]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
Don't do all the recvmsg() stuff if we don't have "struct
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 * Modifications: Added PACKET_MMAP support
28 * Paolo Abeni <paolo.abeni@email.it>
29 *
30 * based on previous works of:
31 * Simon Patarin <patarin@cs.unibo.it>
32 * Phil Wood <cpw@lanl.gov>
33 */
34
35 #ifndef lint
36 static const char rcsid[] _U_ =
37 "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.129.2.29 2008-10-28 00:50:39 guy Exp $ (LBL)";
38 #endif
39
40 /*
41 * Known problems with 2.0[.x] kernels:
42 *
43 * - The loopback device gives every packet twice; on 2.2[.x] kernels,
44 * if we use PF_PACKET, we can filter out the transmitted version
45 * of the packet by using data in the "sockaddr_ll" returned by
46 * "recvfrom()", but, on 2.0[.x] kernels, we have to use
47 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
48 * "sockaddr_pkt" which doesn't give us enough information to let
49 * us do that.
50 *
51 * - We have to set the interface's IFF_PROMISC flag ourselves, if
52 * we're to run in promiscuous mode, which means we have to turn
53 * it off ourselves when we're done; the kernel doesn't keep track
54 * of how many sockets are listening promiscuously, which means
55 * it won't get turned off automatically when no sockets are
56 * listening promiscuously. We catch "pcap_close()" and, for
57 * interfaces we put into promiscuous mode, take them out of
58 * promiscuous mode - which isn't necessarily the right thing to
59 * do, if another socket also requested promiscuous mode between
60 * the time when we opened the socket and the time when we close
61 * the socket.
62 *
63 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
64 * return the amount of data that you could have read, rather than
65 * the amount that was returned, so we can't just allocate a buffer
66 * whose size is the snapshot length and pass the snapshot length
67 * as the byte count, and also pass MSG_TRUNC, so that the return
68 * value tells us how long the packet was on the wire.
69 *
70 * This means that, if we want to get the actual size of the packet,
71 * so we can return it in the "len" field of the packet header,
72 * we have to read the entire packet, not just the part that fits
73 * within the snapshot length, and thus waste CPU time copying data
74 * from the kernel that our caller won't see.
75 *
76 * We have to get the actual size, and supply it in "len", because
77 * otherwise, the IP dissector in tcpdump, for example, will complain
78 * about "truncated-ip", as the packet will appear to have been
79 * shorter, on the wire, than the IP header said it should have been.
80 */
81
82
83 #ifdef HAVE_CONFIG_H
84 #include "config.h"
85 #endif
86
87 #include <errno.h>
88 #include <stdlib.h>
89 #include <unistd.h>
90 #include <fcntl.h>
91 #include <string.h>
92 #include <sys/socket.h>
93 #include <sys/ioctl.h>
94 #include <sys/utsname.h>
95 #include <sys/mman.h>
96 #include <net/if.h>
97 #include <netinet/in.h>
98 #include <linux/if_ether.h>
99 #include <net/if_arp.h>
100 #include <poll.h>
101
102 /*
103 * Got Wireless Extensions?
104 */
105 #ifdef HAVE_LINUX_WIRELESS_H
106 #include <linux/wireless.h>
107 #endif
108
109 #include "pcap-int.h"
110 #include "pcap/sll.h"
111 #include "pcap/vlan.h"
112
113 #ifdef HAVE_DAG_API
114 #include "pcap-dag.h"
115 #endif /* HAVE_DAG_API */
116
117 #ifdef HAVE_SEPTEL_API
118 #include "pcap-septel.h"
119 #endif /* HAVE_SEPTEL_API */
120
121 #ifdef PCAP_SUPPORT_USB
122 #include "pcap-usb-linux.h"
123 #endif
124
125 #ifdef PCAP_SUPPORT_BT
126 #include "pcap-bt-linux.h"
127 #endif
128
129 /*
130 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
131 * sockets rather than SOCK_PACKET sockets.
132 *
133 * To use them, we include <linux/if_packet.h> rather than
134 * <netpacket/packet.h>; we do so because
135 *
136 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or
137 * later kernels and libc5, and don't provide a <netpacket/packet.h>
138 * file;
139 *
140 * not all versions of glibc2 have a <netpacket/packet.h> file
141 * that defines stuff needed for some of the 2.4-or-later-kernel
142 * features, so if the system has a 2.4 or later kernel, we
143 * still can't use those features.
144 *
145 * We're already including a number of other <linux/XXX.h> headers, and
146 * this code is Linux-specific (no other OS has PF_PACKET sockets as
147 * a raw packet capture mechanism), so it's not as if you gain any
148 * useful portability by using <netpacket/packet.h>
149 *
150 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET
151 * isn't defined? It only defines one data structure in 2.0.x, so
152 * it shouldn't cause any problems.
153 */
154 #ifdef PF_PACKET
155 # include <linux/if_packet.h>
156
157 /*
158 * On at least some Linux distributions (for example, Red Hat 5.2),
159 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if
160 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
161 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
162 * the PACKET_xxx stuff.
163 *
164 * So we check whether PACKET_HOST is defined, and assume that we have
165 * PF_PACKET sockets only if it is defined.
166 */
167 # ifdef PACKET_HOST
168 # define HAVE_PF_PACKET_SOCKETS
169 # ifdef PACKET_AUXDATA
170 # define HAVE_PACKET_AUXDATA
171 # endif /* PACKET_AUXDATA */
172 # endif /* PACKET_HOST */
173
174
175 /* check for memory mapped access avaibility. We assume every needed
176 * struct is defined if the macro TPACKET_HDRLEN is defined, because it
177 * uses many ring related structs and macros */
178 # ifdef TPACKET_HDRLEN
179 # define HAVE_PACKET_RING
180 # ifdef TPACKET2_HDRLEN
181 # define HAVE_TPACKET2
182 # else
183 # define TPACKET_V1 0
184 # endif /* TPACKET2_HDRLEN */
185 # endif /* TPACKET_HDRLEN */
186 #endif /* PF_PACKET */
187
188 #ifdef SO_ATTACH_FILTER
189 #include <linux/types.h>
190 #include <linux/filter.h>
191 #endif
192
193 #ifndef HAVE_SOCKLEN_T
194 typedef int socklen_t;
195 #endif
196
197 #ifndef MSG_TRUNC
198 /*
199 * This is being compiled on a system that lacks MSG_TRUNC; define it
200 * with the value it has in the 2.2 and later kernels, so that, on
201 * those kernels, when we pass it in the flags argument to "recvfrom()"
202 * we're passing the right value and thus get the MSG_TRUNC behavior
203 * we want. (We don't get that behavior on 2.0[.x] kernels, because
204 * they didn't support MSG_TRUNC.)
205 */
206 #define MSG_TRUNC 0x20
207 #endif
208
209 #ifndef SOL_PACKET
210 /*
211 * This is being compiled on a system that lacks SOL_PACKET; define it
212 * with the value it has in the 2.2 and later kernels, so that we can
213 * set promiscuous mode in the good modern way rather than the old
214 * 2.0-kernel crappy way.
215 */
216 #define SOL_PACKET 263
217 #endif
218
219 #define MAX_LINKHEADER_SIZE 256
220
221 /*
222 * When capturing on all interfaces we use this as the buffer size.
223 * Should be bigger then all MTUs that occur in real life.
224 * 64kB should be enough for now.
225 */
226 #define BIGGER_THAN_ALL_MTUS (64*1024)
227
228 /*
229 * Prototypes for internal functions and methods.
230 */
231 static void map_arphrd_to_dlt(pcap_t *, int, int);
232 #ifdef HAVE_PF_PACKET_SOCKETS
233 static short int map_packet_type_to_sll_type(short int);
234 #endif
235 static int pcap_activate_linux(pcap_t *);
236 static int activate_old(pcap_t *);
237 static int activate_new(pcap_t *);
238 static int activate_mmap(pcap_t *);
239 static int pcap_can_set_rfmon_linux(pcap_t *);
240 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *);
241 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
242 static int pcap_inject_linux(pcap_t *, const void *, size_t);
243 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
244 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
245 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
246 static void pcap_cleanup_linux(pcap_t *);
247
248 union thdr {
249 struct tpacket_hdr *h1;
250 struct tpacket2_hdr *h2;
251 void *raw;
252 };
253
254 #ifdef HAVE_PACKET_RING
255 #define RING_GET_FRAME(h) (((union thdr **)h->buffer)[h->offset])
256
257 static void destroy_ring(pcap_t *handle);
258 static int create_ring(pcap_t *handle);
259 static int prepare_tpacket_socket(pcap_t *handle);
260 static void pcap_cleanup_linux_mmap(pcap_t *);
261 static int pcap_read_linux_mmap(pcap_t *, int, pcap_handler , u_char *);
262 static int pcap_setfilter_linux_mmap(pcap_t *, struct bpf_program *);
263 static int pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf);
264 static int pcap_getnonblock_mmap(pcap_t *p, char *errbuf);
265 #endif
266
267 /*
268 * Wrap some ioctl calls
269 */
270 #ifdef HAVE_PF_PACKET_SOCKETS
271 static int iface_get_id(int fd, const char *device, char *ebuf);
272 #endif
273 static int iface_get_mtu(int fd, const char *device, char *ebuf);
274 static int iface_get_arptype(int fd, const char *device, char *ebuf);
275 #ifdef HAVE_PF_PACKET_SOCKETS
276 static int iface_bind(int fd, int ifindex, char *ebuf);
277 static int has_wext(int sock_fd, const char *device, char *ebuf);
278 static int enter_rfmon_mode_wext(pcap_t *handle, int sock_fd,
279 const char *device);
280 #endif
281 static int iface_bind_old(int fd, const char *device, char *ebuf);
282
283 #ifdef SO_ATTACH_FILTER
284 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
285 static int fix_offset(struct bpf_insn *p);
286 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
287 static int reset_kernel_filter(pcap_t *handle);
288
289 static struct sock_filter total_insn
290 = BPF_STMT(BPF_RET | BPF_K, 0);
291 static struct sock_fprog total_fcode
292 = { 1, &total_insn };
293 #endif
294
295 pcap_t *
296 pcap_create(const char *device, char *ebuf)
297 {
298 pcap_t *handle;
299
300 #ifdef HAVE_DAG_API
301 if (strstr(device, "dag")) {
302 return dag_create(device, ebuf);
303 }
304 #endif /* HAVE_DAG_API */
305
306 #ifdef HAVE_SEPTEL_API
307 if (strstr(device, "septel")) {
308 return septel_create(device, ebuf);
309 }
310 #endif /* HAVE_SEPTEL_API */
311
312 #ifdef PCAP_SUPPORT_BT
313 if (strstr(device, "bluetooth")) {
314 return bt_create(device, ebuf);
315 }
316 #endif
317
318 #ifdef PCAP_SUPPORT_USB
319 if (strstr(device, "usb")) {
320 return usb_create(device, ebuf);
321 }
322 #endif
323
324 handle = pcap_create_common(device, ebuf);
325 if (handle == NULL)
326 return NULL;
327
328 handle->activate_op = pcap_activate_linux;
329 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
330 return handle;
331 }
332
333 static int
334 pcap_can_set_rfmon_linux(pcap_t *p)
335 {
336 #ifdef IW_MODE_MONITOR
337 int sock_fd;
338 struct iwreq ireq;
339 #endif
340
341 if (p->opt.source == NULL) {
342 /*
343 * This is equivalent to the "any" device, and we don't
344 * support monitor mode on it.
345 */
346 return 0;
347 }
348
349 #ifdef IW_MODE_MONITOR
350 /*
351 * Bleah. There doesn't appear to be an ioctl to use to ask
352 * whether a device supports monitor mode; we'll just do
353 * SIOCGIWMODE and, if it succeeds, assume the device supports
354 * monitor mode.
355 *
356 * Open a socket on which to attempt to get the mode.
357 * (We assume that if we have Wireless Extensions support
358 * we also have PF_PACKET support.)
359 */
360 sock_fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
361 if (sock_fd == -1) {
362 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
363 "socket: %s", pcap_strerror(errno));
364 return PCAP_ERROR;
365 }
366
367 /*
368 * Attempt to get the current mode.
369 */
370 strncpy(ireq.ifr_ifrn.ifrn_name, p->opt.source,
371 sizeof ireq.ifr_ifrn.ifrn_name);
372 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
373 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) != -1) {
374 /*
375 * Well, we got the mode; assume we can set it.
376 */
377 close(sock_fd);
378 return 1;
379 }
380 if (errno == ENODEV) {
381 /* The device doesn't even exist. */
382 close(sock_fd);
383 return PCAP_ERROR_NO_SUCH_DEVICE;
384 }
385 close(sock_fd);
386 #endif
387 return 0;
388 }
389
390 /*
391 * With older kernels promiscuous mode is kind of interesting because we
392 * have to reset the interface before exiting. The problem can't really
393 * be solved without some daemon taking care of managing usage counts.
394 * If we put the interface into promiscuous mode, we set a flag indicating
395 * that we must take it out of that mode when the interface is closed,
396 * and, when closing the interface, if that flag is set we take it out
397 * of promiscuous mode.
398 *
399 * Even with newer kernels, we have the same issue with rfmon mode.
400 */
401
402 static void pcap_cleanup_linux( pcap_t *handle )
403 {
404 struct ifreq ifr;
405 #ifdef IW_MODE_MONITOR
406 struct iwreq ireq;
407 #endif
408
409 if (handle->md.must_clear != 0) {
410 /*
411 * There's something we have to do when closing this
412 * pcap_t.
413 */
414 if (handle->md.must_clear & MUST_CLEAR_PROMISC) {
415 /*
416 * We put the interface into promiscuous mode;
417 * take it out of promiscuous mode.
418 *
419 * XXX - if somebody else wants it in promiscuous
420 * mode, this code cannot know that, so it'll take
421 * it out of promiscuous mode. That's not fixable
422 * in 2.0[.x] kernels.
423 */
424 memset(&ifr, 0, sizeof(ifr));
425 strncpy(ifr.ifr_name, handle->md.device,
426 sizeof(ifr.ifr_name));
427 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
428 fprintf(stderr,
429 "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
430 "Please adjust manually.\n"
431 "Hint: This can't happen with Linux >= 2.2.0.\n",
432 strerror(errno));
433 } else {
434 if (ifr.ifr_flags & IFF_PROMISC) {
435 /*
436 * Promiscuous mode is currently on;
437 * turn it off.
438 */
439 ifr.ifr_flags &= ~IFF_PROMISC;
440 if (ioctl(handle->fd, SIOCSIFFLAGS,
441 &ifr) == -1) {
442 fprintf(stderr,
443 "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
444 "Please adjust manually.\n"
445 "Hint: This can't happen with Linux >= 2.2.0.\n",
446 strerror(errno));
447 }
448 }
449 }
450 }
451
452 #ifdef IW_MODE_MONITOR
453 if (handle->md.must_clear & MUST_CLEAR_RFMON) {
454 /*
455 * We put the interface into rfmon mode;
456 * take it out of rfmon mode.
457 *
458 * XXX - if somebody else wants it in rfmon
459 * mode, this code cannot know that, so it'll take
460 * it out of rfmon mode.
461 */
462 strncpy(ireq.ifr_ifrn.ifrn_name, handle->md.device,
463 sizeof ireq.ifr_ifrn.ifrn_name);
464 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1]
465 = 0;
466 ireq.u.mode = handle->md.oldmode;
467 if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) {
468 /*
469 * Scientist, you've failed.
470 */
471 fprintf(stderr,
472 "Can't restore interface wireless mode (SIOCSIWMODE failed: %s).\n"
473 "Please adjust manually.\n",
474 strerror(errno));
475 }
476 }
477 #endif
478
479 /*
480 * Take this pcap out of the list of pcaps for which we
481 * have to take the interface out of some mode.
482 */
483 pcap_remove_from_pcaps_to_close(handle);
484 }
485
486 if (handle->md.device != NULL) {
487 free(handle->md.device);
488 handle->md.device = NULL;
489 }
490 pcap_cleanup_live_common(handle);
491 }
492
493 /*
494 * Get a handle for a live capture from the given device. You can
495 * pass NULL as device to get all packages (without link level
496 * information of course). If you pass 1 as promisc the interface
497 * will be set to promiscous mode (XXX: I think this usage should
498 * be deprecated and functions be added to select that later allow
499 * modification of that values -- Torsten).
500 */
501 static int
502 pcap_activate_linux(pcap_t *handle)
503 {
504 const char *device;
505 int status = 0;
506 int activate_ok = 0;
507
508 device = handle->opt.source;
509
510 handle->inject_op = pcap_inject_linux;
511 handle->setfilter_op = pcap_setfilter_linux;
512 handle->setdirection_op = pcap_setdirection_linux;
513 handle->set_datalink_op = NULL; /* can't change data link type */
514 handle->getnonblock_op = pcap_getnonblock_fd;
515 handle->setnonblock_op = pcap_setnonblock_fd;
516 handle->cleanup_op = pcap_cleanup_linux;
517 handle->read_op = pcap_read_linux;
518 handle->stats_op = pcap_stats_linux;
519
520 /*
521 * NULL and "any" are special devices which give us the hint to
522 * monitor all devices.
523 */
524 if (!device || strcmp(device, "any") == 0) {
525 device = NULL;
526 handle->md.device = strdup("any");
527 if (handle->opt.promisc) {
528 handle->opt.promisc = 0;
529 /* Just a warning. */
530 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
531 "Promiscuous mode not supported on the \"any\" device");
532 status = PCAP_WARNING_PROMISC_NOTSUP;
533 }
534
535 } else
536 handle->md.device = strdup(device);
537
538 if (handle->md.device == NULL) {
539 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s",
540 pcap_strerror(errno) );
541 return PCAP_ERROR;
542 }
543
544 /*
545 * Current Linux kernels use the protocol family PF_PACKET to
546 * allow direct access to all packets on the network while
547 * older kernels had a special socket type SOCK_PACKET to
548 * implement this feature.
549 * While this old implementation is kind of obsolete we need
550 * to be compatible with older kernels for a while so we are
551 * trying both methods with the newer method preferred.
552 */
553
554 if ((status = activate_new(handle)) == 1) {
555 activate_ok = 1;
556 /*
557 * Try to use memory-mapped access.
558 */
559 if (activate_mmap(handle) == 1)
560 return 0; /* we succeeded; nothing more to do */
561 }
562 else if (status == 0) {
563 /* Non-fatal error; try old way */
564 if ((status = activate_old(handle)) == 1)
565 activate_ok = 1;
566 }
567 if (!activate_ok) {
568 /*
569 * Both methods to open the packet socket failed. Tidy
570 * up and report our failure (ebuf is expected to be
571 * set by the functions above).
572 */
573 goto fail;
574 }
575
576 if (handle->opt.buffer_size != 0) {
577 /*
578 * Set the socket buffer size to the specified value.
579 */
580 if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF,
581 &handle->opt.buffer_size,
582 sizeof(handle->opt.buffer_size)) == -1) {
583 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
584 "SO_RCVBUF: %s", pcap_strerror(errno));
585 status = PCAP_ERROR;
586 goto fail;
587 }
588 }
589
590 /* Allocate the buffer */
591
592 handle->buffer = malloc(handle->bufsize + handle->offset);
593 if (!handle->buffer) {
594 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
595 "malloc: %s", pcap_strerror(errno));
596 status = PCAP_ERROR;
597 goto fail;
598 }
599
600 /*
601 * "handle->fd" is a socket, so "select()" and "poll()"
602 * should work on it.
603 */
604 handle->selectable_fd = handle->fd;
605
606 return status;
607
608 fail:
609 pcap_cleanup_linux(handle);
610 return status;
611 }
612
613 /*
614 * Read at most max_packets from the capture stream and call the callback
615 * for each of them. Returns the number of packets handled or -1 if an
616 * error occured.
617 */
618 static int
619 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
620 {
621 /*
622 * Currently, on Linux only one packet is delivered per read,
623 * so we don't loop.
624 */
625 return pcap_read_packet(handle, callback, user);
626 }
627
628 /*
629 * Read a packet from the socket calling the handler provided by
630 * the user. Returns the number of packets received or -1 if an
631 * error occured.
632 */
633 static int
634 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
635 {
636 u_char *bp;
637 int offset;
638 #ifdef HAVE_PF_PACKET_SOCKETS
639 struct sockaddr_ll from;
640 struct sll_header *hdrp;
641 #else
642 struct sockaddr from;
643 #endif
644 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
645 struct iovec iov;
646 struct msghdr msg;
647 struct cmsghdr *cmsg;
648 union {
649 struct cmsghdr cmsg;
650 char buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))];
651 } cmsg_buf;
652 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
653 socklen_t fromlen;
654 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
655 int packet_len, caplen;
656 struct pcap_pkthdr pcap_header;
657
658 #ifdef HAVE_PF_PACKET_SOCKETS
659 /*
660 * If this is a cooked device, leave extra room for a
661 * fake packet header.
662 */
663 if (handle->md.cooked)
664 offset = SLL_HDR_LEN;
665 else
666 offset = 0;
667 #else
668 /*
669 * This system doesn't have PF_PACKET sockets, so it doesn't
670 * support cooked devices.
671 */
672 offset = 0;
673 #endif
674
675 /*
676 * Receive a single packet from the kernel.
677 * We ignore EINTR, as that might just be due to a signal
678 * being delivered - if the signal should interrupt the
679 * loop, the signal handler should call pcap_breakloop()
680 * to set handle->break_loop (we ignore it on other
681 * platforms as well).
682 * We also ignore ENETDOWN, so that we can continue to
683 * capture traffic if the interface goes down and comes
684 * back up again; comments in the kernel indicate that
685 * we'll just block waiting for packets if we try to
686 * receive from a socket that delivered ENETDOWN, and,
687 * if we're using a memory-mapped buffer, we won't even
688 * get notified of "network down" events.
689 */
690 bp = handle->buffer + handle->offset;
691
692 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
693 msg.msg_name = &from;
694 msg.msg_namelen = sizeof(from);
695 msg.msg_iov = &iov;
696 msg.msg_iovlen = 1;
697 msg.msg_control = &cmsg_buf;
698 msg.msg_controllen = sizeof(cmsg_buf);
699 msg.msg_flags = 0;
700
701 iov.iov_len = handle->bufsize - offset;
702 iov.iov_base = bp + offset;
703 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
704
705 do {
706 /*
707 * Has "pcap_breakloop()" been called?
708 */
709 if (handle->break_loop) {
710 /*
711 * Yes - clear the flag that indicates that it
712 * has, and return -2 as an indication that we
713 * were told to break out of the loop.
714 */
715 handle->break_loop = 0;
716 return -2;
717 }
718
719 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
720 packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC);
721 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
722 fromlen = sizeof(from);
723 packet_len = recvfrom(
724 handle->fd, bp + offset,
725 handle->bufsize - offset, MSG_TRUNC,
726 (struct sockaddr *) &from, &fromlen);
727 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
728 } while (packet_len == -1 && (errno == EINTR || errno == ENETDOWN));
729
730 /* Check if an error occured */
731
732 if (packet_len == -1) {
733 if (errno == EAGAIN)
734 return 0; /* no packet there */
735 else {
736 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
737 "recvfrom: %s", pcap_strerror(errno));
738 return -1;
739 }
740 }
741
742 #ifdef HAVE_PF_PACKET_SOCKETS
743 if (!handle->md.sock_packet) {
744 /*
745 * Unfortunately, there is a window between socket() and
746 * bind() where the kernel may queue packets from any
747 * interface. If we're bound to a particular interface,
748 * discard packets not from that interface.
749 *
750 * (If socket filters are supported, we could do the
751 * same thing we do when changing the filter; however,
752 * that won't handle packet sockets without socket
753 * filter support, and it's a bit more complicated.
754 * It would save some instructions per packet, however.)
755 */
756 if (handle->md.ifindex != -1 &&
757 from.sll_ifindex != handle->md.ifindex)
758 return 0;
759
760 /*
761 * Do checks based on packet direction.
762 * We can only do this if we're using PF_PACKET; the
763 * address returned for SOCK_PACKET is a "sockaddr_pkt"
764 * which lacks the relevant packet type information.
765 */
766 if (from.sll_pkttype == PACKET_OUTGOING) {
767 /*
768 * Outgoing packet.
769 * If this is from the loopback device, reject it;
770 * we'll see the packet as an incoming packet as well,
771 * and we don't want to see it twice.
772 */
773 if (from.sll_ifindex == handle->md.lo_ifindex)
774 return 0;
775
776 /*
777 * If the user only wants incoming packets, reject it.
778 */
779 if (handle->direction == PCAP_D_IN)
780 return 0;
781 } else {
782 /*
783 * Incoming packet.
784 * If the user only wants outgoing packets, reject it.
785 */
786 if (handle->direction == PCAP_D_OUT)
787 return 0;
788 }
789 }
790 #endif
791
792 #ifdef HAVE_PF_PACKET_SOCKETS
793 /*
794 * If this is a cooked device, fill in the fake packet header.
795 */
796 if (handle->md.cooked) {
797 /*
798 * Add the length of the fake header to the length
799 * of packet data we read.
800 */
801 packet_len += SLL_HDR_LEN;
802
803 hdrp = (struct sll_header *)bp;
804 hdrp->sll_pkttype = map_packet_type_to_sll_type(from.sll_pkttype);
805 hdrp->sll_hatype = htons(from.sll_hatype);
806 hdrp->sll_halen = htons(from.sll_halen);
807 memcpy(hdrp->sll_addr, from.sll_addr,
808 (from.sll_halen > SLL_ADDRLEN) ?
809 SLL_ADDRLEN :
810 from.sll_halen);
811 hdrp->sll_protocol = from.sll_protocol;
812 }
813
814 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI)
815 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
816 struct tpacket_auxdata *aux;
817 unsigned int len;
818 struct vlan_tag *tag;
819
820 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) ||
821 cmsg->cmsg_level != SOL_PACKET ||
822 cmsg->cmsg_type != PACKET_AUXDATA)
823 continue;
824
825 aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg);
826 if (aux->tp_vlan_tci == 0)
827 continue;
828
829 len = packet_len > iov.iov_len ? iov.iov_len : packet_len;
830 if (len < 2 * ETH_ALEN)
831 break;
832
833 bp -= VLAN_TAG_LEN;
834 memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
835
836 tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
837 tag->vlan_tpid = htons(ETH_P_8021Q);
838 tag->vlan_tci = htons(aux->tp_vlan_tci);
839
840 packet_len += VLAN_TAG_LEN;
841 }
842 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */
843 #endif /* HAVE_PF_PACKET_SOCKETS */
844
845 /*
846 * XXX: According to the kernel source we should get the real
847 * packet len if calling recvfrom with MSG_TRUNC set. It does
848 * not seem to work here :(, but it is supported by this code
849 * anyway.
850 * To be honest the code RELIES on that feature so this is really
851 * broken with 2.2.x kernels.
852 * I spend a day to figure out what's going on and I found out
853 * that the following is happening:
854 *
855 * The packet comes from a random interface and the packet_rcv
856 * hook is called with a clone of the packet. That code inserts
857 * the packet into the receive queue of the packet socket.
858 * If a filter is attached to that socket that filter is run
859 * first - and there lies the problem. The default filter always
860 * cuts the packet at the snaplen:
861 *
862 * # tcpdump -d
863 * (000) ret #68
864 *
865 * So the packet filter cuts down the packet. The recvfrom call
866 * says "hey, it's only 68 bytes, it fits into the buffer" with
867 * the result that we don't get the real packet length. This
868 * is valid at least until kernel 2.2.17pre6.
869 *
870 * We currently handle this by making a copy of the filter
871 * program, fixing all "ret" instructions with non-zero
872 * operands to have an operand of 65535 so that the filter
873 * doesn't truncate the packet, and supplying that modified
874 * filter to the kernel.
875 */
876
877 caplen = packet_len;
878 if (caplen > handle->snapshot)
879 caplen = handle->snapshot;
880
881 /* Run the packet filter if not using kernel filter */
882 if (!handle->md.use_bpf && handle->fcode.bf_insns) {
883 if (bpf_filter(handle->fcode.bf_insns, bp,
884 packet_len, caplen) == 0)
885 {
886 /* rejected by filter */
887 return 0;
888 }
889 }
890
891 /* Fill in our own header data */
892
893 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
894 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
895 "SIOCGSTAMP: %s", pcap_strerror(errno));
896 return -1;
897 }
898 pcap_header.caplen = caplen;
899 pcap_header.len = packet_len;
900
901 /*
902 * Count the packet.
903 *
904 * Arguably, we should count them before we check the filter,
905 * as on many other platforms "ps_recv" counts packets
906 * handed to the filter rather than packets that passed
907 * the filter, but if filtering is done in the kernel, we
908 * can't get a count of packets that passed the filter,
909 * and that would mean the meaning of "ps_recv" wouldn't
910 * be the same on all Linux systems.
911 *
912 * XXX - it's not the same on all systems in any case;
913 * ideally, we should have a "get the statistics" call
914 * that supplies more counts and indicates which of them
915 * it supplies, so that we supply a count of packets
916 * handed to the filter only on platforms where that
917 * information is available.
918 *
919 * We count them here even if we can get the packet count
920 * from the kernel, as we can only determine at run time
921 * whether we'll be able to get it from the kernel (if
922 * HAVE_TPACKET_STATS isn't defined, we can't get it from
923 * the kernel, but if it is defined, the library might
924 * have been built with a 2.4 or later kernel, but we
925 * might be running on a 2.2[.x] kernel without Alexey
926 * Kuznetzov's turbopacket patches, and thus the kernel
927 * might not be able to supply those statistics). We
928 * could, I guess, try, when opening the socket, to get
929 * the statistics, and if we can not increment the count
930 * here, but it's not clear that always incrementing
931 * the count is more expensive than always testing a flag
932 * in memory.
933 *
934 * We keep the count in "md.packets_read", and use that for
935 * "ps_recv" if we can't get the statistics from the kernel.
936 * We do that because, if we *can* get the statistics from
937 * the kernel, we use "md.stat.ps_recv" and "md.stat.ps_drop"
938 * as running counts, as reading the statistics from the
939 * kernel resets the kernel statistics, and if we directly
940 * increment "md.stat.ps_recv" here, that means it will
941 * count packets *twice* on systems where we can get kernel
942 * statistics - once here, and once in pcap_stats_linux().
943 */
944 handle->md.packets_read++;
945
946 /* Call the user supplied callback function */
947 callback(userdata, &pcap_header, bp);
948
949 return 1;
950 }
951
952 static int
953 pcap_inject_linux(pcap_t *handle, const void *buf, size_t size)
954 {
955 int ret;
956
957 #ifdef HAVE_PF_PACKET_SOCKETS
958 if (!handle->md.sock_packet) {
959 /* PF_PACKET socket */
960 if (handle->md.ifindex == -1) {
961 /*
962 * We don't support sending on the "any" device.
963 */
964 strlcpy(handle->errbuf,
965 "Sending packets isn't supported on the \"any\" device",
966 PCAP_ERRBUF_SIZE);
967 return (-1);
968 }
969
970 if (handle->md.cooked) {
971 /*
972 * We don't support sending on the "any" device.
973 *
974 * XXX - how do you send on a bound cooked-mode
975 * socket?
976 * Is a "sendto()" required there?
977 */
978 strlcpy(handle->errbuf,
979 "Sending packets isn't supported in cooked mode",
980 PCAP_ERRBUF_SIZE);
981 return (-1);
982 }
983 }
984 #endif
985
986 ret = send(handle->fd, buf, size, 0);
987 if (ret == -1) {
988 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
989 pcap_strerror(errno));
990 return (-1);
991 }
992 return (ret);
993 }
994
995 /*
996 * Get the statistics for the given packet capture handle.
997 * Reports the number of dropped packets iff the kernel supports
998 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
999 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
1000 * patches); otherwise, that information isn't available, and we lie
1001 * and report 0 as the count of dropped packets.
1002 */
1003 static int
1004 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1005 {
1006 #ifdef HAVE_TPACKET_STATS
1007 struct tpacket_stats kstats;
1008 socklen_t len = sizeof (struct tpacket_stats);
1009 #endif
1010
1011 #ifdef HAVE_TPACKET_STATS
1012 /*
1013 * Try to get the packet counts from the kernel.
1014 */
1015 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1016 &kstats, &len) > -1) {
1017 /*
1018 * On systems where the PACKET_STATISTICS "getsockopt()"
1019 * argument is supported on PF_PACKET sockets:
1020 *
1021 * "ps_recv" counts only packets that *passed* the
1022 * filter, not packets that didn't pass the filter.
1023 * This includes packets later dropped because we
1024 * ran out of buffer space.
1025 *
1026 * "ps_drop" counts packets dropped because we ran
1027 * out of buffer space. It doesn't count packets
1028 * dropped by the interface driver. It counts only
1029 * packets that passed the filter.
1030 *
1031 * Both statistics include packets not yet read from
1032 * the kernel by libpcap, and thus not yet seen by
1033 * the application.
1034 *
1035 * In "linux/net/packet/af_packet.c", at least in the
1036 * 2.4.9 kernel, "tp_packets" is incremented for every
1037 * packet that passes the packet filter *and* is
1038 * successfully queued on the socket; "tp_drops" is
1039 * incremented for every packet dropped because there's
1040 * not enough free space in the socket buffer.
1041 *
1042 * When the statistics are returned for a PACKET_STATISTICS
1043 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1044 * so that "tp_packets" counts all packets handed to
1045 * the PF_PACKET socket, including packets dropped because
1046 * there wasn't room on the socket buffer - but not
1047 * including packets that didn't pass the filter.
1048 *
1049 * In the BSD BPF, the count of received packets is
1050 * incremented for every packet handed to BPF, regardless
1051 * of whether it passed the filter.
1052 *
1053 * We can't make "pcap_stats()" work the same on both
1054 * platforms, but the best approximation is to return
1055 * "tp_packets" as the count of packets and "tp_drops"
1056 * as the count of drops.
1057 *
1058 * Keep a running total because each call to
1059 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1060 * resets the counters to zero.
1061 */
1062 handle->md.stat.ps_recv += kstats.tp_packets;
1063 handle->md.stat.ps_drop += kstats.tp_drops;
1064 *stats = handle->md.stat;
1065 return 0;
1066 }
1067 else
1068 {
1069 /*
1070 * If the error was EOPNOTSUPP, fall through, so that
1071 * if you build the library on a system with
1072 * "struct tpacket_stats" and run it on a system
1073 * that doesn't, it works as it does if the library
1074 * is built on a system without "struct tpacket_stats".
1075 */
1076 if (errno != EOPNOTSUPP) {
1077 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1078 "pcap_stats: %s", pcap_strerror(errno));
1079 return -1;
1080 }
1081 }
1082 #endif
1083 /*
1084 * On systems where the PACKET_STATISTICS "getsockopt()" argument
1085 * is not supported on PF_PACKET sockets:
1086 *
1087 * "ps_recv" counts only packets that *passed* the filter,
1088 * not packets that didn't pass the filter. It does not
1089 * count packets dropped because we ran out of buffer
1090 * space.
1091 *
1092 * "ps_drop" is not supported.
1093 *
1094 * "ps_recv" doesn't include packets not yet read from
1095 * the kernel by libpcap.
1096 *
1097 * We maintain the count of packets processed by libpcap in
1098 * "md.packets_read", for reasons described in the comment
1099 * at the end of pcap_read_packet(). We have no idea how many
1100 * packets were dropped.
1101 */
1102 stats->ps_recv = handle->md.packets_read;
1103 stats->ps_drop = 0;
1104 return 0;
1105 }
1106
1107 /*
1108 * Description string for the "any" device.
1109 */
1110 static const char any_descr[] = "Pseudo-device that captures on all interfaces";
1111
1112 int
1113 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
1114 {
1115 if (pcap_add_if(alldevsp, "any", 0, any_descr, errbuf) < 0)
1116 return (-1);
1117
1118 #ifdef HAVE_DAG_API
1119 if (dag_platform_finddevs(alldevsp, errbuf) < 0)
1120 return (-1);
1121 #endif /* HAVE_DAG_API */
1122
1123 #ifdef HAVE_SEPTEL_API
1124 if (septel_platform_finddevs(alldevsp, errbuf) < 0)
1125 return (-1);
1126 #endif /* HAVE_SEPTEL_API */
1127
1128 #ifdef PCAP_SUPPORT_BT
1129 if (bt_platform_finddevs(alldevsp, errbuf) < 0)
1130 return (-1);
1131 #endif
1132
1133 #ifdef PCAP_SUPPORT_USB
1134 if (usb_platform_finddevs(alldevsp, errbuf) < 0)
1135 return (-1);
1136 #endif
1137
1138 return (0);
1139 }
1140
1141 /*
1142 * Attach the given BPF code to the packet capture device.
1143 */
1144 static int
1145 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
1146 {
1147 #ifdef SO_ATTACH_FILTER
1148 struct sock_fprog fcode;
1149 int can_filter_in_kernel;
1150 int err = 0;
1151 #endif
1152
1153 if (!handle)
1154 return -1;
1155 if (!filter) {
1156 strncpy(handle->errbuf, "setfilter: No filter specified",
1157 PCAP_ERRBUF_SIZE);
1158 return -1;
1159 }
1160
1161 /* Make our private copy of the filter */
1162
1163 if (install_bpf_program(handle, filter) < 0)
1164 /* install_bpf_program() filled in errbuf */
1165 return -1;
1166
1167 /*
1168 * Run user level packet filter by default. Will be overriden if
1169 * installing a kernel filter succeeds.
1170 */
1171 handle->md.use_bpf = 0;
1172
1173 /* Install kernel level filter if possible */
1174
1175 #ifdef SO_ATTACH_FILTER
1176 #ifdef USHRT_MAX
1177 if (handle->fcode.bf_len > USHRT_MAX) {
1178 /*
1179 * fcode.len is an unsigned short for current kernel.
1180 * I have yet to see BPF-Code with that much
1181 * instructions but still it is possible. So for the
1182 * sake of correctness I added this check.
1183 */
1184 fprintf(stderr, "Warning: Filter too complex for kernel\n");
1185 fcode.len = 0;
1186 fcode.filter = NULL;
1187 can_filter_in_kernel = 0;
1188 } else
1189 #endif /* USHRT_MAX */
1190 {
1191 /*
1192 * Oh joy, the Linux kernel uses struct sock_fprog instead
1193 * of struct bpf_program and of course the length field is
1194 * of different size. Pointed out by Sebastian
1195 *
1196 * Oh, and we also need to fix it up so that all "ret"
1197 * instructions with non-zero operands have 65535 as the
1198 * operand, and so that, if we're in cooked mode, all
1199 * memory-reference instructions use special magic offsets
1200 * in references to the link-layer header and assume that
1201 * the link-layer payload begins at 0; "fix_program()"
1202 * will do that.
1203 */
1204 switch (fix_program(handle, &fcode)) {
1205
1206 case -1:
1207 default:
1208 /*
1209 * Fatal error; just quit.
1210 * (The "default" case shouldn't happen; we
1211 * return -1 for that reason.)
1212 */
1213 return -1;
1214
1215 case 0:
1216 /*
1217 * The program performed checks that we can't make
1218 * work in the kernel.
1219 */
1220 can_filter_in_kernel = 0;
1221 break;
1222
1223 case 1:
1224 /*
1225 * We have a filter that'll work in the kernel.
1226 */
1227 can_filter_in_kernel = 1;
1228 break;
1229 }
1230 }
1231
1232 if (can_filter_in_kernel) {
1233 if ((err = set_kernel_filter(handle, &fcode)) == 0)
1234 {
1235 /* Installation succeded - using kernel filter. */
1236 handle->md.use_bpf = 1;
1237 }
1238 else if (err == -1) /* Non-fatal error */
1239 {
1240 /*
1241 * Print a warning if we weren't able to install
1242 * the filter for a reason other than "this kernel
1243 * isn't configured to support socket filters.
1244 */
1245 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
1246 fprintf(stderr,
1247 "Warning: Kernel filter failed: %s\n",
1248 pcap_strerror(errno));
1249 }
1250 }
1251 }
1252
1253 /*
1254 * If we're not using the kernel filter, get rid of any kernel
1255 * filter that might've been there before, e.g. because the
1256 * previous filter could work in the kernel, or because some other
1257 * code attached a filter to the socket by some means other than
1258 * calling "pcap_setfilter()". Otherwise, the kernel filter may
1259 * filter out packets that would pass the new userland filter.
1260 */
1261 if (!handle->md.use_bpf)
1262 reset_kernel_filter(handle);
1263
1264 /*
1265 * Free up the copy of the filter that was made by "fix_program()".
1266 */
1267 if (fcode.filter != NULL)
1268 free(fcode.filter);
1269
1270 if (err == -2)
1271 /* Fatal error */
1272 return -1;
1273 #endif /* SO_ATTACH_FILTER */
1274
1275 return 0;
1276 }
1277
1278 /*
1279 * Set direction flag: Which packets do we accept on a forwarding
1280 * single device? IN, OUT or both?
1281 */
1282 static int
1283 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1284 {
1285 #ifdef HAVE_PF_PACKET_SOCKETS
1286 if (!handle->md.sock_packet) {
1287 handle->direction = d;
1288 return 0;
1289 }
1290 #endif
1291 /*
1292 * We're not using PF_PACKET sockets, so we can't determine
1293 * the direction of the packet.
1294 */
1295 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1296 "Setting direction is not supported on SOCK_PACKET sockets");
1297 return -1;
1298 }
1299
1300
1301 #ifdef HAVE_PF_PACKET_SOCKETS
1302 /*
1303 * Map the PACKET_ value to a LINUX_SLL_ value; we
1304 * want the same numerical value to be used in
1305 * the link-layer header even if the numerical values
1306 * for the PACKET_ #defines change, so that programs
1307 * that look at the packet type field will always be
1308 * able to handle DLT_LINUX_SLL captures.
1309 */
1310 static short int
1311 map_packet_type_to_sll_type(short int sll_pkttype)
1312 {
1313 switch (sll_pkttype) {
1314
1315 case PACKET_HOST:
1316 return htons(LINUX_SLL_HOST);
1317
1318 case PACKET_BROADCAST:
1319 return htons(LINUX_SLL_BROADCAST);
1320
1321 case PACKET_MULTICAST:
1322 return htons(LINUX_SLL_MULTICAST);
1323
1324 case PACKET_OTHERHOST:
1325 return htons(LINUX_SLL_OTHERHOST);
1326
1327 case PACKET_OUTGOING:
1328 return htons(LINUX_SLL_OUTGOING);
1329
1330 default:
1331 return -1;
1332 }
1333 }
1334 #endif
1335
1336 /*
1337 * Linux uses the ARP hardware type to identify the type of an
1338 * interface. pcap uses the DLT_xxx constants for this. This
1339 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1340 * constant, as arguments, and sets "handle->linktype" to the
1341 * appropriate DLT_XXX constant and sets "handle->offset" to
1342 * the appropriate value (to make "handle->offset" plus link-layer
1343 * header length be a multiple of 4, so that the link-layer payload
1344 * will be aligned on a 4-byte boundary when capturing packets).
1345 * (If the offset isn't set here, it'll be 0; add code as appropriate
1346 * for cases where it shouldn't be 0.)
1347 *
1348 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1349 * in cooked mode; otherwise, we can't use cooked mode, so we have
1350 * to pick some type that works in raw mode, or fail.
1351 *
1352 * Sets the link type to -1 if unable to map the type.
1353 */
1354 static void map_arphrd_to_dlt(pcap_t *handle, int arptype, int cooked_ok)
1355 {
1356 switch (arptype) {
1357
1358 case ARPHRD_ETHER:
1359 /*
1360 * This is (presumably) a real Ethernet capture; give it a
1361 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1362 * that an application can let you choose it, in case you're
1363 * capturing DOCSIS traffic that a Cisco Cable Modem
1364 * Termination System is putting out onto an Ethernet (it
1365 * doesn't put an Ethernet header onto the wire, it puts raw
1366 * DOCSIS frames out on the wire inside the low-level
1367 * Ethernet framing).
1368 *
1369 * XXX - are there any sorts of "fake Ethernet" that have
1370 * ARPHRD_ETHER but that *shouldn't offer DLT_DOCSIS as
1371 * a Cisco CMTS won't put traffic onto it or get traffic
1372 * bridged onto it? ISDN is handled in "activate_new()",
1373 * as we fall back on cooked mode there; are there any
1374 * others?
1375 */
1376 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1377 /*
1378 * If that fails, just leave the list empty.
1379 */
1380 if (handle->dlt_list != NULL) {
1381 handle->dlt_list[0] = DLT_EN10MB;
1382 handle->dlt_list[1] = DLT_DOCSIS;
1383 handle->dlt_count = 2;
1384 }
1385 /* FALLTHROUGH */
1386
1387 case ARPHRD_METRICOM:
1388 case ARPHRD_LOOPBACK:
1389 handle->linktype = DLT_EN10MB;
1390 handle->offset = 2;
1391 break;
1392
1393 case ARPHRD_EETHER:
1394 handle->linktype = DLT_EN3MB;
1395 break;
1396
1397 case ARPHRD_AX25:
1398 handle->linktype = DLT_AX25_KISS;
1399 break;
1400
1401 case ARPHRD_PRONET:
1402 handle->linktype = DLT_PRONET;
1403 break;
1404
1405 case ARPHRD_CHAOS:
1406 handle->linktype = DLT_CHAOS;
1407 break;
1408
1409 #ifndef ARPHRD_IEEE802_TR
1410 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
1411 #endif
1412 case ARPHRD_IEEE802_TR:
1413 case ARPHRD_IEEE802:
1414 handle->linktype = DLT_IEEE802;
1415 handle->offset = 2;
1416 break;
1417
1418 case ARPHRD_ARCNET:
1419 handle->linktype = DLT_ARCNET_LINUX;
1420 break;
1421
1422 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
1423 #define ARPHRD_FDDI 774
1424 #endif
1425 case ARPHRD_FDDI:
1426 handle->linktype = DLT_FDDI;
1427 handle->offset = 3;
1428 break;
1429
1430 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
1431 #define ARPHRD_ATM 19
1432 #endif
1433 case ARPHRD_ATM:
1434 /*
1435 * The Classical IP implementation in ATM for Linux
1436 * supports both what RFC 1483 calls "LLC Encapsulation",
1437 * in which each packet has an LLC header, possibly
1438 * with a SNAP header as well, prepended to it, and
1439 * what RFC 1483 calls "VC Based Multiplexing", in which
1440 * different virtual circuits carry different network
1441 * layer protocols, and no header is prepended to packets.
1442 *
1443 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1444 * you can't use the ARPHRD_ type to find out whether
1445 * captured packets will have an LLC header, and,
1446 * while there's a socket ioctl to *set* the encapsulation
1447 * type, there's no ioctl to *get* the encapsulation type.
1448 *
1449 * This means that
1450 *
1451 * programs that dissect Linux Classical IP frames
1452 * would have to check for an LLC header and,
1453 * depending on whether they see one or not, dissect
1454 * the frame as LLC-encapsulated or as raw IP (I
1455 * don't know whether there's any traffic other than
1456 * IP that would show up on the socket, or whether
1457 * there's any support for IPv6 in the Linux
1458 * Classical IP code);
1459 *
1460 * filter expressions would have to compile into
1461 * code that checks for an LLC header and does
1462 * the right thing.
1463 *
1464 * Both of those are a nuisance - and, at least on systems
1465 * that support PF_PACKET sockets, we don't have to put
1466 * up with those nuisances; instead, we can just capture
1467 * in cooked mode. That's what we'll do, if we can.
1468 * Otherwise, we'll just fail.
1469 */
1470 if (cooked_ok)
1471 handle->linktype = DLT_LINUX_SLL;
1472 else
1473 handle->linktype = -1;
1474 break;
1475
1476 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
1477 #define ARPHRD_IEEE80211 801
1478 #endif
1479 case ARPHRD_IEEE80211:
1480 handle->linktype = DLT_IEEE802_11;
1481 break;
1482
1483 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
1484 #define ARPHRD_IEEE80211_PRISM 802
1485 #endif
1486 case ARPHRD_IEEE80211_PRISM:
1487 handle->linktype = DLT_PRISM_HEADER;
1488 break;
1489
1490 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
1491 #define ARPHRD_IEEE80211_RADIOTAP 803
1492 #endif
1493 case ARPHRD_IEEE80211_RADIOTAP:
1494 handle->linktype = DLT_IEEE802_11_RADIO;
1495 break;
1496
1497 case ARPHRD_PPP:
1498 /*
1499 * Some PPP code in the kernel supplies no link-layer
1500 * header whatsoever to PF_PACKET sockets; other PPP
1501 * code supplies PPP link-layer headers ("syncppp.c");
1502 * some PPP code might supply random link-layer
1503 * headers (PPP over ISDN - there's code in Ethereal,
1504 * for example, to cope with PPP-over-ISDN captures
1505 * with which the Ethereal developers have had to cope,
1506 * heuristically trying to determine which of the
1507 * oddball link-layer headers particular packets have).
1508 *
1509 * As such, we just punt, and run all PPP interfaces
1510 * in cooked mode, if we can; otherwise, we just treat
1511 * it as DLT_RAW, for now - if somebody needs to capture,
1512 * on a 2.0[.x] kernel, on PPP devices that supply a
1513 * link-layer header, they'll have to add code here to
1514 * map to the appropriate DLT_ type (possibly adding a
1515 * new DLT_ type, if necessary).
1516 */
1517 if (cooked_ok)
1518 handle->linktype = DLT_LINUX_SLL;
1519 else {
1520 /*
1521 * XXX - handle ISDN types here? We can't fall
1522 * back on cooked sockets, so we'd have to
1523 * figure out from the device name what type of
1524 * link-layer encapsulation it's using, and map
1525 * that to an appropriate DLT_ value, meaning
1526 * we'd map "isdnN" devices to DLT_RAW (they
1527 * supply raw IP packets with no link-layer
1528 * header) and "isdY" devices to a new DLT_I4L_IP
1529 * type that has only an Ethernet packet type as
1530 * a link-layer header.
1531 *
1532 * But sometimes we seem to get random crap
1533 * in the link-layer header when capturing on
1534 * ISDN devices....
1535 */
1536 handle->linktype = DLT_RAW;
1537 }
1538 break;
1539
1540 #ifndef ARPHRD_CISCO
1541 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
1542 #endif
1543 case ARPHRD_CISCO:
1544 handle->linktype = DLT_C_HDLC;
1545 break;
1546
1547 /* Not sure if this is correct for all tunnels, but it
1548 * works for CIPE */
1549 case ARPHRD_TUNNEL:
1550 #ifndef ARPHRD_SIT
1551 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
1552 #endif
1553 case ARPHRD_SIT:
1554 case ARPHRD_CSLIP:
1555 case ARPHRD_SLIP6:
1556 case ARPHRD_CSLIP6:
1557 case ARPHRD_ADAPT:
1558 case ARPHRD_SLIP:
1559 #ifndef ARPHRD_RAWHDLC
1560 #define ARPHRD_RAWHDLC 518
1561 #endif
1562 case ARPHRD_RAWHDLC:
1563 #ifndef ARPHRD_DLCI
1564 #define ARPHRD_DLCI 15
1565 #endif
1566 case ARPHRD_DLCI:
1567 /*
1568 * XXX - should some of those be mapped to DLT_LINUX_SLL
1569 * instead? Should we just map all of them to DLT_LINUX_SLL?
1570 */
1571 handle->linktype = DLT_RAW;
1572 break;
1573
1574 #ifndef ARPHRD_FRAD
1575 #define ARPHRD_FRAD 770
1576 #endif
1577 case ARPHRD_FRAD:
1578 handle->linktype = DLT_FRELAY;
1579 break;
1580
1581 case ARPHRD_LOCALTLK:
1582 handle->linktype = DLT_LTALK;
1583 break;
1584
1585 #ifndef ARPHRD_FCPP
1586 #define ARPHRD_FCPP 784
1587 #endif
1588 case ARPHRD_FCPP:
1589 #ifndef ARPHRD_FCAL
1590 #define ARPHRD_FCAL 785
1591 #endif
1592 case ARPHRD_FCAL:
1593 #ifndef ARPHRD_FCPL
1594 #define ARPHRD_FCPL 786
1595 #endif
1596 case ARPHRD_FCPL:
1597 #ifndef ARPHRD_FCFABRIC
1598 #define ARPHRD_FCFABRIC 787
1599 #endif
1600 case ARPHRD_FCFABRIC:
1601 /*
1602 * We assume that those all mean RFC 2625 IP-over-
1603 * Fibre Channel, with the RFC 2625 header at
1604 * the beginning of the packet.
1605 */
1606 handle->linktype = DLT_IP_OVER_FC;
1607 break;
1608
1609 #ifndef ARPHRD_IRDA
1610 #define ARPHRD_IRDA 783
1611 #endif
1612 case ARPHRD_IRDA:
1613 /* Don't expect IP packet out of this interfaces... */
1614 handle->linktype = DLT_LINUX_IRDA;
1615 /* We need to save packet direction for IrDA decoding,
1616 * so let's use "Linux-cooked" mode. Jean II */
1617 //handle->md.cooked = 1;
1618 break;
1619
1620 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
1621 * is needed, please report it to <daniele@orlandi.com> */
1622 #ifndef ARPHRD_LAPD
1623 #define ARPHRD_LAPD 8445
1624 #endif
1625 case ARPHRD_LAPD:
1626 /* Don't expect IP packet out of this interfaces... */
1627 handle->linktype = DLT_LINUX_LAPD;
1628 break;
1629
1630 #ifndef ARPHRD_NONE
1631 #define ARPHRD_NONE 0xFFFE
1632 #endif
1633 case ARPHRD_NONE:
1634 /*
1635 * No link-layer header; packets are just IP
1636 * packets, so use DLT_RAW.
1637 */
1638 handle->linktype = DLT_RAW;
1639 break;
1640
1641 default:
1642 handle->linktype = -1;
1643 break;
1644 }
1645 }
1646
1647 /* ===== Functions to interface to the newer kernels ================== */
1648
1649 /*
1650 * Try to open a packet socket using the new kernel PF_PACKET interface.
1651 * Returns 1 on success, 0 on an error that means the new interface isn't
1652 * present (so the old SOCK_PACKET interface should be tried), and a
1653 * PCAP_ERROR_ value on an error that means that the old mechanism won't
1654 * work either (so it shouldn't be tried).
1655 */
1656 static int
1657 activate_new(pcap_t *handle)
1658 {
1659 #ifdef HAVE_PF_PACKET_SOCKETS
1660 int sock_fd = -1, arptype, val;
1661 int err = 0;
1662 struct packet_mreq mr;
1663 const char* device = handle->opt.source;
1664
1665 /*
1666 * Open a socket with protocol family packet. If a device is
1667 * given we try to open it in raw mode otherwise we use
1668 * the cooked interface.
1669 */
1670 sock_fd = device ?
1671 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
1672 : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
1673
1674 if (sock_fd == -1) {
1675 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "socket: %s",
1676 pcap_strerror(errno) );
1677 return 0; /* try old mechanism */
1678 }
1679
1680 /* It seems the kernel supports the new interface. */
1681 handle->md.sock_packet = 0;
1682
1683 /*
1684 * Get the interface index of the loopback device.
1685 * If the attempt fails, don't fail, just set the
1686 * "md.lo_ifindex" to -1.
1687 *
1688 * XXX - can there be more than one device that loops
1689 * packets back, i.e. devices other than "lo"? If so,
1690 * we'd need to find them all, and have an array of
1691 * indices for them, and check all of them in
1692 * "pcap_read_packet()".
1693 */
1694 handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
1695
1696 /*
1697 * Default value for offset to align link-layer payload
1698 * on a 4-byte boundary.
1699 */
1700 handle->offset = 0;
1701
1702 /*
1703 * What kind of frames do we have to deal with? Fall back
1704 * to cooked mode if we have an unknown interface type
1705 * or a type we know doesn't work well in raw mode.
1706 */
1707 if (device) {
1708 /* Assume for now we don't need cooked mode. */
1709 handle->md.cooked = 0;
1710
1711 if (handle->opt.rfmon) {
1712 /*
1713 * We were asked to turn on monitor mode.
1714 * Do so before we get the link-layer type,
1715 * because entering monitor mode could change
1716 * the link-layer type.
1717 */
1718 err = enter_rfmon_mode_wext(handle, sock_fd, device);
1719 if (err < 0) {
1720 /* Hard failure */
1721 close(sock_fd);
1722 return err;
1723 }
1724 if (err == 0) {
1725 /*
1726 * Nothing worked for turning monitor mode
1727 * on.
1728 */
1729 close(sock_fd);
1730 return PCAP_ERROR_RFMON_NOTSUP;
1731 }
1732 }
1733 arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
1734 if (arptype < 0) {
1735 close(sock_fd);
1736 return arptype;
1737 }
1738 map_arphrd_to_dlt(handle, arptype, 1);
1739 if (handle->linktype == -1 ||
1740 handle->linktype == DLT_LINUX_SLL ||
1741 handle->linktype == DLT_LINUX_IRDA ||
1742 handle->linktype == DLT_LINUX_LAPD ||
1743 (handle->linktype == DLT_EN10MB &&
1744 (strncmp("isdn", device, 4) == 0 ||
1745 strncmp("isdY", device, 4) == 0))) {
1746 /*
1747 * Unknown interface type (-1), or a
1748 * device we explicitly chose to run
1749 * in cooked mode (e.g., PPP devices),
1750 * or an ISDN device (whose link-layer
1751 * type we can only determine by using
1752 * APIs that may be different on different
1753 * kernels) - reopen in cooked mode.
1754 */
1755 if (close(sock_fd) == -1) {
1756 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1757 "close: %s", pcap_strerror(errno));
1758 return PCAP_ERROR;
1759 }
1760 sock_fd = socket(PF_PACKET, SOCK_DGRAM,
1761 htons(ETH_P_ALL));
1762 if (sock_fd == -1) {
1763 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1764 "socket: %s", pcap_strerror(errno));
1765 return PCAP_ERROR;
1766 }
1767 handle->md.cooked = 1;
1768
1769 /*
1770 * Get rid of any link-layer type list
1771 * we allocated - this only supports cooked
1772 * capture.
1773 */
1774 if (handle->dlt_list != NULL) {
1775 free(handle->dlt_list);
1776 handle->dlt_list = NULL;
1777 handle->dlt_count = 0;
1778 }
1779
1780 if (handle->linktype == -1) {
1781 /*
1782 * Warn that we're falling back on
1783 * cooked mode; we may want to
1784 * update "map_arphrd_to_dlt()"
1785 * to handle the new type.
1786 */
1787 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1788 "arptype %d not "
1789 "supported by libpcap - "
1790 "falling back to cooked "
1791 "socket",
1792 arptype);
1793 }
1794
1795 /*
1796 * IrDA capture is not a real "cooked" capture,
1797 * it's IrLAP frames, not IP packets. The
1798 * same applies to LAPD capture.
1799 */
1800 if (handle->linktype != DLT_LINUX_IRDA &&
1801 handle->linktype != DLT_LINUX_LAPD)
1802 handle->linktype = DLT_LINUX_SLL;
1803 }
1804
1805 handle->md.ifindex = iface_get_id(sock_fd, device,
1806 handle->errbuf);
1807 if (handle->md.ifindex == -1) {
1808 close(sock_fd);
1809 return PCAP_ERROR;
1810 }
1811
1812 if ((err = iface_bind(sock_fd, handle->md.ifindex,
1813 handle->errbuf)) != 1) {
1814 close(sock_fd);
1815 if (err < 0)
1816 return err;
1817 else
1818 return 0; /* try old mechanism */
1819 }
1820 } else {
1821 /*
1822 * This is cooked mode.
1823 */
1824 handle->md.cooked = 1;
1825 handle->linktype = DLT_LINUX_SLL;
1826
1827 /*
1828 * We're not bound to a device.
1829 * XXX - true? Or true only if we're using
1830 * the "any" device?
1831 * For now, we're using this as an indication
1832 * that we can't transmit; stop doing that only
1833 * if we figure out how to transmit in cooked
1834 * mode.
1835 */
1836 handle->md.ifindex = -1;
1837 }
1838
1839 /*
1840 * Select promiscuous mode on if "promisc" is set.
1841 *
1842 * Do not turn allmulti mode on if we don't select
1843 * promiscuous mode - on some devices (e.g., Orinoco
1844 * wireless interfaces), allmulti mode isn't supported
1845 * and the driver implements it by turning promiscuous
1846 * mode on, and that screws up the operation of the
1847 * card as a normal networking interface, and on no
1848 * other platform I know of does starting a non-
1849 * promiscuous capture affect which multicast packets
1850 * are received by the interface.
1851 */
1852
1853 /*
1854 * Hmm, how can we set promiscuous mode on all interfaces?
1855 * I am not sure if that is possible at all.
1856 */
1857
1858 if (device && handle->opt.promisc) {
1859 memset(&mr, 0, sizeof(mr));
1860 mr.mr_ifindex = handle->md.ifindex;
1861 mr.mr_type = PACKET_MR_PROMISC;
1862 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
1863 &mr, sizeof(mr)) == -1) {
1864 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1865 "setsockopt: %s", pcap_strerror(errno));
1866 close(sock_fd);
1867 return PCAP_ERROR;
1868 }
1869 }
1870
1871 /* Enable auxillary data if supported and reserve room for
1872 * reconstructing VLAN headers. */
1873 #ifdef HAVE_PACKET_AUXDATA
1874 val = 1;
1875 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
1876 sizeof(val)) == -1 && errno != ENOPROTOOPT) {
1877 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1878 "setsockopt: %s", pcap_strerror(errno));
1879 close(sock_fd);
1880 return PCAP_ERROR;
1881 }
1882 handle->offset += VLAN_TAG_LEN;
1883 #endif /* HAVE_PACKET_AUXDATA */
1884
1885 /*
1886 * This is a 2.2[.x] or later kernel (we know that
1887 * because we're not using a SOCK_PACKET socket -
1888 * PF_PACKET is supported only in 2.2 and later
1889 * kernels).
1890 *
1891 * We can safely pass "recvfrom()" a byte count
1892 * based on the snapshot length.
1893 *
1894 * If we're in cooked mode, make the snapshot length
1895 * large enough to hold a "cooked mode" header plus
1896 * 1 byte of packet data (so we don't pass a byte
1897 * count of 0 to "recvfrom()").
1898 */
1899 if (handle->md.cooked) {
1900 if (handle->snapshot < SLL_HDR_LEN + 1)
1901 handle->snapshot = SLL_HDR_LEN + 1;
1902 }
1903 handle->bufsize = handle->snapshot;
1904
1905 /* Save the socket FD in the pcap structure */
1906 handle->fd = sock_fd;
1907
1908 return 1;
1909 #else
1910 strncpy(ebuf,
1911 "New packet capturing interface not supported by build "
1912 "environment", PCAP_ERRBUF_SIZE);
1913 return 0;
1914 #endif
1915 }
1916
1917 static int
1918 activate_mmap(pcap_t *handle)
1919 {
1920 #ifdef HAVE_PACKET_RING
1921 int ret;
1922
1923 if (handle->opt.buffer_size == 0) {
1924 /* by default request 2M for the ring buffer */
1925 handle->opt.buffer_size = 2*1024*1024;
1926 }
1927 ret = prepare_tpacket_socket(handle);
1928 if (ret == 0)
1929 return ret;
1930 ret = create_ring(handle);
1931 if (ret == 0)
1932 return ret;
1933
1934 /* override some defaults and inherit the other fields from
1935 * activate_new
1936 * handle->offset is used to get the current position into the rx ring
1937 * handle->cc is used to store the ring size */
1938 handle->read_op = pcap_read_linux_mmap;
1939 handle->cleanup_op = pcap_cleanup_linux_mmap;
1940 handle->setfilter_op = pcap_setfilter_linux_mmap;
1941 handle->setnonblock_op = pcap_setnonblock_mmap;
1942 handle->getnonblock_op = pcap_getnonblock_mmap;
1943 handle->selectable_fd = handle->fd;
1944 return 1;
1945 #else /* HAVE_PACKET_RING */
1946 return 0;
1947 #endif /* HAVE_PACKET_RING */
1948 }
1949
1950 #ifdef HAVE_PACKET_RING
1951 static int
1952 prepare_tpacket_socket(pcap_t *handle)
1953 {
1954 #ifdef HAVE_TPACKET2
1955 socklen_t len;
1956 int val;
1957 #endif
1958
1959 handle->md.tp_version = TPACKET_V1;
1960 handle->md.tp_hdrlen = sizeof(struct tpacket_hdr);
1961
1962 #ifdef HAVE_TPACKET2
1963 /* Probe whether kernel supports TPACKET_V2 */
1964 val = TPACKET_V2;
1965 len = sizeof(val);
1966 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
1967 if (errno == ENOPROTOOPT)
1968 return 1;
1969 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1970 "can't get TPACKET_V2 header len on socket %d: %d-%s",
1971 handle->fd, errno, pcap_strerror(errno));
1972 return 0;
1973 }
1974 handle->md.tp_hdrlen = val;
1975
1976 val = TPACKET_V2;
1977 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
1978 sizeof(val)) < 0) {
1979 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1980 "can't activate TPACKET_V2 on socket %d: %d-%s",
1981 handle->fd, errno, pcap_strerror(errno));
1982 return 0;
1983 }
1984 handle->md.tp_version = TPACKET_V2;
1985
1986 /* Reserve space for VLAN tag reconstruction */
1987 val = VLAN_TAG_LEN;
1988 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, &val,
1989 sizeof(val)) < 0) {
1990 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1991 "can't set up reserve on socket %d: %d-%s",
1992 handle->fd, errno, pcap_strerror(errno));
1993 return 0;
1994 }
1995
1996 #endif /* HAVE_TPACKET2 */
1997 return 1;
1998 }
1999
2000 static void
2001 compute_ring_block(int frame_size, unsigned *block_size, unsigned *frames_per_block)
2002 {
2003 /* compute the minumum block size that will handle this frame.
2004 * The block has to be page size aligned.
2005 * The max block size allowed by the kernel is arch-dependent and
2006 * it's not explicitly checked here. */
2007 *block_size = getpagesize();
2008 while (*block_size < frame_size)
2009 *block_size <<= 1;
2010
2011 *frames_per_block = *block_size/frame_size;
2012 }
2013
2014 static int
2015 create_ring(pcap_t *handle)
2016 {
2017 unsigned i, j, ringsize, frames_per_block;
2018 struct tpacket_req req;
2019
2020 /* Note that with large snapshot (say 64K) only a few frames
2021 * will be available in the ring even with pretty large ring size
2022 * (and a lot of memory will be unused).
2023 * The snap len should be carefully chosen to achive best
2024 * performance */
2025 req.tp_frame_size = TPACKET_ALIGN(handle->snapshot +
2026 TPACKET_ALIGN(handle->md.tp_hdrlen) +
2027 sizeof(struct sockaddr_ll));
2028 req.tp_frame_nr = handle->opt.buffer_size/req.tp_frame_size;
2029 compute_ring_block(req.tp_frame_size, &req.tp_block_size, &frames_per_block);
2030 req.tp_block_nr = req.tp_frame_nr / frames_per_block;
2031
2032 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
2033 req.tp_frame_nr = req.tp_block_nr * frames_per_block;
2034
2035 /* ask the kernel to create the ring */
2036 retry:
2037 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
2038 (void *) &req, sizeof(req))) {
2039 /* try to reduce requested ring size to prevent memory failure */
2040 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
2041 req.tp_frame_nr >>= 1;
2042 req.tp_block_nr = req.tp_frame_nr/frames_per_block;
2043 goto retry;
2044 }
2045 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't create rx ring on "
2046 "packet socket %d: %d-%s", handle->fd, errno,
2047 pcap_strerror(errno));
2048 return 0;
2049 }
2050
2051 /* memory map the rx ring */
2052 ringsize = req.tp_block_nr * req.tp_block_size;
2053 handle->bp = mmap(0, ringsize, PROT_READ| PROT_WRITE, MAP_SHARED,
2054 handle->fd, 0);
2055 if (handle->bp == MAP_FAILED) {
2056 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "can't mmap rx ring: %d-%s",
2057 errno, pcap_strerror(errno));
2058
2059 /* clear the allocated ring on error*/
2060 destroy_ring(handle);
2061 return 0;
2062 }
2063
2064 /* allocate a ring for each frame header pointer*/
2065 handle->cc = req.tp_frame_nr;
2066 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
2067 if (!handle->buffer) {
2068 destroy_ring(handle);
2069 return 0;
2070 }
2071
2072 /* fill the header ring with proper frame ptr*/
2073 handle->offset = 0;
2074 for (i=0; i<req.tp_block_nr; ++i) {
2075 void *base = &handle->bp[i*req.tp_block_size];
2076 for (j=0; j<frames_per_block; ++j, ++handle->offset) {
2077 RING_GET_FRAME(handle) = base;
2078 base += req.tp_frame_size;
2079 }
2080 }
2081
2082 handle->bufsize = req.tp_frame_size;
2083 handle->offset = 0;
2084 return 1;
2085 }
2086
2087 /* free all ring related resources*/
2088 static void
2089 destroy_ring(pcap_t *handle)
2090 {
2091 /* tell the kernel to destroy the ring*/
2092 struct tpacket_req req;
2093 memset(&req, 0, sizeof(req));
2094 setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
2095 (void *) &req, sizeof(req));
2096
2097 /* if ring is mapped, unmap it*/
2098 if (handle->bp) {
2099 /* need to re-compute the ring size */
2100 unsigned frames_per_block, block_size;
2101 compute_ring_block(handle->bufsize, &block_size, &frames_per_block);
2102
2103 /* do not perform sanity check here: we can't recover any error */
2104 munmap(handle->bp, block_size * handle->cc / frames_per_block);
2105 handle->bp = 0;
2106 }
2107 }
2108
2109 static void
2110 pcap_cleanup_linux_mmap( pcap_t *handle )
2111 {
2112 destroy_ring(handle);
2113 pcap_cleanup_linux(handle);
2114 }
2115
2116
2117 static int
2118 pcap_getnonblock_mmap(pcap_t *p, char *errbuf)
2119 {
2120 /* use negative value of timeout to indicate non blocking ops */
2121 return (p->md.timeout<0);
2122 }
2123
2124 static int
2125 pcap_setnonblock_mmap(pcap_t *p, int nonblock, char *errbuf)
2126 {
2127 /* map each value to the corresponding 2's complement, to
2128 * preserve the timeout value provided with pcap_set_timeout */
2129 if (nonblock) {
2130 if (p->md.timeout > 0)
2131 p->md.timeout = p->md.timeout*-1 - 1;
2132 } else
2133 if (p->md.timeout < 0)
2134 p->md.timeout = (p->md.timeout+1)*-1;
2135 return 0;
2136 }
2137
2138 static inline union thdr *
2139 pcap_get_ring_frame(pcap_t *handle, int status)
2140 {
2141 union thdr h;
2142
2143 h.raw = RING_GET_FRAME(handle);
2144 switch (handle->md.tp_version) {
2145 case TPACKET_V1:
2146 if (status != (h.h1->tp_status ? TP_STATUS_USER :
2147 TP_STATUS_KERNEL))
2148 return NULL;
2149 break;
2150 #ifdef HAVE_TPACKET2
2151 case TPACKET_V2:
2152 if (status != (h.h2->tp_status ? TP_STATUS_USER :
2153 TP_STATUS_KERNEL))
2154 return NULL;
2155 break;
2156 #endif
2157 }
2158 return h.raw;
2159 }
2160
2161 static int
2162 pcap_read_linux_mmap(pcap_t *handle, int max_packets, pcap_handler callback,
2163 u_char *user)
2164 {
2165 int pkts = 0;
2166
2167 /* wait for frames availability.*/
2168 if ((handle->md.timeout >= 0) &&
2169 !pcap_get_ring_frame(handle, TP_STATUS_USER)) {
2170 struct pollfd pollinfo;
2171 int ret;
2172
2173 pollinfo.fd = handle->fd;
2174 pollinfo.events = POLLIN;
2175
2176 do {
2177 /* poll() requires a negative timeout to wait forever */
2178 ret = poll(&pollinfo, 1, (handle->md.timeout > 0)?
2179 handle->md.timeout: -1);
2180 if ((ret < 0) && (errno != EINTR)) {
2181 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2182 "can't poll on packet socket fd %d: %d-%s",
2183 handle->fd, errno, pcap_strerror(errno));
2184 return -1;
2185 }
2186 /* check for break loop condition on interrupted syscall*/
2187 if (handle->break_loop) {
2188 handle->break_loop = 0;
2189 return -2;
2190 }
2191 } while (ret < 0);
2192 }
2193
2194 /* non-positive values of max_packets are used to require all
2195 * packets currently available in the ring */
2196 while ((pkts < max_packets) || (max_packets <= 0)) {
2197 int run_bpf;
2198 struct sockaddr_ll *sll;
2199 struct pcap_pkthdr pcaphdr;
2200 unsigned char *bp;
2201 union thdr h;
2202 unsigned int tp_len;
2203 unsigned int tp_mac;
2204 unsigned int tp_snaplen;
2205 unsigned int tp_sec;
2206 unsigned int tp_usec;
2207
2208 h.raw = pcap_get_ring_frame(handle, TP_STATUS_USER);
2209 if (!h.raw)
2210 break;
2211
2212 switch (handle->md.tp_version) {
2213 case TPACKET_V1:
2214 tp_len = h.h1->tp_len;
2215 tp_mac = h.h1->tp_mac;
2216 tp_snaplen = h.h1->tp_snaplen;
2217 tp_sec = h.h1->tp_sec;
2218 tp_usec = h.h1->tp_usec;
2219 break;
2220 #ifdef HAVE_TPACKET2
2221 case TPACKET_V2:
2222 tp_len = h.h2->tp_len;
2223 tp_mac = h.h2->tp_mac;
2224 tp_snaplen = h.h2->tp_snaplen;
2225 tp_sec = h.h2->tp_sec;
2226 tp_usec = h.h2->tp_nsec / 1000;
2227 break;
2228 #endif
2229 default:
2230 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2231 "unsupported tpacket version %d",
2232 handle->md.tp_version);
2233 return -1;
2234 }
2235 /* perform sanity check on internal offset. */
2236 if (tp_mac + tp_snaplen > handle->bufsize) {
2237 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2238 "corrupted frame on kernel ring mac "
2239 "offset %d + caplen %d > frame len %d",
2240 tp_mac, tp_snaplen, handle->bufsize);
2241 return -1;
2242 }
2243
2244 /* run filter on received packet
2245 * If the kernel filtering is enabled we need to run the
2246 * filter until all the frames present into the ring
2247 * at filter creation time are processed.
2248 * In such case md.use_bpf is used as a counter for the
2249 * packet we need to filter.
2250 * Note: alternatively it could be possible to stop applying
2251 * the filter when the ring became empty, but it can possibly
2252 * happen a lot later... */
2253 bp = (unsigned char*)h.raw + tp_mac;
2254 run_bpf = (!handle->md.use_bpf) ||
2255 ((handle->md.use_bpf>1) && handle->md.use_bpf--);
2256 if (run_bpf && handle->fcode.bf_insns &&
2257 (bpf_filter(handle->fcode.bf_insns, bp,
2258 tp_len, tp_snaplen) == 0))
2259 goto skip;
2260
2261 /* check direction and interface index */
2262 sll = (void *)h.raw + TPACKET_ALIGN(handle->md.tp_hdrlen);
2263 if ((sll->sll_ifindex == handle->md.lo_ifindex) &&
2264 (sll->sll_pkttype == PACKET_OUTGOING))
2265 goto skip;
2266
2267 /* get required packet info from ring header */
2268 pcaphdr.ts.tv_sec = tp_sec;
2269 pcaphdr.ts.tv_usec = tp_usec;
2270 pcaphdr.caplen = tp_snaplen;
2271 pcaphdr.len = tp_len;
2272
2273 /* if required build in place the sll header*/
2274 if (handle->md.cooked) {
2275 struct sll_header *hdrp;
2276
2277 /*
2278 * The kernel should have left us with enough
2279 * space for an sll header; back up the packet
2280 * data pointer into that space, as that'll be
2281 * the beginning of the packet we pass to the
2282 * callback.
2283 */
2284 bp -= SLL_HDR_LEN;
2285
2286 /*
2287 * Let's make sure that's past the end of
2288 * the tpacket header, i.e. >=
2289 * ((u_char *)thdr + TPACKET_HDRLEN), so we
2290 * don't step on the header when we construct
2291 * the sll header.
2292 */
2293 if (bp < (u_char *)h.raw +
2294 TPACKET_ALIGN(handle->md.tp_hdrlen) +
2295 sizeof(struct sockaddr_ll)) {
2296 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2297 "cooked-mode frame doesn't have room for sll header");
2298 return -1;
2299 }
2300
2301 /*
2302 * OK, that worked; construct the sll header.
2303 */
2304 hdrp = (struct sll_header *)bp;
2305 hdrp->sll_pkttype = map_packet_type_to_sll_type(
2306 sll->sll_pkttype);
2307 hdrp->sll_hatype = htons(sll->sll_hatype);
2308 hdrp->sll_halen = htons(sll->sll_halen);
2309 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
2310 hdrp->sll_protocol = sll->sll_protocol;
2311
2312 /* update packet len */
2313 pcaphdr.caplen += SLL_HDR_LEN;
2314 pcaphdr.len += SLL_HDR_LEN;
2315 }
2316
2317 #ifdef HAVE_TPACKET2
2318 if (handle->md.tp_version == TPACKET_V2 && h.h2->tp_vlan_tci &&
2319 tp_snaplen >= 2 * ETH_ALEN) {
2320 struct vlan_tag *tag;
2321
2322 bp -= VLAN_TAG_LEN;
2323 memmove(bp, bp + VLAN_TAG_LEN, 2 * ETH_ALEN);
2324
2325 tag = (struct vlan_tag *)(bp + 2 * ETH_ALEN);
2326 tag->vlan_tpid = htons(ETH_P_8021Q);
2327 tag->vlan_tci = htons(h.h2->tp_vlan_tci);
2328
2329 pcaphdr.caplen += VLAN_TAG_LEN;
2330 pcaphdr.len += VLAN_TAG_LEN;
2331 }
2332 #endif
2333
2334 /* pass the packet to the user */
2335 pkts++;
2336 callback(user, &pcaphdr, bp);
2337 handle->md.packets_read++;
2338
2339 skip:
2340 /* next packet */
2341 switch (handle->md.tp_version) {
2342 case TPACKET_V1:
2343 h.h1->tp_status = TP_STATUS_KERNEL;
2344 break;
2345 #ifdef HAVE_TPACKET2
2346 case TPACKET_V2:
2347 h.h2->tp_status = TP_STATUS_KERNEL;
2348 break;
2349 #endif
2350 }
2351 if (++handle->offset >= handle->cc)
2352 handle->offset = 0;
2353
2354 /* check for break loop condition*/
2355 if (handle->break_loop) {
2356 handle->break_loop = 0;
2357 return -2;
2358 }
2359 }
2360 return pkts;
2361 }
2362
2363 static int
2364 pcap_setfilter_linux_mmap(pcap_t *handle, struct bpf_program *filter)
2365 {
2366 int n, offset;
2367 int ret = pcap_setfilter_linux(handle, filter);
2368 if (ret < 0)
2369 return ret;
2370
2371 /* if the kernel filter is enabled, we need to apply the filter on
2372 * all packets present into the ring. Get an upper bound of their number
2373 */
2374 if (!handle->md.use_bpf)
2375 return ret;
2376
2377 /* walk the ring backward and count the free slot */
2378 offset = handle->offset;
2379 if (--handle->offset < 0)
2380 handle->offset = handle->cc - 1;
2381 for (n=0; n < handle->cc; ++n) {
2382 if (--handle->offset < 0)
2383 handle->offset = handle->cc - 1;
2384 if (!pcap_get_ring_frame(handle, TP_STATUS_KERNEL))
2385 break;
2386 }
2387
2388 /* be careful to not change current ring position */
2389 handle->offset = offset;
2390
2391 /* store the number of packets currently present in the ring */
2392 handle->md.use_bpf = 1 + (handle->cc - n);
2393 return ret;
2394 }
2395
2396 #endif /* HAVE_PACKET_RING */
2397
2398
2399 #ifdef HAVE_PF_PACKET_SOCKETS
2400 /*
2401 * Return the index of the given device name. Fill ebuf and return
2402 * -1 on failure.
2403 */
2404 static int
2405 iface_get_id(int fd, const char *device, char *ebuf)
2406 {
2407 struct ifreq ifr;
2408
2409 memset(&ifr, 0, sizeof(ifr));
2410 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
2411
2412 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
2413 snprintf(ebuf, PCAP_ERRBUF_SIZE,
2414 "SIOCGIFINDEX: %s", pcap_strerror(errno));
2415 return -1;
2416 }
2417
2418 return ifr.ifr_ifindex;
2419 }
2420
2421 /*
2422 * Bind the socket associated with FD to the given device.
2423 * Return 1 on success, 0 if we should try a SOCK_PACKET socket,
2424 * or a PCAP_ERROR_ value on a hard error.
2425 */
2426 static int
2427 iface_bind(int fd, int ifindex, char *ebuf)
2428 {
2429 struct sockaddr_ll sll;
2430 int err;
2431 socklen_t errlen = sizeof(err);
2432
2433 memset(&sll, 0, sizeof(sll));
2434 sll.sll_family = AF_PACKET;
2435 sll.sll_ifindex = ifindex;
2436 sll.sll_protocol = htons(ETH_P_ALL);
2437
2438 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
2439 if (errno == ENETDOWN) {
2440 /*
2441 * Return a "network down" indication, so that
2442 * the application can report that rather than
2443 * saying we had a mysterious failure and
2444 * suggest that they report a problem to the
2445 * libpcap developers.
2446 */
2447 return PCAP_ERROR_IFACE_NOT_UP;
2448 } else {
2449 snprintf(ebuf, PCAP_ERRBUF_SIZE,
2450 "bind: %s", pcap_strerror(errno));
2451 return PCAP_ERROR;
2452 }
2453 }
2454
2455 /* Any pending errors, e.g., network is down? */
2456
2457 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
2458 snprintf(ebuf, PCAP_ERRBUF_SIZE,
2459 "getsockopt: %s", pcap_strerror(errno));
2460 return 0;
2461 }
2462
2463 if (err == ENETDOWN) {
2464 /*
2465 * Return a "network down" indication, so that
2466 * the application can report that rather than
2467 * saying we had a mysterious failure and
2468 * suggest that they report a problem to the
2469 * libpcap developers.
2470 */
2471 return PCAP_ERROR_IFACE_NOT_UP;
2472 } else if (err > 0) {
2473 snprintf(ebuf, PCAP_ERRBUF_SIZE,
2474 "bind: %s", pcap_strerror(err));
2475 return 0;
2476 }
2477
2478 return 1;
2479 }
2480
2481 /*
2482 * Check whether the device supports the Wireless Extensions.
2483 * Returns 1 if it does, 0 if it doesn't, PCAP_ERROR_NO_SUCH_DEVICE
2484 * if the device doesn't even exist.
2485 */
2486 static int
2487 has_wext(int sock_fd, const char *device, char *ebuf)
2488 {
2489 #ifdef IW_MODE_MONITOR
2490 struct iwreq ireq;
2491
2492 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2493 sizeof ireq.ifr_ifrn.ifrn_name);
2494 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2495 if (ioctl(sock_fd, SIOCGIWNAME, &ireq) >= 0)
2496 return 1; /* yes */
2497 snprintf(ebuf, PCAP_ERRBUF_SIZE,
2498 "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2499 if (errno == ENODEV)
2500 return PCAP_ERROR_NO_SUCH_DEVICE;
2501 #endif
2502 return 0;
2503 }
2504
2505 /*
2506 * Per me si va ne la citta dolente,
2507 * Per me si va ne l'etterno dolore,
2508 * ...
2509 * Lasciate ogne speranza, voi ch'intrate.
2510 *
2511 * XXX - airmon-ng does special stuff with the Orinoco driver and the
2512 * wlan-ng driver.
2513 */
2514 typedef enum {
2515 MONITOR_WEXT,
2516 MONITOR_HOSTAP,
2517 MONITOR_PRISM,
2518 MONITOR_PRISM54,
2519 MONITOR_ACX100,
2520 MONITOR_RT2500,
2521 MONITOR_RT2570,
2522 MONITOR_RT73,
2523 MONITOR_RTL8XXX
2524 } monitor_type;
2525
2526 /*
2527 * Use the Wireless Extensions, if we have them, to try to turn monitor mode
2528 * on if it's not already on.
2529 *
2530 * Returns 1 on success, 0 if we don't support the Wireless Extensions
2531 * on this device, or a PCAP_ERROR_ value if we do support them but
2532 * we weren't able to turn monitor mode on.
2533 */
2534 static int
2535 enter_rfmon_mode_wext(pcap_t *handle, int sock_fd, const char *device)
2536 {
2537 #ifdef IW_MODE_MONITOR
2538 /*
2539 * XXX - at least some adapters require non-Wireless Extensions
2540 * mechanisms to turn monitor mode on.
2541 *
2542 * Atheros cards might require that a separate "monitor virtual access
2543 * point" be created, with later versions of the madwifi driver.
2544 * airmon-ng does "wlanconfig ath create wlandev {if} wlanmode
2545 * monitor -bssid", which apparently spits out a line "athN"
2546 * where "athN" is the monitor mode device. To leave monitor
2547 * mode, it destroys the monitor mode device.
2548 *
2549 * Some Intel Centrino adapters might require private ioctls to get
2550 * radio headers; the ipw2200 and ipw3945 drivers allow you to
2551 * configure a separate "rtapN" interface to capture in monitor
2552 * mode without preventing the adapter from operating normally.
2553 * (airmon-ng doesn't appear to use that, though.)
2554 *
2555 * It would be Truly Wonderful if mac80211 and nl80211 cleaned this
2556 * up, and if all drivers were converted to mac80211 drivers.
2557 *
2558 * If interface {if} is a mac80211 driver, the file
2559 * /sys/class/net/{if}/phy80211 is a symlink to
2560 * /sys/class/ieee80211/{phydev}, for some {phydev}.
2561 *
2562 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
2563 * least, has a "wmaster0" device and a "wlan0" device; the
2564 * latter is the one with the IP address. Both show up in
2565 * "tcpdump -D" output. Capturing on the wmaster0 device
2566 * captures with 802.11 headers.
2567 *
2568 * airmon-ng searches through /sys/class/net for devices named
2569 * monN, starting with mon0; as soon as one *doesn't* exist,
2570 * it chooses that as the monitor device name. If the "iw"
2571 * command exists, it does "iw dev {if} interface add {monif}
2572 * type monitor", where {monif} is the monitor device. It
2573 * then (sigh) sleeps .1 second, and then configures the
2574 * device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface
2575 * is a file, it writes {mondev}, without a newline, to that file,
2576 * and again (sigh) sleeps .1 second, and then iwconfig's that
2577 * device into monitor mode and configures it up. Otherwise,
2578 * you can't do monitor mode.
2579 *
2580 * All these devices are "glued" together by having the
2581 * /sys/class/net/{device}/phy80211 links pointing to the same
2582 * place, so, given a wmaster, wlan, or mon device, you can
2583 * find the other devices by looking for devices with
2584 * the same phy80211 link.
2585 *
2586 * To turn monitor mode off, delete the monitor interface,
2587 * either with "iw dev {monif} interface del" or by sending
2588 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface
2589 *
2590 * Note: if you try to create a monitor device named "monN", and
2591 * there's already a "monN" device, it fails, as least with
2592 * the netlink interface (which is what iw uses), with a return
2593 * value of -ENFILE. (Return values are negative errnos.) We
2594 * could probably use that to find an unused device.
2595 */
2596 int err;
2597 struct iwreq ireq;
2598 struct iw_priv_args *priv;
2599 monitor_type montype;
2600 int i;
2601 __u32 cmd;
2602 int args[2];
2603 int channel;
2604
2605 /*
2606 * Does this device *support* the Wireless Extensions?
2607 */
2608 err = has_wext(sock_fd, device, handle->errbuf);
2609 if (err <= 0)
2610 return err; /* either it doesn't or the device doesn't even exist */
2611 /*
2612 * Try to get all the Wireless Extensions private ioctls
2613 * supported by this device.
2614 *
2615 * First, get the size of the buffer we need, by supplying no
2616 * buffer and a length of 0. If the device supports private
2617 * ioctls, it should return E2BIG, with ireq.u.data.length set
2618 * to the length we need. If it doesn't support them, it should
2619 * return EOPNOTSUPP.
2620 */
2621 memset(&ireq, 0, sizeof ireq);
2622 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2623 sizeof ireq.ifr_ifrn.ifrn_name);
2624 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2625 ireq.u.data.pointer = args;
2626 ireq.u.data.length = 0;
2627 ireq.u.data.flags = 0;
2628 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) != -1) {
2629 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2630 "%s: SIOCGIWPRIV with a zero-length buffer didn't fail!",
2631 device);
2632 return PCAP_ERROR;
2633 }
2634 if (errno == EOPNOTSUPP) {
2635 /*
2636 * No private ioctls, so we assume that there's only one
2637 * DLT_ for monitor mode.
2638 */
2639 return 0;
2640 }
2641 if (errno != E2BIG) {
2642 /*
2643 * Failed.
2644 */
2645 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2646 "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2647 return PCAP_ERROR;
2648 }
2649 priv = malloc(ireq.u.data.length * sizeof (struct iw_priv_args));
2650 if (priv == NULL) {
2651 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2652 "malloc: %s", pcap_strerror(errno));
2653 return PCAP_ERROR;
2654 }
2655 ireq.u.data.pointer = priv;
2656 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) == -1) {
2657 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2658 "%s: SIOCGIWPRIV: %s", device, pcap_strerror(errno));
2659 free(priv);
2660 return PCAP_ERROR;
2661 }
2662
2663 /*
2664 * Look for private ioctls to turn monitor mode on or, if
2665 * monitor mode is on, to set the header type.
2666 */
2667 montype = MONITOR_WEXT;
2668 cmd = 0;
2669 for (i = 0; i < ireq.u.data.length; i++) {
2670 if (strcmp(priv[i].name, "monitor_type") == 0) {
2671 /*
2672 * Hostap driver, use this one.
2673 * Set monitor mode first.
2674 * You can set it to 0 to get DLT_IEEE80211,
2675 * 1 to get DLT_PRISM, or 2 to get
2676 * DLT_IEEE80211_RADIO_AVS.
2677 */
2678 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2679 break;
2680 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2681 break;
2682 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2683 break;
2684 montype = MONITOR_HOSTAP;
2685 cmd = priv[i].cmd;
2686 break;
2687 }
2688 if (strcmp(priv[i].name, "set_prismhdr") == 0) {
2689 /*
2690 * Prism54 driver, use this one.
2691 * Set monitor mode first.
2692 * You can set it to 2 to get DLT_IEEE80211
2693 * or 3 or get DLT_PRISM.
2694 */
2695 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2696 break;
2697 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2698 break;
2699 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2700 break;
2701 montype = MONITOR_PRISM54;
2702 cmd = priv[i].cmd;
2703 break;
2704 }
2705 if (strcmp(priv[i].name, "forceprismheader") == 0) {
2706 /*
2707 * RT2570 driver, use this one.
2708 * Do this after turning monitor mode on.
2709 * You can set it to 1 to get DLT_PRISM or 2
2710 * to get DLT_IEEE80211.
2711 */
2712 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2713 break;
2714 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2715 break;
2716 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2717 break;
2718 montype = MONITOR_RT2570;
2719 cmd = priv[i].cmd;
2720 break;
2721 }
2722 if (strcmp(priv[i].name, "forceprism") == 0) {
2723 /*
2724 * RT73 driver, use this one.
2725 * Do this after turning monitor mode on.
2726 * Its argument is a *string*; you can
2727 * set it to "1" to get DLT_PRISM or "2"
2728 * to get DLT_IEEE80211.
2729 */
2730 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_CHAR)
2731 break;
2732 if (priv[i].set_args & IW_PRIV_SIZE_FIXED)
2733 break;
2734 montype = MONITOR_RT73;
2735 cmd = priv[i].cmd;
2736 break;
2737 }
2738 if (strcmp(priv[i].name, "prismhdr") == 0) {
2739 /*
2740 * One of the RTL8xxx drivers, use this one.
2741 * It can only be done after monitor mode
2742 * has been turned on. You can set it to 1
2743 * to get DLT_PRISM or 0 to get DLT_IEEE80211.
2744 */
2745 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2746 break;
2747 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2748 break;
2749 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1)
2750 break;
2751 montype = MONITOR_RTL8XXX;
2752 cmd = priv[i].cmd;
2753 break;
2754 }
2755 if (strcmp(priv[i].name, "rfmontx") == 0) {
2756 /*
2757 * RT2500 or RT61 driver, use this one.
2758 * It has one one-byte parameter; set
2759 * u.data.length to 1 and u.data.pointer to
2760 * point to the parameter.
2761 * It doesn't itself turn monitor mode on.
2762 * You can set it to 1 to allow transmitting
2763 * in monitor mode(?) and get DLT_IEEE80211,
2764 * or set it to 0 to disallow transmitting in
2765 * monitor mode(?) and get DLT_PRISM.
2766 */
2767 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2768 break;
2769 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 2)
2770 break;
2771 montype = MONITOR_RT2500;
2772 cmd = priv[i].cmd;
2773 break;
2774 }
2775 if (strcmp(priv[i].name, "monitor") == 0) {
2776 /*
2777 * Either ACX100 or hostap, use this one.
2778 * It turns monitor mode on.
2779 * If it takes two arguments, it's ACX100;
2780 * the first argument is 1 for DLT_PRISM
2781 * or 2 for DLT_IEEE80211, and the second
2782 * argument is the channel on which to
2783 * run. If it takes one argument, it's
2784 * HostAP, and the argument is 2 for
2785 * DLT_IEEE80211 and 3 for DLT_PRISM.
2786 *
2787 * If we see this, we don't quit, as this
2788 * might be a version of the hostap driver
2789 * that also supports "monitor_type".
2790 */
2791 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT)
2792 break;
2793 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED))
2794 break;
2795 switch (priv[i].set_args & IW_PRIV_SIZE_MASK) {
2796
2797 case 1:
2798 montype = MONITOR_PRISM;
2799 cmd = priv[i].cmd;
2800 break;
2801
2802 case 2:
2803 montype = MONITOR_ACX100;
2804 cmd = priv[i].cmd;
2805 break;
2806
2807 default:
2808 break;
2809 }
2810 }
2811 }
2812 free(priv);
2813
2814 /*
2815 * XXX - ipw3945? islism?
2816 */
2817
2818 /*
2819 * Get the old mode.
2820 */
2821 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2822 sizeof ireq.ifr_ifrn.ifrn_name);
2823 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2824 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) == -1) {
2825 /*
2826 * We probably won't be able to set the mode, either.
2827 */
2828 return PCAP_ERROR_RFMON_NOTSUP;
2829 }
2830
2831 /*
2832 * Is it currently in monitor mode?
2833 */
2834 if (ireq.u.mode == IW_MODE_MONITOR) {
2835 /*
2836 * Yes. Just leave things as they are.
2837 * We don't offer multiple link-layer types, as
2838 * changing the link-layer type out from under
2839 * somebody else capturing in monitor mode would
2840 * be considered rude.
2841 */
2842 return 1;
2843 }
2844 /*
2845 * No. We have to put the adapter into rfmon mode.
2846 */
2847
2848 /*
2849 * If we haven't already done so, arrange to have
2850 * "pcap_close_all()" called when we exit.
2851 */
2852 if (!pcap_do_addexit(handle)) {
2853 /*
2854 * "atexit()" failed; don't put the interface
2855 * in rfmon mode, just give up.
2856 */
2857 return PCAP_ERROR_RFMON_NOTSUP;
2858 }
2859
2860 /*
2861 * Save the old mode.
2862 */
2863 handle->md.oldmode = ireq.u.mode;
2864
2865 /*
2866 * Put the adapter in rfmon mode. How we do this depends
2867 * on whether we have a special private ioctl or not.
2868 */
2869 if (montype == MONITOR_PRISM) {
2870 /*
2871 * We have the "monitor" private ioctl, but none of
2872 * the other private ioctls. Use this, and select
2873 * the Prism header.
2874 *
2875 * If it fails, just fall back on SIOCSIWMODE.
2876 */
2877 memset(&ireq, 0, sizeof ireq);
2878 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2879 sizeof ireq.ifr_ifrn.ifrn_name);
2880 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2881 ireq.u.data.length = 1; /* 1 argument */
2882 args[0] = 3; /* request Prism header */
2883 memcpy(ireq.u.name, args, IFNAMSIZ);
2884 if (ioctl(sock_fd, cmd, &ireq) != -1) {
2885 /*
2886 * Success.
2887 * Note that we have to put the old mode back
2888 * when we close the device.
2889 */
2890 handle->md.must_clear |= MUST_CLEAR_RFMON;
2891
2892 /*
2893 * Add this to the list of pcaps to close
2894 * when we exit.
2895 */
2896 pcap_add_to_pcaps_to_close(handle);
2897
2898 return 1;
2899 }
2900
2901 /*
2902 * Failure. Fall back on SIOCSIWMODE.
2903 */
2904 }
2905
2906 /*
2907 * First, turn monitor mode on.
2908 */
2909 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2910 sizeof ireq.ifr_ifrn.ifrn_name);
2911 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2912 ireq.u.mode = IW_MODE_MONITOR;
2913 if (ioctl(sock_fd, SIOCSIWMODE, &ireq) == -1) {
2914 /*
2915 * Scientist, you've failed.
2916 */
2917 return PCAP_ERROR_RFMON_NOTSUP;
2918 }
2919
2920 /*
2921 * XXX - airmon-ng does "iwconfig {if} key off" after setting
2922 * monitor mode and setting the channel, and then does
2923 * "iwconfig up".
2924 */
2925
2926 /*
2927 * Now select the appropriate radio header.
2928 */
2929 switch (montype) {
2930
2931 case MONITOR_WEXT:
2932 /*
2933 * We don't have any private ioctl to set the header.
2934 */
2935 break;
2936
2937 case MONITOR_HOSTAP:
2938 /*
2939 * Select the AVS header if we can, otherwise
2940 * select the Prism header.
2941 */
2942 memset(&ireq, 0, sizeof ireq);
2943 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2944 sizeof ireq.ifr_ifrn.ifrn_name);
2945 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2946 args[0] = 2; /* request AVS header */
2947 memcpy(ireq.u.name, args, sizeof (int));
2948 if (ioctl(sock_fd, cmd, &ireq) == -1) {
2949 /*
2950 * Failure - try the Prism header.
2951 */
2952 memset(&ireq, 0, sizeof ireq);
2953 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2954 sizeof ireq.ifr_ifrn.ifrn_name);
2955 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2956 args[0] = 1; /* request Prism header */
2957 memcpy(ireq.u.name, args, sizeof (int));
2958 ioctl(sock_fd, cmd, &ireq);
2959 }
2960 break;
2961
2962 case MONITOR_PRISM:
2963 /*
2964 * The private ioctl failed.
2965 */
2966 break;
2967
2968 case MONITOR_PRISM54:
2969 /*
2970 * Select the Prism header.
2971 */
2972 memset(&ireq, 0, sizeof ireq);
2973 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2974 sizeof ireq.ifr_ifrn.ifrn_name);
2975 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2976 args[0] = 3; /* request Prism header */
2977 memcpy(ireq.u.name, args, sizeof (int));
2978 ioctl(sock_fd, cmd, &ireq);
2979 break;
2980
2981 case MONITOR_ACX100:
2982 /*
2983 * Get the current channel.
2984 */
2985 memset(&ireq, 0, sizeof ireq);
2986 strncpy(ireq.ifr_ifrn.ifrn_name, device,
2987 sizeof ireq.ifr_ifrn.ifrn_name);
2988 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
2989 if (ioctl(sock_fd, SIOCGIWFREQ, &ireq) == -1) {
2990 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2991 "%s: SIOCGIWFREQ: %s", device,
2992 pcap_strerror(errno));
2993 return PCAP_ERROR;
2994 }
2995 channel = ireq.u.freq.m;
2996
2997 /*
2998 * Select the Prism header, and set the channel to the
2999 * current value.
3000 */
3001 memset(&ireq, 0, sizeof ireq);
3002 strncpy(ireq.ifr_ifrn.ifrn_name, device,
3003 sizeof ireq.ifr_ifrn.ifrn_name);
3004 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3005 args[0] = 1; /* request Prism header */
3006 args[1] = channel; /* set channel */
3007 memcpy(ireq.u.name, args, 2*sizeof (int));
3008 ioctl(sock_fd, cmd, &ireq);
3009 break;
3010
3011 case MONITOR_RT2500:
3012 /*
3013 * Disallow transmission - that turns on the
3014 * Prism header.
3015 */
3016 memset(&ireq, 0, sizeof ireq);
3017 strncpy(ireq.ifr_ifrn.ifrn_name, device,
3018 sizeof ireq.ifr_ifrn.ifrn_name);
3019 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3020 args[0] = 0; /* disallow transmitting */
3021 memcpy(ireq.u.name, args, sizeof (int));
3022 ioctl(sock_fd, cmd, &ireq);
3023 break;
3024
3025 case MONITOR_RT2570:
3026 /*
3027 * Force the Prism header.
3028 */
3029 memset(&ireq, 0, sizeof ireq);
3030 strncpy(ireq.ifr_ifrn.ifrn_name, device,
3031 sizeof ireq.ifr_ifrn.ifrn_name);
3032 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3033 args[0] = 1; /* request Prism header */
3034 memcpy(ireq.u.name, args, sizeof (int));
3035 ioctl(sock_fd, cmd, &ireq);
3036 break;
3037
3038 case MONITOR_RT73:
3039 /*
3040 * Force the Prism header.
3041 */
3042 memset(&ireq, 0, sizeof ireq);
3043 strncpy(ireq.ifr_ifrn.ifrn_name, device,
3044 sizeof ireq.ifr_ifrn.ifrn_name);
3045 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3046 ireq.u.data.length = 1; /* 1 argument */
3047 ireq.u.data.pointer = "1";
3048 ireq.u.data.flags = 0;
3049 ioctl(sock_fd, cmd, &ireq);
3050 break;
3051
3052 case MONITOR_RTL8XXX:
3053 /*
3054 * Force the Prism header.
3055 */
3056 memset(&ireq, 0, sizeof ireq);
3057 strncpy(ireq.ifr_ifrn.ifrn_name, device,
3058 sizeof ireq.ifr_ifrn.ifrn_name);
3059 ireq.ifr_ifrn.ifrn_name[sizeof ireq.ifr_ifrn.ifrn_name - 1] = 0;
3060 args[0] = 1; /* request Prism header */
3061 memcpy(ireq.u.name, args, sizeof (int));
3062 ioctl(sock_fd, cmd, &ireq);
3063 break;
3064 }
3065
3066 /*
3067 * Note that we have to put the old mode back when we
3068 * close the device.
3069 */
3070 handle->md.must_clear |= MUST_CLEAR_RFMON;
3071
3072 /*
3073 * Add this to the list of pcaps to close when we exit.
3074 */
3075 pcap_add_to_pcaps_to_close(handle);
3076
3077 return 1;
3078 #else
3079 /*
3080 * We don't have the Wireless Extensions available, so we can't
3081 * do monitor mode.
3082 */
3083 return 0;
3084 #endif
3085 }
3086
3087 #endif /* HAVE_PF_PACKET_SOCKETS */
3088
3089 /* ===== Functions to interface to the older kernels ================== */
3090
3091 /*
3092 * Try to open a packet socket using the old kernel interface.
3093 * Returns 1 on success and a PCAP_ERROR_ value on an error.
3094 */
3095 static int
3096 activate_old(pcap_t *handle)
3097 {
3098 int arptype;
3099 struct ifreq ifr;
3100 const char *device = handle->opt.source;
3101 struct utsname utsname;
3102 int mtu;
3103
3104 /* Open the socket */
3105
3106 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
3107 if (handle->fd == -1) {
3108 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3109 "socket: %s", pcap_strerror(errno));
3110 return PCAP_ERROR_PERM_DENIED;
3111 }
3112
3113 /* It worked - we are using the old interface */
3114 handle->md.sock_packet = 1;
3115
3116 /* ...which means we get the link-layer header. */
3117 handle->md.cooked = 0;
3118
3119 /* Bind to the given device */
3120
3121 if (!device) {
3122 strncpy(handle->errbuf, "pcap_activate: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
3123 PCAP_ERRBUF_SIZE);
3124 return PCAP_ERROR;
3125 }
3126 if (iface_bind_old(handle->fd, device, handle->errbuf) == -1)
3127 return PCAP_ERROR;
3128
3129 /*
3130 * Try to get the link-layer type.
3131 */
3132 arptype = iface_get_arptype(handle->fd, device, handle->errbuf);
3133 if (arptype < 0)
3134 return PCAP_ERROR;
3135
3136 /*
3137 * Try to find the DLT_ type corresponding to that
3138 * link-layer type.
3139 */
3140 map_arphrd_to_dlt(handle, arptype, 0);
3141 if (handle->linktype == -1) {
3142 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3143 "unknown arptype %d", arptype);
3144 return PCAP_ERROR;
3145 }
3146
3147 /* Go to promisc mode if requested */
3148
3149 if (handle->opt.promisc) {
3150 memset(&ifr, 0, sizeof(ifr));
3151 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3152 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3153 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3154 "SIOCGIFFLAGS: %s", pcap_strerror(errno));
3155 return PCAP_ERROR;
3156 }
3157 if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
3158 /*
3159 * Promiscuous mode isn't currently on,
3160 * so turn it on, and remember that
3161 * we should turn it off when the
3162 * pcap_t is closed.
3163 */
3164
3165 /*
3166 * If we haven't already done so, arrange
3167 * to have "pcap_close_all()" called when
3168 * we exit.
3169 */
3170 if (!pcap_do_addexit(handle)) {
3171 /*
3172 * "atexit()" failed; don't put
3173 * the interface in promiscuous
3174 * mode, just give up.
3175 */
3176 return PCAP_ERROR;
3177 }
3178
3179 ifr.ifr_flags |= IFF_PROMISC;
3180 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
3181 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3182 "SIOCSIFFLAGS: %s",
3183 pcap_strerror(errno));
3184 return PCAP_ERROR;
3185 }
3186 handle->md.must_clear |= MUST_CLEAR_PROMISC;
3187
3188 /*
3189 * Add this to the list of pcaps
3190 * to close when we exit.
3191 */
3192 pcap_add_to_pcaps_to_close(handle);
3193 }
3194 }
3195
3196 /*
3197 * Compute the buffer size.
3198 *
3199 * We're using SOCK_PACKET, so this might be a 2.0[.x]
3200 * kernel, and might require special handling - check.
3201 */
3202 if (uname(&utsname) < 0 ||
3203 strncmp(utsname.release, "2.0", 3) == 0) {
3204 /*
3205 * Either we couldn't find out what kernel release
3206 * this is, or it's a 2.0[.x] kernel.
3207 *
3208 * In the 2.0[.x] kernel, a "recvfrom()" on
3209 * a SOCK_PACKET socket, with MSG_TRUNC set, will
3210 * return the number of bytes read, so if we pass
3211 * a length based on the snapshot length, it'll
3212 * return the number of bytes from the packet
3213 * copied to userland, not the actual length
3214 * of the packet.
3215 *
3216 * This means that, for example, the IP dissector
3217 * in tcpdump will get handed a packet length less
3218 * than the length in the IP header, and will
3219 * complain about "truncated-ip".
3220 *
3221 * So we don't bother trying to copy from the
3222 * kernel only the bytes in which we're interested,
3223 * but instead copy them all, just as the older
3224 * versions of libpcap for Linux did.
3225 *
3226 * The buffer therefore needs to be big enough to
3227 * hold the largest packet we can get from this
3228 * device. Unfortunately, we can't get the MRU
3229 * of the network; we can only get the MTU. The
3230 * MTU may be too small, in which case a packet larger
3231 * than the buffer size will be truncated *and* we
3232 * won't get the actual packet size.
3233 *
3234 * However, if the snapshot length is larger than
3235 * the buffer size based on the MTU, we use the
3236 * snapshot length as the buffer size, instead;
3237 * this means that with a sufficiently large snapshot
3238 * length we won't artificially truncate packets
3239 * to the MTU-based size.
3240 *
3241 * This mess just one of many problems with packet
3242 * capture on 2.0[.x] kernels; you really want a
3243 * 2.2[.x] or later kernel if you want packet capture
3244 * to work well.
3245 */
3246 mtu = iface_get_mtu(handle->fd, device, handle->errbuf);
3247 if (mtu == -1)
3248 return PCAP_ERROR;
3249 handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
3250 if (handle->bufsize < handle->snapshot)
3251 handle->bufsize = handle->snapshot;
3252 } else {
3253 /*
3254 * This is a 2.2[.x] or later kernel.
3255 *
3256 * We can safely pass "recvfrom()" a byte count
3257 * based on the snapshot length.
3258 */
3259 handle->bufsize = handle->snapshot;
3260 }
3261
3262 /*
3263 * Default value for offset to align link-layer payload
3264 * on a 4-byte boundary.
3265 */
3266 handle->offset = 0;
3267
3268 return 1;
3269 }
3270
3271 /*
3272 * Bind the socket associated with FD to the given device using the
3273 * interface of the old kernels.
3274 */
3275 static int
3276 iface_bind_old(int fd, const char *device, char *ebuf)
3277 {
3278 struct sockaddr saddr;
3279 int err;
3280 socklen_t errlen = sizeof(err);
3281
3282 memset(&saddr, 0, sizeof(saddr));
3283 strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
3284 if (bind(fd, &saddr, sizeof(saddr)) == -1) {
3285 snprintf(ebuf, PCAP_ERRBUF_SIZE,
3286 "bind: %s", pcap_strerror(errno));
3287 return -1;
3288 }
3289
3290 /* Any pending errors, e.g., network is down? */
3291
3292 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
3293 snprintf(ebuf, PCAP_ERRBUF_SIZE,
3294 "getsockopt: %s", pcap_strerror(errno));
3295 return -1;
3296 }
3297
3298 if (err > 0) {
3299 snprintf(ebuf, PCAP_ERRBUF_SIZE,
3300 "bind: %s", pcap_strerror(err));
3301 return -1;
3302 }
3303
3304 return 0;
3305 }
3306
3307
3308 /* ===== System calls available on all supported kernels ============== */
3309
3310 /*
3311 * Query the kernel for the MTU of the given interface.
3312 */
3313 static int
3314 iface_get_mtu(int fd, const char *device, char *ebuf)
3315 {
3316 struct ifreq ifr;
3317
3318 if (!device)
3319 return BIGGER_THAN_ALL_MTUS;
3320
3321 memset(&ifr, 0, sizeof(ifr));
3322 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3323
3324 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
3325 snprintf(ebuf, PCAP_ERRBUF_SIZE,
3326 "SIOCGIFMTU: %s", pcap_strerror(errno));
3327 return -1;
3328 }
3329
3330 return ifr.ifr_mtu;
3331 }
3332
3333 /*
3334 * Get the hardware type of the given interface as ARPHRD_xxx constant.
3335 */
3336 static int
3337 iface_get_arptype(int fd, const char *device, char *ebuf)
3338 {
3339 struct ifreq ifr;
3340
3341 memset(&ifr, 0, sizeof(ifr));
3342 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
3343
3344 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
3345 snprintf(ebuf, PCAP_ERRBUF_SIZE,
3346 "SIOCGIFHWADDR: %s", pcap_strerror(errno));
3347 if (errno == ENODEV) {
3348 /*
3349 * No such device.
3350 */
3351 return PCAP_ERROR_NO_SUCH_DEVICE;
3352 }
3353 return PCAP_ERROR;
3354 }
3355
3356 return ifr.ifr_hwaddr.sa_family;
3357 }
3358
3359 #ifdef SO_ATTACH_FILTER
3360 static int
3361 fix_program(pcap_t *handle, struct sock_fprog *fcode)
3362 {
3363 size_t prog_size;
3364 register int i;
3365 register struct bpf_insn *p;
3366 struct bpf_insn *f;
3367 int len;
3368
3369 /*
3370 * Make a copy of the filter, and modify that copy if
3371 * necessary.
3372 */
3373 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
3374 len = handle->fcode.bf_len;
3375 f = (struct bpf_insn *)malloc(prog_size);
3376 if (f == NULL) {
3377 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3378 "malloc: %s", pcap_strerror(errno));
3379 return -1;
3380 }
3381 memcpy(f, handle->fcode.bf_insns, prog_size);
3382 fcode->len = len;
3383 fcode->filter = (struct sock_filter *) f;
3384
3385 for (i = 0; i < len; ++i) {
3386 p = &f[i];
3387 /*
3388 * What type of instruction is this?
3389 */
3390 switch (BPF_CLASS(p->code)) {
3391
3392 case BPF_RET:
3393 /*
3394 * It's a return instruction; is the snapshot
3395 * length a constant, rather than the contents
3396 * of the accumulator?
3397 */
3398 if (BPF_MODE(p->code) == BPF_K) {
3399 /*
3400 * Yes - if the value to be returned,
3401 * i.e. the snapshot length, is anything
3402 * other than 0, make it 65535, so that
3403 * the packet is truncated by "recvfrom()",
3404 * not by the filter.
3405 *
3406 * XXX - there's nothing we can easily do
3407 * if it's getting the value from the
3408 * accumulator; we'd have to insert
3409 * code to force non-zero values to be
3410 * 65535.
3411 */
3412 if (p->k != 0)
3413 p->k = 65535;
3414 }
3415 break;
3416
3417 case BPF_LD:
3418 case BPF_LDX:
3419 /*
3420 * It's a load instruction; is it loading
3421 * from the packet?
3422 */
3423 switch (BPF_MODE(p->code)) {
3424
3425 case BPF_ABS:
3426 case BPF_IND:
3427 case BPF_MSH:
3428 /*
3429 * Yes; are we in cooked mode?
3430 */
3431 if (handle->md.cooked) {
3432 /*
3433 * Yes, so we need to fix this
3434 * instruction.
3435 */
3436 if (fix_offset(p) < 0) {
3437 /*
3438 * We failed to do so.
3439 * Return 0, so our caller
3440 * knows to punt to userland.
3441 */
3442 return 0;
3443 }
3444 }
3445 break;
3446 }
3447 break;
3448 }
3449 }
3450 return 1; /* we succeeded */
3451 }
3452
3453 static int
3454 fix_offset(struct bpf_insn *p)
3455 {
3456 /*
3457 * What's the offset?
3458 */
3459 if (p->k >= SLL_HDR_LEN) {
3460 /*
3461 * It's within the link-layer payload; that starts at an
3462 * offset of 0, as far as the kernel packet filter is
3463 * concerned, so subtract the length of the link-layer
3464 * header.
3465 */
3466 p->k -= SLL_HDR_LEN;
3467 } else if (p->k == 14) {
3468 /*
3469 * It's the protocol field; map it to the special magic
3470 * kernel offset for that field.
3471 */
3472 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
3473 } else {
3474 /*
3475 * It's within the header, but it's not one of those
3476 * fields; we can't do that in the kernel, so punt
3477 * to userland.
3478 */
3479 return -1;
3480 }
3481 return 0;
3482 }
3483
3484 static int
3485 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
3486 {
3487 int total_filter_on = 0;
3488 int save_mode;
3489 int ret;
3490 int save_errno;
3491
3492 /*
3493 * The socket filter code doesn't discard all packets queued
3494 * up on the socket when the filter is changed; this means
3495 * that packets that don't match the new filter may show up
3496 * after the new filter is put onto the socket, if those
3497 * packets haven't yet been read.
3498 *
3499 * This means, for example, that if you do a tcpdump capture
3500 * with a filter, the first few packets in the capture might
3501 * be packets that wouldn't have passed the filter.
3502 *
3503 * We therefore discard all packets queued up on the socket
3504 * when setting a kernel filter. (This isn't an issue for
3505 * userland filters, as the userland filtering is done after
3506 * packets are queued up.)
3507 *
3508 * To flush those packets, we put the socket in read-only mode,
3509 * and read packets from the socket until there are no more to
3510 * read.
3511 *
3512 * In order to keep that from being an infinite loop - i.e.,
3513 * to keep more packets from arriving while we're draining
3514 * the queue - we put the "total filter", which is a filter
3515 * that rejects all packets, onto the socket before draining
3516 * the queue.
3517 *
3518 * This code deliberately ignores any errors, so that you may
3519 * get bogus packets if an error occurs, rather than having
3520 * the filtering done in userland even if it could have been
3521 * done in the kernel.
3522 */
3523 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
3524 &total_fcode, sizeof(total_fcode)) == 0) {
3525 char drain[1];
3526
3527 /*
3528 * Note that we've put the total filter onto the socket.
3529 */
3530 total_filter_on = 1;
3531
3532 /*
3533 * Save the socket's current mode, and put it in
3534 * non-blocking mode; we drain it by reading packets
3535 * until we get an error (which is normally a
3536 * "nothing more to be read" error).
3537 */
3538 save_mode = fcntl(handle->fd, F_GETFL, 0);
3539 if (save_mode != -1 &&
3540 fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
3541 while (recv(handle->fd, &drain, sizeof drain,
3542 MSG_TRUNC) >= 0)
3543 ;
3544 save_errno = errno;
3545 fcntl(handle->fd, F_SETFL, save_mode);
3546 if (save_errno != EAGAIN) {
3547 /* Fatal error */
3548 reset_kernel_filter(handle);
3549 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3550 "recv: %s", pcap_strerror(save_errno));
3551 return -2;
3552 }
3553 }
3554 }
3555
3556 /*
3557 * Now attach the new filter.
3558 */
3559 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
3560 fcode, sizeof(*fcode));
3561 if (ret == -1 && total_filter_on) {
3562 /*
3563 * Well, we couldn't set that filter on the socket,
3564 * but we could set the total filter on the socket.
3565 *
3566 * This could, for example, mean that the filter was
3567 * too big to put into the kernel, so we'll have to
3568 * filter in userland; in any case, we'll be doing
3569 * filtering in userland, so we need to remove the
3570 * total filter so we see packets.
3571 */
3572 save_errno = errno;
3573
3574 /*
3575 * XXX - if this fails, we're really screwed;
3576 * we have the total filter on the socket,
3577 * and it won't come off. What do we do then?
3578 */
3579 reset_kernel_filter(handle);
3580
3581 errno = save_errno;
3582 }
3583 return ret;
3584 }
3585
3586 static int
3587 reset_kernel_filter(pcap_t *handle)
3588 {
3589 /*
3590 * setsockopt() barfs unless it get a dummy parameter.
3591 * valgrind whines unless the value is initialized,
3592 * as it has no idea that setsockopt() ignores its
3593 * parameter.
3594 */
3595 int dummy = 0;
3596
3597 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
3598 &dummy, sizeof(dummy));
3599 }
3600 #endif