2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_unset(compiler_state_t
*, bpf_u_int32
, struct slist
*);
650 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
651 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
652 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
654 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
656 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
657 static struct block
*gen_uncond(compiler_state_t
*, int);
658 static inline struct block
*gen_true(compiler_state_t
*);
659 static inline struct block
*gen_false(compiler_state_t
*);
660 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
663 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
667 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
668 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
669 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
671 static uint16_t ethertype_to_ppptype(compiler_state_t
*, bpf_u_int32
);
672 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
673 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
674 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
675 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
678 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
679 struct in6_addr
*, int, u_int
, u_int
);
681 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
682 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
683 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
684 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
685 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
686 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
687 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
688 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
689 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
692 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
693 struct in6_addr
*, int, int, int);
696 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
697 struct addrinfo
*, int);
699 static struct block
*gen_ip_proto(compiler_state_t
*, const uint8_t);
700 static struct block
*gen_ip6_proto(compiler_state_t
*, const uint8_t);
701 static struct block
*gen_ipfrag(compiler_state_t
*);
702 static struct block
*gen_portatom(compiler_state_t
*, int, uint16_t);
703 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, uint16_t,
705 static struct block
*gen_portatom6(compiler_state_t
*, int, uint16_t);
706 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, uint16_t,
708 static struct block
*gen_portop(compiler_state_t
*, uint16_t, uint8_t, int);
709 static struct block
*gen_port(compiler_state_t
*, uint16_t, int, int);
710 static struct block
*gen_portrangeop(compiler_state_t
*, uint16_t, uint16_t,
712 static struct block
*gen_portrange(compiler_state_t
*, uint16_t, uint16_t,
714 static struct block
*gen_portop6(compiler_state_t
*, uint16_t, uint8_t, int);
715 static struct block
*gen_port6(compiler_state_t
*, uint16_t, int, int);
716 static struct block
*gen_portrangeop6(compiler_state_t
*, uint16_t, uint16_t,
718 static struct block
*gen_portrange6(compiler_state_t
*, uint16_t, uint16_t,
720 static int lookup_proto(compiler_state_t
*, const char *, int);
721 #if !defined(NO_PROTOCHAIN)
722 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
723 #endif /* !defined(NO_PROTOCHAIN) */
724 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
725 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
726 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
727 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
728 static struct block
*gen_len(compiler_state_t
*, int, int);
729 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
731 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
732 bpf_u_int32
, int, int);
733 static struct block
*gen_atmtype_llc(compiler_state_t
*);
734 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
737 initchunks(compiler_state_t
*cstate
)
741 for (i
= 0; i
< NCHUNKS
; i
++) {
742 cstate
->chunks
[i
].n_left
= 0;
743 cstate
->chunks
[i
].m
= NULL
;
745 cstate
->cur_chunk
= 0;
749 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
755 /* Round up to chunk alignment. */
756 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
758 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
759 if (n
> cp
->n_left
) {
761 k
= ++cstate
->cur_chunk
;
763 bpf_set_error(cstate
, "out of memory");
766 size
= CHUNK0SIZE
<< k
;
767 cp
->m
= (void *)malloc(size
);
769 bpf_set_error(cstate
, "out of memory");
772 memset((char *)cp
->m
, 0, size
);
775 bpf_set_error(cstate
, "out of memory");
780 return (void *)((char *)cp
->m
+ cp
->n_left
);
784 newchunk(compiler_state_t
*cstate
, size_t n
)
788 p
= newchunk_nolongjmp(cstate
, n
);
790 longjmp(cstate
->top_ctx
, 1);
797 freechunks(compiler_state_t
*cstate
)
801 for (i
= 0; i
< NCHUNKS
; ++i
)
802 if (cstate
->chunks
[i
].m
!= NULL
)
803 free(cstate
->chunks
[i
].m
);
807 * A strdup whose allocations are freed after code generation is over.
808 * This is used by the lexical analyzer, so it can't longjmp; it just
809 * returns NULL on an allocation error, and the callers must check
813 sdup(compiler_state_t
*cstate
, const char *s
)
815 size_t n
= strlen(s
) + 1;
816 char *cp
= newchunk_nolongjmp(cstate
, n
);
820 pcapint_strlcpy(cp
, s
, n
);
824 static inline struct block
*
825 new_block(compiler_state_t
*cstate
, int code
)
829 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
836 static inline struct slist
*
837 new_stmt(compiler_state_t
*cstate
, int code
)
841 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
847 static struct block
*
848 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
850 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
856 static struct block
*
857 gen_retblk(compiler_state_t
*cstate
, int v
)
859 if (setjmp(cstate
->top_ctx
)) {
861 * gen_retblk() only fails because a memory
862 * allocation failed in newchunk(), meaning
863 * that it can't return a pointer.
869 return gen_retblk_internal(cstate
, v
);
872 static inline PCAP_NORETURN_DEF
void
873 syntax(compiler_state_t
*cstate
)
875 bpf_error(cstate
, "syntax error in filter expression");
879 * For the given integer return a string with the keyword (or the nominal
880 * keyword if there is more than one). This is a simpler version of tok2str()
881 * in tcpdump because in this problem space a valid integer value is not
885 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
888 static char buf
[4][64];
891 if (id
< size
&& tokens
[id
])
894 char *ret
= buf
[idx
];
895 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
896 ret
[0] = '\0'; // just in case
897 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
901 // protocol qualifier keywords
903 pqkw(const unsigned id
)
905 const char * tokens
[] = {
917 [Q_DECNET
] = "decnet",
923 [Q_ICMPV6
] = "icmp6",
935 [Q_NETBEUI
] = "netbeui",
938 [Q_ISIS_IIH
] = "iih",
939 [Q_ISIS_SNP
] = "snp",
940 [Q_ISIS_CSNP
] = "csnp",
941 [Q_ISIS_PSNP
] = "psnp",
942 [Q_ISIS_LSP
] = "lsp",
946 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
949 // direction qualifier keywords
951 dqkw(const unsigned id
)
953 const char * map
[] = {
956 [Q_OR
] = "src or dst",
957 [Q_AND
] = "src and dst",
965 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
970 atmkw(const unsigned id
)
972 const char * tokens
[] = {
975 [A_OAMF4SC
] = "oamf4sc",
976 [A_OAMF4EC
] = "oamf4ec",
982 // no keyword for A_SETUP
983 // no keyword for A_CALLPROCEED
984 // no keyword for A_CONNECT
985 // no keyword for A_CONNECTACK
986 // no keyword for A_RELEASE
987 // no keyword for A_RELEASE_DONE
990 // no keyword for A_PROTOTYPE
991 // no keyword for A_MSGTYPE
992 [A_CONNECTMSG
] = "connectmsg",
993 [A_METACONNECT
] = "metaconnect",
995 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1000 ss7kw(const unsigned id
)
1002 const char * tokens
[] = {
1006 [MH_FISU
] = "hfisu",
1007 [MH_LSSU
] = "hlssu",
1018 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1021 static PCAP_NORETURN_DEF
void
1022 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1024 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1025 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1029 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1031 if (cstate
->linktype
!= DLT_PFLOG
)
1032 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1036 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1039 * Belt and braces: init_linktype() sets either all of these struct
1040 * members (for DLT_SUNATM) or none (otherwise).
1042 if (cstate
->linktype
!= DLT_SUNATM
||
1044 cstate
->off_vpi
== OFFSET_NOT_SET
||
1045 cstate
->off_vci
== OFFSET_NOT_SET
||
1046 cstate
->off_proto
== OFFSET_NOT_SET
||
1047 cstate
->off_payload
== OFFSET_NOT_SET
)
1048 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1052 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1054 switch (cstate
->linktype
) {
1057 case DLT_MTP2_WITH_PHDR
:
1058 // Belt and braces, same as in assert_atm().
1059 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1060 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1061 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1062 cstate
->off_sls
!= OFFSET_NOT_SET
)
1065 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1069 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1070 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1073 bpf_error(cstate
, "%s %u greater than maximum %u",
1077 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1078 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1080 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1082 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1090 return IPPROTO_SCTP
;
1094 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1098 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1099 const char *buf
, int optimize
, bpf_u_int32 mask
)
1105 compiler_state_t cstate
;
1106 yyscan_t scanner
= NULL
;
1107 YY_BUFFER_STATE in_buffer
= NULL
;
1112 * If this pcap_t hasn't been activated, it doesn't have a
1113 * link-layer type, so we can't use it.
1115 if (!p
->activated
) {
1116 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1117 "not-yet-activated pcap_t passed to pcap_compile");
1118 return (PCAP_ERROR
);
1123 * Initialize Winsock, asking for the latest version (2.2),
1124 * as we may be calling Winsock routines to translate
1125 * host names to addresses.
1127 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1129 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1130 err
, "Error calling WSAStartup()");
1131 return (PCAP_ERROR
);
1135 #ifdef ENABLE_REMOTE
1137 * If the device on which we're capturing need to be notified
1138 * that a new filter is being compiled, do so.
1140 * This allows them to save a copy of it, in case, for example,
1141 * they're implementing a form of remote packet capture, and
1142 * want the remote machine to filter out the packets in which
1143 * it's sending the packets it's captured.
1145 * XXX - the fact that we happen to be compiling a filter
1146 * doesn't necessarily mean we'll be installing it as the
1147 * filter for this pcap_t; we might be running it from userland
1148 * on captured packets to do packet classification. We really
1149 * need a better way of handling this, but this is all that
1150 * the WinPcap remote capture code did.
1152 if (p
->save_current_filter_op
!= NULL
)
1153 (p
->save_current_filter_op
)(p
, buf
);
1156 initchunks(&cstate
);
1157 cstate
.no_optimize
= 0;
1162 cstate
.ic
.root
= NULL
;
1163 cstate
.ic
.cur_mark
= 0;
1164 cstate
.bpf_pcap
= p
;
1165 cstate
.error_set
= 0;
1168 cstate
.netmask
= mask
;
1170 cstate
.snaplen
= pcap_snapshot(p
);
1171 if (cstate
.snaplen
== 0) {
1172 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1173 "snaplen of 0 rejects all packets");
1178 if (pcap_lex_init(&scanner
) != 0) {
1179 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1180 errno
, "can't initialize scanner");
1184 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1187 * Associate the compiler state with the lexical analyzer
1190 pcap_set_extra(&cstate
, scanner
);
1192 if (init_linktype(&cstate
, p
) == -1) {
1196 if (pcap_parse(scanner
, &cstate
) != 0) {
1198 if (cstate
.ai
!= NULL
)
1199 freeaddrinfo(cstate
.ai
);
1201 if (cstate
.e
!= NULL
)
1207 if (cstate
.ic
.root
== NULL
) {
1208 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1211 * Catch errors reported by gen_retblk().
1213 if (cstate
.ic
.root
== NULL
) {
1219 if (optimize
&& !cstate
.no_optimize
) {
1220 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1225 if (cstate
.ic
.root
== NULL
||
1226 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1227 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1228 "expression rejects all packets");
1233 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1234 cstate
.ic
.root
, &len
, p
->errbuf
);
1235 if (program
->bf_insns
== NULL
) {
1240 program
->bf_len
= len
;
1242 rc
= 0; /* We're all okay */
1246 * Clean up everything for the lexical analyzer.
1248 if (in_buffer
!= NULL
)
1249 pcap__delete_buffer(in_buffer
, scanner
);
1250 if (scanner
!= NULL
)
1251 pcap_lex_destroy(scanner
);
1254 * Clean up our own allocated memory.
1256 freechunks(&cstate
);
1266 * entry point for using the compiler with no pcap open
1267 * pass in all the stuff that is needed explicitly instead.
1270 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1271 struct bpf_program
*program
,
1272 const char *buf
, int optimize
, bpf_u_int32 mask
)
1277 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1279 return (PCAP_ERROR
);
1280 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1286 * Clean up a "struct bpf_program" by freeing all the memory allocated
1290 pcap_freecode(struct bpf_program
*program
)
1292 program
->bf_len
= 0;
1293 if (program
->bf_insns
!= NULL
) {
1294 free((char *)program
->bf_insns
);
1295 program
->bf_insns
= NULL
;
1300 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1301 * which of the jt and jf fields has been resolved and which is a pointer
1302 * back to another unresolved block (or nil). At least one of the fields
1303 * in each block is already resolved.
1306 backpatch(struct block
*list
, struct block
*target
)
1323 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1324 * which of jt and jf is the link.
1327 merge(struct block
*b0
, struct block
*b1
)
1329 register struct block
**p
= &b0
;
1331 /* Find end of list. */
1333 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1335 /* Concatenate the lists. */
1340 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1343 * Catch errors reported by us and routines below us, and return -1
1346 if (setjmp(cstate
->top_ctx
))
1350 * Insert before the statements of the first (root) block any
1351 * statements needed to load the lengths of any variable-length
1352 * headers into registers.
1354 * XXX - a fancier strategy would be to insert those before the
1355 * statements of all blocks that use those lengths and that
1356 * have no predecessors that use them, so that we only compute
1357 * the lengths if we need them. There might be even better
1358 * approaches than that.
1360 * However, those strategies would be more complicated, and
1361 * as we don't generate code to compute a length if the
1362 * program has no tests that use the length, and as most
1363 * tests will probably use those lengths, we would just
1364 * postpone computing the lengths so that it's not done
1365 * for tests that fail early, and it's not clear that's
1368 insert_compute_vloffsets(cstate
, p
->head
);
1371 * For DLT_PPI captures, generate a check of the per-packet
1372 * DLT value to make sure it's DLT_IEEE802_11.
1374 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1375 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1376 * with appropriate Ethernet information and use that rather
1377 * than using something such as DLT_PPI where you don't know
1378 * the link-layer header type until runtime, which, in the
1379 * general case, would force us to generate both Ethernet *and*
1380 * 802.11 code (*and* anything else for which PPI is used)
1381 * and choose between them early in the BPF program?
1383 if (cstate
->linktype
== DLT_PPI
) {
1384 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1385 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1386 gen_and(ppi_dlt_check
, p
);
1389 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1390 p
->sense
= !p
->sense
;
1391 backpatch(p
, gen_retblk_internal(cstate
, 0));
1392 cstate
->ic
.root
= p
->head
;
1397 gen_and(struct block
*b0
, struct block
*b1
)
1399 backpatch(b0
, b1
->head
);
1400 b0
->sense
= !b0
->sense
;
1401 b1
->sense
= !b1
->sense
;
1403 b1
->sense
= !b1
->sense
;
1404 b1
->head
= b0
->head
;
1408 gen_or(struct block
*b0
, struct block
*b1
)
1410 b0
->sense
= !b0
->sense
;
1411 backpatch(b0
, b1
->head
);
1412 b0
->sense
= !b0
->sense
;
1414 b1
->head
= b0
->head
;
1418 gen_not(struct block
*b
)
1420 b
->sense
= !b
->sense
;
1423 static struct block
*
1424 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1425 u_int size
, bpf_u_int32 v
)
1427 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1430 static struct block
*
1431 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1432 u_int size
, bpf_u_int32 v
)
1434 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1437 static struct block
*
1438 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1439 u_int size
, bpf_u_int32 v
)
1441 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1444 static struct block
*
1445 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1446 u_int size
, bpf_u_int32 v
)
1448 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1451 static struct block
*
1452 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1453 u_int size
, bpf_u_int32 v
)
1455 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1458 static struct block
*
1459 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1460 u_int size
, bpf_u_int32 v
)
1462 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1465 static struct block
*
1466 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1467 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1469 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1472 static struct block
*
1473 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1474 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1476 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1479 static struct block
*
1480 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1481 u_int size
, const u_char
*v
)
1483 register struct block
*b
, *tmp
;
1487 register const u_char
*p
= &v
[size
- 4];
1489 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1497 register const u_char
*p
= &v
[size
- 2];
1499 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1507 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1515 static struct block
*
1516 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1518 struct block
*b
= new_block(cstate
, JMP(jtype
));
1524 static struct block
*
1525 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1527 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1530 static struct block
*
1531 gen_unset(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1533 struct block
*b
= gen_set(cstate
, v
, stmts
);
1539 * AND the field of size "size" at offset "offset" relative to the header
1540 * specified by "offrel" with "mask", and compare it with the value "v"
1541 * with the test specified by "jtype"; if "reverse" is true, the test
1542 * should test the opposite of "jtype".
1544 static struct block
*
1545 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1546 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1549 struct slist
*s
, *s2
;
1552 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1554 if (mask
!= 0xffffffff) {
1555 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1560 b
= gen_jmp(cstate
, jtype
, v
, s
);
1567 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1569 cstate
->pcap_fddipad
= p
->fddipad
;
1572 * We start out with only one link-layer header.
1574 cstate
->outermostlinktype
= pcap_datalink(p
);
1575 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1576 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1577 cstate
->off_outermostlinkhdr
.reg
= -1;
1579 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1580 cstate
->off_prevlinkhdr
.constant_part
= 0;
1581 cstate
->off_prevlinkhdr
.is_variable
= 0;
1582 cstate
->off_prevlinkhdr
.reg
= -1;
1584 cstate
->linktype
= cstate
->outermostlinktype
;
1585 cstate
->off_linkhdr
.constant_part
= 0;
1586 cstate
->off_linkhdr
.is_variable
= 0;
1587 cstate
->off_linkhdr
.reg
= -1;
1592 cstate
->off_linkpl
.constant_part
= 0;
1593 cstate
->off_linkpl
.is_variable
= 0;
1594 cstate
->off_linkpl
.reg
= -1;
1596 cstate
->off_linktype
.constant_part
= 0;
1597 cstate
->off_linktype
.is_variable
= 0;
1598 cstate
->off_linktype
.reg
= -1;
1601 * Assume it's not raw ATM with a pseudo-header, for now.
1604 cstate
->off_vpi
= OFFSET_NOT_SET
;
1605 cstate
->off_vci
= OFFSET_NOT_SET
;
1606 cstate
->off_proto
= OFFSET_NOT_SET
;
1607 cstate
->off_payload
= OFFSET_NOT_SET
;
1610 * And not encapsulated with either Geneve or VXLAN.
1612 cstate
->is_encap
= 0;
1615 * No variable length VLAN offset by default
1617 cstate
->is_vlan_vloffset
= 0;
1620 * And assume we're not doing SS7.
1622 cstate
->off_li
= OFFSET_NOT_SET
;
1623 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1624 cstate
->off_sio
= OFFSET_NOT_SET
;
1625 cstate
->off_opc
= OFFSET_NOT_SET
;
1626 cstate
->off_dpc
= OFFSET_NOT_SET
;
1627 cstate
->off_sls
= OFFSET_NOT_SET
;
1629 cstate
->label_stack_depth
= 0;
1630 cstate
->vlan_stack_depth
= 0;
1632 switch (cstate
->linktype
) {
1635 cstate
->off_linktype
.constant_part
= 2;
1636 cstate
->off_linkpl
.constant_part
= 6;
1637 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1638 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1641 case DLT_ARCNET_LINUX
:
1642 cstate
->off_linktype
.constant_part
= 4;
1643 cstate
->off_linkpl
.constant_part
= 8;
1644 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1645 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1649 cstate
->off_linktype
.constant_part
= 12;
1650 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1651 cstate
->off_nl
= 0; /* Ethernet II */
1652 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1657 * SLIP doesn't have a link level type. The 16 byte
1658 * header is hacked into our SLIP driver.
1660 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1661 cstate
->off_linkpl
.constant_part
= 16;
1663 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1666 case DLT_SLIP_BSDOS
:
1667 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1668 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1670 cstate
->off_linkpl
.constant_part
= 24;
1672 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1677 cstate
->off_linktype
.constant_part
= 0;
1678 cstate
->off_linkpl
.constant_part
= 4;
1680 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1684 cstate
->off_linktype
.constant_part
= 0;
1685 cstate
->off_linkpl
.constant_part
= 12;
1687 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1692 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1693 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1694 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1695 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1696 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1698 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1703 * This does not include the Ethernet header, and
1704 * only covers session state.
1706 cstate
->off_linktype
.constant_part
= 6;
1707 cstate
->off_linkpl
.constant_part
= 8;
1709 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1713 cstate
->off_linktype
.constant_part
= 5;
1714 cstate
->off_linkpl
.constant_part
= 24;
1716 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1721 * FDDI doesn't really have a link-level type field.
1722 * We set "off_linktype" to the offset of the LLC header.
1724 * To check for Ethernet types, we assume that SSAP = SNAP
1725 * is being used and pick out the encapsulated Ethernet type.
1726 * XXX - should we generate code to check for SNAP?
1728 cstate
->off_linktype
.constant_part
= 13;
1729 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1730 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1731 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1732 cstate
->off_nl
= 8; /* 802.2+SNAP */
1733 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1738 * Token Ring doesn't really have a link-level type field.
1739 * We set "off_linktype" to the offset of the LLC header.
1741 * To check for Ethernet types, we assume that SSAP = SNAP
1742 * is being used and pick out the encapsulated Ethernet type.
1743 * XXX - should we generate code to check for SNAP?
1745 * XXX - the header is actually variable-length.
1746 * Some various Linux patched versions gave 38
1747 * as "off_linktype" and 40 as "off_nl"; however,
1748 * if a token ring packet has *no* routing
1749 * information, i.e. is not source-routed, the correct
1750 * values are 20 and 22, as they are in the vanilla code.
1752 * A packet is source-routed iff the uppermost bit
1753 * of the first byte of the source address, at an
1754 * offset of 8, has the uppermost bit set. If the
1755 * packet is source-routed, the total number of bytes
1756 * of routing information is 2 plus bits 0x1F00 of
1757 * the 16-bit value at an offset of 14 (shifted right
1758 * 8 - figure out which byte that is).
1760 cstate
->off_linktype
.constant_part
= 14;
1761 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1762 cstate
->off_nl
= 8; /* 802.2+SNAP */
1763 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1766 case DLT_PRISM_HEADER
:
1767 case DLT_IEEE802_11_RADIO_AVS
:
1768 case DLT_IEEE802_11_RADIO
:
1769 cstate
->off_linkhdr
.is_variable
= 1;
1770 /* Fall through, 802.11 doesn't have a variable link
1771 * prefix but is otherwise the same. */
1774 case DLT_IEEE802_11
:
1776 * 802.11 doesn't really have a link-level type field.
1777 * We set "off_linktype.constant_part" to the offset of
1780 * To check for Ethernet types, we assume that SSAP = SNAP
1781 * is being used and pick out the encapsulated Ethernet type.
1782 * XXX - should we generate code to check for SNAP?
1784 * We also handle variable-length radio headers here.
1785 * The Prism header is in theory variable-length, but in
1786 * practice it's always 144 bytes long. However, some
1787 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1788 * sometimes or always supply an AVS header, so we
1789 * have to check whether the radio header is a Prism
1790 * header or an AVS header, so, in practice, it's
1793 cstate
->off_linktype
.constant_part
= 24;
1794 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1795 cstate
->off_linkpl
.is_variable
= 1;
1796 cstate
->off_nl
= 8; /* 802.2+SNAP */
1797 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1802 * At the moment we treat PPI the same way that we treat
1803 * normal Radiotap encoded packets. The difference is in
1804 * the function that generates the code at the beginning
1805 * to compute the header length. Since this code generator
1806 * of PPI supports bare 802.11 encapsulation only (i.e.
1807 * the encapsulated DLT should be DLT_IEEE802_11) we
1808 * generate code to check for this too.
1810 cstate
->off_linktype
.constant_part
= 24;
1811 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1812 cstate
->off_linkpl
.is_variable
= 1;
1813 cstate
->off_linkhdr
.is_variable
= 1;
1814 cstate
->off_nl
= 8; /* 802.2+SNAP */
1815 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1818 case DLT_ATM_RFC1483
:
1819 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1821 * assume routed, non-ISO PDUs
1822 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1824 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1825 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1826 * latter would presumably be treated the way PPPoE
1827 * should be, so you can do "pppoe and udp port 2049"
1828 * or "pppoa and tcp port 80" and have it check for
1829 * PPPo{A,E} and a PPP protocol of IP and....
1831 cstate
->off_linktype
.constant_part
= 0;
1832 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1833 cstate
->off_nl
= 8; /* 802.2+SNAP */
1834 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1839 * Full Frontal ATM; you get AALn PDUs with an ATM
1843 cstate
->off_vpi
= SUNATM_VPI_POS
;
1844 cstate
->off_vci
= SUNATM_VCI_POS
;
1845 cstate
->off_proto
= PROTO_POS
;
1846 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1847 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1848 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1849 cstate
->off_nl
= 8; /* 802.2+SNAP */
1850 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1856 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1857 cstate
->off_linkpl
.constant_part
= 0;
1859 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1862 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1863 cstate
->off_linktype
.constant_part
= 14;
1864 cstate
->off_linkpl
.constant_part
= 16;
1866 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1869 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1870 cstate
->off_linktype
.constant_part
= 0;
1871 cstate
->off_linkpl
.constant_part
= 20;
1873 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1878 * LocalTalk does have a 1-byte type field in the LLAP header,
1879 * but really it just indicates whether there is a "short" or
1880 * "long" DDP packet following.
1882 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1883 cstate
->off_linkpl
.constant_part
= 0;
1885 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1888 case DLT_IP_OVER_FC
:
1890 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1891 * link-level type field. We set "off_linktype" to the
1892 * offset of the LLC header.
1894 * To check for Ethernet types, we assume that SSAP = SNAP
1895 * is being used and pick out the encapsulated Ethernet type.
1896 * XXX - should we generate code to check for SNAP? RFC
1897 * 2625 says SNAP should be used.
1899 cstate
->off_linktype
.constant_part
= 16;
1900 cstate
->off_linkpl
.constant_part
= 16;
1901 cstate
->off_nl
= 8; /* 802.2+SNAP */
1902 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1907 * XXX - we should set this to handle SNAP-encapsulated
1908 * frames (NLPID of 0x80).
1910 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1911 cstate
->off_linkpl
.constant_part
= 0;
1913 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1917 * the only BPF-interesting FRF.16 frames are non-control frames;
1918 * Frame Relay has a variable length link-layer
1919 * so lets start with offset 4 for now and increments later on (FIXME);
1922 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1923 cstate
->off_linkpl
.constant_part
= 0;
1925 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1928 case DLT_APPLE_IP_OVER_IEEE1394
:
1929 cstate
->off_linktype
.constant_part
= 16;
1930 cstate
->off_linkpl
.constant_part
= 18;
1932 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1935 case DLT_SYMANTEC_FIREWALL
:
1936 cstate
->off_linktype
.constant_part
= 6;
1937 cstate
->off_linkpl
.constant_part
= 44;
1938 cstate
->off_nl
= 0; /* Ethernet II */
1939 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1943 cstate
->off_linktype
.constant_part
= 0;
1944 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1945 cstate
->off_linkpl
.is_variable
= 1;
1947 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1950 case DLT_JUNIPER_MFR
:
1951 case DLT_JUNIPER_MLFR
:
1952 case DLT_JUNIPER_MLPPP
:
1953 case DLT_JUNIPER_PPP
:
1954 case DLT_JUNIPER_CHDLC
:
1955 case DLT_JUNIPER_FRELAY
:
1956 cstate
->off_linktype
.constant_part
= 4;
1957 cstate
->off_linkpl
.constant_part
= 4;
1959 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1962 case DLT_JUNIPER_ATM1
:
1963 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1964 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1966 cstate
->off_nl_nosnap
= 10;
1969 case DLT_JUNIPER_ATM2
:
1970 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1971 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1973 cstate
->off_nl_nosnap
= 10;
1976 /* frames captured on a Juniper PPPoE service PIC
1977 * contain raw ethernet frames */
1978 case DLT_JUNIPER_PPPOE
:
1979 case DLT_JUNIPER_ETHER
:
1980 cstate
->off_linkpl
.constant_part
= 14;
1981 cstate
->off_linktype
.constant_part
= 16;
1982 cstate
->off_nl
= 18; /* Ethernet II */
1983 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1986 case DLT_JUNIPER_PPPOE_ATM
:
1987 cstate
->off_linktype
.constant_part
= 4;
1988 cstate
->off_linkpl
.constant_part
= 6;
1990 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1993 case DLT_JUNIPER_GGSN
:
1994 cstate
->off_linktype
.constant_part
= 6;
1995 cstate
->off_linkpl
.constant_part
= 12;
1997 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2000 case DLT_JUNIPER_ES
:
2001 cstate
->off_linktype
.constant_part
= 6;
2002 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2003 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
2004 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2007 case DLT_JUNIPER_MONITOR
:
2008 cstate
->off_linktype
.constant_part
= 12;
2009 cstate
->off_linkpl
.constant_part
= 12;
2010 cstate
->off_nl
= 0; /* raw IP/IP6 header */
2011 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2014 case DLT_BACNET_MS_TP
:
2015 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2016 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2017 cstate
->off_nl
= OFFSET_NOT_SET
;
2018 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2021 case DLT_JUNIPER_SERVICES
:
2022 cstate
->off_linktype
.constant_part
= 12;
2023 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2024 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2025 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2028 case DLT_JUNIPER_VP
:
2029 cstate
->off_linktype
.constant_part
= 18;
2030 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2031 cstate
->off_nl
= OFFSET_NOT_SET
;
2032 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2035 case DLT_JUNIPER_ST
:
2036 cstate
->off_linktype
.constant_part
= 18;
2037 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2038 cstate
->off_nl
= OFFSET_NOT_SET
;
2039 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2042 case DLT_JUNIPER_ISM
:
2043 cstate
->off_linktype
.constant_part
= 8;
2044 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2045 cstate
->off_nl
= OFFSET_NOT_SET
;
2046 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2049 case DLT_JUNIPER_VS
:
2050 case DLT_JUNIPER_SRX_E2E
:
2051 case DLT_JUNIPER_FIBRECHANNEL
:
2052 case DLT_JUNIPER_ATM_CEMIC
:
2053 cstate
->off_linktype
.constant_part
= 8;
2054 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2055 cstate
->off_nl
= OFFSET_NOT_SET
;
2056 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2061 cstate
->off_li_hsl
= 4;
2062 cstate
->off_sio
= 3;
2063 cstate
->off_opc
= 4;
2064 cstate
->off_dpc
= 4;
2065 cstate
->off_sls
= 7;
2066 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2067 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2068 cstate
->off_nl
= OFFSET_NOT_SET
;
2069 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2072 case DLT_MTP2_WITH_PHDR
:
2074 cstate
->off_li_hsl
= 8;
2075 cstate
->off_sio
= 7;
2076 cstate
->off_opc
= 8;
2077 cstate
->off_dpc
= 8;
2078 cstate
->off_sls
= 11;
2079 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2080 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2081 cstate
->off_nl
= OFFSET_NOT_SET
;
2082 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2086 cstate
->off_li
= 22;
2087 cstate
->off_li_hsl
= 24;
2088 cstate
->off_sio
= 23;
2089 cstate
->off_opc
= 24;
2090 cstate
->off_dpc
= 24;
2091 cstate
->off_sls
= 27;
2092 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2093 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2094 cstate
->off_nl
= OFFSET_NOT_SET
;
2095 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2099 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2100 cstate
->off_linkpl
.constant_part
= 4;
2102 cstate
->off_nl_nosnap
= 0;
2107 * Currently, only raw "link[N:M]" filtering is supported.
2109 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2110 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2111 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2112 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2116 cstate
->off_linktype
.constant_part
= 1;
2117 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2119 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2122 case DLT_NETANALYZER
:
2123 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2124 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2125 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2126 cstate
->off_nl
= 0; /* Ethernet II */
2127 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2130 case DLT_NETANALYZER_TRANSPARENT
:
2131 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2132 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2133 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2134 cstate
->off_nl
= 0; /* Ethernet II */
2135 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2140 * For values in the range in which we've assigned new
2141 * DLT_ values, only raw "link[N:M]" filtering is supported.
2143 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2144 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2145 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2146 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2147 cstate
->off_nl
= OFFSET_NOT_SET
;
2148 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2150 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2151 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2157 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2162 * Load a value relative to the specified absolute offset.
2164 static struct slist
*
2165 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2166 u_int offset
, u_int size
)
2168 struct slist
*s
, *s2
;
2170 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2173 * If "s" is non-null, it has code to arrange that the X register
2174 * contains the variable part of the absolute offset, so we
2175 * generate a load relative to that, with an offset of
2176 * abs_offset->constant_part + offset.
2178 * Otherwise, we can do an absolute load with an offset of
2179 * abs_offset->constant_part + offset.
2183 * "s" points to a list of statements that puts the
2184 * variable part of the absolute offset into the X register.
2185 * Do an indirect load, to use the X register as an offset.
2187 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2188 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2192 * There is no variable part of the absolute offset, so
2193 * just do an absolute load.
2195 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2196 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2202 * Load a value relative to the beginning of the specified header.
2204 static struct slist
*
2205 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2208 struct slist
*s
, *s2
;
2211 * Squelch warnings from compilers that *don't* assume that
2212 * offrel always has a valid enum value and therefore don't
2213 * assume that we'll always go through one of the case arms.
2215 * If we have a default case, compilers that *do* assume that
2216 * will then complain about the default case code being
2219 * Damned if you do, damned if you don't.
2226 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2231 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2234 case OR_PREVLINKHDR
:
2235 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2239 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2242 case OR_PREVMPLSHDR
:
2243 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2247 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2250 case OR_LINKPL_NOSNAP
:
2251 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2255 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2260 * Load the X register with the length of the IPv4 header
2261 * (plus the offset of the link-layer header, if it's
2262 * preceded by a variable-length header such as a radio
2263 * header), in bytes.
2265 s
= gen_loadx_iphdrlen(cstate
);
2268 * Load the item at {offset of the link-layer payload} +
2269 * {offset, relative to the start of the link-layer
2270 * payload, of the IPv4 header} + {length of the IPv4 header} +
2271 * {specified offset}.
2273 * If the offset of the link-layer payload is variable,
2274 * the variable part of that offset is included in the
2275 * value in the X register, and we include the constant
2276 * part in the offset of the load.
2278 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2279 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2284 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2291 * Generate code to load into the X register the sum of the length of
2292 * the IPv4 header and the variable part of the offset of the link-layer
2295 static struct slist
*
2296 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2298 struct slist
*s
, *s2
;
2300 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2303 * The offset of the link-layer payload has a variable
2304 * part. "s" points to a list of statements that put
2305 * the variable part of that offset into the X register.
2307 * The 4*([k]&0xf) addressing mode can't be used, as we
2308 * don't have a constant offset, so we have to load the
2309 * value in question into the A register and add to it
2310 * the value from the X register.
2312 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2313 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2315 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2318 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2323 * The A register now contains the length of the IP header.
2324 * We need to add to it the variable part of the offset of
2325 * the link-layer payload, which is still in the X
2326 * register, and move the result into the X register.
2328 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2329 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2332 * The offset of the link-layer payload is a constant,
2333 * so no code was generated to load the (nonexistent)
2334 * variable part of that offset.
2336 * This means we can use the 4*([k]&0xf) addressing
2337 * mode. Load the length of the IPv4 header, which
2338 * is at an offset of cstate->off_nl from the beginning of
2339 * the link-layer payload, and thus at an offset of
2340 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2341 * of the raw packet data, using that addressing mode.
2343 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2344 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2350 static struct block
*
2351 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2355 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2357 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2360 static inline struct block
*
2361 gen_true(compiler_state_t
*cstate
)
2363 return gen_uncond(cstate
, 1);
2366 static inline struct block
*
2367 gen_false(compiler_state_t
*cstate
)
2369 return gen_uncond(cstate
, 0);
2373 * Generate code to match a particular packet type.
2375 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2376 * value, if <= ETHERMTU. We use that to determine whether to
2377 * match the type/length field or to check the type/length field for
2378 * a value <= ETHERMTU to see whether it's a type field and then do
2379 * the appropriate test.
2381 static struct block
*
2382 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2384 struct block
*b0
, *b1
;
2390 case LLCSAP_NETBEUI
:
2392 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2393 * so we check the DSAP and SSAP.
2395 * LLCSAP_IP checks for IP-over-802.2, rather
2396 * than IP-over-Ethernet or IP-over-SNAP.
2398 * XXX - should we check both the DSAP and the
2399 * SSAP, like this, or should we check just the
2400 * DSAP, as we do for other types <= ETHERMTU
2401 * (i.e., other SAP values)?
2403 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2404 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2412 * Ethernet_II frames, which are Ethernet
2413 * frames with a frame type of ETHERTYPE_IPX;
2415 * Ethernet_802.3 frames, which are 802.3
2416 * frames (i.e., the type/length field is
2417 * a length field, <= ETHERMTU, rather than
2418 * a type field) with the first two bytes
2419 * after the Ethernet/802.3 header being
2422 * Ethernet_802.2 frames, which are 802.3
2423 * frames with an 802.2 LLC header and
2424 * with the IPX LSAP as the DSAP in the LLC
2427 * Ethernet_SNAP frames, which are 802.3
2428 * frames with an LLC header and a SNAP
2429 * header and with an OUI of 0x000000
2430 * (encapsulated Ethernet) and a protocol
2431 * ID of ETHERTYPE_IPX in the SNAP header.
2433 * XXX - should we generate the same code both
2434 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2438 * This generates code to check both for the
2439 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2441 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2442 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2446 * Now we add code to check for SNAP frames with
2447 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2449 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2453 * Now we generate code to check for 802.3
2454 * frames in general.
2456 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2459 * Now add the check for 802.3 frames before the
2460 * check for Ethernet_802.2 and Ethernet_802.3,
2461 * as those checks should only be done on 802.3
2462 * frames, not on Ethernet frames.
2467 * Now add the check for Ethernet_II frames, and
2468 * do that before checking for the other frame
2471 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2475 case ETHERTYPE_ATALK
:
2476 case ETHERTYPE_AARP
:
2478 * EtherTalk (AppleTalk protocols on Ethernet link
2479 * layer) may use 802.2 encapsulation.
2483 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2484 * we check for an Ethernet type field less or equal than
2485 * 1500, which means it's an 802.3 length field.
2487 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2490 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2491 * SNAP packets with an organization code of
2492 * 0x080007 (Apple, for Appletalk) and a protocol
2493 * type of ETHERTYPE_ATALK (Appletalk).
2495 * 802.2-encapsulated ETHERTYPE_AARP packets are
2496 * SNAP packets with an organization code of
2497 * 0x000000 (encapsulated Ethernet) and a protocol
2498 * type of ETHERTYPE_AARP (Appletalk ARP).
2500 if (ll_proto
== ETHERTYPE_ATALK
)
2501 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2502 else /* ll_proto == ETHERTYPE_AARP */
2503 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2507 * Check for Ethernet encapsulation (Ethertalk
2508 * phase 1?); we just check for the Ethernet
2511 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2517 if (ll_proto
<= ETHERMTU
) {
2518 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2520 * This is an LLC SAP value, so the frames
2521 * that match would be 802.2 frames.
2522 * Check that the frame is an 802.2 frame
2523 * (i.e., that the length/type field is
2524 * a length field, <= ETHERMTU) and
2525 * then check the DSAP.
2527 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2528 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2532 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2534 * This is an Ethernet type, so compare
2535 * the length/type field with it (if
2536 * the frame is an 802.2 frame, the length
2537 * field will be <= ETHERMTU, and, as
2538 * "ll_proto" is > ETHERMTU, this test
2539 * will fail and the frame won't match,
2540 * which is what we want).
2542 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2547 static struct block
*
2548 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2551 * For DLT_NULL, the link-layer header is a 32-bit word
2552 * containing an AF_ value in *host* byte order, and for
2553 * DLT_ENC, the link-layer header begins with a 32-bit
2554 * word containing an AF_ value in host byte order.
2556 * In addition, if we're reading a saved capture file,
2557 * the host byte order in the capture may not be the
2558 * same as the host byte order on this machine.
2560 * For DLT_LOOP, the link-layer header is a 32-bit
2561 * word containing an AF_ value in *network* byte order.
2563 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2565 * The AF_ value is in host byte order, but the BPF
2566 * interpreter will convert it to network byte order.
2568 * If this is a save file, and it's from a machine
2569 * with the opposite byte order to ours, we byte-swap
2572 * Then we run it through "htonl()", and generate
2573 * code to compare against the result.
2575 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2576 ll_proto
= SWAPLONG(ll_proto
);
2577 ll_proto
= htonl(ll_proto
);
2579 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2583 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2584 * or IPv6 then we have an error.
2586 static struct block
*
2587 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2592 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2595 case ETHERTYPE_IPV6
:
2596 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2603 return gen_false(cstate
);
2607 * Generate code to match a particular packet type.
2609 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2610 * value, if <= ETHERMTU. We use that to determine whether to
2611 * match the type field or to check the type field for the special
2612 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2614 static struct block
*
2615 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2617 struct block
*b0
, *b1
;
2623 case LLCSAP_NETBEUI
:
2625 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2626 * so we check the DSAP and SSAP.
2628 * LLCSAP_IP checks for IP-over-802.2, rather
2629 * than IP-over-Ethernet or IP-over-SNAP.
2631 * XXX - should we check both the DSAP and the
2632 * SSAP, like this, or should we check just the
2633 * DSAP, as we do for other types <= ETHERMTU
2634 * (i.e., other SAP values)?
2636 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2637 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2643 * Ethernet_II frames, which are Ethernet
2644 * frames with a frame type of ETHERTYPE_IPX;
2646 * Ethernet_802.3 frames, which have a frame
2647 * type of LINUX_SLL_P_802_3;
2649 * Ethernet_802.2 frames, which are 802.3
2650 * frames with an 802.2 LLC header (i.e, have
2651 * a frame type of LINUX_SLL_P_802_2) and
2652 * with the IPX LSAP as the DSAP in the LLC
2655 * Ethernet_SNAP frames, which are 802.3
2656 * frames with an LLC header and a SNAP
2657 * header and with an OUI of 0x000000
2658 * (encapsulated Ethernet) and a protocol
2659 * ID of ETHERTYPE_IPX in the SNAP header.
2661 * First, do the checks on LINUX_SLL_P_802_2
2662 * frames; generate the check for either
2663 * Ethernet_802.2 or Ethernet_SNAP frames, and
2664 * then put a check for LINUX_SLL_P_802_2 frames
2667 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2668 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2670 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2674 * Now check for 802.3 frames and OR that with
2675 * the previous test.
2677 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2681 * Now add the check for Ethernet_II frames, and
2682 * do that before checking for the other frame
2685 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2689 case ETHERTYPE_ATALK
:
2690 case ETHERTYPE_AARP
:
2692 * EtherTalk (AppleTalk protocols on Ethernet link
2693 * layer) may use 802.2 encapsulation.
2697 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2698 * we check for the 802.2 protocol type in the
2699 * "Ethernet type" field.
2701 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2704 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2705 * SNAP packets with an organization code of
2706 * 0x080007 (Apple, for Appletalk) and a protocol
2707 * type of ETHERTYPE_ATALK (Appletalk).
2709 * 802.2-encapsulated ETHERTYPE_AARP packets are
2710 * SNAP packets with an organization code of
2711 * 0x000000 (encapsulated Ethernet) and a protocol
2712 * type of ETHERTYPE_AARP (Appletalk ARP).
2714 if (ll_proto
== ETHERTYPE_ATALK
)
2715 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2716 else /* ll_proto == ETHERTYPE_AARP */
2717 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2721 * Check for Ethernet encapsulation (Ethertalk
2722 * phase 1?); we just check for the Ethernet
2725 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2731 if (ll_proto
<= ETHERMTU
) {
2732 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2734 * This is an LLC SAP value, so the frames
2735 * that match would be 802.2 frames.
2736 * Check for the 802.2 protocol type
2737 * in the "Ethernet type" field, and
2738 * then check the DSAP.
2740 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2741 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2746 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2748 * This is an Ethernet type, so compare
2749 * the length/type field with it (if
2750 * the frame is an 802.2 frame, the length
2751 * field will be <= ETHERMTU, and, as
2752 * "ll_proto" is > ETHERMTU, this test
2753 * will fail and the frame won't match,
2754 * which is what we want).
2756 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2762 * Load a value relative to the beginning of the link-layer header after the
2765 static struct slist
*
2766 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2768 struct slist
*s1
, *s2
;
2771 * Generate code to load the length of the pflog header into
2772 * the register assigned to hold that length, if one has been
2773 * assigned. (If one hasn't been assigned, no code we've
2774 * generated uses that prefix, so we don't need to generate any
2777 if (cstate
->off_linkpl
.reg
!= -1) {
2779 * The length is in the first byte of the header.
2781 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2785 * Round it up to a multiple of 4.
2786 * Add 3, and clear the lower 2 bits.
2788 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2791 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2792 s2
->s
.k
= 0xfffffffc;
2796 * Now allocate a register to hold that value and store
2799 s2
= new_stmt(cstate
, BPF_ST
);
2800 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2804 * Now move it into the X register.
2806 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2814 static struct slist
*
2815 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2817 struct slist
*s1
, *s2
;
2818 struct slist
*sjeq_avs_cookie
;
2819 struct slist
*sjcommon
;
2822 * This code is not compatible with the optimizer, as
2823 * we are generating jmp instructions within a normal
2824 * slist of instructions
2826 cstate
->no_optimize
= 1;
2829 * Generate code to load the length of the radio header into
2830 * the register assigned to hold that length, if one has been
2831 * assigned. (If one hasn't been assigned, no code we've
2832 * generated uses that prefix, so we don't need to generate any
2835 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2836 * or always use the AVS header rather than the Prism header.
2837 * We load a 4-byte big-endian value at the beginning of the
2838 * raw packet data, and see whether, when masked with 0xFFFFF000,
2839 * it's equal to 0x80211000. If so, that indicates that it's
2840 * an AVS header (the masked-out bits are the version number).
2841 * Otherwise, it's a Prism header.
2843 * XXX - the Prism header is also, in theory, variable-length,
2844 * but no known software generates headers that aren't 144
2847 if (cstate
->off_linkhdr
.reg
!= -1) {
2851 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2855 * AND it with 0xFFFFF000.
2857 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2858 s2
->s
.k
= 0xFFFFF000;
2862 * Compare with 0x80211000.
2864 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2865 sjeq_avs_cookie
->s
.k
= 0x80211000;
2866 sappend(s1
, sjeq_avs_cookie
);
2871 * The 4 bytes at an offset of 4 from the beginning of
2872 * the AVS header are the length of the AVS header.
2873 * That field is big-endian.
2875 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2878 sjeq_avs_cookie
->s
.jt
= s2
;
2881 * Now jump to the code to allocate a register
2882 * into which to save the header length and
2883 * store the length there. (The "jump always"
2884 * instruction needs to have the k field set;
2885 * it's added to the PC, so, as we're jumping
2886 * over a single instruction, it should be 1.)
2888 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2890 sappend(s1
, sjcommon
);
2893 * Now for the code that handles the Prism header.
2894 * Just load the length of the Prism header (144)
2895 * into the A register. Have the test for an AVS
2896 * header branch here if we don't have an AVS header.
2898 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2901 sjeq_avs_cookie
->s
.jf
= s2
;
2904 * Now allocate a register to hold that value and store
2905 * it. The code for the AVS header will jump here after
2906 * loading the length of the AVS header.
2908 s2
= new_stmt(cstate
, BPF_ST
);
2909 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2911 sjcommon
->s
.jf
= s2
;
2914 * Now move it into the X register.
2916 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2924 static struct slist
*
2925 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2927 struct slist
*s1
, *s2
;
2930 * Generate code to load the length of the AVS header into
2931 * the register assigned to hold that length, if one has been
2932 * assigned. (If one hasn't been assigned, no code we've
2933 * generated uses that prefix, so we don't need to generate any
2936 if (cstate
->off_linkhdr
.reg
!= -1) {
2938 * The 4 bytes at an offset of 4 from the beginning of
2939 * the AVS header are the length of the AVS header.
2940 * That field is big-endian.
2942 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2946 * Now allocate a register to hold that value and store
2949 s2
= new_stmt(cstate
, BPF_ST
);
2950 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2954 * Now move it into the X register.
2956 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2964 static struct slist
*
2965 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2967 struct slist
*s1
, *s2
;
2970 * Generate code to load the length of the radiotap header into
2971 * the register assigned to hold that length, if one has been
2972 * assigned. (If one hasn't been assigned, no code we've
2973 * generated uses that prefix, so we don't need to generate any
2976 if (cstate
->off_linkhdr
.reg
!= -1) {
2978 * The 2 bytes at offsets of 2 and 3 from the beginning
2979 * of the radiotap header are the length of the radiotap
2980 * header; unfortunately, it's little-endian, so we have
2981 * to load it a byte at a time and construct the value.
2985 * Load the high-order byte, at an offset of 3, shift it
2986 * left a byte, and put the result in the X register.
2988 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2990 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2993 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2997 * Load the next byte, at an offset of 2, and OR the
2998 * value from the X register into it.
3000 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3003 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3007 * Now allocate a register to hold that value and store
3010 s2
= new_stmt(cstate
, BPF_ST
);
3011 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3015 * Now move it into the X register.
3017 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3026 * At the moment we treat PPI as normal Radiotap encoded
3027 * packets. The difference is in the function that generates
3028 * the code at the beginning to compute the header length.
3029 * Since this code generator of PPI supports bare 802.11
3030 * encapsulation only (i.e. the encapsulated DLT should be
3031 * DLT_IEEE802_11) we generate code to check for this too;
3032 * that's done in finish_parse().
3034 static struct slist
*
3035 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3037 struct slist
*s1
, *s2
;
3040 * Generate code to load the length of the radiotap header
3041 * into the register assigned to hold that length, if one has
3044 if (cstate
->off_linkhdr
.reg
!= -1) {
3046 * The 2 bytes at offsets of 2 and 3 from the beginning
3047 * of the radiotap header are the length of the radiotap
3048 * header; unfortunately, it's little-endian, so we have
3049 * to load it a byte at a time and construct the value.
3053 * Load the high-order byte, at an offset of 3, shift it
3054 * left a byte, and put the result in the X register.
3056 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3058 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3061 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3065 * Load the next byte, at an offset of 2, and OR the
3066 * value from the X register into it.
3068 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3071 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3075 * Now allocate a register to hold that value and store
3078 s2
= new_stmt(cstate
, BPF_ST
);
3079 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3083 * Now move it into the X register.
3085 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3094 * Load a value relative to the beginning of the link-layer header after the 802.11
3095 * header, i.e. LLC_SNAP.
3096 * The link-layer header doesn't necessarily begin at the beginning
3097 * of the packet data; there might be a variable-length prefix containing
3098 * radio information.
3100 static struct slist
*
3101 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3104 struct slist
*sjset_data_frame_1
;
3105 struct slist
*sjset_data_frame_2
;
3106 struct slist
*sjset_qos
;
3107 struct slist
*sjset_radiotap_flags_present
;
3108 struct slist
*sjset_radiotap_ext_present
;
3109 struct slist
*sjset_radiotap_tsft_present
;
3110 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3111 struct slist
*s_roundup
;
3113 if (cstate
->off_linkpl
.reg
== -1) {
3115 * No register has been assigned to the offset of
3116 * the link-layer payload, which means nobody needs
3117 * it; don't bother computing it - just return
3118 * what we already have.
3124 * This code is not compatible with the optimizer, as
3125 * we are generating jmp instructions within a normal
3126 * slist of instructions
3128 cstate
->no_optimize
= 1;
3131 * If "s" is non-null, it has code to arrange that the X register
3132 * contains the length of the prefix preceding the link-layer
3135 * Otherwise, the length of the prefix preceding the link-layer
3136 * header is "off_outermostlinkhdr.constant_part".
3140 * There is no variable-length header preceding the
3141 * link-layer header.
3143 * Load the length of the fixed-length prefix preceding
3144 * the link-layer header (if any) into the X register,
3145 * and store it in the cstate->off_linkpl.reg register.
3146 * That length is off_outermostlinkhdr.constant_part.
3148 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3149 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3153 * The X register contains the offset of the beginning of the
3154 * link-layer header; add 24, which is the minimum length
3155 * of the MAC header for a data frame, to that, and store it
3156 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3157 * which is at the offset in the X register, with an indexed load.
3159 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3161 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3164 s2
= new_stmt(cstate
, BPF_ST
);
3165 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3168 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3173 * Check the Frame Control field to see if this is a data frame;
3174 * a data frame has the 0x08 bit (b3) in that field set and the
3175 * 0x04 bit (b2) clear.
3177 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3178 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3179 sappend(s
, sjset_data_frame_1
);
3182 * If b3 is set, test b2, otherwise go to the first statement of
3183 * the rest of the program.
3185 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3186 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3187 sappend(s
, sjset_data_frame_2
);
3188 sjset_data_frame_1
->s
.jf
= snext
;
3191 * If b2 is not set, this is a data frame; test the QoS bit.
3192 * Otherwise, go to the first statement of the rest of the
3195 sjset_data_frame_2
->s
.jt
= snext
;
3196 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3197 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3198 sappend(s
, sjset_qos
);
3201 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3203 * Otherwise, go to the first statement of the rest of the
3206 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3207 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3209 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3212 s2
= new_stmt(cstate
, BPF_ST
);
3213 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3217 * If we have a radiotap header, look at it to see whether
3218 * there's Atheros padding between the MAC-layer header
3221 * Note: all of the fields in the radiotap header are
3222 * little-endian, so we byte-swap all of the values
3223 * we test against, as they will be loaded as big-endian
3226 * XXX - in the general case, we would have to scan through
3227 * *all* the presence bits, if there's more than one word of
3228 * presence bits. That would require a loop, meaning that
3229 * we wouldn't be able to run the filter in the kernel.
3231 * We assume here that the Atheros adapters that insert the
3232 * annoying padding don't have multiple antennae and therefore
3233 * do not generate radiotap headers with multiple presence words.
3235 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3237 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3238 * in the first presence flag word?
3240 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3244 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3245 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3246 sappend(s
, sjset_radiotap_flags_present
);
3249 * If not, skip all of this.
3251 sjset_radiotap_flags_present
->s
.jf
= snext
;
3254 * Otherwise, is the "extension" bit set in that word?
3256 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3257 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3258 sappend(s
, sjset_radiotap_ext_present
);
3259 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3262 * If so, skip all of this.
3264 sjset_radiotap_ext_present
->s
.jt
= snext
;
3267 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3269 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3270 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3271 sappend(s
, sjset_radiotap_tsft_present
);
3272 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3275 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3276 * at an offset of 16 from the beginning of the raw packet
3277 * data (8 bytes for the radiotap header and 8 bytes for
3280 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3283 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3286 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3288 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3289 sjset_tsft_datapad
->s
.k
= 0x20;
3290 sappend(s
, sjset_tsft_datapad
);
3293 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3294 * at an offset of 8 from the beginning of the raw packet
3295 * data (8 bytes for the radiotap header).
3297 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3300 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3303 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3305 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3306 sjset_notsft_datapad
->s
.k
= 0x20;
3307 sappend(s
, sjset_notsft_datapad
);
3310 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3311 * set, round the length of the 802.11 header to
3312 * a multiple of 4. Do that by adding 3 and then
3313 * dividing by and multiplying by 4, which we do by
3316 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3317 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3318 sappend(s
, s_roundup
);
3319 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3322 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3323 s2
->s
.k
= (bpf_u_int32
)~3;
3325 s2
= new_stmt(cstate
, BPF_ST
);
3326 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3329 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3330 sjset_tsft_datapad
->s
.jf
= snext
;
3331 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3332 sjset_notsft_datapad
->s
.jf
= snext
;
3334 sjset_qos
->s
.jf
= snext
;
3340 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3344 /* There is an implicit dependency between the link
3345 * payload and link header since the payload computation
3346 * includes the variable part of the header. Therefore,
3347 * if nobody else has allocated a register for the link
3348 * header and we need it, do it now. */
3349 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3350 cstate
->off_linkhdr
.reg
== -1)
3351 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3354 * For link-layer types that have a variable-length header
3355 * preceding the link-layer header, generate code to load
3356 * the offset of the link-layer header into the register
3357 * assigned to that offset, if any.
3359 * XXX - this, and the next switch statement, won't handle
3360 * encapsulation of 802.11 or 802.11+radio information in
3361 * some other protocol stack. That's significantly more
3364 switch (cstate
->outermostlinktype
) {
3366 case DLT_PRISM_HEADER
:
3367 s
= gen_load_prism_llprefixlen(cstate
);
3370 case DLT_IEEE802_11_RADIO_AVS
:
3371 s
= gen_load_avs_llprefixlen(cstate
);
3374 case DLT_IEEE802_11_RADIO
:
3375 s
= gen_load_radiotap_llprefixlen(cstate
);
3379 s
= gen_load_ppi_llprefixlen(cstate
);
3388 * For link-layer types that have a variable-length link-layer
3389 * header, generate code to load the offset of the link-layer
3390 * payload into the register assigned to that offset, if any.
3392 switch (cstate
->outermostlinktype
) {
3394 case DLT_IEEE802_11
:
3395 case DLT_PRISM_HEADER
:
3396 case DLT_IEEE802_11_RADIO_AVS
:
3397 case DLT_IEEE802_11_RADIO
:
3399 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3403 s
= gen_load_pflog_llprefixlen(cstate
);
3408 * If there is no initialization yet and we need variable
3409 * length offsets for VLAN, initialize them to zero
3411 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3414 if (cstate
->off_linkpl
.reg
== -1)
3415 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3416 if (cstate
->off_linktype
.reg
== -1)
3417 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3419 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3421 s2
= new_stmt(cstate
, BPF_ST
);
3422 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3424 s2
= new_stmt(cstate
, BPF_ST
);
3425 s2
->s
.k
= cstate
->off_linktype
.reg
;
3430 * If we have any offset-loading code, append all the
3431 * existing statements in the block to those statements,
3432 * and make the resulting list the list of statements
3436 sappend(s
, b
->stmts
);
3442 * Take an absolute offset, and:
3444 * if it has no variable part, return NULL;
3446 * if it has a variable part, generate code to load the register
3447 * containing that variable part into the X register, returning
3448 * a pointer to that code - if no register for that offset has
3449 * been allocated, allocate it first.
3451 * (The code to set that register will be generated later, but will
3452 * be placed earlier in the code sequence.)
3454 static struct slist
*
3455 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3459 if (off
->is_variable
) {
3460 if (off
->reg
== -1) {
3462 * We haven't yet assigned a register for the
3463 * variable part of the offset of the link-layer
3464 * header; allocate one.
3466 off
->reg
= alloc_reg(cstate
);
3470 * Load the register containing the variable part of the
3471 * offset of the link-layer header into the X register.
3473 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3478 * That offset isn't variable, there's no variable part,
3479 * so we don't need to generate any code.
3486 * Map an Ethernet type to the equivalent PPP type.
3489 ethertype_to_ppptype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3496 case ETHERTYPE_IPV6
:
3502 case ETHERTYPE_ATALK
:
3513 * I'm assuming the "Bridging PDU"s that go
3514 * over PPP are Spanning Tree Protocol
3522 assert_maxval(cstate
, "PPP protocol", ll_proto
, UINT16_MAX
);
3523 return (uint16_t)ll_proto
;
3527 * Generate any tests that, for encapsulation of a link-layer packet
3528 * inside another protocol stack, need to be done to check for those
3529 * link-layer packets (and that haven't already been done by a check
3530 * for that encapsulation).
3532 static struct block
*
3533 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3535 if (cstate
->is_encap
)
3536 return gen_encap_ll_check(cstate
);
3538 switch (cstate
->prevlinktype
) {
3542 * This is LANE-encapsulated Ethernet; check that the LANE
3543 * packet doesn't begin with an LE Control marker, i.e.
3544 * that it's data, not a control message.
3546 * (We've already generated a test for LANE.)
3548 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3552 * No such tests are necessary.
3560 * The three different values we should check for when checking for an
3561 * IPv6 packet with DLT_NULL.
3563 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3564 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3565 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3568 * Generate code to match a particular packet type by matching the
3569 * link-layer type field or fields in the 802.2 LLC header.
3571 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3572 * value, if <= ETHERMTU.
3574 static struct block
*
3575 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3577 struct block
*b0
, *b1
, *b2
;
3579 /* are we checking MPLS-encapsulated packets? */
3580 if (cstate
->label_stack_depth
> 0)
3581 return gen_mpls_linktype(cstate
, ll_proto
);
3583 switch (cstate
->linktype
) {
3586 case DLT_NETANALYZER
:
3587 case DLT_NETANALYZER_TRANSPARENT
:
3588 /* Geneve has an EtherType regardless of whether there is an
3589 * L2 header. VXLAN always has an EtherType. */
3590 if (!cstate
->is_encap
)
3591 b0
= gen_prevlinkhdr_check(cstate
);
3595 b1
= gen_ether_linktype(cstate
, ll_proto
);
3603 assert_maxval(cstate
, "HDLC protocol", ll_proto
, UINT16_MAX
);
3607 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3611 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3615 case DLT_IEEE802_11
:
3616 case DLT_PRISM_HEADER
:
3617 case DLT_IEEE802_11_RADIO_AVS
:
3618 case DLT_IEEE802_11_RADIO
:
3621 * Check that we have a data frame.
3623 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3624 IEEE80211_FC0_TYPE_DATA
,
3625 IEEE80211_FC0_TYPE_MASK
);
3628 * Now check for the specified link-layer type.
3630 b1
= gen_llc_linktype(cstate
, ll_proto
);
3637 * XXX - check for LLC frames.
3639 return gen_llc_linktype(cstate
, ll_proto
);
3644 * XXX - check for LLC PDUs, as per IEEE 802.5.
3646 return gen_llc_linktype(cstate
, ll_proto
);
3649 case DLT_ATM_RFC1483
:
3651 case DLT_IP_OVER_FC
:
3652 return gen_llc_linktype(cstate
, ll_proto
);
3657 * Check for an LLC-encapsulated version of this protocol;
3658 * if we were checking for LANE, linktype would no longer
3661 * Check for LLC encapsulation and then check the protocol.
3663 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3664 b1
= gen_llc_linktype(cstate
, ll_proto
);
3670 return gen_linux_sll_linktype(cstate
, ll_proto
);
3674 case DLT_SLIP_BSDOS
:
3677 * These types don't provide any type field; packets
3678 * are always IPv4 or IPv6.
3680 * XXX - for IPv4, check for a version number of 4, and,
3681 * for IPv6, check for a version number of 6?
3686 /* Check for a version number of 4. */
3687 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3689 case ETHERTYPE_IPV6
:
3690 /* Check for a version number of 6. */
3691 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3694 return gen_false(cstate
); /* always false */
3700 * Raw IPv4, so no type field.
3702 if (ll_proto
== ETHERTYPE_IP
)
3703 return gen_true(cstate
); /* always true */
3705 /* Checking for something other than IPv4; always false */
3706 return gen_false(cstate
);
3711 * Raw IPv6, so no type field.
3713 if (ll_proto
== ETHERTYPE_IPV6
)
3714 return gen_true(cstate
); /* always true */
3716 /* Checking for something other than IPv6; always false */
3717 return gen_false(cstate
);
3722 case DLT_PPP_SERIAL
:
3725 * We use Ethernet protocol types inside libpcap;
3726 * map them to the corresponding PPP protocol types.
3728 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3729 ethertype_to_ppptype(cstate
, ll_proto
));
3734 * We use Ethernet protocol types inside libpcap;
3735 * map them to the corresponding PPP protocol types.
3741 * Also check for Van Jacobson-compressed IP.
3742 * XXX - do this for other forms of PPP?
3744 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3745 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3747 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3752 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3753 ethertype_to_ppptype(cstate
, ll_proto
));
3763 return (gen_loopback_linktype(cstate
, AF_INET
));
3765 case ETHERTYPE_IPV6
:
3767 * AF_ values may, unfortunately, be platform-
3768 * dependent; AF_INET isn't, because everybody
3769 * used 4.2BSD's value, but AF_INET6 is, because
3770 * 4.2BSD didn't have a value for it (given that
3771 * IPv6 didn't exist back in the early 1980's),
3772 * and they all picked their own values.
3774 * This means that, if we're reading from a
3775 * savefile, we need to check for all the
3778 * If we're doing a live capture, we only need
3779 * to check for this platform's value; however,
3780 * Npcap uses 24, which isn't Windows's AF_INET6
3781 * value. (Given the multiple different values,
3782 * programs that read pcap files shouldn't be
3783 * checking for their platform's AF_INET6 value
3784 * anyway, they should check for all of the
3785 * possible values. and they might as well do
3786 * that even for live captures.)
3788 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3790 * Savefile - check for all three
3791 * possible IPv6 values.
3793 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3794 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3796 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3801 * Live capture, so we only need to
3802 * check for the value used on this
3807 * Npcap doesn't use Windows's AF_INET6,
3808 * as that collides with AF_IPX on
3809 * some BSDs (both have the value 23).
3810 * Instead, it uses 24.
3812 return (gen_loopback_linktype(cstate
, 24));
3815 return (gen_loopback_linktype(cstate
, AF_INET6
));
3816 #else /* AF_INET6 */
3818 * I guess this platform doesn't support
3819 * IPv6, so we just reject all packets.
3821 return gen_false(cstate
);
3822 #endif /* AF_INET6 */
3828 * Not a type on which we support filtering.
3829 * XXX - support those that have AF_ values
3830 * #defined on this platform, at least?
3832 return gen_false(cstate
);
3837 * af field is host byte order in contrast to the rest of
3840 if (ll_proto
== ETHERTYPE_IP
)
3841 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3843 else if (ll_proto
== ETHERTYPE_IPV6
)
3844 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3847 return gen_false(cstate
);
3851 case DLT_ARCNET_LINUX
:
3853 * XXX should we check for first fragment if the protocol
3859 return gen_false(cstate
);
3861 case ETHERTYPE_IPV6
:
3862 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3866 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3868 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3874 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3876 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3881 case ETHERTYPE_REVARP
:
3882 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3885 case ETHERTYPE_ATALK
:
3886 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3893 case ETHERTYPE_ATALK
:
3894 return gen_true(cstate
);
3896 return gen_false(cstate
);
3902 * XXX - assumes a 2-byte Frame Relay header with
3903 * DLCI and flags. What if the address is longer?
3909 * Check for the special NLPID for IP.
3911 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3913 case ETHERTYPE_IPV6
:
3915 * Check for the special NLPID for IPv6.
3917 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3921 * Check for several OSI protocols.
3923 * Frame Relay packets typically have an OSI
3924 * NLPID at the beginning; we check for each
3927 * What we check for is the NLPID and a frame
3928 * control field of UI, i.e. 0x03 followed
3931 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3932 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3933 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3939 return gen_false(cstate
);
3944 break; // not implemented
3946 case DLT_JUNIPER_MFR
:
3947 case DLT_JUNIPER_MLFR
:
3948 case DLT_JUNIPER_MLPPP
:
3949 case DLT_JUNIPER_ATM1
:
3950 case DLT_JUNIPER_ATM2
:
3951 case DLT_JUNIPER_PPPOE
:
3952 case DLT_JUNIPER_PPPOE_ATM
:
3953 case DLT_JUNIPER_GGSN
:
3954 case DLT_JUNIPER_ES
:
3955 case DLT_JUNIPER_MONITOR
:
3956 case DLT_JUNIPER_SERVICES
:
3957 case DLT_JUNIPER_ETHER
:
3958 case DLT_JUNIPER_PPP
:
3959 case DLT_JUNIPER_FRELAY
:
3960 case DLT_JUNIPER_CHDLC
:
3961 case DLT_JUNIPER_VP
:
3962 case DLT_JUNIPER_ST
:
3963 case DLT_JUNIPER_ISM
:
3964 case DLT_JUNIPER_VS
:
3965 case DLT_JUNIPER_SRX_E2E
:
3966 case DLT_JUNIPER_FIBRECHANNEL
:
3967 case DLT_JUNIPER_ATM_CEMIC
:
3969 /* just lets verify the magic number for now -
3970 * on ATM we may have up to 6 different encapsulations on the wire
3971 * and need a lot of heuristics to figure out that the payload
3974 * FIXME encapsulation specific BPF_ filters
3976 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3978 case DLT_BACNET_MS_TP
:
3979 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3982 return gen_ipnet_linktype(cstate
, ll_proto
);
3984 case DLT_LINUX_IRDA
:
3987 case DLT_MTP2_WITH_PHDR
:
3990 case DLT_LINUX_LAPD
:
3991 case DLT_USB_FREEBSD
:
3993 case DLT_USB_LINUX_MMAPPED
:
3995 case DLT_BLUETOOTH_HCI_H4
:
3996 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3998 case DLT_CAN_SOCKETCAN
:
3999 case DLT_IEEE802_15_4
:
4000 case DLT_IEEE802_15_4_LINUX
:
4001 case DLT_IEEE802_15_4_NONASK_PHY
:
4002 case DLT_IEEE802_15_4_NOFCS
:
4003 case DLT_IEEE802_15_4_TAP
:
4004 case DLT_IEEE802_16_MAC_CPS_RADIO
:
4007 case DLT_IPMB_KONTRON
:
4011 /* Using the fixed-size NFLOG header it is possible to tell only
4012 * the address family of the packet, other meaningful data is
4013 * either missing or behind TLVs.
4015 break; // not implemented
4019 * Does this link-layer header type have a field
4020 * indicating the type of the next protocol? If
4021 * so, off_linktype.constant_part will be the offset of that
4022 * field in the packet; if not, it will be OFFSET_NOT_SET.
4024 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4026 * Yes; assume it's an Ethernet type. (If
4027 * it's not, it needs to be handled specially
4030 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4031 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4035 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4036 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4040 * Check for an LLC SNAP packet with a given organization code and
4041 * protocol type; we check the entire contents of the 802.2 LLC and
4042 * snap headers, checking for DSAP and SSAP of SNAP and a control
4043 * field of 0x03 in the LLC header, and for the specified organization
4044 * code and protocol type in the SNAP header.
4046 static struct block
*
4047 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4049 u_char snapblock
[8];
4051 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4052 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4053 snapblock
[2] = 0x03; /* control = UI */
4054 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4055 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4056 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4057 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4058 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4059 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4063 * Generate code to match frames with an LLC header.
4065 static struct block
*
4066 gen_llc_internal(compiler_state_t
*cstate
)
4068 struct block
*b0
, *b1
;
4070 switch (cstate
->linktype
) {
4074 * We check for an Ethernet type field less or equal than
4075 * 1500, which means it's an 802.3 length field.
4077 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4080 * Now check for the purported DSAP and SSAP not being
4081 * 0xFF, to rule out NetWare-over-802.3.
4083 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4089 * We check for LLC traffic.
4091 return gen_atmtype_llc(cstate
);
4093 case DLT_IEEE802
: /* Token Ring */
4095 * XXX - check for LLC frames.
4097 return gen_true(cstate
);
4101 * XXX - check for LLC frames.
4103 return gen_true(cstate
);
4105 case DLT_ATM_RFC1483
:
4107 * For LLC encapsulation, these are defined to have an
4110 * For VC encapsulation, they don't, but there's no
4111 * way to check for that; the protocol used on the VC
4112 * is negotiated out of band.
4114 return gen_true(cstate
);
4116 case DLT_IEEE802_11
:
4117 case DLT_PRISM_HEADER
:
4118 case DLT_IEEE802_11_RADIO
:
4119 case DLT_IEEE802_11_RADIO_AVS
:
4122 * Check that we have a data frame.
4124 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4125 IEEE80211_FC0_TYPE_DATA
,
4126 IEEE80211_FC0_TYPE_MASK
);
4129 fail_kw_on_dlt(cstate
, "llc");
4135 gen_llc(compiler_state_t
*cstate
)
4138 * Catch errors reported by us and routines below us, and return NULL
4141 if (setjmp(cstate
->top_ctx
))
4144 return gen_llc_internal(cstate
);
4148 gen_llc_i(compiler_state_t
*cstate
)
4150 struct block
*b0
, *b1
;
4154 * Catch errors reported by us and routines below us, and return NULL
4157 if (setjmp(cstate
->top_ctx
))
4161 * Check whether this is an LLC frame.
4163 b0
= gen_llc_internal(cstate
);
4166 * Load the control byte and test the low-order bit; it must
4167 * be clear for I frames.
4169 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4170 b1
= gen_unset(cstate
, 0x01, s
);
4177 gen_llc_s(compiler_state_t
*cstate
)
4179 struct block
*b0
, *b1
;
4182 * Catch errors reported by us and routines below us, and return NULL
4185 if (setjmp(cstate
->top_ctx
))
4189 * Check whether this is an LLC frame.
4191 b0
= gen_llc_internal(cstate
);
4194 * Now compare the low-order 2 bit of the control byte against
4195 * the appropriate value for S frames.
4197 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4203 gen_llc_u(compiler_state_t
*cstate
)
4205 struct block
*b0
, *b1
;
4208 * Catch errors reported by us and routines below us, and return NULL
4211 if (setjmp(cstate
->top_ctx
))
4215 * Check whether this is an LLC frame.
4217 b0
= gen_llc_internal(cstate
);
4220 * Now compare the low-order 2 bit of the control byte against
4221 * the appropriate value for U frames.
4223 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4229 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4231 struct block
*b0
, *b1
;
4234 * Catch errors reported by us and routines below us, and return NULL
4237 if (setjmp(cstate
->top_ctx
))
4241 * Check whether this is an LLC frame.
4243 b0
= gen_llc_internal(cstate
);
4246 * Now check for an S frame with the appropriate type.
4248 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4254 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4256 struct block
*b0
, *b1
;
4259 * Catch errors reported by us and routines below us, and return NULL
4262 if (setjmp(cstate
->top_ctx
))
4266 * Check whether this is an LLC frame.
4268 b0
= gen_llc_internal(cstate
);
4271 * Now check for a U frame with the appropriate type.
4273 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4279 * Generate code to match a particular packet type, for link-layer types
4280 * using 802.2 LLC headers.
4282 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4283 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4285 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4286 * value, if <= ETHERMTU. We use that to determine whether to
4287 * match the DSAP or both DSAP and LSAP or to check the OUI and
4288 * protocol ID in a SNAP header.
4290 static struct block
*
4291 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4294 * XXX - handle token-ring variable-length header.
4300 case LLCSAP_NETBEUI
:
4302 * XXX - should we check both the DSAP and the
4303 * SSAP, like this, or should we check just the
4304 * DSAP, as we do for other SAP values?
4306 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4307 ((ll_proto
<< 8) | ll_proto
));
4311 * XXX - are there ever SNAP frames for IPX on
4312 * non-Ethernet 802.x networks?
4314 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4316 case ETHERTYPE_ATALK
:
4318 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4319 * SNAP packets with an organization code of
4320 * 0x080007 (Apple, for Appletalk) and a protocol
4321 * type of ETHERTYPE_ATALK (Appletalk).
4323 * XXX - check for an organization code of
4324 * encapsulated Ethernet as well?
4326 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4330 * XXX - we don't have to check for IPX 802.3
4331 * here, but should we check for the IPX Ethertype?
4333 if (ll_proto
<= ETHERMTU
) {
4334 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
4336 * This is an LLC SAP value, so check
4339 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4341 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4343 * This is an Ethernet type; we assume that it's
4344 * unlikely that it'll appear in the right place
4345 * at random, and therefore check only the
4346 * location that would hold the Ethernet type
4347 * in a SNAP frame with an organization code of
4348 * 0x000000 (encapsulated Ethernet).
4350 * XXX - if we were to check for the SNAP DSAP and
4351 * LSAP, as per XXX, and were also to check for an
4352 * organization code of 0x000000 (encapsulated
4353 * Ethernet), we'd do
4355 * return gen_snap(cstate, 0x000000, ll_proto);
4357 * here; for now, we don't, as per the above.
4358 * I don't know whether it's worth the extra CPU
4359 * time to do the right check or not.
4361 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4366 static struct block
*
4367 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4368 int dir
, u_int src_off
, u_int dst_off
)
4370 struct block
*b0
, *b1
;
4384 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4385 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4391 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4392 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4402 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4409 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4413 static struct block
*
4414 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4415 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4417 struct block
*b0
, *b1
;
4420 * Code below needs to access four separate 32-bit parts of the 128-bit
4421 * IPv6 address and mask. In some OSes this is as simple as using the
4422 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4423 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4424 * far as libpcap sees it. Hence copy the data before use to avoid
4425 * potential unaligned memory access and the associated compiler
4426 * warnings (whether genuine or not).
4428 bpf_u_int32 a
[4], m
[4];
4441 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4442 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4448 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4449 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4459 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4466 /* this order is important */
4467 memcpy(a
, addr
, sizeof(a
));
4468 memcpy(m
, mask
, sizeof(m
));
4469 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4470 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4472 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4474 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4480 static struct block
*
4481 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4483 register struct block
*b0
, *b1
;
4487 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4490 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4493 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4494 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4500 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4501 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4511 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4519 * Like gen_ehostop, but for DLT_FDDI
4521 static struct block
*
4522 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4524 struct block
*b0
, *b1
;
4528 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4531 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4534 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4535 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4541 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4542 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4552 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4560 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4562 static struct block
*
4563 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4565 register struct block
*b0
, *b1
;
4569 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4572 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4575 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4576 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4582 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4583 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4593 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4601 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4602 * various 802.11 + radio headers.
4604 static struct block
*
4605 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4607 register struct block
*b0
, *b1
, *b2
;
4608 register struct slist
*s
;
4610 #ifdef ENABLE_WLAN_FILTERING_PATCH
4613 * We need to disable the optimizer because the optimizer is buggy
4614 * and wipes out some LD instructions generated by the below
4615 * code to validate the Frame Control bits
4617 cstate
->no_optimize
= 1;
4618 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4625 * For control frames, there is no SA.
4627 * For management frames, SA is at an
4628 * offset of 10 from the beginning of
4631 * For data frames, SA is at an offset
4632 * of 10 from the beginning of the packet
4633 * if From DS is clear, at an offset of
4634 * 16 from the beginning of the packet
4635 * if From DS is set and To DS is clear,
4636 * and an offset of 24 from the beginning
4637 * of the packet if From DS is set and To DS
4642 * Generate the tests to be done for data frames
4645 * First, check for To DS set, i.e. check "link[1] & 0x01".
4647 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4648 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4651 * If To DS is set, the SA is at 24.
4653 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4657 * Now, check for To DS not set, i.e. check
4658 * "!(link[1] & 0x01)".
4660 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4661 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4664 * If To DS is not set, the SA is at 16.
4666 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4670 * Now OR together the last two checks. That gives
4671 * the complete set of checks for data frames with
4677 * Now check for From DS being set, and AND that with
4678 * the ORed-together checks.
4680 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4681 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4685 * Now check for data frames with From DS not set.
4687 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4688 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4691 * If From DS isn't set, the SA is at 10.
4693 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4697 * Now OR together the checks for data frames with
4698 * From DS not set and for data frames with From DS
4699 * set; that gives the checks done for data frames.
4704 * Now check for a data frame.
4705 * I.e, check "link[0] & 0x08".
4707 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4708 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4711 * AND that with the checks done for data frames.
4716 * If the high-order bit of the type value is 0, this
4717 * is a management frame.
4718 * I.e, check "!(link[0] & 0x08)".
4720 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4721 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4724 * For management frames, the SA is at 10.
4726 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4730 * OR that with the checks done for data frames.
4731 * That gives the checks done for management and
4737 * If the low-order bit of the type value is 1,
4738 * this is either a control frame or a frame
4739 * with a reserved type, and thus not a
4742 * I.e., check "!(link[0] & 0x04)".
4744 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4745 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4748 * AND that with the checks for data and management
4758 * For control frames, there is no DA.
4760 * For management frames, DA is at an
4761 * offset of 4 from the beginning of
4764 * For data frames, DA is at an offset
4765 * of 4 from the beginning of the packet
4766 * if To DS is clear and at an offset of
4767 * 16 from the beginning of the packet
4772 * Generate the tests to be done for data frames.
4774 * First, check for To DS set, i.e. "link[1] & 0x01".
4776 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4777 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4780 * If To DS is set, the DA is at 16.
4782 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4786 * Now, check for To DS not set, i.e. check
4787 * "!(link[1] & 0x01)".
4789 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4790 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4793 * If To DS is not set, the DA is at 4.
4795 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4799 * Now OR together the last two checks. That gives
4800 * the complete set of checks for data frames.
4805 * Now check for a data frame.
4806 * I.e, check "link[0] & 0x08".
4808 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4809 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4812 * AND that with the checks done for data frames.
4817 * If the high-order bit of the type value is 0, this
4818 * is a management frame.
4819 * I.e, check "!(link[0] & 0x08)".
4821 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4822 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4825 * For management frames, the DA is at 4.
4827 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4831 * OR that with the checks done for data frames.
4832 * That gives the checks done for management and
4838 * If the low-order bit of the type value is 1,
4839 * this is either a control frame or a frame
4840 * with a reserved type, and thus not a
4843 * I.e., check "!(link[0] & 0x04)".
4845 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4846 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4849 * AND that with the checks for data and management
4856 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4857 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4863 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4864 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4869 * XXX - add BSSID keyword?
4872 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4876 * Not present in CTS or ACK control frames.
4878 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4879 IEEE80211_FC0_TYPE_MASK
);
4880 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4881 IEEE80211_FC0_SUBTYPE_MASK
);
4882 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4883 IEEE80211_FC0_SUBTYPE_MASK
);
4886 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4892 * Not present in control frames.
4894 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4895 IEEE80211_FC0_TYPE_MASK
);
4896 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4902 * Present only if the direction mask has both "From DS"
4903 * and "To DS" set. Neither control frames nor management
4904 * frames should have both of those set, so we don't
4905 * check the frame type.
4907 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4908 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4909 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4915 * Not present in management frames; addr1 in other
4920 * If the high-order bit of the type value is 0, this
4921 * is a management frame.
4922 * I.e, check "(link[0] & 0x08)".
4924 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4925 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4930 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4933 * AND that with the check of addr1.
4940 * Not present in management frames; addr2, if present,
4945 * Not present in CTS or ACK control frames.
4947 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4948 IEEE80211_FC0_TYPE_MASK
);
4949 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4950 IEEE80211_FC0_SUBTYPE_MASK
);
4951 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4952 IEEE80211_FC0_SUBTYPE_MASK
);
4957 * If the high-order bit of the type value is 0, this
4958 * is a management frame.
4959 * I.e, check "(link[0] & 0x08)".
4961 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4962 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4965 * AND that with the check for frames other than
4966 * CTS and ACK frames.
4973 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4982 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4983 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4984 * as the RFC states.)
4986 static struct block
*
4987 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4989 register struct block
*b0
, *b1
;
4993 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4996 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4999 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5000 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5006 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5007 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5017 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5025 * This is quite tricky because there may be pad bytes in front of the
5026 * DECNET header, and then there are two possible data packet formats that
5027 * carry both src and dst addresses, plus 5 packet types in a format that
5028 * carries only the src node, plus 2 types that use a different format and
5029 * also carry just the src node.
5033 * Instead of doing those all right, we just look for data packets with
5034 * 0 or 1 bytes of padding. If you want to look at other packets, that
5035 * will require a lot more hacking.
5037 * To add support for filtering on DECNET "areas" (network numbers)
5038 * one would want to add a "mask" argument to this routine. That would
5039 * make the filter even more inefficient, although one could be clever
5040 * and not generate masking instructions if the mask is 0xFFFF.
5042 static struct block
*
5043 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
5045 struct block
*b0
, *b1
, *b2
, *tmp
;
5046 u_int offset_lh
; /* offset if long header is received */
5047 u_int offset_sh
; /* offset if short header is received */
5052 offset_sh
= 1; /* follows flags */
5053 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
5057 offset_sh
= 3; /* follows flags, dstnode */
5058 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5062 /* Inefficient because we do our Calvinball dance twice */
5063 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5064 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5070 /* Inefficient because we do our Calvinball dance twice */
5071 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5072 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5082 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5090 * In a DECnet message inside an Ethernet frame the first two bytes
5091 * immediately after EtherType are the [litle-endian] DECnet message
5092 * length, which is irrelevant in this context.
5094 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5095 * 8-bit bitmap of the optional padding before the packet route header.
5096 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5097 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5098 * means there aren't any PAD bytes after the bitmap, so the header
5099 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5100 * is set to 0, thus the header begins at the third byte.
5102 * The header can be in several (as mentioned above) formats, all of
5103 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5104 * (PF, "pad field") set to 0 regardless of any padding present before
5105 * the header. "Short header" means bits 0-2 of the bitmap encode the
5106 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5108 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5109 * values and the masks, this maps to the required single bytes of
5110 * the message correctly on both big-endian and little-endian hosts.
5111 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5112 * because the wire encoding is little-endian and BPF multiple-byte
5113 * loads are big-endian. When the destination address is near enough
5114 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5117 /* Check for pad = 1, long header case */
5118 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
5119 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
5120 BPF_H
, SWAPSHORT(addr
));
5122 /* Check for pad = 0, long header case */
5123 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
5124 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
5128 /* Check for pad = 1, short header case */
5130 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5131 0x81020000U
| SWAPSHORT(addr
),
5134 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
5135 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
5140 /* Check for pad = 0, short header case */
5142 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5143 0x02000000U
| SWAPSHORT(addr
) << 8,
5146 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
5147 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5157 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5158 * test the bottom-of-stack bit, and then check the version number
5159 * field in the IP header.
5161 static struct block
*
5162 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5164 struct block
*b0
, *b1
;
5169 /* match the bottom-of-stack bit */
5170 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5171 /* match the IPv4 version number */
5172 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5176 case ETHERTYPE_IPV6
:
5177 /* match the bottom-of-stack bit */
5178 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5179 /* match the IPv4 version number */
5180 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5185 /* FIXME add other L3 proto IDs */
5186 bpf_error(cstate
, "unsupported protocol over mpls");
5191 static struct block
*
5192 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5193 int proto
, int dir
, int type
)
5195 struct block
*b0
, *b1
;
5200 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5202 * Only check for non-IPv4 addresses if we're not
5203 * checking MPLS-encapsulated packets.
5205 if (cstate
->label_stack_depth
== 0) {
5206 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5208 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5214 // "link net NETNAME" and variations thereof
5215 break; // invalid qualifier
5218 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5219 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5224 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5225 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5230 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5231 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5242 break; // invalid qualifier
5245 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5246 b1
= gen_dnhostop(cstate
, addr
, dir
);
5277 break; // invalid qualifier
5282 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5283 type
== Q_NET
? "ip net" : "ip host");
5288 static struct block
*
5289 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5290 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5292 struct block
*b0
, *b1
;
5298 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5299 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5341 break; // invalid qualifier
5346 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5347 type
== Q_NET
? "ip6 net" : "ip6 host");
5354 * This primitive is non-directional by design, so the grammar does not allow
5355 * to qualify it with a direction.
5357 static struct block
*
5358 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5359 struct addrinfo
*alist
, int proto
)
5361 struct block
*b0
, *b1
, *tmp
;
5362 struct addrinfo
*ai
;
5363 struct sockaddr_in
*sin
;
5370 switch (cstate
->linktype
) {
5372 case DLT_NETANALYZER
:
5373 case DLT_NETANALYZER_TRANSPARENT
:
5374 b1
= gen_prevlinkhdr_check(cstate
);
5375 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5380 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5383 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5385 case DLT_IEEE802_11
:
5386 case DLT_PRISM_HEADER
:
5387 case DLT_IEEE802_11_RADIO_AVS
:
5388 case DLT_IEEE802_11_RADIO
:
5390 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5392 case DLT_IP_OVER_FC
:
5393 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5397 * This is LLC-multiplexed traffic; if it were
5398 * LANE, cstate->linktype would have been set to
5404 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5407 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5409 * Does it have an address?
5411 if (ai
->ai_addr
!= NULL
) {
5413 * Yes. Is it an IPv4 address?
5415 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5417 * Generate an entry for it.
5419 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5420 tmp
= gen_host(cstate
,
5421 ntohl(sin
->sin_addr
.s_addr
),
5422 0xffffffff, proto
, Q_OR
, Q_HOST
);
5424 * Is it the *first* IPv4 address?
5428 * Yes, so start with it.
5433 * No, so OR it into the
5445 * No IPv4 addresses found.
5453 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5458 static struct block
*
5459 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5467 return gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5470 return gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5473 return gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5476 return gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5478 #ifndef IPPROTO_IGMP
5479 #define IPPROTO_IGMP 2
5483 return gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5485 #ifndef IPPROTO_IGRP
5486 #define IPPROTO_IGRP 9
5489 return gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5492 #define IPPROTO_PIM 103
5496 return gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5498 #ifndef IPPROTO_VRRP
5499 #define IPPROTO_VRRP 112
5503 return gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5505 #ifndef IPPROTO_CARP
5506 #define IPPROTO_CARP 112
5510 return gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5513 return gen_linktype(cstate
, ETHERTYPE_IP
);
5516 return gen_linktype(cstate
, ETHERTYPE_ARP
);
5519 return gen_linktype(cstate
, ETHERTYPE_REVARP
);
5522 break; // invalid syntax
5525 return gen_linktype(cstate
, ETHERTYPE_ATALK
);
5528 return gen_linktype(cstate
, ETHERTYPE_AARP
);
5531 return gen_linktype(cstate
, ETHERTYPE_DN
);
5534 return gen_linktype(cstate
, ETHERTYPE_SCA
);
5537 return gen_linktype(cstate
, ETHERTYPE_LAT
);
5540 return gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5543 return gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5546 return gen_linktype(cstate
, ETHERTYPE_IPV6
);
5548 #ifndef IPPROTO_ICMPV6
5549 #define IPPROTO_ICMPV6 58
5552 return gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5555 #define IPPROTO_AH 51
5558 return gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5561 #define IPPROTO_ESP 50
5564 return gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5567 return gen_linktype(cstate
, LLCSAP_ISONS
);
5570 return gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5573 return gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5575 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5576 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5577 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5579 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5581 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5583 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5587 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5588 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5589 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5591 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5593 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5595 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5599 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5600 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5601 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5603 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5608 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5609 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5614 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5615 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5617 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5619 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5624 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5625 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5630 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5631 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5636 return gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5639 return gen_linktype(cstate
, LLCSAP_8021D
);
5642 return gen_linktype(cstate
, LLCSAP_IPX
);
5645 return gen_linktype(cstate
, LLCSAP_NETBEUI
);
5648 break; // invalid syntax
5653 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5657 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5660 * Catch errors reported by us and routines below us, and return NULL
5663 if (setjmp(cstate
->top_ctx
))
5666 return gen_proto_abbrev_internal(cstate
, proto
);
5669 static struct block
*
5670 gen_ip_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5672 return gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5675 static struct block
*
5676 gen_ip6_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5678 return gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5681 static struct block
*
5682 gen_ipfrag(compiler_state_t
*cstate
)
5686 /* not IPv4 frag other than the first frag */
5687 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5688 return gen_unset(cstate
, 0x1fff, s
);
5692 * Generate a comparison to a port value in the transport-layer header
5693 * at the specified offset from the beginning of that header.
5695 * XXX - this handles a variable-length prefix preceding the link-layer
5696 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5697 * variable-length link-layer headers (such as Token Ring or 802.11
5700 static struct block
*
5701 gen_portatom(compiler_state_t
*cstate
, int off
, uint16_t v
)
5703 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5706 static struct block
*
5707 gen_portatom6(compiler_state_t
*cstate
, int off
, uint16_t v
)
5709 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5712 static struct block
*
5713 gen_portop(compiler_state_t
*cstate
, uint16_t port
, uint8_t proto
, int dir
)
5715 struct block
*b0
, *b1
, *tmp
;
5717 /* ip proto 'proto' and not a fragment other than the first fragment */
5718 tmp
= gen_ip_proto(cstate
, proto
);
5719 b0
= gen_ipfrag(cstate
);
5724 b1
= gen_portatom(cstate
, 0, port
);
5728 b1
= gen_portatom(cstate
, 2, port
);
5732 tmp
= gen_portatom(cstate
, 0, port
);
5733 b1
= gen_portatom(cstate
, 2, port
);
5739 tmp
= gen_portatom(cstate
, 0, port
);
5740 b1
= gen_portatom(cstate
, 2, port
);
5750 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5762 static struct block
*
5763 gen_port(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5765 struct block
*b0
, *b1
, *tmp
;
5770 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5771 * not LLC encapsulation with LLCSAP_IP.
5773 * For IEEE 802 networks - which includes 802.5 token ring
5774 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5775 * says that SNAP encapsulation is used, not LLC encapsulation
5778 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5779 * RFC 2225 say that SNAP encapsulation is used, not LLC
5780 * encapsulation with LLCSAP_IP.
5782 * So we always check for ETHERTYPE_IP.
5784 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5790 b1
= gen_portop(cstate
, port
, (uint8_t)proto
, dir
);
5794 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5795 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5797 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5809 gen_portop6(compiler_state_t
*cstate
, uint16_t port
, uint8_t proto
, int dir
)
5811 struct block
*b0
, *b1
, *tmp
;
5813 /* ip6 proto 'proto' */
5814 /* XXX - catch the first fragment of a fragmented packet? */
5815 b0
= gen_ip6_proto(cstate
, proto
);
5819 b1
= gen_portatom6(cstate
, 0, port
);
5823 b1
= gen_portatom6(cstate
, 2, port
);
5827 tmp
= gen_portatom6(cstate
, 0, port
);
5828 b1
= gen_portatom6(cstate
, 2, port
);
5834 tmp
= gen_portatom6(cstate
, 0, port
);
5835 b1
= gen_portatom6(cstate
, 2, port
);
5847 static struct block
*
5848 gen_port6(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5850 struct block
*b0
, *b1
, *tmp
;
5852 /* link proto ip6 */
5853 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5859 b1
= gen_portop6(cstate
, port
, (uint8_t)proto
, dir
);
5863 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5864 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5866 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5877 /* gen_portrange code */
5878 static struct block
*
5879 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5883 return gen_portatom(cstate
, off
, v1
);
5885 struct block
*b1
, *b2
;
5887 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5888 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5895 static struct block
*
5896 gen_portrangeop(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5897 uint8_t proto
, int dir
)
5899 struct block
*b0
, *b1
, *tmp
;
5901 /* ip proto 'proto' and not a fragment other than the first fragment */
5902 tmp
= gen_ip_proto(cstate
, proto
);
5903 b0
= gen_ipfrag(cstate
);
5908 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5912 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5916 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5917 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5923 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5924 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5934 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5946 static struct block
*
5947 gen_portrange(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5950 struct block
*b0
, *b1
, *tmp
;
5953 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5959 b1
= gen_portrangeop(cstate
, port1
, port2
, (uint8_t)proto
,
5964 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5965 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5967 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
5978 static struct block
*
5979 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5983 return gen_portatom6(cstate
, off
, v1
);
5985 struct block
*b1
, *b2
;
5987 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
5988 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
5995 static struct block
*
5996 gen_portrangeop6(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5997 uint8_t proto
, int dir
)
5999 struct block
*b0
, *b1
, *tmp
;
6001 /* ip6 proto 'proto' */
6002 /* XXX - catch the first fragment of a fragmented packet? */
6003 b0
= gen_ip6_proto(cstate
, proto
);
6007 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6011 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6015 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6016 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6022 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6023 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6035 static struct block
*
6036 gen_portrange6(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
6039 struct block
*b0
, *b1
, *tmp
;
6041 /* link proto ip6 */
6042 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6048 b1
= gen_portrangeop6(cstate
, port1
, port2
, (uint8_t)proto
,
6053 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6054 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6056 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6068 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6077 v
= pcap_nametoproto(name
);
6078 if (v
== PROTO_UNDEF
)
6079 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6083 /* XXX should look up h/w protocol type based on cstate->linktype */
6084 v
= pcap_nametoeproto(name
);
6085 if (v
== PROTO_UNDEF
) {
6086 v
= pcap_nametollc(name
);
6087 if (v
== PROTO_UNDEF
)
6088 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6093 if (strcmp(name
, "esis") == 0)
6095 else if (strcmp(name
, "isis") == 0)
6097 else if (strcmp(name
, "clnp") == 0)
6100 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6110 #if !defined(NO_PROTOCHAIN)
6112 * This primitive is non-directional by design, so the grammar does not allow
6113 * to qualify it with a direction.
6115 static struct block
*
6116 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6118 struct block
*b0
, *b
;
6119 struct slist
*s
[100];
6120 int fix2
, fix3
, fix4
, fix5
;
6121 int ahcheck
, again
, end
;
6123 int reg2
= alloc_reg(cstate
);
6125 memset(s
, 0, sizeof(s
));
6126 fix3
= fix4
= fix5
= 0;
6133 b0
= gen_protochain(cstate
, v
, Q_IP
);
6134 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6138 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6143 * We don't handle variable-length prefixes before the link-layer
6144 * header, or variable-length link-layer headers, here yet.
6145 * We might want to add BPF instructions to do the protochain
6146 * work, to simplify that and, on platforms that have a BPF
6147 * interpreter with the new instructions, let the filtering
6148 * be done in the kernel. (We already require a modified BPF
6149 * engine to do the protochain stuff, to support backward
6150 * branches, and backward branch support is unlikely to appear
6151 * in kernel BPF engines.)
6153 if (cstate
->off_linkpl
.is_variable
)
6154 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6157 * To quote a comment in optimize.c:
6159 * "These data structures are used in a Cocke and Schwartz style
6160 * value numbering scheme. Since the flowgraph is acyclic,
6161 * exit values can be propagated from a node's predecessors
6162 * provided it is uniquely defined."
6164 * "Acyclic" means "no backward branches", which means "no
6165 * loops", so we have to turn the optimizer off.
6167 cstate
->no_optimize
= 1;
6170 * s[0] is a dummy entry to protect other BPF insn from damage
6171 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6172 * hard to find interdependency made by jump table fixup.
6175 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6180 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6183 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6184 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6186 /* X = ip->ip_hl << 2 */
6187 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6188 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6193 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6195 /* A = ip6->ip_nxt */
6196 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6197 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6199 /* X = sizeof(struct ip6_hdr) */
6200 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6206 bpf_error(cstate
, "unsupported proto to gen_protochain");
6210 /* again: if (A == v) goto end; else fall through; */
6212 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6214 s
[i
]->s
.jt
= NULL
; /*later*/
6215 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6219 #ifndef IPPROTO_NONE
6220 #define IPPROTO_NONE 59
6222 /* if (A == IPPROTO_NONE) goto end */
6223 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6224 s
[i
]->s
.jt
= NULL
; /*later*/
6225 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6226 s
[i
]->s
.k
= IPPROTO_NONE
;
6227 s
[fix5
]->s
.jf
= s
[i
];
6231 if (proto
== Q_IPV6
) {
6232 int v6start
, v6end
, v6advance
, j
;
6235 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6236 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6237 s
[i
]->s
.jt
= NULL
; /*later*/
6238 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6239 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6240 s
[fix2
]->s
.jf
= s
[i
];
6242 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6243 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6244 s
[i
]->s
.jt
= NULL
; /*later*/
6245 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6246 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6248 /* if (A == IPPROTO_ROUTING) goto v6advance */
6249 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6250 s
[i
]->s
.jt
= NULL
; /*later*/
6251 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6252 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6254 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6255 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6256 s
[i
]->s
.jt
= NULL
; /*later*/
6257 s
[i
]->s
.jf
= NULL
; /*later*/
6258 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6268 * A = P[X + packet head];
6269 * X = X + (P[X + packet head + 1] + 1) * 8;
6271 /* A = P[X + packet head] */
6272 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6273 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6276 s
[i
] = new_stmt(cstate
, BPF_ST
);
6279 /* A = P[X + packet head + 1]; */
6280 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6281 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6284 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6288 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6292 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6296 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6299 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6303 /* goto again; (must use BPF_JA for backward jump) */
6304 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6305 s
[i
]->s
.k
= again
- i
- 1;
6306 s
[i
- 1]->s
.jf
= s
[i
];
6310 for (j
= v6start
; j
<= v6end
; j
++)
6311 s
[j
]->s
.jt
= s
[v6advance
];
6314 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6316 s
[fix2
]->s
.jf
= s
[i
];
6322 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6323 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6324 s
[i
]->s
.jt
= NULL
; /*later*/
6325 s
[i
]->s
.jf
= NULL
; /*later*/
6326 s
[i
]->s
.k
= IPPROTO_AH
;
6328 s
[fix3
]->s
.jf
= s
[ahcheck
];
6335 * X = X + (P[X + 1] + 2) * 4;
6338 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6340 /* A = P[X + packet head]; */
6341 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6342 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6345 s
[i
] = new_stmt(cstate
, BPF_ST
);
6349 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6352 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6356 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6358 /* A = P[X + packet head] */
6359 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6360 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6363 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6367 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6371 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6374 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6378 /* goto again; (must use BPF_JA for backward jump) */
6379 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6380 s
[i
]->s
.k
= again
- i
- 1;
6385 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6387 s
[fix2
]->s
.jt
= s
[end
];
6388 s
[fix4
]->s
.jf
= s
[end
];
6389 s
[fix5
]->s
.jt
= s
[end
];
6396 for (i
= 0; i
< max
- 1; i
++)
6397 s
[i
]->next
= s
[i
+ 1];
6398 s
[max
- 1]->next
= NULL
;
6402 * Remember, s[0] is dummy.
6404 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6406 free_reg(cstate
, reg2
);
6411 #endif /* !defined(NO_PROTOCHAIN) */
6414 * Generate code that checks whether the packet is a packet for protocol
6415 * <proto> and whether the type field in that protocol's header has
6416 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6417 * IP packet and checks the protocol number in the IP header against <v>.
6419 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6420 * against Q_IP and Q_IPV6.
6422 * This primitive is non-directional by design, so the grammar does not allow
6423 * to qualify it with a direction.
6425 static struct block
*
6426 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6428 struct block
*b0
, *b1
;
6433 b0
= gen_proto(cstate
, v
, Q_IP
);
6434 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6439 return gen_linktype(cstate
, v
);
6442 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6444 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6445 * not LLC encapsulation with LLCSAP_IP.
6447 * For IEEE 802 networks - which includes 802.5 token ring
6448 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6449 * says that SNAP encapsulation is used, not LLC encapsulation
6452 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6453 * RFC 2225 say that SNAP encapsulation is used, not LLC
6454 * encapsulation with LLCSAP_IP.
6456 * So we always check for ETHERTYPE_IP.
6458 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6459 // 0 <= v <= UINT8_MAX
6460 b1
= gen_ip_proto(cstate
, (uint8_t)v
);
6478 break; // invalid qualifier
6481 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6482 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6484 * Also check for a fragment header before the final
6487 b2
= gen_ip6_proto(cstate
, IPPROTO_FRAGMENT
);
6488 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6490 // 0 <= v <= UINT8_MAX
6491 b2
= gen_ip6_proto(cstate
, (uint8_t)v
);
6502 break; // invalid qualifier
6505 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6506 switch (cstate
->linktype
) {
6510 * Frame Relay packets typically have an OSI
6511 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6512 * generates code to check for all the OSI
6513 * NLPIDs, so calling it and then adding a check
6514 * for the particular NLPID for which we're
6515 * looking is bogus, as we can just check for
6518 * What we check for is the NLPID and a frame
6519 * control field value of UI, i.e. 0x03 followed
6522 * XXX - assumes a 2-byte Frame Relay header with
6523 * DLCI and flags. What if the address is longer?
6525 * XXX - what about SNAP-encapsulated frames?
6527 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6533 * Cisco uses an Ethertype lookalike - for OSI,
6536 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6537 /* OSI in C-HDLC is stuffed with a fudge byte */
6538 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6543 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6544 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6550 break; // invalid qualifier
6553 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6554 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6556 * 4 is the offset of the PDU type relative to the IS-IS
6558 * Except when it is not, see above.
6560 unsigned pdu_type_offset
;
6561 switch (cstate
->linktype
) {
6564 pdu_type_offset
= 5;
6567 pdu_type_offset
= 4;
6569 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6570 v
, ISIS_PDU_TYPE_MAX
);
6587 break; // invalid qualifier
6593 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6598 * Convert a non-numeric name to a port number.
6601 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6603 struct addrinfo hints
, *res
, *ai
;
6605 struct sockaddr_in
*in4
;
6607 struct sockaddr_in6
*in6
;
6612 * We check for both TCP and UDP in case there are
6613 * ambiguous entries.
6615 memset(&hints
, 0, sizeof(hints
));
6616 hints
.ai_family
= PF_UNSPEC
;
6617 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6618 hints
.ai_protocol
= ipproto
;
6619 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6626 * No such port. Just return -1.
6633 * We don't use strerror() because it's not
6634 * guaranteed to be thread-safe on all platforms
6635 * (probably because it might use a non-thread-local
6636 * buffer into which to format an error message
6637 * if the error code isn't one for which it has
6638 * a canned string; three cheers for C string
6641 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6643 port
= -2; /* a real error */
6649 * This is a real error, not just "there's
6650 * no such service name".
6652 * We don't use gai_strerror() because it's not
6653 * guaranteed to be thread-safe on all platforms
6654 * (probably because it might use a non-thread-local
6655 * buffer into which to format an error message
6656 * if the error code isn't one for which it has
6657 * a canned string; three cheers for C string
6660 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6662 port
= -2; /* a real error */
6667 * OK, we found it. Did it find anything?
6669 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6671 * Does it have an address?
6673 if (ai
->ai_addr
!= NULL
) {
6675 * Yes. Get a port number; we're done.
6677 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6678 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6679 port
= ntohs(in4
->sin_port
);
6683 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6684 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6685 port
= ntohs(in6
->sin6_port
);
6697 * Convert a string to a port number.
6700 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6710 * See if it's a number.
6712 ret
= stoulen(string
, string_size
, &val
, cstate
);
6716 /* Unknown port type - it's just a number. */
6717 *proto
= PROTO_UNDEF
;
6720 case STOULEN_NOT_OCTAL_NUMBER
:
6721 case STOULEN_NOT_HEX_NUMBER
:
6722 case STOULEN_NOT_DECIMAL_NUMBER
:
6724 * Not a valid number; try looking it up as a port.
6726 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6727 memcpy(cpy
, string
, string_size
);
6728 cpy
[string_size
] = '\0';
6729 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6730 if (tcp_port
== -2) {
6732 * We got a hard error; the error string has
6736 longjmp(cstate
->top_ctx
, 1);
6739 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6740 if (udp_port
== -2) {
6742 * We got a hard error; the error string has
6746 longjmp(cstate
->top_ctx
, 1);
6751 * We need to check /etc/services for ambiguous entries.
6752 * If we find an ambiguous entry, and it has the
6753 * same port number, change the proto to PROTO_UNDEF
6754 * so both TCP and UDP will be checked.
6756 if (tcp_port
>= 0) {
6757 val
= (bpf_u_int32
)tcp_port
;
6758 *proto
= IPPROTO_TCP
;
6759 if (udp_port
>= 0) {
6760 if (udp_port
== tcp_port
)
6761 *proto
= PROTO_UNDEF
;
6764 /* Can't handle ambiguous names that refer
6765 to different port numbers. */
6766 warning("ambiguous port %s in /etc/services",
6773 if (udp_port
>= 0) {
6774 val
= (bpf_u_int32
)udp_port
;
6775 *proto
= IPPROTO_UDP
;
6779 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6781 longjmp(cstate
->top_ctx
, 1);
6788 /* Error already set. */
6789 longjmp(cstate
->top_ctx
, 1);
6796 /* Should not happen */
6797 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6798 longjmp(cstate
->top_ctx
, 1);
6805 * Convert a string in the form PPP-PPP, which correspond to ports, to
6806 * a starting and ending port in a port range.
6809 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6810 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6813 const char *first
, *second
;
6814 size_t first_size
, second_size
;
6817 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6818 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6821 * Make sure there are no other hyphens.
6823 * XXX - we support named ports, but there are some port names
6824 * in /etc/services that include hyphens, so this would rule
6827 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6828 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6832 * Get the length of the first port.
6835 first_size
= hyphen_off
- string
;
6836 if (first_size
== 0) {
6837 /* Range of "-port", which we don't support. */
6838 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6842 * Try to convert it to a port.
6844 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6845 save_proto
= *proto
;
6848 * Get the length of the second port.
6850 second
= hyphen_off
+ 1;
6851 second_size
= strlen(second
);
6852 if (second_size
== 0) {
6853 /* Range of "port-", which we don't support. */
6854 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6858 * Try to convert it to a port.
6860 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6861 if (*proto
!= save_proto
)
6862 *proto
= PROTO_UNDEF
;
6866 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6868 int proto
= q
.proto
;
6872 bpf_u_int32 mask
, addr
;
6873 struct addrinfo
*res
, *res0
;
6874 struct sockaddr_in
*sin4
;
6877 struct sockaddr_in6
*sin6
;
6878 struct in6_addr mask128
;
6880 struct block
*b
, *tmp
;
6881 int port
, real_proto
;
6882 bpf_u_int32 port1
, port2
;
6885 * Catch errors reported by us and routines below us, and return NULL
6888 if (setjmp(cstate
->top_ctx
))
6894 addr
= pcap_nametonetaddr(name
);
6896 bpf_error(cstate
, "unknown network '%s'", name
);
6897 /* Left justify network addr and calculate its network mask */
6899 while (addr
&& (addr
& 0xff000000) == 0) {
6903 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6907 if (proto
== Q_LINK
) {
6908 switch (cstate
->linktype
) {
6911 case DLT_NETANALYZER
:
6912 case DLT_NETANALYZER_TRANSPARENT
:
6913 eaddr
= pcap_ether_hostton(name
);
6916 "unknown ether host '%s'", name
);
6917 tmp
= gen_prevlinkhdr_check(cstate
);
6918 b
= gen_ehostop(cstate
, eaddr
, dir
);
6925 eaddr
= pcap_ether_hostton(name
);
6928 "unknown FDDI host '%s'", name
);
6929 b
= gen_fhostop(cstate
, eaddr
, dir
);
6934 eaddr
= pcap_ether_hostton(name
);
6937 "unknown token ring host '%s'", name
);
6938 b
= gen_thostop(cstate
, eaddr
, dir
);
6942 case DLT_IEEE802_11
:
6943 case DLT_PRISM_HEADER
:
6944 case DLT_IEEE802_11_RADIO_AVS
:
6945 case DLT_IEEE802_11_RADIO
:
6947 eaddr
= pcap_ether_hostton(name
);
6950 "unknown 802.11 host '%s'", name
);
6951 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6955 case DLT_IP_OVER_FC
:
6956 eaddr
= pcap_ether_hostton(name
);
6959 "unknown Fibre Channel host '%s'", name
);
6960 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6965 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6966 } else if (proto
== Q_DECNET
) {
6968 * A long time ago on Ultrix libpcap supported
6969 * translation of DECnet host names into DECnet
6970 * addresses, but this feature is history now.
6972 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
6975 memset(&mask128
, 0xff, sizeof(mask128
));
6977 res0
= res
= pcap_nametoaddrinfo(name
);
6979 bpf_error(cstate
, "unknown host '%s'", name
);
6986 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6987 tproto
== Q_DEFAULT
) {
6993 for (res
= res0
; res
; res
= res
->ai_next
) {
6994 switch (res
->ai_family
) {
6997 if (tproto
== Q_IPV6
)
7001 sin4
= (struct sockaddr_in
*)
7003 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
7004 0xffffffff, tproto
, dir
, q
.addr
);
7008 if (tproto6
== Q_IP
)
7011 sin6
= (struct sockaddr_in6
*)
7013 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
7014 &mask128
, tproto6
, dir
, q
.addr
);
7027 bpf_error(cstate
, "unknown host '%s'%s", name
,
7028 (proto
== Q_DEFAULT
)
7030 : " for specified address family");
7036 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
7037 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
7038 bpf_error(cstate
, "unknown port '%s'", name
);
7039 if (proto
== Q_UDP
) {
7040 if (real_proto
== IPPROTO_TCP
)
7041 bpf_error(cstate
, "port '%s' is tcp", name
);
7042 else if (real_proto
== IPPROTO_SCTP
)
7043 bpf_error(cstate
, "port '%s' is sctp", name
);
7045 /* override PROTO_UNDEF */
7046 real_proto
= IPPROTO_UDP
;
7048 if (proto
== Q_TCP
) {
7049 if (real_proto
== IPPROTO_UDP
)
7050 bpf_error(cstate
, "port '%s' is udp", name
);
7052 else if (real_proto
== IPPROTO_SCTP
)
7053 bpf_error(cstate
, "port '%s' is sctp", name
);
7055 /* override PROTO_UNDEF */
7056 real_proto
= IPPROTO_TCP
;
7058 if (proto
== Q_SCTP
) {
7059 if (real_proto
== IPPROTO_UDP
)
7060 bpf_error(cstate
, "port '%s' is udp", name
);
7062 else if (real_proto
== IPPROTO_TCP
)
7063 bpf_error(cstate
, "port '%s' is tcp", name
);
7065 /* override PROTO_UNDEF */
7066 real_proto
= IPPROTO_SCTP
;
7069 bpf_error(cstate
, "illegal port number %d < 0", port
);
7071 bpf_error(cstate
, "illegal port number %d > 65535", port
);
7072 // real_proto can be PROTO_UNDEF
7073 b
= gen_port(cstate
, (uint16_t)port
, real_proto
, dir
);
7074 gen_or(gen_port6(cstate
, (uint16_t)port
, real_proto
, dir
), b
);
7078 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
7079 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
7080 if (proto
== Q_UDP
) {
7081 if (real_proto
== IPPROTO_TCP
)
7082 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7083 else if (real_proto
== IPPROTO_SCTP
)
7084 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7086 /* override PROTO_UNDEF */
7087 real_proto
= IPPROTO_UDP
;
7089 if (proto
== Q_TCP
) {
7090 if (real_proto
== IPPROTO_UDP
)
7091 bpf_error(cstate
, "port in range '%s' is udp", name
);
7092 else if (real_proto
== IPPROTO_SCTP
)
7093 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7095 /* override PROTO_UNDEF */
7096 real_proto
= IPPROTO_TCP
;
7098 if (proto
== Q_SCTP
) {
7099 if (real_proto
== IPPROTO_UDP
)
7100 bpf_error(cstate
, "port in range '%s' is udp", name
);
7101 else if (real_proto
== IPPROTO_TCP
)
7102 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7104 /* override PROTO_UNDEF */
7105 real_proto
= IPPROTO_SCTP
;
7108 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7110 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7112 // real_proto can be PROTO_UNDEF
7113 b
= gen_portrange(cstate
, (uint16_t)port1
, (uint16_t)port2
,
7115 gen_or(gen_portrange6(cstate
, (uint16_t)port1
, (uint16_t)port2
,
7116 real_proto
, dir
), b
);
7121 eaddr
= pcap_ether_hostton(name
);
7123 bpf_error(cstate
, "unknown ether host: %s", name
);
7125 res
= pcap_nametoaddrinfo(name
);
7128 bpf_error(cstate
, "unknown host '%s'", name
);
7129 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
7134 bpf_error(cstate
, "unknown host '%s'", name
);
7137 bpf_error(cstate
, "'gateway' not supported in this configuration");
7141 real_proto
= lookup_proto(cstate
, name
, proto
);
7142 if (real_proto
>= 0)
7143 return gen_proto(cstate
, real_proto
, proto
);
7145 bpf_error(cstate
, "unknown protocol: %s", name
);
7147 #if !defined(NO_PROTOCHAIN)
7149 real_proto
= lookup_proto(cstate
, name
, proto
);
7150 if (real_proto
>= 0)
7151 return gen_protochain(cstate
, real_proto
, proto
);
7153 bpf_error(cstate
, "unknown protocol: %s", name
);
7154 #endif /* !defined(NO_PROTOCHAIN) */
7165 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7166 bpf_u_int32 masklen
, struct qual q
)
7168 register int nlen
, mlen
;
7173 * Catch errors reported by us and routines below us, and return NULL
7176 if (setjmp(cstate
->top_ctx
))
7179 nlen
= pcapint_atoin(s1
, &n
);
7181 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7182 /* Promote short ipaddr */
7186 mlen
= pcapint_atoin(s2
, &m
);
7188 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7189 /* Promote short ipaddr */
7192 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7195 /* Convert mask len to mask */
7197 bpf_error(cstate
, "mask length must be <= 32");
7198 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7199 m
= (bpf_u_int32
)m64
;
7201 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7208 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7211 // Q_HOST and Q_GATEWAY only (see the grammar)
7212 bpf_error(cstate
, "Mask syntax for networks only");
7219 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7227 * Catch errors reported by us and routines below us, and return NULL
7230 if (setjmp(cstate
->top_ctx
))
7237 * v contains a 32-bit unsigned parsed from a string of the
7238 * form {N}, which could be decimal, hexadecimal or octal.
7239 * Although it would be possible to use the value as a raw
7240 * 16-bit DECnet address when the value fits into 16 bits, this
7241 * would be a questionable feature: DECnet address wire
7242 * encoding is little-endian, so this would not work as
7243 * intuitively as the same works for [big-endian] IPv4
7244 * addresses (0x01020304 means 1.2.3.4).
7246 if (proto
== Q_DECNET
)
7247 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7249 } else if (proto
== Q_DECNET
) {
7251 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7252 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7253 * for a valid DECnet address.
7255 vlen
= pcapint_atodn(s
, &v
);
7257 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7260 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7261 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7264 vlen
= pcapint_atoin(s
, &v
);
7266 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7274 if (proto
== Q_DECNET
)
7275 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7276 else if (proto
== Q_LINK
) {
7277 // "link (host|net) IPV4ADDR" and variations thereof
7278 bpf_error(cstate
, "illegal link layer address");
7281 if (s
== NULL
&& q
.addr
== Q_NET
) {
7282 /* Promote short net number */
7283 while (v
&& (v
& 0xff000000) == 0) {
7288 /* Promote short ipaddr */
7290 mask
<<= 32 - vlen
;
7292 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7296 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7299 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7301 // proto can be PROTO_UNDEF
7304 b
= gen_port(cstate
, (uint16_t)v
, proto
, dir
);
7305 gen_or(gen_port6(cstate
, (uint16_t)v
, proto
, dir
), b
);
7310 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7313 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7315 // proto can be PROTO_UNDEF
7318 b
= gen_portrange(cstate
, (uint16_t)v
, (uint16_t)v
,
7320 gen_or(gen_portrange6(cstate
, (uint16_t)v
, (uint16_t)v
,
7326 bpf_error(cstate
, "'gateway' requires a name");
7330 return gen_proto(cstate
, v
, proto
);
7332 #if !defined(NO_PROTOCHAIN)
7334 return gen_protochain(cstate
, v
, proto
);
7350 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7353 struct addrinfo
*res
;
7354 struct in6_addr
*addr
;
7355 struct in6_addr mask
;
7357 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7360 * Catch errors reported by us and routines below us, and return NULL
7363 if (setjmp(cstate
->top_ctx
))
7366 res
= pcap_nametoaddrinfo(s
);
7368 bpf_error(cstate
, "invalid ip6 address %s", s
);
7371 bpf_error(cstate
, "%s resolved to multiple address", s
);
7372 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7374 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7375 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7376 memset(&mask
, 0, sizeof(mask
));
7377 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7379 mask
.s6_addr
[masklen
/ 8] =
7380 (0xff << (8 - masklen
% 8)) & 0xff;
7383 memcpy(a
, addr
, sizeof(a
));
7384 memcpy(m
, &mask
, sizeof(m
));
7385 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7386 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7387 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7395 bpf_error(cstate
, "Mask syntax for networks only");
7399 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7405 // Q_GATEWAY only (see the grammar)
7406 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7413 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7415 struct block
*b
, *tmp
;
7418 * Catch errors reported by us and routines below us, and return NULL
7421 if (setjmp(cstate
->top_ctx
))
7424 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7425 cstate
->e
= pcap_ether_aton(s
);
7426 if (cstate
->e
== NULL
)
7427 bpf_error(cstate
, "malloc");
7428 switch (cstate
->linktype
) {
7430 case DLT_NETANALYZER
:
7431 case DLT_NETANALYZER_TRANSPARENT
:
7432 tmp
= gen_prevlinkhdr_check(cstate
);
7433 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7438 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7441 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7443 case DLT_IEEE802_11
:
7444 case DLT_PRISM_HEADER
:
7445 case DLT_IEEE802_11_RADIO_AVS
:
7446 case DLT_IEEE802_11_RADIO
:
7448 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7450 case DLT_IP_OVER_FC
:
7451 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7456 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7463 bpf_error(cstate
, "ethernet address used in non-ether expression");
7468 sappend(struct slist
*s0
, struct slist
*s1
)
7471 * This is definitely not the best way to do this, but the
7472 * lists will rarely get long.
7479 static struct slist
*
7480 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7484 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7489 static struct slist
*
7490 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7494 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7500 * Modify "index" to use the value stored into its register as an
7501 * offset relative to the beginning of the header for the protocol
7502 * "proto", and allocate a register and put an item "size" bytes long
7503 * (1, 2, or 4) at that offset into that register, making it the register
7506 static struct arth
*
7507 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7511 struct slist
*s
, *tmp
;
7513 int regno
= alloc_reg(cstate
);
7515 free_reg(cstate
, inst
->regno
);
7519 bpf_error(cstate
, "data size must be 1, 2, or 4");
7536 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7540 * The offset is relative to the beginning of the packet
7541 * data, if we have a radio header. (If we don't, this
7544 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7545 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7546 cstate
->linktype
!= DLT_PRISM_HEADER
)
7547 bpf_error(cstate
, "radio information not present in capture");
7550 * Load into the X register the offset computed into the
7551 * register specified by "index".
7553 s
= xfer_to_x(cstate
, inst
);
7556 * Load the item at that offset.
7558 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7560 sappend(inst
->s
, s
);
7565 * The offset is relative to the beginning of
7566 * the link-layer header.
7568 * XXX - what about ATM LANE? Should the index be
7569 * relative to the beginning of the AAL5 frame, so
7570 * that 0 refers to the beginning of the LE Control
7571 * field, or relative to the beginning of the LAN
7572 * frame, so that 0 refers, for Ethernet LANE, to
7573 * the beginning of the destination address?
7575 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7578 * If "s" is non-null, it has code to arrange that the
7579 * X register contains the length of the prefix preceding
7580 * the link-layer header. Add to it the offset computed
7581 * into the register specified by "index", and move that
7582 * into the X register. Otherwise, just load into the X
7583 * register the offset computed into the register specified
7587 sappend(s
, xfer_to_a(cstate
, inst
));
7588 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7589 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7591 s
= xfer_to_x(cstate
, inst
);
7594 * Load the item at the sum of the offset we've put in the
7595 * X register and the offset of the start of the link
7596 * layer header (which is 0 if the radio header is
7597 * variable-length; that header length is what we put
7598 * into the X register and then added to the index).
7600 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7601 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7603 sappend(inst
->s
, s
);
7617 * The offset is relative to the beginning of
7618 * the network-layer header.
7619 * XXX - are there any cases where we want
7620 * cstate->off_nl_nosnap?
7622 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7625 * If "s" is non-null, it has code to arrange that the
7626 * X register contains the variable part of the offset
7627 * of the link-layer payload. Add to it the offset
7628 * computed into the register specified by "index",
7629 * and move that into the X register. Otherwise, just
7630 * load into the X register the offset computed into
7631 * the register specified by "index".
7634 sappend(s
, xfer_to_a(cstate
, inst
));
7635 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7636 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7638 s
= xfer_to_x(cstate
, inst
);
7641 * Load the item at the sum of the offset we've put in the
7642 * X register, the offset of the start of the network
7643 * layer header from the beginning of the link-layer
7644 * payload, and the constant part of the offset of the
7645 * start of the link-layer payload.
7647 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7648 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7650 sappend(inst
->s
, s
);
7653 * Do the computation only if the packet contains
7654 * the protocol in question.
7656 b
= gen_proto_abbrev_internal(cstate
, proto
);
7658 gen_and(inst
->b
, b
);
7672 * The offset is relative to the beginning of
7673 * the transport-layer header.
7675 * Load the X register with the length of the IPv4 header
7676 * (plus the offset of the link-layer header, if it's
7677 * a variable-length header), in bytes.
7679 * XXX - are there any cases where we want
7680 * cstate->off_nl_nosnap?
7681 * XXX - we should, if we're built with
7682 * IPv6 support, generate code to load either
7683 * IPv4, IPv6, or both, as appropriate.
7685 s
= gen_loadx_iphdrlen(cstate
);
7688 * The X register now contains the sum of the variable
7689 * part of the offset of the link-layer payload and the
7690 * length of the network-layer header.
7692 * Load into the A register the offset relative to
7693 * the beginning of the transport layer header,
7694 * add the X register to that, move that to the
7695 * X register, and load with an offset from the
7696 * X register equal to the sum of the constant part of
7697 * the offset of the link-layer payload and the offset,
7698 * relative to the beginning of the link-layer payload,
7699 * of the network-layer header.
7701 sappend(s
, xfer_to_a(cstate
, inst
));
7702 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7703 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7704 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7705 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7706 sappend(inst
->s
, s
);
7709 * Do the computation only if the packet contains
7710 * the protocol in question - which is true only
7711 * if this is an IP datagram and is the first or
7712 * only fragment of that datagram.
7714 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7716 gen_and(inst
->b
, b
);
7717 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7722 * Do the computation only if the packet contains
7723 * the protocol in question.
7725 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7727 gen_and(inst
->b
, b
);
7731 * Check if we have an icmp6 next header
7733 b
= gen_ip6_proto(cstate
, 58);
7735 gen_and(inst
->b
, b
);
7738 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7740 * If "s" is non-null, it has code to arrange that the
7741 * X register contains the variable part of the offset
7742 * of the link-layer payload. Add to it the offset
7743 * computed into the register specified by "index",
7744 * and move that into the X register. Otherwise, just
7745 * load into the X register the offset computed into
7746 * the register specified by "index".
7749 sappend(s
, xfer_to_a(cstate
, inst
));
7750 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7751 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7753 s
= xfer_to_x(cstate
, inst
);
7756 * Load the item at the sum of the offset we've put in the
7757 * X register, the offset of the start of the network
7758 * layer header from the beginning of the link-layer
7759 * payload, and the constant part of the offset of the
7760 * start of the link-layer payload.
7762 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7763 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7766 sappend(inst
->s
, s
);
7770 inst
->regno
= regno
;
7771 s
= new_stmt(cstate
, BPF_ST
);
7773 sappend(inst
->s
, s
);
7779 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7783 * Catch errors reported by us and routines below us, and return NULL
7786 if (setjmp(cstate
->top_ctx
))
7789 return gen_load_internal(cstate
, proto
, inst
, size
);
7792 static struct block
*
7793 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7794 struct arth
*a1
, int reversed
)
7796 struct slist
*s0
, *s1
, *s2
;
7797 struct block
*b
, *tmp
;
7799 s0
= xfer_to_x(cstate
, a1
);
7800 s1
= xfer_to_a(cstate
, a0
);
7801 if (code
== BPF_JEQ
) {
7802 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7803 b
= new_block(cstate
, JMP(code
));
7807 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7813 sappend(a0
->s
, a1
->s
);
7817 free_reg(cstate
, a0
->regno
);
7818 free_reg(cstate
, a1
->regno
);
7820 /* 'and' together protocol checks */
7823 gen_and(a0
->b
, tmp
= a1
->b
);
7837 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7838 struct arth
*a1
, int reversed
)
7841 * Catch errors reported by us and routines below us, and return NULL
7844 if (setjmp(cstate
->top_ctx
))
7847 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7851 gen_loadlen(compiler_state_t
*cstate
)
7858 * Catch errors reported by us and routines below us, and return NULL
7861 if (setjmp(cstate
->top_ctx
))
7864 regno
= alloc_reg(cstate
);
7865 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7866 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7867 s
->next
= new_stmt(cstate
, BPF_ST
);
7868 s
->next
->s
.k
= regno
;
7875 static struct arth
*
7876 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7882 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7884 reg
= alloc_reg(cstate
);
7886 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7888 s
->next
= new_stmt(cstate
, BPF_ST
);
7897 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7900 * Catch errors reported by us and routines below us, and return NULL
7903 if (setjmp(cstate
->top_ctx
))
7906 return gen_loadi_internal(cstate
, val
);
7910 * The a_arg dance is to avoid annoying whining by compilers that
7911 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7912 * It's not *used* after setjmp returns.
7915 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7917 struct arth
*a
= a_arg
;
7921 * Catch errors reported by us and routines below us, and return NULL
7924 if (setjmp(cstate
->top_ctx
))
7927 s
= xfer_to_a(cstate
, a
);
7929 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7932 s
= new_stmt(cstate
, BPF_ST
);
7940 * The a0_arg dance is to avoid annoying whining by compilers that
7941 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7942 * It's not *used* after setjmp returns.
7945 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7948 struct arth
*a0
= a0_arg
;
7949 struct slist
*s0
, *s1
, *s2
;
7952 * Catch errors reported by us and routines below us, and return NULL
7955 if (setjmp(cstate
->top_ctx
))
7959 * Disallow division by, or modulus by, zero; we do this here
7960 * so that it gets done even if the optimizer is disabled.
7962 * Also disallow shifts by a value greater than 31; we do this
7963 * here, for the same reason.
7965 if (code
== BPF_DIV
) {
7966 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7967 bpf_error(cstate
, "division by zero");
7968 } else if (code
== BPF_MOD
) {
7969 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7970 bpf_error(cstate
, "modulus by zero");
7971 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7972 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7973 bpf_error(cstate
, "shift by more than 31 bits");
7975 s0
= xfer_to_x(cstate
, a1
);
7976 s1
= xfer_to_a(cstate
, a0
);
7977 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7982 sappend(a0
->s
, a1
->s
);
7984 free_reg(cstate
, a0
->regno
);
7985 free_reg(cstate
, a1
->regno
);
7987 s0
= new_stmt(cstate
, BPF_ST
);
7988 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7995 * Initialize the table of used registers and the current register.
7998 init_regs(compiler_state_t
*cstate
)
8001 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
8005 * Return the next free register.
8008 alloc_reg(compiler_state_t
*cstate
)
8010 int n
= BPF_MEMWORDS
;
8013 if (cstate
->regused
[cstate
->curreg
])
8014 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
8016 cstate
->regused
[cstate
->curreg
] = 1;
8017 return cstate
->curreg
;
8020 bpf_error(cstate
, "too many registers needed to evaluate expression");
8025 * Return a register to the table so it can
8029 free_reg(compiler_state_t
*cstate
, int n
)
8031 cstate
->regused
[n
] = 0;
8034 static struct block
*
8035 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
8039 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
8040 return gen_jmp(cstate
, jmp
, n
, s
);
8044 gen_greater(compiler_state_t
*cstate
, int n
)
8047 * Catch errors reported by us and routines below us, and return NULL
8050 if (setjmp(cstate
->top_ctx
))
8053 return gen_len(cstate
, BPF_JGE
, n
);
8057 * Actually, this is less than or equal.
8060 gen_less(compiler_state_t
*cstate
, int n
)
8065 * Catch errors reported by us and routines below us, and return NULL
8068 if (setjmp(cstate
->top_ctx
))
8071 b
= gen_len(cstate
, BPF_JGT
, n
);
8078 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8079 * the beginning of the link-layer header.
8080 * XXX - that means you can't test values in the radiotap header, but
8081 * as that header is difficult if not impossible to parse generally
8082 * without a loop, that might not be a severe problem. A new keyword
8083 * "radio" could be added for that, although what you'd really want
8084 * would be a way of testing particular radio header values, which
8085 * would generate code appropriate to the radio header in question.
8088 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8094 * Catch errors reported by us and routines below us, and return NULL
8097 if (setjmp(cstate
->top_ctx
))
8100 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
8107 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8110 return gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8113 return gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8116 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8120 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8124 // Load the required byte first.
8125 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
8127 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
8134 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8136 bpf_u_int32 hostmask
;
8137 struct block
*b0
, *b1
, *b2
;
8138 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8141 * Catch errors reported by us and routines below us, and return NULL
8144 if (setjmp(cstate
->top_ctx
))
8151 switch (cstate
->linktype
) {
8153 case DLT_ARCNET_LINUX
:
8154 // ARCnet broadcast is [8-bit] destination address 0.
8155 return gen_ahostop(cstate
, 0, Q_DST
);
8157 case DLT_NETANALYZER
:
8158 case DLT_NETANALYZER_TRANSPARENT
:
8159 b1
= gen_prevlinkhdr_check(cstate
);
8160 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8165 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8167 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8168 case DLT_IEEE802_11
:
8169 case DLT_PRISM_HEADER
:
8170 case DLT_IEEE802_11_RADIO_AVS
:
8171 case DLT_IEEE802_11_RADIO
:
8173 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8174 case DLT_IP_OVER_FC
:
8175 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8177 fail_kw_on_dlt(cstate
, "broadcast");
8182 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8183 * as an indication that we don't know the netmask, and fail
8186 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8187 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8188 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8189 hostmask
= ~cstate
->netmask
;
8190 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8191 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
8196 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
8201 * Generate code to test the low-order bit of a MAC address (that's
8202 * the bottom bit of the *first* byte).
8204 static struct block
*
8205 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8207 register struct slist
*s
;
8209 /* link[offset] & 1 != 0 */
8210 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8211 return gen_set(cstate
, 1, s
);
8215 gen_multicast(compiler_state_t
*cstate
, int proto
)
8217 register struct block
*b0
, *b1
, *b2
;
8218 register struct slist
*s
;
8221 * Catch errors reported by us and routines below us, and return NULL
8224 if (setjmp(cstate
->top_ctx
))
8231 switch (cstate
->linktype
) {
8233 case DLT_ARCNET_LINUX
:
8234 // ARCnet multicast is the same as broadcast.
8235 return gen_ahostop(cstate
, 0, Q_DST
);
8237 case DLT_NETANALYZER
:
8238 case DLT_NETANALYZER_TRANSPARENT
:
8239 b1
= gen_prevlinkhdr_check(cstate
);
8240 /* ether[0] & 1 != 0 */
8241 b0
= gen_mac_multicast(cstate
, 0);
8247 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8249 * XXX - was that referring to bit-order issues?
8251 /* fddi[1] & 1 != 0 */
8252 return gen_mac_multicast(cstate
, 1);
8254 /* tr[2] & 1 != 0 */
8255 return gen_mac_multicast(cstate
, 2);
8256 case DLT_IEEE802_11
:
8257 case DLT_PRISM_HEADER
:
8258 case DLT_IEEE802_11_RADIO_AVS
:
8259 case DLT_IEEE802_11_RADIO
:
8264 * For control frames, there is no DA.
8266 * For management frames, DA is at an
8267 * offset of 4 from the beginning of
8270 * For data frames, DA is at an offset
8271 * of 4 from the beginning of the packet
8272 * if To DS is clear and at an offset of
8273 * 16 from the beginning of the packet
8278 * Generate the tests to be done for data frames.
8280 * First, check for To DS set, i.e. "link[1] & 0x01".
8282 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8283 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8286 * If To DS is set, the DA is at 16.
8288 b0
= gen_mac_multicast(cstate
, 16);
8292 * Now, check for To DS not set, i.e. check
8293 * "!(link[1] & 0x01)".
8295 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8296 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8299 * If To DS is not set, the DA is at 4.
8301 b1
= gen_mac_multicast(cstate
, 4);
8305 * Now OR together the last two checks. That gives
8306 * the complete set of checks for data frames.
8311 * Now check for a data frame.
8312 * I.e, check "link[0] & 0x08".
8314 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8315 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8318 * AND that with the checks done for data frames.
8323 * If the high-order bit of the type value is 0, this
8324 * is a management frame.
8325 * I.e, check "!(link[0] & 0x08)".
8327 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8328 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8331 * For management frames, the DA is at 4.
8333 b1
= gen_mac_multicast(cstate
, 4);
8337 * OR that with the checks done for data frames.
8338 * That gives the checks done for management and
8344 * If the low-order bit of the type value is 1,
8345 * this is either a control frame or a frame
8346 * with a reserved type, and thus not a
8349 * I.e., check "!(link[0] & 0x04)".
8351 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8352 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
8355 * AND that with the checks for data and management
8360 case DLT_IP_OVER_FC
:
8361 return gen_mac_multicast(cstate
, 2);
8365 fail_kw_on_dlt(cstate
, "multicast");
8369 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8370 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8375 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8376 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8380 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8386 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8387 * we can look at special meta-data in the filter expression; otherwise we
8388 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8389 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8390 * pcap_activate() conditionally sets.
8393 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8395 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8397 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8399 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8404 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8406 register struct block
*b0
;
8409 * Catch errors reported by us and routines below us, and return NULL
8412 if (setjmp(cstate
->top_ctx
))
8416 * Only some data link types support ifindex qualifiers.
8418 switch (cstate
->linktype
) {
8419 case DLT_LINUX_SLL2
:
8420 /* match packets on this interface */
8421 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8424 #if defined(__linux__)
8425 require_basic_bpf_extensions(cstate
, "ifindex");
8427 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8429 #else /* defined(__linux__) */
8430 fail_kw_on_dlt(cstate
, "ifindex");
8432 #endif /* defined(__linux__) */
8438 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8439 * Outbound traffic is sent by this machine, while inbound traffic is
8440 * sent by a remote machine (and may include packets destined for a
8441 * unicast or multicast link-layer address we are not subscribing to).
8442 * These are the same definitions implemented by pcap_setdirection().
8443 * Capturing only unicast traffic destined for this host is probably
8444 * better accomplished using a higher-layer filter.
8447 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8449 register struct block
*b0
;
8452 * Catch errors reported by us and routines below us, and return NULL
8455 if (setjmp(cstate
->top_ctx
))
8459 * Only some data link types support inbound/outbound qualifiers.
8461 switch (cstate
->linktype
) {
8463 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8464 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8468 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8469 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8473 /* match outgoing packets */
8474 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8476 /* to filter on inbound traffic, invert the match */
8481 case DLT_LINUX_SLL2
:
8482 /* match outgoing packets */
8483 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8485 /* to filter on inbound traffic, invert the match */
8491 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8492 outbound
? PF_OUT
: PF_IN
);
8496 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8499 case DLT_JUNIPER_MFR
:
8500 case DLT_JUNIPER_MLFR
:
8501 case DLT_JUNIPER_MLPPP
:
8502 case DLT_JUNIPER_ATM1
:
8503 case DLT_JUNIPER_ATM2
:
8504 case DLT_JUNIPER_PPPOE
:
8505 case DLT_JUNIPER_PPPOE_ATM
:
8506 case DLT_JUNIPER_GGSN
:
8507 case DLT_JUNIPER_ES
:
8508 case DLT_JUNIPER_MONITOR
:
8509 case DLT_JUNIPER_SERVICES
:
8510 case DLT_JUNIPER_ETHER
:
8511 case DLT_JUNIPER_PPP
:
8512 case DLT_JUNIPER_FRELAY
:
8513 case DLT_JUNIPER_CHDLC
:
8514 case DLT_JUNIPER_VP
:
8515 case DLT_JUNIPER_ST
:
8516 case DLT_JUNIPER_ISM
:
8517 case DLT_JUNIPER_VS
:
8518 case DLT_JUNIPER_SRX_E2E
:
8519 case DLT_JUNIPER_FIBRECHANNEL
:
8520 case DLT_JUNIPER_ATM_CEMIC
:
8521 /* juniper flags (including direction) are stored
8522 * the byte after the 3-byte magic number */
8523 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8528 * If we have packet meta-data indicating a direction,
8529 * and that metadata can be checked by BPF code, check
8530 * it. Otherwise, give up, as this link-layer type has
8531 * nothing in the packet data.
8533 * Currently, the only platform where a BPF filter can
8534 * check that metadata is Linux with the in-kernel
8535 * BPF interpreter. If other packet capture mechanisms
8536 * and BPF filters also supported this, it would be
8537 * nice. It would be even better if they made that
8538 * metadata available so that we could provide it
8539 * with newer capture APIs, allowing it to be saved
8542 #if defined(__linux__)
8543 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8544 /* match outgoing packets */
8545 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8548 /* to filter on inbound traffic, invert the match */
8551 #else /* defined(__linux__) */
8552 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8554 #endif /* defined(__linux__) */
8559 /* PF firewall log matched interface */
8561 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8567 * Catch errors reported by us and routines below us, and return NULL
8570 if (setjmp(cstate
->top_ctx
))
8573 assert_pflog(cstate
, "ifname");
8575 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8576 off
= offsetof(struct pfloghdr
, ifname
);
8577 if (strlen(ifname
) >= len
) {
8578 bpf_error(cstate
, "ifname interface names can only be %d characters",
8582 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8583 (const u_char
*)ifname
);
8587 /* PF firewall log ruleset name */
8589 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8594 * Catch errors reported by us and routines below us, and return NULL
8597 if (setjmp(cstate
->top_ctx
))
8600 assert_pflog(cstate
, "ruleset");
8602 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8603 bpf_error(cstate
, "ruleset names can only be %ld characters",
8604 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8608 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8609 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8613 /* PF firewall log rule number */
8615 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8620 * Catch errors reported by us and routines below us, and return NULL
8623 if (setjmp(cstate
->top_ctx
))
8626 assert_pflog(cstate
, "rnr");
8628 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8633 /* PF firewall log sub-rule number */
8635 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8640 * Catch errors reported by us and routines below us, and return NULL
8643 if (setjmp(cstate
->top_ctx
))
8646 assert_pflog(cstate
, "srnr");
8648 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8653 /* PF firewall log reason code */
8655 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8660 * Catch errors reported by us and routines below us, and return NULL
8663 if (setjmp(cstate
->top_ctx
))
8666 assert_pflog(cstate
, "reason");
8668 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8669 (bpf_u_int32
)reason
);
8673 /* PF firewall log action */
8675 gen_pf_action(compiler_state_t
*cstate
, int action
)
8680 * Catch errors reported by us and routines below us, and return NULL
8683 if (setjmp(cstate
->top_ctx
))
8686 assert_pflog(cstate
, "action");
8688 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8689 (bpf_u_int32
)action
);
8693 /* IEEE 802.11 wireless header */
8695 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8700 * Catch errors reported by us and routines below us, and return NULL
8703 if (setjmp(cstate
->top_ctx
))
8706 switch (cstate
->linktype
) {
8708 case DLT_IEEE802_11
:
8709 case DLT_PRISM_HEADER
:
8710 case DLT_IEEE802_11_RADIO_AVS
:
8711 case DLT_IEEE802_11_RADIO
:
8713 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8717 fail_kw_on_dlt(cstate
, "type/subtype");
8725 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8730 * Catch errors reported by us and routines below us, and return NULL
8733 if (setjmp(cstate
->top_ctx
))
8736 switch (cstate
->linktype
) {
8738 case DLT_IEEE802_11
:
8739 case DLT_PRISM_HEADER
:
8740 case DLT_IEEE802_11_RADIO_AVS
:
8741 case DLT_IEEE802_11_RADIO
:
8746 fail_kw_on_dlt(cstate
, "dir");
8750 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8751 IEEE80211_FC1_DIR_MASK
);
8756 // Process an ARCnet host address string.
8758 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8761 * Catch errors reported by us and routines below us, and return NULL
8764 if (setjmp(cstate
->top_ctx
))
8767 switch (cstate
->linktype
) {
8770 case DLT_ARCNET_LINUX
:
8771 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8772 q
.proto
== Q_LINK
) {
8775 * The lexer currently defines the address format in a
8776 * way that makes this error condition never true.
8777 * Let's check it anyway in case this part of the lexer
8778 * changes in future.
8780 if (! pcapint_atoan(s
, &addr
))
8781 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8782 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8784 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8788 bpf_error(cstate
, "aid supported only on ARCnet");
8793 // Compare an ARCnet host address with the given value.
8794 static struct block
*
8795 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8797 register struct block
*b0
, *b1
;
8801 * ARCnet is different from Ethernet: the source address comes before
8802 * the destination address, each is one byte long. This holds for all
8803 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8804 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8805 * by Datapoint (document number 61610-01).
8808 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8811 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8814 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8815 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8821 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8822 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8832 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8839 static struct block
*
8840 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8842 struct block
*b0
, *b1
;
8844 /* check for VLAN, including 802.1ad and QinQ */
8845 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8846 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8849 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8855 static struct block
*
8856 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8858 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8859 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8862 static struct block
*
8863 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8866 struct block
*b0
, *b1
;
8868 b0
= gen_vlan_tpid_test(cstate
);
8871 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8877 * Both payload and link header type follow the VLAN tags so that
8878 * both need to be updated.
8880 cstate
->off_linkpl
.constant_part
+= 4;
8881 cstate
->off_linktype
.constant_part
+= 4;
8886 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8887 /* add v to variable part of off */
8889 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8890 bpf_u_int32 v
, struct slist
*s
)
8894 if (!off
->is_variable
)
8895 off
->is_variable
= 1;
8897 off
->reg
= alloc_reg(cstate
);
8899 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8902 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8905 s2
= new_stmt(cstate
, BPF_ST
);
8911 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8912 * and link type offsets first
8915 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8919 /* offset determined at run time, shift variable part */
8921 cstate
->is_vlan_vloffset
= 1;
8922 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8923 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8925 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8926 sappend(s
.next
, b_tpid
->head
->stmts
);
8927 b_tpid
->head
->stmts
= s
.next
;
8931 * patch block b_vid (VLAN id test) to load VID value either from packet
8932 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8935 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8937 struct slist
*s
, *s2
, *sjeq
;
8940 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8941 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8943 /* true -> next instructions, false -> beginning of b_vid */
8944 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8946 sjeq
->s
.jf
= b_vid
->stmts
;
8949 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8950 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8954 /* Jump to the test in b_vid. We need to jump one instruction before
8955 * the end of the b_vid block so that we only skip loading the TCI
8956 * from packet data and not the 'and' instruction extracting VID.
8959 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8961 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8965 /* insert our statements at the beginning of b_vid */
8966 sappend(s
, b_vid
->stmts
);
8971 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8972 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8973 * tag can be either in metadata or in packet data; therefore if the
8974 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8975 * header for VLAN tag. As the decision is done at run time, we need
8976 * update variable part of the offsets
8978 static struct block
*
8979 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8982 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8985 /* generate new filter code based on extracting packet
8987 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8988 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8990 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
8993 * This is tricky. We need to insert the statements updating variable
8994 * parts of offsets before the traditional TPID and VID tests so
8995 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8996 * we do not want this update to affect those checks. That's why we
8997 * generate both test blocks first and insert the statements updating
8998 * variable parts of both offsets after that. This wouldn't work if
8999 * there already were variable length link header when entering this
9000 * function but gen_vlan_bpf_extensions() isn't called in that case.
9002 b_tpid
= gen_vlan_tpid_test(cstate
);
9004 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
9006 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
9011 gen_vlan_patch_vid_test(cstate
, b_vid
);
9021 * support IEEE 802.1Q VLAN trunk over ethernet
9024 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
9029 * Catch errors reported by us and routines below us, and return NULL
9032 if (setjmp(cstate
->top_ctx
))
9035 /* can't check for VLAN-encapsulated packets inside MPLS */
9036 if (cstate
->label_stack_depth
> 0)
9037 bpf_error(cstate
, "no VLAN match after MPLS");
9040 * Check for a VLAN packet, and then change the offsets to point
9041 * to the type and data fields within the VLAN packet. Just
9042 * increment the offsets, so that we can support a hierarchy, e.g.
9043 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
9046 * XXX - this is a bit of a kludge. If we were to split the
9047 * compiler into a parser that parses an expression and
9048 * generates an expression tree, and a code generator that
9049 * takes an expression tree (which could come from our
9050 * parser or from some other parser) and generates BPF code,
9051 * we could perhaps make the offsets parameters of routines
9052 * and, in the handler for an "AND" node, pass to subnodes
9053 * other than the VLAN node the adjusted offsets.
9055 * This would mean that "vlan" would, instead of changing the
9056 * behavior of *all* tests after it, change only the behavior
9057 * of tests ANDed with it. That would change the documented
9058 * semantics of "vlan", which might break some expressions.
9059 * However, it would mean that "(vlan and ip) or ip" would check
9060 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9061 * checking only for VLAN-encapsulated IP, so that could still
9062 * be considered worth doing; it wouldn't break expressions
9063 * that are of the form "vlan and ..." or "vlan N and ...",
9064 * which I suspect are the most common expressions involving
9065 * "vlan". "vlan or ..." doesn't necessarily do what the user
9066 * would really want, now, as all the "or ..." tests would
9067 * be done assuming a VLAN, even though the "or" could be viewed
9068 * as meaning "or, if this isn't a VLAN packet...".
9070 switch (cstate
->linktype
) {
9074 * Newer version of the Linux kernel pass around
9075 * packets in which the VLAN tag has been removed
9076 * from the packet data and put into metadata.
9078 * This requires special treatment.
9080 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9081 /* Verify that this is the outer part of the packet and
9082 * not encapsulated somehow. */
9083 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9084 cstate
->off_linkhdr
.constant_part
==
9085 cstate
->off_outermostlinkhdr
.constant_part
) {
9087 * Do we need special VLAN handling?
9089 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9090 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9093 b0
= gen_vlan_no_bpf_extensions(cstate
,
9094 vlan_num
, has_vlan_tag
);
9097 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9101 case DLT_NETANALYZER
:
9102 case DLT_NETANALYZER_TRANSPARENT
:
9103 case DLT_IEEE802_11
:
9104 case DLT_PRISM_HEADER
:
9105 case DLT_IEEE802_11_RADIO_AVS
:
9106 case DLT_IEEE802_11_RADIO
:
9108 * These are either Ethernet packets with an additional
9109 * metadata header (the NetAnalyzer types), or 802.11
9110 * packets, possibly with an additional metadata header.
9112 * For the first of those, the VLAN tag is in the normal
9113 * place, so the special-case handling above isn't
9116 * For the second of those, we don't do the special-case
9119 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9123 bpf_error(cstate
, "no VLAN support for %s",
9124 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9128 cstate
->vlan_stack_depth
++;
9136 * The label_num_arg dance is to avoid annoying whining by compilers that
9137 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9138 * It's not *used* after setjmp returns.
9140 static struct block
*
9141 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
9144 struct block
*b0
, *b1
;
9146 if (cstate
->label_stack_depth
> 0) {
9147 /* just match the bottom-of-stack bit clear */
9148 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9151 * We're not in an MPLS stack yet, so check the link-layer
9152 * type against MPLS.
9154 switch (cstate
->linktype
) {
9156 case DLT_C_HDLC
: /* fall through */
9159 case DLT_NETANALYZER
:
9160 case DLT_NETANALYZER_TRANSPARENT
:
9161 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9165 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9168 /* FIXME add other DLT_s ...
9169 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9170 * leave it for now */
9173 bpf_error(cstate
, "no MPLS support for %s",
9174 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9179 /* If a specific MPLS label is requested, check it */
9180 if (has_label_num
) {
9181 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
9182 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9183 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9184 0xfffff000); /* only compare the first 20 bits */
9190 * Change the offsets to point to the type and data fields within
9191 * the MPLS packet. Just increment the offsets, so that we
9192 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9193 * capture packets with an outer label of 100000 and an inner
9196 * Increment the MPLS stack depth as well; this indicates that
9197 * we're checking MPLS-encapsulated headers, to make sure higher
9198 * level code generators don't try to match against IP-related
9199 * protocols such as Q_ARP, Q_RARP etc.
9201 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9203 cstate
->off_nl_nosnap
+= 4;
9204 cstate
->off_nl
+= 4;
9205 cstate
->label_stack_depth
++;
9210 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
9213 * Catch errors reported by us and routines below us, and return NULL
9216 if (setjmp(cstate
->top_ctx
))
9219 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
9223 * Support PPPOE discovery and session.
9226 gen_pppoed(compiler_state_t
*cstate
)
9229 * Catch errors reported by us and routines below us, and return NULL
9232 if (setjmp(cstate
->top_ctx
))
9235 /* check for PPPoE discovery */
9236 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9240 * RFC 2516 Section 4:
9242 * The Ethernet payload for PPPoE is as follows:
9245 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9246 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9247 * | VER | TYPE | CODE | SESSION_ID |
9248 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9249 * | LENGTH | payload ~
9250 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9253 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9255 struct block
*b0
, *b1
;
9258 * Catch errors reported by us and routines below us, and return NULL
9261 if (setjmp(cstate
->top_ctx
))
9265 * Test against the PPPoE session link-layer type.
9267 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9269 /* If a specific session is requested, check PPPoE session id */
9271 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
9272 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9278 * Change the offsets to point to the type and data fields within
9279 * the PPP packet, and note that this is PPPoE rather than
9282 * XXX - this is a bit of a kludge. See the comments in
9285 * The "network-layer" protocol is PPPoE, which has a 6-byte
9286 * PPPoE header, followed by a PPP packet.
9288 * There is no HDLC encapsulation for the PPP packet (it's
9289 * encapsulated in PPPoES instead), so the link-layer type
9290 * starts at the first byte of the PPP packet. For PPPoE,
9291 * that offset is relative to the beginning of the total
9292 * link-layer payload, including any 802.2 LLC header, so
9293 * it's 6 bytes past cstate->off_nl.
9295 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9296 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9297 cstate
->off_linkpl
.reg
);
9299 cstate
->off_linktype
= cstate
->off_linkhdr
;
9300 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9303 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9308 /* Check that this is Geneve and the VNI is correct if
9309 * specified. Parameterized to handle both IPv4 and IPv6. */
9310 static struct block
*
9311 gen_geneve_check(compiler_state_t
*cstate
,
9312 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9313 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9315 struct block
*b0
, *b1
;
9317 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9319 /* Check that we are operating on version 0. Otherwise, we
9320 * can't decode the rest of the fields. The version is 2 bits
9321 * in the first byte of the Geneve header. */
9322 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9327 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9328 vni
<<= 8; /* VNI is in the upper 3 bytes */
9329 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9337 /* The IPv4 and IPv6 Geneve checks need to do two things:
9338 * - Verify that this actually is Geneve with the right VNI.
9339 * - Place the IP header length (plus variable link prefix if
9340 * needed) into register A to be used later to compute
9341 * the inner packet offsets. */
9342 static struct block
*
9343 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9345 struct block
*b0
, *b1
;
9346 struct slist
*s
, *s1
;
9348 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9350 /* Load the IP header length into A. */
9351 s
= gen_loadx_iphdrlen(cstate
);
9353 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9356 /* Forcibly append these statements to the true condition
9357 * of the protocol check by creating a new block that is
9358 * always true and ANDing them. */
9359 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9366 static struct block
*
9367 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9369 struct block
*b0
, *b1
;
9370 struct slist
*s
, *s1
;
9372 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9374 /* Load the IP header length. We need to account for a
9375 * variable length link prefix if there is one. */
9376 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9378 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9382 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9386 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9390 /* Forcibly append these statements to the true condition
9391 * of the protocol check by creating a new block that is
9392 * always true and ANDing them. */
9393 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9396 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9403 /* We need to store three values based on the Geneve header::
9404 * - The offset of the linktype.
9405 * - The offset of the end of the Geneve header.
9406 * - The offset of the end of the encapsulated MAC header. */
9407 static struct slist
*
9408 gen_geneve_offsets(compiler_state_t
*cstate
)
9410 struct slist
*s
, *s1
, *s_proto
;
9412 /* First we need to calculate the offset of the Geneve header
9413 * itself. This is composed of the IP header previously calculated
9414 * (include any variable link prefix) and stored in A plus the
9415 * fixed sized headers (fixed link prefix, MAC length, and UDP
9417 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9418 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9420 /* Stash this in X since we'll need it later. */
9421 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9424 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9426 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9430 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9431 cstate
->off_linktype
.is_variable
= 1;
9432 cstate
->off_linktype
.constant_part
= 0;
9434 s1
= new_stmt(cstate
, BPF_ST
);
9435 s1
->s
.k
= cstate
->off_linktype
.reg
;
9438 /* Load the Geneve option length and mask and shift to get the
9439 * number of bytes. It is stored in the first byte of the Geneve
9441 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9445 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9449 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9453 /* Add in the rest of the Geneve base header. */
9454 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9458 /* Add the Geneve header length to its offset and store. */
9459 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9463 /* Set the encapsulated type as Ethernet. Even though we may
9464 * not actually have Ethernet inside there are two reasons this
9466 * - The linktype field is always in EtherType format regardless
9467 * of whether it is in Geneve or an inner Ethernet frame.
9468 * - The only link layer that we have specific support for is
9469 * Ethernet. We will confirm that the packet actually is
9470 * Ethernet at runtime before executing these checks. */
9471 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9473 s1
= new_stmt(cstate
, BPF_ST
);
9474 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9477 /* Calculate whether we have an Ethernet header or just raw IP/
9478 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9479 * and linktype by 14 bytes so that the network header can be found
9480 * seamlessly. Otherwise, keep what we've calculated already. */
9482 /* We have a bare jmp so we can't use the optimizer. */
9483 cstate
->no_optimize
= 1;
9485 /* Load the EtherType in the Geneve header, 2 bytes in. */
9486 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9490 /* Load X with the end of the Geneve header. */
9491 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9492 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9495 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9496 * end of this check, we should have the total length in X. In
9497 * the non-Ethernet case, it's already there. */
9498 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9499 s_proto
->s
.k
= ETHERTYPE_TEB
;
9500 sappend(s
, s_proto
);
9502 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9506 /* Since this is Ethernet, use the EtherType of the payload
9507 * directly as the linktype. Overwrite what we already have. */
9508 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9512 s1
= new_stmt(cstate
, BPF_ST
);
9513 s1
->s
.k
= cstate
->off_linktype
.reg
;
9516 /* Advance two bytes further to get the end of the Ethernet
9518 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9522 /* Move the result to X. */
9523 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9526 /* Store the final result of our linkpl calculation. */
9527 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9528 cstate
->off_linkpl
.is_variable
= 1;
9529 cstate
->off_linkpl
.constant_part
= 0;
9531 s1
= new_stmt(cstate
, BPF_STX
);
9532 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9541 /* Check to see if this is a Geneve packet. */
9543 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9545 struct block
*b0
, *b1
;
9549 * Catch errors reported by us and routines below us, and return NULL
9552 if (setjmp(cstate
->top_ctx
))
9555 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9556 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9561 /* Later filters should act on the payload of the Geneve frame,
9562 * update all of the header pointers. Attach this code so that
9563 * it gets executed in the event that the Geneve filter matches. */
9564 s
= gen_geneve_offsets(cstate
);
9566 b1
= gen_true(cstate
);
9567 sappend(s
, b1
->stmts
);
9572 cstate
->is_encap
= 1;
9577 /* Check that this is VXLAN and the VNI is correct if
9578 * specified. Parameterized to handle both IPv4 and IPv6. */
9579 static struct block
*
9580 gen_vxlan_check(compiler_state_t
*cstate
,
9581 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9582 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9584 struct block
*b0
, *b1
;
9586 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9588 /* Check that the VXLAN header has the flag bits set
9590 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9595 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9596 vni
<<= 8; /* VNI is in the upper 3 bytes */
9597 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9605 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9606 * - Verify that this actually is VXLAN with the right VNI.
9607 * - Place the IP header length (plus variable link prefix if
9608 * needed) into register A to be used later to compute
9609 * the inner packet offsets. */
9610 static struct block
*
9611 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9613 struct block
*b0
, *b1
;
9614 struct slist
*s
, *s1
;
9616 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9618 /* Load the IP header length into A. */
9619 s
= gen_loadx_iphdrlen(cstate
);
9621 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9624 /* Forcibly append these statements to the true condition
9625 * of the protocol check by creating a new block that is
9626 * always true and ANDing them. */
9627 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9634 static struct block
*
9635 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9637 struct block
*b0
, *b1
;
9638 struct slist
*s
, *s1
;
9640 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9642 /* Load the IP header length. We need to account for a
9643 * variable length link prefix if there is one. */
9644 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9646 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9650 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9654 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9658 /* Forcibly append these statements to the true condition
9659 * of the protocol check by creating a new block that is
9660 * always true and ANDing them. */
9661 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9664 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9671 /* We need to store three values based on the VXLAN header:
9672 * - The offset of the linktype.
9673 * - The offset of the end of the VXLAN header.
9674 * - The offset of the end of the encapsulated MAC header. */
9675 static struct slist
*
9676 gen_vxlan_offsets(compiler_state_t
*cstate
)
9678 struct slist
*s
, *s1
;
9680 /* Calculate the offset of the VXLAN header itself. This
9681 * includes the IP header computed previously (including any
9682 * variable link prefix) and stored in A plus the fixed size
9683 * headers (fixed link prefix, MAC length, UDP header). */
9684 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9685 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9687 /* Add the VXLAN header length to its offset and store */
9688 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9692 /* Push the link header. VXLAN packets always contain Ethernet
9694 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9696 s1
= new_stmt(cstate
, BPF_ST
);
9697 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9700 /* As the payload is an Ethernet packet, we can use the
9701 * EtherType of the payload directly as the linktype. */
9702 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9706 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9707 cstate
->off_linktype
.is_variable
= 1;
9708 cstate
->off_linktype
.constant_part
= 0;
9710 s1
= new_stmt(cstate
, BPF_ST
);
9711 s1
->s
.k
= cstate
->off_linktype
.reg
;
9714 /* Two bytes further is the end of the Ethernet header and the
9715 * start of the payload. */
9716 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9720 /* Move the result to X. */
9721 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9724 /* Store the final result of our linkpl calculation. */
9725 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9726 cstate
->off_linkpl
.is_variable
= 1;
9727 cstate
->off_linkpl
.constant_part
= 0;
9729 s1
= new_stmt(cstate
, BPF_STX
);
9730 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9738 /* Check to see if this is a VXLAN packet. */
9740 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9742 struct block
*b0
, *b1
;
9746 * Catch errors reported by us and routines below us, and return NULL
9749 if (setjmp(cstate
->top_ctx
))
9752 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9753 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9758 /* Later filters should act on the payload of the VXLAN frame,
9759 * update all of the header pointers. Attach this code so that
9760 * it gets executed in the event that the VXLAN filter matches. */
9761 s
= gen_vxlan_offsets(cstate
);
9763 b1
= gen_true(cstate
);
9764 sappend(s
, b1
->stmts
);
9769 cstate
->is_encap
= 1;
9774 /* Check that the encapsulated frame has a link layer header
9775 * for Ethernet filters. */
9776 static struct block
*
9777 gen_encap_ll_check(compiler_state_t
*cstate
)
9780 struct slist
*s
, *s1
;
9782 /* The easiest way to see if there is a link layer present
9783 * is to check if the link layer header and payload are not
9786 /* Geneve always generates pure variable offsets so we can
9787 * compare only the registers. */
9788 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9789 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9791 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9792 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9795 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9801 static struct block
*
9802 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9803 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9808 * This check is a no-op for A_MSGTYPE so long as the only incoming
9809 * code path is from gen_atmmulti_abbrev(), which makes the same
9810 * check first; also for A_PROTOTYPE so long as the only incoming code
9811 * paths are from gen_atmtype_abbrev(), which makes the same check
9812 * first, or from gen_llc_internal() or gen_linktype(), which restrict
9815 assert_atm(cstate
, atmkw(atmfield
));
9820 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9821 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9822 0xffffffffU
, jtype
, reverse
, jvalue
);
9826 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9827 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9828 0xffffffffU
, jtype
, reverse
, jvalue
);
9832 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9833 0x0fU
, jtype
, reverse
, jvalue
);
9837 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9838 0xffffffffU
, jtype
, reverse
, jvalue
);
9847 static struct block
*
9848 gen_atmtype_metac(compiler_state_t
*cstate
)
9850 struct block
*b0
, *b1
;
9852 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9853 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9858 static struct block
*
9859 gen_atmtype_sc(compiler_state_t
*cstate
)
9861 struct block
*b0
, *b1
;
9863 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9864 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9869 static struct block
*
9870 gen_atmtype_llc(compiler_state_t
*cstate
)
9874 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9875 cstate
->linktype
= cstate
->prevlinktype
;
9880 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9881 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9884 * Catch errors reported by us and routines below us, and return NULL
9887 if (setjmp(cstate
->top_ctx
))
9890 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9895 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9897 struct block
*b0
, *b1
;
9900 * Catch errors reported by us and routines below us, and return NULL
9903 if (setjmp(cstate
->top_ctx
))
9906 assert_atm(cstate
, atmkw(type
));
9911 /* Get all packets in Meta signalling Circuit */
9912 b1
= gen_atmtype_metac(cstate
);
9916 /* Get all packets in Broadcast Circuit*/
9917 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9918 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9923 /* Get all cells in Segment OAM F4 circuit*/
9924 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9925 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9930 /* Get all cells in End-to-End OAM F4 Circuit*/
9931 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9932 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9937 /* Get all packets in connection Signalling Circuit */
9938 b1
= gen_atmtype_sc(cstate
);
9942 /* Get all packets in ILMI Circuit */
9943 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9944 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
9949 /* Get all LANE packets */
9950 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
9953 * Arrange that all subsequent tests assume LANE
9954 * rather than LLC-encapsulated packets, and set
9955 * the offsets appropriately for LANE-encapsulated
9958 * We assume LANE means Ethernet, not Token Ring.
9960 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9961 cstate
->off_payload
+ 2, /* Ethernet header */
9963 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9964 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9965 cstate
->off_nl
= 0; /* Ethernet II */
9966 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9976 * Filtering for MTP2 messages based on li value
9977 * FISU, length is null
9978 * LSSU, length is 1 or 2
9979 * MSU, length is 3 or more
9980 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9983 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9985 struct block
*b0
, *b1
;
9988 * Catch errors reported by us and routines below us, and return NULL
9991 if (setjmp(cstate
->top_ctx
))
9994 assert_ss7(cstate
, ss7kw(type
));
9999 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10000 0x3fU
, BPF_JEQ
, 0, 0U);
10004 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10005 0x3fU
, BPF_JGT
, 1, 2U);
10006 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10007 0x3fU
, BPF_JGT
, 0, 0U);
10012 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10013 0x3fU
, BPF_JGT
, 0, 2U);
10017 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10018 0xff80U
, BPF_JEQ
, 0, 0U);
10022 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10023 0xff80U
, BPF_JGT
, 1, 0x0100U
);
10024 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10025 0xff80U
, BPF_JGT
, 0, 0U);
10030 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10031 0xff80U
, BPF_JGT
, 0, 0x0100U
);
10041 * These maximum valid values are all-ones, so they double as the bitmasks
10042 * before any bitwise shifting.
10044 #define MTP2_SIO_MAXVAL UINT8_MAX
10045 #define MTP3_PC_MAXVAL 0x3fffU
10046 #define MTP3_SLS_MAXVAL 0xfU
10048 static struct block
*
10049 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
10050 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10058 newoff_sio
= cstate
->off_sio
;
10059 newoff_opc
= cstate
->off_opc
;
10060 newoff_dpc
= cstate
->off_dpc
;
10061 newoff_sls
= cstate
->off_sls
;
10063 assert_ss7(cstate
, ss7kw(mtp3field
));
10065 switch (mtp3field
) {
10068 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
10070 * SIO is the simplest field: the size is one byte and the offset is a
10071 * multiple of bytes, so the only detail to get right is the value of
10072 * the [right-to-left] field offset.
10075 newoff_sio
+= 3; /* offset for MTP2_HSL */
10079 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
10080 // Here the bitmask means "do not apply a bitmask".
10081 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
10082 jtype
, reverse
, jvalue
);
10086 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
10088 * SLS, OPC and DPC are more complicated: none of these is sized in a
10089 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
10090 * diagrams are meant to be read right-to-left. This means in the
10091 * diagrams within individual fields and concatenations thereof
10092 * bitwise shifts and masks can be noted in the common left-to-right
10093 * manner until each final value is ready to be byte-swapped and
10094 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
10095 * similar problem in a similar way.
10097 * Offsets of fields within the packet header always have the
10098 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
10099 * DLTs the offset does not include the F (Flag) field at the
10100 * beginning of each message.
10102 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10103 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10104 * be tested entirely using a single BPF_W comparison. In this case
10105 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10106 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10107 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10108 * correlates with the [RTL] packet diagram until the byte-swapping is
10111 * The code below uses this approach for OPC, which spans 3 bytes.
10112 * DPC and SLS use shorter loads, SLS also uses a different offset.
10119 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10120 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
10121 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
10122 SWAPLONG(jvalue
<< 14));
10130 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10131 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
10132 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
10133 SWAPSHORT(jvalue
));
10141 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
10142 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
10143 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
10154 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10155 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10158 * Catch errors reported by us and routines below us, and return NULL
10161 if (setjmp(cstate
->top_ctx
))
10164 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
10168 static struct block
*
10169 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
10174 * Q.2931 signalling protocol messages for handling virtual circuits
10175 * establishment and teardown
10180 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
10183 case A_CALLPROCEED
:
10184 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
10188 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
10192 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
10196 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
10199 case A_RELEASE_DONE
:
10200 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
10210 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10212 struct block
*b0
, *b1
;
10215 * Catch errors reported by us and routines below us, and return NULL
10218 if (setjmp(cstate
->top_ctx
))
10221 assert_atm(cstate
, atmkw(type
));
10227 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10228 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10230 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10236 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10237 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10239 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10245 * Get Q.2931 signalling messages for switched
10246 * virtual connection
10248 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10249 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10251 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10253 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
10255 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10257 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10259 b0
= gen_atmtype_sc(cstate
);
10263 case A_METACONNECT
:
10264 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10265 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10267 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10269 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10271 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10273 b0
= gen_atmtype_metac(cstate
);