
2267 /*
2268 * Load the item at {offset of the link-layer payload} +
2269 * {offset, relative to the start of the link-layer
2270 * payload, of the IPv4 header} + {length of the IPv4 header} +
2271 * {specified offset}.
2272 *
2273 * If the offset of the link-layer payload is variable,
2274 * the variable part of that offset is included in the
2275 * value in the X register, and we include the constant
2276 * part in the offset of the load.
2277 */
2278 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
2279 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
2280 sappend(s, s2);
2281 break;
2282
2283 case OR_TRAN_IPV6:
2284 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
2285 break;
2286 }
2287 return s;
2288 }
2289
2290 /*
2291 * Generate code to load into the X register the sum of the length of
2292 * the IPv4 header and the variable part of the offset of the link-layer
2293 * payload.
2294 */
2295 static struct slist *
2296 gen_loadx_iphdrlen(compiler_state_t *cstate)
2297 {
2298 struct slist *s, *s2;
2299
2300 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
2301 if (s != NULL) {
2302 /*
2303 * The offset of the link-layer payload has a variable
2304 * part. "s" points to a list of statements that put
2305 * the variable part of that offset into the X register.
2306 *
2307 * The 4*([k]&0xf) addressing mode can't be used, as we
2308 * don't have a constant offset, so we have to load the
2309 * value in question into the A register and add to it
2310 * the value from the X register.
2311 */
2312 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2313 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2314 sappend(s, s2);
2315 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2316 s2->s.k = 0xf;
2317 sappend(s, s2);
2318 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2319 s2->s.k = 2;
2320 sappend(s, s2);
2321
2322 /*
2323 * The A register now contains the length of the IP header.
2324 * We need to add to it the variable part of the offset of
2325 * the link-layer payload, which is still in the X
2326 * register, and move the result into the X register.
2327 */
2328 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
2329 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
2330 } else {
2331 /*
2332 * The offset of the link-layer payload is a constant,
2333 * so no code was generated to load the (nonexistent)
2334 * variable part of that offset.
2335 *
2336 * This means we can use the 4*([k]&0xf) addressing
2337 * mode. Load the length of the IPv4 header, which
2338 * is at an offset of cstate->off_nl from the beginning of
2339 * the link-layer payload, and thus at an offset of
2340 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2341 * of the raw packet data, using that addressing mode.
2342 */
2343 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
2344 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
2345 }
2346 return s;
2347 }
2348
2349
2350 static struct block *
2351 gen_uncond(compiler_state_t *cstate, int rsense)
2352 {
2353 struct slist *s;
2354
2355 s = new_stmt(cstate, BPF_LD|BPF_IMM);
2356 s->s.k = !rsense;
2357 return gen_jmp(cstate, BPF_JEQ, 0, s);
2358 }
2359
2360 static inline struct block *
2361 gen_true(compiler_state_t *cstate)
2362 {
2363 return gen_uncond(cstate, 1);
2364 }
2365
2366 static inline struct block *
2367 gen_false(compiler_state_t *cstate)
2368 {
2369 return gen_uncond(cstate, 0);
2370 }
2371
2372 /*
2373 * Generate code to match a particular packet type.
2374 *
2375 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2376 * value, if <= ETHERMTU. We use that to determine whether to
2377 * match the type/length field or to check the type/length field for
2378 * a value <= ETHERMTU to see whether it's a type field and then do
2379 * the appropriate test.
2380 */
2381 static struct block *
2382 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2383 {
2384 struct block *b0, *b1;
2385
2386 switch (ll_proto) {
2387
2388 case LLCSAP_ISONS:
2389 case LLCSAP_IP:
2390 case LLCSAP_NETBEUI:
2391 /*
2392 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2393 * so we check the DSAP and SSAP.
2394 *
2395 * LLCSAP_IP checks for IP-over-802.2, rather
2396 * than IP-over-Ethernet or IP-over-SNAP.
2397 *
2398 * XXX - should we check both the DSAP and the
2399 * SSAP, like this, or should we check just the
2400 * DSAP, as we do for other types <= ETHERMTU
2401 * (i.e., other SAP values)?
2402 */
2403 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2404 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2405 gen_and(b0, b1);
2406 return b1;
2407
2408 case LLCSAP_IPX:
2409 /*
2410 * Check for;
2411 *
2412 * Ethernet_II frames, which are Ethernet
2413 * frames with a frame type of ETHERTYPE_IPX;
2414 *
2415 * Ethernet_802.3 frames, which are 802.3
2416 * frames (i.e., the type/length field is
2417 * a length field, <= ETHERMTU, rather than
2418 * a type field) with the first two bytes
2419 * after the Ethernet/802.3 header being
2420 * 0xFFFF;
2421 *
2422 * Ethernet_802.2 frames, which are 802.3
2423 * frames with an 802.2 LLC header and
2424 * with the IPX LSAP as the DSAP in the LLC
2425 * header;
2426 *
2427 * Ethernet_SNAP frames, which are 802.3
2428 * frames with an LLC header and a SNAP
2429 * header and with an OUI of 0x000000
2430 * (encapsulated Ethernet) and a protocol
2431 * ID of ETHERTYPE_IPX in the SNAP header.
2432 *
2433 * XXX - should we generate the same code both
2434 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2435 */
2436
2437 /*
2438 * This generates code to check both for the
2439 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2440 */
2441 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2442 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2443 gen_or(b0, b1);
2444
2445 /*
2446 * Now we add code to check for SNAP frames with
2447 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2448 */
2449 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2450 gen_or(b0, b1);
2451
2452 /*
2453 * Now we generate code to check for 802.3
2454 * frames in general.
2455 */
2456 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2457
2458 /*
2459 * Now add the check for 802.3 frames before the
2460 * check for Ethernet_802.2 and Ethernet_802.3,
2461 * as those checks should only be done on 802.3
2462 * frames, not on Ethernet frames.
2463 */
2464 gen_and(b0, b1);
2465
2466 /*
2467 * Now add the check for Ethernet_II frames, and
2468 * do that before checking for the other frame
2469 * types.
2470 */
2471 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2472 gen_or(b0, b1);
2473 return b1;
2474
2475 case ETHERTYPE_ATALK:
2476 case ETHERTYPE_AARP:
2477 /*
2478 * EtherTalk (AppleTalk protocols on Ethernet link
2479 * layer) may use 802.2 encapsulation.
2480 */
2481
2482 /*
2483 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2484 * we check for an Ethernet type field less or equal than
2485 * 1500, which means it's an 802.3 length field.
2486 */
2487 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2488
2489 /*
2490 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2491 * SNAP packets with an organization code of
2492 * 0x080007 (Apple, for Appletalk) and a protocol
2493 * type of ETHERTYPE_ATALK (Appletalk).
2494 *
2495 * 802.2-encapsulated ETHERTYPE_AARP packets are
2496 * SNAP packets with an organization code of
2497 * 0x000000 (encapsulated Ethernet) and a protocol
2498 * type of ETHERTYPE_AARP (Appletalk ARP).
2499 */
2500 if (ll_proto == ETHERTYPE_ATALK)
2501 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2502 else /* ll_proto == ETHERTYPE_AARP */
2503 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2504 gen_and(b0, b1);
2505
2506 /*
2507 * Check for Ethernet encapsulation (Ethertalk
2508 * phase 1?); we just check for the Ethernet
2509 * protocol type.
2510 */
2511 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2512
2513 gen_or(b0, b1);
2514 return b1;
2515
2516 default:
2517 if (ll_proto <= ETHERMTU) {
2518 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
2519 /*
2520 * This is an LLC SAP value, so the frames
2521 * that match would be 802.2 frames.
2522 * Check that the frame is an 802.2 frame
2523 * (i.e., that the length/type field is
2524 * a length field, <= ETHERMTU) and
2525 * then check the DSAP.
2526 */
2527 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2528 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2529 gen_and(b0, b1);
2530 return b1;
2531 } else {
2532 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
2533 /*
2534 * This is an Ethernet type, so compare
2535 * the length/type field with it (if
2536 * the frame is an 802.2 frame, the length
2537 * field will be <= ETHERMTU, and, as
2538 * "ll_proto" is > ETHERMTU, this test
2539 * will fail and the frame won't match,
2540 * which is what we want).
2541 */
2542 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2543 }
2544 }
2545 }
2546
2547 static struct block *
2548 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2549 {
2550 /*
2551 * For DLT_NULL, the link-layer header is a 32-bit word
2552 * containing an AF_ value in *host* byte order, and for
2553 * DLT_ENC, the link-layer header begins with a 32-bit
2554 * word containing an AF_ value in host byte order.
2555 *
2556 * In addition, if we're reading a saved capture file,
2557 * the host byte order in the capture may not be the
2558 * same as the host byte order on this machine.
2559 *
2560 * For DLT_LOOP, the link-layer header is a 32-bit
2561 * word containing an AF_ value in *network* byte order.
2562 */
2563 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2564 /*
2565 * The AF_ value is in host byte order, but the BPF
2566 * interpreter will convert it to network byte order.
2567 *
2568 * If this is a save file, and it's from a machine
2569 * with the opposite byte order to ours, we byte-swap
2570 * the AF_ value.
2571 *
2572 * Then we run it through "htonl()", and generate
2573 * code to compare against the result.
2574 */
2575 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2576 ll_proto = SWAPLONG(ll_proto);
2577 ll_proto = htonl(ll_proto);
2578 }
2579 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2580 }
2581
2582 /*
2583 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2584 * or IPv6 then we have an error.
2585 */
2586 static struct block *
2587 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2588 {
2589 switch (ll_proto) {
2590
2591 case ETHERTYPE_IP:
2592 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2593 /*NOTREACHED*/
2594
2595 case ETHERTYPE_IPV6:
2596 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2597 /*NOTREACHED*/
2598
2599 default:
2600 break;
2601 }
2602
2603 return gen_false(cstate);
2604 }
2605
2606 /*
2607 * Generate code to match a particular packet type.
2608 *
2609 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2610 * value, if <= ETHERMTU. We use that to determine whether to
2611 * match the type field or to check the type field for the special
2612 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2613 */
2614 static struct block *
2615 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2616 {
2617 struct block *b0, *b1;
2618
2619 switch (ll_proto) {
2620
2621 case LLCSAP_ISONS:
2622 case LLCSAP_IP:
2623 case LLCSAP_NETBEUI:
2624 /*
2625 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2626 * so we check the DSAP and SSAP.
2627 *
2628 * LLCSAP_IP checks for IP-over-802.2, rather
2629 * than IP-over-Ethernet or IP-over-SNAP.
2630 *
2631 * XXX - should we check both the DSAP and the
2632 * SSAP, like this, or should we check just the
2633 * DSAP, as we do for other types <= ETHERMTU
2634 * (i.e., other SAP values)?
2635 */
2636 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2637 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2638 gen_and(b0, b1);
2639 return b1;
2640
2641 case LLCSAP_IPX:
2642 /*
2643 * Ethernet_II frames, which are Ethernet
2644 * frames with a frame type of ETHERTYPE_IPX;
2645 *
2646 * Ethernet_802.3 frames, which have a frame
2647 * type of LINUX_SLL_P_802_3;
2648 *
2649 * Ethernet_802.2 frames, which are 802.3
2650 * frames with an 802.2 LLC header (i.e, have
2651 * a frame type of LINUX_SLL_P_802_2) and
2652 * with the IPX LSAP as the DSAP in the LLC
2653 * header;
2654 *
2655 * Ethernet_SNAP frames, which are 802.3
2656 * frames with an LLC header and a SNAP
2657 * header and with an OUI of 0x000000
2658 * (encapsulated Ethernet) and a protocol
2659 * ID of ETHERTYPE_IPX in the SNAP header.
2660 *
2661 * First, do the checks on LINUX_SLL_P_802_2
2662 * frames; generate the check for either
2663 * Ethernet_802.2 or Ethernet_SNAP frames, and
2664 * then put a check for LINUX_SLL_P_802_2 frames
2665 * before it.
2666 */
2667 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2668 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2669 gen_or(b0, b1);
2670 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2671 gen_and(b0, b1);
2672
2673 /*
2674 * Now check for 802.3 frames and OR that with
2675 * the previous test.
2676 */
2677 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2678 gen_or(b0, b1);
2679
2680 /*
2681 * Now add the check for Ethernet_II frames, and
2682 * do that before checking for the other frame
2683 * types.
2684 */
2685 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2686 gen_or(b0, b1);
2687 return b1;
2688
2689 case ETHERTYPE_ATALK:
2690 case ETHERTYPE_AARP:
2691 /*
2692 * EtherTalk (AppleTalk protocols on Ethernet link
2693 * layer) may use 802.2 encapsulation.
2694 */
2695
2696 /*
2697 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2698 * we check for the 802.2 protocol type in the
2699 * "Ethernet type" field.
2700 */
2701 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2702
2703 /*
2704 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2705 * SNAP packets with an organization code of
2706 * 0x080007 (Apple, for Appletalk) and a protocol
2707 * type of ETHERTYPE_ATALK (Appletalk).
2708 *
2709 * 802.2-encapsulated ETHERTYPE_AARP packets are
2710 * SNAP packets with an organization code of
2711 * 0x000000 (encapsulated Ethernet) and a protocol
2712 * type of ETHERTYPE_AARP (Appletalk ARP).
2713 */
2714 if (ll_proto == ETHERTYPE_ATALK)
2715 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2716 else /* ll_proto == ETHERTYPE_AARP */
2717 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2718 gen_and(b0, b1);
2719
2720 /*
2721 * Check for Ethernet encapsulation (Ethertalk
2722 * phase 1?); we just check for the Ethernet
2723 * protocol type.
2724 */
2725 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2726
2727 gen_or(b0, b1);
2728 return b1;
2729
2730 default:
2731 if (ll_proto <= ETHERMTU) {
2732 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
2733 /*
2734 * This is an LLC SAP value, so the frames
2735 * that match would be 802.2 frames.
2736 * Check for the 802.2 protocol type
2737 * in the "Ethernet type" field, and
2738 * then check the DSAP.
2739 */
2740 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2741 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2742 ll_proto);
2743 gen_and(b0, b1);
2744 return b1;
2745 } else {
2746 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
2747 /*
2748 * This is an Ethernet type, so compare
2749 * the length/type field with it (if
2750 * the frame is an 802.2 frame, the length
2751 * field will be <= ETHERMTU, and, as
2752 * "ll_proto" is > ETHERMTU, this test
2753 * will fail and the frame won't match,
2754 * which is what we want).
2755 */
2756 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2757 }
2758 }
2759 }
2760
2761 /*
2762 * Load a value relative to the beginning of the link-layer header after the
2763 * pflog header.
2764 */
2765 static struct slist *
2766 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2767 {
2768 struct slist *s1, *s2;
2769
2770 /*
2771 * Generate code to load the length of the pflog header into
2772 * the register assigned to hold that length, if one has been
2773 * assigned. (If one hasn't been assigned, no code we've
2774 * generated uses that prefix, so we don't need to generate any
2775 * code to load it.)
2776 */
2777 if (cstate->off_linkpl.reg != -1) {
2778 /*
2779 * The length is in the first byte of the header.
2780 */
2781 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2782 s1->s.k = 0;
2783
2784 /*
2785 * Round it up to a multiple of 4.
2786 * Add 3, and clear the lower 2 bits.
2787 */
2788 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2789 s2->s.k = 3;
2790 sappend(s1, s2);
2791 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2792 s2->s.k = 0xfffffffc;
2793 sappend(s1, s2);
2794
2795 /*
2796 * Now allocate a register to hold that value and store
2797 * it.
2798 */
2799 s2 = new_stmt(cstate, BPF_ST);
2800 s2->s.k = cstate->off_linkpl.reg;
2801 sappend(s1, s2);
2802
2803 /*
2804 * Now move it into the X register.
2805 */
2806 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2807 sappend(s1, s2);
2808
2809 return (s1);
2810 } else
2811 return (NULL);
2812 }
2813
2814 static struct slist *
2815 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2816 {
2817 struct slist *s1, *s2;
2818 struct slist *sjeq_avs_cookie;
2819 struct slist *sjcommon;
2820
2821 /*
2822 * This code is not compatible with the optimizer, as
2823 * we are generating jmp instructions within a normal
2824 * slist of instructions
2825 */
2826 cstate->no_optimize = 1;
2827
2828 /*
2829 * Generate code to load the length of the radio header into
2830 * the register assigned to hold that length, if one has been
2831 * assigned. (If one hasn't been assigned, no code we've
2832 * generated uses that prefix, so we don't need to generate any
2833 * code to load it.)
2834 *
2835 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2836 * or always use the AVS header rather than the Prism header.
2837 * We load a 4-byte big-endian value at the beginning of the
2838 * raw packet data, and see whether, when masked with 0xFFFFF000,
2839 * it's equal to 0x80211000. If so, that indicates that it's
2840 * an AVS header (the masked-out bits are the version number).
2841 * Otherwise, it's a Prism header.
2842 *
2843 * XXX - the Prism header is also, in theory, variable-length,
2844 * but no known software generates headers that aren't 144
2845 * bytes long.
2846 */
2847 if (cstate->off_linkhdr.reg != -1) {
2848 /*
2849 * Load the cookie.
2850 */
2851 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2852 s1->s.k = 0;
2853
2854 /*
2855 * AND it with 0xFFFFF000.
2856 */
2857 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2858 s2->s.k = 0xFFFFF000;
2859 sappend(s1, s2);
2860
2861 /*
2862 * Compare with 0x80211000.
2863 */
2864 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2865 sjeq_avs_cookie->s.k = 0x80211000;
2866 sappend(s1, sjeq_avs_cookie);
2867
2868 /*
2869 * If it's AVS:
2870 *
2871 * The 4 bytes at an offset of 4 from the beginning of
2872 * the AVS header are the length of the AVS header.
2873 * That field is big-endian.
2874 */
2875 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2876 s2->s.k = 4;
2877 sappend(s1, s2);
2878 sjeq_avs_cookie->s.jt = s2;
2879
2880 /*
2881 * Now jump to the code to allocate a register
2882 * into which to save the header length and
2883 * store the length there. (The "jump always"
2884 * instruction needs to have the k field set;
2885 * it's added to the PC, so, as we're jumping
2886 * over a single instruction, it should be 1.)
2887 */
2888 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2889 sjcommon->s.k = 1;
2890 sappend(s1, sjcommon);
2891
2892 /*
2893 * Now for the code that handles the Prism header.
2894 * Just load the length of the Prism header (144)
2895 * into the A register. Have the test for an AVS
2896 * header branch here if we don't have an AVS header.
2897 */
2898 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2899 s2->s.k = 144;
2900 sappend(s1, s2);
2901 sjeq_avs_cookie->s.jf = s2;
2902
2903 /*
2904 * Now allocate a register to hold that value and store
2905 * it. The code for the AVS header will jump here after
2906 * loading the length of the AVS header.
2907 */
2908 s2 = new_stmt(cstate, BPF_ST);
2909 s2->s.k = cstate->off_linkhdr.reg;
2910 sappend(s1, s2);
2911 sjcommon->s.jf = s2;
2912
2913 /*
2914 * Now move it into the X register.
2915 */
2916 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2917 sappend(s1, s2);
2918
2919 return (s1);
2920 } else
2921 return (NULL);
2922 }
2923
2924 static struct slist *
2925 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2926 {
2927 struct slist *s1, *s2;
2928
2929 /*
2930 * Generate code to load the length of the AVS header into
2931 * the register assigned to hold that length, if one has been
2932 * assigned. (If one hasn't been assigned, no code we've
2933 * generated uses that prefix, so we don't need to generate any
2934 * code to load it.)
2935 */
2936 if (cstate->off_linkhdr.reg != -1) {
2937 /*
2938 * The 4 bytes at an offset of 4 from the beginning of
2939 * the AVS header are the length of the AVS header.
2940 * That field is big-endian.
2941 */
2942 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2943 s1->s.k = 4;
2944
2945 /*
2946 * Now allocate a register to hold that value and store
2947 * it.
2948 */
2949 s2 = new_stmt(cstate, BPF_ST);
2950 s2->s.k = cstate->off_linkhdr.reg;
2951 sappend(s1, s2);
2952
2953 /*
2954 * Now move it into the X register.
2955 */
2956 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2957 sappend(s1, s2);
2958
2959 return (s1);
2960 } else
2961 return (NULL);
2962 }
2963
2964 static struct slist *
2965 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2966 {
2967 struct slist *s1, *s2;
2968
2969 /*
2970 * Generate code to load the length of the radiotap header into
2971 * the register assigned to hold that length, if one has been
2972 * assigned. (If one hasn't been assigned, no code we've
2973 * generated uses that prefix, so we don't need to generate any
2974 * code to load it.)
2975 */
2976 if (cstate->off_linkhdr.reg != -1) {
2977 /*
2978 * The 2 bytes at offsets of 2 and 3 from the beginning
2979 * of the radiotap header are the length of the radiotap
2980 * header; unfortunately, it's little-endian, so we have
2981 * to load it a byte at a time and construct the value.
2982 */
2983
2984 /*
2985 * Load the high-order byte, at an offset of 3, shift it
2986 * left a byte, and put the result in the X register.
2987 */
2988 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2989 s1->s.k = 3;
2990 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2991 sappend(s1, s2);
2992 s2->s.k = 8;
2993 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2994 sappend(s1, s2);
2995
2996 /*
2997 * Load the next byte, at an offset of 2, and OR the
2998 * value from the X register into it.
2999 */
3000 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3001 sappend(s1, s2);
3002 s2->s.k = 2;
3003 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
3004 sappend(s1, s2);
3005
3006 /*
3007 * Now allocate a register to hold that value and store
3008 * it.
3009 */
3010 s2 = new_stmt(cstate, BPF_ST);
3011 s2->s.k = cstate->off_linkhdr.reg;
3012 sappend(s1, s2);
3013
3014 /*
3015 * Now move it into the X register.
3016 */
3017 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3018 sappend(s1, s2);
3019
3020 return (s1);
3021 } else
3022 return (NULL);
3023 }
3024
3025 /*
3026 * At the moment we treat PPI as normal Radiotap encoded
3027 * packets. The difference is in the function that generates
3028 * the code at the beginning to compute the header length.
3029 * Since this code generator of PPI supports bare 802.11
3030 * encapsulation only (i.e. the encapsulated DLT should be
3031 * DLT_IEEE802_11) we generate code to check for this too;
3032 * that's done in finish_parse().
3033 */
3034 static struct slist *
3035 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
3036 {
3037 struct slist *s1, *s2;
3038
3039 /*
3040 * Generate code to load the length of the radiotap header
3041 * into the register assigned to hold that length, if one has
3042 * been assigned.
3043 */
3044 if (cstate->off_linkhdr.reg != -1) {
3045 /*
3046 * The 2 bytes at offsets of 2 and 3 from the beginning
3047 * of the radiotap header are the length of the radiotap
3048 * header; unfortunately, it's little-endian, so we have
3049 * to load it a byte at a time and construct the value.
3050 */
3051
3052 /*
3053 * Load the high-order byte, at an offset of 3, shift it
3054 * left a byte, and put the result in the X register.
3055 */
3056 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3057 s1->s.k = 3;
3058 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
3059 sappend(s1, s2);
3060 s2->s.k = 8;
3061 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3062 sappend(s1, s2);
3063
3064 /*
3065 * Load the next byte, at an offset of 2, and OR the
3066 * value from the X register into it.
3067 */
3068 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
3069 sappend(s1, s2);
3070 s2->s.k = 2;
3071 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
3072 sappend(s1, s2);
3073
3074 /*
3075 * Now allocate a register to hold that value and store
3076 * it.
3077 */
3078 s2 = new_stmt(cstate, BPF_ST);
3079 s2->s.k = cstate->off_linkhdr.reg;
3080 sappend(s1, s2);
3081
3082 /*
3083 * Now move it into the X register.
3084 */
3085 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
3086 sappend(s1, s2);
3087
3088 return (s1);
3089 } else
3090 return (NULL);
3091 }
3092
3093 /*
3094 * Load a value relative to the beginning of the link-layer header after the 802.11
3095 * header, i.e. LLC_SNAP.
3096 * The link-layer header doesn't necessarily begin at the beginning
3097 * of the packet data; there might be a variable-length prefix containing
3098 * radio information.
3099 */
3100 static struct slist *
3101 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
3102 {
3103 struct slist *s2;
3104 struct slist *sjset_data_frame_1;
3105 struct slist *sjset_data_frame_2;
3106 struct slist *sjset_qos;
3107 struct slist *sjset_radiotap_flags_present;
3108 struct slist *sjset_radiotap_ext_present;
3109 struct slist *sjset_radiotap_tsft_present;
3110 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
3111 struct slist *s_roundup;
3112
3113 if (cstate->off_linkpl.reg == -1) {
3114 /*
3115 * No register has been assigned to the offset of
3116 * the link-layer payload, which means nobody needs
3117 * it; don't bother computing it - just return
3118 * what we already have.
3119 */
3120 return (s);
3121 }
3122
3123 /*
3124 * This code is not compatible with the optimizer, as
3125 * we are generating jmp instructions within a normal
3126 * slist of instructions
3127 */
3128 cstate->no_optimize = 1;
3129
3130 /*
3131 * If "s" is non-null, it has code to arrange that the X register
3132 * contains the length of the prefix preceding the link-layer
3133 * header.
3134 *
3135 * Otherwise, the length of the prefix preceding the link-layer
3136 * header is "off_outermostlinkhdr.constant_part".
3137 */
3138 if (s == NULL) {
3139 /*
3140 * There is no variable-length header preceding the
3141 * link-layer header.
3142 *
3143 * Load the length of the fixed-length prefix preceding
3144 * the link-layer header (if any) into the X register,
3145 * and store it in the cstate->off_linkpl.reg register.
3146 * That length is off_outermostlinkhdr.constant_part.
3147 */
3148 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
3149 s->s.k = cstate->off_outermostlinkhdr.constant_part;
3150 }
3151
3152 /*
3153 * The X register contains the offset of the beginning of the
3154 * link-layer header; add 24, which is the minimum length
3155 * of the MAC header for a data frame, to that, and store it
3156 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3157 * which is at the offset in the X register, with an indexed load.
3158 */
3159 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
3160 sappend(s, s2);
3161 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
3162 s2->s.k = 24;
3163 sappend(s, s2);
3164 s2 = new_stmt(cstate, BPF_ST);
3165 s2->s.k = cstate->off_linkpl.reg;
3166 sappend(s, s2);
3167
3168 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
3169 s2->s.k = 0;
3170 sappend(s, s2);
3171
3172 /*
3173 * Check the Frame Control field to see if this is a data frame;
3174 * a data frame has the 0x08 bit (b3) in that field set and the
3175 * 0x04 bit (b2) clear.
3176 */
3177 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
3178 sjset_data_frame_1->s.k = IEEE80211_FC0_TYPE_DATA;
3179 sappend(s, sjset_data_frame_1);
3180
3181 /*
3182 * If b3 is set, test b2, otherwise go to the first statement of
3183 * the rest of the program.
3184 */
3185 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
3186 sjset_data_frame_2->s.k = IEEE80211_FC0_TYPE_CTL;
3187 sappend(s, sjset_data_frame_2);
3188 sjset_data_frame_1->s.jf = snext;
3189
3190 /*
3191 * If b2 is not set, this is a data frame; test the QoS bit.
3192 * Otherwise, go to the first statement of the rest of the
3193 * program.
3194 */
3195 sjset_data_frame_2->s.jt = snext;
3196 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
3197 sjset_qos->s.k = IEEE80211_FC0_SUBTYPE_QOS;
3198 sappend(s, sjset_qos);
3199
3200 /*
3201 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3202 * field.
3203 * Otherwise, go to the first statement of the rest of the
3204 * program.
3205 */
3206 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
3207 s2->s.k = cstate->off_linkpl.reg;
3208 sappend(s, s2);
3209 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3210 s2->s.k = 2;
3211 sappend(s, s2);
3212 s2 = new_stmt(cstate, BPF_ST);
3213 s2->s.k = cstate->off_linkpl.reg;
3214 sappend(s, s2);
3215
3216 /*
3217 * If we have a radiotap header, look at it to see whether
3218 * there's Atheros padding between the MAC-layer header
3219 * and the payload.
3220 *
3221 * Note: all of the fields in the radiotap header are
3222 * little-endian, so we byte-swap all of the values
3223 * we test against, as they will be loaded as big-endian
3224 * values.
3225 *
3226 * XXX - in the general case, we would have to scan through
3227 * *all* the presence bits, if there's more than one word of
3228 * presence bits. That would require a loop, meaning that
3229 * we wouldn't be able to run the filter in the kernel.
3230 *
3231 * We assume here that the Atheros adapters that insert the
3232 * annoying padding don't have multiple antennae and therefore
3233 * do not generate radiotap headers with multiple presence words.
3234 */
3235 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
3236 /*
3237 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3238 * in the first presence flag word?
3239 */
3240 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
3241 s2->s.k = 4;
3242 sappend(s, s2);
3243
3244 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
3245 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
3246 sappend(s, sjset_radiotap_flags_present);
3247
3248 /*
3249 * If not, skip all of this.
3250 */
3251 sjset_radiotap_flags_present->s.jf = snext;
3252
3253 /*
3254 * Otherwise, is the "extension" bit set in that word?
3255 */
3256 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
3257 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
3258 sappend(s, sjset_radiotap_ext_present);
3259 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
3260
3261 /*
3262 * If so, skip all of this.
3263 */
3264 sjset_radiotap_ext_present->s.jt = snext;
3265
3266 /*
3267 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3268 */
3269 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
3270 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
3271 sappend(s, sjset_radiotap_tsft_present);
3272 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
3273
3274 /*
3275 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3276 * at an offset of 16 from the beginning of the raw packet
3277 * data (8 bytes for the radiotap header and 8 bytes for
3278 * the TSFT field).
3279 *
3280 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3281 * is set.
3282 */
3283 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3284 s2->s.k = 16;
3285 sappend(s, s2);
3286 sjset_radiotap_tsft_present->s.jt = s2;
3287
3288 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3289 sjset_tsft_datapad->s.k = 0x20;
3290 sappend(s, sjset_tsft_datapad);
3291
3292 /*
3293 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3294 * at an offset of 8 from the beginning of the raw packet
3295 * data (8 bytes for the radiotap header).
3296 *
3297 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3298 * is set.
3299 */
3300 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
3301 s2->s.k = 8;
3302 sappend(s, s2);
3303 sjset_radiotap_tsft_present->s.jf = s2;
3304
3305 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
3306 sjset_notsft_datapad->s.k = 0x20;
3307 sappend(s, sjset_notsft_datapad);
3308
3309 /*
3310 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3311 * set, round the length of the 802.11 header to
3312 * a multiple of 4. Do that by adding 3 and then
3313 * dividing by and multiplying by 4, which we do by
3314 * ANDing with ~3.
3315 */
3316 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
3317 s_roundup->s.k = cstate->off_linkpl.reg;
3318 sappend(s, s_roundup);
3319 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
3320 s2->s.k = 3;
3321 sappend(s, s2);
3322 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
3323 s2->s.k = (bpf_u_int32)~3;
3324 sappend(s, s2);
3325 s2 = new_stmt(cstate, BPF_ST);
3326 s2->s.k = cstate->off_linkpl.reg;
3327 sappend(s, s2);
3328
3329 sjset_tsft_datapad->s.jt = s_roundup;
3330 sjset_tsft_datapad->s.jf = snext;
3331 sjset_notsft_datapad->s.jt = s_roundup;
3332 sjset_notsft_datapad->s.jf = snext;
3333 } else
3334 sjset_qos->s.jf = snext;
3335
3336 return s;
3337 }
3338
3339 static void
3340 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
3341 {
3342 struct slist *s;
3343
3344 /* There is an implicit dependency between the link
3345 * payload and link header since the payload computation
3346 * includes the variable part of the header. Therefore,
3347 * if nobody else has allocated a register for the link
3348 * header and we need it, do it now. */
3349 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
3350 cstate->off_linkhdr.reg == -1)
3351 cstate->off_linkhdr.reg = alloc_reg(cstate);
3352
3353 /*
3354 * For link-layer types that have a variable-length header
3355 * preceding the link-layer header, generate code to load
3356 * the offset of the link-layer header into the register
3357 * assigned to that offset, if any.
3358 *
3359 * XXX - this, and the next switch statement, won't handle
3360 * encapsulation of 802.11 or 802.11+radio information in
3361 * some other protocol stack. That's significantly more
3362 * complicated.
3363 */
3364 switch (cstate->outermostlinktype) {
3365
3366 case DLT_PRISM_HEADER:
3367 s = gen_load_prism_llprefixlen(cstate);
3368 break;
3369
3370 case DLT_IEEE802_11_RADIO_AVS:
3371 s = gen_load_avs_llprefixlen(cstate);
3372 break;
3373
3374 case DLT_IEEE802_11_RADIO:
3375 s = gen_load_radiotap_llprefixlen(cstate);
3376 break;
3377
3378 case DLT_PPI:
3379 s = gen_load_ppi_llprefixlen(cstate);
3380 break;
3381
3382 default:
3383 s = NULL;
3384 break;
3385 }
3386
3387 /*
3388 * For link-layer types that have a variable-length link-layer
3389 * header, generate code to load the offset of the link-layer
3390 * payload into the register assigned to that offset, if any.
3391 */
3392 switch (cstate->outermostlinktype) {
3393
3394 case DLT_IEEE802_11:
3395 case DLT_PRISM_HEADER:
3396 case DLT_IEEE802_11_RADIO_AVS:
3397 case DLT_IEEE802_11_RADIO:
3398 case DLT_PPI:
3399 s = gen_load_802_11_header_len(cstate, s, b->stmts);
3400 break;
3401
3402 case DLT_PFLOG:
3403 s = gen_load_pflog_llprefixlen(cstate);
3404 break;
3405 }
3406
3407 /*
3408 * If there is no initialization yet and we need variable
3409 * length offsets for VLAN, initialize them to zero
3410 */
3411 if (s == NULL && cstate->is_vlan_vloffset) {
3412 struct slist *s2;
3413
3414 if (cstate->off_linkpl.reg == -1)
3415 cstate->off_linkpl.reg = alloc_reg(cstate);
3416 if (cstate->off_linktype.reg == -1)
3417 cstate->off_linktype.reg = alloc_reg(cstate);
3418
3419 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3420 s->s.k = 0;
3421 s2 = new_stmt(cstate, BPF_ST);
3422 s2->s.k = cstate->off_linkpl.reg;
3423 sappend(s, s2);
3424 s2 = new_stmt(cstate, BPF_ST);
3425 s2->s.k = cstate->off_linktype.reg;
3426 sappend(s, s2);
3427 }
3428
3429 /*
3430 * If we have any offset-loading code, append all the
3431 * existing statements in the block to those statements,
3432 * and make the resulting list the list of statements
3433 * for the block.
3434 */
3435 if (s != NULL) {
3436 sappend(s, b->stmts);
3437 b->stmts = s;
3438 }
3439 }
3440
3441 /*
3442 * Take an absolute offset, and:
3443 *
3444 * if it has no variable part, return NULL;
3445 *
3446 * if it has a variable part, generate code to load the register
3447 * containing that variable part into the X register, returning
3448 * a pointer to that code - if no register for that offset has
3449 * been allocated, allocate it first.
3450 *
3451 * (The code to set that register will be generated later, but will
3452 * be placed earlier in the code sequence.)
3453 */
3454 static struct slist *
3455 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3456 {
3457 struct slist *s;
3458
3459 if (off->is_variable) {
3460 if (off->reg == -1) {
3461 /*
3462 * We haven't yet assigned a register for the
3463 * variable part of the offset of the link-layer
3464 * header; allocate one.
3465 */
3466 off->reg = alloc_reg(cstate);
3467 }
3468
3469 /*
3470 * Load the register containing the variable part of the
3471 * offset of the link-layer header into the X register.
3472 */
3473 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3474 s->s.k = off->reg;
3475 return s;
3476 } else {
3477 /*
3478 * That offset isn't variable, there's no variable part,
3479 * so we don't need to generate any code.
3480 */
3481 return NULL;
3482 }
3483 }
3484
3485 /*
3486 * Map an Ethernet type to the equivalent PPP type.
3487 */
3488 static uint16_t
3489 ethertype_to_ppptype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3490 {
3491 switch (ll_proto) {
3492
3493 case ETHERTYPE_IP:
3494 return PPP_IP;
3495
3496 case ETHERTYPE_IPV6:
3497 return PPP_IPV6;
3498
3499 case ETHERTYPE_DN:
3500 return PPP_DECNET;
3501
3502 case ETHERTYPE_ATALK:
3503 return PPP_APPLE;
3504
3505 case ETHERTYPE_NS:
3506 return PPP_NS;
3507
3508 case LLCSAP_ISONS:
3509 return PPP_OSI;
3510
3511 case LLCSAP_8021D:
3512 /*
3513 * I'm assuming the "Bridging PDU"s that go
3514 * over PPP are Spanning Tree Protocol
3515 * Bridging PDUs.
3516 */
3517 return PPP_BRPDU;
3518
3519 case LLCSAP_IPX:
3520 return PPP_IPX;
3521 }
3522 assert_maxval(cstate, "PPP protocol", ll_proto, UINT16_MAX);
3523 return (uint16_t)ll_proto;
3524 }
3525
3526 /*
3527 * Generate any tests that, for encapsulation of a link-layer packet
3528 * inside another protocol stack, need to be done to check for those
3529 * link-layer packets (and that haven't already been done by a check
3530 * for that encapsulation).
3531 */
3532 static struct block *
3533 gen_prevlinkhdr_check(compiler_state_t *cstate)
3534 {
3535 if (cstate->is_encap)
3536 return gen_encap_ll_check(cstate);
3537
3538 switch (cstate->prevlinktype) {
3539
3540 case DLT_SUNATM:
3541 /*
3542 * This is LANE-encapsulated Ethernet; check that the LANE
3543 * packet doesn't begin with an LE Control marker, i.e.
3544 * that it's data, not a control message.
3545 *
3546 * (We've already generated a test for LANE.)
3547 */
3548 return gen_cmp_ne(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3549
3550 default:
3551 /*
3552 * No such tests are necessary.
3553 */
3554 return NULL;
3555 }
3556 /*NOTREACHED*/
3557 }
3558
3559 /*
3560 * The three different values we should check for when checking for an
3561 * IPv6 packet with DLT_NULL.
3562 */
3563 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3564 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3565 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3566
3567 /*
3568 * Generate code to match a particular packet type by matching the
3569 * link-layer type field or fields in the 802.2 LLC header.
3570 *
3571 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3572 * value, if <= ETHERMTU.
3573 */
3574 static struct block *
3575 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3576 {
3577 struct block *b0, *b1, *b2;
3578
3579 /* are we checking MPLS-encapsulated packets? */
3580 if (cstate->label_stack_depth > 0)
3581 return gen_mpls_linktype(cstate, ll_proto);
3582
3583 switch (cstate->linktype) {
3584
3585 case DLT_EN10MB:
3586 case DLT_NETANALYZER:
3587 case DLT_NETANALYZER_TRANSPARENT:
3588 /* Geneve has an EtherType regardless of whether there is an
3589 * L2 header. VXLAN always has an EtherType. */
3590 if (!cstate->is_encap)
3591 b0 = gen_prevlinkhdr_check(cstate);
3592 else
3593 b0 = NULL;
3594
3595 b1 = gen_ether_linktype(cstate, ll_proto);
3596 if (b0 != NULL)
3597 gen_and(b0, b1);
3598 return b1;
3599 /*NOTREACHED*/
3600
3601 case DLT_C_HDLC:
3602 case DLT_HDLC:
3603 assert_maxval(cstate, "HDLC protocol", ll_proto, UINT16_MAX);
3604 switch (ll_proto) {
3605
3606 case LLCSAP_ISONS:
3607 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3608 /* fall through */
3609
3610 default:
3611 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3612 /*NOTREACHED*/
3613 }
3614
3615 case DLT_IEEE802_11:
3616 case DLT_PRISM_HEADER:
3617 case DLT_IEEE802_11_RADIO_AVS:
3618 case DLT_IEEE802_11_RADIO:
3619 case DLT_PPI:
3620 /*
3621 * Check that we have a data frame.
3622 */
3623 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
3624 IEEE80211_FC0_TYPE_DATA,
3625 IEEE80211_FC0_TYPE_MASK);
3626
3627 /*
3628 * Now check for the specified link-layer type.
3629 */
3630 b1 = gen_llc_linktype(cstate, ll_proto);
3631 gen_and(b0, b1);
3632 return b1;
3633 /*NOTREACHED*/
3634
3635 case DLT_FDDI:
3636 /*
3637 * XXX - check for LLC frames.
3638 */
3639 return gen_llc_linktype(cstate, ll_proto);
3640 /*NOTREACHED*/
3641
3642 case DLT_IEEE802:
3643 /*
3644 * XXX - check for LLC PDUs, as per IEEE 802.5.
3645 */
3646 return gen_llc_linktype(cstate, ll_proto);
3647 /*NOTREACHED*/
3648
3649 case DLT_ATM_RFC1483:
3650 case DLT_ATM_CLIP:
3651 case DLT_IP_OVER_FC:
3652 return gen_llc_linktype(cstate, ll_proto);
3653 /*NOTREACHED*/
3654
3655 case DLT_SUNATM:
3656 /*
3657 * Check for an LLC-encapsulated version of this protocol;
3658 * if we were checking for LANE, linktype would no longer
3659 * be DLT_SUNATM.
3660 *
3661 * Check for LLC encapsulation and then check the protocol.
3662 */
3663 b0 = gen_atm_prototype(cstate, PT_LLC);
3664 b1 = gen_llc_linktype(cstate, ll_proto);
3665 gen_and(b0, b1);
3666 return b1;
3667 /*NOTREACHED*/
3668
3669 case DLT_LINUX_SLL:
3670 return gen_linux_sll_linktype(cstate, ll_proto);
3671 /*NOTREACHED*/
3672
3673 case DLT_SLIP:
3674 case DLT_SLIP_BSDOS:
3675 case DLT_RAW:
3676 /*
3677 * These types don't provide any type field; packets
3678 * are always IPv4 or IPv6.
3679 *
3680 * XXX - for IPv4, check for a version number of 4, and,
3681 * for IPv6, check for a version number of 6?
3682 */
3683 switch (ll_proto) {
3684
3685 case ETHERTYPE_IP:
3686 /* Check for a version number of 4. */
3687 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3688
3689 case ETHERTYPE_IPV6:
3690 /* Check for a version number of 6. */
3691 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3692
3693 default:
3694 return gen_false(cstate); /* always false */
3695 }
3696 /*NOTREACHED*/
3697
3698 case DLT_IPV4:
3699 /*
3700 * Raw IPv4, so no type field.
3701 */
3702 if (ll_proto == ETHERTYPE_IP)
3703 return gen_true(cstate); /* always true */
3704
3705 /* Checking for something other than IPv4; always false */
3706 return gen_false(cstate);
3707 /*NOTREACHED*/
3708
3709 case DLT_IPV6:
3710 /*
3711 * Raw IPv6, so no type field.
3712 */
3713 if (ll_proto == ETHERTYPE_IPV6)
3714 return gen_true(cstate); /* always true */
3715
3716 /* Checking for something other than IPv6; always false */
3717 return gen_false(cstate);
3718 /*NOTREACHED*/
3719
3720 case DLT_PPP:
3721 case DLT_PPP_PPPD:
3722 case DLT_PPP_SERIAL:
3723 case DLT_PPP_ETHER:
3724 /*
3725 * We use Ethernet protocol types inside libpcap;
3726 * map them to the corresponding PPP protocol types.
3727 */
3728 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3729 ethertype_to_ppptype(cstate, ll_proto));
3730 /*NOTREACHED*/
3731
3732 case DLT_PPP_BSDOS:
3733 /*
3734 * We use Ethernet protocol types inside libpcap;
3735 * map them to the corresponding PPP protocol types.
3736 */
3737 switch (ll_proto) {
3738
3739 case ETHERTYPE_IP:
3740 /*
3741 * Also check for Van Jacobson-compressed IP.
3742 * XXX - do this for other forms of PPP?
3743 */
3744 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3745 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3746 gen_or(b0, b1);
3747 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3748 gen_or(b1, b0);
3749 return b0;
3750
3751 default:
3752 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3753 ethertype_to_ppptype(cstate, ll_proto));
3754 }
3755 /*NOTREACHED*/
3756
3757 case DLT_NULL:
3758 case DLT_LOOP:
3759 case DLT_ENC:
3760 switch (ll_proto) {
3761
3762 case ETHERTYPE_IP:
3763 return (gen_loopback_linktype(cstate, AF_INET));
3764
3765 case ETHERTYPE_IPV6:
3766 /*
3767 * AF_ values may, unfortunately, be platform-
3768 * dependent; AF_INET isn't, because everybody
3769 * used 4.2BSD's value, but AF_INET6 is, because
3770 * 4.2BSD didn't have a value for it (given that
3771 * IPv6 didn't exist back in the early 1980's),
3772 * and they all picked their own values.
3773 *
3774 * This means that, if we're reading from a
3775 * savefile, we need to check for all the
3776 * possible values.
3777 *
3778 * If we're doing a live capture, we only need
3779 * to check for this platform's value; however,
3780 * Npcap uses 24, which isn't Windows's AF_INET6
3781 * value. (Given the multiple different values,
3782 * programs that read pcap files shouldn't be
3783 * checking for their platform's AF_INET6 value
3784 * anyway, they should check for all of the
3785 * possible values. and they might as well do
3786 * that even for live captures.)
3787 */
3788 if (cstate->bpf_pcap->rfile != NULL) {
3789 /*
3790 * Savefile - check for all three
3791 * possible IPv6 values.
3792 */
3793 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3794 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3795 gen_or(b0, b1);
3796 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3797 gen_or(b0, b1);
3798 return (b1);
3799 } else {
3800 /*
3801 * Live capture, so we only need to
3802 * check for the value used on this
3803 * platform.
3804 */
3805 #ifdef _WIN32
3806 /*
3807 * Npcap doesn't use Windows's AF_INET6,
3808 * as that collides with AF_IPX on
3809 * some BSDs (both have the value 23).
3810 * Instead, it uses 24.
3811 */
3812 return (gen_loopback_linktype(cstate, 24));
3813 #else /* _WIN32 */
3814 #ifdef AF_INET6
3815 return (gen_loopback_linktype(cstate, AF_INET6));
3816 #else /* AF_INET6 */
3817 /*
3818 * I guess this platform doesn't support
3819 * IPv6, so we just reject all packets.
3820 */
3821 return gen_false(cstate);
3822 #endif /* AF_INET6 */
3823 #endif /* _WIN32 */
3824 }
3825
3826 default:
3827 /*
3828 * Not a type on which we support filtering.
3829 * XXX - support those that have AF_ values
3830 * #defined on this platform, at least?
3831 */
3832 return gen_false(cstate);
3833 }
3834
3835 case DLT_PFLOG:
3836 /*
3837 * af field is host byte order in contrast to the rest of
3838 * the packet.
3839 */
3840 if (ll_proto == ETHERTYPE_IP)
3841 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3842 BPF_B, AF_INET));
3843 else if (ll_proto == ETHERTYPE_IPV6)
3844 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3845 BPF_B, AF_INET6));
3846 else
3847 return gen_false(cstate);
3848 /*NOTREACHED*/
3849
3850 case DLT_ARCNET:
3851 case DLT_ARCNET_LINUX:
3852 /*
3853 * XXX should we check for first fragment if the protocol
3854 * uses PHDS?
3855 */
3856 switch (ll_proto) {
3857
3858 default:
3859 return gen_false(cstate);
3860
3861 case ETHERTYPE_IPV6:
3862 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3863 ARCTYPE_INET6));
3864
3865 case ETHERTYPE_IP:
3866 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3867 ARCTYPE_IP);
3868 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3869 ARCTYPE_IP_OLD);
3870 gen_or(b0, b1);
3871 return (b1);
3872
3873 case ETHERTYPE_ARP:
3874 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3875 ARCTYPE_ARP);
3876 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3877 ARCTYPE_ARP_OLD);
3878 gen_or(b0, b1);
3879 return (b1);
3880
3881 case ETHERTYPE_REVARP:
3882 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3883 ARCTYPE_REVARP));
3884
3885 case ETHERTYPE_ATALK:
3886 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3887 ARCTYPE_ATALK));
3888 }
3889 /*NOTREACHED*/
3890
3891 case DLT_LTALK:
3892 switch (ll_proto) {
3893 case ETHERTYPE_ATALK:
3894 return gen_true(cstate);
3895 default:
3896 return gen_false(cstate);
3897 }
3898 /*NOTREACHED*/
3899
3900 case DLT_FRELAY:
3901 /*
3902 * XXX - assumes a 2-byte Frame Relay header with
3903 * DLCI and flags. What if the address is longer?
3904 */
3905 switch (ll_proto) {
3906
3907 case ETHERTYPE_IP:
3908 /*
3909 * Check for the special NLPID for IP.
3910 */
3911 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3912
3913 case ETHERTYPE_IPV6:
3914 /*
3915 * Check for the special NLPID for IPv6.
3916 */
3917 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3918
3919 case LLCSAP_ISONS:
3920 /*
3921 * Check for several OSI protocols.
3922 *
3923 * Frame Relay packets typically have an OSI
3924 * NLPID at the beginning; we check for each
3925 * of them.
3926 *
3927 * What we check for is the NLPID and a frame
3928 * control field of UI, i.e. 0x03 followed
3929 * by the NLPID.
3930 */
3931 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3932 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3933 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3934 gen_or(b1, b2);
3935 gen_or(b0, b2);
3936 return b2;
3937
3938 default:
3939 return gen_false(cstate);
3940 }
3941 /*NOTREACHED*/
3942
3943 case DLT_MFR:
3944 break; // not implemented
3945
3946 case DLT_JUNIPER_MFR:
3947 case DLT_JUNIPER_MLFR:
3948 case DLT_JUNIPER_MLPPP:
3949 case DLT_JUNIPER_ATM1:
3950 case DLT_JUNIPER_ATM2:
3951 case DLT_JUNIPER_PPPOE:
3952 case DLT_JUNIPER_PPPOE_ATM:
3953 case DLT_JUNIPER_GGSN:
3954 case DLT_JUNIPER_ES:
3955 case DLT_JUNIPER_MONITOR:
3956 case DLT_JUNIPER_SERVICES:
3957 case DLT_JUNIPER_ETHER:
3958 case DLT_JUNIPER_PPP:
3959 case DLT_JUNIPER_FRELAY:
3960 case DLT_JUNIPER_CHDLC:
3961 case DLT_JUNIPER_VP:
3962 case DLT_JUNIPER_ST:
3963 case DLT_JUNIPER_ISM:
3964 case DLT_JUNIPER_VS:
3965 case DLT_JUNIPER_SRX_E2E:
3966 case DLT_JUNIPER_FIBRECHANNEL:
3967 case DLT_JUNIPER_ATM_CEMIC:
3968
3969 /* just lets verify the magic number for now -
3970 * on ATM we may have up to 6 different encapsulations on the wire
3971 * and need a lot of heuristics to figure out that the payload
3972 * might be;
3973 *
3974 * FIXME encapsulation specific BPF_ filters
3975 */
3976 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3977
3978 case DLT_BACNET_MS_TP:
3979 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3980
3981 case DLT_IPNET:
3982 return gen_ipnet_linktype(cstate, ll_proto);
3983
3984 case DLT_LINUX_IRDA:
3985 case DLT_DOCSIS:
3986 case DLT_MTP2:
3987 case DLT_MTP2_WITH_PHDR:
3988 case DLT_ERF:
3989 case DLT_PFSYNC:
3990 case DLT_LINUX_LAPD:
3991 case DLT_USB_FREEBSD:
3992 case DLT_USB_LINUX:
3993 case DLT_USB_LINUX_MMAPPED:
3994 case DLT_USBPCAP:
3995 case DLT_BLUETOOTH_HCI_H4:
3996 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3997 case DLT_CAN20B:
3998 case DLT_CAN_SOCKETCAN:
3999 case DLT_IEEE802_15_4:
4000 case DLT_IEEE802_15_4_LINUX:
4001 case DLT_IEEE802_15_4_NONASK_PHY:
4002 case DLT_IEEE802_15_4_NOFCS:
4003 case DLT_IEEE802_15_4_TAP:
4004 case DLT_IEEE802_16_MAC_CPS_RADIO:
4005 case DLT_SITA:
4006 case DLT_RAIF1:
4007 case DLT_IPMB_KONTRON:
4008 case DLT_I2C_LINUX:
4009 case DLT_AX25_KISS:
4010 case DLT_NFLOG:
4011 /* Using the fixed-size NFLOG header it is possible to tell only
4012 * the address family of the packet, other meaningful data is
4013 * either missing or behind TLVs.
4014 */
4015 break; // not implemented
4016
4017 default:
4018 /*
4019 * Does this link-layer header type have a field
4020 * indicating the type of the next protocol? If
4021 * so, off_linktype.constant_part will be the offset of that
4022 * field in the packet; if not, it will be OFFSET_NOT_SET.
4023 */
4024 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
4025 /*
4026 * Yes; assume it's an Ethernet type. (If
4027 * it's not, it needs to be handled specially
4028 * above.)
4029 */
4030 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
4031 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
4032 /*NOTREACHED */
4033 }
4034 }
4035 bpf_error(cstate, "link-layer type filtering not implemented for %s",
4036 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
4037 }
4038
4039 /*
4040 * Check for an LLC SNAP packet with a given organization code and
4041 * protocol type; we check the entire contents of the 802.2 LLC and
4042 * snap headers, checking for DSAP and SSAP of SNAP and a control
4043 * field of 0x03 in the LLC header, and for the specified organization
4044 * code and protocol type in the SNAP header.
4045 */
4046 static struct block *
4047 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
4048 {
4049 u_char snapblock[8];
4050
4051 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
4052 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
4053 snapblock[2] = 0x03; /* control = UI */
4054 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
4055 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
4056 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
4057 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
4058 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
4059 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
4060 }
4061
4062 /*
4063 * Generate code to match frames with an LLC header.
4064 */
4065 static struct block *
4066 gen_llc_internal(compiler_state_t *cstate)
4067 {
4068 struct block *b0, *b1;
4069
4070 switch (cstate->linktype) {
4071
4072 case DLT_EN10MB:
4073 /*
4074 * We check for an Ethernet type field less or equal than
4075 * 1500, which means it's an 802.3 length field.
4076 */
4077 b0 = gen_cmp_le(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
4078
4079 /*
4080 * Now check for the purported DSAP and SSAP not being
4081 * 0xFF, to rule out NetWare-over-802.3.
4082 */
4083 b1 = gen_cmp_ne(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
4084 gen_and(b0, b1);
4085 return b1;
4086
4087 case DLT_SUNATM:
4088 /*
4089 * We check for LLC traffic.
4090 */
4091 return gen_atmtype_llc(cstate);
4092
4093 case DLT_IEEE802: /* Token Ring */
4094 /*
4095 * XXX - check for LLC frames.
4096 */
4097 return gen_true(cstate);
4098
4099 case DLT_FDDI:
4100 /*
4101 * XXX - check for LLC frames.
4102 */
4103 return gen_true(cstate);
4104
4105 case DLT_ATM_RFC1483:
4106 /*
4107 * For LLC encapsulation, these are defined to have an
4108 * 802.2 LLC header.
4109 *
4110 * For VC encapsulation, they don't, but there's no
4111 * way to check for that; the protocol used on the VC
4112 * is negotiated out of band.
4113 */
4114 return gen_true(cstate);
4115
4116 case DLT_IEEE802_11:
4117 case DLT_PRISM_HEADER:
4118 case DLT_IEEE802_11_RADIO:
4119 case DLT_IEEE802_11_RADIO_AVS:
4120 case DLT_PPI:
4121 /*
4122 * Check that we have a data frame.
4123 */
4124 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B,
4125 IEEE80211_FC0_TYPE_DATA,
4126 IEEE80211_FC0_TYPE_MASK);
4127
4128 default:
4129 fail_kw_on_dlt(cstate, "llc");
4130 /*NOTREACHED*/
4131 }
4132 }
4133
4134 struct block *
4135 gen_llc(compiler_state_t *cstate)
4136 {
4137 /*
4138 * Catch errors reported by us and routines below us, and return NULL
4139 * on an error.
4140 */
4141 if (setjmp(cstate->top_ctx))
4142 return (NULL);
4143
4144 return gen_llc_internal(cstate);
4145 }
4146
4147 struct block *
4148 gen_llc_i(compiler_state_t *cstate)
4149 {
4150 struct block *b0, *b1;
4151 struct slist *s;
4152
4153 /*
4154 * Catch errors reported by us and routines below us, and return NULL
4155 * on an error.
4156 */
4157 if (setjmp(cstate->top_ctx))
4158 return (NULL);
4159
4160 /*
4161 * Check whether this is an LLC frame.
4162 */
4163 b0 = gen_llc_internal(cstate);
4164
4165 /*
4166 * Load the control byte and test the low-order bit; it must
4167 * be clear for I frames.
4168 */
4169 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
4170 b1 = gen_unset(cstate, 0x01, s);
4171
4172 gen_and(b0, b1);
4173 return b1;
4174 }
4175
4176 struct block *
4177 gen_llc_s(compiler_state_t *cstate)
4178 {
4179 struct block *b0, *b1;
4180
4181 /*
4182 * Catch errors reported by us and routines below us, and return NULL
4183 * on an error.
4184 */
4185 if (setjmp(cstate->top_ctx))
4186 return (NULL);
4187
4188 /*
4189 * Check whether this is an LLC frame.
4190 */
4191 b0 = gen_llc_internal(cstate);
4192
4193 /*
4194 * Now compare the low-order 2 bit of the control byte against
4195 * the appropriate value for S frames.
4196 */
4197 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
4198 gen_and(b0, b1);
4199 return b1;
4200 }
4201
4202 struct block *
4203 gen_llc_u(compiler_state_t *cstate)
4204 {
4205 struct block *b0, *b1;
4206
4207 /*
4208 * Catch errors reported by us and routines below us, and return NULL
4209 * on an error.
4210 */
4211 if (setjmp(cstate->top_ctx))
4212 return (NULL);
4213
4214 /*
4215 * Check whether this is an LLC frame.
4216 */
4217 b0 = gen_llc_internal(cstate);
4218
4219 /*
4220 * Now compare the low-order 2 bit of the control byte against
4221 * the appropriate value for U frames.
4222 */
4223 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
4224 gen_and(b0, b1);
4225 return b1;
4226 }
4227
4228 struct block *
4229 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4230 {
4231 struct block *b0, *b1;
4232
4233 /*
4234 * Catch errors reported by us and routines below us, and return NULL
4235 * on an error.
4236 */
4237 if (setjmp(cstate->top_ctx))
4238 return (NULL);
4239
4240 /*
4241 * Check whether this is an LLC frame.
4242 */
4243 b0 = gen_llc_internal(cstate);
4244
4245 /*
4246 * Now check for an S frame with the appropriate type.
4247 */
4248 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
4249 gen_and(b0, b1);
4250 return b1;
4251 }
4252
4253 struct block *
4254 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
4255 {
4256 struct block *b0, *b1;
4257
4258 /*
4259 * Catch errors reported by us and routines below us, and return NULL
4260 * on an error.
4261 */
4262 if (setjmp(cstate->top_ctx))
4263 return (NULL);
4264
4265 /*
4266 * Check whether this is an LLC frame.
4267 */
4268 b0 = gen_llc_internal(cstate);
4269
4270 /*
4271 * Now check for a U frame with the appropriate type.
4272 */
4273 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
4274 gen_and(b0, b1);
4275 return b1;
4276 }
4277
4278 /*
4279 * Generate code to match a particular packet type, for link-layer types
4280 * using 802.2 LLC headers.
4281 *
4282 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4283 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4284 *
4285 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4286 * value, if <= ETHERMTU. We use that to determine whether to
4287 * match the DSAP or both DSAP and LSAP or to check the OUI and
4288 * protocol ID in a SNAP header.
4289 */
4290 static struct block *
4291 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4292 {
4293 /*
4294 * XXX - handle token-ring variable-length header.
4295 */
4296 switch (ll_proto) {
4297
4298 case LLCSAP_IP:
4299 case LLCSAP_ISONS:
4300 case LLCSAP_NETBEUI:
4301 /*
4302 * XXX - should we check both the DSAP and the
4303 * SSAP, like this, or should we check just the
4304 * DSAP, as we do for other SAP values?
4305 */
4306 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
4307 ((ll_proto << 8) | ll_proto));
4308
4309 case LLCSAP_IPX:
4310 /*
4311 * XXX - are there ever SNAP frames for IPX on
4312 * non-Ethernet 802.x networks?
4313 */
4314 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
4315
4316 case ETHERTYPE_ATALK:
4317 /*
4318 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4319 * SNAP packets with an organization code of
4320 * 0x080007 (Apple, for Appletalk) and a protocol
4321 * type of ETHERTYPE_ATALK (Appletalk).
4322 *
4323 * XXX - check for an organization code of
4324 * encapsulated Ethernet as well?
4325 */
4326 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
4327
4328 default:
4329 /*
4330 * XXX - we don't have to check for IPX 802.3
4331 * here, but should we check for the IPX Ethertype?
4332 */
4333 if (ll_proto <= ETHERMTU) {
4334 assert_maxval(cstate, "LLC DSAP", ll_proto, UINT8_MAX);
4335 /*
4336 * This is an LLC SAP value, so check
4337 * the DSAP.
4338 */
4339 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4340 } else {
4341 assert_maxval(cstate, "EtherType", ll_proto, UINT16_MAX);
4342 /*
4343 * This is an Ethernet type; we assume that it's
4344 * unlikely that it'll appear in the right place
4345 * at random, and therefore check only the
4346 * location that would hold the Ethernet type
4347 * in a SNAP frame with an organization code of
4348 * 0x000000 (encapsulated Ethernet).
4349 *
4350 * XXX - if we were to check for the SNAP DSAP and
4351 * LSAP, as per XXX, and were also to check for an
4352 * organization code of 0x000000 (encapsulated
4353 * Ethernet), we'd do
4354 *
4355 * return gen_snap(cstate, 0x000000, ll_proto);
4356 *
4357 * here; for now, we don't, as per the above.
4358 * I don't know whether it's worth the extra CPU
4359 * time to do the right check or not.
4360 */
4361 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4362 }
4363 }
4364 }
4365
4366 static struct block *
4367 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4368 int dir, u_int src_off, u_int dst_off)
4369 {
4370 struct block *b0, *b1;
4371 u_int offset;
4372
4373 switch (dir) {
4374
4375 case Q_SRC:
4376 offset = src_off;
4377 break;
4378
4379 case Q_DST:
4380 offset = dst_off;
4381 break;
4382
4383 case Q_AND:
4384 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4385 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4386 gen_and(b0, b1);
4387 return b1;
4388
4389 case Q_DEFAULT:
4390 case Q_OR:
4391 b0 = gen_hostop(cstate, addr, mask, Q_SRC, src_off, dst_off);
4392 b1 = gen_hostop(cstate, addr, mask, Q_DST, src_off, dst_off);
4393 gen_or(b0, b1);
4394 return b1;
4395
4396 case Q_ADDR1:
4397 case Q_ADDR2:
4398 case Q_ADDR3:
4399 case Q_ADDR4:
4400 case Q_RA:
4401 case Q_TA:
4402 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4403 /*NOTREACHED*/
4404
4405 default:
4406 abort();
4407 /*NOTREACHED*/
4408 }
4409 return gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4410 }
4411
4412 #ifdef INET6
4413 static struct block *
4414 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4415 struct in6_addr *mask, int dir, u_int src_off, u_int dst_off)
4416 {
4417 struct block *b0, *b1;
4418 u_int offset;
4419 /*
4420 * Code below needs to access four separate 32-bit parts of the 128-bit
4421 * IPv6 address and mask. In some OSes this is as simple as using the
4422 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4423 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4424 * far as libpcap sees it. Hence copy the data before use to avoid
4425 * potential unaligned memory access and the associated compiler
4426 * warnings (whether genuine or not).
4427 */
4428 bpf_u_int32 a[4], m[4];
4429
4430 switch (dir) {
4431
4432 case Q_SRC:
4433 offset = src_off;
4434 break;
4435
4436 case Q_DST:
4437 offset = dst_off;
4438 break;
4439
4440 case Q_AND:
4441 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4442 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4443 gen_and(b0, b1);
4444 return b1;
4445
4446 case Q_DEFAULT:
4447 case Q_OR:
4448 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, src_off, dst_off);
4449 b1 = gen_hostop6(cstate, addr, mask, Q_DST, src_off, dst_off);
4450 gen_or(b0, b1);
4451 return b1;
4452
4453 case Q_ADDR1:
4454 case Q_ADDR2:
4455 case Q_ADDR3:
4456 case Q_ADDR4:
4457 case Q_RA:
4458 case Q_TA:
4459 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4460 /*NOTREACHED*/
4461
4462 default:
4463 abort();
4464 /*NOTREACHED*/
4465 }
4466 /* this order is important */
4467 memcpy(a, addr, sizeof(a));
4468 memcpy(m, mask, sizeof(m));
4469 b1 = NULL;
4470 for (int i = 3; i >= 0; i--) {
4471 // Same as the Q_IP case in gen_host().
4472 if (m[i] == 0 && a[i] == 0)
4473 continue;
4474 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4 * i, BPF_W,
4475 ntohl(a[i]), ntohl(m[i]));
4476 if (b1)
4477 gen_and(b0, b1);
4478 else
4479 b1 = b0;
4480 }
4481 return b1 ? b1 : gen_true(cstate);
4482 }
4483 #endif
4484
4485 /*
4486 * Like gen_mac48host(), but for DLT_IEEE802_11 (802.11 wireless LAN) and
4487 * various 802.11 + radio headers.
4488 */
4489 static struct block *
4490 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4491 {
4492 register struct block *b0, *b1, *b2;
4493 register struct slist *s;
4494
4495 #ifdef ENABLE_WLAN_FILTERING_PATCH
4496 /*
4497 * TODO GV 20070613
4498 * We need to disable the optimizer because the optimizer is buggy
4499 * and wipes out some LD instructions generated by the below
4500 * code to validate the Frame Control bits
4501 */
4502 cstate->no_optimize = 1;
4503 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4504
4505 switch (dir) {
4506 case Q_SRC:
4507 /*
4508 * Oh, yuk.
4509 *
4510 * For control frames, there is no SA.
4511 *
4512 * For management frames, SA is at an
4513 * offset of 10 from the beginning of
4514 * the packet.
4515 *
4516 * For data frames, SA is at an offset
4517 * of 10 from the beginning of the packet
4518 * if From DS is clear, at an offset of
4519 * 16 from the beginning of the packet
4520 * if From DS is set and To DS is clear,
4521 * and an offset of 24 from the beginning
4522 * of the packet if From DS is set and To DS
4523 * is set.
4524 */
4525
4526 /*
4527 * Generate the tests to be done for data frames
4528 * with From DS set.
4529 *
4530 * First, check for To DS set, i.e. check "link[1] & 0x01".
4531 */
4532 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4533 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
4534
4535 /*
4536 * If To DS is set, the SA is at 24.
4537 */
4538 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4539 gen_and(b1, b0);
4540
4541 /*
4542 * Now, check for To DS not set, i.e. check
4543 * "!(link[1] & 0x01)".
4544 */
4545 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4546 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
4547
4548 /*
4549 * If To DS is not set, the SA is at 16.
4550 */
4551 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4552 gen_and(b2, b1);
4553
4554 /*
4555 * Now OR together the last two checks. That gives
4556 * the complete set of checks for data frames with
4557 * From DS set.
4558 */
4559 gen_or(b1, b0);
4560
4561 /*
4562 * Now check for From DS being set, and AND that with
4563 * the ORed-together checks.
4564 */
4565 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4566 b1 = gen_set(cstate, IEEE80211_FC1_DIR_FROMDS, s);
4567 gen_and(b1, b0);
4568
4569 /*
4570 * Now check for data frames with From DS not set.
4571 */
4572 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4573 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_FROMDS, s);
4574
4575 /*
4576 * If From DS isn't set, the SA is at 10.
4577 */
4578 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4579 gen_and(b2, b1);
4580
4581 /*
4582 * Now OR together the checks for data frames with
4583 * From DS not set and for data frames with From DS
4584 * set; that gives the checks done for data frames.
4585 */
4586 gen_or(b1, b0);
4587
4588 /*
4589 * Now check for a data frame.
4590 * I.e, check "link[0] & 0x08".
4591 */
4592 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4593 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4594
4595 /*
4596 * AND that with the checks done for data frames.
4597 */
4598 gen_and(b1, b0);
4599
4600 /*
4601 * If the high-order bit of the type value is 0, this
4602 * is a management frame.
4603 * I.e, check "!(link[0] & 0x08)".
4604 */
4605 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4606 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
4607
4608 /*
4609 * For management frames, the SA is at 10.
4610 */
4611 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4612 gen_and(b2, b1);
4613
4614 /*
4615 * OR that with the checks done for data frames.
4616 * That gives the checks done for management and
4617 * data frames.
4618 */
4619 gen_or(b1, b0);
4620
4621 /*
4622 * If the low-order bit of the type value is 1,
4623 * this is either a control frame or a frame
4624 * with a reserved type, and thus not a
4625 * frame with an SA.
4626 *
4627 * I.e., check "!(link[0] & 0x04)".
4628 */
4629 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4630 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
4631
4632 /*
4633 * AND that with the checks for data and management
4634 * frames.
4635 */
4636 gen_and(b1, b0);
4637 return b0;
4638
4639 case Q_DST:
4640 /*
4641 * Oh, yuk.
4642 *
4643 * For control frames, there is no DA.
4644 *
4645 * For management frames, DA is at an
4646 * offset of 4 from the beginning of
4647 * the packet.
4648 *
4649 * For data frames, DA is at an offset
4650 * of 4 from the beginning of the packet
4651 * if To DS is clear and at an offset of
4652 * 16 from the beginning of the packet
4653 * if To DS is set.
4654 */
4655
4656 /*
4657 * Generate the tests to be done for data frames.
4658 *
4659 * First, check for To DS set, i.e. "link[1] & 0x01".
4660 */
4661 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4662 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
4663
4664 /*
4665 * If To DS is set, the DA is at 16.
4666 */
4667 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4668 gen_and(b1, b0);
4669
4670 /*
4671 * Now, check for To DS not set, i.e. check
4672 * "!(link[1] & 0x01)".
4673 */
4674 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4675 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
4676
4677 /*
4678 * If To DS is not set, the DA is at 4.
4679 */
4680 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4681 gen_and(b2, b1);
4682
4683 /*
4684 * Now OR together the last two checks. That gives
4685 * the complete set of checks for data frames.
4686 */
4687 gen_or(b1, b0);
4688
4689 /*
4690 * Now check for a data frame.
4691 * I.e, check "link[0] & 0x08".
4692 */
4693 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4694 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4695
4696 /*
4697 * AND that with the checks done for data frames.
4698 */
4699 gen_and(b1, b0);
4700
4701 /*
4702 * If the high-order bit of the type value is 0, this
4703 * is a management frame.
4704 * I.e, check "!(link[0] & 0x08)".
4705 */
4706 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4707 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
4708
4709 /*
4710 * For management frames, the DA is at 4.
4711 */
4712 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4713 gen_and(b2, b1);
4714
4715 /*
4716 * OR that with the checks done for data frames.
4717 * That gives the checks done for management and
4718 * data frames.
4719 */
4720 gen_or(b1, b0);
4721
4722 /*
4723 * If the low-order bit of the type value is 1,
4724 * this is either a control frame or a frame
4725 * with a reserved type, and thus not a
4726 * frame with an SA.
4727 *
4728 * I.e., check "!(link[0] & 0x04)".
4729 */
4730 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4731 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
4732
4733 /*
4734 * AND that with the checks for data and management
4735 * frames.
4736 */
4737 gen_and(b1, b0);
4738 return b0;
4739
4740 case Q_AND:
4741 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4742 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4743 gen_and(b0, b1);
4744 return b1;
4745
4746 case Q_DEFAULT:
4747 case Q_OR:
4748 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4749 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4750 gen_or(b0, b1);
4751 return b1;
4752
4753 /*
4754 * XXX - add BSSID keyword?
4755 */
4756 case Q_ADDR1:
4757 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4758
4759 case Q_ADDR2:
4760 /*
4761 * Not present in CTS or ACK control frames.
4762 */
4763 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4764 IEEE80211_FC0_TYPE_MASK);
4765 b1 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4766 IEEE80211_FC0_SUBTYPE_MASK);
4767 b2 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4768 IEEE80211_FC0_SUBTYPE_MASK);
4769 gen_and(b1, b2);
4770 gen_or(b0, b2);
4771 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4772 gen_and(b2, b1);
4773 return b1;
4774
4775 case Q_ADDR3:
4776 /*
4777 * Not present in control frames.
4778 */
4779 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4780 IEEE80211_FC0_TYPE_MASK);
4781 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4782 gen_and(b0, b1);
4783 return b1;
4784
4785 case Q_ADDR4:
4786 /*
4787 * Present only if the direction mask has both "From DS"
4788 * and "To DS" set. Neither control frames nor management
4789 * frames should have both of those set, so we don't
4790 * check the frame type.
4791 */
4792 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4793 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4794 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4795 gen_and(b0, b1);
4796 return b1;
4797
4798 case Q_RA:
4799 /*
4800 * Not present in management frames; addr1 in other
4801 * frames.
4802 */
4803
4804 /*
4805 * If the high-order bit of the type value is 0, this
4806 * is a management frame.
4807 * I.e, check "(link[0] & 0x08)".
4808 */
4809 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4810 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4811
4812 /*
4813 * Check addr1.
4814 */
4815 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4816
4817 /*
4818 * AND that with the check of addr1.
4819 */
4820 gen_and(b1, b0);
4821 return (b0);
4822
4823 case Q_TA:
4824 /*
4825 * Not present in management frames; addr2, if present,
4826 * in other frames.
4827 */
4828
4829 /*
4830 * Not present in CTS or ACK control frames.
4831 */
4832 b0 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4833 IEEE80211_FC0_TYPE_MASK);
4834 b1 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4835 IEEE80211_FC0_SUBTYPE_MASK);
4836 b2 = gen_mcmp_ne(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4837 IEEE80211_FC0_SUBTYPE_MASK);
4838 gen_and(b1, b2);
4839 gen_or(b0, b2);
4840
4841 /*
4842 * If the high-order bit of the type value is 0, this
4843 * is a management frame.
4844 * I.e, check "(link[0] & 0x08)".
4845 */
4846 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4847 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
4848
4849 /*
4850 * AND that with the check for frames other than
4851 * CTS and ACK frames.
4852 */
4853 gen_and(b1, b2);
4854
4855 /*
4856 * Check addr2.
4857 */
4858 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4859 gen_and(b2, b1);
4860 return b1;
4861 }
4862 abort();
4863 /*NOTREACHED*/
4864 }
4865
4866 /*
4867 * This is quite tricky because there may be pad bytes in front of the
4868 * DECNET header, and then there are two possible data packet formats that
4869 * carry both src and dst addresses, plus 5 packet types in a format that
4870 * carries only the src node, plus 2 types that use a different format and
4871 * also carry just the src node.
4872 *
4873 * Yuck.
4874 *
4875 * Instead of doing those all right, we just look for data packets with
4876 * 0 or 1 bytes of padding. If you want to look at other packets, that
4877 * will require a lot more hacking.
4878 *
4879 * To add support for filtering on DECNET "areas" (network numbers)
4880 * one would want to add a "mask" argument to this routine. That would
4881 * make the filter even more inefficient, although one could be clever
4882 * and not generate masking instructions if the mask is 0xFFFF.
4883 */
4884 static struct block *
4885 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4886 {
4887 struct block *b0, *b1, *b2, *tmp;
4888 u_int offset_lh; /* offset if long header is received */
4889 u_int offset_sh; /* offset if short header is received */
4890
4891 switch (dir) {
4892
4893 case Q_DST:
4894 offset_sh = 1; /* follows flags */
4895 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4896 break;
4897
4898 case Q_SRC:
4899 offset_sh = 3; /* follows flags, dstnode */
4900 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4901 break;
4902
4903 case Q_AND:
4904 /* Inefficient because we do our Calvinball dance twice */
4905 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4906 b1 = gen_dnhostop(cstate, addr, Q_DST);
4907 gen_and(b0, b1);
4908 return b1;
4909
4910 case Q_DEFAULT:
4911 case Q_OR:
4912 /* Inefficient because we do our Calvinball dance twice */
4913 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4914 b1 = gen_dnhostop(cstate, addr, Q_DST);
4915 gen_or(b0, b1);
4916 return b1;
4917
4918 case Q_ADDR1:
4919 case Q_ADDR2:
4920 case Q_ADDR3:
4921 case Q_ADDR4:
4922 case Q_RA:
4923 case Q_TA:
4924 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
4925 /*NOTREACHED*/
4926
4927 default:
4928 abort();
4929 /*NOTREACHED*/
4930 }
4931 /*
4932 * In a DECnet message inside an Ethernet frame the first two bytes
4933 * immediately after EtherType are the [litle-endian] DECnet message
4934 * length, which is irrelevant in this context.
4935 *
4936 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
4937 * 8-bit bitmap of the optional padding before the packet route header.
4938 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
4939 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
4940 * means there aren't any PAD bytes after the bitmap, so the header
4941 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
4942 * is set to 0, thus the header begins at the third byte.
4943 *
4944 * The header can be in several (as mentioned above) formats, all of
4945 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
4946 * (PF, "pad field") set to 0 regardless of any padding present before
4947 * the header. "Short header" means bits 0-2 of the bitmap encode the
4948 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
4949 *
4950 * To test PLENGTH and FLAGS, use multiple-byte constants with the
4951 * values and the masks, this maps to the required single bytes of
4952 * the message correctly on both big-endian and little-endian hosts.
4953 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
4954 * because the wire encoding is little-endian and BPF multiple-byte
4955 * loads are big-endian. When the destination address is near enough
4956 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
4957 * smaller ones.
4958 */
4959 /* Check for pad = 1, long header case */
4960 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8106U, 0xFF07U);
4961 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4962 BPF_H, SWAPSHORT(addr));
4963 gen_and(tmp, b1);
4964 /* Check for pad = 0, long header case */
4965 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x06U, 0x07U);
4966 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4967 SWAPSHORT(addr));
4968 gen_and(tmp, b2);
4969 gen_or(b2, b1);
4970 /* Check for pad = 1, short header case */
4971 if (dir == Q_DST) {
4972 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
4973 0x81020000U | SWAPSHORT(addr),
4974 0xFF07FFFFU);
4975 } else {
4976 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, 0x8102U, 0xFF07U);
4977 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4978 SWAPSHORT(addr));
4979 gen_and(tmp, b2);
4980 }
4981 gen_or(b2, b1);
4982 /* Check for pad = 0, short header case */
4983 if (dir == Q_DST) {
4984 b2 = gen_mcmp(cstate, OR_LINKPL, 2, BPF_W,
4985 0x02000000U | SWAPSHORT(addr) << 8,
4986 0x07FFFF00U);
4987 } else {
4988 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, 0x02U, 0x07U);
4989 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4990 SWAPSHORT(addr));
4991 gen_and(tmp, b2);
4992 }
4993 gen_or(b2, b1);
4994
4995 return b1;
4996 }
4997
4998 /*
4999 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5000 * test the bottom-of-stack bit, and then check the version number
5001 * field in the IP header.
5002 */
5003 static struct block *
5004 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
5005 {
5006 struct block *b0, *b1;
5007
5008 switch (ll_proto) {
5009
5010 case ETHERTYPE_IP:
5011 /* match the bottom-of-stack bit */
5012 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5013 /* match the IPv4 version number */
5014 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
5015 gen_and(b0, b1);
5016 return b1;
5017
5018 case ETHERTYPE_IPV6:
5019 /* match the bottom-of-stack bit */
5020 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
5021 /* match the IPv6 version number */
5022 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
5023 gen_and(b0, b1);
5024 return b1;
5025
5026 default:
5027 /* FIXME add other L3 proto IDs */
5028 bpf_error(cstate, "unsupported protocol over mpls");
5029 /*NOTREACHED*/
5030 }
5031 }
5032
5033 static struct block *
5034 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
5035 int proto, int dir, int type)
5036 {
5037 struct block *b0, *b1;
5038
5039 switch (proto) {
5040
5041 case Q_DEFAULT:
5042 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
5043 /*
5044 * Only check for non-IPv4 addresses if we're not
5045 * checking MPLS-encapsulated packets.
5046 */
5047 if (cstate->label_stack_depth == 0) {
5048 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
5049 gen_or(b0, b1);
5050 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
5051 gen_or(b1, b0);
5052 }
5053 return b0;
5054
5055 case Q_LINK:
5056 // "link net NETNAME" and variations thereof
5057 break; // invalid qualifier
5058
5059 case Q_IP:
5060 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5061 /*
5062 * Belt and braces: if other code works correctly, any host
5063 * bits are clear and mask == 0 means addr == 0. In this case
5064 * the call to gen_hostop() would produce an "always true"
5065 * instruction block and ANDing it with the link type check
5066 * would be a no-op.
5067 */
5068 if (mask == 0 && addr == 0)
5069 return b0;
5070 b1 = gen_hostop(cstate, addr, mask, dir, 12, 16);
5071 gen_and(b0, b1);
5072 return b1;
5073
5074 case Q_RARP:
5075 b0 = gen_linktype(cstate, ETHERTYPE_REVARP);
5076 // Same as for Q_IP above.
5077 if (mask == 0 && addr == 0)
5078 return b0;
5079 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5080 gen_and(b0, b1);
5081 return b1;
5082
5083 case Q_ARP:
5084 b0 = gen_linktype(cstate, ETHERTYPE_ARP);
5085 // Same as for Q_IP above.
5086 if (mask == 0 && addr == 0)
5087 return b0;
5088 b1 = gen_hostop(cstate, addr, mask, dir, 14, 24);
5089 gen_and(b0, b1);
5090 return b1;
5091
5092 case Q_SCTP:
5093 case Q_TCP:
5094 case Q_UDP:
5095 case Q_ICMP:
5096 case Q_IGMP:
5097 case Q_IGRP:
5098 case Q_ATALK:
5099 break; // invalid qualifier
5100
5101 case Q_DECNET:
5102 b0 = gen_linktype(cstate, ETHERTYPE_DN);
5103 b1 = gen_dnhostop(cstate, addr, dir);
5104 gen_and(b0, b1);
5105 return b1;
5106
5107 case Q_LAT:
5108 case Q_SCA:
5109 case Q_MOPRC:
5110 case Q_MOPDL:
5111 case Q_IPV6:
5112 case Q_ICMPV6:
5113 case Q_AH:
5114 case Q_ESP:
5115 case Q_PIM:
5116 case Q_VRRP:
5117 case Q_AARP:
5118 case Q_ISO:
5119 case Q_ESIS:
5120 case Q_ISIS:
5121 case Q_CLNP:
5122 case Q_STP:
5123 case Q_IPX:
5124 case Q_NETBEUI:
5125 case Q_ISIS_L1:
5126 case Q_ISIS_L2:
5127 case Q_ISIS_IIH:
5128 case Q_ISIS_SNP:
5129 case Q_ISIS_CSNP:
5130 case Q_ISIS_PSNP:
5131 case Q_ISIS_LSP:
5132 case Q_RADIO:
5133 case Q_CARP:
5134 break; // invalid qualifier
5135
5136 default:
5137 abort();
5138 }
5139 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5140 type == Q_NET ? "ip net" : "ip host");
5141 /*NOTREACHED*/
5142 }
5143
5144 #ifdef INET6
5145 static struct block *
5146 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5147 struct in6_addr *mask, int proto, int dir, int type)
5148 {
5149 struct block *b0, *b1;
5150
5151 switch (proto) {
5152
5153 case Q_DEFAULT:
5154 case Q_IPV6:
5155 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5156 // Same as the Q_IP case in gen_host().
5157 if (
5158 ! memcmp(mask, &in6addr_any, sizeof(struct in6_addr)) &&
5159 ! memcmp(addr, &in6addr_any, sizeof(struct in6_addr))
5160 )
5161 return b0;
5162 b1 = gen_hostop6(cstate, addr, mask, dir, 8, 24);
5163 gen_and(b0, b1);
5164 return b1;
5165
5166 case Q_LINK:
5167 case Q_IP:
5168 case Q_RARP:
5169 case Q_ARP:
5170 case Q_SCTP:
5171 case Q_TCP:
5172 case Q_UDP:
5173 case Q_ICMP:
5174 case Q_IGMP:
5175 case Q_IGRP:
5176 case Q_ATALK:
5177 case Q_DECNET:
5178 case Q_LAT:
5179 case Q_SCA:
5180 case Q_MOPRC:
5181 case Q_MOPDL:
5182 case Q_ICMPV6:
5183 case Q_AH:
5184 case Q_ESP:
5185 case Q_PIM:
5186 case Q_VRRP:
5187 case Q_AARP:
5188 case Q_ISO:
5189 case Q_ESIS:
5190 case Q_ISIS:
5191 case Q_CLNP:
5192 case Q_STP:
5193 case Q_IPX:
5194 case Q_NETBEUI:
5195 case Q_ISIS_L1:
5196 case Q_ISIS_L2:
5197 case Q_ISIS_IIH:
5198 case Q_ISIS_SNP:
5199 case Q_ISIS_CSNP:
5200 case Q_ISIS_PSNP:
5201 case Q_ISIS_LSP:
5202 case Q_RADIO:
5203 case Q_CARP:
5204 break; // invalid qualifier
5205
5206 default:
5207 abort();
5208 }
5209 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto),
5210 type == Q_NET ? "ip6 net" : "ip6 host");
5211 /*NOTREACHED*/
5212 }
5213 #endif
5214
5215 static unsigned char
5216 is_mac48_linktype(const int linktype)
5217 {
5218 switch (linktype) {
5219 case DLT_EN10MB:
5220 case DLT_FDDI:
5221 case DLT_IEEE802:
5222 case DLT_IEEE802_11:
5223 case DLT_IEEE802_11_RADIO:
5224 case DLT_IEEE802_11_RADIO_AVS:
5225 case DLT_IP_OVER_FC:
5226 case DLT_NETANALYZER:
5227 case DLT_NETANALYZER_TRANSPARENT:
5228 case DLT_PPI:
5229 case DLT_PRISM_HEADER:
5230 return 1;
5231 default:
5232 return 0;
5233 }
5234 }
5235
5236 static struct block *
5237 gen_mac48host(compiler_state_t *cstate, const u_char *eaddr, const u_char dir,
5238 const char *keyword)
5239 {
5240 struct block *b1 = NULL;
5241 u_int src_off, dst_off;
5242
5243 switch (cstate->linktype) {
5244 case DLT_EN10MB:
5245 case DLT_NETANALYZER:
5246 case DLT_NETANALYZER_TRANSPARENT:
5247 b1 = gen_prevlinkhdr_check(cstate);
5248 src_off = 6;
5249 dst_off = 0;
5250 break;
5251 case DLT_FDDI:
5252 src_off = 6 + 1 + cstate->pcap_fddipad;
5253 dst_off = 0 + 1 + cstate->pcap_fddipad;
5254 break;
5255 case DLT_IEEE802:
5256 src_off = 8;
5257 dst_off = 2;
5258 break;
5259 case DLT_IEEE802_11:
5260 case DLT_PRISM_HEADER:
5261 case DLT_IEEE802_11_RADIO_AVS:
5262 case DLT_IEEE802_11_RADIO:
5263 case DLT_PPI:
5264 return gen_wlanhostop(cstate, eaddr, dir);
5265 case DLT_IP_OVER_FC:
5266 /*
5267 * Assume that the addresses are IEEE 48-bit MAC addresses,
5268 * as RFC 2625 states.
5269 */
5270 src_off = 10;
5271 dst_off = 2;
5272 break;
5273 case DLT_SUNATM:
5274 /*
5275 * This is LLC-multiplexed traffic; if it were
5276 * LANE, cstate->linktype would have been set to
5277 * DLT_EN10MB.
5278 */
5279 /* FALLTHROUGH */
5280 default:
5281 fail_kw_on_dlt(cstate, keyword);
5282 }
5283
5284 struct block *b0, *tmp;
5285
5286 switch (dir) {
5287 case Q_SRC:
5288 b0 = gen_bcmp(cstate, OR_LINKHDR, src_off, 6, eaddr);
5289 break;
5290 case Q_DST:
5291 b0 = gen_bcmp(cstate, OR_LINKHDR, dst_off, 6, eaddr);
5292 break;
5293 case Q_AND:
5294 tmp = gen_bcmp(cstate, OR_LINKHDR, src_off, 6, eaddr);
5295 b0 = gen_bcmp(cstate, OR_LINKHDR, dst_off, 6, eaddr);
5296 gen_and(tmp, b0);
5297 break;
5298 case Q_DEFAULT:
5299 case Q_OR:
5300 tmp = gen_bcmp(cstate, OR_LINKHDR, src_off, 6, eaddr);
5301 b0 = gen_bcmp(cstate, OR_LINKHDR, dst_off, 6, eaddr);
5302 gen_or(tmp, b0);
5303 break;
5304 default:
5305 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
5306 }
5307
5308 if (b1 != NULL)
5309 gen_and(b1, b0);
5310 return b0;
5311 }
5312
5313 #ifndef INET6
5314 /*
5315 * This primitive is non-directional by design, so the grammar does not allow
5316 * to qualify it with a direction.
5317 */
5318 static struct block *
5319 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5320 struct addrinfo *alist, int proto)
5321 {
5322 struct block *b0, *b1, *tmp;
5323 struct addrinfo *ai;
5324 struct sockaddr_in *sin;
5325
5326 switch (proto) {
5327 case Q_DEFAULT:
5328 case Q_IP:
5329 case Q_ARP:
5330 case Q_RARP:
5331 b0 = gen_mac48host(cstate, eaddr, Q_OR, "gateway");
5332 b1 = NULL;
5333 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5334 /*
5335 * Does it have an address?
5336 */
5337 if (ai->ai_addr != NULL) {
5338 /*
5339 * Yes. Is it an IPv4 address?
5340 */
5341 if (ai->ai_addr->sa_family == AF_INET) {
5342 /*
5343 * Generate an entry for it.
5344 */
5345 sin = (struct sockaddr_in *)ai->ai_addr;
5346 tmp = gen_host(cstate,
5347 ntohl(sin->sin_addr.s_addr),
5348 0xffffffff, proto, Q_OR, Q_HOST);
5349 /*
5350 * Is it the *first* IPv4 address?
5351 */
5352 if (b1 == NULL) {
5353 /*
5354 * Yes, so start with it.
5355 */
5356 b1 = tmp;
5357 } else {
5358 /*
5359 * No, so OR it into the
5360 * existing set of
5361 * addresses.
5362 */
5363 gen_or(b1, tmp);
5364 b1 = tmp;
5365 }
5366 }
5367 }
5368 }
5369 if (b1 == NULL) {
5370 /*
5371 * No IPv4 addresses found.
5372 */
5373 return (NULL);
5374 }
5375 gen_not(b1);
5376 gen_and(b0, b1);
5377 return b1;
5378 }
5379 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "gateway");
5380 /*NOTREACHED*/
5381 }
5382 #endif
5383
5384 static struct block *
5385 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5386 {
5387 struct block *b0;
5388 struct block *b1;
5389
5390 switch (proto) {
5391
5392 case Q_SCTP:
5393 return gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT);
5394
5395 case Q_TCP:
5396 return gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT);
5397
5398 case Q_UDP:
5399 return gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT);
5400
5401 case Q_ICMP:
5402 return gen_proto(cstate, IPPROTO_ICMP, Q_IP);
5403
5404 #ifndef IPPROTO_IGMP
5405 #define IPPROTO_IGMP 2
5406 #endif
5407
5408 case Q_IGMP:
5409 return gen_proto(cstate, IPPROTO_IGMP, Q_IP);
5410
5411 #ifndef IPPROTO_IGRP
5412 #define IPPROTO_IGRP 9
5413 #endif
5414 case Q_IGRP:
5415 return gen_proto(cstate, IPPROTO_IGRP, Q_IP);
5416
5417 #ifndef IPPROTO_PIM
5418 #define IPPROTO_PIM 103
5419 #endif
5420
5421 case Q_PIM:
5422 return gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT);
5423
5424 #ifndef IPPROTO_VRRP
5425 #define IPPROTO_VRRP 112
5426 #endif
5427
5428 case Q_VRRP:
5429 return gen_proto(cstate, IPPROTO_VRRP, Q_IP);
5430
5431 #ifndef IPPROTO_CARP
5432 #define IPPROTO_CARP 112
5433 #endif
5434
5435 case Q_CARP:
5436 return gen_proto(cstate, IPPROTO_CARP, Q_IP);
5437
5438 case Q_IP:
5439 return gen_linktype(cstate, ETHERTYPE_IP);
5440
5441 case Q_ARP:
5442 return gen_linktype(cstate, ETHERTYPE_ARP);
5443
5444 case Q_RARP:
5445 return gen_linktype(cstate, ETHERTYPE_REVARP);
5446
5447 case Q_LINK:
5448 break; // invalid syntax
5449
5450 case Q_ATALK:
5451 return gen_linktype(cstate, ETHERTYPE_ATALK);
5452
5453 case Q_AARP:
5454 return gen_linktype(cstate, ETHERTYPE_AARP);
5455
5456 case Q_DECNET:
5457 return gen_linktype(cstate, ETHERTYPE_DN);
5458
5459 case Q_SCA:
5460 return gen_linktype(cstate, ETHERTYPE_SCA);
5461
5462 case Q_LAT:
5463 return gen_linktype(cstate, ETHERTYPE_LAT);
5464
5465 case Q_MOPDL:
5466 return gen_linktype(cstate, ETHERTYPE_MOPDL);
5467
5468 case Q_MOPRC:
5469 return gen_linktype(cstate, ETHERTYPE_MOPRC);
5470
5471 case Q_IPV6:
5472 return gen_linktype(cstate, ETHERTYPE_IPV6);
5473
5474 #ifndef IPPROTO_ICMPV6
5475 #define IPPROTO_ICMPV6 58
5476 #endif
5477 case Q_ICMPV6:
5478 return gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6);
5479
5480 #ifndef IPPROTO_AH
5481 #define IPPROTO_AH 51
5482 #endif
5483 case Q_AH:
5484 return gen_proto(cstate, IPPROTO_AH, Q_DEFAULT);
5485
5486 #ifndef IPPROTO_ESP
5487 #define IPPROTO_ESP 50
5488 #endif
5489 case Q_ESP:
5490 return gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT);
5491
5492 case Q_ISO:
5493 return gen_linktype(cstate, LLCSAP_ISONS);
5494
5495 case Q_ESIS:
5496 return gen_proto(cstate, ISO9542_ESIS, Q_ISO);
5497
5498 case Q_ISIS:
5499 return gen_proto(cstate, ISO10589_ISIS, Q_ISO);
5500
5501 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5502 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS);
5503 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS); /* FIXME extract the circuit-type bits */
5504 gen_or(b0, b1);
5505 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS);
5506 gen_or(b0, b1);
5507 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5508 gen_or(b0, b1);
5509 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5510 gen_or(b0, b1);
5511 return b1;
5512
5513 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5514 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS);
5515 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS); /* FIXME extract the circuit-type bits */
5516 gen_or(b0, b1);
5517 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS);
5518 gen_or(b0, b1);
5519 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5520 gen_or(b0, b1);
5521 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5522 gen_or(b0, b1);
5523 return b1;
5524
5525 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5526 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS);
5527 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS);
5528 gen_or(b0, b1);
5529 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS);
5530 gen_or(b0, b1);
5531 return b1;
5532
5533 case Q_ISIS_LSP:
5534 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS);
5535 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS);
5536 gen_or(b0, b1);
5537 return b1;
5538
5539 case Q_ISIS_SNP:
5540 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5541 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5542 gen_or(b0, b1);
5543 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5544 gen_or(b0, b1);
5545 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5546 gen_or(b0, b1);
5547 return b1;
5548
5549 case Q_ISIS_CSNP:
5550 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS);
5551 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS);
5552 gen_or(b0, b1);
5553 return b1;
5554
5555 case Q_ISIS_PSNP:
5556 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS);
5557 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS);
5558 gen_or(b0, b1);
5559 return b1;
5560
5561 case Q_CLNP:
5562 return gen_proto(cstate, ISO8473_CLNP, Q_ISO);
5563
5564 case Q_STP:
5565 return gen_linktype(cstate, LLCSAP_8021D);
5566
5567 case Q_IPX:
5568 return gen_linktype(cstate, LLCSAP_IPX);
5569
5570 case Q_NETBEUI:
5571 return gen_linktype(cstate, LLCSAP_NETBEUI);
5572
5573 case Q_RADIO:
5574 break; // invalid syntax
5575
5576 default:
5577 abort();
5578 }
5579 bpf_error(cstate, "'%s' cannot be used as an abbreviation", pqkw(proto));
5580 }
5581
5582 struct block *
5583 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5584 {
5585 /*
5586 * Catch errors reported by us and routines below us, and return NULL
5587 * on an error.
5588 */
5589 if (setjmp(cstate->top_ctx))
5590 return (NULL);
5591
5592 return gen_proto_abbrev_internal(cstate, proto);
5593 }
5594
5595 static struct block *
5596 gen_ip_proto(compiler_state_t *cstate, const uint8_t proto)
5597 {
5598 return gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5599 }
5600
5601 static struct block *
5602 gen_ip6_proto(compiler_state_t *cstate, const uint8_t proto)
5603 {
5604 return gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5605 }
5606
5607 static struct block *
5608 gen_ipfrag(compiler_state_t *cstate)
5609 {
5610 struct slist *s;
5611
5612 /* not IPv4 frag other than the first frag */
5613 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5614 return gen_unset(cstate, 0x1fff, s);
5615 }
5616
5617 /*
5618 * Generate a comparison to a port value in the transport-layer header
5619 * at the specified offset from the beginning of that header.
5620 *
5621 * XXX - this handles a variable-length prefix preceding the link-layer
5622 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5623 * variable-length link-layer headers (such as Token Ring or 802.11
5624 * headers).
5625 */
5626 static struct block *
5627 gen_portatom(compiler_state_t *cstate, int off, uint16_t v)
5628 {
5629 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5630 }
5631
5632 static struct block *
5633 gen_portatom6(compiler_state_t *cstate, int off, uint16_t v)
5634 {
5635 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5636 }
5637
5638 static struct block *
5639 gen_port(compiler_state_t *cstate, uint16_t port, int proto, int dir)
5640 {
5641 struct block *b1, *tmp;
5642
5643 switch (dir) {
5644 case Q_SRC:
5645 b1 = gen_portatom(cstate, 0, port);
5646 break;
5647
5648 case Q_DST:
5649 b1 = gen_portatom(cstate, 2, port);
5650 break;
5651
5652 case Q_AND:
5653 tmp = gen_portatom(cstate, 0, port);
5654 b1 = gen_portatom(cstate, 2, port);
5655 gen_and(tmp, b1);
5656 break;
5657
5658 case Q_DEFAULT:
5659 case Q_OR:
5660 tmp = gen_portatom(cstate, 0, port);
5661 b1 = gen_portatom(cstate, 2, port);
5662 gen_or(tmp, b1);
5663 break;
5664
5665 case Q_ADDR1:
5666 case Q_ADDR2:
5667 case Q_ADDR3:
5668 case Q_ADDR4:
5669 case Q_RA:
5670 case Q_TA:
5671 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "port");
5672 /*NOTREACHED*/
5673
5674 default:
5675 abort();
5676 /*NOTREACHED*/
5677 }
5678
5679 return gen_port_common(cstate, proto, b1);
5680 }
5681
5682 static struct block *
5683 gen_port_common(compiler_state_t *cstate, int proto, struct block *b1)
5684 {
5685 struct block *b0, *tmp;
5686
5687 /*
5688 * ether proto ip
5689 *
5690 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5691 * not LLC encapsulation with LLCSAP_IP.
5692 *
5693 * For IEEE 802 networks - which includes 802.5 token ring
5694 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5695 * says that SNAP encapsulation is used, not LLC encapsulation
5696 * with LLCSAP_IP.
5697 *
5698 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5699 * RFC 2225 say that SNAP encapsulation is used, not LLC
5700 * encapsulation with LLCSAP_IP.
5701 *
5702 * So we always check for ETHERTYPE_IP.
5703 *
5704 * At the time of this writing all three L4 protocols the "port" and
5705 * "portrange" primitives support (TCP, UDP and SCTP) have the source
5706 * and the destination ports identically encoded in the transport
5707 * protocol header. So without a proto qualifier the only difference
5708 * between the implemented cases is the protocol number and all other
5709 * checks need to be made exactly once.
5710 *
5711 * If the expression syntax in future starts to support ports for
5712 * another L4 protocol that has unsigned integer ports encoded using a
5713 * different size and/or offset, this will require a different code.
5714 */
5715 switch (proto) {
5716 case IPPROTO_UDP:
5717 case IPPROTO_TCP:
5718 case IPPROTO_SCTP:
5719 tmp = gen_ip_proto(cstate, (uint8_t)proto);
5720 break;
5721
5722 case PROTO_UNDEF:
5723 tmp = gen_ip_proto(cstate, IPPROTO_UDP);
5724 gen_or(gen_ip_proto(cstate, IPPROTO_TCP), tmp);
5725 gen_or(gen_ip_proto(cstate, IPPROTO_SCTP), tmp);
5726 break;
5727
5728 default:
5729 abort();
5730 }
5731 // Not a fragment other than the first fragment.
5732 b0 = gen_ipfrag(cstate);
5733 gen_and(tmp, b0);
5734 gen_and(b0, b1);
5735 // "link proto \ip"
5736 gen_and(gen_linktype(cstate, ETHERTYPE_IP), b1);
5737 return b1;
5738 }
5739
5740 static struct block *
5741 gen_port6(compiler_state_t *cstate, uint16_t port, int proto, int dir)
5742 {
5743 struct block *b1, *tmp;
5744
5745 switch (dir) {
5746 case Q_SRC:
5747 b1 = gen_portatom6(cstate, 0, port);
5748 break;
5749
5750 case Q_DST:
5751 b1 = gen_portatom6(cstate, 2, port);
5752 break;
5753
5754 case Q_AND:
5755 tmp = gen_portatom6(cstate, 0, port);
5756 b1 = gen_portatom6(cstate, 2, port);
5757 gen_and(tmp, b1);
5758 break;
5759
5760 case Q_DEFAULT:
5761 case Q_OR:
5762 tmp = gen_portatom6(cstate, 0, port);
5763 b1 = gen_portatom6(cstate, 2, port);
5764 gen_or(tmp, b1);
5765 break;
5766
5767 default:
5768 abort();
5769 }
5770
5771 return gen_port6_common(cstate, proto, b1);
5772 }
5773
5774 static struct block *
5775 gen_port6_common(compiler_state_t *cstate, int proto, struct block *b1)
5776 {
5777 struct block *tmp;
5778
5779 // "ip6 proto 'ip_proto'"
5780 switch (proto) {
5781 case IPPROTO_UDP:
5782 case IPPROTO_TCP:
5783 case IPPROTO_SCTP:
5784 tmp = gen_ip6_proto(cstate, (uint8_t)proto);
5785 break;
5786
5787 case PROTO_UNDEF:
5788 // Same as in gen_port_common().
5789 tmp = gen_ip6_proto(cstate, IPPROTO_UDP);
5790 gen_or(gen_ip6_proto(cstate, IPPROTO_TCP), tmp);
5791 gen_or(gen_ip6_proto(cstate, IPPROTO_SCTP), tmp);
5792 break;
5793
5794 default:
5795 abort();
5796 }
5797 // XXX - catch the first fragment of a fragmented packet?
5798 gen_and(tmp, b1);
5799 // "link proto \ip6"
5800 gen_and(gen_linktype(cstate, ETHERTYPE_IPV6), b1);
5801 return b1;
5802 }
5803
5804 /* gen_portrange code */
5805 static struct block *
5806 gen_portrangeatom(compiler_state_t *cstate, u_int off, uint16_t v1,
5807 uint16_t v2)
5808 {
5809 if (v1 == v2)
5810 return gen_portatom(cstate, off, v1);
5811
5812 struct block *b1, *b2;
5813
5814 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, min(v1, v2));
5815 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, max(v1, v2));
5816
5817 gen_and(b1, b2);
5818
5819 return b2;
5820 }
5821
5822 static struct block *
5823 gen_portrange(compiler_state_t *cstate, uint16_t port1, uint16_t port2,
5824 int proto, int dir)
5825 {
5826 struct block *b1, *tmp;
5827
5828 switch (dir) {
5829 case Q_SRC:
5830 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5831 break;
5832
5833 case Q_DST:
5834 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5835 break;
5836
5837 case Q_AND:
5838 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5839 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5840 gen_and(tmp, b1);
5841 break;
5842
5843 case Q_DEFAULT:
5844 case Q_OR:
5845 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5846 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5847 gen_or(tmp, b1);
5848 break;
5849
5850 case Q_ADDR1:
5851 case Q_ADDR2:
5852 case Q_ADDR3:
5853 case Q_ADDR4:
5854 case Q_RA:
5855 case Q_TA:
5856 bpf_error(cstate, ERRSTR_INVALID_QUAL, dqkw(dir), "portrange");
5857 /*NOTREACHED*/
5858
5859 default:
5860 abort();
5861 /*NOTREACHED*/
5862 }
5863
5864 return gen_port_common(cstate, proto, b1);
5865 }
5866
5867 static struct block *
5868 gen_portrangeatom6(compiler_state_t *cstate, u_int off, uint16_t v1,
5869 uint16_t v2)
5870 {
5871 if (v1 == v2)
5872 return gen_portatom6(cstate, off, v1);
5873
5874 struct block *b1, *b2;
5875
5876 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, min(v1, v2));
5877 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, max(v1, v2));
5878
5879 gen_and(b1, b2);
5880
5881 return b2;
5882 }
5883
5884 static struct block *
5885 gen_portrange6(compiler_state_t *cstate, uint16_t port1, uint16_t port2,
5886 int proto, int dir)
5887 {
5888 struct block *b1, *tmp;
5889
5890 switch (dir) {
5891 case Q_SRC:
5892 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5893 break;
5894
5895 case Q_DST:
5896 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5897 break;
5898
5899 case Q_AND:
5900 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5901 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5902 gen_and(tmp, b1);
5903 break;
5904
5905 case Q_DEFAULT:
5906 case Q_OR:
5907 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5908 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5909 gen_or(tmp, b1);
5910 break;
5911
5912 default:
5913 abort();
5914 }
5915
5916 return gen_port6_common(cstate, proto, b1);
5917 }
5918
5919 static int
5920 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5921 {
5922 register int v;
5923
5924 switch (proto) {
5925
5926 case Q_DEFAULT:
5927 case Q_IP:
5928 case Q_IPV6:
5929 v = pcap_nametoproto(name);
5930 if (v == PROTO_UNDEF)
5931 bpf_error(cstate, "unknown ip proto '%s'", name);
5932 break;
5933
5934 case Q_LINK:
5935 /* XXX should look up h/w protocol type based on cstate->linktype */
5936 v = pcap_nametoeproto(name);
5937 if (v == PROTO_UNDEF) {
5938 v = pcap_nametollc(name);
5939 if (v == PROTO_UNDEF)
5940 bpf_error(cstate, "unknown ether proto '%s'", name);
5941 }
5942 break;
5943
5944 case Q_ISO:
5945 if (strcmp(name, "esis") == 0)
5946 v = ISO9542_ESIS;
5947 else if (strcmp(name, "isis") == 0)
5948 v = ISO10589_ISIS;
5949 else if (strcmp(name, "clnp") == 0)
5950 v = ISO8473_CLNP;
5951 else
5952 bpf_error(cstate, "unknown osi proto '%s'", name);
5953 break;
5954
5955 default:
5956 v = PROTO_UNDEF;
5957 break;
5958 }
5959 return v;
5960 }
5961
5962 #if !defined(NO_PROTOCHAIN)
5963 /*
5964 * This primitive is non-directional by design, so the grammar does not allow
5965 * to qualify it with a direction.
5966 */
5967 static struct block *
5968 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
5969 {
5970 struct block *b0, *b;
5971 struct slist *s[100];
5972 int fix2, fix3, fix4, fix5;
5973 int ahcheck, again, end;
5974 int i, max;
5975 int reg2 = alloc_reg(cstate);
5976
5977 memset(s, 0, sizeof(s));
5978 fix3 = fix4 = fix5 = 0;
5979
5980 switch (proto) {
5981 case Q_IP:
5982 case Q_IPV6:
5983 assert_maxval(cstate, "protocol number", v, UINT8_MAX);
5984 break;
5985 case Q_DEFAULT:
5986 b0 = gen_protochain(cstate, v, Q_IP);
5987 b = gen_protochain(cstate, v, Q_IPV6);
5988 gen_or(b0, b);
5989 return b;
5990 default:
5991 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "protochain");
5992 /*NOTREACHED*/
5993 }
5994
5995 /*
5996 * We don't handle variable-length prefixes before the link-layer
5997 * header, or variable-length link-layer headers, here yet.
5998 * We might want to add BPF instructions to do the protochain
5999 * work, to simplify that and, on platforms that have a BPF
6000 * interpreter with the new instructions, let the filtering
6001 * be done in the kernel. (We already require a modified BPF
6002 * engine to do the protochain stuff, to support backward
6003 * branches, and backward branch support is unlikely to appear
6004 * in kernel BPF engines.)
6005 */
6006 if (cstate->off_linkpl.is_variable)
6007 bpf_error(cstate, "'protochain' not supported with variable length headers");
6008
6009 /*
6010 * To quote a comment in optimize.c:
6011 *
6012 * "These data structures are used in a Cocke and Schwartz style
6013 * value numbering scheme. Since the flowgraph is acyclic,
6014 * exit values can be propagated from a node's predecessors
6015 * provided it is uniquely defined."
6016 *
6017 * "Acyclic" means "no backward branches", which means "no
6018 * loops", so we have to turn the optimizer off.
6019 */
6020 cstate->no_optimize = 1;
6021
6022 /*
6023 * s[0] is a dummy entry to protect other BPF insn from damage
6024 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6025 * hard to find interdependency made by jump table fixup.
6026 */
6027 i = 0;
6028 s[i] = new_stmt(cstate, 0); /*dummy*/
6029 i++;
6030
6031 switch (proto) {
6032 case Q_IP:
6033 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6034
6035 /* A = ip->ip_p */
6036 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6037 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6038 i++;
6039 /* X = ip->ip_hl << 2 */
6040 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6041 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6042 i++;
6043 break;
6044
6045 case Q_IPV6:
6046 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6047
6048 /* A = ip6->ip_nxt */
6049 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6050 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6051 i++;
6052 /* X = sizeof(struct ip6_hdr) */
6053 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6054 s[i]->s.k = 40;
6055 i++;
6056 break;
6057
6058 default:
6059 bpf_error(cstate, "unsupported proto to gen_protochain");
6060 /*NOTREACHED*/
6061 }
6062
6063 /* again: if (A == v) goto end; else fall through; */
6064 again = i;
6065 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6066 s[i]->s.k = v;
6067 s[i]->s.jt = NULL; /*later*/
6068 s[i]->s.jf = NULL; /*update in next stmt*/
6069 fix5 = i;
6070 i++;
6071
6072 #ifndef IPPROTO_NONE
6073 #define IPPROTO_NONE 59
6074 #endif
6075 /* if (A == IPPROTO_NONE) goto end */
6076 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6077 s[i]->s.jt = NULL; /*later*/
6078 s[i]->s.jf = NULL; /*update in next stmt*/
6079 s[i]->s.k = IPPROTO_NONE;
6080 s[fix5]->s.jf = s[i];
6081 fix2 = i;
6082 i++;
6083
6084 if (proto == Q_IPV6) {
6085 int v6start, v6end, v6advance, j;
6086
6087 v6start = i;
6088 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6089 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6090 s[i]->s.jt = NULL; /*later*/
6091 s[i]->s.jf = NULL; /*update in next stmt*/
6092 s[i]->s.k = IPPROTO_HOPOPTS;
6093 s[fix2]->s.jf = s[i];
6094 i++;
6095 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6096 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6097 s[i]->s.jt = NULL; /*later*/
6098 s[i]->s.jf = NULL; /*update in next stmt*/
6099 s[i]->s.k = IPPROTO_DSTOPTS;
6100 i++;
6101 /* if (A == IPPROTO_ROUTING) goto v6advance */
6102 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6103 s[i]->s.jt = NULL; /*later*/
6104 s[i]->s.jf = NULL; /*update in next stmt*/
6105 s[i]->s.k = IPPROTO_ROUTING;
6106 i++;
6107 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6108 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6109 s[i]->s.jt = NULL; /*later*/
6110 s[i]->s.jf = NULL; /*later*/
6111 s[i]->s.k = IPPROTO_FRAGMENT;
6112 fix3 = i;
6113 v6end = i;
6114 i++;
6115
6116 /* v6advance: */
6117 v6advance = i;
6118
6119 /*
6120 * in short,
6121 * A = P[X + packet head];
6122 * X = X + (P[X + packet head + 1] + 1) * 8;
6123 */
6124 /* A = P[X + packet head] */
6125 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6126 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6127 i++;
6128 /* MEM[reg2] = A */
6129 s[i] = new_stmt(cstate, BPF_ST);
6130 s[i]->s.k = reg2;
6131 i++;
6132 /* A = P[X + packet head + 1]; */
6133 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6134 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6135 i++;
6136 /* A += 1 */
6137 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6138 s[i]->s.k = 1;
6139 i++;
6140 /* A *= 8 */
6141 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6142 s[i]->s.k = 8;
6143 i++;
6144 /* A += X */
6145 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6146 s[i]->s.k = 0;
6147 i++;
6148 /* X = A; */
6149 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6150 i++;
6151 /* A = MEM[reg2] */
6152 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6153 s[i]->s.k = reg2;
6154 i++;
6155
6156 /* goto again; (must use BPF_JA for backward jump) */
6157 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6158 s[i]->s.k = again - i - 1;
6159 s[i - 1]->s.jf = s[i];
6160 i++;
6161
6162 /* fixup */
6163 for (j = v6start; j <= v6end; j++)
6164 s[j]->s.jt = s[v6advance];
6165 } else {
6166 /* nop */
6167 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6168 s[i]->s.k = 0;
6169 s[fix2]->s.jf = s[i];
6170 i++;
6171 }
6172
6173 /* ahcheck: */
6174 ahcheck = i;
6175 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6176 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6177 s[i]->s.jt = NULL; /*later*/
6178 s[i]->s.jf = NULL; /*later*/
6179 s[i]->s.k = IPPROTO_AH;
6180 if (fix3)
6181 s[fix3]->s.jf = s[ahcheck];
6182 fix4 = i;
6183 i++;
6184
6185 /*
6186 * in short,
6187 * A = P[X];
6188 * X = X + (P[X + 1] + 2) * 4;
6189 */
6190 /* A = P[X + packet head]; */
6191 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6192 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6193 s[i - 1]->s.jt = s[i];
6194 i++;
6195 /* MEM[reg2] = A */
6196 s[i] = new_stmt(cstate, BPF_ST);
6197 s[i]->s.k = reg2;
6198 i++;
6199 /* A = X */
6200 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6201 i++;
6202 /* A += 1 */
6203 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6204 s[i]->s.k = 1;
6205 i++;
6206 /* X = A */
6207 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6208 i++;
6209 /* A = P[X + packet head] */
6210 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6211 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6212 i++;
6213 /* A += 2 */
6214 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6215 s[i]->s.k = 2;
6216 i++;
6217 /* A *= 4 */
6218 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6219 s[i]->s.k = 4;
6220 i++;
6221 /* X = A; */
6222 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6223 i++;
6224 /* A = MEM[reg2] */
6225 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6226 s[i]->s.k = reg2;
6227 i++;
6228
6229 /* goto again; (must use BPF_JA for backward jump) */
6230 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6231 s[i]->s.k = again - i - 1;
6232 i++;
6233
6234 /* end: nop */
6235 end = i;
6236 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6237 s[i]->s.k = 0;
6238 s[fix2]->s.jt = s[end];
6239 s[fix4]->s.jf = s[end];
6240 s[fix5]->s.jt = s[end];
6241 i++;
6242
6243 /*
6244 * make slist chain
6245 */
6246 max = i;
6247 for (i = 0; i < max - 1; i++)
6248 s[i]->next = s[i + 1];
6249 s[max - 1]->next = NULL;
6250
6251 /*
6252 * emit final check
6253 * Remember, s[0] is dummy.
6254 */
6255 b = gen_jmp(cstate, BPF_JEQ, v, s[1]);
6256
6257 free_reg(cstate, reg2);
6258
6259 gen_and(b0, b);
6260 return b;
6261 }
6262 #endif /* !defined(NO_PROTOCHAIN) */
6263
6264 /*
6265 * Generate code that checks whether the packet is a packet for protocol
6266 * <proto> and whether the type field in that protocol's header has
6267 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6268 * IP packet and checks the protocol number in the IP header against <v>.
6269 *
6270 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6271 * against Q_IP and Q_IPV6.
6272 *
6273 * This primitive is non-directional by design, so the grammar does not allow
6274 * to qualify it with a direction.
6275 */
6276 static struct block *
6277 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6278 {
6279 struct block *b0, *b1;
6280 struct block *b2;
6281
6282 switch (proto) {
6283 case Q_DEFAULT:
6284 b0 = gen_proto(cstate, v, Q_IP);
6285 b1 = gen_proto(cstate, v, Q_IPV6);
6286 gen_or(b0, b1);
6287 return b1;
6288
6289 case Q_LINK:
6290 return gen_linktype(cstate, v);
6291
6292 case Q_IP:
6293 assert_maxval(cstate, "protocol number", v, UINT8_MAX);
6294 /*
6295 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6296 * not LLC encapsulation with LLCSAP_IP.
6297 *
6298 * For IEEE 802 networks - which includes 802.5 token ring
6299 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6300 * says that SNAP encapsulation is used, not LLC encapsulation
6301 * with LLCSAP_IP.
6302 *
6303 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6304 * RFC 2225 say that SNAP encapsulation is used, not LLC
6305 * encapsulation with LLCSAP_IP.
6306 *
6307 * So we always check for ETHERTYPE_IP.
6308 */
6309 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6310 // 0 <= v <= UINT8_MAX
6311 b1 = gen_ip_proto(cstate, (uint8_t)v);
6312 gen_and(b0, b1);
6313 return b1;
6314
6315 case Q_ARP:
6316 case Q_RARP:
6317 case Q_SCTP:
6318 case Q_TCP:
6319 case Q_UDP:
6320 case Q_ICMP:
6321 case Q_IGMP:
6322 case Q_IGRP:
6323 case Q_ATALK:
6324 case Q_DECNET:
6325 case Q_LAT:
6326 case Q_SCA:
6327 case Q_MOPRC:
6328 case Q_MOPDL:
6329 break; // invalid qualifier
6330
6331 case Q_IPV6:
6332 assert_maxval(cstate, "protocol number", v, UINT8_MAX);
6333 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6334 /*
6335 * Also check for a fragment header before the final
6336 * header.
6337 */
6338 b2 = gen_ip6_proto(cstate, IPPROTO_FRAGMENT);
6339 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6340 gen_and(b2, b1);
6341 // 0 <= v <= UINT8_MAX
6342 b2 = gen_ip6_proto(cstate, (uint8_t)v);
6343 gen_or(b2, b1);
6344 gen_and(b0, b1);
6345 return b1;
6346
6347 case Q_ICMPV6:
6348 case Q_AH:
6349 case Q_ESP:
6350 case Q_PIM:
6351 case Q_VRRP:
6352 case Q_AARP:
6353 break; // invalid qualifier
6354
6355 case Q_ISO:
6356 assert_maxval(cstate, "ISO protocol", v, UINT8_MAX);
6357 switch (cstate->linktype) {
6358
6359 case DLT_FRELAY:
6360 /*
6361 * Frame Relay packets typically have an OSI
6362 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6363 * generates code to check for all the OSI
6364 * NLPIDs, so calling it and then adding a check
6365 * for the particular NLPID for which we're
6366 * looking is bogus, as we can just check for
6367 * the NLPID.
6368 *
6369 * What we check for is the NLPID and a frame
6370 * control field value of UI, i.e. 0x03 followed
6371 * by the NLPID.
6372 *
6373 * XXX - assumes a 2-byte Frame Relay header with
6374 * DLCI and flags. What if the address is longer?
6375 *
6376 * XXX - what about SNAP-encapsulated frames?
6377 */
6378 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6379 /*NOTREACHED*/
6380
6381 case DLT_C_HDLC:
6382 case DLT_HDLC:
6383 /*
6384 * Cisco uses an Ethertype lookalike - for OSI,
6385 * it's 0xfefe.
6386 */
6387 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6388 /* OSI in C-HDLC is stuffed with a fudge byte */
6389 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6390 gen_and(b0, b1);
6391 return b1;
6392
6393 default:
6394 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6395 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6396 gen_and(b0, b1);
6397 return b1;
6398 }
6399
6400 case Q_ESIS:
6401 break; // invalid qualifier
6402
6403 case Q_ISIS:
6404 assert_maxval(cstate, "IS-IS PDU type", v, ISIS_PDU_TYPE_MAX);
6405 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO);
6406 /*
6407 * 4 is the offset of the PDU type relative to the IS-IS
6408 * header.
6409 * Except when it is not, see above.
6410 */
6411 unsigned pdu_type_offset;
6412 switch (cstate->linktype) {
6413 case DLT_C_HDLC:
6414 case DLT_HDLC:
6415 pdu_type_offset = 5;
6416 break;
6417 default:
6418 pdu_type_offset = 4;
6419 }
6420 b1 = gen_mcmp(cstate, OR_LINKPL_NOSNAP, pdu_type_offset, BPF_B,
6421 v, ISIS_PDU_TYPE_MAX);
6422 gen_and(b0, b1);
6423 return b1;
6424
6425 case Q_CLNP:
6426 case Q_STP:
6427 case Q_IPX:
6428 case Q_NETBEUI:
6429 case Q_ISIS_L1:
6430 case Q_ISIS_L2:
6431 case Q_ISIS_IIH:
6432 case Q_ISIS_SNP:
6433 case Q_ISIS_CSNP:
6434 case Q_ISIS_PSNP:
6435 case Q_ISIS_LSP:
6436 case Q_RADIO:
6437 case Q_CARP:
6438 break; // invalid qualifier
6439
6440 default:
6441 abort();
6442 /*NOTREACHED*/
6443 }
6444 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "proto");
6445 /*NOTREACHED*/
6446 }
6447
6448 /*
6449 * Convert a non-numeric name to a port number.
6450 */
6451 static int
6452 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6453 {
6454 struct addrinfo hints, *res, *ai;
6455 int error;
6456 struct sockaddr_in *in4;
6457 #ifdef INET6
6458 struct sockaddr_in6 *in6;
6459 #endif
6460 int port = -1;
6461
6462 /*
6463 * We check for both TCP and UDP in case there are
6464 * ambiguous entries.
6465 */
6466 memset(&hints, 0, sizeof(hints));
6467 hints.ai_family = PF_UNSPEC;
6468 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6469 hints.ai_protocol = ipproto;
6470 error = getaddrinfo(NULL, name, &hints, &res);
6471 if (error != 0) {
6472 switch (error) {
6473
6474 case EAI_NONAME:
6475 case EAI_SERVICE:
6476 /*
6477 * No such port. Just return -1.
6478 */
6479 break;
6480
6481 #ifdef EAI_SYSTEM
6482 case EAI_SYSTEM:
6483 /*
6484 * We don't use strerror() because it's not
6485 * guaranteed to be thread-safe on all platforms
6486 * (probably because it might use a non-thread-local
6487 * buffer into which to format an error message
6488 * if the error code isn't one for which it has
6489 * a canned string; three cheers for C string
6490 * handling).
6491 */
6492 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6493 name, errno);
6494 port = -2; /* a real error */
6495 break;
6496 #endif
6497
6498 default:
6499 /*
6500 * This is a real error, not just "there's
6501 * no such service name".
6502 *
6503 * We don't use gai_strerror() because it's not
6504 * guaranteed to be thread-safe on all platforms
6505 * (probably because it might use a non-thread-local
6506 * buffer into which to format an error message
6507 * if the error code isn't one for which it has
6508 * a canned string; three cheers for C string
6509 * handling).
6510 */
6511 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6512 name, error);
6513 port = -2; /* a real error */
6514 break;
6515 }
6516 } else {
6517 /*
6518 * OK, we found it. Did it find anything?
6519 */
6520 for (ai = res; ai != NULL; ai = ai->ai_next) {
6521 /*
6522 * Does it have an address?
6523 */
6524 if (ai->ai_addr != NULL) {
6525 /*
6526 * Yes. Get a port number; we're done.
6527 */
6528 if (ai->ai_addr->sa_family == AF_INET) {
6529 in4 = (struct sockaddr_in *)ai->ai_addr;
6530 port = ntohs(in4->sin_port);
6531 break;
6532 }
6533 #ifdef INET6
6534 if (ai->ai_addr->sa_family == AF_INET6) {
6535 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6536 port = ntohs(in6->sin6_port);
6537 break;
6538 }
6539 #endif
6540 }
6541 }
6542 freeaddrinfo(res);
6543 }
6544 return port;
6545 }
6546
6547 /*
6548 * Convert a string to a port number.
6549 */
6550 static bpf_u_int32
6551 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6552 int *proto)
6553 {
6554 stoulen_ret ret;
6555 char *cpy;
6556 bpf_u_int32 val;
6557 int tcp_port = -1;
6558 int udp_port = -1;
6559
6560 /*
6561 * See if it's a number.
6562 */
6563 ret = stoulen(string, string_size, &val, cstate);
6564 switch (ret) {
6565
6566 case STOULEN_OK:
6567 /* Unknown port type - it's just a number. */
6568 *proto = PROTO_UNDEF;
6569 break;
6570
6571 case STOULEN_NOT_OCTAL_NUMBER:
6572 case STOULEN_NOT_HEX_NUMBER:
6573 case STOULEN_NOT_DECIMAL_NUMBER:
6574 /*
6575 * Not a valid number; try looking it up as a port.
6576 */
6577 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6578 memcpy(cpy, string, string_size);
6579 cpy[string_size] = '\0';
6580 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6581 if (tcp_port == -2) {
6582 /*
6583 * We got a hard error; the error string has
6584 * already been set.
6585 */
6586 free(cpy);
6587 longjmp(cstate->top_ctx, 1);
6588 /*NOTREACHED*/
6589 }
6590 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6591 if (udp_port == -2) {
6592 /*
6593 * We got a hard error; the error string has
6594 * already been set.
6595 */
6596 free(cpy);
6597 longjmp(cstate->top_ctx, 1);
6598 /*NOTREACHED*/
6599 }
6600
6601 /*
6602 * We need to check /etc/services for ambiguous entries.
6603 * If we find an ambiguous entry, and it has the
6604 * same port number, change the proto to PROTO_UNDEF
6605 * so both TCP and UDP will be checked.
6606 */
6607 if (tcp_port >= 0) {
6608 val = (bpf_u_int32)tcp_port;
6609 *proto = IPPROTO_TCP;
6610 if (udp_port >= 0) {
6611 if (udp_port == tcp_port)
6612 *proto = PROTO_UNDEF;
6613 #ifdef notdef
6614 else
6615 /* Can't handle ambiguous names that refer
6616 to different port numbers. */
6617 warning("ambiguous port %s in /etc/services",
6618 cpy);
6619 #endif
6620 }
6621 free(cpy);
6622 break;
6623 }
6624 if (udp_port >= 0) {
6625 val = (bpf_u_int32)udp_port;
6626 *proto = IPPROTO_UDP;
6627 free(cpy);
6628 break;
6629 }
6630 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6631 free(cpy);
6632 longjmp(cstate->top_ctx, 1);
6633 /*NOTREACHED*/
6634 #ifdef _AIX
6635 PCAP_UNREACHABLE
6636 #endif /* _AIX */
6637
6638 case STOULEN_ERROR:
6639 /* Error already set. */
6640 longjmp(cstate->top_ctx, 1);
6641 /*NOTREACHED*/
6642 #ifdef _AIX
6643 PCAP_UNREACHABLE
6644 #endif /* _AIX */
6645
6646 default:
6647 /* Should not happen */
6648 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6649 longjmp(cstate->top_ctx, 1);
6650 /*NOTREACHED*/
6651 }
6652 return (val);
6653 }
6654
6655 /*
6656 * Convert a string in the form PPP-PPP, which correspond to ports, to
6657 * a starting and ending port in a port range.
6658 */
6659 static void
6660 stringtoportrange(compiler_state_t *cstate, const char *string,
6661 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6662 {
6663 char *hyphen_off;
6664 const char *first, *second;
6665 size_t first_size, second_size;
6666 int save_proto;
6667
6668 if ((hyphen_off = strchr(string, '-')) == NULL)
6669 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6670
6671 /*
6672 * Make sure there are no other hyphens.
6673 *
6674 * XXX - we support named ports, but there are some port names
6675 * in /etc/services that include hyphens, so this would rule
6676 * that out.
6677 */
6678 if (strchr(hyphen_off + 1, '-') != NULL)
6679 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6680 string);
6681
6682 /*
6683 * Get the length of the first port.
6684 */
6685 first = string;
6686 first_size = hyphen_off - string;
6687 if (first_size == 0) {
6688 /* Range of "-port", which we don't support. */
6689 bpf_error(cstate, "port range '%s' has no starting port", string);
6690 }
6691
6692 /*
6693 * Try to convert it to a port.
6694 */
6695 *port1 = stringtoport(cstate, first, first_size, proto);
6696 save_proto = *proto;
6697
6698 /*
6699 * Get the length of the second port.
6700 */
6701 second = hyphen_off + 1;
6702 second_size = strlen(second);
6703 if (second_size == 0) {
6704 /* Range of "port-", which we don't support. */
6705 bpf_error(cstate, "port range '%s' has no ending port", string);
6706 }
6707
6708 /*
6709 * Try to convert it to a port.
6710 */
6711 *port2 = stringtoport(cstate, second, second_size, proto);
6712 if (*proto != save_proto)
6713 *proto = PROTO_UNDEF;
6714 }
6715
6716 struct block *
6717 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6718 {
6719 int proto = q.proto;
6720 int dir = q.dir;
6721 int tproto;
6722 u_char *eaddrp;
6723 u_char eaddr[6];
6724 bpf_u_int32 mask, addr;
6725 struct addrinfo *res, *res0;
6726 struct sockaddr_in *sin4;
6727 #ifdef INET6
6728 int tproto6;
6729 struct sockaddr_in6 *sin6;
6730 struct in6_addr mask128;
6731 #endif /*INET6*/
6732 struct block *b, *tmp;
6733 int port, real_proto;
6734 bpf_u_int32 port1, port2;
6735
6736 /*
6737 * Catch errors reported by us and routines below us, and return NULL
6738 * on an error.
6739 */
6740 if (setjmp(cstate->top_ctx))
6741 return (NULL);
6742
6743 switch (q.addr) {
6744
6745 case Q_NET:
6746 addr = pcap_nametonetaddr(name);
6747 if (addr == 0)
6748 bpf_error(cstate, "unknown network '%s'", name);
6749 /* Left justify network addr and calculate its network mask */
6750 mask = 0xffffffff;
6751 while (addr && (addr & 0xff000000) == 0) {
6752 addr <<= 8;
6753 mask <<= 8;
6754 }
6755 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6756
6757 case Q_DEFAULT:
6758 case Q_HOST:
6759 if (proto == Q_LINK) {
6760 const char *context = "link host NAME";
6761 if (! is_mac48_linktype(cstate->linktype))
6762 fail_kw_on_dlt(cstate, context);
6763 eaddrp = pcap_ether_hostton(name);
6764 if (eaddrp == NULL)
6765 bpf_error(cstate, ERRSTR_UNKNOWN_MAC48HOST, name);
6766 memcpy(eaddr, eaddrp, sizeof(eaddr));
6767 free(eaddrp);
6768 return gen_mac48host(cstate, eaddr, q.dir, context);
6769 } else if (proto == Q_DECNET) {
6770 /*
6771 * A long time ago on Ultrix libpcap supported
6772 * translation of DECnet host names into DECnet
6773 * addresses, but this feature is history now.
6774 */
6775 bpf_error(cstate, "invalid DECnet address '%s'", name);
6776 } else {
6777 #ifdef INET6
6778 memset(&mask128, 0xff, sizeof(mask128));
6779 #endif
6780 res0 = res = pcap_nametoaddrinfo(name);
6781 if (res == NULL)
6782 bpf_error(cstate, "unknown host '%s'", name);
6783 cstate->ai = res;
6784 b = tmp = NULL;
6785 tproto = proto;
6786 #ifdef INET6
6787 tproto6 = proto;
6788 #endif
6789 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6790 tproto == Q_DEFAULT) {
6791 tproto = Q_IP;
6792 #ifdef INET6
6793 tproto6 = Q_IPV6;
6794 #endif
6795 }
6796 for (res = res0; res; res = res->ai_next) {
6797 switch (res->ai_family) {
6798 case AF_INET:
6799 #ifdef INET6
6800 if (tproto == Q_IPV6)
6801 continue;
6802 #endif
6803
6804 sin4 = (struct sockaddr_in *)
6805 res->ai_addr;
6806 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6807 0xffffffff, tproto, dir, q.addr);
6808 break;
6809 #ifdef INET6
6810 case AF_INET6:
6811 if (tproto6 == Q_IP)
6812 continue;
6813
6814 sin6 = (struct sockaddr_in6 *)
6815 res->ai_addr;
6816 tmp = gen_host6(cstate, &sin6->sin6_addr,
6817 &mask128, tproto6, dir, q.addr);
6818 break;
6819 #endif
6820 default:
6821 continue;
6822 }
6823 if (b)
6824 gen_or(b, tmp);
6825 b = tmp;
6826 }
6827 cstate->ai = NULL;
6828 freeaddrinfo(res0);
6829 if (b == NULL) {
6830 bpf_error(cstate, "unknown host '%s'%s", name,
6831 (proto == Q_DEFAULT)
6832 ? ""
6833 : " for specified address family");
6834 }
6835 return b;
6836 }
6837
6838 case Q_PORT:
6839 (void)port_pq_to_ipproto(cstate, proto, "port"); // validate only
6840 if (pcap_nametoport(name, &port, &real_proto) == 0)
6841 bpf_error(cstate, "unknown port '%s'", name);
6842 if (proto == Q_UDP) {
6843 if (real_proto == IPPROTO_TCP)
6844 bpf_error(cstate, "port '%s' is tcp", name);
6845 else if (real_proto == IPPROTO_SCTP)
6846 bpf_error(cstate, "port '%s' is sctp", name);
6847 else
6848 /* override PROTO_UNDEF */
6849 real_proto = IPPROTO_UDP;
6850 }
6851 if (proto == Q_TCP) {
6852 if (real_proto == IPPROTO_UDP)
6853 bpf_error(cstate, "port '%s' is udp", name);
6854
6855 else if (real_proto == IPPROTO_SCTP)
6856 bpf_error(cstate, "port '%s' is sctp", name);
6857 else
6858 /* override PROTO_UNDEF */
6859 real_proto = IPPROTO_TCP;
6860 }
6861 if (proto == Q_SCTP) {
6862 if (real_proto == IPPROTO_UDP)
6863 bpf_error(cstate, "port '%s' is udp", name);
6864
6865 else if (real_proto == IPPROTO_TCP)
6866 bpf_error(cstate, "port '%s' is tcp", name);
6867 else
6868 /* override PROTO_UNDEF */
6869 real_proto = IPPROTO_SCTP;
6870 }
6871 if (port < 0)
6872 bpf_error(cstate, "illegal port number %d < 0", port);
6873 if (port > 65535)
6874 bpf_error(cstate, "illegal port number %d > 65535", port);
6875 // real_proto can be PROTO_UNDEF
6876 b = gen_port(cstate, (uint16_t)port, real_proto, dir);
6877 gen_or(gen_port6(cstate, (uint16_t)port, real_proto, dir), b);
6878 return b;
6879
6880 case Q_PORTRANGE:
6881 (void)port_pq_to_ipproto(cstate, proto, "portrange"); // validate only
6882 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
6883 if (proto == Q_UDP) {
6884 if (real_proto == IPPROTO_TCP)
6885 bpf_error(cstate, "port in range '%s' is tcp", name);
6886 else if (real_proto == IPPROTO_SCTP)
6887 bpf_error(cstate, "port in range '%s' is sctp", name);
6888 else
6889 /* override PROTO_UNDEF */
6890 real_proto = IPPROTO_UDP;
6891 }
6892 if (proto == Q_TCP) {
6893 if (real_proto == IPPROTO_UDP)
6894 bpf_error(cstate, "port in range '%s' is udp", name);
6895 else if (real_proto == IPPROTO_SCTP)
6896 bpf_error(cstate, "port in range '%s' is sctp", name);
6897 else
6898 /* override PROTO_UNDEF */
6899 real_proto = IPPROTO_TCP;
6900 }
6901 if (proto == Q_SCTP) {
6902 if (real_proto == IPPROTO_UDP)
6903 bpf_error(cstate, "port in range '%s' is udp", name);
6904 else if (real_proto == IPPROTO_TCP)
6905 bpf_error(cstate, "port in range '%s' is tcp", name);
6906 else
6907 /* override PROTO_UNDEF */
6908 real_proto = IPPROTO_SCTP;
6909 }
6910 if (port1 > 65535)
6911 bpf_error(cstate, "illegal port number %d > 65535", port1);
6912 if (port2 > 65535)
6913 bpf_error(cstate, "illegal port number %d > 65535", port2);
6914
6915 // real_proto can be PROTO_UNDEF
6916 b = gen_portrange(cstate, (uint16_t)port1, (uint16_t)port2,
6917 real_proto, dir);
6918 gen_or(gen_portrange6(cstate, (uint16_t)port1, (uint16_t)port2,
6919 real_proto, dir), b);
6920 return b;
6921
6922 case Q_GATEWAY:
6923 #ifndef INET6
6924 if (! is_mac48_linktype(cstate->linktype))
6925 fail_kw_on_dlt(cstate, "gateway");
6926 eaddrp = pcap_ether_hostton(name);
6927 if (eaddrp == NULL)
6928 bpf_error(cstate, ERRSTR_UNKNOWN_MAC48HOST, name);
6929 memcpy(eaddr, eaddrp, sizeof(eaddr));
6930 free(eaddrp);
6931
6932 res = pcap_nametoaddrinfo(name);
6933 cstate->ai = res;
6934 if (res == NULL)
6935 bpf_error(cstate, "unknown host '%s'", name);
6936 b = gen_gateway(cstate, eaddr, res, proto);
6937 cstate->ai = NULL;
6938 freeaddrinfo(res);
6939 if (b == NULL)
6940 bpf_error(cstate, "unknown host '%s'", name);
6941 return b;
6942 #else
6943 bpf_error(cstate, "'gateway' not supported in this configuration");
6944 #endif /*INET6*/
6945
6946 case Q_PROTO:
6947 real_proto = lookup_proto(cstate, name, proto);
6948 if (real_proto >= 0)
6949 return gen_proto(cstate, real_proto, proto);
6950 else
6951 bpf_error(cstate, "unknown protocol: %s", name);
6952
6953 #if !defined(NO_PROTOCHAIN)
6954 case Q_PROTOCHAIN:
6955 real_proto = lookup_proto(cstate, name, proto);
6956 if (real_proto >= 0)
6957 return gen_protochain(cstate, real_proto, proto);
6958 else
6959 bpf_error(cstate, "unknown protocol: %s", name);
6960 #endif /* !defined(NO_PROTOCHAIN) */
6961
6962 case Q_UNDEF:
6963 syntax(cstate);
6964 /*NOTREACHED*/
6965 }
6966 abort();
6967 /*NOTREACHED*/
6968 }
6969
6970 struct block *
6971 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6972 bpf_u_int32 masklen, struct qual q)
6973 {
6974 register int nlen, mlen;
6975 bpf_u_int32 n, m;
6976 uint64_t m64;
6977
6978 /*
6979 * Catch errors reported by us and routines below us, and return NULL
6980 * on an error.
6981 */
6982 if (setjmp(cstate->top_ctx))
6983 return (NULL);
6984
6985 nlen = pcapint_atoin(s1, &n);
6986 if (nlen < 0)
6987 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
6988 /* Promote short ipaddr */
6989 n <<= 32 - nlen;
6990
6991 if (s2 != NULL) {
6992 mlen = pcapint_atoin(s2, &m);
6993 if (mlen < 0)
6994 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
6995 /* Promote short ipaddr */
6996 m <<= 32 - mlen;
6997 if ((n & ~m) != 0)
6998 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6999 s1, s2);
7000 } else {
7001 /* Convert mask len to mask */
7002 if (masklen > 32)
7003 bpf_error(cstate, "mask length must be <= 32");
7004 m64 = UINT64_C(0xffffffff) << (32 - masklen);
7005 m = (bpf_u_int32)m64;
7006 if ((n & ~m) != 0)
7007 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7008 s1, masklen);
7009 }
7010
7011 switch (q.addr) {
7012
7013 case Q_NET:
7014 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7015
7016 default:
7017 // Q_HOST and Q_GATEWAY only (see the grammar)
7018 bpf_error(cstate, "Mask syntax for networks only");
7019 /*NOTREACHED*/
7020 }
7021 /*NOTREACHED*/
7022 }
7023
7024 struct block *
7025 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7026 {
7027 bpf_u_int32 mask;
7028 int proto;
7029 int dir;
7030 register int vlen;
7031
7032 /*
7033 * Catch errors reported by us and routines below us, and return NULL
7034 * on an error.
7035 */
7036 if (setjmp(cstate->top_ctx))
7037 return (NULL);
7038
7039 proto = q.proto;
7040 dir = q.dir;
7041 if (s == NULL) {
7042 /*
7043 * v contains a 32-bit unsigned parsed from a string of the
7044 * form {N}, which could be decimal, hexadecimal or octal.
7045 * Although it would be possible to use the value as a raw
7046 * 16-bit DECnet address when the value fits into 16 bits, this
7047 * would be a questionable feature: DECnet address wire
7048 * encoding is little-endian, so this would not work as
7049 * intuitively as the same works for [big-endian] IPv4
7050 * addresses (0x01020304 means 1.2.3.4).
7051 */
7052 if (proto == Q_DECNET)
7053 bpf_error(cstate, "invalid DECnet address '%u'", v);
7054 vlen = 32;
7055 } else if (proto == Q_DECNET) {
7056 /*
7057 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7058 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7059 * for a valid DECnet address.
7060 */
7061 vlen = pcapint_atodn(s, &v);
7062 if (vlen == 0)
7063 bpf_error(cstate, "invalid DECnet address '%s'", s);
7064 } else {
7065 /*
7066 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7067 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7068 * IPv4 address.
7069 */
7070 vlen = pcapint_atoin(s, &v);
7071 if (vlen < 0)
7072 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7073 }
7074
7075 switch (q.addr) {
7076
7077 case Q_DEFAULT:
7078 case Q_HOST:
7079 case Q_NET:
7080 if (proto == Q_DECNET)
7081 return gen_host(cstate, v, 0, proto, dir, q.addr);
7082 else if (proto == Q_LINK) {
7083 // "link (host|net) IPV4ADDR" and variations thereof
7084 bpf_error(cstate, "illegal link layer address");
7085 } else {
7086 mask = 0xffffffff;
7087 if (s == NULL && q.addr == Q_NET) {
7088 /* Promote short net number */
7089 while (v && (v & 0xff000000) == 0) {
7090 v <<= 8;
7091 mask <<= 8;
7092 }
7093 } else {
7094 /* Promote short ipaddr */
7095 v <<= 32 - vlen;
7096 mask <<= 32 - vlen ;
7097 }
7098 return gen_host(cstate, v, mask, proto, dir, q.addr);
7099 }
7100
7101 case Q_PORT:
7102 proto = port_pq_to_ipproto(cstate, proto, "port");
7103
7104 if (v > 65535)
7105 bpf_error(cstate, "illegal port number %u > 65535", v);
7106
7107 // proto can be PROTO_UNDEF
7108 {
7109 struct block *b;
7110 b = gen_port(cstate, (uint16_t)v, proto, dir);
7111 gen_or(gen_port6(cstate, (uint16_t)v, proto, dir), b);
7112 return b;
7113 }
7114
7115 case Q_PORTRANGE:
7116 proto = port_pq_to_ipproto(cstate, proto, "portrange");
7117
7118 if (v > 65535)
7119 bpf_error(cstate, "illegal port number %u > 65535", v);
7120
7121 // proto can be PROTO_UNDEF
7122 {
7123 struct block *b;
7124 b = gen_portrange(cstate, (uint16_t)v, (uint16_t)v,
7125 proto, dir);
7126 gen_or(gen_portrange6(cstate, (uint16_t)v, (uint16_t)v,
7127 proto, dir), b);
7128 return b;
7129 }
7130
7131 case Q_GATEWAY:
7132 bpf_error(cstate, "'gateway' requires a name");
7133 /*NOTREACHED*/
7134
7135 case Q_PROTO:
7136 return gen_proto(cstate, v, proto);
7137
7138 #if !defined(NO_PROTOCHAIN)
7139 case Q_PROTOCHAIN:
7140 return gen_protochain(cstate, v, proto);
7141 #endif
7142
7143 case Q_UNDEF:
7144 syntax(cstate);
7145 /*NOTREACHED*/
7146
7147 default:
7148 abort();
7149 /*NOTREACHED*/
7150 }
7151 /*NOTREACHED*/
7152 }
7153
7154 #ifdef INET6
7155 struct block *
7156 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7157 struct qual q)
7158 {
7159 struct addrinfo *res;
7160 struct in6_addr *addr;
7161 struct in6_addr mask;
7162 struct block *b;
7163 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7164
7165 /*
7166 * Catch errors reported by us and routines below us, and return NULL
7167 * on an error.
7168 */
7169 if (setjmp(cstate->top_ctx))
7170 return (NULL);
7171
7172 res = pcap_nametoaddrinfo(s);
7173 if (!res)
7174 bpf_error(cstate, "invalid ip6 address %s", s);
7175 cstate->ai = res;
7176 if (res->ai_next)
7177 bpf_error(cstate, "%s resolved to multiple address", s);
7178 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7179
7180 if (masklen > sizeof(mask.s6_addr) * 8)
7181 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7182 memset(&mask, 0, sizeof(mask));
7183 memset(&mask.s6_addr, 0xff, masklen / 8);
7184 if (masklen % 8) {
7185 mask.s6_addr[masklen / 8] =
7186 (0xff << (8 - masklen % 8)) & 0xff;
7187 }
7188
7189 memcpy(a, addr, sizeof(a));
7190 memcpy(m, &mask, sizeof(m));
7191 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7192 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7193 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7194 }
7195
7196 switch (q.addr) {
7197
7198 case Q_DEFAULT:
7199 case Q_HOST:
7200 if (masklen != 128)
7201 bpf_error(cstate, "Mask syntax for networks only");
7202 /* FALLTHROUGH */
7203
7204 case Q_NET:
7205 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7206 cstate->ai = NULL;
7207 freeaddrinfo(res);
7208 return b;
7209
7210 default:
7211 // Q_GATEWAY only (see the grammar)
7212 bpf_error(cstate, "invalid qualifier against IPv6 address");
7213 /*NOTREACHED*/
7214 }
7215 }
7216 #endif /*INET6*/
7217
7218 struct block *
7219 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7220 {
7221 /*
7222 * Catch errors reported by us and routines below us, and return NULL
7223 * on an error.
7224 */
7225 if (setjmp(cstate->top_ctx))
7226 return (NULL);
7227
7228 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7229 const char *context = "link host XX:XX:XX:XX:XX:XX";
7230 if (! is_mac48_linktype(cstate->linktype))
7231 fail_kw_on_dlt(cstate, context);
7232 cstate->e = pcap_ether_aton(s);
7233 if (cstate->e == NULL)
7234 bpf_error(cstate, "malloc");
7235 struct block *b = gen_mac48host(cstate, cstate->e, q.dir, context);
7236 free(cstate->e);
7237 cstate->e = NULL;
7238 return (b);
7239 }
7240 bpf_error(cstate, "ethernet address used in non-ether expression");
7241 /*NOTREACHED*/
7242 }
7243
7244 void
7245 sappend(struct slist *s0, struct slist *s1)
7246 {
7247 /*
7248 * This is definitely not the best way to do this, but the
7249 * lists will rarely get long.
7250 */
7251 while (s0->next)
7252 s0 = s0->next;
7253 s0->next = s1;
7254 }
7255
7256 static struct slist *
7257 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7258 {
7259 struct slist *s;
7260
7261 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7262 s->s.k = a->regno;
7263 return s;
7264 }
7265
7266 static struct slist *
7267 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7268 {
7269 struct slist *s;
7270
7271 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7272 s->s.k = a->regno;
7273 return s;
7274 }
7275
7276 /*
7277 * Modify "index" to use the value stored into its register as an
7278 * offset relative to the beginning of the header for the protocol
7279 * "proto", and allocate a register and put an item "size" bytes long
7280 * (1, 2, or 4) at that offset into that register, making it the register
7281 * for "index".
7282 */
7283 static struct arth *
7284 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7285 bpf_u_int32 size)
7286 {
7287 int size_code;
7288 struct slist *s, *tmp;
7289 struct block *b;
7290 int regno = alloc_reg(cstate);
7291
7292 free_reg(cstate, inst->regno);
7293 switch (size) {
7294
7295 default:
7296 bpf_error(cstate, "data size must be 1, 2, or 4");
7297 /*NOTREACHED*/
7298
7299 case 1:
7300 size_code = BPF_B;
7301 break;
7302
7303 case 2:
7304 size_code = BPF_H;
7305 break;
7306
7307 case 4:
7308 size_code = BPF_W;
7309 break;
7310 }
7311 switch (proto) {
7312 default:
7313 bpf_error(cstate, "'%s' does not support the index operation", pqkw(proto));
7314
7315 case Q_RADIO:
7316 /*
7317 * The offset is relative to the beginning of the packet
7318 * data, if we have a radio header. (If we don't, this
7319 * is an error.)
7320 */
7321 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7322 cstate->linktype != DLT_IEEE802_11_RADIO &&
7323 cstate->linktype != DLT_PRISM_HEADER)
7324 bpf_error(cstate, "radio information not present in capture");
7325
7326 /*
7327 * Load into the X register the offset computed into the
7328 * register specified by "index".
7329 */
7330 s = xfer_to_x(cstate, inst);
7331
7332 /*
7333 * Load the item at that offset.
7334 */
7335 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7336 sappend(s, tmp);
7337 sappend(inst->s, s);
7338 break;
7339
7340 case Q_LINK:
7341 /*
7342 * The offset is relative to the beginning of
7343 * the link-layer header.
7344 *
7345 * XXX - what about ATM LANE? Should the index be
7346 * relative to the beginning of the AAL5 frame, so
7347 * that 0 refers to the beginning of the LE Control
7348 * field, or relative to the beginning of the LAN
7349 * frame, so that 0 refers, for Ethernet LANE, to
7350 * the beginning of the destination address?
7351 */
7352 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7353
7354 /*
7355 * If "s" is non-null, it has code to arrange that the
7356 * X register contains the length of the prefix preceding
7357 * the link-layer header. Add to it the offset computed
7358 * into the register specified by "index", and move that
7359 * into the X register. Otherwise, just load into the X
7360 * register the offset computed into the register specified
7361 * by "index".
7362 */
7363 if (s != NULL) {
7364 sappend(s, xfer_to_a(cstate, inst));
7365 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7366 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7367 } else
7368 s = xfer_to_x(cstate, inst);
7369
7370 /*
7371 * Load the item at the sum of the offset we've put in the
7372 * X register and the offset of the start of the link
7373 * layer header (which is 0 if the radio header is
7374 * variable-length; that header length is what we put
7375 * into the X register and then added to the index).
7376 */
7377 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7378 tmp->s.k = cstate->off_linkhdr.constant_part;
7379 sappend(s, tmp);
7380 sappend(inst->s, s);
7381 break;
7382
7383 case Q_IP:
7384 case Q_ARP:
7385 case Q_RARP:
7386 case Q_ATALK:
7387 case Q_DECNET:
7388 case Q_SCA:
7389 case Q_LAT:
7390 case Q_MOPRC:
7391 case Q_MOPDL:
7392 case Q_IPV6:
7393 /*
7394 * The offset is relative to the beginning of
7395 * the network-layer header.
7396 * XXX - are there any cases where we want
7397 * cstate->off_nl_nosnap?
7398 */
7399 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7400
7401 /*
7402 * If "s" is non-null, it has code to arrange that the
7403 * X register contains the variable part of the offset
7404 * of the link-layer payload. Add to it the offset
7405 * computed into the register specified by "index",
7406 * and move that into the X register. Otherwise, just
7407 * load into the X register the offset computed into
7408 * the register specified by "index".
7409 */
7410 if (s != NULL) {
7411 sappend(s, xfer_to_a(cstate, inst));
7412 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7413 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7414 } else
7415 s = xfer_to_x(cstate, inst);
7416
7417 /*
7418 * Load the item at the sum of the offset we've put in the
7419 * X register, the offset of the start of the network
7420 * layer header from the beginning of the link-layer
7421 * payload, and the constant part of the offset of the
7422 * start of the link-layer payload.
7423 */
7424 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7425 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7426 sappend(s, tmp);
7427 sappend(inst->s, s);
7428
7429 /*
7430 * Do the computation only if the packet contains
7431 * the protocol in question.
7432 */
7433 b = gen_proto_abbrev_internal(cstate, proto);
7434 if (inst->b)
7435 gen_and(inst->b, b);
7436 inst->b = b;
7437 break;
7438
7439 case Q_SCTP:
7440 case Q_TCP:
7441 case Q_UDP:
7442 case Q_ICMP:
7443 case Q_IGMP:
7444 case Q_IGRP:
7445 case Q_PIM:
7446 case Q_VRRP:
7447 case Q_CARP:
7448 /*
7449 * The offset is relative to the beginning of
7450 * the transport-layer header.
7451 *
7452 * Load the X register with the length of the IPv4 header
7453 * (plus the offset of the link-layer header, if it's
7454 * a variable-length header), in bytes.
7455 *
7456 * XXX - are there any cases where we want
7457 * cstate->off_nl_nosnap?
7458 * XXX - we should, if we're built with
7459 * IPv6 support, generate code to load either
7460 * IPv4, IPv6, or both, as appropriate.
7461 */
7462 s = gen_loadx_iphdrlen(cstate);
7463
7464 /*
7465 * The X register now contains the sum of the variable
7466 * part of the offset of the link-layer payload and the
7467 * length of the network-layer header.
7468 *
7469 * Load into the A register the offset relative to
7470 * the beginning of the transport layer header,
7471 * add the X register to that, move that to the
7472 * X register, and load with an offset from the
7473 * X register equal to the sum of the constant part of
7474 * the offset of the link-layer payload and the offset,
7475 * relative to the beginning of the link-layer payload,
7476 * of the network-layer header.
7477 */
7478 sappend(s, xfer_to_a(cstate, inst));
7479 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7480 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7481 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7482 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7483 sappend(inst->s, s);
7484
7485 /*
7486 * Do the computation only if the packet contains
7487 * the protocol in question - which is true only
7488 * if this is an IP datagram and is the first or
7489 * only fragment of that datagram.
7490 */
7491 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7492 if (inst->b)
7493 gen_and(inst->b, b);
7494 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7495 inst->b = b;
7496 break;
7497 case Q_ICMPV6:
7498 /*
7499 * Do the computation only if the packet contains
7500 * the protocol in question.
7501 */
7502 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7503 if (inst->b)
7504 gen_and(inst->b, b);
7505 inst->b = b;
7506
7507 /*
7508 * Check if we have an icmp6 next header
7509 */
7510 b = gen_ip6_proto(cstate, 58);
7511 if (inst->b)
7512 gen_and(inst->b, b);
7513 inst->b = b;
7514
7515 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7516 /*
7517 * If "s" is non-null, it has code to arrange that the
7518 * X register contains the variable part of the offset
7519 * of the link-layer payload. Add to it the offset
7520 * computed into the register specified by "index",
7521 * and move that into the X register. Otherwise, just
7522 * load into the X register the offset computed into
7523 * the register specified by "index".
7524 */
7525 if (s != NULL) {
7526 sappend(s, xfer_to_a(cstate, inst));
7527 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7528 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7529 } else
7530 s = xfer_to_x(cstate, inst);
7531
7532 /*
7533 * Load the item at the sum of the offset we've put in the
7534 * X register, the offset of the start of the network
7535 * layer header from the beginning of the link-layer
7536 * payload, and the constant part of the offset of the
7537 * start of the link-layer payload.
7538 */
7539 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7540 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7541
7542 sappend(s, tmp);
7543 sappend(inst->s, s);
7544
7545 break;
7546 }
7547 inst->regno = regno;
7548 s = new_stmt(cstate, BPF_ST);
7549 s->s.k = regno;
7550 sappend(inst->s, s);
7551
7552 return inst;
7553 }
7554
7555 struct arth *
7556 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7557 bpf_u_int32 size)
7558 {
7559 /*
7560 * Catch errors reported by us and routines below us, and return NULL
7561 * on an error.
7562 */
7563 if (setjmp(cstate->top_ctx))
7564 return (NULL);
7565
7566 return gen_load_internal(cstate, proto, inst, size);
7567 }
7568
7569 static struct block *
7570 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7571 struct arth *a1, int reversed)
7572 {
7573 struct slist *s0, *s1, *s2;
7574 struct block *b, *tmp;
7575
7576 s0 = xfer_to_x(cstate, a1);
7577 s1 = xfer_to_a(cstate, a0);
7578 if (code == BPF_JEQ) {
7579 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7580 b = new_block(cstate, JMP(code));
7581 sappend(s1, s2);
7582 }
7583 else
7584 b = new_block(cstate, BPF_JMP|code|BPF_X);
7585 if (reversed)
7586 gen_not(b);
7587
7588 sappend(s0, s1);
7589 sappend(a1->s, s0);
7590 sappend(a0->s, a1->s);
7591
7592 b->stmts = a0->s;
7593
7594 free_reg(cstate, a0->regno);
7595 free_reg(cstate, a1->regno);
7596
7597 /* 'and' together protocol checks */
7598 if (a0->b) {
7599 if (a1->b) {
7600 gen_and(a0->b, tmp = a1->b);
7601 }
7602 else
7603 tmp = a0->b;
7604 } else
7605 tmp = a1->b;
7606
7607 if (tmp)
7608 gen_and(tmp, b);
7609
7610 return b;
7611 }
7612
7613 struct block *
7614 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7615 struct arth *a1, int reversed)
7616 {
7617 /*
7618 * Catch errors reported by us and routines below us, and return NULL
7619 * on an error.
7620 */
7621 if (setjmp(cstate->top_ctx))
7622 return (NULL);
7623
7624 return gen_relation_internal(cstate, code, a0, a1, reversed);
7625 }
7626
7627 struct arth *
7628 gen_loadlen(compiler_state_t *cstate)
7629 {
7630 int regno;
7631 struct arth *a;
7632 struct slist *s;
7633
7634 /*
7635 * Catch errors reported by us and routines below us, and return NULL
7636 * on an error.
7637 */
7638 if (setjmp(cstate->top_ctx))
7639 return (NULL);
7640
7641 regno = alloc_reg(cstate);
7642 a = (struct arth *)newchunk(cstate, sizeof(*a));
7643 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7644 s->next = new_stmt(cstate, BPF_ST);
7645 s->next->s.k = regno;
7646 a->s = s;
7647 a->regno = regno;
7648
7649 return a;
7650 }
7651
7652 static struct arth *
7653 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7654 {
7655 struct arth *a;
7656 struct slist *s;
7657 int reg;
7658
7659 a = (struct arth *)newchunk(cstate, sizeof(*a));
7660
7661 reg = alloc_reg(cstate);
7662
7663 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7664 s->s.k = val;
7665 s->next = new_stmt(cstate, BPF_ST);
7666 s->next->s.k = reg;
7667 a->s = s;
7668 a->regno = reg;
7669
7670 return a;
7671 }
7672
7673 struct arth *
7674 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7675 {
7676 /*
7677 * Catch errors reported by us and routines below us, and return NULL
7678 * on an error.
7679 */
7680 if (setjmp(cstate->top_ctx))
7681 return (NULL);
7682
7683 return gen_loadi_internal(cstate, val);
7684 }
7685
7686 /*
7687 * The a_arg dance is to avoid annoying whining by compilers that
7688 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7689 * It's not *used* after setjmp returns.
7690 */
7691 struct arth *
7692 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7693 {
7694 struct arth *a = a_arg;
7695 struct slist *s;
7696
7697 /*
7698 * Catch errors reported by us and routines below us, and return NULL
7699 * on an error.
7700 */
7701 if (setjmp(cstate->top_ctx))
7702 return (NULL);
7703
7704 s = xfer_to_a(cstate, a);
7705 sappend(a->s, s);
7706 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7707 s->s.k = 0;
7708 sappend(a->s, s);
7709 s = new_stmt(cstate, BPF_ST);
7710 s->s.k = a->regno;
7711 sappend(a->s, s);
7712
7713 return a;
7714 }
7715
7716 /*
7717 * The a0_arg dance is to avoid annoying whining by compilers that
7718 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7719 * It's not *used* after setjmp returns.
7720 */
7721 struct arth *
7722 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7723 struct arth *a1)
7724 {
7725 struct arth *a0 = a0_arg;
7726 struct slist *s0, *s1, *s2;
7727
7728 /*
7729 * Catch errors reported by us and routines below us, and return NULL
7730 * on an error.
7731 */
7732 if (setjmp(cstate->top_ctx))
7733 return (NULL);
7734
7735 /*
7736 * Disallow division by, or modulus by, zero; we do this here
7737 * so that it gets done even if the optimizer is disabled.
7738 *
7739 * Also disallow shifts by a value greater than 31; we do this
7740 * here, for the same reason.
7741 */
7742 if (code == BPF_DIV) {
7743 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7744 bpf_error(cstate, "division by zero");
7745 } else if (code == BPF_MOD) {
7746 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7747 bpf_error(cstate, "modulus by zero");
7748 } else if (code == BPF_LSH || code == BPF_RSH) {
7749 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7750 bpf_error(cstate, "shift by more than 31 bits");
7751 }
7752 s0 = xfer_to_x(cstate, a1);
7753 s1 = xfer_to_a(cstate, a0);
7754 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7755
7756 sappend(s1, s2);
7757 sappend(s0, s1);
7758 sappend(a1->s, s0);
7759 sappend(a0->s, a1->s);
7760
7761 free_reg(cstate, a0->regno);
7762 free_reg(cstate, a1->regno);
7763
7764 s0 = new_stmt(cstate, BPF_ST);
7765 a0->regno = s0->s.k = alloc_reg(cstate);
7766 sappend(a0->s, s0);
7767
7768 return a0;
7769 }
7770
7771 /*
7772 * Initialize the table of used registers and the current register.
7773 */
7774 static void
7775 init_regs(compiler_state_t *cstate)
7776 {
7777 cstate->curreg = 0;
7778 memset(cstate->regused, 0, sizeof cstate->regused);
7779 }
7780
7781 /*
7782 * Return the next free register.
7783 */
7784 static int
7785 alloc_reg(compiler_state_t *cstate)
7786 {
7787 int n = BPF_MEMWORDS;
7788
7789 while (--n >= 0) {
7790 if (cstate->regused[cstate->curreg])
7791 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7792 else {
7793 cstate->regused[cstate->curreg] = 1;
7794 return cstate->curreg;
7795 }
7796 }
7797 bpf_error(cstate, "too many registers needed to evaluate expression");
7798 /*NOTREACHED*/
7799 }
7800
7801 /*
7802 * Return a register to the table so it can
7803 * be used later.
7804 */
7805 static void
7806 free_reg(compiler_state_t *cstate, int n)
7807 {
7808 cstate->regused[n] = 0;
7809 }
7810
7811 static struct block *
7812 gen_len(compiler_state_t *cstate, int jmp, int n)
7813 {
7814 struct slist *s;
7815
7816 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7817 return gen_jmp(cstate, jmp, n, s);
7818 }
7819
7820 struct block *
7821 gen_greater(compiler_state_t *cstate, int n)
7822 {
7823 /*
7824 * Catch errors reported by us and routines below us, and return NULL
7825 * on an error.
7826 */
7827 if (setjmp(cstate->top_ctx))
7828 return (NULL);
7829
7830 return gen_len(cstate, BPF_JGE, n);
7831 }
7832
7833 /*
7834 * Actually, this is less than or equal.
7835 */
7836 struct block *
7837 gen_less(compiler_state_t *cstate, int n)
7838 {
7839 struct block *b;
7840
7841 /*
7842 * Catch errors reported by us and routines below us, and return NULL
7843 * on an error.
7844 */
7845 if (setjmp(cstate->top_ctx))
7846 return (NULL);
7847
7848 b = gen_len(cstate, BPF_JGT, n);
7849 gen_not(b);
7850
7851 return b;
7852 }
7853
7854 /*
7855 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7856 * the beginning of the link-layer header.
7857 * XXX - that means you can't test values in the radiotap header, but
7858 * as that header is difficult if not impossible to parse generally
7859 * without a loop, that might not be a severe problem. A new keyword
7860 * "radio" could be added for that, although what you'd really want
7861 * would be a way of testing particular radio header values, which
7862 * would generate code appropriate to the radio header in question.
7863 */
7864 struct block *
7865 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7866 {
7867 struct block *b;
7868 struct slist *s;
7869
7870 /*
7871 * Catch errors reported by us and routines below us, and return NULL
7872 * on an error.
7873 */
7874 if (setjmp(cstate->top_ctx))
7875 return (NULL);
7876
7877 assert_maxval(cstate, "byte argument", val, UINT8_MAX);
7878
7879 switch (op) {
7880 default:
7881 abort();
7882
7883 case '=':
7884 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7885
7886 case '<':
7887 return gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7888
7889 case '>':
7890 return gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7891
7892 case '|':
7893 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7894 break;
7895
7896 case '&':
7897 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7898 break;
7899 }
7900 s->s.k = val;
7901 // Load the required byte first.
7902 struct slist *s0 = gen_load_a(cstate, OR_LINKHDR, idx, BPF_B);
7903 sappend(s0, s);
7904 b = gen_jmp(cstate, BPF_JEQ, 0, s0);
7905 gen_not(b);
7906
7907 return b;
7908 }
7909
7910 struct block *
7911 gen_broadcast(compiler_state_t *cstate, int proto)
7912 {
7913 bpf_u_int32 hostmask;
7914 struct block *b0, *b1, *b2;
7915 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7916
7917 /*
7918 * Catch errors reported by us and routines below us, and return NULL
7919 * on an error.
7920 */
7921 if (setjmp(cstate->top_ctx))
7922 return (NULL);
7923
7924 switch (proto) {
7925
7926 case Q_DEFAULT:
7927 case Q_LINK:
7928 switch (cstate->linktype) {
7929 case DLT_ARCNET:
7930 case DLT_ARCNET_LINUX:
7931 // ARCnet broadcast is [8-bit] destination address 0.
7932 return gen_ahostop(cstate, 0, Q_DST);
7933 }
7934 return gen_mac48host(cstate, ebroadcast, Q_DST, "broadcast");
7935 /*NOTREACHED*/
7936
7937 case Q_IP:
7938 /*
7939 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7940 * as an indication that we don't know the netmask, and fail
7941 * in that case.
7942 */
7943 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7944 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7945 b0 = gen_linktype(cstate, ETHERTYPE_IP);
7946 hostmask = ~cstate->netmask;
7947 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
7948 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, hostmask, hostmask);
7949 gen_or(b1, b2);
7950 gen_and(b0, b2);
7951 return b2;
7952 }
7953 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "broadcast");
7954 /*NOTREACHED*/
7955 }
7956
7957 /*
7958 * Generate code to test the low-order bit of a MAC address (that's
7959 * the bottom bit of the *first* byte).
7960 */
7961 static struct block *
7962 gen_mac_multicast(compiler_state_t *cstate, int offset)
7963 {
7964 register struct slist *s;
7965
7966 /* link[offset] & 1 != 0 */
7967 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7968 return gen_set(cstate, 1, s);
7969 }
7970
7971 struct block *
7972 gen_multicast(compiler_state_t *cstate, int proto)
7973 {
7974 register struct block *b0, *b1, *b2;
7975 register struct slist *s;
7976
7977 /*
7978 * Catch errors reported by us and routines below us, and return NULL
7979 * on an error.
7980 */
7981 if (setjmp(cstate->top_ctx))
7982 return (NULL);
7983
7984 switch (proto) {
7985
7986 case Q_DEFAULT:
7987 case Q_LINK:
7988 switch (cstate->linktype) {
7989 case DLT_ARCNET:
7990 case DLT_ARCNET_LINUX:
7991 // ARCnet multicast is the same as broadcast.
7992 return gen_ahostop(cstate, 0, Q_DST);
7993 case DLT_EN10MB:
7994 case DLT_NETANALYZER:
7995 case DLT_NETANALYZER_TRANSPARENT:
7996 b1 = gen_prevlinkhdr_check(cstate);
7997 /* ether[0] & 1 != 0 */
7998 b0 = gen_mac_multicast(cstate, 0);
7999 if (b1 != NULL)
8000 gen_and(b1, b0);
8001 return b0;
8002 case DLT_FDDI:
8003 /*
8004 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8005 *
8006 * XXX - was that referring to bit-order issues?
8007 */
8008 /* fddi[1] & 1 != 0 */
8009 return gen_mac_multicast(cstate, 1);
8010 case DLT_IEEE802:
8011 /* tr[2] & 1 != 0 */
8012 return gen_mac_multicast(cstate, 2);
8013 case DLT_IEEE802_11:
8014 case DLT_PRISM_HEADER:
8015 case DLT_IEEE802_11_RADIO_AVS:
8016 case DLT_IEEE802_11_RADIO:
8017 case DLT_PPI:
8018 /*
8019 * Oh, yuk.
8020 *
8021 * For control frames, there is no DA.
8022 *
8023 * For management frames, DA is at an
8024 * offset of 4 from the beginning of
8025 * the packet.
8026 *
8027 * For data frames, DA is at an offset
8028 * of 4 from the beginning of the packet
8029 * if To DS is clear and at an offset of
8030 * 16 from the beginning of the packet
8031 * if To DS is set.
8032 */
8033
8034 /*
8035 * Generate the tests to be done for data frames.
8036 *
8037 * First, check for To DS set, i.e. "link[1] & 0x01".
8038 */
8039 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8040 b1 = gen_set(cstate, IEEE80211_FC1_DIR_TODS, s);
8041
8042 /*
8043 * If To DS is set, the DA is at 16.
8044 */
8045 b0 = gen_mac_multicast(cstate, 16);
8046 gen_and(b1, b0);
8047
8048 /*
8049 * Now, check for To DS not set, i.e. check
8050 * "!(link[1] & 0x01)".
8051 */
8052 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8053 b2 = gen_unset(cstate, IEEE80211_FC1_DIR_TODS, s);
8054
8055 /*
8056 * If To DS is not set, the DA is at 4.
8057 */
8058 b1 = gen_mac_multicast(cstate, 4);
8059 gen_and(b2, b1);
8060
8061 /*
8062 * Now OR together the last two checks. That gives
8063 * the complete set of checks for data frames.
8064 */
8065 gen_or(b1, b0);
8066
8067 /*
8068 * Now check for a data frame.
8069 * I.e, check "link[0] & 0x08".
8070 */
8071 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8072 b1 = gen_set(cstate, IEEE80211_FC0_TYPE_DATA, s);
8073
8074 /*
8075 * AND that with the checks done for data frames.
8076 */
8077 gen_and(b1, b0);
8078
8079 /*
8080 * If the high-order bit of the type value is 0, this
8081 * is a management frame.
8082 * I.e, check "!(link[0] & 0x08)".
8083 */
8084 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8085 b2 = gen_unset(cstate, IEEE80211_FC0_TYPE_DATA, s);
8086
8087 /*
8088 * For management frames, the DA is at 4.
8089 */
8090 b1 = gen_mac_multicast(cstate, 4);
8091 gen_and(b2, b1);
8092
8093 /*
8094 * OR that with the checks done for data frames.
8095 * That gives the checks done for management and
8096 * data frames.
8097 */
8098 gen_or(b1, b0);
8099
8100 /*
8101 * If the low-order bit of the type value is 1,
8102 * this is either a control frame or a frame
8103 * with a reserved type, and thus not a
8104 * frame with an SA.
8105 *
8106 * I.e., check "!(link[0] & 0x04)".
8107 */
8108 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8109 b1 = gen_unset(cstate, IEEE80211_FC0_TYPE_CTL, s);
8110
8111 /*
8112 * AND that with the checks for data and management
8113 * frames.
8114 */
8115 gen_and(b1, b0);
8116 return b0;
8117 case DLT_IP_OVER_FC:
8118 return gen_mac_multicast(cstate, 2);
8119 default:
8120 break;
8121 }
8122 fail_kw_on_dlt(cstate, "multicast");
8123 /*NOTREACHED*/
8124
8125 case Q_IP:
8126 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8127 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8128 gen_and(b0, b1);
8129 return b1;
8130
8131 case Q_IPV6:
8132 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8133 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8134 gen_and(b0, b1);
8135 return b1;
8136 }
8137 bpf_error(cstate, ERRSTR_INVALID_QUAL, pqkw(proto), "multicast");
8138 /*NOTREACHED*/
8139 }
8140
8141 #ifdef __linux__
8142 /*
8143 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8144 * we can look at special meta-data in the filter expression; otherwise we
8145 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8146 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8147 * pcap_activate() conditionally sets.
8148 */
8149 static void
8150 require_basic_bpf_extensions(compiler_state_t *cstate, const char *keyword)
8151 {
8152 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_BASIC_HANDLING)
8153 return;
8154 bpf_error(cstate, "%s not supported on %s (not a live capture)",
8155 keyword,
8156 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8157 }
8158 #endif // __linux__
8159
8160 struct block *
8161 gen_ifindex(compiler_state_t *cstate, int ifindex)
8162 {
8163 /*
8164 * Catch errors reported by us and routines below us, and return NULL
8165 * on an error.
8166 */
8167 if (setjmp(cstate->top_ctx))
8168 return (NULL);
8169
8170 /*
8171 * Only some data link types support ifindex qualifiers.
8172 */
8173 switch (cstate->linktype) {
8174 case DLT_LINUX_SLL2:
8175 /* match packets on this interface */
8176 return gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8177 default:
8178 #if defined(__linux__)
8179 require_basic_bpf_extensions(cstate, "ifindex");
8180 /* match ifindex */
8181 return gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8182 ifindex);
8183 #else /* defined(__linux__) */
8184 fail_kw_on_dlt(cstate, "ifindex");
8185 /*NOTREACHED*/
8186 #endif /* defined(__linux__) */
8187 }
8188 }
8189
8190 /*
8191 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8192 * Outbound traffic is sent by this machine, while inbound traffic is
8193 * sent by a remote machine (and may include packets destined for a
8194 * unicast or multicast link-layer address we are not subscribing to).
8195 * These are the same definitions implemented by pcap_setdirection().
8196 * Capturing only unicast traffic destined for this host is probably
8197 * better accomplished using a higher-layer filter.
8198 */
8199 struct block *
8200 gen_inbound_outbound(compiler_state_t *cstate, const int outbound)
8201 {
8202 register struct block *b0;
8203
8204 /*
8205 * Catch errors reported by us and routines below us, and return NULL
8206 * on an error.
8207 */
8208 if (setjmp(cstate->top_ctx))
8209 return (NULL);
8210
8211 /*
8212 * Only some data link types support inbound/outbound qualifiers.
8213 */
8214 switch (cstate->linktype) {
8215 case DLT_SLIP:
8216 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B,
8217 outbound ? SLIPDIR_OUT : SLIPDIR_IN);
8218
8219 case DLT_IPNET:
8220 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H,
8221 outbound ? IPNET_OUTBOUND : IPNET_INBOUND);
8222
8223 case DLT_LINUX_SLL:
8224 /* match outgoing packets */
8225 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8226 if (! outbound) {
8227 /* to filter on inbound traffic, invert the match */
8228 gen_not(b0);
8229 }
8230 return b0;
8231
8232 case DLT_LINUX_SLL2:
8233 /* match outgoing packets */
8234 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8235 if (! outbound) {
8236 /* to filter on inbound traffic, invert the match */
8237 gen_not(b0);
8238 }
8239 return b0;
8240
8241 case DLT_PFLOG:
8242 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8243 outbound ? PF_OUT : PF_IN);
8244
8245 case DLT_PPP_PPPD:
8246 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, outbound ? PPP_PPPD_OUT : PPP_PPPD_IN);
8247
8248 case DLT_JUNIPER_MFR:
8249 case DLT_JUNIPER_MLFR:
8250 case DLT_JUNIPER_MLPPP:
8251 case DLT_JUNIPER_ATM1:
8252 case DLT_JUNIPER_ATM2:
8253 case DLT_JUNIPER_PPPOE:
8254 case DLT_JUNIPER_PPPOE_ATM:
8255 case DLT_JUNIPER_GGSN:
8256 case DLT_JUNIPER_ES:
8257 case DLT_JUNIPER_MONITOR:
8258 case DLT_JUNIPER_SERVICES:
8259 case DLT_JUNIPER_ETHER:
8260 case DLT_JUNIPER_PPP:
8261 case DLT_JUNIPER_FRELAY:
8262 case DLT_JUNIPER_CHDLC:
8263 case DLT_JUNIPER_VP:
8264 case DLT_JUNIPER_ST:
8265 case DLT_JUNIPER_ISM:
8266 case DLT_JUNIPER_VS:
8267 case DLT_JUNIPER_SRX_E2E:
8268 case DLT_JUNIPER_FIBRECHANNEL:
8269 case DLT_JUNIPER_ATM_CEMIC:
8270 /* juniper flags (including direction) are stored
8271 * the byte after the 3-byte magic number */
8272 return gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, outbound ? 0 : 1, 0x01);
8273
8274 default:
8275 /*
8276 * If we have packet meta-data indicating a direction,
8277 * and that metadata can be checked by BPF code, check
8278 * it. Otherwise, give up, as this link-layer type has
8279 * nothing in the packet data.
8280 *
8281 * Currently, the only platform where a BPF filter can
8282 * check that metadata is Linux with the in-kernel
8283 * BPF interpreter. If other packet capture mechanisms
8284 * and BPF filters also supported this, it would be
8285 * nice. It would be even better if they made that
8286 * metadata available so that we could provide it
8287 * with newer capture APIs, allowing it to be saved
8288 * in pcapng files.
8289 */
8290 #if defined(__linux__)
8291 require_basic_bpf_extensions(cstate, outbound ? "outbound" : "inbound");
8292 /* match outgoing packets */
8293 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8294 PACKET_OUTGOING);
8295 if (! outbound) {
8296 /* to filter on inbound traffic, invert the match */
8297 gen_not(b0);
8298 }
8299 return b0;
8300 #else /* defined(__linux__) */
8301 fail_kw_on_dlt(cstate, outbound ? "outbound" : "inbound");
8302 /*NOTREACHED*/
8303 #endif /* defined(__linux__) */
8304 }
8305 }
8306
8307 /* PF firewall log matched interface */
8308 struct block *
8309 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8310 {
8311 u_int len, off;
8312
8313 /*
8314 * Catch errors reported by us and routines below us, and return NULL
8315 * on an error.
8316 */
8317 if (setjmp(cstate->top_ctx))
8318 return (NULL);
8319
8320 assert_pflog(cstate, "ifname");
8321
8322 len = sizeof(((struct pfloghdr *)0)->ifname);
8323 off = offsetof(struct pfloghdr, ifname);
8324 if (strlen(ifname) >= len) {
8325 bpf_error(cstate, "ifname interface names can only be %d characters",
8326 len-1);
8327 /*NOTREACHED*/
8328 }
8329 return gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8330 (const u_char *)ifname);
8331 }
8332
8333 /* PF firewall log ruleset name */
8334 struct block *
8335 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8336 {
8337 /*
8338 * Catch errors reported by us and routines below us, and return NULL
8339 * on an error.
8340 */
8341 if (setjmp(cstate->top_ctx))
8342 return (NULL);
8343
8344 assert_pflog(cstate, "ruleset");
8345
8346 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8347 bpf_error(cstate, "ruleset names can only be %ld characters",
8348 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8349 /*NOTREACHED*/
8350 }
8351
8352 return gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8353 (u_int)strlen(ruleset), (const u_char *)ruleset);
8354 }
8355
8356 /* PF firewall log rule number */
8357 struct block *
8358 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8359 {
8360 /*
8361 * Catch errors reported by us and routines below us, and return NULL
8362 * on an error.
8363 */
8364 if (setjmp(cstate->top_ctx))
8365 return (NULL);
8366
8367 assert_pflog(cstate, "rnr");
8368
8369 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8370 (bpf_u_int32)rnr);
8371 }
8372
8373 /* PF firewall log sub-rule number */
8374 struct block *
8375 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8376 {
8377 /*
8378 * Catch errors reported by us and routines below us, and return NULL
8379 * on an error.
8380 */
8381 if (setjmp(cstate->top_ctx))
8382 return (NULL);
8383
8384 assert_pflog(cstate, "srnr");
8385
8386 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8387 (bpf_u_int32)srnr);
8388 }
8389
8390 /* PF firewall log reason code */
8391 struct block *
8392 gen_pf_reason(compiler_state_t *cstate, int reason)
8393 {
8394 /*
8395 * Catch errors reported by us and routines below us, and return NULL
8396 * on an error.
8397 */
8398 if (setjmp(cstate->top_ctx))
8399 return (NULL);
8400
8401 assert_pflog(cstate, "reason");
8402
8403 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8404 (bpf_u_int32)reason);
8405 }
8406
8407 /* PF firewall log action */
8408 struct block *
8409 gen_pf_action(compiler_state_t *cstate, int action)
8410 {
8411 /*
8412 * Catch errors reported by us and routines below us, and return NULL
8413 * on an error.
8414 */
8415 if (setjmp(cstate->top_ctx))
8416 return (NULL);
8417
8418 assert_pflog(cstate, "action");
8419
8420 return gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8421 (bpf_u_int32)action);
8422 }
8423
8424 /* IEEE 802.11 wireless header */
8425 struct block *
8426 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8427 {
8428 /*
8429 * Catch errors reported by us and routines below us, and return NULL
8430 * on an error.
8431 */
8432 if (setjmp(cstate->top_ctx))
8433 return (NULL);
8434
8435 switch (cstate->linktype) {
8436
8437 case DLT_IEEE802_11:
8438 case DLT_PRISM_HEADER:
8439 case DLT_IEEE802_11_RADIO_AVS:
8440 case DLT_IEEE802_11_RADIO:
8441 case DLT_PPI:
8442 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8443
8444 default:
8445 fail_kw_on_dlt(cstate, "type/subtype");
8446 /*NOTREACHED*/
8447 }
8448 }
8449
8450 struct block *
8451 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8452 {
8453 /*
8454 * Catch errors reported by us and routines below us, and return NULL
8455 * on an error.
8456 */
8457 if (setjmp(cstate->top_ctx))
8458 return (NULL);
8459
8460 switch (cstate->linktype) {
8461
8462 case DLT_IEEE802_11:
8463 case DLT_PRISM_HEADER:
8464 case DLT_IEEE802_11_RADIO_AVS:
8465 case DLT_IEEE802_11_RADIO:
8466 case DLT_PPI:
8467 return gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8468 IEEE80211_FC1_DIR_MASK);
8469
8470 default:
8471 fail_kw_on_dlt(cstate, "dir");
8472 /*NOTREACHED*/
8473 }
8474 }
8475
8476 // Process an ARCnet host address string.
8477 struct block *
8478 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8479 {
8480 /*
8481 * Catch errors reported by us and routines below us, and return NULL
8482 * on an error.
8483 */
8484 if (setjmp(cstate->top_ctx))
8485 return (NULL);
8486
8487 switch (cstate->linktype) {
8488
8489 case DLT_ARCNET:
8490 case DLT_ARCNET_LINUX:
8491 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8492 q.proto == Q_LINK) {
8493 uint8_t addr;
8494 /*
8495 * The lexer currently defines the address format in a
8496 * way that makes this error condition never true.
8497 * Let's check it anyway in case this part of the lexer
8498 * changes in future.
8499 */
8500 if (! pcapint_atoan(s, &addr))
8501 bpf_error(cstate, "invalid ARCnet address '%s'", s);
8502 return gen_ahostop(cstate, addr, (int)q.dir);
8503 } else
8504 bpf_error(cstate, "ARCnet address used in non-arc expression");
8505 /*NOTREACHED*/
8506
8507 default:
8508 bpf_error(cstate, "aid supported only on ARCnet");
8509 /*NOTREACHED*/
8510 }
8511 }
8512
8513 // Compare an ARCnet host address with the given value.
8514 static struct block *
8515 gen_ahostop(compiler_state_t *cstate, const uint8_t eaddr, int dir)
8516 {
8517 register struct block *b0, *b1;
8518
8519 switch (dir) {
8520 /*
8521 * ARCnet is different from Ethernet: the source address comes before
8522 * the destination address, each is one byte long. This holds for all
8523 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8524 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8525 * by Datapoint (document number 61610-01).
8526 */
8527 case Q_SRC:
8528 return gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, eaddr);
8529
8530 case Q_DST:
8531 return gen_cmp(cstate, OR_LINKHDR, 1, BPF_B, eaddr);
8532
8533 case Q_AND:
8534 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8535 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8536 gen_and(b0, b1);
8537 return b1;
8538
8539 case Q_DEFAULT:
8540 case Q_OR:
8541 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8542 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8543 gen_or(b0, b1);
8544 return b1;
8545
8546 case Q_ADDR1:
8547 case Q_ADDR2:
8548 case Q_ADDR3:
8549 case Q_ADDR4:
8550 case Q_RA:
8551 case Q_TA:
8552 bpf_error(cstate, ERRSTR_802_11_ONLY_KW, dqkw(dir));
8553 /*NOTREACHED*/
8554 }
8555 abort();
8556 /*NOTREACHED*/
8557 }
8558
8559 static struct block *
8560 gen_vlan_tpid_test(compiler_state_t *cstate)
8561 {
8562 struct block *b0, *b1;
8563
8564 /* check for VLAN, including 802.1ad and QinQ */
8565 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8566 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8567 gen_or(b0,b1);
8568 b0 = b1;
8569 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8570 gen_or(b0,b1);
8571
8572 return b1;
8573 }
8574
8575 static struct block *
8576 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8577 {
8578 assert_maxval(cstate, "VLAN tag", vlan_num, 0x0fff);
8579 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8580 }
8581
8582 static struct block *
8583 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8584 int has_vlan_tag)
8585 {
8586 struct block *b0, *b1;
8587
8588 b0 = gen_vlan_tpid_test(cstate);
8589
8590 if (has_vlan_tag) {
8591 b1 = gen_vlan_vid_test(cstate, vlan_num);
8592 gen_and(b0, b1);
8593 b0 = b1;
8594 }
8595
8596 /*
8597 * Both payload and link header type follow the VLAN tags so that
8598 * both need to be updated.
8599 */
8600 cstate->off_linkpl.constant_part += 4;
8601 cstate->off_linktype.constant_part += 4;
8602
8603 return b0;
8604 }
8605
8606 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8607 /* add v to variable part of off */
8608 static void
8609 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8610 bpf_u_int32 v, struct slist *s)
8611 {
8612 struct slist *s2;
8613
8614 if (!off->is_variable)
8615 off->is_variable = 1;
8616 if (off->reg == -1)
8617 off->reg = alloc_reg(cstate);
8618
8619 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8620 s2->s.k = off->reg;
8621 sappend(s, s2);
8622 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8623 s2->s.k = v;
8624 sappend(s, s2);
8625 s2 = new_stmt(cstate, BPF_ST);
8626 s2->s.k = off->reg;
8627 sappend(s, s2);
8628 }
8629
8630 /*
8631 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8632 * and link type offsets first
8633 */
8634 static void
8635 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8636 {
8637 struct slist s;
8638
8639 /* offset determined at run time, shift variable part */
8640 s.next = NULL;
8641 cstate->is_vlan_vloffset = 1;
8642 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8643 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8644
8645 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8646 sappend(s.next, b_tpid->head->stmts);
8647 b_tpid->head->stmts = s.next;
8648 }
8649
8650 /*
8651 * patch block b_vid (VLAN id test) to load VID value either from packet
8652 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8653 */
8654 static void
8655 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8656 {
8657 struct slist *s, *s2, *sjeq;
8658 unsigned cnt;
8659
8660 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8661 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
8662
8663 /* true -> next instructions, false -> beginning of b_vid */
8664 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8665 sjeq->s.k = 1;
8666 sjeq->s.jf = b_vid->stmts;
8667 sappend(s, sjeq);
8668
8669 s2 = new_stmt(cstate, BPF_LD|BPF_H|BPF_ABS);
8670 s2->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG);
8671 sappend(s, s2);
8672 sjeq->s.jt = s2;
8673
8674 /* Jump to the test in b_vid. We need to jump one instruction before
8675 * the end of the b_vid block so that we only skip loading the TCI
8676 * from packet data and not the 'and' instruction extracting VID.
8677 */
8678 cnt = 0;
8679 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8680 cnt++;
8681 s2 = new_stmt(cstate, JMP(BPF_JA));
8682 s2->s.k = cnt - 1;
8683 sappend(s, s2);
8684
8685 /* insert our statements at the beginning of b_vid */
8686 sappend(s, b_vid->stmts);
8687 b_vid->stmts = s;
8688 }
8689
8690 /*
8691 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8692 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8693 * tag can be either in metadata or in packet data; therefore if the
8694 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8695 * header for VLAN tag. As the decision is done at run time, we need
8696 * update variable part of the offsets
8697 */
8698 static struct block *
8699 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8700 int has_vlan_tag)
8701 {
8702 struct block *b0, *b_tpid, *b_vid = NULL;
8703 struct slist *s;
8704
8705 /* generate new filter code based on extracting packet
8706 * metadata */
8707 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8708 s->s.k = (bpf_u_int32)(SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT);
8709
8710 b0 = gen_jmp(cstate, BPF_JEQ, 1, s);
8711
8712 /*
8713 * This is tricky. We need to insert the statements updating variable
8714 * parts of offsets before the traditional TPID and VID tests so
8715 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8716 * we do not want this update to affect those checks. That's why we
8717 * generate both test blocks first and insert the statements updating
8718 * variable parts of both offsets after that. This wouldn't work if
8719 * there already were variable length link header when entering this
8720 * function but gen_vlan_bpf_extensions() isn't called in that case.
8721 */
8722 b_tpid = gen_vlan_tpid_test(cstate);
8723 if (has_vlan_tag)
8724 b_vid = gen_vlan_vid_test(cstate, vlan_num);
8725
8726 gen_vlan_patch_tpid_test(cstate, b_tpid);
8727 gen_or(b0, b_tpid);
8728 b0 = b_tpid;
8729
8730 if (has_vlan_tag) {
8731 gen_vlan_patch_vid_test(cstate, b_vid);
8732 gen_and(b0, b_vid);
8733 b0 = b_vid;
8734 }
8735
8736 return b0;
8737 }
8738 #endif
8739
8740 /*
8741 * support IEEE 802.1Q VLAN trunk over ethernet
8742 */
8743 struct block *
8744 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8745 {
8746 struct block *b0;
8747
8748 /*
8749 * Catch errors reported by us and routines below us, and return NULL
8750 * on an error.
8751 */
8752 if (setjmp(cstate->top_ctx))
8753 return (NULL);
8754
8755 /* can't check for VLAN-encapsulated packets inside MPLS */
8756 if (cstate->label_stack_depth > 0)
8757 bpf_error(cstate, "no VLAN match after MPLS");
8758
8759 /*
8760 * Check for a VLAN packet, and then change the offsets to point
8761 * to the type and data fields within the VLAN packet. Just
8762 * increment the offsets, so that we can support a hierarchy, e.g.
8763 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
8764 * VLAN 100.
8765 *
8766 * XXX - this is a bit of a kludge. If we were to split the
8767 * compiler into a parser that parses an expression and
8768 * generates an expression tree, and a code generator that
8769 * takes an expression tree (which could come from our
8770 * parser or from some other parser) and generates BPF code,
8771 * we could perhaps make the offsets parameters of routines
8772 * and, in the handler for an "AND" node, pass to subnodes
8773 * other than the VLAN node the adjusted offsets.
8774 *
8775 * This would mean that "vlan" would, instead of changing the
8776 * behavior of *all* tests after it, change only the behavior
8777 * of tests ANDed with it. That would change the documented
8778 * semantics of "vlan", which might break some expressions.
8779 * However, it would mean that "(vlan and ip) or ip" would check
8780 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8781 * checking only for VLAN-encapsulated IP, so that could still
8782 * be considered worth doing; it wouldn't break expressions
8783 * that are of the form "vlan and ..." or "vlan N and ...",
8784 * which I suspect are the most common expressions involving
8785 * "vlan". "vlan or ..." doesn't necessarily do what the user
8786 * would really want, now, as all the "or ..." tests would
8787 * be done assuming a VLAN, even though the "or" could be viewed
8788 * as meaning "or, if this isn't a VLAN packet...".
8789 */
8790 switch (cstate->linktype) {
8791
8792 case DLT_EN10MB:
8793 /*
8794 * Newer version of the Linux kernel pass around
8795 * packets in which the VLAN tag has been removed
8796 * from the packet data and put into metadata.
8797 *
8798 * This requires special treatment.
8799 */
8800 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8801 /* Verify that this is the outer part of the packet and
8802 * not encapsulated somehow. */
8803 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8804 cstate->off_linkhdr.constant_part ==
8805 cstate->off_outermostlinkhdr.constant_part) {
8806 /*
8807 * Do we need special VLAN handling?
8808 */
8809 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8810 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8811 has_vlan_tag);
8812 else
8813 b0 = gen_vlan_no_bpf_extensions(cstate,
8814 vlan_num, has_vlan_tag);
8815 } else
8816 #endif
8817 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8818 has_vlan_tag);
8819 break;
8820
8821 case DLT_NETANALYZER:
8822 case DLT_NETANALYZER_TRANSPARENT:
8823 case DLT_IEEE802_11:
8824 case DLT_PRISM_HEADER:
8825 case DLT_IEEE802_11_RADIO_AVS:
8826 case DLT_IEEE802_11_RADIO:
8827 /*
8828 * These are either Ethernet packets with an additional
8829 * metadata header (the NetAnalyzer types), or 802.11
8830 * packets, possibly with an additional metadata header.
8831 *
8832 * For the first of those, the VLAN tag is in the normal
8833 * place, so the special-case handling above isn't
8834 * necessary.
8835 *
8836 * For the second of those, we don't do the special-case
8837 * handling for now.
8838 */
8839 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8840 break;
8841
8842 default:
8843 bpf_error(cstate, "no VLAN support for %s",
8844 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8845 /*NOTREACHED*/
8846 }
8847
8848 cstate->vlan_stack_depth++;
8849
8850 return (b0);
8851 }
8852
8853 /*
8854 * support for MPLS
8855 *
8856 * The label_num_arg dance is to avoid annoying whining by compilers that
8857 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8858 * It's not *used* after setjmp returns.
8859 */
8860 static struct block *
8861 gen_mpls_internal(compiler_state_t *cstate, bpf_u_int32 label_num,
8862 int has_label_num)
8863 {
8864 struct block *b0, *b1;
8865
8866 if (cstate->label_stack_depth > 0) {
8867 /* just match the bottom-of-stack bit clear */
8868 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8869 } else {
8870 /*
8871 * We're not in an MPLS stack yet, so check the link-layer
8872 * type against MPLS.
8873 */
8874 switch (cstate->linktype) {
8875
8876 case DLT_C_HDLC: /* fall through */
8877 case DLT_HDLC:
8878 case DLT_EN10MB:
8879 case DLT_NETANALYZER:
8880 case DLT_NETANALYZER_TRANSPARENT:
8881 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8882 break;
8883
8884 case DLT_PPP:
8885 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8886 break;
8887
8888 /* FIXME add other DLT_s ...
8889 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8890 * leave it for now */
8891
8892 default:
8893 bpf_error(cstate, "no MPLS support for %s",
8894 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8895 /*NOTREACHED*/
8896 }
8897 }
8898
8899 /* If a specific MPLS label is requested, check it */
8900 if (has_label_num) {
8901 assert_maxval(cstate, "MPLS label", label_num, 0xFFFFF);
8902 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8903 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
8904 0xfffff000); /* only compare the first 20 bits */
8905 gen_and(b0, b1);
8906 b0 = b1;
8907 }
8908
8909 /*
8910 * Change the offsets to point to the type and data fields within
8911 * the MPLS packet. Just increment the offsets, so that we
8912 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8913 * capture packets with an outer label of 100000 and an inner
8914 * label of 1024.
8915 *
8916 * Increment the MPLS stack depth as well; this indicates that
8917 * we're checking MPLS-encapsulated headers, to make sure higher
8918 * level code generators don't try to match against IP-related
8919 * protocols such as Q_ARP, Q_RARP etc.
8920 *
8921 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8922 */
8923 cstate->off_nl_nosnap += 4;
8924 cstate->off_nl += 4;
8925 cstate->label_stack_depth++;
8926 return (b0);
8927 }
8928
8929 struct block *
8930 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num, int has_label_num)
8931 {
8932 /*
8933 * Catch errors reported by us and routines below us, and return NULL
8934 * on an error.
8935 */
8936 if (setjmp(cstate->top_ctx))
8937 return (NULL);
8938
8939 return gen_mpls_internal(cstate, label_num, has_label_num);
8940 }
8941
8942 /*
8943 * Support PPPOE discovery and session.
8944 */
8945 struct block *
8946 gen_pppoed(compiler_state_t *cstate)
8947 {
8948 /*
8949 * Catch errors reported by us and routines below us, and return NULL
8950 * on an error.
8951 */
8952 if (setjmp(cstate->top_ctx))
8953 return (NULL);
8954
8955 /* check for PPPoE discovery */
8956 return gen_linktype(cstate, ETHERTYPE_PPPOED);
8957 }
8958
8959 /*
8960 * RFC 2516 Section 4:
8961 *
8962 * The Ethernet payload for PPPoE is as follows:
8963 *
8964 * 1 2 3
8965 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
8966 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8967 * | VER | TYPE | CODE | SESSION_ID |
8968 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8969 * | LENGTH | payload ~
8970 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8971 */
8972 struct block *
8973 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
8974 {
8975 struct block *b0, *b1;
8976
8977 /*
8978 * Catch errors reported by us and routines below us, and return NULL
8979 * on an error.
8980 */
8981 if (setjmp(cstate->top_ctx))
8982 return (NULL);
8983
8984 /*
8985 * Test against the PPPoE session link-layer type.
8986 */
8987 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
8988
8989 /* If a specific session is requested, check PPPoE session id */
8990 if (has_sess_num) {
8991 assert_maxval(cstate, "PPPoE session number", sess_num, UINT16_MAX);
8992 b1 = gen_cmp(cstate, OR_LINKPL, 2, BPF_H, sess_num);
8993 gen_and(b0, b1);
8994 b0 = b1;
8995 }
8996
8997 /*
8998 * Change the offsets to point to the type and data fields within
8999 * the PPP packet, and note that this is PPPoE rather than
9000 * raw PPP.
9001 *
9002 * XXX - this is a bit of a kludge. See the comments in
9003 * gen_vlan().
9004 *
9005 * The "network-layer" protocol is PPPoE, which has a 6-byte
9006 * PPPoE header, followed by a PPP packet.
9007 *
9008 * There is no HDLC encapsulation for the PPP packet (it's
9009 * encapsulated in PPPoES instead), so the link-layer type
9010 * starts at the first byte of the PPP packet. For PPPoE,
9011 * that offset is relative to the beginning of the total
9012 * link-layer payload, including any 802.2 LLC header, so
9013 * it's 6 bytes past cstate->off_nl.
9014 */
9015 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9016 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9017 cstate->off_linkpl.reg);
9018
9019 cstate->off_linktype = cstate->off_linkhdr;
9020 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9021
9022 cstate->off_nl = 0;
9023 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9024
9025 return b0;
9026 }
9027
9028 /* Check that this is Geneve and the VNI is correct if
9029 * specified. Parameterized to handle both IPv4 and IPv6. */
9030 static struct block *
9031 gen_geneve_check(compiler_state_t *cstate,
9032 struct block *(*gen_portfn)(compiler_state_t *, uint16_t, int, int),
9033 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9034 {
9035 struct block *b0, *b1;
9036
9037 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9038
9039 /* Check that we are operating on version 0. Otherwise, we
9040 * can't decode the rest of the fields. The version is 2 bits
9041 * in the first byte of the Geneve header. */
9042 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9043 gen_and(b0, b1);
9044 b0 = b1;
9045
9046 if (has_vni) {
9047 assert_maxval(cstate, "Geneve VNI", vni, 0xffffff);
9048 vni <<= 8; /* VNI is in the upper 3 bytes */
9049 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9050 gen_and(b0, b1);
9051 b0 = b1;
9052 }
9053
9054 return b0;
9055 }
9056
9057 /* The IPv4 and IPv6 Geneve checks need to do two things:
9058 * - Verify that this actually is Geneve with the right VNI.
9059 * - Place the IP header length (plus variable link prefix if
9060 * needed) into register A to be used later to compute
9061 * the inner packet offsets. */
9062 static struct block *
9063 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9064 {
9065 struct block *b0, *b1;
9066 struct slist *s, *s1;
9067
9068 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9069
9070 /* Load the IP header length into A. */
9071 s = gen_loadx_iphdrlen(cstate);
9072
9073 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9074 sappend(s, s1);
9075
9076 /* Forcibly append these statements to the true condition
9077 * of the protocol check by creating a new block that is
9078 * always true and ANDing them. */
9079 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9080
9081 gen_and(b0, b1);
9082
9083 return b1;
9084 }
9085
9086 static struct block *
9087 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9088 {
9089 struct block *b0, *b1;
9090 struct slist *s, *s1;
9091
9092 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9093
9094 /* Load the IP header length. We need to account for a
9095 * variable length link prefix if there is one. */
9096 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9097 if (s) {
9098 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9099 s1->s.k = 40;
9100 sappend(s, s1);
9101
9102 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9103 s1->s.k = 0;
9104 sappend(s, s1);
9105 } else {
9106 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9107 s->s.k = 40;
9108 }
9109
9110 /* Forcibly append these statements to the true condition
9111 * of the protocol check by creating a new block that is
9112 * always true and ANDing them. */
9113 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9114 sappend(s, s1);
9115
9116 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9117
9118 gen_and(b0, b1);
9119
9120 return b1;
9121 }
9122
9123 /* We need to store three values based on the Geneve header::
9124 * - The offset of the linktype.
9125 * - The offset of the end of the Geneve header.
9126 * - The offset of the end of the encapsulated MAC header. */
9127 static struct slist *
9128 gen_geneve_offsets(compiler_state_t *cstate)
9129 {
9130 struct slist *s, *s1, *s_proto;
9131
9132 /* First we need to calculate the offset of the Geneve header
9133 * itself. This is composed of the IP header previously calculated
9134 * (include any variable link prefix) and stored in A plus the
9135 * fixed sized headers (fixed link prefix, MAC length, and UDP
9136 * header). */
9137 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9138 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9139
9140 /* Stash this in X since we'll need it later. */
9141 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9142 sappend(s, s1);
9143
9144 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9145 * store it. */
9146 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9147 s1->s.k = 2;
9148 sappend(s, s1);
9149
9150 cstate->off_linktype.reg = alloc_reg(cstate);
9151 cstate->off_linktype.is_variable = 1;
9152 cstate->off_linktype.constant_part = 0;
9153
9154 s1 = new_stmt(cstate, BPF_ST);
9155 s1->s.k = cstate->off_linktype.reg;
9156 sappend(s, s1);
9157
9158 /* Load the Geneve option length and mask and shift to get the
9159 * number of bytes. It is stored in the first byte of the Geneve
9160 * header. */
9161 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9162 s1->s.k = 0;
9163 sappend(s, s1);
9164
9165 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9166 s1->s.k = 0x3f;
9167 sappend(s, s1);
9168
9169 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9170 s1->s.k = 4;
9171 sappend(s, s1);
9172
9173 /* Add in the rest of the Geneve base header. */
9174 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9175 s1->s.k = 8;
9176 sappend(s, s1);
9177
9178 /* Add the Geneve header length to its offset and store. */
9179 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9180 s1->s.k = 0;
9181 sappend(s, s1);
9182
9183 /* Set the encapsulated type as Ethernet. Even though we may
9184 * not actually have Ethernet inside there are two reasons this
9185 * is useful:
9186 * - The linktype field is always in EtherType format regardless
9187 * of whether it is in Geneve or an inner Ethernet frame.
9188 * - The only link layer that we have specific support for is
9189 * Ethernet. We will confirm that the packet actually is
9190 * Ethernet at runtime before executing these checks. */
9191 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9192
9193 s1 = new_stmt(cstate, BPF_ST);
9194 s1->s.k = cstate->off_linkhdr.reg;
9195 sappend(s, s1);
9196
9197 /* Calculate whether we have an Ethernet header or just raw IP/
9198 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9199 * and linktype by 14 bytes so that the network header can be found
9200 * seamlessly. Otherwise, keep what we've calculated already. */
9201
9202 /* We have a bare jmp so we can't use the optimizer. */
9203 cstate->no_optimize = 1;
9204
9205 /* Load the EtherType in the Geneve header, 2 bytes in. */
9206 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9207 s1->s.k = 2;
9208 sappend(s, s1);
9209
9210 /* Load X with the end of the Geneve header. */
9211 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9212 s1->s.k = cstate->off_linkhdr.reg;
9213 sappend(s, s1);
9214
9215 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9216 * end of this check, we should have the total length in X. In
9217 * the non-Ethernet case, it's already there. */
9218 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9219 s_proto->s.k = ETHERTYPE_TEB;
9220 sappend(s, s_proto);
9221
9222 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9223 sappend(s, s1);
9224 s_proto->s.jt = s1;
9225
9226 /* Since this is Ethernet, use the EtherType of the payload
9227 * directly as the linktype. Overwrite what we already have. */
9228 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9229 s1->s.k = 12;
9230 sappend(s, s1);
9231
9232 s1 = new_stmt(cstate, BPF_ST);
9233 s1->s.k = cstate->off_linktype.reg;
9234 sappend(s, s1);
9235
9236 /* Advance two bytes further to get the end of the Ethernet
9237 * header. */
9238 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9239 s1->s.k = 2;
9240 sappend(s, s1);
9241
9242 /* Move the result to X. */
9243 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9244 sappend(s, s1);
9245
9246 /* Store the final result of our linkpl calculation. */
9247 cstate->off_linkpl.reg = alloc_reg(cstate);
9248 cstate->off_linkpl.is_variable = 1;
9249 cstate->off_linkpl.constant_part = 0;
9250
9251 s1 = new_stmt(cstate, BPF_STX);
9252 s1->s.k = cstate->off_linkpl.reg;
9253 sappend(s, s1);
9254 s_proto->s.jf = s1;
9255
9256 cstate->off_nl = 0;
9257
9258 return s;
9259 }
9260
9261 /* Check to see if this is a Geneve packet. */
9262 struct block *
9263 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9264 {
9265 struct block *b0, *b1;
9266 struct slist *s;
9267
9268 /*
9269 * Catch errors reported by us and routines below us, and return NULL
9270 * on an error.
9271 */
9272 if (setjmp(cstate->top_ctx))
9273 return (NULL);
9274
9275 b0 = gen_geneve4(cstate, vni, has_vni);
9276 b1 = gen_geneve6(cstate, vni, has_vni);
9277
9278 gen_or(b0, b1);
9279 b0 = b1;
9280
9281 /* Later filters should act on the payload of the Geneve frame,
9282 * update all of the header pointers. Attach this code so that
9283 * it gets executed in the event that the Geneve filter matches. */
9284 s = gen_geneve_offsets(cstate);
9285
9286 b1 = gen_true(cstate);
9287 sappend(s, b1->stmts);
9288 b1->stmts = s;
9289
9290 gen_and(b0, b1);
9291
9292 cstate->is_encap = 1;
9293
9294 return b1;
9295 }
9296
9297 /* Check that this is VXLAN and the VNI is correct if
9298 * specified. Parameterized to handle both IPv4 and IPv6. */
9299 static struct block *
9300 gen_vxlan_check(compiler_state_t *cstate,
9301 struct block *(*gen_portfn)(compiler_state_t *, uint16_t, int, int),
9302 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9303 {
9304 struct block *b0, *b1;
9305
9306 b0 = gen_portfn(cstate, VXLAN_PORT, IPPROTO_UDP, Q_DST);
9307
9308 /* Check that the VXLAN header has the flag bits set
9309 * correctly. */
9310 b1 = gen_cmp(cstate, offrel, 8, BPF_B, 0x08);
9311 gen_and(b0, b1);
9312 b0 = b1;
9313
9314 if (has_vni) {
9315 assert_maxval(cstate, "VXLAN VNI", vni, 0xffffff);
9316 vni <<= 8; /* VNI is in the upper 3 bytes */
9317 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9318 gen_and(b0, b1);
9319 b0 = b1;
9320 }
9321
9322 return b0;
9323 }
9324
9325 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9326 * - Verify that this actually is VXLAN with the right VNI.
9327 * - Place the IP header length (plus variable link prefix if
9328 * needed) into register A to be used later to compute
9329 * the inner packet offsets. */
9330 static struct block *
9331 gen_vxlan4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9332 {
9333 struct block *b0, *b1;
9334 struct slist *s, *s1;
9335
9336 b0 = gen_vxlan_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9337
9338 /* Load the IP header length into A. */
9339 s = gen_loadx_iphdrlen(cstate);
9340
9341 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9342 sappend(s, s1);
9343
9344 /* Forcibly append these statements to the true condition
9345 * of the protocol check by creating a new block that is
9346 * always true and ANDing them. */
9347 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9348
9349 gen_and(b0, b1);
9350
9351 return b1;
9352 }
9353
9354 static struct block *
9355 gen_vxlan6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9356 {
9357 struct block *b0, *b1;
9358 struct slist *s, *s1;
9359
9360 b0 = gen_vxlan_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9361
9362 /* Load the IP header length. We need to account for a
9363 * variable length link prefix if there is one. */
9364 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9365 if (s) {
9366 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9367 s1->s.k = 40;
9368 sappend(s, s1);
9369
9370 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9371 s1->s.k = 0;
9372 sappend(s, s1);
9373 } else {
9374 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9375 s->s.k = 40;
9376 }
9377
9378 /* Forcibly append these statements to the true condition
9379 * of the protocol check by creating a new block that is
9380 * always true and ANDing them. */
9381 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9382 sappend(s, s1);
9383
9384 b1 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9385
9386 gen_and(b0, b1);
9387
9388 return b1;
9389 }
9390
9391 /* We need to store three values based on the VXLAN header:
9392 * - The offset of the linktype.
9393 * - The offset of the end of the VXLAN header.
9394 * - The offset of the end of the encapsulated MAC header. */
9395 static struct slist *
9396 gen_vxlan_offsets(compiler_state_t *cstate)
9397 {
9398 struct slist *s, *s1;
9399
9400 /* Calculate the offset of the VXLAN header itself. This
9401 * includes the IP header computed previously (including any
9402 * variable link prefix) and stored in A plus the fixed size
9403 * headers (fixed link prefix, MAC length, UDP header). */
9404 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9405 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9406
9407 /* Add the VXLAN header length to its offset and store */
9408 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9409 s1->s.k = 8;
9410 sappend(s, s1);
9411
9412 /* Push the link header. VXLAN packets always contain Ethernet
9413 * frames. */
9414 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9415
9416 s1 = new_stmt(cstate, BPF_ST);
9417 s1->s.k = cstate->off_linkhdr.reg;
9418 sappend(s, s1);
9419
9420 /* As the payload is an Ethernet packet, we can use the
9421 * EtherType of the payload directly as the linktype. */
9422 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9423 s1->s.k = 12;
9424 sappend(s, s1);
9425
9426 cstate->off_linktype.reg = alloc_reg(cstate);
9427 cstate->off_linktype.is_variable = 1;
9428 cstate->off_linktype.constant_part = 0;
9429
9430 s1 = new_stmt(cstate, BPF_ST);
9431 s1->s.k = cstate->off_linktype.reg;
9432 sappend(s, s1);
9433
9434 /* Two bytes further is the end of the Ethernet header and the
9435 * start of the payload. */
9436 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9437 s1->s.k = 2;
9438 sappend(s, s1);
9439
9440 /* Move the result to X. */
9441 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9442 sappend(s, s1);
9443
9444 /* Store the final result of our linkpl calculation. */
9445 cstate->off_linkpl.reg = alloc_reg(cstate);
9446 cstate->off_linkpl.is_variable = 1;
9447 cstate->off_linkpl.constant_part = 0;
9448
9449 s1 = new_stmt(cstate, BPF_STX);
9450 s1->s.k = cstate->off_linkpl.reg;
9451 sappend(s, s1);
9452
9453 cstate->off_nl = 0;
9454
9455 return s;
9456 }
9457
9458 /* Check to see if this is a VXLAN packet. */
9459 struct block *
9460 gen_vxlan(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9461 {
9462 struct block *b0, *b1;
9463 struct slist *s;
9464
9465 /*
9466 * Catch errors reported by us and routines below us, and return NULL
9467 * on an error.
9468 */
9469 if (setjmp(cstate->top_ctx))
9470 return (NULL);
9471
9472 b0 = gen_vxlan4(cstate, vni, has_vni);
9473 b1 = gen_vxlan6(cstate, vni, has_vni);
9474
9475 gen_or(b0, b1);
9476 b0 = b1;
9477
9478 /* Later filters should act on the payload of the VXLAN frame,
9479 * update all of the header pointers. Attach this code so that
9480 * it gets executed in the event that the VXLAN filter matches. */
9481 s = gen_vxlan_offsets(cstate);
9482
9483 b1 = gen_true(cstate);
9484 sappend(s, b1->stmts);
9485 b1->stmts = s;
9486
9487 gen_and(b0, b1);
9488
9489 cstate->is_encap = 1;
9490
9491 return b1;
9492 }
9493
9494 /* Check that the encapsulated frame has a link layer header
9495 * for Ethernet filters. */
9496 static struct block *
9497 gen_encap_ll_check(compiler_state_t *cstate)
9498 {
9499 struct block *b0;
9500 struct slist *s, *s1;
9501
9502 /* The easiest way to see if there is a link layer present
9503 * is to check if the link layer header and payload are not
9504 * the same. */
9505
9506 /* Geneve always generates pure variable offsets so we can
9507 * compare only the registers. */
9508 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9509 s->s.k = cstate->off_linkhdr.reg;
9510
9511 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9512 s1->s.k = cstate->off_linkpl.reg;
9513 sappend(s, s1);
9514
9515 b0 = gen_jmp(cstate, BPF_JMP|BPF_JEQ|BPF_X, 0, s);
9516 gen_not(b0);
9517
9518 return b0;
9519 }
9520
9521 static struct block *
9522 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9523 bpf_u_int32 jvalue, int jtype, int reverse)
9524 {
9525 assert_atm(cstate, atmkw(atmfield));
9526
9527 switch (atmfield) {
9528
9529 case A_VPI:
9530 assert_maxval(cstate, "VPI", jvalue, UINT8_MAX);
9531 return gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9532 0xffffffffU, jtype, reverse, jvalue);
9533
9534 case A_VCI:
9535 assert_maxval(cstate, "VCI", jvalue, UINT16_MAX);
9536 return gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9537 0xffffffffU, jtype, reverse, jvalue);
9538
9539 default:
9540 abort();
9541 }
9542 }
9543
9544 static struct block *
9545 gen_atm_vpi(compiler_state_t *cstate, const uint8_t v)
9546 {
9547 return gen_atmfield_code_internal(cstate, A_VPI, v, BPF_JEQ, 0);
9548 }
9549
9550 static struct block *
9551 gen_atm_vci(compiler_state_t *cstate, const uint16_t v)
9552 {
9553 return gen_atmfield_code_internal(cstate, A_VCI, v, BPF_JEQ, 0);
9554 }
9555
9556 static struct block *
9557 gen_atm_prototype(compiler_state_t *cstate, const uint8_t v)
9558 {
9559 return gen_mcmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, v, 0x0fU);
9560 }
9561
9562 static struct block *
9563 gen_atmtype_llc(compiler_state_t *cstate)
9564 {
9565 struct block *b0;
9566
9567 b0 = gen_atm_prototype(cstate, PT_LLC);
9568 cstate->linktype = cstate->prevlinktype;
9569 return b0;
9570 }
9571
9572 struct block *
9573 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9574 bpf_u_int32 jvalue, int jtype, int reverse)
9575 {
9576 /*
9577 * Catch errors reported by us and routines below us, and return NULL
9578 * on an error.
9579 */
9580 if (setjmp(cstate->top_ctx))
9581 return (NULL);
9582
9583 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9584 reverse);
9585 }
9586
9587 struct block *
9588 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9589 {
9590 struct block *b0, *b1;
9591
9592 /*
9593 * Catch errors reported by us and routines below us, and return NULL
9594 * on an error.
9595 */
9596 if (setjmp(cstate->top_ctx))
9597 return (NULL);
9598
9599 assert_atm(cstate, atmkw(type));
9600
9601 switch (type) {
9602
9603 case A_METAC:
9604 /* Get all packets in Meta signalling Circuit */
9605 b0 = gen_atm_vpi(cstate, 0);
9606 b1 = gen_atm_vci(cstate, 1);
9607 gen_and(b0, b1);
9608 return b1;
9609
9610 case A_BCC:
9611 /* Get all packets in Broadcast Circuit*/
9612 b0 = gen_atm_vpi(cstate, 0);
9613 b1 = gen_atm_vci(cstate, 2);
9614 gen_and(b0, b1);
9615 return b1;
9616
9617 case A_OAMF4SC:
9618 /* Get all cells in Segment OAM F4 circuit*/
9619 b0 = gen_atm_vpi(cstate, 0);
9620 b1 = gen_atm_vci(cstate, 3);
9621 gen_and(b0, b1);
9622 return b1;
9623
9624 case A_OAMF4EC:
9625 /* Get all cells in End-to-End OAM F4 Circuit*/
9626 b0 = gen_atm_vpi(cstate, 0);
9627 b1 = gen_atm_vci(cstate, 4);
9628 gen_and(b0, b1);
9629 return b1;
9630
9631 case A_SC:
9632 /* Get all packets in connection Signalling Circuit */
9633 b0 = gen_atm_vpi(cstate, 0);
9634 b1 = gen_atm_vci(cstate, 5);
9635 gen_and(b0, b1);
9636 return b1;
9637
9638 case A_ILMIC:
9639 /* Get all packets in ILMI Circuit */
9640 b0 = gen_atm_vpi(cstate, 0);
9641 b1 = gen_atm_vci(cstate, 16);
9642 gen_and(b0, b1);
9643 return b1;
9644
9645 case A_LANE:
9646 /* Get all LANE packets */
9647 b1 = gen_atm_prototype(cstate, PT_LANE);
9648
9649 /*
9650 * Arrange that all subsequent tests assume LANE
9651 * rather than LLC-encapsulated packets, and set
9652 * the offsets appropriately for LANE-encapsulated
9653 * Ethernet.
9654 *
9655 * We assume LANE means Ethernet, not Token Ring.
9656 */
9657 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9658 cstate->off_payload + 2, /* Ethernet header */
9659 -1);
9660 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9661 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9662 cstate->off_nl = 0; /* Ethernet II */
9663 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9664 return b1;
9665
9666 default:
9667 abort();
9668 }
9669 }
9670
9671 /*
9672 * Filtering for MTP2 messages based on li value
9673 * FISU, length is null
9674 * LSSU, length is 1 or 2
9675 * MSU, length is 3 or more
9676 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9677 */
9678 struct block *
9679 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9680 {
9681 struct block *b0, *b1;
9682
9683 /*
9684 * Catch errors reported by us and routines below us, and return NULL
9685 * on an error.
9686 */
9687 if (setjmp(cstate->top_ctx))
9688 return (NULL);
9689
9690 assert_ss7(cstate, ss7kw(type));
9691
9692 switch (type) {
9693
9694 case M_FISU:
9695 return gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9696 0x3fU, BPF_JEQ, 0, 0U);
9697
9698 case M_LSSU:
9699 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9700 0x3fU, BPF_JGT, 1, 2U);
9701 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9702 0x3fU, BPF_JGT, 0, 0U);
9703 gen_and(b1, b0);
9704 return b0;
9705
9706 case M_MSU:
9707 return gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9708 0x3fU, BPF_JGT, 0, 2U);
9709
9710 case MH_FISU:
9711 return gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9712 0xff80U, BPF_JEQ, 0, 0U);
9713
9714 case MH_LSSU:
9715 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9716 0xff80U, BPF_JGT, 1, 0x0100U);
9717 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9718 0xff80U, BPF_JGT, 0, 0U);
9719 gen_and(b1, b0);
9720 return b0;
9721
9722 case MH_MSU:
9723 return gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9724 0xff80U, BPF_JGT, 0, 0x0100U);
9725
9726 default:
9727 abort();
9728 }
9729 }
9730
9731 /*
9732 * These maximum valid values are all-ones, so they double as the bitmasks
9733 * before any bitwise shifting.
9734 */
9735 #define MTP2_SIO_MAXVAL UINT8_MAX
9736 #define MTP3_PC_MAXVAL 0x3fffU
9737 #define MTP3_SLS_MAXVAL 0xfU
9738
9739 static struct block *
9740 gen_mtp3field_code_internal(compiler_state_t *cstate, int mtp3field,
9741 bpf_u_int32 jvalue, int jtype, int reverse)
9742 {
9743 u_int newoff_sio;
9744 u_int newoff_opc;
9745 u_int newoff_dpc;
9746 u_int newoff_sls;
9747
9748 newoff_sio = cstate->off_sio;
9749 newoff_opc = cstate->off_opc;
9750 newoff_dpc = cstate->off_dpc;
9751 newoff_sls = cstate->off_sls;
9752
9753 assert_ss7(cstate, ss7kw(mtp3field));
9754
9755 switch (mtp3field) {
9756
9757 /*
9758 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
9759 *
9760 * SIO is the simplest field: the size is one byte and the offset is a
9761 * multiple of bytes, so the only detail to get right is the value of
9762 * the [right-to-left] field offset.
9763 */
9764 case MH_SIO:
9765 newoff_sio += 3; /* offset for MTP2_HSL */
9766 /* FALLTHROUGH */
9767
9768 case M_SIO:
9769 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP2_SIO_MAXVAL);
9770 // Here the bitmask means "do not apply a bitmask".
9771 return gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, UINT32_MAX,
9772 jtype, reverse, jvalue);
9773
9774 /*
9775 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
9776 *
9777 * SLS, OPC and DPC are more complicated: none of these is sized in a
9778 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
9779 * diagrams are meant to be read right-to-left. This means in the
9780 * diagrams within individual fields and concatenations thereof
9781 * bitwise shifts and masks can be noted in the common left-to-right
9782 * manner until each final value is ready to be byte-swapped and
9783 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
9784 * similar problem in a similar way.
9785 *
9786 * Offsets of fields within the packet header always have the
9787 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
9788 * DLTs the offset does not include the F (Flag) field at the
9789 * beginning of each message.
9790 *
9791 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
9792 * 32-bit standard routing header has a 4 byte [RTL] offset and could
9793 * be tested entirely using a single BPF_W comparison. In this case
9794 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
9795 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
9796 * [LTR] bitmask would be (0xF << 28), all of which conveniently
9797 * correlates with the [RTL] packet diagram until the byte-swapping is
9798 * done before use.
9799 *
9800 * The code below uses this approach for OPC, which spans 3 bytes.
9801 * DPC and SLS use shorter loads, SLS also uses a different offset.
9802 */
9803 case MH_OPC:
9804 newoff_opc += 3;
9805
9806 /* FALLTHROUGH */
9807 case M_OPC:
9808 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
9809 return gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W,
9810 SWAPLONG(MTP3_PC_MAXVAL << 14), jtype, reverse,
9811 SWAPLONG(jvalue << 14));
9812
9813 case MH_DPC:
9814 newoff_dpc += 3;
9815 /* FALLTHROUGH */
9816
9817 case M_DPC:
9818 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_PC_MAXVAL);
9819 return gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_H,
9820 SWAPSHORT(MTP3_PC_MAXVAL), jtype, reverse,
9821 SWAPSHORT(jvalue));
9822
9823 case MH_SLS:
9824 newoff_sls += 3;
9825 /* FALLTHROUGH */
9826
9827 case M_SLS:
9828 assert_maxval(cstate, ss7kw(mtp3field), jvalue, MTP3_SLS_MAXVAL);
9829 return gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B,
9830 MTP3_SLS_MAXVAL << 4, jtype, reverse,
9831 jvalue << 4);
9832
9833 default:
9834 abort();
9835 }
9836 }
9837
9838 struct block *
9839 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9840 bpf_u_int32 jvalue, int jtype, int reverse)
9841 {
9842 /*
9843 * Catch errors reported by us and routines below us, and return NULL
9844 * on an error.
9845 */
9846 if (setjmp(cstate->top_ctx))
9847 return (NULL);
9848
9849 return gen_mtp3field_code_internal(cstate, mtp3field, jvalue, jtype,
9850 reverse);
9851 }
9852
9853 static struct block *
9854 gen_msg_abbrev(compiler_state_t *cstate, const uint8_t type)
9855 {
9856 /*
9857 * Q.2931 signalling protocol messages for handling virtual circuits
9858 * establishment and teardown
9859 */
9860 return gen_cmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS,
9861 BPF_B, type);
9862 }
9863
9864 struct block *
9865 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9866 {
9867 struct block *b0, *b1;
9868
9869 /*
9870 * Catch errors reported by us and routines below us, and return NULL
9871 * on an error.
9872 */
9873 if (setjmp(cstate->top_ctx))
9874 return (NULL);
9875
9876 assert_atm(cstate, atmkw(type));
9877
9878 switch (type) {
9879
9880 case A_OAM:
9881 /* OAM F4 type */
9882 b0 = gen_atm_vci(cstate, 3);
9883 b1 = gen_atm_vci(cstate, 4);
9884 gen_or(b0, b1);
9885 b0 = gen_atm_vpi(cstate, 0);
9886 gen_and(b0, b1);
9887 return b1;
9888
9889 case A_OAMF4:
9890 /* OAM F4 type */
9891 b0 = gen_atm_vci(cstate, 3);
9892 b1 = gen_atm_vci(cstate, 4);
9893 gen_or(b0, b1);
9894 b0 = gen_atm_vpi(cstate, 0);
9895 gen_and(b0, b1);
9896 return b1;
9897
9898 case A_CONNECTMSG:
9899 /*
9900 * Get Q.2931 signalling messages for switched
9901 * virtual connection
9902 */
9903 b0 = gen_msg_abbrev(cstate, SETUP);
9904 b1 = gen_msg_abbrev(cstate, CALL_PROCEED);
9905 gen_or(b0, b1);
9906 b0 = gen_msg_abbrev(cstate, CONNECT);
9907 gen_or(b0, b1);
9908 b0 = gen_msg_abbrev(cstate, CONNECT_ACK);
9909 gen_or(b0, b1);
9910 b0 = gen_msg_abbrev(cstate, RELEASE);
9911 gen_or(b0, b1);
9912 b0 = gen_msg_abbrev(cstate, RELEASE_DONE);
9913 gen_or(b0, b1);
9914 b0 = gen_atmtype_abbrev(cstate, A_SC);
9915 gen_and(b0, b1);
9916 return b1;
9917
9918 case A_METACONNECT:
9919 b0 = gen_msg_abbrev(cstate, SETUP);
9920 b1 = gen_msg_abbrev(cstate, CALL_PROCEED);
9921 gen_or(b0, b1);
9922 b0 = gen_msg_abbrev(cstate, CONNECT);
9923 gen_or(b0, b1);
9924 b0 = gen_msg_abbrev(cstate, RELEASE);
9925 gen_or(b0, b1);
9926 b0 = gen_msg_abbrev(cstate, RELEASE_DONE);
9927 gen_or(b0, b1);
9928 b0 = gen_atmtype_abbrev(cstate, A_METAC);
9929 gen_and(b0, b1);
9930 return b1;
9931
9932 default:
9933 abort();
9934 }
9935 }