1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
28 #include <pcap-stdinc.h>
35 #ifdef HAVE_SYS_BITYPES_H
36 #include <sys/bitypes.h>
38 #include <sys/types.h>
39 #include <sys/socket.h>
45 #include <sys/param.h>
48 #include <netinet/in.h>
49 #include <arpa/inet.h>
65 #include "ethertype.h"
69 #include "ieee80211.h"
71 #include "sunatmpos.h"
74 #include "pcap/ipnet.h"
80 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
81 #include <linux/types.h>
82 #include <linux/if_packet.h>
83 #include <linux/filter.h>
86 #ifdef HAVE_NET_PFVAR_H
87 #include <sys/socket.h>
89 #include <net/pfvar.h>
90 #include <net/if_pflog.h>
94 #define offsetof(s, e) ((size_t)&((s *)0)->e)
99 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
105 u_int8_t u6_addr8
[16];
106 u_int16_t u6_addr16
[8];
107 u_int32_t u6_addr32
[4];
109 #define s6_addr in6_u.u6_addr8
110 #define s6_addr16 in6_u.u6_addr16
111 #define s6_addr32 in6_u.u6_addr32
112 #define s6_addr64 in6_u.u6_addr64
115 typedef unsigned short sa_family_t
;
117 #define __SOCKADDR_COMMON(sa_prefix) \
118 sa_family_t sa_prefix##family
120 /* Ditto, for IPv6. */
123 __SOCKADDR_COMMON (sin6_
);
124 u_int16_t sin6_port
; /* Transport layer port # */
125 u_int32_t sin6_flowinfo
; /* IPv6 flow information */
126 struct in6_addr sin6_addr
; /* IPv6 address */
129 #ifndef EAI_ADDRFAMILY
131 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
132 int ai_family
; /* PF_xxx */
133 int ai_socktype
; /* SOCK_xxx */
134 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
135 size_t ai_addrlen
; /* length of ai_addr */
136 char *ai_canonname
; /* canonical name for hostname */
137 struct sockaddr
*ai_addr
; /* binary address */
138 struct addrinfo
*ai_next
; /* next structure in linked list */
140 #endif /* EAI_ADDRFAMILY */
141 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
143 #include <netdb.h> /* for "struct addrinfo" */
146 #include <pcap/namedb.h>
148 #include "nametoaddr.h"
150 #define ETHERMTU 1500
152 #ifndef ETHERTYPE_TEB
153 #define ETHERTYPE_TEB 0x6558
156 #ifndef IPPROTO_HOPOPTS
157 #define IPPROTO_HOPOPTS 0
159 #ifndef IPPROTO_ROUTING
160 #define IPPROTO_ROUTING 43
162 #ifndef IPPROTO_FRAGMENT
163 #define IPPROTO_FRAGMENT 44
165 #ifndef IPPROTO_DSTOPTS
166 #define IPPROTO_DSTOPTS 60
169 #define IPPROTO_SCTP 132
172 #define GENEVE_PORT 6081
174 #ifdef HAVE_OS_PROTO_H
175 #include "os-proto.h"
178 #define JMP(c) ((c)|BPF_JMP|BPF_K)
181 * "Push" the current value of the link-layer header type and link-layer
182 * header offset onto a "stack", and set a new value. (It's not a
183 * full-blown stack; we keep only the top two items.)
185 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
187 (cs)->prevlinktype = (cs)->linktype; \
188 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
189 (cs)->linktype = (new_linktype); \
190 (cs)->off_linkhdr.is_variable = (new_is_variable); \
191 (cs)->off_linkhdr.constant_part = (new_constant_part); \
192 (cs)->off_linkhdr.reg = (new_reg); \
193 (cs)->is_geneve = 0; \
197 * Offset "not set" value.
199 #define OFFSET_NOT_SET 0xffffffffU
202 * Absolute offsets, which are offsets from the beginning of the raw
203 * packet data, are, in the general case, the sum of a variable value
204 * and a constant value; the variable value may be absent, in which
205 * case the offset is only the constant value, and the constant value
206 * may be zero, in which case the offset is only the variable value.
208 * bpf_abs_offset is a structure containing all that information:
210 * is_variable is 1 if there's a variable part.
212 * constant_part is the constant part of the value, possibly zero;
214 * if is_variable is 1, reg is the register number for a register
215 * containing the variable value if the register has been assigned,
225 * Value passed to gen_load_a() to indicate what the offset argument
226 * is relative to the beginning of.
229 OR_PACKET
, /* full packet data */
230 OR_LINKHDR
, /* link-layer header */
231 OR_PREVLINKHDR
, /* previous link-layer header */
232 OR_LLC
, /* 802.2 LLC header */
233 OR_PREVMPLSHDR
, /* previous MPLS header */
234 OR_LINKTYPE
, /* link-layer type */
235 OR_LINKPL
, /* link-layer payload */
236 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
237 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
238 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
242 * We divy out chunks of memory rather than call malloc each time so
243 * we don't have to worry about leaking memory. It's probably
244 * not a big deal if all this memory was wasted but if this ever
245 * goes into a library that would probably not be a good idea.
247 * XXX - this *is* in a library....
250 #define CHUNK0SIZE 1024
256 /* Code generator state */
258 struct _compiler_state
{
268 int outermostlinktype
;
273 /* Hack for handling VLAN and MPLS stacks. */
274 u_int label_stack_depth
;
275 u_int vlan_stack_depth
;
282 * As errors are handled by a longjmp, anything allocated must
283 * be freed in the longjmp handler, so it must be reachable
286 * One thing that's allocated is the result of pcap_nametoaddrinfo();
287 * it must be freed with freeaddrinfo(). This variable points to
288 * any addrinfo structure that would need to be freed.
294 * Various code constructs need to know the layout of the packet.
295 * These values give the necessary offsets from the beginning
296 * of the packet data.
300 * Absolute offset of the beginning of the link-layer header.
302 bpf_abs_offset off_linkhdr
;
305 * If we're checking a link-layer header for a packet encapsulated
306 * in another protocol layer, this is the equivalent information
307 * for the previous layers' link-layer header from the beginning
308 * of the raw packet data.
310 bpf_abs_offset off_prevlinkhdr
;
313 * This is the equivalent information for the outermost layers'
316 bpf_abs_offset off_outermostlinkhdr
;
319 * Absolute offset of the beginning of the link-layer payload.
321 bpf_abs_offset off_linkpl
;
324 * "off_linktype" is the offset to information in the link-layer
325 * header giving the packet type. This is an absolute offset
326 * from the beginning of the packet.
328 * For Ethernet, it's the offset of the Ethernet type field; this
329 * means that it must have a value that skips VLAN tags.
331 * For link-layer types that always use 802.2 headers, it's the
332 * offset of the LLC header; this means that it must have a value
333 * that skips VLAN tags.
335 * For PPP, it's the offset of the PPP type field.
337 * For Cisco HDLC, it's the offset of the CHDLC type field.
339 * For BSD loopback, it's the offset of the AF_ value.
341 * For Linux cooked sockets, it's the offset of the type field.
343 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
344 * encapsulation, in which case, IP is assumed.
346 bpf_abs_offset off_linktype
;
349 * TRUE if the link layer includes an ATM pseudo-header.
354 * TRUE if "geneve" appeared in the filter; it causes us to
355 * generate code that checks for a Geneve header and assume
356 * that later filters apply to the encapsulated payload.
361 * These are offsets for the ATM pseudo-header.
368 * These are offsets for the MTP2 fields.
374 * These are offsets for the MTP3 fields.
382 * This is the offset of the first byte after the ATM pseudo_header,
383 * or -1 if there is no ATM pseudo-header.
388 * These are offsets to the beginning of the network-layer header.
389 * They are relative to the beginning of the link-layer payload
390 * (i.e., they don't include off_linkhdr.constant_part or
391 * off_linkpl.constant_part).
393 * If the link layer never uses 802.2 LLC:
395 * "off_nl" and "off_nl_nosnap" are the same.
397 * If the link layer always uses 802.2 LLC:
399 * "off_nl" is the offset if there's a SNAP header following
402 * "off_nl_nosnap" is the offset if there's no SNAP header.
404 * If the link layer is Ethernet:
406 * "off_nl" is the offset if the packet is an Ethernet II packet
407 * (we assume no 802.3+802.2+SNAP);
409 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
410 * with an 802.2 header following it.
416 * Here we handle simple allocation of the scratch registers.
417 * If too many registers are alloc'd, the allocator punts.
419 int regused
[BPF_MEMWORDS
];
425 struct chunk chunks
[NCHUNKS
];
430 bpf_syntax_error(compiler_state_t
*cstate
, const char *msg
)
432 bpf_error(cstate
, "syntax error in filter expression: %s", msg
);
438 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
443 if (cstate
->bpf_pcap
!= NULL
)
444 (void)pcap_vsnprintf(pcap_geterr(cstate
->bpf_pcap
),
445 PCAP_ERRBUF_SIZE
, fmt
, ap
);
447 longjmp(cstate
->top_ctx
, 1);
451 static void init_linktype(compiler_state_t
*, pcap_t
*);
453 static void init_regs(compiler_state_t
*);
454 static int alloc_reg(compiler_state_t
*);
455 static void free_reg(compiler_state_t
*, int);
457 static void initchunks(compiler_state_t
*cstate
);
458 static void *newchunk(compiler_state_t
*cstate
, size_t);
459 static void freechunks(compiler_state_t
*cstate
);
460 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
461 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
462 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
463 static inline void syntax(compiler_state_t
*cstate
);
465 static void backpatch(struct block
*, struct block
*);
466 static void merge(struct block
*, struct block
*);
467 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
469 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
471 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
473 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
475 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
477 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
478 u_int
, bpf_int32
, bpf_u_int32
);
479 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
480 u_int
, const u_char
*);
481 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, bpf_u_int32
,
482 bpf_u_int32
, bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
483 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
485 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
487 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
488 static struct block
*gen_uncond(compiler_state_t
*, int);
489 static inline struct block
*gen_true(compiler_state_t
*);
490 static inline struct block
*gen_false(compiler_state_t
*);
491 static struct block
*gen_ether_linktype(compiler_state_t
*, int);
492 static struct block
*gen_ipnet_linktype(compiler_state_t
*, int);
493 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, int);
494 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
495 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
496 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
497 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
498 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
499 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
501 static int ethertype_to_ppptype(int);
502 static struct block
*gen_linktype(compiler_state_t
*, int);
503 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
504 static struct block
*gen_llc_linktype(compiler_state_t
*, int);
505 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
506 int, int, u_int
, u_int
);
508 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
509 struct in6_addr
*, int, int, u_int
, u_int
);
511 static struct block
*gen_ahostop(compiler_state_t
*, const u_char
*, int);
512 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
513 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
514 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
515 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
516 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
517 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
518 static struct block
*gen_mpls_linktype(compiler_state_t
*, int);
519 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
522 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
523 struct in6_addr
*, int, int, int);
526 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
527 bpf_u_int32
**, int, int);
529 static struct block
*gen_ipfrag(compiler_state_t
*);
530 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_int32
);
531 static struct block
*gen_portrangeatom(compiler_state_t
*, int, bpf_int32
,
533 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_int32
);
534 static struct block
*gen_portrangeatom6(compiler_state_t
*, int, bpf_int32
,
536 struct block
*gen_portop(compiler_state_t
*, int, int, int);
537 static struct block
*gen_port(compiler_state_t
*, int, int, int);
538 struct block
*gen_portrangeop(compiler_state_t
*, int, int, int, int);
539 static struct block
*gen_portrange(compiler_state_t
*, int, int, int, int);
540 struct block
*gen_portop6(compiler_state_t
*, int, int, int);
541 static struct block
*gen_port6(compiler_state_t
*, int, int, int);
542 struct block
*gen_portrangeop6(compiler_state_t
*, int, int, int, int);
543 static struct block
*gen_portrange6(compiler_state_t
*, int, int, int, int);
544 static int lookup_proto(compiler_state_t
*, const char *, int);
545 static struct block
*gen_protochain(compiler_state_t
*, int, int, int);
546 static struct block
*gen_proto(compiler_state_t
*, int, int, int);
547 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
548 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
549 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
550 static struct block
*gen_len(compiler_state_t
*, int, int);
551 static struct block
*gen_check_802_11_data_frame(compiler_state_t
*);
552 static struct block
*gen_geneve_ll_check(compiler_state_t
*cstate
);
554 static struct block
*gen_ppi_dlt_check(compiler_state_t
*);
555 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
558 initchunks(compiler_state_t
*cstate
)
562 for (i
= 0; i
< NCHUNKS
; i
++) {
563 cstate
->chunks
[i
].n_left
= 0;
564 cstate
->chunks
[i
].m
= NULL
;
566 cstate
->cur_chunk
= 0;
570 newchunk(compiler_state_t
*cstate
, size_t n
)
577 /* XXX Round up to nearest long. */
578 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
580 /* XXX Round up to structure boundary. */
584 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
585 if (n
> cp
->n_left
) {
586 ++cp
, k
= ++cstate
->cur_chunk
;
588 bpf_error(cstate
, "out of memory");
589 size
= CHUNK0SIZE
<< k
;
590 cp
->m
= (void *)malloc(size
);
592 bpf_error(cstate
, "out of memory");
593 memset((char *)cp
->m
, 0, size
);
596 bpf_error(cstate
, "out of memory");
599 return (void *)((char *)cp
->m
+ cp
->n_left
);
603 freechunks(compiler_state_t
*cstate
)
607 for (i
= 0; i
< NCHUNKS
; ++i
)
608 if (cstate
->chunks
[i
].m
!= NULL
)
609 free(cstate
->chunks
[i
].m
);
613 * A strdup whose allocations are freed after code generation is over.
616 sdup(compiler_state_t
*cstate
, const char *s
)
618 size_t n
= strlen(s
) + 1;
619 char *cp
= newchunk(cstate
, n
);
625 static inline struct block
*
626 new_block(compiler_state_t
*cstate
, int code
)
630 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
637 static inline struct slist
*
638 new_stmt(compiler_state_t
*cstate
, int code
)
642 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
648 static struct block
*
649 gen_retblk(compiler_state_t
*cstate
, int v
)
651 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
658 syntax(compiler_state_t
*cstate
)
660 bpf_error(cstate
, "syntax error in filter expression");
664 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
665 const char *buf
, int optimize
, bpf_u_int32 mask
)
667 compiler_state_t cstate
;
668 const char * volatile xbuf
= buf
;
669 yyscan_t scanner
= NULL
;
670 YY_BUFFER_STATE in_buffer
= NULL
;
683 * If this pcap_t hasn't been activated, it doesn't have a
684 * link-layer type, so we can't use it.
687 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
688 "not-yet-activated pcap_t passed to pcap_compile");
693 cstate
.no_optimize
= 0;
697 cstate
.ic
.root
= NULL
;
698 cstate
.ic
.cur_mark
= 0;
702 if (setjmp(cstate
.top_ctx
)) {
704 if (cstate
.ai
!= NULL
)
705 freeaddrinfo(cstate
.ai
);
711 cstate
.netmask
= mask
;
713 cstate
.snaplen
= pcap_snapshot(p
);
714 if (cstate
.snaplen
== 0) {
715 pcap_snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
716 "snaplen of 0 rejects all packets");
721 if (pcap_lex_init(&scanner
) != 0)
722 bpf_error(&cstate
, "can't initialize scanner: %s", pcap_strerror(errno
));
723 in_buffer
= pcap__scan_string(xbuf
? xbuf
: "", scanner
);
726 * Associate the compiler state with the lexical analyzer
729 pcap_set_extra(&cstate
, scanner
);
731 init_linktype(&cstate
, p
);
732 (void)pcap_parse(scanner
, &cstate
);
734 if (cstate
.ic
.root
== NULL
)
735 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
737 if (optimize
&& !cstate
.no_optimize
) {
738 bpf_optimize(&cstate
, &cstate
.ic
);
739 if (cstate
.ic
.root
== NULL
||
740 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0))
741 bpf_error(&cstate
, "expression rejects all packets");
743 program
->bf_insns
= icode_to_fcode(&cstate
, &cstate
.ic
, cstate
.ic
.root
, &len
);
744 program
->bf_len
= len
;
746 rc
= 0; /* We're all okay */
750 * Clean up everything for the lexical analyzer.
752 if (in_buffer
!= NULL
)
753 pcap__delete_buffer(in_buffer
, scanner
);
755 pcap_lex_destroy(scanner
);
758 * Clean up our own allocated memory.
766 * entry point for using the compiler with no pcap open
767 * pass in all the stuff that is needed explicitly instead.
770 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
771 struct bpf_program
*program
,
772 const char *buf
, int optimize
, bpf_u_int32 mask
)
777 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
780 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
786 * Clean up a "struct bpf_program" by freeing all the memory allocated
790 pcap_freecode(struct bpf_program
*program
)
793 if (program
->bf_insns
!= NULL
) {
794 free((char *)program
->bf_insns
);
795 program
->bf_insns
= NULL
;
800 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
801 * which of the jt and jf fields has been resolved and which is a pointer
802 * back to another unresolved block (or nil). At least one of the fields
803 * in each block is already resolved.
806 backpatch(list
, target
)
807 struct block
*list
, *target
;
824 * Merge the lists in b0 and b1, using the 'sense' field to indicate
825 * which of jt and jf is the link.
829 struct block
*b0
, *b1
;
831 register struct block
**p
= &b0
;
833 /* Find end of list. */
835 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
837 /* Concatenate the lists. */
842 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
844 struct block
*ppi_dlt_check
;
847 * Insert before the statements of the first (root) block any
848 * statements needed to load the lengths of any variable-length
849 * headers into registers.
851 * XXX - a fancier strategy would be to insert those before the
852 * statements of all blocks that use those lengths and that
853 * have no predecessors that use them, so that we only compute
854 * the lengths if we need them. There might be even better
855 * approaches than that.
857 * However, those strategies would be more complicated, and
858 * as we don't generate code to compute a length if the
859 * program has no tests that use the length, and as most
860 * tests will probably use those lengths, we would just
861 * postpone computing the lengths so that it's not done
862 * for tests that fail early, and it's not clear that's
865 insert_compute_vloffsets(cstate
, p
->head
);
868 * For DLT_PPI captures, generate a check of the per-packet
869 * DLT value to make sure it's DLT_IEEE802_11.
871 * XXX - TurboCap cards use DLT_PPI for Ethernet.
872 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
873 * with appropriate Ethernet information and use that rather
874 * than using something such as DLT_PPI where you don't know
875 * the link-layer header type until runtime, which, in the
876 * general case, would force us to generate both Ethernet *and*
877 * 802.11 code (*and* anything else for which PPI is used)
878 * and choose between them early in the BPF program?
880 ppi_dlt_check
= gen_ppi_dlt_check(cstate
);
881 if (ppi_dlt_check
!= NULL
)
882 gen_and(ppi_dlt_check
, p
);
884 backpatch(p
, gen_retblk(cstate
, cstate
->snaplen
));
885 p
->sense
= !p
->sense
;
886 backpatch(p
, gen_retblk(cstate
, 0));
887 cstate
->ic
.root
= p
->head
;
892 struct block
*b0
, *b1
;
894 backpatch(b0
, b1
->head
);
895 b0
->sense
= !b0
->sense
;
896 b1
->sense
= !b1
->sense
;
898 b1
->sense
= !b1
->sense
;
904 struct block
*b0
, *b1
;
906 b0
->sense
= !b0
->sense
;
907 backpatch(b0
, b1
->head
);
908 b0
->sense
= !b0
->sense
;
917 b
->sense
= !b
->sense
;
920 static struct block
*
921 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
922 u_int size
, bpf_int32 v
)
924 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
927 static struct block
*
928 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
929 u_int size
, bpf_int32 v
)
931 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
934 static struct block
*
935 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
936 u_int size
, bpf_int32 v
)
938 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
941 static struct block
*
942 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
943 u_int size
, bpf_int32 v
)
945 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
948 static struct block
*
949 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
950 u_int size
, bpf_int32 v
)
952 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
955 static struct block
*
956 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
957 u_int size
, bpf_int32 v
, bpf_u_int32 mask
)
959 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
962 static struct block
*
963 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
964 u_int size
, const u_char
*v
)
966 register struct block
*b
, *tmp
;
970 register const u_char
*p
= &v
[size
- 4];
971 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
972 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
974 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
, w
);
981 register const u_char
*p
= &v
[size
- 2];
982 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
984 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
, w
);
991 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
1000 * AND the field of size "size" at offset "offset" relative to the header
1001 * specified by "offrel" with "mask", and compare it with the value "v"
1002 * with the test specified by "jtype"; if "reverse" is true, the test
1003 * should test the opposite of "jtype".
1005 static struct block
*
1006 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, bpf_u_int32 offset
,
1007 bpf_u_int32 size
, bpf_u_int32 mask
, bpf_u_int32 jtype
, int reverse
,
1010 struct slist
*s
, *s2
;
1013 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1015 if (mask
!= 0xffffffff) {
1016 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1021 b
= new_block(cstate
, JMP(jtype
));
1024 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
1030 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1032 cstate
->pcap_fddipad
= p
->fddipad
;
1035 * We start out with only one link-layer header.
1037 cstate
->outermostlinktype
= pcap_datalink(p
);
1038 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1039 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1040 cstate
->off_outermostlinkhdr
.reg
= -1;
1042 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1043 cstate
->off_prevlinkhdr
.constant_part
= 0;
1044 cstate
->off_prevlinkhdr
.is_variable
= 0;
1045 cstate
->off_prevlinkhdr
.reg
= -1;
1047 cstate
->linktype
= cstate
->outermostlinktype
;
1048 cstate
->off_linkhdr
.constant_part
= 0;
1049 cstate
->off_linkhdr
.is_variable
= 0;
1050 cstate
->off_linkhdr
.reg
= -1;
1055 cstate
->off_linkpl
.constant_part
= 0;
1056 cstate
->off_linkpl
.is_variable
= 0;
1057 cstate
->off_linkpl
.reg
= -1;
1059 cstate
->off_linktype
.constant_part
= 0;
1060 cstate
->off_linktype
.is_variable
= 0;
1061 cstate
->off_linktype
.reg
= -1;
1064 * Assume it's not raw ATM with a pseudo-header, for now.
1067 cstate
->off_vpi
= -1;
1068 cstate
->off_vci
= -1;
1069 cstate
->off_proto
= -1;
1070 cstate
->off_payload
= -1;
1075 cstate
->is_geneve
= 0;
1078 * And assume we're not doing SS7.
1080 cstate
->off_li
= -1;
1081 cstate
->off_li_hsl
= -1;
1082 cstate
->off_sio
= -1;
1083 cstate
->off_opc
= -1;
1084 cstate
->off_dpc
= -1;
1085 cstate
->off_sls
= -1;
1087 cstate
->label_stack_depth
= 0;
1088 cstate
->vlan_stack_depth
= 0;
1090 switch (cstate
->linktype
) {
1093 cstate
->off_linktype
.constant_part
= 2;
1094 cstate
->off_linkpl
.constant_part
= 6;
1095 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1096 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1099 case DLT_ARCNET_LINUX
:
1100 cstate
->off_linktype
.constant_part
= 4;
1101 cstate
->off_linkpl
.constant_part
= 8;
1102 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1103 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1107 cstate
->off_linktype
.constant_part
= 12;
1108 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1109 cstate
->off_nl
= 0; /* Ethernet II */
1110 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1115 * SLIP doesn't have a link level type. The 16 byte
1116 * header is hacked into our SLIP driver.
1118 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1119 cstate
->off_linkpl
.constant_part
= 16;
1121 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1124 case DLT_SLIP_BSDOS
:
1125 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1126 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1128 cstate
->off_linkpl
.constant_part
= 24;
1130 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1135 cstate
->off_linktype
.constant_part
= 0;
1136 cstate
->off_linkpl
.constant_part
= 4;
1138 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1142 cstate
->off_linktype
.constant_part
= 0;
1143 cstate
->off_linkpl
.constant_part
= 12;
1145 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1150 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1151 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1152 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1153 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1155 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1160 * This does no include the Ethernet header, and
1161 * only covers session state.
1163 cstate
->off_linktype
.constant_part
= 6;
1164 cstate
->off_linkpl
.constant_part
= 8;
1166 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1170 cstate
->off_linktype
.constant_part
= 5;
1171 cstate
->off_linkpl
.constant_part
= 24;
1173 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1178 * FDDI doesn't really have a link-level type field.
1179 * We set "off_linktype" to the offset of the LLC header.
1181 * To check for Ethernet types, we assume that SSAP = SNAP
1182 * is being used and pick out the encapsulated Ethernet type.
1183 * XXX - should we generate code to check for SNAP?
1185 cstate
->off_linktype
.constant_part
= 13;
1186 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1187 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1188 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1189 cstate
->off_nl
= 8; /* 802.2+SNAP */
1190 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1195 * Token Ring doesn't really have a link-level type field.
1196 * We set "off_linktype" to the offset of the LLC header.
1198 * To check for Ethernet types, we assume that SSAP = SNAP
1199 * is being used and pick out the encapsulated Ethernet type.
1200 * XXX - should we generate code to check for SNAP?
1202 * XXX - the header is actually variable-length.
1203 * Some various Linux patched versions gave 38
1204 * as "off_linktype" and 40 as "off_nl"; however,
1205 * if a token ring packet has *no* routing
1206 * information, i.e. is not source-routed, the correct
1207 * values are 20 and 22, as they are in the vanilla code.
1209 * A packet is source-routed iff the uppermost bit
1210 * of the first byte of the source address, at an
1211 * offset of 8, has the uppermost bit set. If the
1212 * packet is source-routed, the total number of bytes
1213 * of routing information is 2 plus bits 0x1F00 of
1214 * the 16-bit value at an offset of 14 (shifted right
1215 * 8 - figure out which byte that is).
1217 cstate
->off_linktype
.constant_part
= 14;
1218 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1219 cstate
->off_nl
= 8; /* 802.2+SNAP */
1220 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1223 case DLT_PRISM_HEADER
:
1224 case DLT_IEEE802_11_RADIO_AVS
:
1225 case DLT_IEEE802_11_RADIO
:
1226 cstate
->off_linkhdr
.is_variable
= 1;
1227 /* Fall through, 802.11 doesn't have a variable link
1228 * prefix but is otherwise the same. */
1230 case DLT_IEEE802_11
:
1232 * 802.11 doesn't really have a link-level type field.
1233 * We set "off_linktype.constant_part" to the offset of
1236 * To check for Ethernet types, we assume that SSAP = SNAP
1237 * is being used and pick out the encapsulated Ethernet type.
1238 * XXX - should we generate code to check for SNAP?
1240 * We also handle variable-length radio headers here.
1241 * The Prism header is in theory variable-length, but in
1242 * practice it's always 144 bytes long. However, some
1243 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1244 * sometimes or always supply an AVS header, so we
1245 * have to check whether the radio header is a Prism
1246 * header or an AVS header, so, in practice, it's
1249 cstate
->off_linktype
.constant_part
= 24;
1250 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1251 cstate
->off_linkpl
.is_variable
= 1;
1252 cstate
->off_nl
= 8; /* 802.2+SNAP */
1253 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1258 * At the moment we treat PPI the same way that we treat
1259 * normal Radiotap encoded packets. The difference is in
1260 * the function that generates the code at the beginning
1261 * to compute the header length. Since this code generator
1262 * of PPI supports bare 802.11 encapsulation only (i.e.
1263 * the encapsulated DLT should be DLT_IEEE802_11) we
1264 * generate code to check for this too.
1266 cstate
->off_linktype
.constant_part
= 24;
1267 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1268 cstate
->off_linkpl
.is_variable
= 1;
1269 cstate
->off_linkhdr
.is_variable
= 1;
1270 cstate
->off_nl
= 8; /* 802.2+SNAP */
1271 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1274 case DLT_ATM_RFC1483
:
1275 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1277 * assume routed, non-ISO PDUs
1278 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1280 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1281 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1282 * latter would presumably be treated the way PPPoE
1283 * should be, so you can do "pppoe and udp port 2049"
1284 * or "pppoa and tcp port 80" and have it check for
1285 * PPPo{A,E} and a PPP protocol of IP and....
1287 cstate
->off_linktype
.constant_part
= 0;
1288 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1289 cstate
->off_nl
= 8; /* 802.2+SNAP */
1290 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1295 * Full Frontal ATM; you get AALn PDUs with an ATM
1299 cstate
->off_vpi
= SUNATM_VPI_POS
;
1300 cstate
->off_vci
= SUNATM_VCI_POS
;
1301 cstate
->off_proto
= PROTO_POS
;
1302 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1303 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1304 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1305 cstate
->off_nl
= 8; /* 802.2+SNAP */
1306 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1312 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1313 cstate
->off_linkpl
.constant_part
= 0;
1315 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1318 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1319 cstate
->off_linktype
.constant_part
= 14;
1320 cstate
->off_linkpl
.constant_part
= 16;
1322 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1327 * LocalTalk does have a 1-byte type field in the LLAP header,
1328 * but really it just indicates whether there is a "short" or
1329 * "long" DDP packet following.
1331 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1332 cstate
->off_linkpl
.constant_part
= 0;
1334 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1337 case DLT_IP_OVER_FC
:
1339 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1340 * link-level type field. We set "off_linktype" to the
1341 * offset of the LLC header.
1343 * To check for Ethernet types, we assume that SSAP = SNAP
1344 * is being used and pick out the encapsulated Ethernet type.
1345 * XXX - should we generate code to check for SNAP? RFC
1346 * 2625 says SNAP should be used.
1348 cstate
->off_linktype
.constant_part
= 16;
1349 cstate
->off_linkpl
.constant_part
= 16;
1350 cstate
->off_nl
= 8; /* 802.2+SNAP */
1351 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1356 * XXX - we should set this to handle SNAP-encapsulated
1357 * frames (NLPID of 0x80).
1359 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1360 cstate
->off_linkpl
.constant_part
= 0;
1362 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1366 * the only BPF-interesting FRF.16 frames are non-control frames;
1367 * Frame Relay has a variable length link-layer
1368 * so lets start with offset 4 for now and increments later on (FIXME);
1371 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1372 cstate
->off_linkpl
.constant_part
= 0;
1374 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1377 case DLT_APPLE_IP_OVER_IEEE1394
:
1378 cstate
->off_linktype
.constant_part
= 16;
1379 cstate
->off_linkpl
.constant_part
= 18;
1381 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1384 case DLT_SYMANTEC_FIREWALL
:
1385 cstate
->off_linktype
.constant_part
= 6;
1386 cstate
->off_linkpl
.constant_part
= 44;
1387 cstate
->off_nl
= 0; /* Ethernet II */
1388 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1391 #ifdef HAVE_NET_PFVAR_H
1393 cstate
->off_linktype
.constant_part
= 0;
1394 cstate
->off_linkpl
.constant_part
= PFLOG_HDRLEN
;
1396 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1400 case DLT_JUNIPER_MFR
:
1401 case DLT_JUNIPER_MLFR
:
1402 case DLT_JUNIPER_MLPPP
:
1403 case DLT_JUNIPER_PPP
:
1404 case DLT_JUNIPER_CHDLC
:
1405 case DLT_JUNIPER_FRELAY
:
1406 cstate
->off_linktype
.constant_part
= 4;
1407 cstate
->off_linkpl
.constant_part
= 4;
1409 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1412 case DLT_JUNIPER_ATM1
:
1413 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1414 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1416 cstate
->off_nl_nosnap
= 10;
1419 case DLT_JUNIPER_ATM2
:
1420 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1421 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1423 cstate
->off_nl_nosnap
= 10;
1426 /* frames captured on a Juniper PPPoE service PIC
1427 * contain raw ethernet frames */
1428 case DLT_JUNIPER_PPPOE
:
1429 case DLT_JUNIPER_ETHER
:
1430 cstate
->off_linkpl
.constant_part
= 14;
1431 cstate
->off_linktype
.constant_part
= 16;
1432 cstate
->off_nl
= 18; /* Ethernet II */
1433 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1436 case DLT_JUNIPER_PPPOE_ATM
:
1437 cstate
->off_linktype
.constant_part
= 4;
1438 cstate
->off_linkpl
.constant_part
= 6;
1440 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1443 case DLT_JUNIPER_GGSN
:
1444 cstate
->off_linktype
.constant_part
= 6;
1445 cstate
->off_linkpl
.constant_part
= 12;
1447 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1450 case DLT_JUNIPER_ES
:
1451 cstate
->off_linktype
.constant_part
= 6;
1452 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1453 cstate
->off_nl
= -1; /* not really a network layer but raw IP addresses */
1454 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1457 case DLT_JUNIPER_MONITOR
:
1458 cstate
->off_linktype
.constant_part
= 12;
1459 cstate
->off_linkpl
.constant_part
= 12;
1460 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1461 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1464 case DLT_BACNET_MS_TP
:
1465 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1466 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1467 cstate
->off_nl
= -1;
1468 cstate
->off_nl_nosnap
= -1;
1471 case DLT_JUNIPER_SERVICES
:
1472 cstate
->off_linktype
.constant_part
= 12;
1473 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1474 cstate
->off_nl
= -1; /* L3 proto location dep. on cookie type */
1475 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1478 case DLT_JUNIPER_VP
:
1479 cstate
->off_linktype
.constant_part
= 18;
1480 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1481 cstate
->off_nl
= -1;
1482 cstate
->off_nl_nosnap
= -1;
1485 case DLT_JUNIPER_ST
:
1486 cstate
->off_linktype
.constant_part
= 18;
1487 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1488 cstate
->off_nl
= -1;
1489 cstate
->off_nl_nosnap
= -1;
1492 case DLT_JUNIPER_ISM
:
1493 cstate
->off_linktype
.constant_part
= 8;
1494 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1495 cstate
->off_nl
= -1;
1496 cstate
->off_nl_nosnap
= -1;
1499 case DLT_JUNIPER_VS
:
1500 case DLT_JUNIPER_SRX_E2E
:
1501 case DLT_JUNIPER_FIBRECHANNEL
:
1502 case DLT_JUNIPER_ATM_CEMIC
:
1503 cstate
->off_linktype
.constant_part
= 8;
1504 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1505 cstate
->off_nl
= -1;
1506 cstate
->off_nl_nosnap
= -1;
1511 cstate
->off_li_hsl
= 4;
1512 cstate
->off_sio
= 3;
1513 cstate
->off_opc
= 4;
1514 cstate
->off_dpc
= 4;
1515 cstate
->off_sls
= 7;
1516 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1517 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1518 cstate
->off_nl
= -1;
1519 cstate
->off_nl_nosnap
= -1;
1522 case DLT_MTP2_WITH_PHDR
:
1524 cstate
->off_li_hsl
= 8;
1525 cstate
->off_sio
= 7;
1526 cstate
->off_opc
= 8;
1527 cstate
->off_dpc
= 8;
1528 cstate
->off_sls
= 11;
1529 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1530 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1531 cstate
->off_nl
= -1;
1532 cstate
->off_nl_nosnap
= -1;
1536 cstate
->off_li
= 22;
1537 cstate
->off_li_hsl
= 24;
1538 cstate
->off_sio
= 23;
1539 cstate
->off_opc
= 24;
1540 cstate
->off_dpc
= 24;
1541 cstate
->off_sls
= 27;
1542 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1543 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1544 cstate
->off_nl
= -1;
1545 cstate
->off_nl_nosnap
= -1;
1549 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1550 cstate
->off_linkpl
.constant_part
= 4;
1552 cstate
->off_nl_nosnap
= 0;
1557 * Currently, only raw "link[N:M]" filtering is supported.
1559 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
1560 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1561 cstate
->off_nl
= -1; /* variable, min 16, max 71 steps of 7 */
1562 cstate
->off_nl_nosnap
= -1; /* no 802.2 LLC */
1566 cstate
->off_linktype
.constant_part
= 1;
1567 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
1569 cstate
->off_nl_nosnap
= -1;
1572 case DLT_NETANALYZER
:
1573 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
1574 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1575 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
1576 cstate
->off_nl
= 0; /* Ethernet II */
1577 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1580 case DLT_NETANALYZER_TRANSPARENT
:
1581 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1582 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
1583 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1584 cstate
->off_nl
= 0; /* Ethernet II */
1585 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1590 * For values in the range in which we've assigned new
1591 * DLT_ values, only raw "link[N:M]" filtering is supported.
1593 if (cstate
->linktype
>= DLT_MATCHING_MIN
&&
1594 cstate
->linktype
<= DLT_MATCHING_MAX
) {
1595 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1596 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1597 cstate
->off_nl
= -1;
1598 cstate
->off_nl_nosnap
= -1;
1600 bpf_error(cstate
, "unknown data link type %d", cstate
->linktype
);
1605 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
1609 * Load a value relative to the specified absolute offset.
1611 static struct slist
*
1612 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
1613 u_int offset
, u_int size
)
1615 struct slist
*s
, *s2
;
1617 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
1620 * If "s" is non-null, it has code to arrange that the X register
1621 * contains the variable part of the absolute offset, so we
1622 * generate a load relative to that, with an offset of
1623 * abs_offset->constant_part + offset.
1625 * Otherwise, we can do an absolute load with an offset of
1626 * abs_offset->constant_part + offset.
1630 * "s" points to a list of statements that puts the
1631 * variable part of the absolute offset into the X register.
1632 * Do an indirect load, to use the X register as an offset.
1634 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1635 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
1639 * There is no variable part of the absolute offset, so
1640 * just do an absolute load.
1642 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1643 s
->s
.k
= abs_offset
->constant_part
+ offset
;
1649 * Load a value relative to the beginning of the specified header.
1651 static struct slist
*
1652 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1655 struct slist
*s
, *s2
;
1660 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
1665 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
1668 case OR_PREVLINKHDR
:
1669 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
1673 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
1676 case OR_PREVMPLSHDR
:
1677 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
1681 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
1684 case OR_LINKPL_NOSNAP
:
1685 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
1689 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
1694 * Load the X register with the length of the IPv4 header
1695 * (plus the offset of the link-layer header, if it's
1696 * preceded by a variable-length header such as a radio
1697 * header), in bytes.
1699 s
= gen_loadx_iphdrlen(cstate
);
1702 * Load the item at {offset of the link-layer payload} +
1703 * {offset, relative to the start of the link-layer
1704 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1705 * {specified offset}.
1707 * If the offset of the link-layer payload is variable,
1708 * the variable part of that offset is included in the
1709 * value in the X register, and we include the constant
1710 * part in the offset of the load.
1712 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
1713 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
1718 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
1729 * Generate code to load into the X register the sum of the length of
1730 * the IPv4 header and the variable part of the offset of the link-layer
1733 static struct slist
*
1734 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
1736 struct slist
*s
, *s2
;
1738 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
1741 * The offset of the link-layer payload has a variable
1742 * part. "s" points to a list of statements that put
1743 * the variable part of that offset into the X register.
1745 * The 4*([k]&0xf) addressing mode can't be used, as we
1746 * don't have a constant offset, so we have to load the
1747 * value in question into the A register and add to it
1748 * the value from the X register.
1750 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
1751 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1753 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1756 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
1761 * The A register now contains the length of the IP header.
1762 * We need to add to it the variable part of the offset of
1763 * the link-layer payload, which is still in the X
1764 * register, and move the result into the X register.
1766 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
1767 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
1770 * The offset of the link-layer payload is a constant,
1771 * so no code was generated to load the (non-existent)
1772 * variable part of that offset.
1774 * This means we can use the 4*([k]&0xf) addressing
1775 * mode. Load the length of the IPv4 header, which
1776 * is at an offset of cstate->off_nl from the beginning of
1777 * the link-layer payload, and thus at an offset of
1778 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1779 * of the raw packet data, using that addressing mode.
1781 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
1782 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
1787 static struct block
*
1788 gen_uncond(compiler_state_t
*cstate
, int rsense
)
1793 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
1795 b
= new_block(cstate
, JMP(BPF_JEQ
));
1801 static inline struct block
*
1802 gen_true(compiler_state_t
*cstate
)
1804 return gen_uncond(cstate
, 1);
1807 static inline struct block
*
1808 gen_false(compiler_state_t
*cstate
)
1810 return gen_uncond(cstate
, 0);
1814 * Byte-swap a 32-bit number.
1815 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1816 * big-endian platforms.)
1818 #define SWAPLONG(y) \
1819 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1822 * Generate code to match a particular packet type.
1824 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1825 * value, if <= ETHERMTU. We use that to determine whether to
1826 * match the type/length field or to check the type/length field for
1827 * a value <= ETHERMTU to see whether it's a type field and then do
1828 * the appropriate test.
1830 static struct block
*
1831 gen_ether_linktype(compiler_state_t
*cstate
, int proto
)
1833 struct block
*b0
, *b1
;
1839 case LLCSAP_NETBEUI
:
1841 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1842 * so we check the DSAP and SSAP.
1844 * LLCSAP_IP checks for IP-over-802.2, rather
1845 * than IP-over-Ethernet or IP-over-SNAP.
1847 * XXX - should we check both the DSAP and the
1848 * SSAP, like this, or should we check just the
1849 * DSAP, as we do for other types <= ETHERMTU
1850 * (i.e., other SAP values)?
1852 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1854 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
1855 ((proto
<< 8) | proto
));
1863 * Ethernet_II frames, which are Ethernet
1864 * frames with a frame type of ETHERTYPE_IPX;
1866 * Ethernet_802.3 frames, which are 802.3
1867 * frames (i.e., the type/length field is
1868 * a length field, <= ETHERMTU, rather than
1869 * a type field) with the first two bytes
1870 * after the Ethernet/802.3 header being
1873 * Ethernet_802.2 frames, which are 802.3
1874 * frames with an 802.2 LLC header and
1875 * with the IPX LSAP as the DSAP in the LLC
1878 * Ethernet_SNAP frames, which are 802.3
1879 * frames with an LLC header and a SNAP
1880 * header and with an OUI of 0x000000
1881 * (encapsulated Ethernet) and a protocol
1882 * ID of ETHERTYPE_IPX in the SNAP header.
1884 * XXX - should we generate the same code both
1885 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1889 * This generates code to check both for the
1890 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1892 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1893 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
1897 * Now we add code to check for SNAP frames with
1898 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1900 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
1904 * Now we generate code to check for 802.3
1905 * frames in general.
1907 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1911 * Now add the check for 802.3 frames before the
1912 * check for Ethernet_802.2 and Ethernet_802.3,
1913 * as those checks should only be done on 802.3
1914 * frames, not on Ethernet frames.
1919 * Now add the check for Ethernet_II frames, and
1920 * do that before checking for the other frame
1923 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1927 case ETHERTYPE_ATALK
:
1928 case ETHERTYPE_AARP
:
1930 * EtherTalk (AppleTalk protocols on Ethernet link
1931 * layer) may use 802.2 encapsulation.
1935 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1936 * we check for an Ethernet type field less than
1937 * 1500, which means it's an 802.3 length field.
1939 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1943 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1944 * SNAP packets with an organization code of
1945 * 0x080007 (Apple, for Appletalk) and a protocol
1946 * type of ETHERTYPE_ATALK (Appletalk).
1948 * 802.2-encapsulated ETHERTYPE_AARP packets are
1949 * SNAP packets with an organization code of
1950 * 0x000000 (encapsulated Ethernet) and a protocol
1951 * type of ETHERTYPE_AARP (Appletalk ARP).
1953 if (proto
== ETHERTYPE_ATALK
)
1954 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
1955 else /* proto == ETHERTYPE_AARP */
1956 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
1960 * Check for Ethernet encapsulation (Ethertalk
1961 * phase 1?); we just check for the Ethernet
1964 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
1970 if (proto
<= ETHERMTU
) {
1972 * This is an LLC SAP value, so the frames
1973 * that match would be 802.2 frames.
1974 * Check that the frame is an 802.2 frame
1975 * (i.e., that the length/type field is
1976 * a length field, <= ETHERMTU) and
1977 * then check the DSAP.
1979 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
1981 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, (bpf_int32
)proto
);
1986 * This is an Ethernet type, so compare
1987 * the length/type field with it (if
1988 * the frame is an 802.2 frame, the length
1989 * field will be <= ETHERMTU, and, as
1990 * "proto" is > ETHERMTU, this test
1991 * will fail and the frame won't match,
1992 * which is what we want).
1994 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
2000 static struct block
*
2001 gen_loopback_linktype(compiler_state_t
*cstate
, int proto
)
2004 * For DLT_NULL, the link-layer header is a 32-bit word
2005 * containing an AF_ value in *host* byte order, and for
2006 * DLT_ENC, the link-layer header begins with a 32-bit
2007 * word containing an AF_ value in host byte order.
2009 * In addition, if we're reading a saved capture file,
2010 * the host byte order in the capture may not be the
2011 * same as the host byte order on this machine.
2013 * For DLT_LOOP, the link-layer header is a 32-bit
2014 * word containing an AF_ value in *network* byte order.
2016 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2018 * The AF_ value is in host byte order, but the BPF
2019 * interpreter will convert it to network byte order.
2021 * If this is a save file, and it's from a machine
2022 * with the opposite byte order to ours, we byte-swap
2025 * Then we run it through "htonl()", and generate
2026 * code to compare against the result.
2028 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2029 proto
= SWAPLONG(proto
);
2030 proto
= htonl(proto
);
2032 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, (bpf_int32
)proto
));
2036 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2037 * or IPv6 then we have an error.
2039 static struct block
*
2040 gen_ipnet_linktype(compiler_state_t
*cstate
, int proto
)
2045 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, (bpf_int32
)IPH_AF_INET
);
2048 case ETHERTYPE_IPV6
:
2049 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
2050 (bpf_int32
)IPH_AF_INET6
);
2057 return gen_false(cstate
);
2061 * Generate code to match a particular packet type.
2063 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2064 * value, if <= ETHERMTU. We use that to determine whether to
2065 * match the type field or to check the type field for the special
2066 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2068 static struct block
*
2069 gen_linux_sll_linktype(compiler_state_t
*cstate
, int proto
)
2071 struct block
*b0
, *b1
;
2077 case LLCSAP_NETBEUI
:
2079 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2080 * so we check the DSAP and SSAP.
2082 * LLCSAP_IP checks for IP-over-802.2, rather
2083 * than IP-over-Ethernet or IP-over-SNAP.
2085 * XXX - should we check both the DSAP and the
2086 * SSAP, like this, or should we check just the
2087 * DSAP, as we do for other types <= ETHERMTU
2088 * (i.e., other SAP values)?
2090 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2091 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)
2092 ((proto
<< 8) | proto
));
2098 * Ethernet_II frames, which are Ethernet
2099 * frames with a frame type of ETHERTYPE_IPX;
2101 * Ethernet_802.3 frames, which have a frame
2102 * type of LINUX_SLL_P_802_3;
2104 * Ethernet_802.2 frames, which are 802.3
2105 * frames with an 802.2 LLC header (i.e, have
2106 * a frame type of LINUX_SLL_P_802_2) and
2107 * with the IPX LSAP as the DSAP in the LLC
2110 * Ethernet_SNAP frames, which are 802.3
2111 * frames with an LLC header and a SNAP
2112 * header and with an OUI of 0x000000
2113 * (encapsulated Ethernet) and a protocol
2114 * ID of ETHERTYPE_IPX in the SNAP header.
2116 * First, do the checks on LINUX_SLL_P_802_2
2117 * frames; generate the check for either
2118 * Ethernet_802.2 or Ethernet_SNAP frames, and
2119 * then put a check for LINUX_SLL_P_802_2 frames
2122 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
2123 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2125 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2129 * Now check for 802.3 frames and OR that with
2130 * the previous test.
2132 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2136 * Now add the check for Ethernet_II frames, and
2137 * do that before checking for the other frame
2140 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
2144 case ETHERTYPE_ATALK
:
2145 case ETHERTYPE_AARP
:
2147 * EtherTalk (AppleTalk protocols on Ethernet link
2148 * layer) may use 802.2 encapsulation.
2152 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2153 * we check for the 802.2 protocol type in the
2154 * "Ethernet type" field.
2156 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2159 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2160 * SNAP packets with an organization code of
2161 * 0x080007 (Apple, for Appletalk) and a protocol
2162 * type of ETHERTYPE_ATALK (Appletalk).
2164 * 802.2-encapsulated ETHERTYPE_AARP packets are
2165 * SNAP packets with an organization code of
2166 * 0x000000 (encapsulated Ethernet) and a protocol
2167 * type of ETHERTYPE_AARP (Appletalk ARP).
2169 if (proto
== ETHERTYPE_ATALK
)
2170 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2171 else /* proto == ETHERTYPE_AARP */
2172 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2176 * Check for Ethernet encapsulation (Ethertalk
2177 * phase 1?); we just check for the Ethernet
2180 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2186 if (proto
<= ETHERMTU
) {
2188 * This is an LLC SAP value, so the frames
2189 * that match would be 802.2 frames.
2190 * Check for the 802.2 protocol type
2191 * in the "Ethernet type" field, and
2192 * then check the DSAP.
2194 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2195 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2201 * This is an Ethernet type, so compare
2202 * the length/type field with it (if
2203 * the frame is an 802.2 frame, the length
2204 * field will be <= ETHERMTU, and, as
2205 * "proto" is > ETHERMTU, this test
2206 * will fail and the frame won't match,
2207 * which is what we want).
2209 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
2214 static struct slist
*
2215 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2217 struct slist
*s1
, *s2
;
2218 struct slist
*sjeq_avs_cookie
;
2219 struct slist
*sjcommon
;
2222 * This code is not compatible with the optimizer, as
2223 * we are generating jmp instructions within a normal
2224 * slist of instructions
2226 cstate
->no_optimize
= 1;
2229 * Generate code to load the length of the radio header into
2230 * the register assigned to hold that length, if one has been
2231 * assigned. (If one hasn't been assigned, no code we've
2232 * generated uses that prefix, so we don't need to generate any
2235 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2236 * or always use the AVS header rather than the Prism header.
2237 * We load a 4-byte big-endian value at the beginning of the
2238 * raw packet data, and see whether, when masked with 0xFFFFF000,
2239 * it's equal to 0x80211000. If so, that indicates that it's
2240 * an AVS header (the masked-out bits are the version number).
2241 * Otherwise, it's a Prism header.
2243 * XXX - the Prism header is also, in theory, variable-length,
2244 * but no known software generates headers that aren't 144
2247 if (cstate
->off_linkhdr
.reg
!= -1) {
2251 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2255 * AND it with 0xFFFFF000.
2257 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2258 s2
->s
.k
= 0xFFFFF000;
2262 * Compare with 0x80211000.
2264 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2265 sjeq_avs_cookie
->s
.k
= 0x80211000;
2266 sappend(s1
, sjeq_avs_cookie
);
2271 * The 4 bytes at an offset of 4 from the beginning of
2272 * the AVS header are the length of the AVS header.
2273 * That field is big-endian.
2275 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2278 sjeq_avs_cookie
->s
.jt
= s2
;
2281 * Now jump to the code to allocate a register
2282 * into which to save the header length and
2283 * store the length there. (The "jump always"
2284 * instruction needs to have the k field set;
2285 * it's added to the PC, so, as we're jumping
2286 * over a single instruction, it should be 1.)
2288 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2290 sappend(s1
, sjcommon
);
2293 * Now for the code that handles the Prism header.
2294 * Just load the length of the Prism header (144)
2295 * into the A register. Have the test for an AVS
2296 * header branch here if we don't have an AVS header.
2298 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2301 sjeq_avs_cookie
->s
.jf
= s2
;
2304 * Now allocate a register to hold that value and store
2305 * it. The code for the AVS header will jump here after
2306 * loading the length of the AVS header.
2308 s2
= new_stmt(cstate
, BPF_ST
);
2309 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2311 sjcommon
->s
.jf
= s2
;
2314 * Now move it into the X register.
2316 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2324 static struct slist
*
2325 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2327 struct slist
*s1
, *s2
;
2330 * Generate code to load the length of the AVS header into
2331 * the register assigned to hold that length, if one has been
2332 * assigned. (If one hasn't been assigned, no code we've
2333 * generated uses that prefix, so we don't need to generate any
2336 if (cstate
->off_linkhdr
.reg
!= -1) {
2338 * The 4 bytes at an offset of 4 from the beginning of
2339 * the AVS header are the length of the AVS header.
2340 * That field is big-endian.
2342 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2346 * Now allocate a register to hold that value and store
2349 s2
= new_stmt(cstate
, BPF_ST
);
2350 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2354 * Now move it into the X register.
2356 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2364 static struct slist
*
2365 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2367 struct slist
*s1
, *s2
;
2370 * Generate code to load the length of the radiotap header into
2371 * the register assigned to hold that length, if one has been
2372 * assigned. (If one hasn't been assigned, no code we've
2373 * generated uses that prefix, so we don't need to generate any
2376 if (cstate
->off_linkhdr
.reg
!= -1) {
2378 * The 2 bytes at offsets of 2 and 3 from the beginning
2379 * of the radiotap header are the length of the radiotap
2380 * header; unfortunately, it's little-endian, so we have
2381 * to load it a byte at a time and construct the value.
2385 * Load the high-order byte, at an offset of 3, shift it
2386 * left a byte, and put the result in the X register.
2388 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2390 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2393 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2397 * Load the next byte, at an offset of 2, and OR the
2398 * value from the X register into it.
2400 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2403 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2407 * Now allocate a register to hold that value and store
2410 s2
= new_stmt(cstate
, BPF_ST
);
2411 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2415 * Now move it into the X register.
2417 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2426 * At the moment we treat PPI as normal Radiotap encoded
2427 * packets. The difference is in the function that generates
2428 * the code at the beginning to compute the header length.
2429 * Since this code generator of PPI supports bare 802.11
2430 * encapsulation only (i.e. the encapsulated DLT should be
2431 * DLT_IEEE802_11) we generate code to check for this too;
2432 * that's done in finish_parse().
2434 static struct slist
*
2435 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2437 struct slist
*s1
, *s2
;
2440 * Generate code to load the length of the radiotap header
2441 * into the register assigned to hold that length, if one has
2444 if (cstate
->off_linkhdr
.reg
!= -1) {
2446 * The 2 bytes at offsets of 2 and 3 from the beginning
2447 * of the radiotap header are the length of the radiotap
2448 * header; unfortunately, it's little-endian, so we have
2449 * to load it a byte at a time and construct the value.
2453 * Load the high-order byte, at an offset of 3, shift it
2454 * left a byte, and put the result in the X register.
2456 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2458 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2461 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2465 * Load the next byte, at an offset of 2, and OR the
2466 * value from the X register into it.
2468 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2471 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2475 * Now allocate a register to hold that value and store
2478 s2
= new_stmt(cstate
, BPF_ST
);
2479 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2483 * Now move it into the X register.
2485 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2494 * Load a value relative to the beginning of the link-layer header after the 802.11
2495 * header, i.e. LLC_SNAP.
2496 * The link-layer header doesn't necessarily begin at the beginning
2497 * of the packet data; there might be a variable-length prefix containing
2498 * radio information.
2500 static struct slist
*
2501 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
2504 struct slist
*sjset_data_frame_1
;
2505 struct slist
*sjset_data_frame_2
;
2506 struct slist
*sjset_qos
;
2507 struct slist
*sjset_radiotap_flags_present
;
2508 struct slist
*sjset_radiotap_ext_present
;
2509 struct slist
*sjset_radiotap_tsft_present
;
2510 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2511 struct slist
*s_roundup
;
2513 if (cstate
->off_linkpl
.reg
== -1) {
2515 * No register has been assigned to the offset of
2516 * the link-layer payload, which means nobody needs
2517 * it; don't bother computing it - just return
2518 * what we already have.
2524 * This code is not compatible with the optimizer, as
2525 * we are generating jmp instructions within a normal
2526 * slist of instructions
2528 cstate
->no_optimize
= 1;
2531 * If "s" is non-null, it has code to arrange that the X register
2532 * contains the length of the prefix preceding the link-layer
2535 * Otherwise, the length of the prefix preceding the link-layer
2536 * header is "off_outermostlinkhdr.constant_part".
2540 * There is no variable-length header preceding the
2541 * link-layer header.
2543 * Load the length of the fixed-length prefix preceding
2544 * the link-layer header (if any) into the X register,
2545 * and store it in the cstate->off_linkpl.reg register.
2546 * That length is off_outermostlinkhdr.constant_part.
2548 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
2549 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
2553 * The X register contains the offset of the beginning of the
2554 * link-layer header; add 24, which is the minimum length
2555 * of the MAC header for a data frame, to that, and store it
2556 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2557 * which is at the offset in the X register, with an indexed load.
2559 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
2561 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2564 s2
= new_stmt(cstate
, BPF_ST
);
2565 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2568 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2573 * Check the Frame Control field to see if this is a data frame;
2574 * a data frame has the 0x08 bit (b3) in that field set and the
2575 * 0x04 bit (b2) clear.
2577 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
2578 sjset_data_frame_1
->s
.k
= 0x08;
2579 sappend(s
, sjset_data_frame_1
);
2582 * If b3 is set, test b2, otherwise go to the first statement of
2583 * the rest of the program.
2585 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
2586 sjset_data_frame_2
->s
.k
= 0x04;
2587 sappend(s
, sjset_data_frame_2
);
2588 sjset_data_frame_1
->s
.jf
= snext
;
2591 * If b2 is not set, this is a data frame; test the QoS bit.
2592 * Otherwise, go to the first statement of the rest of the
2595 sjset_data_frame_2
->s
.jt
= snext
;
2596 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
2597 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2598 sappend(s
, sjset_qos
);
2601 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2603 * Otherwise, go to the first statement of the rest of the
2606 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2607 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2609 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2612 s2
= new_stmt(cstate
, BPF_ST
);
2613 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2617 * If we have a radiotap header, look at it to see whether
2618 * there's Atheros padding between the MAC-layer header
2621 * Note: all of the fields in the radiotap header are
2622 * little-endian, so we byte-swap all of the values
2623 * we test against, as they will be loaded as big-endian
2626 * XXX - in the general case, we would have to scan through
2627 * *all* the presence bits, if there's more than one word of
2628 * presence bits. That would require a loop, meaning that
2629 * we wouldn't be able to run the filter in the kernel.
2631 * We assume here that the Atheros adapters that insert the
2632 * annoying padding don't have multiple antennae and therefore
2633 * do not generate radiotap headers with multiple presence words.
2635 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
2637 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2638 * in the first presence flag word?
2640 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
2644 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2645 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
2646 sappend(s
, sjset_radiotap_flags_present
);
2649 * If not, skip all of this.
2651 sjset_radiotap_flags_present
->s
.jf
= snext
;
2654 * Otherwise, is the "extension" bit set in that word?
2656 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2657 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
2658 sappend(s
, sjset_radiotap_ext_present
);
2659 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
2662 * If so, skip all of this.
2664 sjset_radiotap_ext_present
->s
.jt
= snext
;
2667 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2669 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
2670 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
2671 sappend(s
, sjset_radiotap_tsft_present
);
2672 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
2675 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2676 * at an offset of 16 from the beginning of the raw packet
2677 * data (8 bytes for the radiotap header and 8 bytes for
2680 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2683 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2686 sjset_radiotap_tsft_present
->s
.jt
= s2
;
2688 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2689 sjset_tsft_datapad
->s
.k
= 0x20;
2690 sappend(s
, sjset_tsft_datapad
);
2693 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2694 * at an offset of 8 from the beginning of the raw packet
2695 * data (8 bytes for the radiotap header).
2697 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2700 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
2703 sjset_radiotap_tsft_present
->s
.jf
= s2
;
2705 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
2706 sjset_notsft_datapad
->s
.k
= 0x20;
2707 sappend(s
, sjset_notsft_datapad
);
2710 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2711 * set, round the length of the 802.11 header to
2712 * a multiple of 4. Do that by adding 3 and then
2713 * dividing by and multiplying by 4, which we do by
2716 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
2717 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
2718 sappend(s
, s_roundup
);
2719 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
2722 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
2725 s2
= new_stmt(cstate
, BPF_ST
);
2726 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2729 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2730 sjset_tsft_datapad
->s
.jf
= snext
;
2731 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2732 sjset_notsft_datapad
->s
.jf
= snext
;
2734 sjset_qos
->s
.jf
= snext
;
2740 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
2744 /* There is an implicit dependency between the link
2745 * payload and link header since the payload computation
2746 * includes the variable part of the header. Therefore,
2747 * if nobody else has allocated a register for the link
2748 * header and we need it, do it now. */
2749 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
2750 cstate
->off_linkhdr
.reg
== -1)
2751 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
2754 * For link-layer types that have a variable-length header
2755 * preceding the link-layer header, generate code to load
2756 * the offset of the link-layer header into the register
2757 * assigned to that offset, if any.
2759 * XXX - this, and the next switch statement, won't handle
2760 * encapsulation of 802.11 or 802.11+radio information in
2761 * some other protocol stack. That's significantly more
2764 switch (cstate
->outermostlinktype
) {
2766 case DLT_PRISM_HEADER
:
2767 s
= gen_load_prism_llprefixlen(cstate
);
2770 case DLT_IEEE802_11_RADIO_AVS
:
2771 s
= gen_load_avs_llprefixlen(cstate
);
2774 case DLT_IEEE802_11_RADIO
:
2775 s
= gen_load_radiotap_llprefixlen(cstate
);
2779 s
= gen_load_ppi_llprefixlen(cstate
);
2788 * For link-layer types that have a variable-length link-layer
2789 * header, generate code to load the offset of the link-layer
2790 * payload into the register assigned to that offset, if any.
2792 switch (cstate
->outermostlinktype
) {
2794 case DLT_IEEE802_11
:
2795 case DLT_PRISM_HEADER
:
2796 case DLT_IEEE802_11_RADIO_AVS
:
2797 case DLT_IEEE802_11_RADIO
:
2799 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
2804 * If we have any offset-loading code, append all the
2805 * existing statements in the block to those statements,
2806 * and make the resulting list the list of statements
2810 sappend(s
, b
->stmts
);
2815 static struct block
*
2816 gen_ppi_dlt_check(compiler_state_t
*cstate
)
2818 struct slist
*s_load_dlt
;
2821 if (cstate
->linktype
== DLT_PPI
)
2823 /* Create the statements that check for the DLT
2825 s_load_dlt
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2826 s_load_dlt
->s
.k
= 4;
2828 b
= new_block(cstate
, JMP(BPF_JEQ
));
2830 b
->stmts
= s_load_dlt
;
2831 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2842 * Take an absolute offset, and:
2844 * if it has no variable part, return NULL;
2846 * if it has a variable part, generate code to load the register
2847 * containing that variable part into the X register, returning
2848 * a pointer to that code - if no register for that offset has
2849 * been allocated, allocate it first.
2851 * (The code to set that register will be generated later, but will
2852 * be placed earlier in the code sequence.)
2854 static struct slist
*
2855 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
2859 if (off
->is_variable
) {
2860 if (off
->reg
== -1) {
2862 * We haven't yet assigned a register for the
2863 * variable part of the offset of the link-layer
2864 * header; allocate one.
2866 off
->reg
= alloc_reg(cstate
);
2870 * Load the register containing the variable part of the
2871 * offset of the link-layer header into the X register.
2873 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
2878 * That offset isn't variable, there's no variable part,
2879 * so we don't need to generate any code.
2886 * Map an Ethernet type to the equivalent PPP type.
2889 ethertype_to_ppptype(proto
)
2898 case ETHERTYPE_IPV6
:
2906 case ETHERTYPE_ATALK
:
2920 * I'm assuming the "Bridging PDU"s that go
2921 * over PPP are Spanning Tree Protocol
2935 * Generate any tests that, for encapsulation of a link-layer packet
2936 * inside another protocol stack, need to be done to check for those
2937 * link-layer packets (and that haven't already been done by a check
2938 * for that encapsulation).
2940 static struct block
*
2941 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
2945 if (cstate
->is_geneve
)
2946 return gen_geneve_ll_check(cstate
);
2948 switch (cstate
->prevlinktype
) {
2952 * This is LANE-encapsulated Ethernet; check that the LANE
2953 * packet doesn't begin with an LE Control marker, i.e.
2954 * that it's data, not a control message.
2956 * (We've already generated a test for LANE.)
2958 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
2964 * No such tests are necessary.
2972 * The three different values we should check for when checking for an
2973 * IPv6 packet with DLT_NULL.
2975 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
2976 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
2977 #define BSD_AFNUM_INET6_DARWIN 30 /* OS X, iOS, other Darwin-based OSes */
2980 * Generate code to match a particular packet type by matching the
2981 * link-layer type field or fields in the 802.2 LLC header.
2983 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2984 * value, if <= ETHERMTU.
2986 static struct block
*
2987 gen_linktype(compiler_state_t
*cstate
, int proto
)
2989 struct block
*b0
, *b1
, *b2
;
2990 const char *description
;
2992 /* are we checking MPLS-encapsulated packets? */
2993 if (cstate
->label_stack_depth
> 0) {
2997 /* FIXME add other L3 proto IDs */
2998 return gen_mpls_linktype(cstate
, Q_IP
);
3000 case ETHERTYPE_IPV6
:
3002 /* FIXME add other L3 proto IDs */
3003 return gen_mpls_linktype(cstate
, Q_IPV6
);
3006 bpf_error(cstate
, "unsupported protocol over mpls");
3011 switch (cstate
->linktype
) {
3014 case DLT_NETANALYZER
:
3015 case DLT_NETANALYZER_TRANSPARENT
:
3016 /* Geneve has an EtherType regardless of whether there is an
3018 if (!cstate
->is_geneve
)
3019 b0
= gen_prevlinkhdr_check(cstate
);
3023 b1
= gen_ether_linktype(cstate
, proto
);
3034 proto
= (proto
<< 8 | LLCSAP_ISONS
);
3038 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3044 case DLT_IEEE802_11
:
3045 case DLT_PRISM_HEADER
:
3046 case DLT_IEEE802_11_RADIO_AVS
:
3047 case DLT_IEEE802_11_RADIO
:
3050 * Check that we have a data frame.
3052 b0
= gen_check_802_11_data_frame(cstate
);
3055 * Now check for the specified link-layer type.
3057 b1
= gen_llc_linktype(cstate
, proto
);
3065 * XXX - check for LLC frames.
3067 return gen_llc_linktype(cstate
, proto
);
3073 * XXX - check for LLC PDUs, as per IEEE 802.5.
3075 return gen_llc_linktype(cstate
, proto
);
3079 case DLT_ATM_RFC1483
:
3081 case DLT_IP_OVER_FC
:
3082 return gen_llc_linktype(cstate
, proto
);
3088 * Check for an LLC-encapsulated version of this protocol;
3089 * if we were checking for LANE, linktype would no longer
3092 * Check for LLC encapsulation and then check the protocol.
3094 b0
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3095 b1
= gen_llc_linktype(cstate
, proto
);
3102 return gen_linux_sll_linktype(cstate
, proto
);
3107 case DLT_SLIP_BSDOS
:
3110 * These types don't provide any type field; packets
3111 * are always IPv4 or IPv6.
3113 * XXX - for IPv4, check for a version number of 4, and,
3114 * for IPv6, check for a version number of 6?
3119 /* Check for a version number of 4. */
3120 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3122 case ETHERTYPE_IPV6
:
3123 /* Check for a version number of 6. */
3124 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3127 return gen_false(cstate
); /* always false */
3134 * Raw IPv4, so no type field.
3136 if (proto
== ETHERTYPE_IP
)
3137 return gen_true(cstate
); /* always true */
3139 /* Checking for something other than IPv4; always false */
3140 return gen_false(cstate
);
3146 * Raw IPv6, so no type field.
3148 if (proto
== ETHERTYPE_IPV6
)
3149 return gen_true(cstate
); /* always true */
3151 /* Checking for something other than IPv6; always false */
3152 return gen_false(cstate
);
3158 case DLT_PPP_SERIAL
:
3161 * We use Ethernet protocol types inside libpcap;
3162 * map them to the corresponding PPP protocol types.
3164 proto
= ethertype_to_ppptype(proto
);
3165 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3171 * We use Ethernet protocol types inside libpcap;
3172 * map them to the corresponding PPP protocol types.
3178 * Also check for Van Jacobson-compressed IP.
3179 * XXX - do this for other forms of PPP?
3181 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3182 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3184 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3189 proto
= ethertype_to_ppptype(proto
);
3190 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3202 return (gen_loopback_linktype(cstate
, AF_INET
));
3204 case ETHERTYPE_IPV6
:
3206 * AF_ values may, unfortunately, be platform-
3207 * dependent; AF_INET isn't, because everybody
3208 * used 4.2BSD's value, but AF_INET6 is, because
3209 * 4.2BSD didn't have a value for it (given that
3210 * IPv6 didn't exist back in the early 1980's),
3211 * and they all picked their own values.
3213 * This means that, if we're reading from a
3214 * savefile, we need to check for all the
3217 * If we're doing a live capture, we only need
3218 * to check for this platform's value; however,
3219 * Npcap uses 24, which isn't Windows's AF_INET6
3220 * value. (Given the multiple different values,
3221 * programs that read pcap files shouldn't be
3222 * checking for their platform's AF_INET6 value
3223 * anyway, they should check for all of the
3224 * possible values. and they might as well do
3225 * that even for live captures.)
3227 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3229 * Savefile - check for all three
3230 * possible IPv6 values.
3232 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3233 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3235 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3240 * Live capture, so we only need to
3241 * check for the value used on this
3246 * Npcap doesn't use Windows's AF_INET6,
3247 * as that collides with AF_IPX on
3248 * some BSDs (both have the value 23).
3249 * Instead, it uses 24.
3251 return (gen_loopback_linktype(cstate
, 24));
3254 return (gen_loopback_linktype(cstate
, AF_INET6
));
3255 #else /* AF_INET6 */
3257 * I guess this platform doesn't support
3258 * IPv6, so we just reject all packets.
3260 return gen_false(cstate
);
3261 #endif /* AF_INET6 */
3267 * Not a type on which we support filtering.
3268 * XXX - support those that have AF_ values
3269 * #defined on this platform, at least?
3271 return gen_false(cstate
);
3274 #ifdef HAVE_NET_PFVAR_H
3277 * af field is host byte order in contrast to the rest of
3280 if (proto
== ETHERTYPE_IP
)
3281 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3282 BPF_B
, (bpf_int32
)AF_INET
));
3283 else if (proto
== ETHERTYPE_IPV6
)
3284 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3285 BPF_B
, (bpf_int32
)AF_INET6
));
3287 return gen_false(cstate
);
3290 #endif /* HAVE_NET_PFVAR_H */
3293 case DLT_ARCNET_LINUX
:
3295 * XXX should we check for first fragment if the protocol
3301 return gen_false(cstate
);
3303 case ETHERTYPE_IPV6
:
3304 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3305 (bpf_int32
)ARCTYPE_INET6
));
3308 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3309 (bpf_int32
)ARCTYPE_IP
);
3310 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3311 (bpf_int32
)ARCTYPE_IP_OLD
);
3316 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3317 (bpf_int32
)ARCTYPE_ARP
);
3318 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3319 (bpf_int32
)ARCTYPE_ARP_OLD
);
3323 case ETHERTYPE_REVARP
:
3324 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3325 (bpf_int32
)ARCTYPE_REVARP
));
3327 case ETHERTYPE_ATALK
:
3328 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3329 (bpf_int32
)ARCTYPE_ATALK
));
3336 case ETHERTYPE_ATALK
:
3337 return gen_true(cstate
);
3339 return gen_false(cstate
);
3346 * XXX - assumes a 2-byte Frame Relay header with
3347 * DLCI and flags. What if the address is longer?
3353 * Check for the special NLPID for IP.
3355 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3357 case ETHERTYPE_IPV6
:
3359 * Check for the special NLPID for IPv6.
3361 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3365 * Check for several OSI protocols.
3367 * Frame Relay packets typically have an OSI
3368 * NLPID at the beginning; we check for each
3371 * What we check for is the NLPID and a frame
3372 * control field of UI, i.e. 0x03 followed
3375 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3376 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3377 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3383 return gen_false(cstate
);
3389 bpf_error(cstate
, "Multi-link Frame Relay link-layer type filtering not implemented");
3391 case DLT_JUNIPER_MFR
:
3392 case DLT_JUNIPER_MLFR
:
3393 case DLT_JUNIPER_MLPPP
:
3394 case DLT_JUNIPER_ATM1
:
3395 case DLT_JUNIPER_ATM2
:
3396 case DLT_JUNIPER_PPPOE
:
3397 case DLT_JUNIPER_PPPOE_ATM
:
3398 case DLT_JUNIPER_GGSN
:
3399 case DLT_JUNIPER_ES
:
3400 case DLT_JUNIPER_MONITOR
:
3401 case DLT_JUNIPER_SERVICES
:
3402 case DLT_JUNIPER_ETHER
:
3403 case DLT_JUNIPER_PPP
:
3404 case DLT_JUNIPER_FRELAY
:
3405 case DLT_JUNIPER_CHDLC
:
3406 case DLT_JUNIPER_VP
:
3407 case DLT_JUNIPER_ST
:
3408 case DLT_JUNIPER_ISM
:
3409 case DLT_JUNIPER_VS
:
3410 case DLT_JUNIPER_SRX_E2E
:
3411 case DLT_JUNIPER_FIBRECHANNEL
:
3412 case DLT_JUNIPER_ATM_CEMIC
:
3414 /* just lets verify the magic number for now -
3415 * on ATM we may have up to 6 different encapsulations on the wire
3416 * and need a lot of heuristics to figure out that the payload
3419 * FIXME encapsulation specific BPF_ filters
3421 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3423 case DLT_BACNET_MS_TP
:
3424 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3427 return gen_ipnet_linktype(cstate
, proto
);
3429 case DLT_LINUX_IRDA
:
3430 bpf_error(cstate
, "IrDA link-layer type filtering not implemented");
3433 bpf_error(cstate
, "DOCSIS link-layer type filtering not implemented");
3436 case DLT_MTP2_WITH_PHDR
:
3437 bpf_error(cstate
, "MTP2 link-layer type filtering not implemented");
3440 bpf_error(cstate
, "ERF link-layer type filtering not implemented");
3443 bpf_error(cstate
, "PFSYNC link-layer type filtering not implemented");
3445 case DLT_LINUX_LAPD
:
3446 bpf_error(cstate
, "LAPD link-layer type filtering not implemented");
3448 case DLT_USB_FREEBSD
:
3450 case DLT_USB_LINUX_MMAPPED
:
3452 bpf_error(cstate
, "USB link-layer type filtering not implemented");
3454 case DLT_BLUETOOTH_HCI_H4
:
3455 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3456 bpf_error(cstate
, "Bluetooth link-layer type filtering not implemented");
3459 case DLT_CAN_SOCKETCAN
:
3460 bpf_error(cstate
, "CAN link-layer type filtering not implemented");
3462 case DLT_IEEE802_15_4
:
3463 case DLT_IEEE802_15_4_LINUX
:
3464 case DLT_IEEE802_15_4_NONASK_PHY
:
3465 case DLT_IEEE802_15_4_NOFCS
:
3466 bpf_error(cstate
, "IEEE 802.15.4 link-layer type filtering not implemented");
3468 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3469 bpf_error(cstate
, "IEEE 802.16 link-layer type filtering not implemented");
3472 bpf_error(cstate
, "SITA link-layer type filtering not implemented");
3475 bpf_error(cstate
, "RAIF1 link-layer type filtering not implemented");
3478 bpf_error(cstate
, "IPMB link-layer type filtering not implemented");
3481 bpf_error(cstate
, "AX.25 link-layer type filtering not implemented");
3484 /* Using the fixed-size NFLOG header it is possible to tell only
3485 * the address family of the packet, other meaningful data is
3486 * either missing or behind TLVs.
3488 bpf_error(cstate
, "NFLOG link-layer type filtering not implemented");
3492 * Does this link-layer header type have a field
3493 * indicating the type of the next protocol? If
3494 * so, off_linktype.constant_part will be the offset of that
3495 * field in the packet; if not, it will be OFFSET_NOT_SET.
3497 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3499 * Yes; assume it's an Ethernet type. (If
3500 * it's not, it needs to be handled specially
3503 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, (bpf_int32
)proto
);
3506 * No; report an error.
3508 description
= pcap_datalink_val_to_description(cstate
->linktype
);
3509 if (description
!= NULL
) {
3510 bpf_error(cstate
, "%s link-layer type filtering not implemented",
3513 bpf_error(cstate
, "DLT %u link-layer type filtering not implemented",
3522 * Check for an LLC SNAP packet with a given organization code and
3523 * protocol type; we check the entire contents of the 802.2 LLC and
3524 * snap headers, checking for DSAP and SSAP of SNAP and a control
3525 * field of 0x03 in the LLC header, and for the specified organization
3526 * code and protocol type in the SNAP header.
3528 static struct block
*
3529 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
3531 u_char snapblock
[8];
3533 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3534 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3535 snapblock
[2] = 0x03; /* control = UI */
3536 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
3537 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
3538 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
3539 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
3540 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
3541 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
3545 * Generate code to match frames with an LLC header.
3548 gen_llc(compiler_state_t
*cstate
)
3550 struct block
*b0
, *b1
;
3552 switch (cstate
->linktype
) {
3556 * We check for an Ethernet type field less than
3557 * 1500, which means it's an 802.3 length field.
3559 b0
= gen_cmp_gt(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
3563 * Now check for the purported DSAP and SSAP not being
3564 * 0xFF, to rule out NetWare-over-802.3.
3566 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_int32
)0xFFFF);
3573 * We check for LLC traffic.
3575 b0
= gen_atmtype_abbrev(cstate
, A_LLC
);
3578 case DLT_IEEE802
: /* Token Ring */
3580 * XXX - check for LLC frames.
3582 return gen_true(cstate
);
3586 * XXX - check for LLC frames.
3588 return gen_true(cstate
);
3590 case DLT_ATM_RFC1483
:
3592 * For LLC encapsulation, these are defined to have an
3595 * For VC encapsulation, they don't, but there's no
3596 * way to check for that; the protocol used on the VC
3597 * is negotiated out of band.
3599 return gen_true(cstate
);
3601 case DLT_IEEE802_11
:
3602 case DLT_PRISM_HEADER
:
3603 case DLT_IEEE802_11_RADIO
:
3604 case DLT_IEEE802_11_RADIO_AVS
:
3607 * Check that we have a data frame.
3609 b0
= gen_check_802_11_data_frame(cstate
);
3613 bpf_error(cstate
, "'llc' not supported for linktype %d", cstate
->linktype
);
3619 gen_llc_i(compiler_state_t
*cstate
)
3621 struct block
*b0
, *b1
;
3625 * Check whether this is an LLC frame.
3627 b0
= gen_llc(cstate
);
3630 * Load the control byte and test the low-order bit; it must
3631 * be clear for I frames.
3633 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
3634 b1
= new_block(cstate
, JMP(BPF_JSET
));
3643 gen_llc_s(compiler_state_t
*cstate
)
3645 struct block
*b0
, *b1
;
3648 * Check whether this is an LLC frame.
3650 b0
= gen_llc(cstate
);
3653 * Now compare the low-order 2 bit of the control byte against
3654 * the appropriate value for S frames.
3656 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
3662 gen_llc_u(compiler_state_t
*cstate
)
3664 struct block
*b0
, *b1
;
3667 * Check whether this is an LLC frame.
3669 b0
= gen_llc(cstate
);
3672 * Now compare the low-order 2 bit of the control byte against
3673 * the appropriate value for U frames.
3675 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
3681 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3683 struct block
*b0
, *b1
;
3686 * Check whether this is an LLC frame.
3688 b0
= gen_llc(cstate
);
3691 * Now check for an S frame with the appropriate type.
3693 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
3699 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
3701 struct block
*b0
, *b1
;
3704 * Check whether this is an LLC frame.
3706 b0
= gen_llc(cstate
);
3709 * Now check for a U frame with the appropriate type.
3711 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
3717 * Generate code to match a particular packet type, for link-layer types
3718 * using 802.2 LLC headers.
3720 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3721 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3723 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3724 * value, if <= ETHERMTU. We use that to determine whether to
3725 * match the DSAP or both DSAP and LSAP or to check the OUI and
3726 * protocol ID in a SNAP header.
3728 static struct block
*
3729 gen_llc_linktype(compiler_state_t
*cstate
, int proto
)
3732 * XXX - handle token-ring variable-length header.
3738 case LLCSAP_NETBEUI
:
3740 * XXX - should we check both the DSAP and the
3741 * SSAP, like this, or should we check just the
3742 * DSAP, as we do for other SAP values?
3744 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
3745 ((proto
<< 8) | proto
));
3749 * XXX - are there ever SNAP frames for IPX on
3750 * non-Ethernet 802.x networks?
3752 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
,
3753 (bpf_int32
)LLCSAP_IPX
);
3755 case ETHERTYPE_ATALK
:
3757 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3758 * SNAP packets with an organization code of
3759 * 0x080007 (Apple, for Appletalk) and a protocol
3760 * type of ETHERTYPE_ATALK (Appletalk).
3762 * XXX - check for an organization code of
3763 * encapsulated Ethernet as well?
3765 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
3769 * XXX - we don't have to check for IPX 802.3
3770 * here, but should we check for the IPX Ethertype?
3772 if (proto
<= ETHERMTU
) {
3774 * This is an LLC SAP value, so check
3777 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, (bpf_int32
)proto
);
3780 * This is an Ethernet type; we assume that it's
3781 * unlikely that it'll appear in the right place
3782 * at random, and therefore check only the
3783 * location that would hold the Ethernet type
3784 * in a SNAP frame with an organization code of
3785 * 0x000000 (encapsulated Ethernet).
3787 * XXX - if we were to check for the SNAP DSAP and
3788 * LSAP, as per XXX, and were also to check for an
3789 * organization code of 0x000000 (encapsulated
3790 * Ethernet), we'd do
3792 * return gen_snap(cstate, 0x000000, proto);
3794 * here; for now, we don't, as per the above.
3795 * I don't know whether it's worth the extra CPU
3796 * time to do the right check or not.
3798 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, (bpf_int32
)proto
);
3803 static struct block
*
3804 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
3805 int dir
, int proto
, u_int src_off
, u_int dst_off
)
3807 struct block
*b0
, *b1
;
3821 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3822 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3828 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3829 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3836 b0
= gen_linktype(cstate
, proto
);
3837 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
3843 static struct block
*
3844 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
3845 struct in6_addr
*mask
, int dir
, int proto
, u_int src_off
, u_int dst_off
)
3847 struct block
*b0
, *b1
;
3862 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3863 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3869 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3870 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3877 /* this order is important */
3878 a
= (u_int32_t
*)addr
;
3879 m
= (u_int32_t
*)mask
;
3880 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
3881 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
3883 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
3885 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
3887 b0
= gen_linktype(cstate
, proto
);
3893 static struct block
*
3894 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3896 register struct block
*b0
, *b1
;
3900 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
3903 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
3906 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3907 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3913 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
3914 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
3919 bpf_error(cstate
, "'addr1' is only supported on 802.11 with 802.11 headers");
3923 bpf_error(cstate
, "'addr2' is only supported on 802.11 with 802.11 headers");
3927 bpf_error(cstate
, "'addr3' is only supported on 802.11 with 802.11 headers");
3931 bpf_error(cstate
, "'addr4' is only supported on 802.11 with 802.11 headers");
3935 bpf_error(cstate
, "'ra' is only supported on 802.11 with 802.11 headers");
3939 bpf_error(cstate
, "'ta' is only supported on 802.11 with 802.11 headers");
3947 * Like gen_ehostop, but for DLT_FDDI
3949 static struct block
*
3950 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
3952 struct block
*b0
, *b1
;
3956 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
3959 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
3962 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
3963 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
3969 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
3970 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
3975 bpf_error(cstate
, "'addr1' is only supported on 802.11");
3979 bpf_error(cstate
, "'addr2' is only supported on 802.11");
3983 bpf_error(cstate
, "'addr3' is only supported on 802.11");
3987 bpf_error(cstate
, "'addr4' is only supported on 802.11");
3991 bpf_error(cstate
, "'ra' is only supported on 802.11");
3995 bpf_error(cstate
, "'ta' is only supported on 802.11");
4003 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4005 static struct block
*
4006 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4008 register struct block
*b0
, *b1
;
4012 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4015 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4018 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4019 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4025 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4026 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4031 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4035 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4039 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4043 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4047 bpf_error(cstate
, "'ra' is only supported on 802.11");
4051 bpf_error(cstate
, "'ta' is only supported on 802.11");
4059 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4060 * various 802.11 + radio headers.
4062 static struct block
*
4063 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4065 register struct block
*b0
, *b1
, *b2
;
4066 register struct slist
*s
;
4068 #ifdef ENABLE_WLAN_FILTERING_PATCH
4071 * We need to disable the optimizer because the optimizer is buggy
4072 * and wipes out some LD instructions generated by the below
4073 * code to validate the Frame Control bits
4075 cstate
->no_optimize
= 1;
4076 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4083 * For control frames, there is no SA.
4085 * For management frames, SA is at an
4086 * offset of 10 from the beginning of
4089 * For data frames, SA is at an offset
4090 * of 10 from the beginning of the packet
4091 * if From DS is clear, at an offset of
4092 * 16 from the beginning of the packet
4093 * if From DS is set and To DS is clear,
4094 * and an offset of 24 from the beginning
4095 * of the packet if From DS is set and To DS
4100 * Generate the tests to be done for data frames
4103 * First, check for To DS set, i.e. check "link[1] & 0x01".
4105 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4106 b1
= new_block(cstate
, JMP(BPF_JSET
));
4107 b1
->s
.k
= 0x01; /* To DS */
4111 * If To DS is set, the SA is at 24.
4113 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4117 * Now, check for To DS not set, i.e. check
4118 * "!(link[1] & 0x01)".
4120 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4121 b2
= new_block(cstate
, JMP(BPF_JSET
));
4122 b2
->s
.k
= 0x01; /* To DS */
4127 * If To DS is not set, the SA is at 16.
4129 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4133 * Now OR together the last two checks. That gives
4134 * the complete set of checks for data frames with
4140 * Now check for From DS being set, and AND that with
4141 * the ORed-together checks.
4143 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4144 b1
= new_block(cstate
, JMP(BPF_JSET
));
4145 b1
->s
.k
= 0x02; /* From DS */
4150 * Now check for data frames with From DS not set.
4152 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4153 b2
= new_block(cstate
, JMP(BPF_JSET
));
4154 b2
->s
.k
= 0x02; /* From DS */
4159 * If From DS isn't set, the SA is at 10.
4161 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4165 * Now OR together the checks for data frames with
4166 * From DS not set and for data frames with From DS
4167 * set; that gives the checks done for data frames.
4172 * Now check for a data frame.
4173 * I.e, check "link[0] & 0x08".
4175 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4176 b1
= new_block(cstate
, JMP(BPF_JSET
));
4181 * AND that with the checks done for data frames.
4186 * If the high-order bit of the type value is 0, this
4187 * is a management frame.
4188 * I.e, check "!(link[0] & 0x08)".
4190 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4191 b2
= new_block(cstate
, JMP(BPF_JSET
));
4197 * For management frames, the SA is at 10.
4199 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4203 * OR that with the checks done for data frames.
4204 * That gives the checks done for management and
4210 * If the low-order bit of the type value is 1,
4211 * this is either a control frame or a frame
4212 * with a reserved type, and thus not a
4215 * I.e., check "!(link[0] & 0x04)".
4217 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4218 b1
= new_block(cstate
, JMP(BPF_JSET
));
4224 * AND that with the checks for data and management
4234 * For control frames, there is no DA.
4236 * For management frames, DA is at an
4237 * offset of 4 from the beginning of
4240 * For data frames, DA is at an offset
4241 * of 4 from the beginning of the packet
4242 * if To DS is clear and at an offset of
4243 * 16 from the beginning of the packet
4248 * Generate the tests to be done for data frames.
4250 * First, check for To DS set, i.e. "link[1] & 0x01".
4252 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4253 b1
= new_block(cstate
, JMP(BPF_JSET
));
4254 b1
->s
.k
= 0x01; /* To DS */
4258 * If To DS is set, the DA is at 16.
4260 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4264 * Now, check for To DS not set, i.e. check
4265 * "!(link[1] & 0x01)".
4267 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4268 b2
= new_block(cstate
, JMP(BPF_JSET
));
4269 b2
->s
.k
= 0x01; /* To DS */
4274 * If To DS is not set, the DA is at 4.
4276 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4280 * Now OR together the last two checks. That gives
4281 * the complete set of checks for data frames.
4286 * Now check for a data frame.
4287 * I.e, check "link[0] & 0x08".
4289 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4290 b1
= new_block(cstate
, JMP(BPF_JSET
));
4295 * AND that with the checks done for data frames.
4300 * If the high-order bit of the type value is 0, this
4301 * is a management frame.
4302 * I.e, check "!(link[0] & 0x08)".
4304 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4305 b2
= new_block(cstate
, JMP(BPF_JSET
));
4311 * For management frames, the DA is at 4.
4313 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4317 * OR that with the checks done for data frames.
4318 * That gives the checks done for management and
4324 * If the low-order bit of the type value is 1,
4325 * this is either a control frame or a frame
4326 * with a reserved type, and thus not a
4329 * I.e., check "!(link[0] & 0x04)".
4331 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4332 b1
= new_block(cstate
, JMP(BPF_JSET
));
4338 * AND that with the checks for data and management
4346 * Not present in management frames; addr1 in other
4351 * If the high-order bit of the type value is 0, this
4352 * is a management frame.
4353 * I.e, check "(link[0] & 0x08)".
4355 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4356 b1
= new_block(cstate
, JMP(BPF_JSET
));
4363 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4366 * AND that with the check of addr1.
4373 * Not present in management frames; addr2, if present,
4378 * Not present in CTS or ACK control frames.
4380 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4381 IEEE80211_FC0_TYPE_MASK
);
4383 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4384 IEEE80211_FC0_SUBTYPE_MASK
);
4386 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4387 IEEE80211_FC0_SUBTYPE_MASK
);
4393 * If the high-order bit of the type value is 0, this
4394 * is a management frame.
4395 * I.e, check "(link[0] & 0x08)".
4397 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4398 b1
= new_block(cstate
, JMP(BPF_JSET
));
4403 * AND that with the check for frames other than
4404 * CTS and ACK frames.
4411 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4416 * XXX - add BSSID keyword?
4419 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4423 * Not present in CTS or ACK control frames.
4425 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4426 IEEE80211_FC0_TYPE_MASK
);
4428 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4429 IEEE80211_FC0_SUBTYPE_MASK
);
4431 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4432 IEEE80211_FC0_SUBTYPE_MASK
);
4436 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4442 * Not present in control frames.
4444 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4445 IEEE80211_FC0_TYPE_MASK
);
4447 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4453 * Present only if the direction mask has both "From DS"
4454 * and "To DS" set. Neither control frames nor management
4455 * frames should have both of those set, so we don't
4456 * check the frame type.
4458 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4459 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4460 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4465 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4466 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4472 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4473 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4482 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4483 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4484 * as the RFC states.)
4486 static struct block
*
4487 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4489 register struct block
*b0
, *b1
;
4493 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4496 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4499 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4500 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4506 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4507 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4512 bpf_error(cstate
, "'addr1' is only supported on 802.11");
4516 bpf_error(cstate
, "'addr2' is only supported on 802.11");
4520 bpf_error(cstate
, "'addr3' is only supported on 802.11");
4524 bpf_error(cstate
, "'addr4' is only supported on 802.11");
4528 bpf_error(cstate
, "'ra' is only supported on 802.11");
4532 bpf_error(cstate
, "'ta' is only supported on 802.11");
4540 * This is quite tricky because there may be pad bytes in front of the
4541 * DECNET header, and then there are two possible data packet formats that
4542 * carry both src and dst addresses, plus 5 packet types in a format that
4543 * carries only the src node, plus 2 types that use a different format and
4544 * also carry just the src node.
4548 * Instead of doing those all right, we just look for data packets with
4549 * 0 or 1 bytes of padding. If you want to look at other packets, that
4550 * will require a lot more hacking.
4552 * To add support for filtering on DECNET "areas" (network numbers)
4553 * one would want to add a "mask" argument to this routine. That would
4554 * make the filter even more inefficient, although one could be clever
4555 * and not generate masking instructions if the mask is 0xFFFF.
4557 static struct block
*
4558 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
4560 struct block
*b0
, *b1
, *b2
, *tmp
;
4561 u_int offset_lh
; /* offset if long header is received */
4562 u_int offset_sh
; /* offset if short header is received */
4567 offset_sh
= 1; /* follows flags */
4568 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4572 offset_sh
= 3; /* follows flags, dstnode */
4573 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4577 /* Inefficient because we do our Calvinball dance twice */
4578 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4579 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4585 /* Inefficient because we do our Calvinball dance twice */
4586 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
4587 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
4592 bpf_error(cstate
, "ISO host filtering not implemented");
4597 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
4598 /* Check for pad = 1, long header case */
4599 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4600 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4601 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
4602 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4604 /* Check for pad = 0, long header case */
4605 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4606 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4609 /* Check for pad = 1, short header case */
4610 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
,
4611 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4612 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4615 /* Check for pad = 0, short header case */
4616 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4617 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4621 /* Combine with test for cstate->linktype */
4627 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4628 * test the bottom-of-stack bit, and then check the version number
4629 * field in the IP header.
4631 static struct block
*
4632 gen_mpls_linktype(compiler_state_t
*cstate
, int proto
)
4634 struct block
*b0
, *b1
;
4639 /* match the bottom-of-stack bit */
4640 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4641 /* match the IPv4 version number */
4642 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
4647 /* match the bottom-of-stack bit */
4648 b0
= gen_mcmp(cstate
, OR_LINKPL
, -2, BPF_B
, 0x01, 0x01);
4649 /* match the IPv4 version number */
4650 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
4659 static struct block
*
4660 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4661 int proto
, int dir
, int type
)
4663 struct block
*b0
, *b1
;
4664 const char *typestr
;
4674 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
4676 * Only check for non-IPv4 addresses if we're not
4677 * checking MPLS-encapsulated packets.
4679 if (cstate
->label_stack_depth
== 0) {
4680 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
4682 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
4688 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4691 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4694 return gen_hostop(cstate
, addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4697 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4700 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4703 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4706 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4709 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4712 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4715 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4718 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4721 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4724 bpf_error(cstate
, "ATALK host filtering not implemented");
4727 bpf_error(cstate
, "AARP host filtering not implemented");
4730 return gen_dnhostop(cstate
, addr
, dir
);
4733 bpf_error(cstate
, "SCA host filtering not implemented");
4736 bpf_error(cstate
, "LAT host filtering not implemented");
4739 bpf_error(cstate
, "MOPDL host filtering not implemented");
4742 bpf_error(cstate
, "MOPRC host filtering not implemented");
4745 bpf_error(cstate
, "'ip6' modifier applied to ip host");
4748 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4751 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4754 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4757 bpf_error(cstate
, "ISO host filtering not implemented");
4760 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4763 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4766 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4769 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4772 bpf_error(cstate
, "IPX host filtering not implemented");
4775 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4778 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4787 static struct block
*
4788 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4789 struct in6_addr
*mask
, int proto
, int dir
, int type
)
4791 const char *typestr
;
4801 return gen_host6(cstate
, addr
, mask
, Q_IPV6
, dir
, type
);
4804 bpf_error(cstate
, "link-layer modifier applied to ip6 %s", typestr
);
4807 bpf_error(cstate
, "'ip' modifier applied to ip6 %s", typestr
);
4810 bpf_error(cstate
, "'rarp' modifier applied to ip6 %s", typestr
);
4813 bpf_error(cstate
, "'arp' modifier applied to ip6 %s", typestr
);
4816 bpf_error(cstate
, "'sctp' modifier applied to %s", typestr
);
4819 bpf_error(cstate
, "'tcp' modifier applied to %s", typestr
);
4822 bpf_error(cstate
, "'udp' modifier applied to %s", typestr
);
4825 bpf_error(cstate
, "'icmp' modifier applied to %s", typestr
);
4828 bpf_error(cstate
, "'igmp' modifier applied to %s", typestr
);
4831 bpf_error(cstate
, "'igrp' modifier applied to %s", typestr
);
4834 bpf_error(cstate
, "'pim' modifier applied to %s", typestr
);
4837 bpf_error(cstate
, "'vrrp' modifier applied to %s", typestr
);
4840 bpf_error(cstate
, "'carp' modifier applied to %s", typestr
);
4843 bpf_error(cstate
, "ATALK host filtering not implemented");
4846 bpf_error(cstate
, "AARP host filtering not implemented");
4849 bpf_error(cstate
, "'decnet' modifier applied to ip6 %s", typestr
);
4852 bpf_error(cstate
, "SCA host filtering not implemented");
4855 bpf_error(cstate
, "LAT host filtering not implemented");
4858 bpf_error(cstate
, "MOPDL host filtering not implemented");
4861 bpf_error(cstate
, "MOPRC host filtering not implemented");
4864 return gen_hostop6(cstate
, addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
4867 bpf_error(cstate
, "'icmp6' modifier applied to %s", typestr
);
4870 bpf_error(cstate
, "'ah' modifier applied to %s", typestr
);
4873 bpf_error(cstate
, "'esp' modifier applied to %s", typestr
);
4876 bpf_error(cstate
, "ISO host filtering not implemented");
4879 bpf_error(cstate
, "'esis' modifier applied to %s", typestr
);
4882 bpf_error(cstate
, "'isis' modifier applied to %s", typestr
);
4885 bpf_error(cstate
, "'clnp' modifier applied to %s", typestr
);
4888 bpf_error(cstate
, "'stp' modifier applied to %s", typestr
);
4891 bpf_error(cstate
, "IPX host filtering not implemented");
4894 bpf_error(cstate
, "'netbeui' modifier applied to %s", typestr
);
4897 bpf_error(cstate
, "'radio' modifier applied to %s", typestr
);
4907 static struct block
*
4908 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
, bpf_u_int32
**alist
,
4911 struct block
*b0
, *b1
, *tmp
;
4914 bpf_error(cstate
, "direction applied to 'gateway'");
4921 switch (cstate
->linktype
) {
4923 case DLT_NETANALYZER
:
4924 case DLT_NETANALYZER_TRANSPARENT
:
4925 b1
= gen_prevlinkhdr_check(cstate
);
4926 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
4931 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
4934 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
4936 case DLT_IEEE802_11
:
4937 case DLT_PRISM_HEADER
:
4938 case DLT_IEEE802_11_RADIO_AVS
:
4939 case DLT_IEEE802_11_RADIO
:
4941 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
4945 * This is LLC-multiplexed traffic; if it were
4946 * LANE, cstate->linktype would have been set to
4950 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4952 case DLT_IP_OVER_FC
:
4953 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
4957 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4959 b1
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
, Q_HOST
);
4961 tmp
= gen_host(cstate
, **alist
++, 0xffffffff, proto
, Q_OR
,
4970 bpf_error(cstate
, "illegal modifier of 'gateway'");
4976 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
4984 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
4985 b0
= gen_proto(cstate
, IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
4990 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
4991 b0
= gen_proto(cstate
, IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
4996 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
4997 b0
= gen_proto(cstate
, IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
5002 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
5005 #ifndef IPPROTO_IGMP
5006 #define IPPROTO_IGMP 2
5010 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
5013 #ifndef IPPROTO_IGRP
5014 #define IPPROTO_IGRP 9
5017 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
5021 #define IPPROTO_PIM 103
5025 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
5026 b0
= gen_proto(cstate
, IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
5030 #ifndef IPPROTO_VRRP
5031 #define IPPROTO_VRRP 112
5035 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
5038 #ifndef IPPROTO_CARP
5039 #define IPPROTO_CARP 112
5043 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
5047 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5051 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5055 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5059 bpf_error(cstate
, "link layer applied in wrong context");
5062 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5066 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5070 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5074 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5078 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5082 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5086 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5090 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5093 #ifndef IPPROTO_ICMPV6
5094 #define IPPROTO_ICMPV6 58
5097 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
5101 #define IPPROTO_AH 51
5104 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
5105 b0
= gen_proto(cstate
, IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
5110 #define IPPROTO_ESP 50
5113 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
5114 b0
= gen_proto(cstate
, IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
5119 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5123 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
5127 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5130 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5131 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5132 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5134 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5136 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5138 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5142 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5143 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5144 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
5146 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5148 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5150 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5154 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5155 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5156 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
5158 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
5163 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
5164 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
5169 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5170 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5172 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5174 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5179 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
5180 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
5185 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
5186 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
5191 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
5195 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5199 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5203 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5207 bpf_error(cstate
, "'radio' is not a valid protocol type");
5215 static struct block
*
5216 gen_ipfrag(compiler_state_t
*cstate
)
5221 /* not IPv4 frag other than the first frag */
5222 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5223 b
= new_block(cstate
, JMP(BPF_JSET
));
5232 * Generate a comparison to a port value in the transport-layer header
5233 * at the specified offset from the beginning of that header.
5235 * XXX - this handles a variable-length prefix preceding the link-layer
5236 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5237 * variable-length link-layer headers (such as Token Ring or 802.11
5240 static struct block
*
5241 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5243 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5246 static struct block
*
5247 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v
)
5249 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5253 gen_portop(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5255 struct block
*b0
, *b1
, *tmp
;
5257 /* ip proto 'proto' and not a fragment other than the first fragment */
5258 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5259 b0
= gen_ipfrag(cstate
);
5264 b1
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5268 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5273 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5274 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5279 tmp
= gen_portatom(cstate
, 0, (bpf_int32
)port
);
5280 b1
= gen_portatom(cstate
, 2, (bpf_int32
)port
);
5292 static struct block
*
5293 gen_port(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5295 struct block
*b0
, *b1
, *tmp
;
5300 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5301 * not LLC encapsulation with LLCSAP_IP.
5303 * For IEEE 802 networks - which includes 802.5 token ring
5304 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5305 * says that SNAP encapsulation is used, not LLC encapsulation
5308 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5309 * RFC 2225 say that SNAP encapsulation is used, not LLC
5310 * encapsulation with LLCSAP_IP.
5312 * So we always check for ETHERTYPE_IP.
5314 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5320 b1
= gen_portop(cstate
, port
, ip_proto
, dir
);
5324 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5325 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5327 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5339 gen_portop6(compiler_state_t
*cstate
, int port
, int proto
, int dir
)
5341 struct block
*b0
, *b1
, *tmp
;
5343 /* ip6 proto 'proto' */
5344 /* XXX - catch the first fragment of a fragmented packet? */
5345 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5349 b1
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5353 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5358 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5359 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5364 tmp
= gen_portatom6(cstate
, 0, (bpf_int32
)port
);
5365 b1
= gen_portatom6(cstate
, 2, (bpf_int32
)port
);
5377 static struct block
*
5378 gen_port6(compiler_state_t
*cstate
, int port
, int ip_proto
, int dir
)
5380 struct block
*b0
, *b1
, *tmp
;
5382 /* link proto ip6 */
5383 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5389 b1
= gen_portop6(cstate
, port
, ip_proto
, dir
);
5393 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5394 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5396 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5407 /* gen_portrange code */
5408 static struct block
*
5409 gen_portrangeatom(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5412 struct block
*b1
, *b2
;
5416 * Reverse the order of the ports, so v1 is the lower one.
5425 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5426 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5434 gen_portrangeop(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5437 struct block
*b0
, *b1
, *tmp
;
5439 /* ip proto 'proto' and not a fragment other than the first fragment */
5440 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)proto
);
5441 b0
= gen_ipfrag(cstate
);
5446 b1
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5450 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5455 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5456 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5461 tmp
= gen_portrangeatom(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5462 b1
= gen_portrangeatom(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5474 static struct block
*
5475 gen_portrange(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5478 struct block
*b0
, *b1
, *tmp
;
5481 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5487 b1
= gen_portrangeop(cstate
, port1
, port2
, ip_proto
, dir
);
5491 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5492 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5494 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5505 static struct block
*
5506 gen_portrangeatom6(compiler_state_t
*cstate
, int off
, bpf_int32 v1
,
5509 struct block
*b1
, *b2
;
5513 * Reverse the order of the ports, so v1 is the lower one.
5522 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5523 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5531 gen_portrangeop6(compiler_state_t
*cstate
, int port1
, int port2
, int proto
,
5534 struct block
*b0
, *b1
, *tmp
;
5536 /* ip6 proto 'proto' */
5537 /* XXX - catch the first fragment of a fragmented packet? */
5538 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)proto
);
5542 b1
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5546 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5551 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5552 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5557 tmp
= gen_portrangeatom6(cstate
, 0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5558 b1
= gen_portrangeatom6(cstate
, 2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5570 static struct block
*
5571 gen_portrange6(compiler_state_t
*cstate
, int port1
, int port2
, int ip_proto
,
5574 struct block
*b0
, *b1
, *tmp
;
5576 /* link proto ip6 */
5577 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5583 b1
= gen_portrangeop6(cstate
, port1
, port2
, ip_proto
, dir
);
5587 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5588 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5590 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5602 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5611 v
= pcap_nametoproto(name
);
5612 if (v
== PROTO_UNDEF
)
5613 bpf_error(cstate
, "unknown ip proto '%s'", name
);
5617 /* XXX should look up h/w protocol type based on cstate->linktype */
5618 v
= pcap_nametoeproto(name
);
5619 if (v
== PROTO_UNDEF
) {
5620 v
= pcap_nametollc(name
);
5621 if (v
== PROTO_UNDEF
)
5622 bpf_error(cstate
, "unknown ether proto '%s'", name
);
5627 if (strcmp(name
, "esis") == 0)
5629 else if (strcmp(name
, "isis") == 0)
5631 else if (strcmp(name
, "clnp") == 0)
5634 bpf_error(cstate
, "unknown osi proto '%s'", name
);
5654 static struct block
*
5655 gen_protochain(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
5657 #ifdef NO_PROTOCHAIN
5658 return gen_proto(cstate
, v
, proto
, dir
);
5660 struct block
*b0
, *b
;
5661 struct slist
*s
[100];
5662 int fix2
, fix3
, fix4
, fix5
;
5663 int ahcheck
, again
, end
;
5665 int reg2
= alloc_reg(cstate
);
5667 memset(s
, 0, sizeof(s
));
5668 fix3
= fix4
= fix5
= 0;
5675 b0
= gen_protochain(cstate
, v
, Q_IP
, dir
);
5676 b
= gen_protochain(cstate
, v
, Q_IPV6
, dir
);
5680 bpf_error(cstate
, "bad protocol applied for 'protochain'");
5685 * We don't handle variable-length prefixes before the link-layer
5686 * header, or variable-length link-layer headers, here yet.
5687 * We might want to add BPF instructions to do the protochain
5688 * work, to simplify that and, on platforms that have a BPF
5689 * interpreter with the new instructions, let the filtering
5690 * be done in the kernel. (We already require a modified BPF
5691 * engine to do the protochain stuff, to support backward
5692 * branches, and backward branch support is unlikely to appear
5693 * in kernel BPF engines.)
5695 if (cstate
->off_linkpl
.is_variable
)
5696 bpf_error(cstate
, "'protochain' not supported with variable length headers");
5698 cstate
->no_optimize
= 1; /*this code is not compatible with optimzer yet */
5701 * s[0] is a dummy entry to protect other BPF insn from damage
5702 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5703 * hard to find interdependency made by jump table fixup.
5706 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
5711 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5714 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5715 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
5717 /* X = ip->ip_hl << 2 */
5718 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
5719 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5724 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5726 /* A = ip6->ip_nxt */
5727 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
5728 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
5730 /* X = sizeof(struct ip6_hdr) */
5731 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
5737 bpf_error(cstate
, "unsupported proto to gen_protochain");
5741 /* again: if (A == v) goto end; else fall through; */
5743 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5745 s
[i
]->s
.jt
= NULL
; /*later*/
5746 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5750 #ifndef IPPROTO_NONE
5751 #define IPPROTO_NONE 59
5753 /* if (A == IPPROTO_NONE) goto end */
5754 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5755 s
[i
]->s
.jt
= NULL
; /*later*/
5756 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5757 s
[i
]->s
.k
= IPPROTO_NONE
;
5758 s
[fix5
]->s
.jf
= s
[i
];
5762 if (proto
== Q_IPV6
) {
5763 int v6start
, v6end
, v6advance
, j
;
5766 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5767 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5768 s
[i
]->s
.jt
= NULL
; /*later*/
5769 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5770 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
5771 s
[fix2
]->s
.jf
= s
[i
];
5773 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5774 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5775 s
[i
]->s
.jt
= NULL
; /*later*/
5776 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5777 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
5779 /* if (A == IPPROTO_ROUTING) goto v6advance */
5780 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5781 s
[i
]->s
.jt
= NULL
; /*later*/
5782 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5783 s
[i
]->s
.k
= IPPROTO_ROUTING
;
5785 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5786 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5787 s
[i
]->s
.jt
= NULL
; /*later*/
5788 s
[i
]->s
.jf
= NULL
; /*later*/
5789 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
5799 * A = P[X + packet head];
5800 * X = X + (P[X + packet head + 1] + 1) * 8;
5802 /* A = P[X + packet head] */
5803 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5804 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5807 s
[i
] = new_stmt(cstate
, BPF_ST
);
5810 /* A = P[X + packet head + 1]; */
5811 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5812 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
5815 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5819 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5823 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
5827 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5830 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5834 /* goto again; (must use BPF_JA for backward jump) */
5835 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5836 s
[i
]->s
.k
= again
- i
- 1;
5837 s
[i
- 1]->s
.jf
= s
[i
];
5841 for (j
= v6start
; j
<= v6end
; j
++)
5842 s
[j
]->s
.jt
= s
[v6advance
];
5845 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5847 s
[fix2
]->s
.jf
= s
[i
];
5853 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5854 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
5855 s
[i
]->s
.jt
= NULL
; /*later*/
5856 s
[i
]->s
.jf
= NULL
; /*later*/
5857 s
[i
]->s
.k
= IPPROTO_AH
;
5859 s
[fix3
]->s
.jf
= s
[ahcheck
];
5866 * X = X + (P[X + 1] + 2) * 4;
5869 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5871 /* A = P[X + packet head]; */
5872 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5873 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5876 s
[i
] = new_stmt(cstate
, BPF_ST
);
5880 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
5883 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5887 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5889 /* A = P[X + packet head] */
5890 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
5891 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
5894 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5898 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
5902 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
5905 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
5909 /* goto again; (must use BPF_JA for backward jump) */
5910 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
5911 s
[i
]->s
.k
= again
- i
- 1;
5916 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
5918 s
[fix2
]->s
.jt
= s
[end
];
5919 s
[fix4
]->s
.jf
= s
[end
];
5920 s
[fix5
]->s
.jt
= s
[end
];
5927 for (i
= 0; i
< max
- 1; i
++)
5928 s
[i
]->next
= s
[i
+ 1];
5929 s
[max
- 1]->next
= NULL
;
5934 b
= new_block(cstate
, JMP(BPF_JEQ
));
5935 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
5938 free_reg(cstate
, reg2
);
5945 static struct block
*
5946 gen_check_802_11_data_frame(compiler_state_t
*cstate
)
5949 struct block
*b0
, *b1
;
5952 * A data frame has the 0x08 bit (b3) in the frame control field set
5953 * and the 0x04 bit (b2) clear.
5955 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
5956 b0
= new_block(cstate
, JMP(BPF_JSET
));
5960 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
5961 b1
= new_block(cstate
, JMP(BPF_JSET
));
5972 * Generate code that checks whether the packet is a packet for protocol
5973 * <proto> and whether the type field in that protocol's header has
5974 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5975 * IP packet and checks the protocol number in the IP header against <v>.
5977 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5978 * against Q_IP and Q_IPV6.
5980 static struct block
*
5981 gen_proto(compiler_state_t
*cstate
, int v
, int proto
, int dir
)
5983 struct block
*b0
, *b1
;
5988 if (dir
!= Q_DEFAULT
)
5989 bpf_error(cstate
, "direction applied to 'proto'");
5993 b0
= gen_proto(cstate
, v
, Q_IP
, dir
);
5994 b1
= gen_proto(cstate
, v
, Q_IPV6
, dir
);
6000 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6001 * not LLC encapsulation with LLCSAP_IP.
6003 * For IEEE 802 networks - which includes 802.5 token ring
6004 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6005 * says that SNAP encapsulation is used, not LLC encapsulation
6008 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6009 * RFC 2225 say that SNAP encapsulation is used, not LLC
6010 * encapsulation with LLCSAP_IP.
6012 * So we always check for ETHERTYPE_IP.
6014 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6016 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, (bpf_int32
)v
);
6018 b1
= gen_protochain(cstate
, v
, Q_IP
);
6024 switch (cstate
->linktype
) {
6028 * Frame Relay packets typically have an OSI
6029 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6030 * generates code to check for all the OSI
6031 * NLPIDs, so calling it and then adding a check
6032 * for the particular NLPID for which we're
6033 * looking is bogus, as we can just check for
6036 * What we check for is the NLPID and a frame
6037 * control field value of UI, i.e. 0x03 followed
6040 * XXX - assumes a 2-byte Frame Relay header with
6041 * DLCI and flags. What if the address is longer?
6043 * XXX - what about SNAP-encapsulated frames?
6045 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6051 * Cisco uses an Ethertype lookalike - for OSI,
6054 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6055 /* OSI in C-HDLC is stuffed with a fudge byte */
6056 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, (long)v
);
6061 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6062 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, (long)v
);
6068 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
6070 * 4 is the offset of the PDU type relative to the IS-IS
6073 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 4, BPF_B
, (long)v
);
6078 bpf_error(cstate
, "arp does not encapsulate another protocol");
6082 bpf_error(cstate
, "rarp does not encapsulate another protocol");
6086 bpf_error(cstate
, "atalk encapsulation is not specifiable");
6090 bpf_error(cstate
, "decnet encapsulation is not specifiable");
6094 bpf_error(cstate
, "sca does not encapsulate another protocol");
6098 bpf_error(cstate
, "lat does not encapsulate another protocol");
6102 bpf_error(cstate
, "moprc does not encapsulate another protocol");
6106 bpf_error(cstate
, "mopdl does not encapsulate another protocol");
6110 return gen_linktype(cstate
, v
);
6113 bpf_error(cstate
, "'udp proto' is bogus");
6117 bpf_error(cstate
, "'tcp proto' is bogus");
6121 bpf_error(cstate
, "'sctp proto' is bogus");
6125 bpf_error(cstate
, "'icmp proto' is bogus");
6129 bpf_error(cstate
, "'igmp proto' is bogus");
6133 bpf_error(cstate
, "'igrp proto' is bogus");
6137 bpf_error(cstate
, "'pim proto' is bogus");
6141 bpf_error(cstate
, "'vrrp proto' is bogus");
6145 bpf_error(cstate
, "'carp proto' is bogus");
6149 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6152 * Also check for a fragment header before the final
6155 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6156 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, (bpf_int32
)v
);
6158 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, (bpf_int32
)v
);
6161 b1
= gen_protochain(cstate
, v
, Q_IPV6
);
6167 bpf_error(cstate
, "'icmp6 proto' is bogus");
6170 bpf_error(cstate
, "'ah proto' is bogus");
6173 bpf_error(cstate
, "'ah proto' is bogus");
6176 bpf_error(cstate
, "'stp proto' is bogus");
6179 bpf_error(cstate
, "'ipx proto' is bogus");
6182 bpf_error(cstate
, "'netbeui proto' is bogus");
6185 bpf_error(cstate
, "'radio proto' is bogus");
6195 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6197 int proto
= q
.proto
;
6201 bpf_u_int32 mask
, addr
;
6203 bpf_u_int32
**alist
;
6206 struct sockaddr_in
*sin4
;
6207 struct sockaddr_in6
*sin6
;
6208 struct addrinfo
*res
, *res0
;
6209 struct in6_addr mask128
;
6211 struct block
*b
, *tmp
;
6212 int port
, real_proto
;
6218 addr
= pcap_nametonetaddr(name
);
6220 bpf_error(cstate
, "unknown network '%s'", name
);
6221 /* Left justify network addr and calculate its network mask */
6223 while (addr
&& (addr
& 0xff000000) == 0) {
6227 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6231 if (proto
== Q_LINK
) {
6232 switch (cstate
->linktype
) {
6235 case DLT_NETANALYZER
:
6236 case DLT_NETANALYZER_TRANSPARENT
:
6237 eaddr
= pcap_ether_hostton(name
);
6240 "unknown ether host '%s'", name
);
6241 tmp
= gen_prevlinkhdr_check(cstate
);
6242 b
= gen_ehostop(cstate
, eaddr
, dir
);
6249 eaddr
= pcap_ether_hostton(name
);
6252 "unknown FDDI host '%s'", name
);
6253 b
= gen_fhostop(cstate
, eaddr
, dir
);
6258 eaddr
= pcap_ether_hostton(name
);
6261 "unknown token ring host '%s'", name
);
6262 b
= gen_thostop(cstate
, eaddr
, dir
);
6266 case DLT_IEEE802_11
:
6267 case DLT_PRISM_HEADER
:
6268 case DLT_IEEE802_11_RADIO_AVS
:
6269 case DLT_IEEE802_11_RADIO
:
6271 eaddr
= pcap_ether_hostton(name
);
6274 "unknown 802.11 host '%s'", name
);
6275 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6279 case DLT_IP_OVER_FC
:
6280 eaddr
= pcap_ether_hostton(name
);
6283 "unknown Fibre Channel host '%s'", name
);
6284 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6289 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6290 } else if (proto
== Q_DECNET
) {
6291 unsigned short dn_addr
;
6293 if (!__pcap_nametodnaddr(name
, &dn_addr
)) {
6295 bpf_error(cstate
, "unknown decnet host name '%s'\n", name
);
6297 bpf_error(cstate
, "decnet name support not included, '%s' cannot be translated\n",
6302 * I don't think DECNET hosts can be multihomed, so
6303 * there is no need to build up a list of addresses
6305 return (gen_host(cstate
, dn_addr
, 0, proto
, dir
, q
.addr
));
6308 alist
= pcap_nametoaddr(name
);
6309 if (alist
== NULL
|| *alist
== NULL
)
6310 bpf_error(cstate
, "unknown host '%s'", name
);
6312 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6313 tproto
== Q_DEFAULT
)
6315 b
= gen_host(cstate
, **alist
++, 0xffffffff, tproto
, dir
, q
.addr
);
6317 tmp
= gen_host(cstate
, **alist
++, 0xffffffff,
6318 tproto
, dir
, q
.addr
);
6324 memset(&mask128
, 0xff, sizeof(mask128
));
6325 res0
= res
= pcap_nametoaddrinfo(name
);
6327 bpf_error(cstate
, "unknown host '%s'", name
);
6330 tproto
= tproto6
= proto
;
6331 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6332 tproto
== Q_DEFAULT
) {
6336 for (res
= res0
; res
; res
= res
->ai_next
) {
6337 switch (res
->ai_family
) {
6339 if (tproto
== Q_IPV6
)
6342 sin4
= (struct sockaddr_in
*)
6344 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6345 0xffffffff, tproto
, dir
, q
.addr
);
6348 if (tproto6
== Q_IP
)
6351 sin6
= (struct sockaddr_in6
*)
6353 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6354 &mask128
, tproto6
, dir
, q
.addr
);
6366 bpf_error(cstate
, "unknown host '%s'%s", name
,
6367 (proto
== Q_DEFAULT
)
6369 : " for specified address family");
6376 if (proto
!= Q_DEFAULT
&&
6377 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6378 bpf_error(cstate
, "illegal qualifier of 'port'");
6379 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6380 bpf_error(cstate
, "unknown port '%s'", name
);
6381 if (proto
== Q_UDP
) {
6382 if (real_proto
== IPPROTO_TCP
)
6383 bpf_error(cstate
, "port '%s' is tcp", name
);
6384 else if (real_proto
== IPPROTO_SCTP
)
6385 bpf_error(cstate
, "port '%s' is sctp", name
);
6387 /* override PROTO_UNDEF */
6388 real_proto
= IPPROTO_UDP
;
6390 if (proto
== Q_TCP
) {
6391 if (real_proto
== IPPROTO_UDP
)
6392 bpf_error(cstate
, "port '%s' is udp", name
);
6394 else if (real_proto
== IPPROTO_SCTP
)
6395 bpf_error(cstate
, "port '%s' is sctp", name
);
6397 /* override PROTO_UNDEF */
6398 real_proto
= IPPROTO_TCP
;
6400 if (proto
== Q_SCTP
) {
6401 if (real_proto
== IPPROTO_UDP
)
6402 bpf_error(cstate
, "port '%s' is udp", name
);
6404 else if (real_proto
== IPPROTO_TCP
)
6405 bpf_error(cstate
, "port '%s' is tcp", name
);
6407 /* override PROTO_UNDEF */
6408 real_proto
= IPPROTO_SCTP
;
6411 bpf_error(cstate
, "illegal port number %d < 0", port
);
6413 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6414 b
= gen_port(cstate
, port
, real_proto
, dir
);
6415 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
6419 if (proto
!= Q_DEFAULT
&&
6420 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6421 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6422 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6423 bpf_error(cstate
, "unknown port in range '%s'", name
);
6424 if (proto
== Q_UDP
) {
6425 if (real_proto
== IPPROTO_TCP
)
6426 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6427 else if (real_proto
== IPPROTO_SCTP
)
6428 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6430 /* override PROTO_UNDEF */
6431 real_proto
= IPPROTO_UDP
;
6433 if (proto
== Q_TCP
) {
6434 if (real_proto
== IPPROTO_UDP
)
6435 bpf_error(cstate
, "port in range '%s' is udp", name
);
6436 else if (real_proto
== IPPROTO_SCTP
)
6437 bpf_error(cstate
, "port in range '%s' is sctp", name
);
6439 /* override PROTO_UNDEF */
6440 real_proto
= IPPROTO_TCP
;
6442 if (proto
== Q_SCTP
) {
6443 if (real_proto
== IPPROTO_UDP
)
6444 bpf_error(cstate
, "port in range '%s' is udp", name
);
6445 else if (real_proto
== IPPROTO_TCP
)
6446 bpf_error(cstate
, "port in range '%s' is tcp", name
);
6448 /* override PROTO_UNDEF */
6449 real_proto
= IPPROTO_SCTP
;
6452 bpf_error(cstate
, "illegal port number %d < 0", port1
);
6454 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
6456 bpf_error(cstate
, "illegal port number %d < 0", port2
);
6458 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
6460 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
6461 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
6466 eaddr
= pcap_ether_hostton(name
);
6468 bpf_error(cstate
, "unknown ether host: %s", name
);
6470 alist
= pcap_nametoaddr(name
);
6471 if (alist
== NULL
|| *alist
== NULL
)
6472 bpf_error(cstate
, "unknown host '%s'", name
);
6473 b
= gen_gateway(cstate
, eaddr
, alist
, proto
, dir
);
6477 bpf_error(cstate
, "'gateway' not supported in this configuration");
6481 real_proto
= lookup_proto(cstate
, name
, proto
);
6482 if (real_proto
>= 0)
6483 return gen_proto(cstate
, real_proto
, proto
, dir
);
6485 bpf_error(cstate
, "unknown protocol: %s", name
);
6488 real_proto
= lookup_proto(cstate
, name
, proto
);
6489 if (real_proto
>= 0)
6490 return gen_protochain(cstate
, real_proto
, proto
, dir
);
6492 bpf_error(cstate
, "unknown protocol: %s", name
);
6503 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6504 unsigned int masklen
, struct qual q
)
6506 register int nlen
, mlen
;
6509 nlen
= __pcap_atoin(s1
, &n
);
6510 /* Promote short ipaddr */
6514 mlen
= __pcap_atoin(s2
, &m
);
6515 /* Promote short ipaddr */
6518 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
6521 /* Convert mask len to mask */
6523 bpf_error(cstate
, "mask length must be <= 32");
6526 * X << 32 is not guaranteed by C to be 0; it's
6531 m
= 0xffffffff << (32 - masklen
);
6533 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
6540 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
6543 bpf_error(cstate
, "Mask syntax for networks only");
6551 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
6554 int proto
= q
.proto
;
6560 else if (q
.proto
== Q_DECNET
) {
6561 vlen
= __pcap_atodn(s
, &v
);
6563 bpf_error(cstate
, "malformed decnet address '%s'", s
);
6565 vlen
= __pcap_atoin(s
, &v
);
6572 if (proto
== Q_DECNET
)
6573 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
6574 else if (proto
== Q_LINK
) {
6575 bpf_error(cstate
, "illegal link layer address");
6578 if (s
== NULL
&& q
.addr
== Q_NET
) {
6579 /* Promote short net number */
6580 while (v
&& (v
& 0xff000000) == 0) {
6585 /* Promote short ipaddr */
6587 mask
<<= 32 - vlen
;
6589 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
6594 proto
= IPPROTO_UDP
;
6595 else if (proto
== Q_TCP
)
6596 proto
= IPPROTO_TCP
;
6597 else if (proto
== Q_SCTP
)
6598 proto
= IPPROTO_SCTP
;
6599 else if (proto
== Q_DEFAULT
)
6600 proto
= PROTO_UNDEF
;
6602 bpf_error(cstate
, "illegal qualifier of 'port'");
6605 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6609 b
= gen_port(cstate
, (int)v
, proto
, dir
);
6610 gen_or(gen_port6(cstate
, (int)v
, proto
, dir
), b
);
6616 proto
= IPPROTO_UDP
;
6617 else if (proto
== Q_TCP
)
6618 proto
= IPPROTO_TCP
;
6619 else if (proto
== Q_SCTP
)
6620 proto
= IPPROTO_SCTP
;
6621 else if (proto
== Q_DEFAULT
)
6622 proto
= PROTO_UNDEF
;
6624 bpf_error(cstate
, "illegal qualifier of 'portrange'");
6627 bpf_error(cstate
, "illegal port number %u > 65535", v
);
6631 b
= gen_portrange(cstate
, (int)v
, (int)v
, proto
, dir
);
6632 gen_or(gen_portrange6(cstate
, (int)v
, (int)v
, proto
, dir
), b
);
6637 bpf_error(cstate
, "'gateway' requires a name");
6641 return gen_proto(cstate
, (int)v
, proto
, dir
);
6644 return gen_protochain(cstate
, (int)v
, proto
, dir
);
6659 gen_mcode6(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
6660 unsigned int masklen
, struct qual q
)
6662 struct addrinfo
*res
;
6663 struct in6_addr
*addr
;
6664 struct in6_addr mask
;
6669 bpf_error(cstate
, "no mask %s supported", s2
);
6671 res
= pcap_nametoaddrinfo(s1
);
6673 bpf_error(cstate
, "invalid ip6 address %s", s1
);
6676 bpf_error(cstate
, "%s resolved to multiple address", s1
);
6677 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
6679 if (sizeof(mask
) * 8 < masklen
)
6680 bpf_error(cstate
, "mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
6681 memset(&mask
, 0, sizeof(mask
));
6682 memset(&mask
, 0xff, masklen
/ 8);
6684 mask
.s6_addr
[masklen
/ 8] =
6685 (0xff << (8 - masklen
% 8)) & 0xff;
6688 a
= (u_int32_t
*)addr
;
6689 m
= (u_int32_t
*)&mask
;
6690 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
6691 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
6692 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s1
, masklen
);
6700 bpf_error(cstate
, "Mask syntax for networks only");
6704 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
6710 bpf_error(cstate
, "invalid qualifier against IPv6 address");
6718 gen_ecode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
6720 struct block
*b
, *tmp
;
6722 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6723 switch (cstate
->linktype
) {
6725 case DLT_NETANALYZER
:
6726 case DLT_NETANALYZER_TRANSPARENT
:
6727 tmp
= gen_prevlinkhdr_check(cstate
);
6728 b
= gen_ehostop(cstate
, eaddr
, (int)q
.dir
);
6733 return gen_fhostop(cstate
, eaddr
, (int)q
.dir
);
6735 return gen_thostop(cstate
, eaddr
, (int)q
.dir
);
6736 case DLT_IEEE802_11
:
6737 case DLT_PRISM_HEADER
:
6738 case DLT_IEEE802_11_RADIO_AVS
:
6739 case DLT_IEEE802_11_RADIO
:
6741 return gen_wlanhostop(cstate
, eaddr
, (int)q
.dir
);
6742 case DLT_IP_OVER_FC
:
6743 return gen_ipfchostop(cstate
, eaddr
, (int)q
.dir
);
6745 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6749 bpf_error(cstate
, "ethernet address used in non-ether expression");
6756 struct slist
*s0
, *s1
;
6759 * This is definitely not the best way to do this, but the
6760 * lists will rarely get long.
6767 static struct slist
*
6768 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
6772 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
6777 static struct slist
*
6778 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
6782 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6788 * Modify "index" to use the value stored into its register as an
6789 * offset relative to the beginning of the header for the protocol
6790 * "proto", and allocate a register and put an item "size" bytes long
6791 * (1, 2, or 4) at that offset into that register, making it the register
6795 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
, int size
)
6797 struct slist
*s
, *tmp
;
6799 int regno
= alloc_reg(cstate
);
6801 free_reg(cstate
, inst
->regno
);
6805 bpf_error(cstate
, "data size must be 1, 2, or 4");
6821 bpf_error(cstate
, "unsupported index operation");
6825 * The offset is relative to the beginning of the packet
6826 * data, if we have a radio header. (If we don't, this
6829 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
6830 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
6831 cstate
->linktype
!= DLT_PRISM_HEADER
)
6832 bpf_error(cstate
, "radio information not present in capture");
6835 * Load into the X register the offset computed into the
6836 * register specified by "index".
6838 s
= xfer_to_x(cstate
, inst
);
6841 * Load the item at that offset.
6843 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6845 sappend(inst
->s
, s
);
6850 * The offset is relative to the beginning of
6851 * the link-layer header.
6853 * XXX - what about ATM LANE? Should the index be
6854 * relative to the beginning of the AAL5 frame, so
6855 * that 0 refers to the beginning of the LE Control
6856 * field, or relative to the beginning of the LAN
6857 * frame, so that 0 refers, for Ethernet LANE, to
6858 * the beginning of the destination address?
6860 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
6863 * If "s" is non-null, it has code to arrange that the
6864 * X register contains the length of the prefix preceding
6865 * the link-layer header. Add to it the offset computed
6866 * into the register specified by "index", and move that
6867 * into the X register. Otherwise, just load into the X
6868 * register the offset computed into the register specified
6872 sappend(s
, xfer_to_a(cstate
, inst
));
6873 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6874 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6876 s
= xfer_to_x(cstate
, inst
);
6879 * Load the item at the sum of the offset we've put in the
6880 * X register and the offset of the start of the link
6881 * layer header (which is 0 if the radio header is
6882 * variable-length; that header length is what we put
6883 * into the X register and then added to the index).
6885 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6886 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
6888 sappend(inst
->s
, s
);
6902 * The offset is relative to the beginning of
6903 * the network-layer header.
6904 * XXX - are there any cases where we want
6905 * cstate->off_nl_nosnap?
6907 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
6910 * If "s" is non-null, it has code to arrange that the
6911 * X register contains the variable part of the offset
6912 * of the link-layer payload. Add to it the offset
6913 * computed into the register specified by "index",
6914 * and move that into the X register. Otherwise, just
6915 * load into the X register the offset computed into
6916 * the register specified by "index".
6919 sappend(s
, xfer_to_a(cstate
, inst
));
6920 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6921 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6923 s
= xfer_to_x(cstate
, inst
);
6926 * Load the item at the sum of the offset we've put in the
6927 * X register, the offset of the start of the network
6928 * layer header from the beginning of the link-layer
6929 * payload, and the constant part of the offset of the
6930 * start of the link-layer payload.
6932 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
6933 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6935 sappend(inst
->s
, s
);
6938 * Do the computation only if the packet contains
6939 * the protocol in question.
6941 b
= gen_proto_abbrev(cstate
, proto
);
6943 gen_and(inst
->b
, b
);
6957 * The offset is relative to the beginning of
6958 * the transport-layer header.
6960 * Load the X register with the length of the IPv4 header
6961 * (plus the offset of the link-layer header, if it's
6962 * a variable-length header), in bytes.
6964 * XXX - are there any cases where we want
6965 * cstate->off_nl_nosnap?
6966 * XXX - we should, if we're built with
6967 * IPv6 support, generate code to load either
6968 * IPv4, IPv6, or both, as appropriate.
6970 s
= gen_loadx_iphdrlen(cstate
);
6973 * The X register now contains the sum of the variable
6974 * part of the offset of the link-layer payload and the
6975 * length of the network-layer header.
6977 * Load into the A register the offset relative to
6978 * the beginning of the transport layer header,
6979 * add the X register to that, move that to the
6980 * X register, and load with an offset from the
6981 * X register equal to the sum of the constant part of
6982 * the offset of the link-layer payload and the offset,
6983 * relative to the beginning of the link-layer payload,
6984 * of the network-layer header.
6986 sappend(s
, xfer_to_a(cstate
, inst
));
6987 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
6988 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
6989 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
));
6990 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6991 sappend(inst
->s
, s
);
6994 * Do the computation only if the packet contains
6995 * the protocol in question - which is true only
6996 * if this is an IP datagram and is the first or
6997 * only fragment of that datagram.
6999 gen_and(gen_proto_abbrev(cstate
, proto
), b
= gen_ipfrag(cstate
));
7001 gen_and(inst
->b
, b
);
7002 gen_and(gen_proto_abbrev(cstate
, Q_IP
), b
);
7006 bpf_error(cstate
, "IPv6 upper-layer protocol is not supported by proto[x]");
7009 inst
->regno
= regno
;
7010 s
= new_stmt(cstate
, BPF_ST
);
7012 sappend(inst
->s
, s
);
7018 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7019 struct arth
*a1
, int reversed
)
7021 struct slist
*s0
, *s1
, *s2
;
7022 struct block
*b
, *tmp
;
7024 s0
= xfer_to_x(cstate
, a1
);
7025 s1
= xfer_to_a(cstate
, a0
);
7026 if (code
== BPF_JEQ
) {
7027 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7028 b
= new_block(cstate
, JMP(code
));
7032 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7038 sappend(a0
->s
, a1
->s
);
7042 free_reg(cstate
, a0
->regno
);
7043 free_reg(cstate
, a1
->regno
);
7045 /* 'and' together protocol checks */
7048 gen_and(a0
->b
, tmp
= a1
->b
);
7062 gen_loadlen(compiler_state_t
*cstate
)
7064 int regno
= alloc_reg(cstate
);
7065 struct arth
*a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7068 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7069 s
->next
= new_stmt(cstate
, BPF_ST
);
7070 s
->next
->s
.k
= regno
;
7078 gen_loadi(compiler_state_t
*cstate
, int val
)
7084 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7086 reg
= alloc_reg(cstate
);
7088 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7090 s
->next
= new_stmt(cstate
, BPF_ST
);
7099 gen_neg(compiler_state_t
*cstate
, struct arth
*a
)
7103 s
= xfer_to_a(cstate
, a
);
7105 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7108 s
= new_stmt(cstate
, BPF_ST
);
7116 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7119 struct slist
*s0
, *s1
, *s2
;
7122 * Disallow division by, or modulus by, zero; we do this here
7123 * so that it gets done even if the optimizer is disabled.
7125 if (code
== BPF_DIV
) {
7126 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7127 bpf_error(cstate
, "division by zero");
7128 } else if (code
== BPF_MOD
) {
7129 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7130 bpf_error(cstate
, "modulus by zero");
7132 s0
= xfer_to_x(cstate
, a1
);
7133 s1
= xfer_to_a(cstate
, a0
);
7134 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7139 sappend(a0
->s
, a1
->s
);
7141 free_reg(cstate
, a0
->regno
);
7142 free_reg(cstate
, a1
->regno
);
7144 s0
= new_stmt(cstate
, BPF_ST
);
7145 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7152 * Initialize the table of used registers and the current register.
7155 init_regs(compiler_state_t
*cstate
)
7158 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7162 * Return the next free register.
7165 alloc_reg(compiler_state_t
*cstate
)
7167 int n
= BPF_MEMWORDS
;
7170 if (cstate
->regused
[cstate
->curreg
])
7171 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7173 cstate
->regused
[cstate
->curreg
] = 1;
7174 return cstate
->curreg
;
7177 bpf_error(cstate
, "too many registers needed to evaluate expression");
7183 * Return a register to the table so it can
7187 free_reg(compiler_state_t
*cstate
, int n
)
7189 cstate
->regused
[n
] = 0;
7192 static struct block
*
7193 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7198 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7199 b
= new_block(cstate
, JMP(jmp
));
7207 gen_greater(compiler_state_t
*cstate
, int n
)
7209 return gen_len(cstate
, BPF_JGE
, n
);
7213 * Actually, this is less than or equal.
7216 gen_less(compiler_state_t
*cstate
, int n
)
7220 b
= gen_len(cstate
, BPF_JGT
, n
);
7227 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7228 * the beginning of the link-layer header.
7229 * XXX - that means you can't test values in the radiotap header, but
7230 * as that header is difficult if not impossible to parse generally
7231 * without a loop, that might not be a severe problem. A new keyword
7232 * "radio" could be added for that, although what you'd really want
7233 * would be a way of testing particular radio header values, which
7234 * would generate code appropriate to the radio header in question.
7237 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, int val
)
7247 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7250 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7254 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7258 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
7262 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
7266 b
= new_block(cstate
, JMP(BPF_JEQ
));
7273 static const u_char abroadcast
[] = { 0x0 };
7276 gen_broadcast(compiler_state_t
*cstate
, int proto
)
7278 bpf_u_int32 hostmask
;
7279 struct block
*b0
, *b1
, *b2
;
7280 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7286 switch (cstate
->linktype
) {
7288 case DLT_ARCNET_LINUX
:
7289 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7291 case DLT_NETANALYZER
:
7292 case DLT_NETANALYZER_TRANSPARENT
:
7293 b1
= gen_prevlinkhdr_check(cstate
);
7294 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
7299 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
7301 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
7302 case DLT_IEEE802_11
:
7303 case DLT_PRISM_HEADER
:
7304 case DLT_IEEE802_11_RADIO_AVS
:
7305 case DLT_IEEE802_11_RADIO
:
7307 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
7308 case DLT_IP_OVER_FC
:
7309 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
7311 bpf_error(cstate
, "not a broadcast link");
7317 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7318 * as an indication that we don't know the netmask, and fail
7321 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
7322 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
7323 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7324 hostmask
= ~cstate
->netmask
;
7325 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7326 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
,
7327 (bpf_int32
)(~0 & hostmask
), hostmask
);
7332 bpf_error(cstate
, "only link-layer/IP broadcast filters supported");
7338 * Generate code to test the low-order bit of a MAC address (that's
7339 * the bottom bit of the *first* byte).
7341 static struct block
*
7342 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
7344 register struct block
*b0
;
7345 register struct slist
*s
;
7347 /* link[offset] & 1 != 0 */
7348 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
7349 b0
= new_block(cstate
, JMP(BPF_JSET
));
7356 gen_multicast(compiler_state_t
*cstate
, int proto
)
7358 register struct block
*b0
, *b1
, *b2
;
7359 register struct slist
*s
;
7365 switch (cstate
->linktype
) {
7367 case DLT_ARCNET_LINUX
:
7368 /* all ARCnet multicasts use the same address */
7369 return gen_ahostop(cstate
, abroadcast
, Q_DST
);
7371 case DLT_NETANALYZER
:
7372 case DLT_NETANALYZER_TRANSPARENT
:
7373 b1
= gen_prevlinkhdr_check(cstate
);
7374 /* ether[0] & 1 != 0 */
7375 b0
= gen_mac_multicast(cstate
, 0);
7381 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7383 * XXX - was that referring to bit-order issues?
7385 /* fddi[1] & 1 != 0 */
7386 return gen_mac_multicast(cstate
, 1);
7388 /* tr[2] & 1 != 0 */
7389 return gen_mac_multicast(cstate
, 2);
7390 case DLT_IEEE802_11
:
7391 case DLT_PRISM_HEADER
:
7392 case DLT_IEEE802_11_RADIO_AVS
:
7393 case DLT_IEEE802_11_RADIO
:
7398 * For control frames, there is no DA.
7400 * For management frames, DA is at an
7401 * offset of 4 from the beginning of
7404 * For data frames, DA is at an offset
7405 * of 4 from the beginning of the packet
7406 * if To DS is clear and at an offset of
7407 * 16 from the beginning of the packet
7412 * Generate the tests to be done for data frames.
7414 * First, check for To DS set, i.e. "link[1] & 0x01".
7416 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7417 b1
= new_block(cstate
, JMP(BPF_JSET
));
7418 b1
->s
.k
= 0x01; /* To DS */
7422 * If To DS is set, the DA is at 16.
7424 b0
= gen_mac_multicast(cstate
, 16);
7428 * Now, check for To DS not set, i.e. check
7429 * "!(link[1] & 0x01)".
7431 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
7432 b2
= new_block(cstate
, JMP(BPF_JSET
));
7433 b2
->s
.k
= 0x01; /* To DS */
7438 * If To DS is not set, the DA is at 4.
7440 b1
= gen_mac_multicast(cstate
, 4);
7444 * Now OR together the last two checks. That gives
7445 * the complete set of checks for data frames.
7450 * Now check for a data frame.
7451 * I.e, check "link[0] & 0x08".
7453 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7454 b1
= new_block(cstate
, JMP(BPF_JSET
));
7459 * AND that with the checks done for data frames.
7464 * If the high-order bit of the type value is 0, this
7465 * is a management frame.
7466 * I.e, check "!(link[0] & 0x08)".
7468 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7469 b2
= new_block(cstate
, JMP(BPF_JSET
));
7475 * For management frames, the DA is at 4.
7477 b1
= gen_mac_multicast(cstate
, 4);
7481 * OR that with the checks done for data frames.
7482 * That gives the checks done for management and
7488 * If the low-order bit of the type value is 1,
7489 * this is either a control frame or a frame
7490 * with a reserved type, and thus not a
7493 * I.e., check "!(link[0] & 0x04)".
7495 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
7496 b1
= new_block(cstate
, JMP(BPF_JSET
));
7502 * AND that with the checks for data and management
7507 case DLT_IP_OVER_FC
:
7508 b0
= gen_mac_multicast(cstate
, 2);
7513 /* Link not known to support multicasts */
7517 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
7518 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, (bpf_int32
)224);
7523 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
7524 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, (bpf_int32
)255);
7528 bpf_error(cstate
, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7534 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7535 * Outbound traffic is sent by this machine, while inbound traffic is
7536 * sent by a remote machine (and may include packets destined for a
7537 * unicast or multicast link-layer address we are not subscribing to).
7538 * These are the same definitions implemented by pcap_setdirection().
7539 * Capturing only unicast traffic destined for this host is probably
7540 * better accomplished using a higher-layer filter.
7543 gen_inbound(compiler_state_t
*cstate
, int dir
)
7545 register struct block
*b0
;
7548 * Only some data link types support inbound/outbound qualifiers.
7550 switch (cstate
->linktype
) {
7552 b0
= gen_relation(cstate
, BPF_JEQ
,
7553 gen_load(cstate
, Q_LINK
, gen_loadi(cstate
, 0), 1),
7554 gen_loadi(cstate
, 0),
7560 /* match outgoing packets */
7561 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_OUTBOUND
);
7563 /* match incoming packets */
7564 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, IPNET_INBOUND
);
7569 /* match outgoing packets */
7570 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
7572 /* to filter on inbound traffic, invert the match */
7577 #ifdef HAVE_NET_PFVAR_H
7579 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
7580 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
7586 /* match outgoing packets */
7587 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_OUT
);
7589 /* match incoming packets */
7590 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, PPP_PPPD_IN
);
7594 case DLT_JUNIPER_MFR
:
7595 case DLT_JUNIPER_MLFR
:
7596 case DLT_JUNIPER_MLPPP
:
7597 case DLT_JUNIPER_ATM1
:
7598 case DLT_JUNIPER_ATM2
:
7599 case DLT_JUNIPER_PPPOE
:
7600 case DLT_JUNIPER_PPPOE_ATM
:
7601 case DLT_JUNIPER_GGSN
:
7602 case DLT_JUNIPER_ES
:
7603 case DLT_JUNIPER_MONITOR
:
7604 case DLT_JUNIPER_SERVICES
:
7605 case DLT_JUNIPER_ETHER
:
7606 case DLT_JUNIPER_PPP
:
7607 case DLT_JUNIPER_FRELAY
:
7608 case DLT_JUNIPER_CHDLC
:
7609 case DLT_JUNIPER_VP
:
7610 case DLT_JUNIPER_ST
:
7611 case DLT_JUNIPER_ISM
:
7612 case DLT_JUNIPER_VS
:
7613 case DLT_JUNIPER_SRX_E2E
:
7614 case DLT_JUNIPER_FIBRECHANNEL
:
7615 case DLT_JUNIPER_ATM_CEMIC
:
7617 /* juniper flags (including direction) are stored
7618 * the byte after the 3-byte magic number */
7620 /* match outgoing packets */
7621 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 0, 0x01);
7623 /* match incoming packets */
7624 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, 1, 0x01);
7630 * If we have packet meta-data indicating a direction,
7631 * check it, otherwise give up as this link-layer type
7632 * has nothing in the packet data.
7634 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7636 * This is Linux with PF_PACKET support.
7637 * If this is a *live* capture, we can look at
7638 * special meta-data in the filter expression;
7639 * if it's a savefile, we can't.
7641 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
7642 /* We have a FILE *, so this is a savefile */
7643 bpf_error(cstate
, "inbound/outbound not supported on linktype %d when reading savefiles",
7648 /* match outgoing packets */
7649 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
7652 /* to filter on inbound traffic, invert the match */
7655 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7656 bpf_error(cstate
, "inbound/outbound not supported on linktype %d",
7660 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7665 #ifdef HAVE_NET_PFVAR_H
7666 /* PF firewall log matched interface */
7668 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7673 if (cstate
->linktype
!= DLT_PFLOG
) {
7674 bpf_error(cstate
, "ifname supported only on PF linktype");
7677 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
7678 off
= offsetof(struct pfloghdr
, ifname
);
7679 if (strlen(ifname
) >= len
) {
7680 bpf_error(cstate
, "ifname interface names can only be %d characters",
7684 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, strlen(ifname
), (const u_char
*)ifname
);
7688 /* PF firewall log ruleset name */
7690 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7694 if (cstate
->linktype
!= DLT_PFLOG
) {
7695 bpf_error(cstate
, "ruleset supported only on PF linktype");
7699 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
7700 bpf_error(cstate
, "ruleset names can only be %ld characters",
7701 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
7705 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
7706 strlen(ruleset
), (const u_char
*)ruleset
);
7710 /* PF firewall log rule number */
7712 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7716 if (cstate
->linktype
!= DLT_PFLOG
) {
7717 bpf_error(cstate
, "rnr supported only on PF linktype");
7721 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
7726 /* PF firewall log sub-rule number */
7728 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7732 if (cstate
->linktype
!= DLT_PFLOG
) {
7733 bpf_error(cstate
, "srnr supported only on PF linktype");
7737 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
7742 /* PF firewall log reason code */
7744 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7748 if (cstate
->linktype
!= DLT_PFLOG
) {
7749 bpf_error(cstate
, "reason supported only on PF linktype");
7753 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
7758 /* PF firewall log action */
7760 gen_pf_action(compiler_state_t
*cstate
, int action
)
7764 if (cstate
->linktype
!= DLT_PFLOG
) {
7765 bpf_error(cstate
, "action supported only on PF linktype");
7769 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
7773 #else /* !HAVE_NET_PFVAR_H */
7775 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
7777 bpf_error(cstate
, "libpcap was compiled without pf support");
7783 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
7785 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7791 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
7793 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7799 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
7801 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7807 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
7809 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7815 gen_pf_action(compiler_state_t
*cstate
, int action
)
7817 bpf_error(cstate
, "libpcap was compiled on a machine without pf support");
7821 #endif /* HAVE_NET_PFVAR_H */
7823 /* IEEE 802.11 wireless header */
7825 gen_p80211_type(compiler_state_t
*cstate
, int type
, int mask
)
7829 switch (cstate
->linktype
) {
7831 case DLT_IEEE802_11
:
7832 case DLT_PRISM_HEADER
:
7833 case DLT_IEEE802_11_RADIO_AVS
:
7834 case DLT_IEEE802_11_RADIO
:
7835 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, (bpf_int32
)type
,
7840 bpf_error(cstate
, "802.11 link-layer types supported only on 802.11");
7848 gen_p80211_fcdir(compiler_state_t
*cstate
, int fcdir
)
7852 switch (cstate
->linktype
) {
7854 case DLT_IEEE802_11
:
7855 case DLT_PRISM_HEADER
:
7856 case DLT_IEEE802_11_RADIO_AVS
:
7857 case DLT_IEEE802_11_RADIO
:
7861 bpf_error(cstate
, "frame direction supported only with 802.11 headers");
7865 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, (bpf_int32
)fcdir
,
7866 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
7872 gen_acode(compiler_state_t
*cstate
, const u_char
*eaddr
, struct qual q
)
7874 switch (cstate
->linktype
) {
7877 case DLT_ARCNET_LINUX
:
7878 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
7880 return (gen_ahostop(cstate
, eaddr
, (int)q
.dir
));
7882 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7888 bpf_error(cstate
, "aid supported only on ARCnet");
7891 bpf_error(cstate
, "ARCnet address used in non-arc expression");
7896 static struct block
*
7897 gen_ahostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
7899 register struct block
*b0
, *b1
;
7902 /* src comes first, different from Ethernet */
7904 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 1, eaddr
);
7907 return gen_bcmp(cstate
, OR_LINKHDR
, 1, 1, eaddr
);
7910 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7911 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7917 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
7918 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
7923 bpf_error(cstate
, "'addr1' is only supported on 802.11");
7927 bpf_error(cstate
, "'addr2' is only supported on 802.11");
7931 bpf_error(cstate
, "'addr3' is only supported on 802.11");
7935 bpf_error(cstate
, "'addr4' is only supported on 802.11");
7939 bpf_error(cstate
, "'ra' is only supported on 802.11");
7943 bpf_error(cstate
, "'ta' is only supported on 802.11");
7950 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
7951 static struct block
*
7952 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
7954 struct block
*b0
, *b1
;
7957 /* generate new filter code based on extracting packet
7959 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
7960 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
;
7962 b0
= new_block(cstate
, JMP(BPF_JEQ
));
7966 if (vlan_num
>= 0) {
7967 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
7968 s
->s
.k
= SKF_AD_OFF
+ SKF_AD_VLAN_TAG
;
7970 b1
= new_block(cstate
, JMP(BPF_JEQ
));
7972 b1
->s
.k
= (bpf_int32
) vlan_num
;
7982 static struct block
*
7983 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, int vlan_num
)
7985 struct block
*b0
, *b1
;
7987 /* check for VLAN, including QinQ */
7988 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
7989 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
7992 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
7996 /* If a specific VLAN is requested, check VLAN id */
7997 if (vlan_num
>= 0) {
7998 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
,
7999 (bpf_int32
)vlan_num
, 0x0fff);
8005 * The payload follows the full header, including the
8006 * VLAN tags, so skip past this VLAN tag.
8008 cstate
->off_linkpl
.constant_part
+= 4;
8011 * The link-layer type information follows the VLAN tags, so
8012 * skip past this VLAN tag.
8014 cstate
->off_linktype
.constant_part
+= 4;
8020 * support IEEE 802.1Q VLAN trunk over ethernet
8023 gen_vlan(compiler_state_t
*cstate
, int vlan_num
)
8027 /* can't check for VLAN-encapsulated packets inside MPLS */
8028 if (cstate
->label_stack_depth
> 0)
8029 bpf_error(cstate
, "no VLAN match after MPLS");
8032 * Check for a VLAN packet, and then change the offsets to point
8033 * to the type and data fields within the VLAN packet. Just
8034 * increment the offsets, so that we can support a hierarchy, e.g.
8035 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8038 * XXX - this is a bit of a kludge. If we were to split the
8039 * compiler into a parser that parses an expression and
8040 * generates an expression tree, and a code generator that
8041 * takes an expression tree (which could come from our
8042 * parser or from some other parser) and generates BPF code,
8043 * we could perhaps make the offsets parameters of routines
8044 * and, in the handler for an "AND" node, pass to subnodes
8045 * other than the VLAN node the adjusted offsets.
8047 * This would mean that "vlan" would, instead of changing the
8048 * behavior of *all* tests after it, change only the behavior
8049 * of tests ANDed with it. That would change the documented
8050 * semantics of "vlan", which might break some expressions.
8051 * However, it would mean that "(vlan and ip) or ip" would check
8052 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8053 * checking only for VLAN-encapsulated IP, so that could still
8054 * be considered worth doing; it wouldn't break expressions
8055 * that are of the form "vlan and ..." or "vlan N and ...",
8056 * which I suspect are the most common expressions involving
8057 * "vlan". "vlan or ..." doesn't necessarily do what the user
8058 * would really want, now, as all the "or ..." tests would
8059 * be done assuming a VLAN, even though the "or" could be viewed
8060 * as meaning "or, if this isn't a VLAN packet...".
8062 switch (cstate
->linktype
) {
8065 case DLT_NETANALYZER
:
8066 case DLT_NETANALYZER_TRANSPARENT
:
8067 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8068 /* Verify that this is the outer part of the packet and
8069 * not encapsulated somehow. */
8070 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
8071 cstate
->off_linkhdr
.constant_part
==
8072 cstate
->off_outermostlinkhdr
.constant_part
) {
8074 * Do we need special VLAN handling?
8076 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
8077 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
);
8079 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8082 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8085 case DLT_IEEE802_11
:
8086 case DLT_PRISM_HEADER
:
8087 case DLT_IEEE802_11_RADIO_AVS
:
8088 case DLT_IEEE802_11_RADIO
:
8089 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
);
8093 bpf_error(cstate
, "no VLAN support for data link type %d",
8098 cstate
->vlan_stack_depth
++;
8107 gen_mpls(compiler_state_t
*cstate
, int label_num
)
8109 struct block
*b0
, *b1
;
8111 if (cstate
->label_stack_depth
> 0) {
8112 /* just match the bottom-of-stack bit clear */
8113 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
8116 * We're not in an MPLS stack yet, so check the link-layer
8117 * type against MPLS.
8119 switch (cstate
->linktype
) {
8121 case DLT_C_HDLC
: /* fall through */
8123 case DLT_NETANALYZER
:
8124 case DLT_NETANALYZER_TRANSPARENT
:
8125 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
8129 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
8132 /* FIXME add other DLT_s ...
8133 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8134 * leave it for now */
8137 bpf_error(cstate
, "no MPLS support for data link type %d",
8145 /* If a specific MPLS label is requested, check it */
8146 if (label_num
>= 0) {
8147 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8148 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, (bpf_int32
)label_num
,
8149 0xfffff000); /* only compare the first 20 bits */
8155 * Change the offsets to point to the type and data fields within
8156 * the MPLS packet. Just increment the offsets, so that we
8157 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8158 * capture packets with an outer label of 100000 and an inner
8161 * Increment the MPLS stack depth as well; this indicates that
8162 * we're checking MPLS-encapsulated headers, to make sure higher
8163 * level code generators don't try to match against IP-related
8164 * protocols such as Q_ARP, Q_RARP etc.
8166 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8168 cstate
->off_nl_nosnap
+= 4;
8169 cstate
->off_nl
+= 4;
8170 cstate
->label_stack_depth
++;
8175 * Support PPPOE discovery and session.
8178 gen_pppoed(compiler_state_t
*cstate
)
8180 /* check for PPPoE discovery */
8181 return gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOED
);
8185 gen_pppoes(compiler_state_t
*cstate
, int sess_num
)
8187 struct block
*b0
, *b1
;
8190 * Test against the PPPoE session link-layer type.
8192 b0
= gen_linktype(cstate
, (bpf_int32
)ETHERTYPE_PPPOES
);
8194 /* If a specific session is requested, check PPPoE session id */
8195 if (sess_num
>= 0) {
8196 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
,
8197 (bpf_int32
)sess_num
, 0x0000ffff);
8203 * Change the offsets to point to the type and data fields within
8204 * the PPP packet, and note that this is PPPoE rather than
8207 * XXX - this is a bit of a kludge. If we were to split the
8208 * compiler into a parser that parses an expression and
8209 * generates an expression tree, and a code generator that
8210 * takes an expression tree (which could come from our
8211 * parser or from some other parser) and generates BPF code,
8212 * we could perhaps make the offsets parameters of routines
8213 * and, in the handler for an "AND" node, pass to subnodes
8214 * other than the PPPoE node the adjusted offsets.
8216 * This would mean that "pppoes" would, instead of changing the
8217 * behavior of *all* tests after it, change only the behavior
8218 * of tests ANDed with it. That would change the documented
8219 * semantics of "pppoes", which might break some expressions.
8220 * However, it would mean that "(pppoes and ip) or ip" would check
8221 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8222 * checking only for VLAN-encapsulated IP, so that could still
8223 * be considered worth doing; it wouldn't break expressions
8224 * that are of the form "pppoes and ..." which I suspect are the
8225 * most common expressions involving "pppoes". "pppoes or ..."
8226 * doesn't necessarily do what the user would really want, now,
8227 * as all the "or ..." tests would be done assuming PPPoE, even
8228 * though the "or" could be viewed as meaning "or, if this isn't
8229 * a PPPoE packet...".
8231 * The "network-layer" protocol is PPPoE, which has a 6-byte
8232 * PPPoE header, followed by a PPP packet.
8234 * There is no HDLC encapsulation for the PPP packet (it's
8235 * encapsulated in PPPoES instead), so the link-layer type
8236 * starts at the first byte of the PPP packet. For PPPoE,
8237 * that offset is relative to the beginning of the total
8238 * link-layer payload, including any 802.2 LLC header, so
8239 * it's 6 bytes past cstate->off_nl.
8241 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
8242 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
8243 cstate
->off_linkpl
.reg
);
8245 cstate
->off_linktype
= cstate
->off_linkhdr
;
8246 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
8249 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
8254 /* Check that this is Geneve and the VNI is correct if
8255 * specified. Parameterized to handle both IPv4 and IPv6. */
8256 static struct block
*
8257 gen_geneve_check(compiler_state_t
*cstate
,
8258 struct block
*(*gen_portfn
)(compiler_state_t
*, int, int, int),
8259 enum e_offrel offrel
, int vni
)
8261 struct block
*b0
, *b1
;
8263 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
8265 /* Check that we are operating on version 0. Otherwise, we
8266 * can't decode the rest of the fields. The version is 2 bits
8267 * in the first byte of the Geneve header. */
8268 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, (bpf_int32
)0, 0xc0);
8273 vni
<<= 8; /* VNI is in the upper 3 bytes */
8274 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, (bpf_int32
)vni
,
8283 /* The IPv4 and IPv6 Geneve checks need to do two things:
8284 * - Verify that this actually is Geneve with the right VNI.
8285 * - Place the IP header length (plus variable link prefix if
8286 * needed) into register A to be used later to compute
8287 * the inner packet offsets. */
8288 static struct block
*
8289 gen_geneve4(compiler_state_t
*cstate
, int vni
)
8291 struct block
*b0
, *b1
;
8292 struct slist
*s
, *s1
;
8294 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
);
8296 /* Load the IP header length into A. */
8297 s
= gen_loadx_iphdrlen(cstate
);
8299 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8302 /* Forcibly append these statements to the true condition
8303 * of the protocol check by creating a new block that is
8304 * always true and ANDing them. */
8305 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8314 static struct block
*
8315 gen_geneve6(compiler_state_t
*cstate
, int vni
)
8317 struct block
*b0
, *b1
;
8318 struct slist
*s
, *s1
;
8320 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
);
8322 /* Load the IP header length. We need to account for a
8323 * variable length link prefix if there is one. */
8324 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
8326 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8330 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8334 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
8338 /* Forcibly append these statements to the true condition
8339 * of the protocol check by creating a new block that is
8340 * always true and ANDing them. */
8341 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8344 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8353 /* We need to store three values based on the Geneve header::
8354 * - The offset of the linktype.
8355 * - The offset of the end of the Geneve header.
8356 * - The offset of the end of the encapsulated MAC header. */
8357 static struct slist
*
8358 gen_geneve_offsets(compiler_state_t
*cstate
)
8360 struct slist
*s
, *s1
, *s_proto
;
8362 /* First we need to calculate the offset of the Geneve header
8363 * itself. This is composed of the IP header previously calculated
8364 * (include any variable link prefix) and stored in A plus the
8365 * fixed sized headers (fixed link prefix, MAC length, and UDP
8367 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8368 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
8370 /* Stash this in X since we'll need it later. */
8371 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8374 /* The EtherType in Geneve is 2 bytes in. Calculate this and
8376 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8380 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
8381 cstate
->off_linktype
.is_variable
= 1;
8382 cstate
->off_linktype
.constant_part
= 0;
8384 s1
= new_stmt(cstate
, BPF_ST
);
8385 s1
->s
.k
= cstate
->off_linktype
.reg
;
8388 /* Load the Geneve option length and mask and shift to get the
8389 * number of bytes. It is stored in the first byte of the Geneve
8391 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
8395 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8399 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
8403 /* Add in the rest of the Geneve base header. */
8404 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8408 /* Add the Geneve header length to its offset and store. */
8409 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
8413 /* Set the encapsulated type as Ethernet. Even though we may
8414 * not actually have Ethernet inside there are two reasons this
8416 * - The linktype field is always in EtherType format regardless
8417 * of whether it is in Geneve or an inner Ethernet frame.
8418 * - The only link layer that we have specific support for is
8419 * Ethernet. We will confirm that the packet actually is
8420 * Ethernet at runtime before executing these checks. */
8421 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
8423 s1
= new_stmt(cstate
, BPF_ST
);
8424 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8427 /* Calculate whether we have an Ethernet header or just raw IP/
8428 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8429 * and linktype by 14 bytes so that the network header can be found
8430 * seamlessly. Otherwise, keep what we've calculated already. */
8432 /* We have a bare jmp so we can't use the optimizer. */
8433 cstate
->no_optimize
= 1;
8435 /* Load the EtherType in the Geneve header, 2 bytes in. */
8436 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
8440 /* Load X with the end of the Geneve header. */
8441 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8442 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
8445 /* Check if the EtherType is Transparent Ethernet Bridging. At the
8446 * end of this check, we should have the total length in X. In
8447 * the non-Ethernet case, it's already there. */
8448 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
8449 s_proto
->s
.k
= ETHERTYPE_TEB
;
8450 sappend(s
, s_proto
);
8452 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
8456 /* Since this is Ethernet, use the EtherType of the payload
8457 * directly as the linktype. Overwrite what we already have. */
8458 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8462 s1
= new_stmt(cstate
, BPF_ST
);
8463 s1
->s
.k
= cstate
->off_linktype
.reg
;
8466 /* Advance two bytes further to get the end of the Ethernet
8468 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
8472 /* Move the result to X. */
8473 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
8476 /* Store the final result of our linkpl calculation. */
8477 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
8478 cstate
->off_linkpl
.is_variable
= 1;
8479 cstate
->off_linkpl
.constant_part
= 0;
8481 s1
= new_stmt(cstate
, BPF_STX
);
8482 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8491 /* Check to see if this is a Geneve packet. */
8493 gen_geneve(compiler_state_t
*cstate
, int vni
)
8495 struct block
*b0
, *b1
;
8498 b0
= gen_geneve4(cstate
, vni
);
8499 b1
= gen_geneve6(cstate
, vni
);
8504 /* Later filters should act on the payload of the Geneve frame,
8505 * update all of the header pointers. Attach this code so that
8506 * it gets executed in the event that the Geneve filter matches. */
8507 s
= gen_geneve_offsets(cstate
);
8509 b1
= gen_true(cstate
);
8510 sappend(s
, b1
->stmts
);
8515 cstate
->is_geneve
= 1;
8520 /* Check that the encapsulated frame has a link layer header
8521 * for Ethernet filters. */
8522 static struct block
*
8523 gen_geneve_ll_check(compiler_state_t
*cstate
)
8526 struct slist
*s
, *s1
;
8528 /* The easiest way to see if there is a link layer present
8529 * is to check if the link layer header and payload are not
8532 /* Geneve always generates pure variable offsets so we can
8533 * compare only the registers. */
8534 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8535 s
->s
.k
= cstate
->off_linkhdr
.reg
;
8537 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
8538 s1
->s
.k
= cstate
->off_linkpl
.reg
;
8541 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
8550 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
, bpf_int32 jvalue
,
8551 bpf_u_int32 jtype
, int reverse
)
8558 if (!cstate
->is_atm
)
8559 bpf_error(cstate
, "'vpi' supported only on raw ATM");
8560 if (cstate
->off_vpi
== (u_int
)-1)
8562 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
, 0xffffffff, jtype
,
8567 if (!cstate
->is_atm
)
8568 bpf_error(cstate
, "'vci' supported only on raw ATM");
8569 if (cstate
->off_vci
== (u_int
)-1)
8571 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
, 0xffffffff, jtype
,
8576 if (cstate
->off_proto
== (u_int
)-1)
8577 abort(); /* XXX - this isn't on FreeBSD */
8578 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0x0f, jtype
,
8583 if (cstate
->off_payload
== (u_int
)-1)
8585 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
8586 0xffffffff, jtype
, reverse
, jvalue
);
8590 if (!cstate
->is_atm
)
8591 bpf_error(cstate
, "'callref' supported only on raw ATM");
8592 if (cstate
->off_proto
== (u_int
)-1)
8594 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, 0xffffffff,
8595 jtype
, reverse
, jvalue
);
8605 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
8607 struct block
*b0
, *b1
;
8612 /* Get all packets in Meta signalling Circuit */
8613 if (!cstate
->is_atm
)
8614 bpf_error(cstate
, "'metac' supported only on raw ATM");
8615 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8616 b1
= gen_atmfield_code(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
8621 /* Get all packets in Broadcast Circuit*/
8622 if (!cstate
->is_atm
)
8623 bpf_error(cstate
, "'bcc' supported only on raw ATM");
8624 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8625 b1
= gen_atmfield_code(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
8630 /* Get all cells in Segment OAM F4 circuit*/
8631 if (!cstate
->is_atm
)
8632 bpf_error(cstate
, "'oam4sc' supported only on raw ATM");
8633 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8634 b1
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
8639 /* Get all cells in End-to-End OAM F4 Circuit*/
8640 if (!cstate
->is_atm
)
8641 bpf_error(cstate
, "'oam4ec' supported only on raw ATM");
8642 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8643 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
8648 /* Get all packets in connection Signalling Circuit */
8649 if (!cstate
->is_atm
)
8650 bpf_error(cstate
, "'sc' supported only on raw ATM");
8651 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8652 b1
= gen_atmfield_code(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
8657 /* Get all packets in ILMI Circuit */
8658 if (!cstate
->is_atm
)
8659 bpf_error(cstate
, "'ilmic' supported only on raw ATM");
8660 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8661 b1
= gen_atmfield_code(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
8666 /* Get all LANE packets */
8667 if (!cstate
->is_atm
)
8668 bpf_error(cstate
, "'lane' supported only on raw ATM");
8669 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
8672 * Arrange that all subsequent tests assume LANE
8673 * rather than LLC-encapsulated packets, and set
8674 * the offsets appropriately for LANE-encapsulated
8677 * We assume LANE means Ethernet, not Token Ring.
8679 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
8680 cstate
->off_payload
+ 2, /* Ethernet header */
8682 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
8683 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
8684 cstate
->off_nl
= 0; /* Ethernet II */
8685 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
8689 /* Get all LLC-encapsulated packets */
8690 if (!cstate
->is_atm
)
8691 bpf_error(cstate
, "'llc' supported only on raw ATM");
8692 b1
= gen_atmfield_code(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
8693 cstate
->linktype
= cstate
->prevlinktype
;
8703 * Filtering for MTP2 messages based on li value
8704 * FISU, length is null
8705 * LSSU, length is 1 or 2
8706 * MSU, length is 3 or more
8707 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8710 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
8712 struct block
*b0
, *b1
;
8717 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8718 (cstate
->linktype
!= DLT_ERF
) &&
8719 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8720 bpf_error(cstate
, "'fisu' supported only on MTP2");
8721 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8722 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
8726 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8727 (cstate
->linktype
!= DLT_ERF
) &&
8728 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8729 bpf_error(cstate
, "'lssu' supported only on MTP2");
8730 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
8731 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
8736 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8737 (cstate
->linktype
!= DLT_ERF
) &&
8738 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8739 bpf_error(cstate
, "'msu' supported only on MTP2");
8740 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
8744 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8745 (cstate
->linktype
!= DLT_ERF
) &&
8746 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8747 bpf_error(cstate
, "'hfisu' supported only on MTP2_HSL");
8748 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8749 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JEQ
, 0, 0);
8753 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8754 (cstate
->linktype
!= DLT_ERF
) &&
8755 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8756 bpf_error(cstate
, "'hlssu' supported only on MTP2_HSL");
8757 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 1, 0x0100);
8758 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0);
8763 if ( (cstate
->linktype
!= DLT_MTP2
) &&
8764 (cstate
->linktype
!= DLT_ERF
) &&
8765 (cstate
->linktype
!= DLT_MTP2_WITH_PHDR
) )
8766 bpf_error(cstate
, "'hmsu' supported only on MTP2_HSL");
8767 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
, 0xff80, BPF_JGT
, 0, 0x0100);
8777 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
, bpf_u_int32 jvalue
,
8778 bpf_u_int32 jtype
, int reverse
)
8781 bpf_u_int32 val1
, val2
, val3
;
8782 u_int newoff_sio
= cstate
->off_sio
;
8783 u_int newoff_opc
= cstate
->off_opc
;
8784 u_int newoff_dpc
= cstate
->off_dpc
;
8785 u_int newoff_sls
= cstate
->off_sls
;
8787 switch (mtp3field
) {
8790 newoff_sio
+= 3; /* offset for MTP2_HSL */
8794 if (cstate
->off_sio
== (u_int
)-1)
8795 bpf_error(cstate
, "'sio' supported only on SS7");
8796 /* sio coded on 1 byte so max value 255 */
8798 bpf_error(cstate
, "sio value %u too big; max value = 255",
8800 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, 0xffffffff,
8801 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8807 if (cstate
->off_opc
== (u_int
)-1)
8808 bpf_error(cstate
, "'opc' supported only on SS7");
8809 /* opc coded on 14 bits so max value 16383 */
8811 bpf_error(cstate
, "opc value %u too big; max value = 16383",
8813 /* the following instructions are made to convert jvalue
8814 * to the form used to write opc in an ss7 message*/
8815 val1
= jvalue
& 0x00003c00;
8817 val2
= jvalue
& 0x000003fc;
8819 val3
= jvalue
& 0x00000003;
8821 jvalue
= val1
+ val2
+ val3
;
8822 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
, 0x00c0ff0f,
8823 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8831 if (cstate
->off_dpc
== (u_int
)-1)
8832 bpf_error(cstate
, "'dpc' supported only on SS7");
8833 /* dpc coded on 14 bits so max value 16383 */
8835 bpf_error(cstate
, "dpc value %u too big; max value = 16383",
8837 /* the following instructions are made to convert jvalue
8838 * to the forme used to write dpc in an ss7 message*/
8839 val1
= jvalue
& 0x000000ff;
8841 val2
= jvalue
& 0x00003f00;
8843 jvalue
= val1
+ val2
;
8844 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_W
, 0xff3f0000,
8845 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8851 if (cstate
->off_sls
== (u_int
)-1)
8852 bpf_error(cstate
, "'sls' supported only on SS7");
8853 /* sls coded on 4 bits so max value 15 */
8855 bpf_error(cstate
, "sls value %u too big; max value = 15",
8857 /* the following instruction is made to convert jvalue
8858 * to the forme used to write sls in an ss7 message*/
8859 jvalue
= jvalue
<< 4;
8860 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
, 0xf0,
8861 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
8870 static struct block
*
8871 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
8876 * Q.2931 signalling protocol messages for handling virtual circuits
8877 * establishment and teardown
8882 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
8886 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
8890 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
8894 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
8898 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
8901 case A_RELEASE_DONE
:
8902 b1
= gen_atmfield_code(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
8912 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
8914 struct block
*b0
, *b1
;
8919 if (!cstate
->is_atm
)
8920 bpf_error(cstate
, "'oam' supported only on raw ATM");
8921 b1
= gen_atmmulti_abbrev(cstate
, A_OAMF4
);
8925 if (!cstate
->is_atm
)
8926 bpf_error(cstate
, "'oamf4' supported only on raw ATM");
8928 b0
= gen_atmfield_code(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
8929 b1
= gen_atmfield_code(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
8931 b0
= gen_atmfield_code(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
8937 * Get Q.2931 signalling messages for switched
8938 * virtual connection
8940 if (!cstate
->is_atm
)
8941 bpf_error(cstate
, "'connectmsg' supported only on raw ATM");
8942 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
8943 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
8945 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
8947 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
8949 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
8951 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
8953 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
8958 if (!cstate
->is_atm
)
8959 bpf_error(cstate
, "'metaconnect' supported only on raw ATM");
8960 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
8961 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
8963 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
8965 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
8967 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
8969 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);