2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_cmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int size
, bpf_u_int32
);
640 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, bpf_u_int32
, bpf_u_int32
);
642 static struct block
*gen_mcmp_ne(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, bpf_u_int32
);
644 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
645 u_int
, const u_char
*);
646 static struct block
*gen_jmp(compiler_state_t
*, int, bpf_u_int32
,
648 static struct block
*gen_set(compiler_state_t
*, bpf_u_int32
, struct slist
*);
649 static struct block
*gen_unset(compiler_state_t
*, bpf_u_int32
, struct slist
*);
650 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
651 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
652 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
654 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
656 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
657 static struct block
*gen_uncond(compiler_state_t
*, int);
658 static inline struct block
*gen_true(compiler_state_t
*);
659 static inline struct block
*gen_false(compiler_state_t
*);
660 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
661 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
662 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
663 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
664 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
665 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
666 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
667 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
668 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
669 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
671 static uint16_t ethertype_to_ppptype(compiler_state_t
*, bpf_u_int32
);
672 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
673 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
674 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
675 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
678 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
679 struct in6_addr
*, int, u_int
, u_int
);
681 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
682 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
683 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
684 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
685 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
686 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
687 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
688 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
689 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
692 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
693 struct in6_addr
*, int, int, int);
696 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
697 struct addrinfo
*, int);
699 static struct block
*gen_ip_proto(compiler_state_t
*, const uint8_t);
700 static struct block
*gen_ip6_proto(compiler_state_t
*, const uint8_t);
701 static struct block
*gen_ipfrag(compiler_state_t
*);
702 static struct block
*gen_portatom(compiler_state_t
*, int, uint16_t);
703 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, uint16_t,
705 static struct block
*gen_portatom6(compiler_state_t
*, int, uint16_t);
706 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, uint16_t,
708 static struct block
*gen_port(compiler_state_t
*, uint16_t, int, int);
709 static struct block
*gen_port_common(compiler_state_t
*, int, struct block
*);
710 static struct block
*gen_portrange(compiler_state_t
*, uint16_t, uint16_t,
712 static struct block
*gen_port6(compiler_state_t
*, uint16_t, int, int);
713 static struct block
*gen_port6_common(compiler_state_t
*, int, struct block
*);
714 static struct block
*gen_portrange6(compiler_state_t
*, uint16_t, uint16_t,
716 static int lookup_proto(compiler_state_t
*, const char *, int);
717 #if !defined(NO_PROTOCHAIN)
718 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
719 #endif /* !defined(NO_PROTOCHAIN) */
720 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
721 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
722 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
723 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
724 static struct block
*gen_len(compiler_state_t
*, int, int);
725 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
727 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
728 bpf_u_int32
, int, int);
729 static struct block
*gen_atmtype_llc(compiler_state_t
*);
730 static struct block
*gen_msg_abbrev(compiler_state_t
*, const uint8_t);
731 static struct block
*gen_atm_prototype(compiler_state_t
*, const uint8_t);
732 static struct block
*gen_atm_vpi(compiler_state_t
*, const uint8_t);
733 static struct block
*gen_atm_vci(compiler_state_t
*, const uint16_t);
736 initchunks(compiler_state_t
*cstate
)
740 for (i
= 0; i
< NCHUNKS
; i
++) {
741 cstate
->chunks
[i
].n_left
= 0;
742 cstate
->chunks
[i
].m
= NULL
;
744 cstate
->cur_chunk
= 0;
748 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
754 /* Round up to chunk alignment. */
755 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
757 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
758 if (n
> cp
->n_left
) {
760 k
= ++cstate
->cur_chunk
;
762 bpf_set_error(cstate
, "out of memory");
765 size
= CHUNK0SIZE
<< k
;
766 cp
->m
= (void *)malloc(size
);
768 bpf_set_error(cstate
, "out of memory");
771 memset((char *)cp
->m
, 0, size
);
774 bpf_set_error(cstate
, "out of memory");
779 return (void *)((char *)cp
->m
+ cp
->n_left
);
783 newchunk(compiler_state_t
*cstate
, size_t n
)
787 p
= newchunk_nolongjmp(cstate
, n
);
789 longjmp(cstate
->top_ctx
, 1);
796 freechunks(compiler_state_t
*cstate
)
800 for (i
= 0; i
< NCHUNKS
; ++i
)
801 if (cstate
->chunks
[i
].m
!= NULL
)
802 free(cstate
->chunks
[i
].m
);
806 * A strdup whose allocations are freed after code generation is over.
807 * This is used by the lexical analyzer, so it can't longjmp; it just
808 * returns NULL on an allocation error, and the callers must check
812 sdup(compiler_state_t
*cstate
, const char *s
)
814 size_t n
= strlen(s
) + 1;
815 char *cp
= newchunk_nolongjmp(cstate
, n
);
819 pcapint_strlcpy(cp
, s
, n
);
823 static inline struct block
*
824 new_block(compiler_state_t
*cstate
, int code
)
828 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
835 static inline struct slist
*
836 new_stmt(compiler_state_t
*cstate
, int code
)
840 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
846 static struct block
*
847 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
849 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
855 static struct block
*
856 gen_retblk(compiler_state_t
*cstate
, int v
)
858 if (setjmp(cstate
->top_ctx
)) {
860 * gen_retblk() only fails because a memory
861 * allocation failed in newchunk(), meaning
862 * that it can't return a pointer.
868 return gen_retblk_internal(cstate
, v
);
871 static inline PCAP_NORETURN_DEF
void
872 syntax(compiler_state_t
*cstate
)
874 bpf_error(cstate
, "syntax error in filter expression");
878 * For the given integer return a string with the keyword (or the nominal
879 * keyword if there is more than one). This is a simpler version of tok2str()
880 * in tcpdump because in this problem space a valid integer value is not
884 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
887 static char buf
[4][64];
890 if (id
< size
&& tokens
[id
])
893 char *ret
= buf
[idx
];
894 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
895 ret
[0] = '\0'; // just in case
896 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
900 // protocol qualifier keywords
902 pqkw(const unsigned id
)
904 const char * tokens
[] = {
916 [Q_DECNET
] = "decnet",
922 [Q_ICMPV6
] = "icmp6",
934 [Q_NETBEUI
] = "netbeui",
937 [Q_ISIS_IIH
] = "iih",
938 [Q_ISIS_SNP
] = "snp",
939 [Q_ISIS_CSNP
] = "csnp",
940 [Q_ISIS_PSNP
] = "psnp",
941 [Q_ISIS_LSP
] = "lsp",
945 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
948 // direction qualifier keywords
950 dqkw(const unsigned id
)
952 const char * map
[] = {
955 [Q_OR
] = "src or dst",
956 [Q_AND
] = "src and dst",
964 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
969 atmkw(const unsigned id
)
971 const char * tokens
[] = {
974 [A_OAMF4SC
] = "oamf4sc",
975 [A_OAMF4EC
] = "oamf4ec",
983 [A_CONNECTMSG
] = "connectmsg",
984 [A_METACONNECT
] = "metaconnect",
986 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
991 ss7kw(const unsigned id
)
993 const char * tokens
[] = {
1009 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1012 static PCAP_NORETURN_DEF
void
1013 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1015 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1016 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1020 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1022 if (cstate
->linktype
!= DLT_PFLOG
)
1023 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1027 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1030 * Belt and braces: init_linktype() sets either all of these struct
1031 * members (for DLT_SUNATM) or none (otherwise).
1033 if (cstate
->linktype
!= DLT_SUNATM
||
1035 cstate
->off_vpi
== OFFSET_NOT_SET
||
1036 cstate
->off_vci
== OFFSET_NOT_SET
||
1037 cstate
->off_proto
== OFFSET_NOT_SET
||
1038 cstate
->off_payload
== OFFSET_NOT_SET
)
1039 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1043 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1045 switch (cstate
->linktype
) {
1048 case DLT_MTP2_WITH_PHDR
:
1049 // Belt and braces, same as in assert_atm().
1050 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1051 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1052 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1053 cstate
->off_sls
!= OFFSET_NOT_SET
)
1056 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1060 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1061 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1064 bpf_error(cstate
, "%s %u greater than maximum %u",
1068 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1069 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1071 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1073 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1081 return IPPROTO_SCTP
;
1085 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1089 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1090 const char *buf
, int optimize
, bpf_u_int32 mask
)
1096 compiler_state_t cstate
;
1097 yyscan_t scanner
= NULL
;
1098 YY_BUFFER_STATE in_buffer
= NULL
;
1103 * If this pcap_t hasn't been activated, it doesn't have a
1104 * link-layer type, so we can't use it.
1106 if (!p
->activated
) {
1107 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1108 "not-yet-activated pcap_t passed to pcap_compile");
1109 return (PCAP_ERROR
);
1114 * Initialize Winsock, asking for the latest version (2.2),
1115 * as we may be calling Winsock routines to translate
1116 * host names to addresses.
1118 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1120 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1121 err
, "Error calling WSAStartup()");
1122 return (PCAP_ERROR
);
1126 #ifdef ENABLE_REMOTE
1128 * If the device on which we're capturing need to be notified
1129 * that a new filter is being compiled, do so.
1131 * This allows them to save a copy of it, in case, for example,
1132 * they're implementing a form of remote packet capture, and
1133 * want the remote machine to filter out the packets in which
1134 * it's sending the packets it's captured.
1136 * XXX - the fact that we happen to be compiling a filter
1137 * doesn't necessarily mean we'll be installing it as the
1138 * filter for this pcap_t; we might be running it from userland
1139 * on captured packets to do packet classification. We really
1140 * need a better way of handling this, but this is all that
1141 * the WinPcap remote capture code did.
1143 if (p
->save_current_filter_op
!= NULL
)
1144 (p
->save_current_filter_op
)(p
, buf
);
1147 initchunks(&cstate
);
1148 cstate
.no_optimize
= 0;
1153 cstate
.ic
.root
= NULL
;
1154 cstate
.ic
.cur_mark
= 0;
1155 cstate
.bpf_pcap
= p
;
1156 cstate
.error_set
= 0;
1159 cstate
.netmask
= mask
;
1161 cstate
.snaplen
= pcap_snapshot(p
);
1162 if (cstate
.snaplen
== 0) {
1163 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1164 "snaplen of 0 rejects all packets");
1169 if (pcap_lex_init(&scanner
) != 0) {
1170 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1171 errno
, "can't initialize scanner");
1175 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1178 * Associate the compiler state with the lexical analyzer
1181 pcap_set_extra(&cstate
, scanner
);
1183 if (init_linktype(&cstate
, p
) == -1) {
1187 if (pcap_parse(scanner
, &cstate
) != 0) {
1189 if (cstate
.ai
!= NULL
)
1190 freeaddrinfo(cstate
.ai
);
1192 if (cstate
.e
!= NULL
)
1198 if (cstate
.ic
.root
== NULL
) {
1199 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1202 * Catch errors reported by gen_retblk().
1204 if (cstate
.ic
.root
== NULL
) {
1210 if (optimize
&& !cstate
.no_optimize
) {
1211 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1216 if (cstate
.ic
.root
== NULL
||
1217 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1218 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1219 "expression rejects all packets");
1224 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1225 cstate
.ic
.root
, &len
, p
->errbuf
);
1226 if (program
->bf_insns
== NULL
) {
1231 program
->bf_len
= len
;
1233 rc
= 0; /* We're all okay */
1237 * Clean up everything for the lexical analyzer.
1239 if (in_buffer
!= NULL
)
1240 pcap__delete_buffer(in_buffer
, scanner
);
1241 if (scanner
!= NULL
)
1242 pcap_lex_destroy(scanner
);
1245 * Clean up our own allocated memory.
1247 freechunks(&cstate
);
1257 * entry point for using the compiler with no pcap open
1258 * pass in all the stuff that is needed explicitly instead.
1261 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1262 struct bpf_program
*program
,
1263 const char *buf
, int optimize
, bpf_u_int32 mask
)
1268 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1270 return (PCAP_ERROR
);
1271 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1277 * Clean up a "struct bpf_program" by freeing all the memory allocated
1281 pcap_freecode(struct bpf_program
*program
)
1283 program
->bf_len
= 0;
1284 if (program
->bf_insns
!= NULL
) {
1285 free((char *)program
->bf_insns
);
1286 program
->bf_insns
= NULL
;
1291 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1292 * which of the jt and jf fields has been resolved and which is a pointer
1293 * back to another unresolved block (or nil). At least one of the fields
1294 * in each block is already resolved.
1297 backpatch(struct block
*list
, struct block
*target
)
1314 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1315 * which of jt and jf is the link.
1318 merge(struct block
*b0
, struct block
*b1
)
1320 register struct block
**p
= &b0
;
1322 /* Find end of list. */
1324 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1326 /* Concatenate the lists. */
1331 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1334 * Catch errors reported by us and routines below us, and return -1
1337 if (setjmp(cstate
->top_ctx
))
1341 * Insert before the statements of the first (root) block any
1342 * statements needed to load the lengths of any variable-length
1343 * headers into registers.
1345 * XXX - a fancier strategy would be to insert those before the
1346 * statements of all blocks that use those lengths and that
1347 * have no predecessors that use them, so that we only compute
1348 * the lengths if we need them. There might be even better
1349 * approaches than that.
1351 * However, those strategies would be more complicated, and
1352 * as we don't generate code to compute a length if the
1353 * program has no tests that use the length, and as most
1354 * tests will probably use those lengths, we would just
1355 * postpone computing the lengths so that it's not done
1356 * for tests that fail early, and it's not clear that's
1359 insert_compute_vloffsets(cstate
, p
->head
);
1362 * For DLT_PPI captures, generate a check of the per-packet
1363 * DLT value to make sure it's DLT_IEEE802_11.
1365 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1366 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1367 * with appropriate Ethernet information and use that rather
1368 * than using something such as DLT_PPI where you don't know
1369 * the link-layer header type until runtime, which, in the
1370 * general case, would force us to generate both Ethernet *and*
1371 * 802.11 code (*and* anything else for which PPI is used)
1372 * and choose between them early in the BPF program?
1374 if (cstate
->linktype
== DLT_PPI
) {
1375 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1376 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1377 gen_and(ppi_dlt_check
, p
);
1380 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1381 p
->sense
= !p
->sense
;
1382 backpatch(p
, gen_retblk_internal(cstate
, 0));
1383 cstate
->ic
.root
= p
->head
;
1388 gen_and(struct block
*b0
, struct block
*b1
)
1390 backpatch(b0
, b1
->head
);
1391 b0
->sense
= !b0
->sense
;
1392 b1
->sense
= !b1
->sense
;
1394 b1
->sense
= !b1
->sense
;
1395 b1
->head
= b0
->head
;
1399 gen_or(struct block
*b0
, struct block
*b1
)
1401 b0
->sense
= !b0
->sense
;
1402 backpatch(b0
, b1
->head
);
1403 b0
->sense
= !b0
->sense
;
1405 b1
->head
= b0
->head
;
1409 gen_not(struct block
*b
)
1411 b
->sense
= !b
->sense
;
1414 static struct block
*
1415 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1416 u_int size
, bpf_u_int32 v
)
1418 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1421 static struct block
*
1422 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1423 u_int size
, bpf_u_int32 v
)
1425 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1428 static struct block
*
1429 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1430 u_int size
, bpf_u_int32 v
)
1432 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1435 static struct block
*
1436 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1437 u_int size
, bpf_u_int32 v
)
1439 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1442 static struct block
*
1443 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1444 u_int size
, bpf_u_int32 v
)
1446 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1449 static struct block
*
1450 gen_cmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1451 u_int size
, bpf_u_int32 v
)
1453 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 1, v
);
1456 static struct block
*
1457 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1458 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1460 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1463 static struct block
*
1464 gen_mcmp_ne(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1465 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1467 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 1, v
);
1470 static struct block
*
1471 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1472 u_int size
, const u_char
*v
)
1474 register struct block
*b
, *tmp
;
1478 register const u_char
*p
= &v
[size
- 4];
1480 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1488 register const u_char
*p
= &v
[size
- 2];
1490 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1498 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1506 static struct block
*
1507 gen_jmp(compiler_state_t
*cstate
, int jtype
, bpf_u_int32 v
, struct slist
*stmts
)
1509 struct block
*b
= new_block(cstate
, JMP(jtype
));
1515 static struct block
*
1516 gen_set(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1518 return gen_jmp(cstate
, BPF_JSET
, v
, stmts
);
1521 static struct block
*
1522 gen_unset(compiler_state_t
*cstate
, bpf_u_int32 v
, struct slist
*stmts
)
1524 struct block
*b
= gen_set(cstate
, v
, stmts
);
1530 * AND the field of size "size" at offset "offset" relative to the header
1531 * specified by "offrel" with "mask", and compare it with the value "v"
1532 * with the test specified by "jtype"; if "reverse" is true, the test
1533 * should test the opposite of "jtype".
1535 static struct block
*
1536 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1537 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1540 struct slist
*s
, *s2
;
1543 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1545 if (mask
!= 0xffffffff) {
1546 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1551 b
= gen_jmp(cstate
, jtype
, v
, s
);
1558 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1560 cstate
->pcap_fddipad
= p
->fddipad
;
1563 * We start out with only one link-layer header.
1565 cstate
->outermostlinktype
= pcap_datalink(p
);
1566 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1567 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1568 cstate
->off_outermostlinkhdr
.reg
= -1;
1570 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1571 cstate
->off_prevlinkhdr
.constant_part
= 0;
1572 cstate
->off_prevlinkhdr
.is_variable
= 0;
1573 cstate
->off_prevlinkhdr
.reg
= -1;
1575 cstate
->linktype
= cstate
->outermostlinktype
;
1576 cstate
->off_linkhdr
.constant_part
= 0;
1577 cstate
->off_linkhdr
.is_variable
= 0;
1578 cstate
->off_linkhdr
.reg
= -1;
1583 cstate
->off_linkpl
.constant_part
= 0;
1584 cstate
->off_linkpl
.is_variable
= 0;
1585 cstate
->off_linkpl
.reg
= -1;
1587 cstate
->off_linktype
.constant_part
= 0;
1588 cstate
->off_linktype
.is_variable
= 0;
1589 cstate
->off_linktype
.reg
= -1;
1592 * Assume it's not raw ATM with a pseudo-header, for now.
1595 cstate
->off_vpi
= OFFSET_NOT_SET
;
1596 cstate
->off_vci
= OFFSET_NOT_SET
;
1597 cstate
->off_proto
= OFFSET_NOT_SET
;
1598 cstate
->off_payload
= OFFSET_NOT_SET
;
1601 * And not encapsulated with either Geneve or VXLAN.
1603 cstate
->is_encap
= 0;
1606 * No variable length VLAN offset by default
1608 cstate
->is_vlan_vloffset
= 0;
1611 * And assume we're not doing SS7.
1613 cstate
->off_li
= OFFSET_NOT_SET
;
1614 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1615 cstate
->off_sio
= OFFSET_NOT_SET
;
1616 cstate
->off_opc
= OFFSET_NOT_SET
;
1617 cstate
->off_dpc
= OFFSET_NOT_SET
;
1618 cstate
->off_sls
= OFFSET_NOT_SET
;
1620 cstate
->label_stack_depth
= 0;
1621 cstate
->vlan_stack_depth
= 0;
1623 switch (cstate
->linktype
) {
1626 cstate
->off_linktype
.constant_part
= 2;
1627 cstate
->off_linkpl
.constant_part
= 6;
1628 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1629 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1632 case DLT_ARCNET_LINUX
:
1633 cstate
->off_linktype
.constant_part
= 4;
1634 cstate
->off_linkpl
.constant_part
= 8;
1635 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1636 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1640 cstate
->off_linktype
.constant_part
= 12;
1641 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1642 cstate
->off_nl
= 0; /* Ethernet II */
1643 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1648 * SLIP doesn't have a link level type. The 16 byte
1649 * header is hacked into our SLIP driver.
1651 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1652 cstate
->off_linkpl
.constant_part
= 16;
1654 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1657 case DLT_SLIP_BSDOS
:
1658 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1659 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1661 cstate
->off_linkpl
.constant_part
= 24;
1663 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1668 cstate
->off_linktype
.constant_part
= 0;
1669 cstate
->off_linkpl
.constant_part
= 4;
1671 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1675 cstate
->off_linktype
.constant_part
= 0;
1676 cstate
->off_linkpl
.constant_part
= 12;
1678 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1683 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1684 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1685 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1686 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1687 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1689 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1694 * This does not include the Ethernet header, and
1695 * only covers session state.
1697 cstate
->off_linktype
.constant_part
= 6;
1698 cstate
->off_linkpl
.constant_part
= 8;
1700 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1704 cstate
->off_linktype
.constant_part
= 5;
1705 cstate
->off_linkpl
.constant_part
= 24;
1707 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1712 * FDDI doesn't really have a link-level type field.
1713 * We set "off_linktype" to the offset of the LLC header.
1715 * To check for Ethernet types, we assume that SSAP = SNAP
1716 * is being used and pick out the encapsulated Ethernet type.
1717 * XXX - should we generate code to check for SNAP?
1719 cstate
->off_linktype
.constant_part
= 13;
1720 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1721 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1722 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1723 cstate
->off_nl
= 8; /* 802.2+SNAP */
1724 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1729 * Token Ring doesn't really have a link-level type field.
1730 * We set "off_linktype" to the offset of the LLC header.
1732 * To check for Ethernet types, we assume that SSAP = SNAP
1733 * is being used and pick out the encapsulated Ethernet type.
1734 * XXX - should we generate code to check for SNAP?
1736 * XXX - the header is actually variable-length.
1737 * Some various Linux patched versions gave 38
1738 * as "off_linktype" and 40 as "off_nl"; however,
1739 * if a token ring packet has *no* routing
1740 * information, i.e. is not source-routed, the correct
1741 * values are 20 and 22, as they are in the vanilla code.
1743 * A packet is source-routed iff the uppermost bit
1744 * of the first byte of the source address, at an
1745 * offset of 8, has the uppermost bit set. If the
1746 * packet is source-routed, the total number of bytes
1747 * of routing information is 2 plus bits 0x1F00 of
1748 * the 16-bit value at an offset of 14 (shifted right
1749 * 8 - figure out which byte that is).
1751 cstate
->off_linktype
.constant_part
= 14;
1752 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1753 cstate
->off_nl
= 8; /* 802.2+SNAP */
1754 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1757 case DLT_PRISM_HEADER
:
1758 case DLT_IEEE802_11_RADIO_AVS
:
1759 case DLT_IEEE802_11_RADIO
:
1760 cstate
->off_linkhdr
.is_variable
= 1;
1761 /* Fall through, 802.11 doesn't have a variable link
1762 * prefix but is otherwise the same. */
1765 case DLT_IEEE802_11
:
1767 * 802.11 doesn't really have a link-level type field.
1768 * We set "off_linktype.constant_part" to the offset of
1771 * To check for Ethernet types, we assume that SSAP = SNAP
1772 * is being used and pick out the encapsulated Ethernet type.
1773 * XXX - should we generate code to check for SNAP?
1775 * We also handle variable-length radio headers here.
1776 * The Prism header is in theory variable-length, but in
1777 * practice it's always 144 bytes long. However, some
1778 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1779 * sometimes or always supply an AVS header, so we
1780 * have to check whether the radio header is a Prism
1781 * header or an AVS header, so, in practice, it's
1784 cstate
->off_linktype
.constant_part
= 24;
1785 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1786 cstate
->off_linkpl
.is_variable
= 1;
1787 cstate
->off_nl
= 8; /* 802.2+SNAP */
1788 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1793 * At the moment we treat PPI the same way that we treat
1794 * normal Radiotap encoded packets. The difference is in
1795 * the function that generates the code at the beginning
1796 * to compute the header length. Since this code generator
1797 * of PPI supports bare 802.11 encapsulation only (i.e.
1798 * the encapsulated DLT should be DLT_IEEE802_11) we
1799 * generate code to check for this too.
1801 cstate
->off_linktype
.constant_part
= 24;
1802 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1803 cstate
->off_linkpl
.is_variable
= 1;
1804 cstate
->off_linkhdr
.is_variable
= 1;
1805 cstate
->off_nl
= 8; /* 802.2+SNAP */
1806 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1809 case DLT_ATM_RFC1483
:
1810 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1812 * assume routed, non-ISO PDUs
1813 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1815 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1816 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1817 * latter would presumably be treated the way PPPoE
1818 * should be, so you can do "pppoe and udp port 2049"
1819 * or "pppoa and tcp port 80" and have it check for
1820 * PPPo{A,E} and a PPP protocol of IP and....
1822 cstate
->off_linktype
.constant_part
= 0;
1823 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1824 cstate
->off_nl
= 8; /* 802.2+SNAP */
1825 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1830 * Full Frontal ATM; you get AALn PDUs with an ATM
1834 cstate
->off_vpi
= SUNATM_VPI_POS
;
1835 cstate
->off_vci
= SUNATM_VCI_POS
;
1836 cstate
->off_proto
= PROTO_POS
;
1837 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1838 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1839 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1840 cstate
->off_nl
= 8; /* 802.2+SNAP */
1841 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1847 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1848 cstate
->off_linkpl
.constant_part
= 0;
1850 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1853 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1854 cstate
->off_linktype
.constant_part
= 14;
1855 cstate
->off_linkpl
.constant_part
= 16;
1857 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1860 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1861 cstate
->off_linktype
.constant_part
= 0;
1862 cstate
->off_linkpl
.constant_part
= 20;
1864 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1869 * LocalTalk does have a 1-byte type field in the LLAP header,
1870 * but really it just indicates whether there is a "short" or
1871 * "long" DDP packet following.
1873 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1874 cstate
->off_linkpl
.constant_part
= 0;
1876 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1879 case DLT_IP_OVER_FC
:
1881 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1882 * link-level type field. We set "off_linktype" to the
1883 * offset of the LLC header.
1885 * To check for Ethernet types, we assume that SSAP = SNAP
1886 * is being used and pick out the encapsulated Ethernet type.
1887 * XXX - should we generate code to check for SNAP? RFC
1888 * 2625 says SNAP should be used.
1890 cstate
->off_linktype
.constant_part
= 16;
1891 cstate
->off_linkpl
.constant_part
= 16;
1892 cstate
->off_nl
= 8; /* 802.2+SNAP */
1893 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1898 * XXX - we should set this to handle SNAP-encapsulated
1899 * frames (NLPID of 0x80).
1901 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1902 cstate
->off_linkpl
.constant_part
= 0;
1904 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1908 * the only BPF-interesting FRF.16 frames are non-control frames;
1909 * Frame Relay has a variable length link-layer
1910 * so lets start with offset 4 for now and increments later on (FIXME);
1913 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1914 cstate
->off_linkpl
.constant_part
= 0;
1916 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1919 case DLT_APPLE_IP_OVER_IEEE1394
:
1920 cstate
->off_linktype
.constant_part
= 16;
1921 cstate
->off_linkpl
.constant_part
= 18;
1923 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1926 case DLT_SYMANTEC_FIREWALL
:
1927 cstate
->off_linktype
.constant_part
= 6;
1928 cstate
->off_linkpl
.constant_part
= 44;
1929 cstate
->off_nl
= 0; /* Ethernet II */
1930 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1934 cstate
->off_linktype
.constant_part
= 0;
1935 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1936 cstate
->off_linkpl
.is_variable
= 1;
1938 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1941 case DLT_JUNIPER_MFR
:
1942 case DLT_JUNIPER_MLFR
:
1943 case DLT_JUNIPER_MLPPP
:
1944 case DLT_JUNIPER_PPP
:
1945 case DLT_JUNIPER_CHDLC
:
1946 case DLT_JUNIPER_FRELAY
:
1947 cstate
->off_linktype
.constant_part
= 4;
1948 cstate
->off_linkpl
.constant_part
= 4;
1950 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1953 case DLT_JUNIPER_ATM1
:
1954 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1955 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1957 cstate
->off_nl_nosnap
= 10;
1960 case DLT_JUNIPER_ATM2
:
1961 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1962 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1964 cstate
->off_nl_nosnap
= 10;
1967 /* frames captured on a Juniper PPPoE service PIC
1968 * contain raw ethernet frames */
1969 case DLT_JUNIPER_PPPOE
:
1970 case DLT_JUNIPER_ETHER
:
1971 cstate
->off_linkpl
.constant_part
= 14;
1972 cstate
->off_linktype
.constant_part
= 16;
1973 cstate
->off_nl
= 18; /* Ethernet II */
1974 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1977 case DLT_JUNIPER_PPPOE_ATM
:
1978 cstate
->off_linktype
.constant_part
= 4;
1979 cstate
->off_linkpl
.constant_part
= 6;
1981 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1984 case DLT_JUNIPER_GGSN
:
1985 cstate
->off_linktype
.constant_part
= 6;
1986 cstate
->off_linkpl
.constant_part
= 12;
1988 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1991 case DLT_JUNIPER_ES
:
1992 cstate
->off_linktype
.constant_part
= 6;
1993 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1994 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1995 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1998 case DLT_JUNIPER_MONITOR
:
1999 cstate
->off_linktype
.constant_part
= 12;
2000 cstate
->off_linkpl
.constant_part
= 12;
2001 cstate
->off_nl
= 0; /* raw IP/IP6 header */
2002 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2005 case DLT_BACNET_MS_TP
:
2006 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2007 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2008 cstate
->off_nl
= OFFSET_NOT_SET
;
2009 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2012 case DLT_JUNIPER_SERVICES
:
2013 cstate
->off_linktype
.constant_part
= 12;
2014 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2015 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
2016 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2019 case DLT_JUNIPER_VP
:
2020 cstate
->off_linktype
.constant_part
= 18;
2021 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2022 cstate
->off_nl
= OFFSET_NOT_SET
;
2023 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2026 case DLT_JUNIPER_ST
:
2027 cstate
->off_linktype
.constant_part
= 18;
2028 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2029 cstate
->off_nl
= OFFSET_NOT_SET
;
2030 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2033 case DLT_JUNIPER_ISM
:
2034 cstate
->off_linktype
.constant_part
= 8;
2035 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2036 cstate
->off_nl
= OFFSET_NOT_SET
;
2037 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2040 case DLT_JUNIPER_VS
:
2041 case DLT_JUNIPER_SRX_E2E
:
2042 case DLT_JUNIPER_FIBRECHANNEL
:
2043 case DLT_JUNIPER_ATM_CEMIC
:
2044 cstate
->off_linktype
.constant_part
= 8;
2045 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2046 cstate
->off_nl
= OFFSET_NOT_SET
;
2047 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2052 cstate
->off_li_hsl
= 4;
2053 cstate
->off_sio
= 3;
2054 cstate
->off_opc
= 4;
2055 cstate
->off_dpc
= 4;
2056 cstate
->off_sls
= 7;
2057 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2058 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2059 cstate
->off_nl
= OFFSET_NOT_SET
;
2060 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2063 case DLT_MTP2_WITH_PHDR
:
2065 cstate
->off_li_hsl
= 8;
2066 cstate
->off_sio
= 7;
2067 cstate
->off_opc
= 8;
2068 cstate
->off_dpc
= 8;
2069 cstate
->off_sls
= 11;
2070 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2071 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2072 cstate
->off_nl
= OFFSET_NOT_SET
;
2073 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2077 cstate
->off_li
= 22;
2078 cstate
->off_li_hsl
= 24;
2079 cstate
->off_sio
= 23;
2080 cstate
->off_opc
= 24;
2081 cstate
->off_dpc
= 24;
2082 cstate
->off_sls
= 27;
2083 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2084 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2085 cstate
->off_nl
= OFFSET_NOT_SET
;
2086 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2090 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2091 cstate
->off_linkpl
.constant_part
= 4;
2093 cstate
->off_nl_nosnap
= 0;
2098 * Currently, only raw "link[N:M]" filtering is supported.
2100 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2101 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2102 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2103 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2107 cstate
->off_linktype
.constant_part
= 1;
2108 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2110 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2113 case DLT_NETANALYZER
:
2114 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2115 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2116 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2117 cstate
->off_nl
= 0; /* Ethernet II */
2118 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2121 case DLT_NETANALYZER_TRANSPARENT
:
2122 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2123 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2124 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2125 cstate
->off_nl
= 0; /* Ethernet II */
2126 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2131 * For values in the range in which we've assigned new
2132 * DLT_ values, only raw "link[N:M]" filtering is supported.
2134 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2135 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2136 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2137 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2138 cstate
->off_nl
= OFFSET_NOT_SET
;
2139 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2141 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2142 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2148 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2153 * Load a value relative to the specified absolute offset.
2155 static struct slist
*
2156 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2157 u_int offset
, u_int size
)
2159 struct slist
*s
, *s2
;
2161 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2164 * If "s" is non-null, it has code to arrange that the X register
2165 * contains the variable part of the absolute offset, so we
2166 * generate a load relative to that, with an offset of
2167 * abs_offset->constant_part + offset.
2169 * Otherwise, we can do an absolute load with an offset of
2170 * abs_offset->constant_part + offset.
2174 * "s" points to a list of statements that puts the
2175 * variable part of the absolute offset into the X register.
2176 * Do an indirect load, to use the X register as an offset.
2178 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2179 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2183 * There is no variable part of the absolute offset, so
2184 * just do an absolute load.
2186 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2187 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2193 * Load a value relative to the beginning of the specified header.
2195 static struct slist
*
2196 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2199 struct slist
*s
, *s2
;
2202 * Squelch warnings from compilers that *don't* assume that
2203 * offrel always has a valid enum value and therefore don't
2204 * assume that we'll always go through one of the case arms.
2206 * If we have a default case, compilers that *do* assume that
2207 * will then complain about the default case code being
2210 * Damned if you do, damned if you don't.
2217 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2222 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2225 case OR_PREVLINKHDR
:
2226 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2230 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2233 case OR_PREVMPLSHDR
:
2234 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2238 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2241 case OR_LINKPL_NOSNAP
:
2242 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2246 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2251 * Load the X register with the length of the IPv4 header
2252 * (plus the offset of the link-layer header, if it's
2253 * preceded by a variable-length header such as a radio
2254 * header), in bytes.
2256 s
= gen_loadx_iphdrlen(cstate
);
2259 * Load the item at {offset of the link-layer payload} +
2260 * {offset, relative to the start of the link-layer
2261 * payload, of the IPv4 header} + {length of the IPv4 header} +
2262 * {specified offset}.
2264 * If the offset of the link-layer payload is variable,
2265 * the variable part of that offset is included in the
2266 * value in the X register, and we include the constant
2267 * part in the offset of the load.
2269 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2270 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2275 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2282 * Generate code to load into the X register the sum of the length of
2283 * the IPv4 header and the variable part of the offset of the link-layer
2286 static struct slist
*
2287 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2289 struct slist
*s
, *s2
;
2291 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2294 * The offset of the link-layer payload has a variable
2295 * part. "s" points to a list of statements that put
2296 * the variable part of that offset into the X register.
2298 * The 4*([k]&0xf) addressing mode can't be used, as we
2299 * don't have a constant offset, so we have to load the
2300 * value in question into the A register and add to it
2301 * the value from the X register.
2303 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2304 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2306 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2309 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2314 * The A register now contains the length of the IP header.
2315 * We need to add to it the variable part of the offset of
2316 * the link-layer payload, which is still in the X
2317 * register, and move the result into the X register.
2319 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2320 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2323 * The offset of the link-layer payload is a constant,
2324 * so no code was generated to load the (nonexistent)
2325 * variable part of that offset.
2327 * This means we can use the 4*([k]&0xf) addressing
2328 * mode. Load the length of the IPv4 header, which
2329 * is at an offset of cstate->off_nl from the beginning of
2330 * the link-layer payload, and thus at an offset of
2331 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2332 * of the raw packet data, using that addressing mode.
2334 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2335 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2341 static struct block
*
2342 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2346 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2348 return gen_jmp(cstate
, BPF_JEQ
, 0, s
);
2351 static inline struct block
*
2352 gen_true(compiler_state_t
*cstate
)
2354 return gen_uncond(cstate
, 1);
2357 static inline struct block
*
2358 gen_false(compiler_state_t
*cstate
)
2360 return gen_uncond(cstate
, 0);
2364 * Generate code to match a particular packet type.
2366 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2367 * value, if <= ETHERMTU. We use that to determine whether to
2368 * match the type/length field or to check the type/length field for
2369 * a value <= ETHERMTU to see whether it's a type field and then do
2370 * the appropriate test.
2372 static struct block
*
2373 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2375 struct block
*b0
, *b1
;
2381 case LLCSAP_NETBEUI
:
2383 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2384 * so we check the DSAP and SSAP.
2386 * LLCSAP_IP checks for IP-over-802.2, rather
2387 * than IP-over-Ethernet or IP-over-SNAP.
2389 * XXX - should we check both the DSAP and the
2390 * SSAP, like this, or should we check just the
2391 * DSAP, as we do for other types <= ETHERMTU
2392 * (i.e., other SAP values)?
2394 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2395 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2403 * Ethernet_II frames, which are Ethernet
2404 * frames with a frame type of ETHERTYPE_IPX;
2406 * Ethernet_802.3 frames, which are 802.3
2407 * frames (i.e., the type/length field is
2408 * a length field, <= ETHERMTU, rather than
2409 * a type field) with the first two bytes
2410 * after the Ethernet/802.3 header being
2413 * Ethernet_802.2 frames, which are 802.3
2414 * frames with an 802.2 LLC header and
2415 * with the IPX LSAP as the DSAP in the LLC
2418 * Ethernet_SNAP frames, which are 802.3
2419 * frames with an LLC header and a SNAP
2420 * header and with an OUI of 0x000000
2421 * (encapsulated Ethernet) and a protocol
2422 * ID of ETHERTYPE_IPX in the SNAP header.
2424 * XXX - should we generate the same code both
2425 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2429 * This generates code to check both for the
2430 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2432 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2433 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2437 * Now we add code to check for SNAP frames with
2438 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2440 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2444 * Now we generate code to check for 802.3
2445 * frames in general.
2447 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2450 * Now add the check for 802.3 frames before the
2451 * check for Ethernet_802.2 and Ethernet_802.3,
2452 * as those checks should only be done on 802.3
2453 * frames, not on Ethernet frames.
2458 * Now add the check for Ethernet_II frames, and
2459 * do that before checking for the other frame
2462 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2466 case ETHERTYPE_ATALK
:
2467 case ETHERTYPE_AARP
:
2469 * EtherTalk (AppleTalk protocols on Ethernet link
2470 * layer) may use 802.2 encapsulation.
2474 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2475 * we check for an Ethernet type field less or equal than
2476 * 1500, which means it's an 802.3 length field.
2478 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2481 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2482 * SNAP packets with an organization code of
2483 * 0x080007 (Apple, for Appletalk) and a protocol
2484 * type of ETHERTYPE_ATALK (Appletalk).
2486 * 802.2-encapsulated ETHERTYPE_AARP packets are
2487 * SNAP packets with an organization code of
2488 * 0x000000 (encapsulated Ethernet) and a protocol
2489 * type of ETHERTYPE_AARP (Appletalk ARP).
2491 if (ll_proto
== ETHERTYPE_ATALK
)
2492 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2493 else /* ll_proto == ETHERTYPE_AARP */
2494 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2498 * Check for Ethernet encapsulation (Ethertalk
2499 * phase 1?); we just check for the Ethernet
2502 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2508 if (ll_proto
<= ETHERMTU
) {
2509 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2511 * This is an LLC SAP value, so the frames
2512 * that match would be 802.2 frames.
2513 * Check that the frame is an 802.2 frame
2514 * (i.e., that the length/type field is
2515 * a length field, <= ETHERMTU) and
2516 * then check the DSAP.
2518 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2519 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2523 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2525 * This is an Ethernet type, so compare
2526 * the length/type field with it (if
2527 * the frame is an 802.2 frame, the length
2528 * field will be <= ETHERMTU, and, as
2529 * "ll_proto" is > ETHERMTU, this test
2530 * will fail and the frame won't match,
2531 * which is what we want).
2533 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2538 static struct block
*
2539 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2542 * For DLT_NULL, the link-layer header is a 32-bit word
2543 * containing an AF_ value in *host* byte order, and for
2544 * DLT_ENC, the link-layer header begins with a 32-bit
2545 * word containing an AF_ value in host byte order.
2547 * In addition, if we're reading a saved capture file,
2548 * the host byte order in the capture may not be the
2549 * same as the host byte order on this machine.
2551 * For DLT_LOOP, the link-layer header is a 32-bit
2552 * word containing an AF_ value in *network* byte order.
2554 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2556 * The AF_ value is in host byte order, but the BPF
2557 * interpreter will convert it to network byte order.
2559 * If this is a save file, and it's from a machine
2560 * with the opposite byte order to ours, we byte-swap
2563 * Then we run it through "htonl()", and generate
2564 * code to compare against the result.
2566 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2567 ll_proto
= SWAPLONG(ll_proto
);
2568 ll_proto
= htonl(ll_proto
);
2570 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2574 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2575 * or IPv6 then we have an error.
2577 static struct block
*
2578 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2583 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2586 case ETHERTYPE_IPV6
:
2587 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2594 return gen_false(cstate
);
2598 * Generate code to match a particular packet type.
2600 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2601 * value, if <= ETHERMTU. We use that to determine whether to
2602 * match the type field or to check the type field for the special
2603 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2605 static struct block
*
2606 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2608 struct block
*b0
, *b1
;
2614 case LLCSAP_NETBEUI
:
2616 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2617 * so we check the DSAP and SSAP.
2619 * LLCSAP_IP checks for IP-over-802.2, rather
2620 * than IP-over-Ethernet or IP-over-SNAP.
2622 * XXX - should we check both the DSAP and the
2623 * SSAP, like this, or should we check just the
2624 * DSAP, as we do for other types <= ETHERMTU
2625 * (i.e., other SAP values)?
2627 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2628 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2634 * Ethernet_II frames, which are Ethernet
2635 * frames with a frame type of ETHERTYPE_IPX;
2637 * Ethernet_802.3 frames, which have a frame
2638 * type of LINUX_SLL_P_802_3;
2640 * Ethernet_802.2 frames, which are 802.3
2641 * frames with an 802.2 LLC header (i.e, have
2642 * a frame type of LINUX_SLL_P_802_2) and
2643 * with the IPX LSAP as the DSAP in the LLC
2646 * Ethernet_SNAP frames, which are 802.3
2647 * frames with an LLC header and a SNAP
2648 * header and with an OUI of 0x000000
2649 * (encapsulated Ethernet) and a protocol
2650 * ID of ETHERTYPE_IPX in the SNAP header.
2652 * First, do the checks on LINUX_SLL_P_802_2
2653 * frames; generate the check for either
2654 * Ethernet_802.2 or Ethernet_SNAP frames, and
2655 * then put a check for LINUX_SLL_P_802_2 frames
2658 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2659 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2661 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2665 * Now check for 802.3 frames and OR that with
2666 * the previous test.
2668 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2672 * Now add the check for Ethernet_II frames, and
2673 * do that before checking for the other frame
2676 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2680 case ETHERTYPE_ATALK
:
2681 case ETHERTYPE_AARP
:
2683 * EtherTalk (AppleTalk protocols on Ethernet link
2684 * layer) may use 802.2 encapsulation.
2688 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2689 * we check for the 802.2 protocol type in the
2690 * "Ethernet type" field.
2692 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2695 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2696 * SNAP packets with an organization code of
2697 * 0x080007 (Apple, for Appletalk) and a protocol
2698 * type of ETHERTYPE_ATALK (Appletalk).
2700 * 802.2-encapsulated ETHERTYPE_AARP packets are
2701 * SNAP packets with an organization code of
2702 * 0x000000 (encapsulated Ethernet) and a protocol
2703 * type of ETHERTYPE_AARP (Appletalk ARP).
2705 if (ll_proto
== ETHERTYPE_ATALK
)
2706 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2707 else /* ll_proto == ETHERTYPE_AARP */
2708 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2712 * Check for Ethernet encapsulation (Ethertalk
2713 * phase 1?); we just check for the Ethernet
2716 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2722 if (ll_proto
<= ETHERMTU
) {
2723 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
2725 * This is an LLC SAP value, so the frames
2726 * that match would be 802.2 frames.
2727 * Check for the 802.2 protocol type
2728 * in the "Ethernet type" field, and
2729 * then check the DSAP.
2731 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2732 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2737 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
2739 * This is an Ethernet type, so compare
2740 * the length/type field with it (if
2741 * the frame is an 802.2 frame, the length
2742 * field will be <= ETHERMTU, and, as
2743 * "ll_proto" is > ETHERMTU, this test
2744 * will fail and the frame won't match,
2745 * which is what we want).
2747 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2753 * Load a value relative to the beginning of the link-layer header after the
2756 static struct slist
*
2757 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2759 struct slist
*s1
, *s2
;
2762 * Generate code to load the length of the pflog header into
2763 * the register assigned to hold that length, if one has been
2764 * assigned. (If one hasn't been assigned, no code we've
2765 * generated uses that prefix, so we don't need to generate any
2768 if (cstate
->off_linkpl
.reg
!= -1) {
2770 * The length is in the first byte of the header.
2772 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2776 * Round it up to a multiple of 4.
2777 * Add 3, and clear the lower 2 bits.
2779 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2782 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2783 s2
->s
.k
= 0xfffffffc;
2787 * Now allocate a register to hold that value and store
2790 s2
= new_stmt(cstate
, BPF_ST
);
2791 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2795 * Now move it into the X register.
2797 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2805 static struct slist
*
2806 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2808 struct slist
*s1
, *s2
;
2809 struct slist
*sjeq_avs_cookie
;
2810 struct slist
*sjcommon
;
2813 * This code is not compatible with the optimizer, as
2814 * we are generating jmp instructions within a normal
2815 * slist of instructions
2817 cstate
->no_optimize
= 1;
2820 * Generate code to load the length of the radio header into
2821 * the register assigned to hold that length, if one has been
2822 * assigned. (If one hasn't been assigned, no code we've
2823 * generated uses that prefix, so we don't need to generate any
2826 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2827 * or always use the AVS header rather than the Prism header.
2828 * We load a 4-byte big-endian value at the beginning of the
2829 * raw packet data, and see whether, when masked with 0xFFFFF000,
2830 * it's equal to 0x80211000. If so, that indicates that it's
2831 * an AVS header (the masked-out bits are the version number).
2832 * Otherwise, it's a Prism header.
2834 * XXX - the Prism header is also, in theory, variable-length,
2835 * but no known software generates headers that aren't 144
2838 if (cstate
->off_linkhdr
.reg
!= -1) {
2842 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2846 * AND it with 0xFFFFF000.
2848 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2849 s2
->s
.k
= 0xFFFFF000;
2853 * Compare with 0x80211000.
2855 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2856 sjeq_avs_cookie
->s
.k
= 0x80211000;
2857 sappend(s1
, sjeq_avs_cookie
);
2862 * The 4 bytes at an offset of 4 from the beginning of
2863 * the AVS header are the length of the AVS header.
2864 * That field is big-endian.
2866 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2869 sjeq_avs_cookie
->s
.jt
= s2
;
2872 * Now jump to the code to allocate a register
2873 * into which to save the header length and
2874 * store the length there. (The "jump always"
2875 * instruction needs to have the k field set;
2876 * it's added to the PC, so, as we're jumping
2877 * over a single instruction, it should be 1.)
2879 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2881 sappend(s1
, sjcommon
);
2884 * Now for the code that handles the Prism header.
2885 * Just load the length of the Prism header (144)
2886 * into the A register. Have the test for an AVS
2887 * header branch here if we don't have an AVS header.
2889 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2892 sjeq_avs_cookie
->s
.jf
= s2
;
2895 * Now allocate a register to hold that value and store
2896 * it. The code for the AVS header will jump here after
2897 * loading the length of the AVS header.
2899 s2
= new_stmt(cstate
, BPF_ST
);
2900 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2902 sjcommon
->s
.jf
= s2
;
2905 * Now move it into the X register.
2907 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2915 static struct slist
*
2916 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2918 struct slist
*s1
, *s2
;
2921 * Generate code to load the length of the AVS header into
2922 * the register assigned to hold that length, if one has been
2923 * assigned. (If one hasn't been assigned, no code we've
2924 * generated uses that prefix, so we don't need to generate any
2927 if (cstate
->off_linkhdr
.reg
!= -1) {
2929 * The 4 bytes at an offset of 4 from the beginning of
2930 * the AVS header are the length of the AVS header.
2931 * That field is big-endian.
2933 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2937 * Now allocate a register to hold that value and store
2940 s2
= new_stmt(cstate
, BPF_ST
);
2941 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2945 * Now move it into the X register.
2947 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2955 static struct slist
*
2956 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2958 struct slist
*s1
, *s2
;
2961 * Generate code to load the length of the radiotap header into
2962 * the register assigned to hold that length, if one has been
2963 * assigned. (If one hasn't been assigned, no code we've
2964 * generated uses that prefix, so we don't need to generate any
2967 if (cstate
->off_linkhdr
.reg
!= -1) {
2969 * The 2 bytes at offsets of 2 and 3 from the beginning
2970 * of the radiotap header are the length of the radiotap
2971 * header; unfortunately, it's little-endian, so we have
2972 * to load it a byte at a time and construct the value.
2976 * Load the high-order byte, at an offset of 3, shift it
2977 * left a byte, and put the result in the X register.
2979 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2981 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2984 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2988 * Load the next byte, at an offset of 2, and OR the
2989 * value from the X register into it.
2991 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2994 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2998 * Now allocate a register to hold that value and store
3001 s2
= new_stmt(cstate
, BPF_ST
);
3002 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3006 * Now move it into the X register.
3008 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3017 * At the moment we treat PPI as normal Radiotap encoded
3018 * packets. The difference is in the function that generates
3019 * the code at the beginning to compute the header length.
3020 * Since this code generator of PPI supports bare 802.11
3021 * encapsulation only (i.e. the encapsulated DLT should be
3022 * DLT_IEEE802_11) we generate code to check for this too;
3023 * that's done in finish_parse().
3025 static struct slist
*
3026 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
3028 struct slist
*s1
, *s2
;
3031 * Generate code to load the length of the radiotap header
3032 * into the register assigned to hold that length, if one has
3035 if (cstate
->off_linkhdr
.reg
!= -1) {
3037 * The 2 bytes at offsets of 2 and 3 from the beginning
3038 * of the radiotap header are the length of the radiotap
3039 * header; unfortunately, it's little-endian, so we have
3040 * to load it a byte at a time and construct the value.
3044 * Load the high-order byte, at an offset of 3, shift it
3045 * left a byte, and put the result in the X register.
3047 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3049 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3052 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3056 * Load the next byte, at an offset of 2, and OR the
3057 * value from the X register into it.
3059 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3062 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3066 * Now allocate a register to hold that value and store
3069 s2
= new_stmt(cstate
, BPF_ST
);
3070 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3074 * Now move it into the X register.
3076 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3085 * Load a value relative to the beginning of the link-layer header after the 802.11
3086 * header, i.e. LLC_SNAP.
3087 * The link-layer header doesn't necessarily begin at the beginning
3088 * of the packet data; there might be a variable-length prefix containing
3089 * radio information.
3091 static struct slist
*
3092 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3095 struct slist
*sjset_data_frame_1
;
3096 struct slist
*sjset_data_frame_2
;
3097 struct slist
*sjset_qos
;
3098 struct slist
*sjset_radiotap_flags_present
;
3099 struct slist
*sjset_radiotap_ext_present
;
3100 struct slist
*sjset_radiotap_tsft_present
;
3101 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3102 struct slist
*s_roundup
;
3104 if (cstate
->off_linkpl
.reg
== -1) {
3106 * No register has been assigned to the offset of
3107 * the link-layer payload, which means nobody needs
3108 * it; don't bother computing it - just return
3109 * what we already have.
3115 * This code is not compatible with the optimizer, as
3116 * we are generating jmp instructions within a normal
3117 * slist of instructions
3119 cstate
->no_optimize
= 1;
3122 * If "s" is non-null, it has code to arrange that the X register
3123 * contains the length of the prefix preceding the link-layer
3126 * Otherwise, the length of the prefix preceding the link-layer
3127 * header is "off_outermostlinkhdr.constant_part".
3131 * There is no variable-length header preceding the
3132 * link-layer header.
3134 * Load the length of the fixed-length prefix preceding
3135 * the link-layer header (if any) into the X register,
3136 * and store it in the cstate->off_linkpl.reg register.
3137 * That length is off_outermostlinkhdr.constant_part.
3139 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3140 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3144 * The X register contains the offset of the beginning of the
3145 * link-layer header; add 24, which is the minimum length
3146 * of the MAC header for a data frame, to that, and store it
3147 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3148 * which is at the offset in the X register, with an indexed load.
3150 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3152 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3155 s2
= new_stmt(cstate
, BPF_ST
);
3156 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3159 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3164 * Check the Frame Control field to see if this is a data frame;
3165 * a data frame has the 0x08 bit (b3) in that field set and the
3166 * 0x04 bit (b2) clear.
3168 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3169 sjset_data_frame_1
->s
.k
= IEEE80211_FC0_TYPE_DATA
;
3170 sappend(s
, sjset_data_frame_1
);
3173 * If b3 is set, test b2, otherwise go to the first statement of
3174 * the rest of the program.
3176 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3177 sjset_data_frame_2
->s
.k
= IEEE80211_FC0_TYPE_CTL
;
3178 sappend(s
, sjset_data_frame_2
);
3179 sjset_data_frame_1
->s
.jf
= snext
;
3182 * If b2 is not set, this is a data frame; test the QoS bit.
3183 * Otherwise, go to the first statement of the rest of the
3186 sjset_data_frame_2
->s
.jt
= snext
;
3187 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3188 sjset_qos
->s
.k
= IEEE80211_FC0_SUBTYPE_QOS
;
3189 sappend(s
, sjset_qos
);
3192 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3194 * Otherwise, go to the first statement of the rest of the
3197 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3198 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3200 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3203 s2
= new_stmt(cstate
, BPF_ST
);
3204 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3208 * If we have a radiotap header, look at it to see whether
3209 * there's Atheros padding between the MAC-layer header
3212 * Note: all of the fields in the radiotap header are
3213 * little-endian, so we byte-swap all of the values
3214 * we test against, as they will be loaded as big-endian
3217 * XXX - in the general case, we would have to scan through
3218 * *all* the presence bits, if there's more than one word of
3219 * presence bits. That would require a loop, meaning that
3220 * we wouldn't be able to run the filter in the kernel.
3222 * We assume here that the Atheros adapters that insert the
3223 * annoying padding don't have multiple antennae and therefore
3224 * do not generate radiotap headers with multiple presence words.
3226 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3228 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3229 * in the first presence flag word?
3231 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3235 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3236 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3237 sappend(s
, sjset_radiotap_flags_present
);
3240 * If not, skip all of this.
3242 sjset_radiotap_flags_present
->s
.jf
= snext
;
3245 * Otherwise, is the "extension" bit set in that word?
3247 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3248 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3249 sappend(s
, sjset_radiotap_ext_present
);
3250 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3253 * If so, skip all of this.
3255 sjset_radiotap_ext_present
->s
.jt
= snext
;
3258 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3260 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3261 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3262 sappend(s
, sjset_radiotap_tsft_present
);
3263 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3266 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3267 * at an offset of 16 from the beginning of the raw packet
3268 * data (8 bytes for the radiotap header and 8 bytes for
3271 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3274 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3277 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3279 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3280 sjset_tsft_datapad
->s
.k
= 0x20;
3281 sappend(s
, sjset_tsft_datapad
);
3284 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3285 * at an offset of 8 from the beginning of the raw packet
3286 * data (8 bytes for the radiotap header).
3288 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3291 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3294 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3296 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3297 sjset_notsft_datapad
->s
.k
= 0x20;
3298 sappend(s
, sjset_notsft_datapad
);
3301 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3302 * set, round the length of the 802.11 header to
3303 * a multiple of 4. Do that by adding 3 and then
3304 * dividing by and multiplying by 4, which we do by
3307 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3308 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3309 sappend(s
, s_roundup
);
3310 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3313 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3314 s2
->s
.k
= (bpf_u_int32
)~3;
3316 s2
= new_stmt(cstate
, BPF_ST
);
3317 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3320 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3321 sjset_tsft_datapad
->s
.jf
= snext
;
3322 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3323 sjset_notsft_datapad
->s
.jf
= snext
;
3325 sjset_qos
->s
.jf
= snext
;
3331 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3335 /* There is an implicit dependency between the link
3336 * payload and link header since the payload computation
3337 * includes the variable part of the header. Therefore,
3338 * if nobody else has allocated a register for the link
3339 * header and we need it, do it now. */
3340 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3341 cstate
->off_linkhdr
.reg
== -1)
3342 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3345 * For link-layer types that have a variable-length header
3346 * preceding the link-layer header, generate code to load
3347 * the offset of the link-layer header into the register
3348 * assigned to that offset, if any.
3350 * XXX - this, and the next switch statement, won't handle
3351 * encapsulation of 802.11 or 802.11+radio information in
3352 * some other protocol stack. That's significantly more
3355 switch (cstate
->outermostlinktype
) {
3357 case DLT_PRISM_HEADER
:
3358 s
= gen_load_prism_llprefixlen(cstate
);
3361 case DLT_IEEE802_11_RADIO_AVS
:
3362 s
= gen_load_avs_llprefixlen(cstate
);
3365 case DLT_IEEE802_11_RADIO
:
3366 s
= gen_load_radiotap_llprefixlen(cstate
);
3370 s
= gen_load_ppi_llprefixlen(cstate
);
3379 * For link-layer types that have a variable-length link-layer
3380 * header, generate code to load the offset of the link-layer
3381 * payload into the register assigned to that offset, if any.
3383 switch (cstate
->outermostlinktype
) {
3385 case DLT_IEEE802_11
:
3386 case DLT_PRISM_HEADER
:
3387 case DLT_IEEE802_11_RADIO_AVS
:
3388 case DLT_IEEE802_11_RADIO
:
3390 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3394 s
= gen_load_pflog_llprefixlen(cstate
);
3399 * If there is no initialization yet and we need variable
3400 * length offsets for VLAN, initialize them to zero
3402 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3405 if (cstate
->off_linkpl
.reg
== -1)
3406 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3407 if (cstate
->off_linktype
.reg
== -1)
3408 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3410 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3412 s2
= new_stmt(cstate
, BPF_ST
);
3413 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3415 s2
= new_stmt(cstate
, BPF_ST
);
3416 s2
->s
.k
= cstate
->off_linktype
.reg
;
3421 * If we have any offset-loading code, append all the
3422 * existing statements in the block to those statements,
3423 * and make the resulting list the list of statements
3427 sappend(s
, b
->stmts
);
3433 * Take an absolute offset, and:
3435 * if it has no variable part, return NULL;
3437 * if it has a variable part, generate code to load the register
3438 * containing that variable part into the X register, returning
3439 * a pointer to that code - if no register for that offset has
3440 * been allocated, allocate it first.
3442 * (The code to set that register will be generated later, but will
3443 * be placed earlier in the code sequence.)
3445 static struct slist
*
3446 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3450 if (off
->is_variable
) {
3451 if (off
->reg
== -1) {
3453 * We haven't yet assigned a register for the
3454 * variable part of the offset of the link-layer
3455 * header; allocate one.
3457 off
->reg
= alloc_reg(cstate
);
3461 * Load the register containing the variable part of the
3462 * offset of the link-layer header into the X register.
3464 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3469 * That offset isn't variable, there's no variable part,
3470 * so we don't need to generate any code.
3477 * Map an Ethernet type to the equivalent PPP type.
3480 ethertype_to_ppptype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3487 case ETHERTYPE_IPV6
:
3493 case ETHERTYPE_ATALK
:
3504 * I'm assuming the "Bridging PDU"s that go
3505 * over PPP are Spanning Tree Protocol
3513 assert_maxval(cstate
, "PPP protocol", ll_proto
, UINT16_MAX
);
3514 return (uint16_t)ll_proto
;
3518 * Generate any tests that, for encapsulation of a link-layer packet
3519 * inside another protocol stack, need to be done to check for those
3520 * link-layer packets (and that haven't already been done by a check
3521 * for that encapsulation).
3523 static struct block
*
3524 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3526 if (cstate
->is_encap
)
3527 return gen_encap_ll_check(cstate
);
3529 switch (cstate
->prevlinktype
) {
3533 * This is LANE-encapsulated Ethernet; check that the LANE
3534 * packet doesn't begin with an LE Control marker, i.e.
3535 * that it's data, not a control message.
3537 * (We've already generated a test for LANE.)
3539 return gen_cmp_ne(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3543 * No such tests are necessary.
3551 * The three different values we should check for when checking for an
3552 * IPv6 packet with DLT_NULL.
3554 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3555 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3556 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3559 * Generate code to match a particular packet type by matching the
3560 * link-layer type field or fields in the 802.2 LLC header.
3562 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3563 * value, if <= ETHERMTU.
3565 static struct block
*
3566 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3568 struct block
*b0
, *b1
, *b2
;
3570 /* are we checking MPLS-encapsulated packets? */
3571 if (cstate
->label_stack_depth
> 0)
3572 return gen_mpls_linktype(cstate
, ll_proto
);
3574 switch (cstate
->linktype
) {
3577 case DLT_NETANALYZER
:
3578 case DLT_NETANALYZER_TRANSPARENT
:
3579 /* Geneve has an EtherType regardless of whether there is an
3580 * L2 header. VXLAN always has an EtherType. */
3581 if (!cstate
->is_encap
)
3582 b0
= gen_prevlinkhdr_check(cstate
);
3586 b1
= gen_ether_linktype(cstate
, ll_proto
);
3594 assert_maxval(cstate
, "HDLC protocol", ll_proto
, UINT16_MAX
);
3598 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3602 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3606 case DLT_IEEE802_11
:
3607 case DLT_PRISM_HEADER
:
3608 case DLT_IEEE802_11_RADIO_AVS
:
3609 case DLT_IEEE802_11_RADIO
:
3612 * Check that we have a data frame.
3614 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3615 IEEE80211_FC0_TYPE_DATA
,
3616 IEEE80211_FC0_TYPE_MASK
);
3619 * Now check for the specified link-layer type.
3621 b1
= gen_llc_linktype(cstate
, ll_proto
);
3628 * XXX - check for LLC frames.
3630 return gen_llc_linktype(cstate
, ll_proto
);
3635 * XXX - check for LLC PDUs, as per IEEE 802.5.
3637 return gen_llc_linktype(cstate
, ll_proto
);
3640 case DLT_ATM_RFC1483
:
3642 case DLT_IP_OVER_FC
:
3643 return gen_llc_linktype(cstate
, ll_proto
);
3648 * Check for an LLC-encapsulated version of this protocol;
3649 * if we were checking for LANE, linktype would no longer
3652 * Check for LLC encapsulation and then check the protocol.
3654 b0
= gen_atm_prototype(cstate
, PT_LLC
);
3655 b1
= gen_llc_linktype(cstate
, ll_proto
);
3661 return gen_linux_sll_linktype(cstate
, ll_proto
);
3665 case DLT_SLIP_BSDOS
:
3668 * These types don't provide any type field; packets
3669 * are always IPv4 or IPv6.
3671 * XXX - for IPv4, check for a version number of 4, and,
3672 * for IPv6, check for a version number of 6?
3677 /* Check for a version number of 4. */
3678 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3680 case ETHERTYPE_IPV6
:
3681 /* Check for a version number of 6. */
3682 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3685 return gen_false(cstate
); /* always false */
3691 * Raw IPv4, so no type field.
3693 if (ll_proto
== ETHERTYPE_IP
)
3694 return gen_true(cstate
); /* always true */
3696 /* Checking for something other than IPv4; always false */
3697 return gen_false(cstate
);
3702 * Raw IPv6, so no type field.
3704 if (ll_proto
== ETHERTYPE_IPV6
)
3705 return gen_true(cstate
); /* always true */
3707 /* Checking for something other than IPv6; always false */
3708 return gen_false(cstate
);
3713 case DLT_PPP_SERIAL
:
3716 * We use Ethernet protocol types inside libpcap;
3717 * map them to the corresponding PPP protocol types.
3719 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3720 ethertype_to_ppptype(cstate
, ll_proto
));
3725 * We use Ethernet protocol types inside libpcap;
3726 * map them to the corresponding PPP protocol types.
3732 * Also check for Van Jacobson-compressed IP.
3733 * XXX - do this for other forms of PPP?
3735 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3736 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3738 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3743 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3744 ethertype_to_ppptype(cstate
, ll_proto
));
3754 return (gen_loopback_linktype(cstate
, AF_INET
));
3756 case ETHERTYPE_IPV6
:
3758 * AF_ values may, unfortunately, be platform-
3759 * dependent; AF_INET isn't, because everybody
3760 * used 4.2BSD's value, but AF_INET6 is, because
3761 * 4.2BSD didn't have a value for it (given that
3762 * IPv6 didn't exist back in the early 1980's),
3763 * and they all picked their own values.
3765 * This means that, if we're reading from a
3766 * savefile, we need to check for all the
3769 * If we're doing a live capture, we only need
3770 * to check for this platform's value; however,
3771 * Npcap uses 24, which isn't Windows's AF_INET6
3772 * value. (Given the multiple different values,
3773 * programs that read pcap files shouldn't be
3774 * checking for their platform's AF_INET6 value
3775 * anyway, they should check for all of the
3776 * possible values. and they might as well do
3777 * that even for live captures.)
3779 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3781 * Savefile - check for all three
3782 * possible IPv6 values.
3784 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3785 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3787 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3792 * Live capture, so we only need to
3793 * check for the value used on this
3798 * Npcap doesn't use Windows's AF_INET6,
3799 * as that collides with AF_IPX on
3800 * some BSDs (both have the value 23).
3801 * Instead, it uses 24.
3803 return (gen_loopback_linktype(cstate
, 24));
3806 return (gen_loopback_linktype(cstate
, AF_INET6
));
3807 #else /* AF_INET6 */
3809 * I guess this platform doesn't support
3810 * IPv6, so we just reject all packets.
3812 return gen_false(cstate
);
3813 #endif /* AF_INET6 */
3819 * Not a type on which we support filtering.
3820 * XXX - support those that have AF_ values
3821 * #defined on this platform, at least?
3823 return gen_false(cstate
);
3828 * af field is host byte order in contrast to the rest of
3831 if (ll_proto
== ETHERTYPE_IP
)
3832 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3834 else if (ll_proto
== ETHERTYPE_IPV6
)
3835 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3838 return gen_false(cstate
);
3842 case DLT_ARCNET_LINUX
:
3844 * XXX should we check for first fragment if the protocol
3850 return gen_false(cstate
);
3852 case ETHERTYPE_IPV6
:
3853 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3857 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3859 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3865 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3867 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3872 case ETHERTYPE_REVARP
:
3873 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3876 case ETHERTYPE_ATALK
:
3877 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3884 case ETHERTYPE_ATALK
:
3885 return gen_true(cstate
);
3887 return gen_false(cstate
);
3893 * XXX - assumes a 2-byte Frame Relay header with
3894 * DLCI and flags. What if the address is longer?
3900 * Check for the special NLPID for IP.
3902 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3904 case ETHERTYPE_IPV6
:
3906 * Check for the special NLPID for IPv6.
3908 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3912 * Check for several OSI protocols.
3914 * Frame Relay packets typically have an OSI
3915 * NLPID at the beginning; we check for each
3918 * What we check for is the NLPID and a frame
3919 * control field of UI, i.e. 0x03 followed
3922 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3923 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3924 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3930 return gen_false(cstate
);
3935 break; // not implemented
3937 case DLT_JUNIPER_MFR
:
3938 case DLT_JUNIPER_MLFR
:
3939 case DLT_JUNIPER_MLPPP
:
3940 case DLT_JUNIPER_ATM1
:
3941 case DLT_JUNIPER_ATM2
:
3942 case DLT_JUNIPER_PPPOE
:
3943 case DLT_JUNIPER_PPPOE_ATM
:
3944 case DLT_JUNIPER_GGSN
:
3945 case DLT_JUNIPER_ES
:
3946 case DLT_JUNIPER_MONITOR
:
3947 case DLT_JUNIPER_SERVICES
:
3948 case DLT_JUNIPER_ETHER
:
3949 case DLT_JUNIPER_PPP
:
3950 case DLT_JUNIPER_FRELAY
:
3951 case DLT_JUNIPER_CHDLC
:
3952 case DLT_JUNIPER_VP
:
3953 case DLT_JUNIPER_ST
:
3954 case DLT_JUNIPER_ISM
:
3955 case DLT_JUNIPER_VS
:
3956 case DLT_JUNIPER_SRX_E2E
:
3957 case DLT_JUNIPER_FIBRECHANNEL
:
3958 case DLT_JUNIPER_ATM_CEMIC
:
3960 /* just lets verify the magic number for now -
3961 * on ATM we may have up to 6 different encapsulations on the wire
3962 * and need a lot of heuristics to figure out that the payload
3965 * FIXME encapsulation specific BPF_ filters
3967 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3969 case DLT_BACNET_MS_TP
:
3970 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3973 return gen_ipnet_linktype(cstate
, ll_proto
);
3975 case DLT_LINUX_IRDA
:
3978 case DLT_MTP2_WITH_PHDR
:
3981 case DLT_LINUX_LAPD
:
3982 case DLT_USB_FREEBSD
:
3984 case DLT_USB_LINUX_MMAPPED
:
3986 case DLT_BLUETOOTH_HCI_H4
:
3987 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3989 case DLT_CAN_SOCKETCAN
:
3990 case DLT_IEEE802_15_4
:
3991 case DLT_IEEE802_15_4_LINUX
:
3992 case DLT_IEEE802_15_4_NONASK_PHY
:
3993 case DLT_IEEE802_15_4_NOFCS
:
3994 case DLT_IEEE802_15_4_TAP
:
3995 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3998 case DLT_IPMB_KONTRON
:
4002 /* Using the fixed-size NFLOG header it is possible to tell only
4003 * the address family of the packet, other meaningful data is
4004 * either missing or behind TLVs.
4006 break; // not implemented
4010 * Does this link-layer header type have a field
4011 * indicating the type of the next protocol? If
4012 * so, off_linktype.constant_part will be the offset of that
4013 * field in the packet; if not, it will be OFFSET_NOT_SET.
4015 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
4017 * Yes; assume it's an Ethernet type. (If
4018 * it's not, it needs to be handled specially
4021 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4022 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
4026 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
4027 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4031 * Check for an LLC SNAP packet with a given organization code and
4032 * protocol type; we check the entire contents of the 802.2 LLC and
4033 * snap headers, checking for DSAP and SSAP of SNAP and a control
4034 * field of 0x03 in the LLC header, and for the specified organization
4035 * code and protocol type in the SNAP header.
4037 static struct block
*
4038 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4040 u_char snapblock
[8];
4042 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4043 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4044 snapblock
[2] = 0x03; /* control = UI */
4045 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4046 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4047 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4048 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4049 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4050 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4054 * Generate code to match frames with an LLC header.
4056 static struct block
*
4057 gen_llc_internal(compiler_state_t
*cstate
)
4059 struct block
*b0
, *b1
;
4061 switch (cstate
->linktype
) {
4065 * We check for an Ethernet type field less or equal than
4066 * 1500, which means it's an 802.3 length field.
4068 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4071 * Now check for the purported DSAP and SSAP not being
4072 * 0xFF, to rule out NetWare-over-802.3.
4074 b1
= gen_cmp_ne(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4080 * We check for LLC traffic.
4082 return gen_atmtype_llc(cstate
);
4084 case DLT_IEEE802
: /* Token Ring */
4086 * XXX - check for LLC frames.
4088 return gen_true(cstate
);
4092 * XXX - check for LLC frames.
4094 return gen_true(cstate
);
4096 case DLT_ATM_RFC1483
:
4098 * For LLC encapsulation, these are defined to have an
4101 * For VC encapsulation, they don't, but there's no
4102 * way to check for that; the protocol used on the VC
4103 * is negotiated out of band.
4105 return gen_true(cstate
);
4107 case DLT_IEEE802_11
:
4108 case DLT_PRISM_HEADER
:
4109 case DLT_IEEE802_11_RADIO
:
4110 case DLT_IEEE802_11_RADIO_AVS
:
4113 * Check that we have a data frame.
4115 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4116 IEEE80211_FC0_TYPE_DATA
,
4117 IEEE80211_FC0_TYPE_MASK
);
4120 fail_kw_on_dlt(cstate
, "llc");
4126 gen_llc(compiler_state_t
*cstate
)
4129 * Catch errors reported by us and routines below us, and return NULL
4132 if (setjmp(cstate
->top_ctx
))
4135 return gen_llc_internal(cstate
);
4139 gen_llc_i(compiler_state_t
*cstate
)
4141 struct block
*b0
, *b1
;
4145 * Catch errors reported by us and routines below us, and return NULL
4148 if (setjmp(cstate
->top_ctx
))
4152 * Check whether this is an LLC frame.
4154 b0
= gen_llc_internal(cstate
);
4157 * Load the control byte and test the low-order bit; it must
4158 * be clear for I frames.
4160 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4161 b1
= gen_unset(cstate
, 0x01, s
);
4168 gen_llc_s(compiler_state_t
*cstate
)
4170 struct block
*b0
, *b1
;
4173 * Catch errors reported by us and routines below us, and return NULL
4176 if (setjmp(cstate
->top_ctx
))
4180 * Check whether this is an LLC frame.
4182 b0
= gen_llc_internal(cstate
);
4185 * Now compare the low-order 2 bit of the control byte against
4186 * the appropriate value for S frames.
4188 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4194 gen_llc_u(compiler_state_t
*cstate
)
4196 struct block
*b0
, *b1
;
4199 * Catch errors reported by us and routines below us, and return NULL
4202 if (setjmp(cstate
->top_ctx
))
4206 * Check whether this is an LLC frame.
4208 b0
= gen_llc_internal(cstate
);
4211 * Now compare the low-order 2 bit of the control byte against
4212 * the appropriate value for U frames.
4214 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4220 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4222 struct block
*b0
, *b1
;
4225 * Catch errors reported by us and routines below us, and return NULL
4228 if (setjmp(cstate
->top_ctx
))
4232 * Check whether this is an LLC frame.
4234 b0
= gen_llc_internal(cstate
);
4237 * Now check for an S frame with the appropriate type.
4239 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4245 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4247 struct block
*b0
, *b1
;
4250 * Catch errors reported by us and routines below us, and return NULL
4253 if (setjmp(cstate
->top_ctx
))
4257 * Check whether this is an LLC frame.
4259 b0
= gen_llc_internal(cstate
);
4262 * Now check for a U frame with the appropriate type.
4264 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4270 * Generate code to match a particular packet type, for link-layer types
4271 * using 802.2 LLC headers.
4273 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4274 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4276 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4277 * value, if <= ETHERMTU. We use that to determine whether to
4278 * match the DSAP or both DSAP and LSAP or to check the OUI and
4279 * protocol ID in a SNAP header.
4281 static struct block
*
4282 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4285 * XXX - handle token-ring variable-length header.
4291 case LLCSAP_NETBEUI
:
4293 * XXX - should we check both the DSAP and the
4294 * SSAP, like this, or should we check just the
4295 * DSAP, as we do for other SAP values?
4297 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4298 ((ll_proto
<< 8) | ll_proto
));
4302 * XXX - are there ever SNAP frames for IPX on
4303 * non-Ethernet 802.x networks?
4305 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4307 case ETHERTYPE_ATALK
:
4309 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4310 * SNAP packets with an organization code of
4311 * 0x080007 (Apple, for Appletalk) and a protocol
4312 * type of ETHERTYPE_ATALK (Appletalk).
4314 * XXX - check for an organization code of
4315 * encapsulated Ethernet as well?
4317 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4321 * XXX - we don't have to check for IPX 802.3
4322 * here, but should we check for the IPX Ethertype?
4324 if (ll_proto
<= ETHERMTU
) {
4325 assert_maxval(cstate
, "LLC DSAP", ll_proto
, UINT8_MAX
);
4327 * This is an LLC SAP value, so check
4330 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4332 assert_maxval(cstate
, "EtherType", ll_proto
, UINT16_MAX
);
4334 * This is an Ethernet type; we assume that it's
4335 * unlikely that it'll appear in the right place
4336 * at random, and therefore check only the
4337 * location that would hold the Ethernet type
4338 * in a SNAP frame with an organization code of
4339 * 0x000000 (encapsulated Ethernet).
4341 * XXX - if we were to check for the SNAP DSAP and
4342 * LSAP, as per XXX, and were also to check for an
4343 * organization code of 0x000000 (encapsulated
4344 * Ethernet), we'd do
4346 * return gen_snap(cstate, 0x000000, ll_proto);
4348 * here; for now, we don't, as per the above.
4349 * I don't know whether it's worth the extra CPU
4350 * time to do the right check or not.
4352 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4357 static struct block
*
4358 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4359 int dir
, u_int src_off
, u_int dst_off
)
4361 struct block
*b0
, *b1
;
4375 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4376 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4382 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4383 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4393 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4400 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4404 static struct block
*
4405 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4406 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4408 struct block
*b0
, *b1
;
4411 * Code below needs to access four separate 32-bit parts of the 128-bit
4412 * IPv6 address and mask. In some OSes this is as simple as using the
4413 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4414 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4415 * far as libpcap sees it. Hence copy the data before use to avoid
4416 * potential unaligned memory access and the associated compiler
4417 * warnings (whether genuine or not).
4419 bpf_u_int32 a
[4], m
[4];
4432 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4433 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4439 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4440 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4450 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4457 /* this order is important */
4458 memcpy(a
, addr
, sizeof(a
));
4459 memcpy(m
, mask
, sizeof(m
));
4460 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4461 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4463 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4465 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4471 static struct block
*
4472 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4474 register struct block
*b0
, *b1
;
4478 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4481 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4484 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4485 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4491 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4492 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4502 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4510 * Like gen_ehostop, but for DLT_FDDI
4512 static struct block
*
4513 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4515 struct block
*b0
, *b1
;
4519 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4522 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4525 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4526 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4532 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4533 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4543 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4551 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4553 static struct block
*
4554 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4556 register struct block
*b0
, *b1
;
4560 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4563 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4566 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4567 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4573 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4574 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4584 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4592 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4593 * various 802.11 + radio headers.
4595 static struct block
*
4596 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4598 register struct block
*b0
, *b1
, *b2
;
4599 register struct slist
*s
;
4601 #ifdef ENABLE_WLAN_FILTERING_PATCH
4604 * We need to disable the optimizer because the optimizer is buggy
4605 * and wipes out some LD instructions generated by the below
4606 * code to validate the Frame Control bits
4608 cstate
->no_optimize
= 1;
4609 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4616 * For control frames, there is no SA.
4618 * For management frames, SA is at an
4619 * offset of 10 from the beginning of
4622 * For data frames, SA is at an offset
4623 * of 10 from the beginning of the packet
4624 * if From DS is clear, at an offset of
4625 * 16 from the beginning of the packet
4626 * if From DS is set and To DS is clear,
4627 * and an offset of 24 from the beginning
4628 * of the packet if From DS is set and To DS
4633 * Generate the tests to be done for data frames
4636 * First, check for To DS set, i.e. check "link[1] & 0x01".
4638 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4639 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4642 * If To DS is set, the SA is at 24.
4644 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4648 * Now, check for To DS not set, i.e. check
4649 * "!(link[1] & 0x01)".
4651 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4652 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4655 * If To DS is not set, the SA is at 16.
4657 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4661 * Now OR together the last two checks. That gives
4662 * the complete set of checks for data frames with
4668 * Now check for From DS being set, and AND that with
4669 * the ORed-together checks.
4671 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4672 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4676 * Now check for data frames with From DS not set.
4678 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4679 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_FROMDS
, s
);
4682 * If From DS isn't set, the SA is at 10.
4684 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4688 * Now OR together the checks for data frames with
4689 * From DS not set and for data frames with From DS
4690 * set; that gives the checks done for data frames.
4695 * Now check for a data frame.
4696 * I.e, check "link[0] & 0x08".
4698 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4699 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4702 * AND that with the checks done for data frames.
4707 * If the high-order bit of the type value is 0, this
4708 * is a management frame.
4709 * I.e, check "!(link[0] & 0x08)".
4711 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4712 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4715 * For management frames, the SA is at 10.
4717 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4721 * OR that with the checks done for data frames.
4722 * That gives the checks done for management and
4728 * If the low-order bit of the type value is 1,
4729 * this is either a control frame or a frame
4730 * with a reserved type, and thus not a
4733 * I.e., check "!(link[0] & 0x04)".
4735 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4736 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4739 * AND that with the checks for data and management
4749 * For control frames, there is no DA.
4751 * For management frames, DA is at an
4752 * offset of 4 from the beginning of
4755 * For data frames, DA is at an offset
4756 * of 4 from the beginning of the packet
4757 * if To DS is clear and at an offset of
4758 * 16 from the beginning of the packet
4763 * Generate the tests to be done for data frames.
4765 * First, check for To DS set, i.e. "link[1] & 0x01".
4767 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4768 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4771 * If To DS is set, the DA is at 16.
4773 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4777 * Now, check for To DS not set, i.e. check
4778 * "!(link[1] & 0x01)".
4780 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4781 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
4784 * If To DS is not set, the DA is at 4.
4786 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4790 * Now OR together the last two checks. That gives
4791 * the complete set of checks for data frames.
4796 * Now check for a data frame.
4797 * I.e, check "link[0] & 0x08".
4799 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4800 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4803 * AND that with the checks done for data frames.
4808 * If the high-order bit of the type value is 0, this
4809 * is a management frame.
4810 * I.e, check "!(link[0] & 0x08)".
4812 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4813 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4816 * For management frames, the DA is at 4.
4818 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4822 * OR that with the checks done for data frames.
4823 * That gives the checks done for management and
4829 * If the low-order bit of the type value is 1,
4830 * this is either a control frame or a frame
4831 * with a reserved type, and thus not a
4834 * I.e., check "!(link[0] & 0x04)".
4836 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4837 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
4840 * AND that with the checks for data and management
4847 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4848 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4854 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4855 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4860 * XXX - add BSSID keyword?
4863 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4867 * Not present in CTS or ACK control frames.
4869 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4870 IEEE80211_FC0_TYPE_MASK
);
4871 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4872 IEEE80211_FC0_SUBTYPE_MASK
);
4873 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4874 IEEE80211_FC0_SUBTYPE_MASK
);
4877 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4883 * Not present in control frames.
4885 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4886 IEEE80211_FC0_TYPE_MASK
);
4887 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4893 * Present only if the direction mask has both "From DS"
4894 * and "To DS" set. Neither control frames nor management
4895 * frames should have both of those set, so we don't
4896 * check the frame type.
4898 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4899 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4900 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4906 * Not present in management frames; addr1 in other
4911 * If the high-order bit of the type value is 0, this
4912 * is a management frame.
4913 * I.e, check "(link[0] & 0x08)".
4915 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4916 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4921 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4924 * AND that with the check of addr1.
4931 * Not present in management frames; addr2, if present,
4936 * Not present in CTS or ACK control frames.
4938 b0
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4939 IEEE80211_FC0_TYPE_MASK
);
4940 b1
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4941 IEEE80211_FC0_SUBTYPE_MASK
);
4942 b2
= gen_mcmp_ne(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4943 IEEE80211_FC0_SUBTYPE_MASK
);
4948 * If the high-order bit of the type value is 0, this
4949 * is a management frame.
4950 * I.e, check "(link[0] & 0x08)".
4952 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4953 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
4956 * AND that with the check for frames other than
4957 * CTS and ACK frames.
4964 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4973 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4974 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4975 * as the RFC states.)
4977 static struct block
*
4978 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4980 register struct block
*b0
, *b1
;
4984 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4987 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4990 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4991 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
4997 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
4998 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5008 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5016 * This is quite tricky because there may be pad bytes in front of the
5017 * DECNET header, and then there are two possible data packet formats that
5018 * carry both src and dst addresses, plus 5 packet types in a format that
5019 * carries only the src node, plus 2 types that use a different format and
5020 * also carry just the src node.
5024 * Instead of doing those all right, we just look for data packets with
5025 * 0 or 1 bytes of padding. If you want to look at other packets, that
5026 * will require a lot more hacking.
5028 * To add support for filtering on DECNET "areas" (network numbers)
5029 * one would want to add a "mask" argument to this routine. That would
5030 * make the filter even more inefficient, although one could be clever
5031 * and not generate masking instructions if the mask is 0xFFFF.
5033 static struct block
*
5034 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
5036 struct block
*b0
, *b1
, *b2
, *tmp
;
5037 u_int offset_lh
; /* offset if long header is received */
5038 u_int offset_sh
; /* offset if short header is received */
5043 offset_sh
= 1; /* follows flags */
5044 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
5048 offset_sh
= 3; /* follows flags, dstnode */
5049 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5053 /* Inefficient because we do our Calvinball dance twice */
5054 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5055 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5061 /* Inefficient because we do our Calvinball dance twice */
5062 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5063 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5073 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5081 * In a DECnet message inside an Ethernet frame the first two bytes
5082 * immediately after EtherType are the [litle-endian] DECnet message
5083 * length, which is irrelevant in this context.
5085 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5086 * 8-bit bitmap of the optional padding before the packet route header.
5087 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5088 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5089 * means there aren't any PAD bytes after the bitmap, so the header
5090 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5091 * is set to 0, thus the header begins at the third byte.
5093 * The header can be in several (as mentioned above) formats, all of
5094 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5095 * (PF, "pad field") set to 0 regardless of any padding present before
5096 * the header. "Short header" means bits 0-2 of the bitmap encode the
5097 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5099 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5100 * values and the masks, this maps to the required single bytes of
5101 * the message correctly on both big-endian and little-endian hosts.
5102 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5103 * because the wire encoding is little-endian and BPF multiple-byte
5104 * loads are big-endian. When the destination address is near enough
5105 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5108 /* Check for pad = 1, long header case */
5109 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
5110 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
5111 BPF_H
, SWAPSHORT(addr
));
5113 /* Check for pad = 0, long header case */
5114 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
5115 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
5119 /* Check for pad = 1, short header case */
5121 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5122 0x81020000U
| SWAPSHORT(addr
),
5125 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
5126 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
5131 /* Check for pad = 0, short header case */
5133 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5134 0x02000000U
| SWAPSHORT(addr
) << 8,
5137 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
5138 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5148 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5149 * test the bottom-of-stack bit, and then check the version number
5150 * field in the IP header.
5152 static struct block
*
5153 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5155 struct block
*b0
, *b1
;
5160 /* match the bottom-of-stack bit */
5161 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5162 /* match the IPv4 version number */
5163 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5167 case ETHERTYPE_IPV6
:
5168 /* match the bottom-of-stack bit */
5169 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5170 /* match the IPv6 version number */
5171 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5176 /* FIXME add other L3 proto IDs */
5177 bpf_error(cstate
, "unsupported protocol over mpls");
5182 static struct block
*
5183 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5184 int proto
, int dir
, int type
)
5186 struct block
*b0
, *b1
;
5191 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5193 * Only check for non-IPv4 addresses if we're not
5194 * checking MPLS-encapsulated packets.
5196 if (cstate
->label_stack_depth
== 0) {
5197 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5199 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5205 // "link net NETNAME" and variations thereof
5206 break; // invalid qualifier
5209 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5210 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5215 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5216 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5221 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5222 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5233 break; // invalid qualifier
5236 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5237 b1
= gen_dnhostop(cstate
, addr
, dir
);
5268 break; // invalid qualifier
5273 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5274 type
== Q_NET
? "ip net" : "ip host");
5279 static struct block
*
5280 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5281 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5283 struct block
*b0
, *b1
;
5289 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5290 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5332 break; // invalid qualifier
5337 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5338 type
== Q_NET
? "ip6 net" : "ip6 host");
5345 * This primitive is non-directional by design, so the grammar does not allow
5346 * to qualify it with a direction.
5348 static struct block
*
5349 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5350 struct addrinfo
*alist
, int proto
)
5352 struct block
*b0
, *b1
, *tmp
;
5353 struct addrinfo
*ai
;
5354 struct sockaddr_in
*sin
;
5361 switch (cstate
->linktype
) {
5363 case DLT_NETANALYZER
:
5364 case DLT_NETANALYZER_TRANSPARENT
:
5365 b1
= gen_prevlinkhdr_check(cstate
);
5366 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5371 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5374 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5376 case DLT_IEEE802_11
:
5377 case DLT_PRISM_HEADER
:
5378 case DLT_IEEE802_11_RADIO_AVS
:
5379 case DLT_IEEE802_11_RADIO
:
5381 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5383 case DLT_IP_OVER_FC
:
5384 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5388 * This is LLC-multiplexed traffic; if it were
5389 * LANE, cstate->linktype would have been set to
5395 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5398 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5400 * Does it have an address?
5402 if (ai
->ai_addr
!= NULL
) {
5404 * Yes. Is it an IPv4 address?
5406 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5408 * Generate an entry for it.
5410 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5411 tmp
= gen_host(cstate
,
5412 ntohl(sin
->sin_addr
.s_addr
),
5413 0xffffffff, proto
, Q_OR
, Q_HOST
);
5415 * Is it the *first* IPv4 address?
5419 * Yes, so start with it.
5424 * No, so OR it into the
5436 * No IPv4 addresses found.
5444 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5449 static struct block
*
5450 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5458 return gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5461 return gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5464 return gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5467 return gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5469 #ifndef IPPROTO_IGMP
5470 #define IPPROTO_IGMP 2
5474 return gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5476 #ifndef IPPROTO_IGRP
5477 #define IPPROTO_IGRP 9
5480 return gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5483 #define IPPROTO_PIM 103
5487 return gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5489 #ifndef IPPROTO_VRRP
5490 #define IPPROTO_VRRP 112
5494 return gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5496 #ifndef IPPROTO_CARP
5497 #define IPPROTO_CARP 112
5501 return gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5504 return gen_linktype(cstate
, ETHERTYPE_IP
);
5507 return gen_linktype(cstate
, ETHERTYPE_ARP
);
5510 return gen_linktype(cstate
, ETHERTYPE_REVARP
);
5513 break; // invalid syntax
5516 return gen_linktype(cstate
, ETHERTYPE_ATALK
);
5519 return gen_linktype(cstate
, ETHERTYPE_AARP
);
5522 return gen_linktype(cstate
, ETHERTYPE_DN
);
5525 return gen_linktype(cstate
, ETHERTYPE_SCA
);
5528 return gen_linktype(cstate
, ETHERTYPE_LAT
);
5531 return gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5534 return gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5537 return gen_linktype(cstate
, ETHERTYPE_IPV6
);
5539 #ifndef IPPROTO_ICMPV6
5540 #define IPPROTO_ICMPV6 58
5543 return gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5546 #define IPPROTO_AH 51
5549 return gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5552 #define IPPROTO_ESP 50
5555 return gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5558 return gen_linktype(cstate
, LLCSAP_ISONS
);
5561 return gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5564 return gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5566 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5567 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5568 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5570 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5572 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5574 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5578 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5579 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5580 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5582 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5584 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5586 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5590 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5591 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5592 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5594 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5599 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5600 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5605 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5606 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5608 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5610 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5615 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5616 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5621 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5622 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5627 return gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5630 return gen_linktype(cstate
, LLCSAP_8021D
);
5633 return gen_linktype(cstate
, LLCSAP_IPX
);
5636 return gen_linktype(cstate
, LLCSAP_NETBEUI
);
5639 break; // invalid syntax
5644 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5648 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5651 * Catch errors reported by us and routines below us, and return NULL
5654 if (setjmp(cstate
->top_ctx
))
5657 return gen_proto_abbrev_internal(cstate
, proto
);
5660 static struct block
*
5661 gen_ip_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5663 return gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5666 static struct block
*
5667 gen_ip6_proto(compiler_state_t
*cstate
, const uint8_t proto
)
5669 return gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5672 static struct block
*
5673 gen_ipfrag(compiler_state_t
*cstate
)
5677 /* not IPv4 frag other than the first frag */
5678 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5679 return gen_unset(cstate
, 0x1fff, s
);
5683 * Generate a comparison to a port value in the transport-layer header
5684 * at the specified offset from the beginning of that header.
5686 * XXX - this handles a variable-length prefix preceding the link-layer
5687 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5688 * variable-length link-layer headers (such as Token Ring or 802.11
5691 static struct block
*
5692 gen_portatom(compiler_state_t
*cstate
, int off
, uint16_t v
)
5694 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5697 static struct block
*
5698 gen_portatom6(compiler_state_t
*cstate
, int off
, uint16_t v
)
5700 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5703 static struct block
*
5704 gen_port(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5706 struct block
*b1
, *tmp
;
5710 b1
= gen_portatom(cstate
, 0, port
);
5714 b1
= gen_portatom(cstate
, 2, port
);
5718 tmp
= gen_portatom(cstate
, 0, port
);
5719 b1
= gen_portatom(cstate
, 2, port
);
5725 tmp
= gen_portatom(cstate
, 0, port
);
5726 b1
= gen_portatom(cstate
, 2, port
);
5736 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5744 return gen_port_common(cstate
, proto
, b1
);
5747 static struct block
*
5748 gen_port_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5750 struct block
*b0
, *tmp
;
5755 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5756 * not LLC encapsulation with LLCSAP_IP.
5758 * For IEEE 802 networks - which includes 802.5 token ring
5759 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5760 * says that SNAP encapsulation is used, not LLC encapsulation
5763 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5764 * RFC 2225 say that SNAP encapsulation is used, not LLC
5765 * encapsulation with LLCSAP_IP.
5767 * So we always check for ETHERTYPE_IP.
5769 * At the time of this writing all three L4 protocols the "port" and
5770 * "portrange" primitives support (TCP, UDP and SCTP) have the source
5771 * and the destination ports identically encoded in the transport
5772 * protocol header. So without a proto qualifier the only difference
5773 * between the implemented cases is the protocol number and all other
5774 * checks need to be made exactly once.
5776 * If the expression syntax in future starts to support ports for
5777 * another L4 protocol that has unsigned integer ports encoded using a
5778 * different size and/or offset, this will require a different code.
5784 tmp
= gen_ip_proto(cstate
, (uint8_t)proto
);
5788 tmp
= gen_ip_proto(cstate
, IPPROTO_UDP
);
5789 gen_or(gen_ip_proto(cstate
, IPPROTO_TCP
), tmp
);
5790 gen_or(gen_ip_proto(cstate
, IPPROTO_SCTP
), tmp
);
5796 // Not a fragment other than the first fragment.
5797 b0
= gen_ipfrag(cstate
);
5801 gen_and(gen_linktype(cstate
, ETHERTYPE_IP
), b1
);
5805 static struct block
*
5806 gen_port6(compiler_state_t
*cstate
, uint16_t port
, int proto
, int dir
)
5808 struct block
*b1
, *tmp
;
5812 b1
= gen_portatom6(cstate
, 0, port
);
5816 b1
= gen_portatom6(cstate
, 2, port
);
5820 tmp
= gen_portatom6(cstate
, 0, port
);
5821 b1
= gen_portatom6(cstate
, 2, port
);
5827 tmp
= gen_portatom6(cstate
, 0, port
);
5828 b1
= gen_portatom6(cstate
, 2, port
);
5836 return gen_port6_common(cstate
, proto
, b1
);
5839 static struct block
*
5840 gen_port6_common(compiler_state_t
*cstate
, int proto
, struct block
*b1
)
5844 // "ip6 proto 'ip_proto'"
5849 tmp
= gen_ip6_proto(cstate
, (uint8_t)proto
);
5853 // Same as in gen_port_common().
5854 tmp
= gen_ip6_proto(cstate
, IPPROTO_UDP
);
5855 gen_or(gen_ip6_proto(cstate
, IPPROTO_TCP
), tmp
);
5856 gen_or(gen_ip6_proto(cstate
, IPPROTO_SCTP
), tmp
);
5862 // XXX - catch the first fragment of a fragmented packet?
5864 // "link proto \ip6"
5865 gen_and(gen_linktype(cstate
, ETHERTYPE_IPV6
), b1
);
5869 /* gen_portrange code */
5870 static struct block
*
5871 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5875 return gen_portatom(cstate
, off
, v1
);
5877 struct block
*b1
, *b2
;
5879 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5880 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5887 static struct block
*
5888 gen_portrange(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5891 struct block
*b1
, *tmp
;
5895 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5899 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5903 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5904 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5910 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5911 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5921 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5929 return gen_port_common(cstate
, proto
, b1
);
5932 static struct block
*
5933 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, uint16_t v1
,
5937 return gen_portatom6(cstate
, off
, v1
);
5939 struct block
*b1
, *b2
;
5941 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
5942 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
5949 static struct block
*
5950 gen_portrange6(compiler_state_t
*cstate
, uint16_t port1
, uint16_t port2
,
5953 struct block
*b1
, *tmp
;
5957 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5961 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5965 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5966 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5972 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
5973 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
5981 return gen_port6_common(cstate
, proto
, b1
);
5985 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
5994 v
= pcap_nametoproto(name
);
5995 if (v
== PROTO_UNDEF
)
5996 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6000 /* XXX should look up h/w protocol type based on cstate->linktype */
6001 v
= pcap_nametoeproto(name
);
6002 if (v
== PROTO_UNDEF
) {
6003 v
= pcap_nametollc(name
);
6004 if (v
== PROTO_UNDEF
)
6005 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6010 if (strcmp(name
, "esis") == 0)
6012 else if (strcmp(name
, "isis") == 0)
6014 else if (strcmp(name
, "clnp") == 0)
6017 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6027 #if !defined(NO_PROTOCHAIN)
6029 * This primitive is non-directional by design, so the grammar does not allow
6030 * to qualify it with a direction.
6032 static struct block
*
6033 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6035 struct block
*b0
, *b
;
6036 struct slist
*s
[100];
6037 int fix2
, fix3
, fix4
, fix5
;
6038 int ahcheck
, again
, end
;
6040 int reg2
= alloc_reg(cstate
);
6042 memset(s
, 0, sizeof(s
));
6043 fix3
= fix4
= fix5
= 0;
6050 b0
= gen_protochain(cstate
, v
, Q_IP
);
6051 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6055 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6060 * We don't handle variable-length prefixes before the link-layer
6061 * header, or variable-length link-layer headers, here yet.
6062 * We might want to add BPF instructions to do the protochain
6063 * work, to simplify that and, on platforms that have a BPF
6064 * interpreter with the new instructions, let the filtering
6065 * be done in the kernel. (We already require a modified BPF
6066 * engine to do the protochain stuff, to support backward
6067 * branches, and backward branch support is unlikely to appear
6068 * in kernel BPF engines.)
6070 if (cstate
->off_linkpl
.is_variable
)
6071 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6074 * To quote a comment in optimize.c:
6076 * "These data structures are used in a Cocke and Schwartz style
6077 * value numbering scheme. Since the flowgraph is acyclic,
6078 * exit values can be propagated from a node's predecessors
6079 * provided it is uniquely defined."
6081 * "Acyclic" means "no backward branches", which means "no
6082 * loops", so we have to turn the optimizer off.
6084 cstate
->no_optimize
= 1;
6087 * s[0] is a dummy entry to protect other BPF insn from damage
6088 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6089 * hard to find interdependency made by jump table fixup.
6092 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6097 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6100 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6101 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6103 /* X = ip->ip_hl << 2 */
6104 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6105 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6110 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6112 /* A = ip6->ip_nxt */
6113 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6114 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6116 /* X = sizeof(struct ip6_hdr) */
6117 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6123 bpf_error(cstate
, "unsupported proto to gen_protochain");
6127 /* again: if (A == v) goto end; else fall through; */
6129 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6131 s
[i
]->s
.jt
= NULL
; /*later*/
6132 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6136 #ifndef IPPROTO_NONE
6137 #define IPPROTO_NONE 59
6139 /* if (A == IPPROTO_NONE) goto end */
6140 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6141 s
[i
]->s
.jt
= NULL
; /*later*/
6142 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6143 s
[i
]->s
.k
= IPPROTO_NONE
;
6144 s
[fix5
]->s
.jf
= s
[i
];
6148 if (proto
== Q_IPV6
) {
6149 int v6start
, v6end
, v6advance
, j
;
6152 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6153 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6154 s
[i
]->s
.jt
= NULL
; /*later*/
6155 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6156 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6157 s
[fix2
]->s
.jf
= s
[i
];
6159 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6160 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6161 s
[i
]->s
.jt
= NULL
; /*later*/
6162 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6163 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6165 /* if (A == IPPROTO_ROUTING) goto v6advance */
6166 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6167 s
[i
]->s
.jt
= NULL
; /*later*/
6168 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6169 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6171 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6172 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6173 s
[i
]->s
.jt
= NULL
; /*later*/
6174 s
[i
]->s
.jf
= NULL
; /*later*/
6175 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6185 * A = P[X + packet head];
6186 * X = X + (P[X + packet head + 1] + 1) * 8;
6188 /* A = P[X + packet head] */
6189 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6190 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6193 s
[i
] = new_stmt(cstate
, BPF_ST
);
6196 /* A = P[X + packet head + 1]; */
6197 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6198 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6201 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6205 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6209 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6213 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6216 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6220 /* goto again; (must use BPF_JA for backward jump) */
6221 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6222 s
[i
]->s
.k
= again
- i
- 1;
6223 s
[i
- 1]->s
.jf
= s
[i
];
6227 for (j
= v6start
; j
<= v6end
; j
++)
6228 s
[j
]->s
.jt
= s
[v6advance
];
6231 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6233 s
[fix2
]->s
.jf
= s
[i
];
6239 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6240 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6241 s
[i
]->s
.jt
= NULL
; /*later*/
6242 s
[i
]->s
.jf
= NULL
; /*later*/
6243 s
[i
]->s
.k
= IPPROTO_AH
;
6245 s
[fix3
]->s
.jf
= s
[ahcheck
];
6252 * X = X + (P[X + 1] + 2) * 4;
6255 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6257 /* A = P[X + packet head]; */
6258 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6259 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6262 s
[i
] = new_stmt(cstate
, BPF_ST
);
6266 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6269 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6273 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6275 /* A = P[X + packet head] */
6276 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6277 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6280 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6284 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6288 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6291 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6295 /* goto again; (must use BPF_JA for backward jump) */
6296 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6297 s
[i
]->s
.k
= again
- i
- 1;
6302 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6304 s
[fix2
]->s
.jt
= s
[end
];
6305 s
[fix4
]->s
.jf
= s
[end
];
6306 s
[fix5
]->s
.jt
= s
[end
];
6313 for (i
= 0; i
< max
- 1; i
++)
6314 s
[i
]->next
= s
[i
+ 1];
6315 s
[max
- 1]->next
= NULL
;
6319 * Remember, s[0] is dummy.
6321 b
= gen_jmp(cstate
, BPF_JEQ
, v
, s
[1]);
6323 free_reg(cstate
, reg2
);
6328 #endif /* !defined(NO_PROTOCHAIN) */
6331 * Generate code that checks whether the packet is a packet for protocol
6332 * <proto> and whether the type field in that protocol's header has
6333 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6334 * IP packet and checks the protocol number in the IP header against <v>.
6336 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6337 * against Q_IP and Q_IPV6.
6339 * This primitive is non-directional by design, so the grammar does not allow
6340 * to qualify it with a direction.
6342 static struct block
*
6343 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6345 struct block
*b0
, *b1
;
6350 b0
= gen_proto(cstate
, v
, Q_IP
);
6351 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6356 return gen_linktype(cstate
, v
);
6359 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6361 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6362 * not LLC encapsulation with LLCSAP_IP.
6364 * For IEEE 802 networks - which includes 802.5 token ring
6365 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6366 * says that SNAP encapsulation is used, not LLC encapsulation
6369 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6370 * RFC 2225 say that SNAP encapsulation is used, not LLC
6371 * encapsulation with LLCSAP_IP.
6373 * So we always check for ETHERTYPE_IP.
6375 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6376 // 0 <= v <= UINT8_MAX
6377 b1
= gen_ip_proto(cstate
, (uint8_t)v
);
6395 break; // invalid qualifier
6398 assert_maxval(cstate
, "protocol number", v
, UINT8_MAX
);
6399 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6401 * Also check for a fragment header before the final
6404 b2
= gen_ip6_proto(cstate
, IPPROTO_FRAGMENT
);
6405 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6407 // 0 <= v <= UINT8_MAX
6408 b2
= gen_ip6_proto(cstate
, (uint8_t)v
);
6419 break; // invalid qualifier
6422 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6423 switch (cstate
->linktype
) {
6427 * Frame Relay packets typically have an OSI
6428 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6429 * generates code to check for all the OSI
6430 * NLPIDs, so calling it and then adding a check
6431 * for the particular NLPID for which we're
6432 * looking is bogus, as we can just check for
6435 * What we check for is the NLPID and a frame
6436 * control field value of UI, i.e. 0x03 followed
6439 * XXX - assumes a 2-byte Frame Relay header with
6440 * DLCI and flags. What if the address is longer?
6442 * XXX - what about SNAP-encapsulated frames?
6444 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6450 * Cisco uses an Ethertype lookalike - for OSI,
6453 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6454 /* OSI in C-HDLC is stuffed with a fudge byte */
6455 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6460 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6461 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6467 break; // invalid qualifier
6470 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6471 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6473 * 4 is the offset of the PDU type relative to the IS-IS
6475 * Except when it is not, see above.
6477 unsigned pdu_type_offset
;
6478 switch (cstate
->linktype
) {
6481 pdu_type_offset
= 5;
6484 pdu_type_offset
= 4;
6486 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6487 v
, ISIS_PDU_TYPE_MAX
);
6504 break; // invalid qualifier
6510 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6515 * Convert a non-numeric name to a port number.
6518 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6520 struct addrinfo hints
, *res
, *ai
;
6522 struct sockaddr_in
*in4
;
6524 struct sockaddr_in6
*in6
;
6529 * We check for both TCP and UDP in case there are
6530 * ambiguous entries.
6532 memset(&hints
, 0, sizeof(hints
));
6533 hints
.ai_family
= PF_UNSPEC
;
6534 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6535 hints
.ai_protocol
= ipproto
;
6536 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6543 * No such port. Just return -1.
6550 * We don't use strerror() because it's not
6551 * guaranteed to be thread-safe on all platforms
6552 * (probably because it might use a non-thread-local
6553 * buffer into which to format an error message
6554 * if the error code isn't one for which it has
6555 * a canned string; three cheers for C string
6558 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6560 port
= -2; /* a real error */
6566 * This is a real error, not just "there's
6567 * no such service name".
6569 * We don't use gai_strerror() because it's not
6570 * guaranteed to be thread-safe on all platforms
6571 * (probably because it might use a non-thread-local
6572 * buffer into which to format an error message
6573 * if the error code isn't one for which it has
6574 * a canned string; three cheers for C string
6577 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6579 port
= -2; /* a real error */
6584 * OK, we found it. Did it find anything?
6586 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6588 * Does it have an address?
6590 if (ai
->ai_addr
!= NULL
) {
6592 * Yes. Get a port number; we're done.
6594 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6595 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6596 port
= ntohs(in4
->sin_port
);
6600 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6601 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6602 port
= ntohs(in6
->sin6_port
);
6614 * Convert a string to a port number.
6617 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6627 * See if it's a number.
6629 ret
= stoulen(string
, string_size
, &val
, cstate
);
6633 /* Unknown port type - it's just a number. */
6634 *proto
= PROTO_UNDEF
;
6637 case STOULEN_NOT_OCTAL_NUMBER
:
6638 case STOULEN_NOT_HEX_NUMBER
:
6639 case STOULEN_NOT_DECIMAL_NUMBER
:
6641 * Not a valid number; try looking it up as a port.
6643 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6644 memcpy(cpy
, string
, string_size
);
6645 cpy
[string_size
] = '\0';
6646 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6647 if (tcp_port
== -2) {
6649 * We got a hard error; the error string has
6653 longjmp(cstate
->top_ctx
, 1);
6656 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6657 if (udp_port
== -2) {
6659 * We got a hard error; the error string has
6663 longjmp(cstate
->top_ctx
, 1);
6668 * We need to check /etc/services for ambiguous entries.
6669 * If we find an ambiguous entry, and it has the
6670 * same port number, change the proto to PROTO_UNDEF
6671 * so both TCP and UDP will be checked.
6673 if (tcp_port
>= 0) {
6674 val
= (bpf_u_int32
)tcp_port
;
6675 *proto
= IPPROTO_TCP
;
6676 if (udp_port
>= 0) {
6677 if (udp_port
== tcp_port
)
6678 *proto
= PROTO_UNDEF
;
6681 /* Can't handle ambiguous names that refer
6682 to different port numbers. */
6683 warning("ambiguous port %s in /etc/services",
6690 if (udp_port
>= 0) {
6691 val
= (bpf_u_int32
)udp_port
;
6692 *proto
= IPPROTO_UDP
;
6696 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6698 longjmp(cstate
->top_ctx
, 1);
6705 /* Error already set. */
6706 longjmp(cstate
->top_ctx
, 1);
6713 /* Should not happen */
6714 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6715 longjmp(cstate
->top_ctx
, 1);
6722 * Convert a string in the form PPP-PPP, which correspond to ports, to
6723 * a starting and ending port in a port range.
6726 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6727 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6730 const char *first
, *second
;
6731 size_t first_size
, second_size
;
6734 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6735 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6738 * Make sure there are no other hyphens.
6740 * XXX - we support named ports, but there are some port names
6741 * in /etc/services that include hyphens, so this would rule
6744 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6745 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6749 * Get the length of the first port.
6752 first_size
= hyphen_off
- string
;
6753 if (first_size
== 0) {
6754 /* Range of "-port", which we don't support. */
6755 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6759 * Try to convert it to a port.
6761 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6762 save_proto
= *proto
;
6765 * Get the length of the second port.
6767 second
= hyphen_off
+ 1;
6768 second_size
= strlen(second
);
6769 if (second_size
== 0) {
6770 /* Range of "port-", which we don't support. */
6771 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6775 * Try to convert it to a port.
6777 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6778 if (*proto
!= save_proto
)
6779 *proto
= PROTO_UNDEF
;
6783 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6785 int proto
= q
.proto
;
6789 bpf_u_int32 mask
, addr
;
6790 struct addrinfo
*res
, *res0
;
6791 struct sockaddr_in
*sin4
;
6794 struct sockaddr_in6
*sin6
;
6795 struct in6_addr mask128
;
6797 struct block
*b
, *tmp
;
6798 int port
, real_proto
;
6799 bpf_u_int32 port1
, port2
;
6802 * Catch errors reported by us and routines below us, and return NULL
6805 if (setjmp(cstate
->top_ctx
))
6811 addr
= pcap_nametonetaddr(name
);
6813 bpf_error(cstate
, "unknown network '%s'", name
);
6814 /* Left justify network addr and calculate its network mask */
6816 while (addr
&& (addr
& 0xff000000) == 0) {
6820 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6824 if (proto
== Q_LINK
) {
6825 switch (cstate
->linktype
) {
6828 case DLT_NETANALYZER
:
6829 case DLT_NETANALYZER_TRANSPARENT
:
6830 eaddr
= pcap_ether_hostton(name
);
6833 "unknown ether host '%s'", name
);
6834 tmp
= gen_prevlinkhdr_check(cstate
);
6835 b
= gen_ehostop(cstate
, eaddr
, dir
);
6842 eaddr
= pcap_ether_hostton(name
);
6845 "unknown FDDI host '%s'", name
);
6846 b
= gen_fhostop(cstate
, eaddr
, dir
);
6851 eaddr
= pcap_ether_hostton(name
);
6854 "unknown token ring host '%s'", name
);
6855 b
= gen_thostop(cstate
, eaddr
, dir
);
6859 case DLT_IEEE802_11
:
6860 case DLT_PRISM_HEADER
:
6861 case DLT_IEEE802_11_RADIO_AVS
:
6862 case DLT_IEEE802_11_RADIO
:
6864 eaddr
= pcap_ether_hostton(name
);
6867 "unknown 802.11 host '%s'", name
);
6868 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6872 case DLT_IP_OVER_FC
:
6873 eaddr
= pcap_ether_hostton(name
);
6876 "unknown Fibre Channel host '%s'", name
);
6877 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6882 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6883 } else if (proto
== Q_DECNET
) {
6885 * A long time ago on Ultrix libpcap supported
6886 * translation of DECnet host names into DECnet
6887 * addresses, but this feature is history now.
6889 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
6892 memset(&mask128
, 0xff, sizeof(mask128
));
6894 res0
= res
= pcap_nametoaddrinfo(name
);
6896 bpf_error(cstate
, "unknown host '%s'", name
);
6903 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
6904 tproto
== Q_DEFAULT
) {
6910 for (res
= res0
; res
; res
= res
->ai_next
) {
6911 switch (res
->ai_family
) {
6914 if (tproto
== Q_IPV6
)
6918 sin4
= (struct sockaddr_in
*)
6920 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
6921 0xffffffff, tproto
, dir
, q
.addr
);
6925 if (tproto6
== Q_IP
)
6928 sin6
= (struct sockaddr_in6
*)
6930 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
6931 &mask128
, tproto6
, dir
, q
.addr
);
6944 bpf_error(cstate
, "unknown host '%s'%s", name
,
6945 (proto
== Q_DEFAULT
)
6947 : " for specified address family");
6953 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
6954 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6955 bpf_error(cstate
, "unknown port '%s'", name
);
6956 if (proto
== Q_UDP
) {
6957 if (real_proto
== IPPROTO_TCP
)
6958 bpf_error(cstate
, "port '%s' is tcp", name
);
6959 else if (real_proto
== IPPROTO_SCTP
)
6960 bpf_error(cstate
, "port '%s' is sctp", name
);
6962 /* override PROTO_UNDEF */
6963 real_proto
= IPPROTO_UDP
;
6965 if (proto
== Q_TCP
) {
6966 if (real_proto
== IPPROTO_UDP
)
6967 bpf_error(cstate
, "port '%s' is udp", name
);
6969 else if (real_proto
== IPPROTO_SCTP
)
6970 bpf_error(cstate
, "port '%s' is sctp", name
);
6972 /* override PROTO_UNDEF */
6973 real_proto
= IPPROTO_TCP
;
6975 if (proto
== Q_SCTP
) {
6976 if (real_proto
== IPPROTO_UDP
)
6977 bpf_error(cstate
, "port '%s' is udp", name
);
6979 else if (real_proto
== IPPROTO_TCP
)
6980 bpf_error(cstate
, "port '%s' is tcp", name
);
6982 /* override PROTO_UNDEF */
6983 real_proto
= IPPROTO_SCTP
;
6986 bpf_error(cstate
, "illegal port number %d < 0", port
);
6988 bpf_error(cstate
, "illegal port number %d > 65535", port
);
6989 // real_proto can be PROTO_UNDEF
6990 b
= gen_port(cstate
, (uint16_t)port
, real_proto
, dir
);
6991 gen_or(gen_port6(cstate
, (uint16_t)port
, real_proto
, dir
), b
);
6995 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
6996 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
6997 if (proto
== Q_UDP
) {
6998 if (real_proto
== IPPROTO_TCP
)
6999 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7000 else if (real_proto
== IPPROTO_SCTP
)
7001 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7003 /* override PROTO_UNDEF */
7004 real_proto
= IPPROTO_UDP
;
7006 if (proto
== Q_TCP
) {
7007 if (real_proto
== IPPROTO_UDP
)
7008 bpf_error(cstate
, "port in range '%s' is udp", name
);
7009 else if (real_proto
== IPPROTO_SCTP
)
7010 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7012 /* override PROTO_UNDEF */
7013 real_proto
= IPPROTO_TCP
;
7015 if (proto
== Q_SCTP
) {
7016 if (real_proto
== IPPROTO_UDP
)
7017 bpf_error(cstate
, "port in range '%s' is udp", name
);
7018 else if (real_proto
== IPPROTO_TCP
)
7019 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7021 /* override PROTO_UNDEF */
7022 real_proto
= IPPROTO_SCTP
;
7025 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7027 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7029 // real_proto can be PROTO_UNDEF
7030 b
= gen_portrange(cstate
, (uint16_t)port1
, (uint16_t)port2
,
7032 gen_or(gen_portrange6(cstate
, (uint16_t)port1
, (uint16_t)port2
,
7033 real_proto
, dir
), b
);
7038 eaddr
= pcap_ether_hostton(name
);
7040 bpf_error(cstate
, "unknown ether host: %s", name
);
7042 res
= pcap_nametoaddrinfo(name
);
7045 bpf_error(cstate
, "unknown host '%s'", name
);
7046 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
7051 bpf_error(cstate
, "unknown host '%s'", name
);
7054 bpf_error(cstate
, "'gateway' not supported in this configuration");
7058 real_proto
= lookup_proto(cstate
, name
, proto
);
7059 if (real_proto
>= 0)
7060 return gen_proto(cstate
, real_proto
, proto
);
7062 bpf_error(cstate
, "unknown protocol: %s", name
);
7064 #if !defined(NO_PROTOCHAIN)
7066 real_proto
= lookup_proto(cstate
, name
, proto
);
7067 if (real_proto
>= 0)
7068 return gen_protochain(cstate
, real_proto
, proto
);
7070 bpf_error(cstate
, "unknown protocol: %s", name
);
7071 #endif /* !defined(NO_PROTOCHAIN) */
7082 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7083 bpf_u_int32 masklen
, struct qual q
)
7085 register int nlen
, mlen
;
7090 * Catch errors reported by us and routines below us, and return NULL
7093 if (setjmp(cstate
->top_ctx
))
7096 nlen
= pcapint_atoin(s1
, &n
);
7098 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7099 /* Promote short ipaddr */
7103 mlen
= pcapint_atoin(s2
, &m
);
7105 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7106 /* Promote short ipaddr */
7109 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7112 /* Convert mask len to mask */
7114 bpf_error(cstate
, "mask length must be <= 32");
7115 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7116 m
= (bpf_u_int32
)m64
;
7118 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7125 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7128 // Q_HOST and Q_GATEWAY only (see the grammar)
7129 bpf_error(cstate
, "Mask syntax for networks only");
7136 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7144 * Catch errors reported by us and routines below us, and return NULL
7147 if (setjmp(cstate
->top_ctx
))
7154 * v contains a 32-bit unsigned parsed from a string of the
7155 * form {N}, which could be decimal, hexadecimal or octal.
7156 * Although it would be possible to use the value as a raw
7157 * 16-bit DECnet address when the value fits into 16 bits, this
7158 * would be a questionable feature: DECnet address wire
7159 * encoding is little-endian, so this would not work as
7160 * intuitively as the same works for [big-endian] IPv4
7161 * addresses (0x01020304 means 1.2.3.4).
7163 if (proto
== Q_DECNET
)
7164 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7166 } else if (proto
== Q_DECNET
) {
7168 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7169 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7170 * for a valid DECnet address.
7172 vlen
= pcapint_atodn(s
, &v
);
7174 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7177 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7178 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7181 vlen
= pcapint_atoin(s
, &v
);
7183 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7191 if (proto
== Q_DECNET
)
7192 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7193 else if (proto
== Q_LINK
) {
7194 // "link (host|net) IPV4ADDR" and variations thereof
7195 bpf_error(cstate
, "illegal link layer address");
7198 if (s
== NULL
&& q
.addr
== Q_NET
) {
7199 /* Promote short net number */
7200 while (v
&& (v
& 0xff000000) == 0) {
7205 /* Promote short ipaddr */
7207 mask
<<= 32 - vlen
;
7209 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7213 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7216 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7218 // proto can be PROTO_UNDEF
7221 b
= gen_port(cstate
, (uint16_t)v
, proto
, dir
);
7222 gen_or(gen_port6(cstate
, (uint16_t)v
, proto
, dir
), b
);
7227 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7230 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7232 // proto can be PROTO_UNDEF
7235 b
= gen_portrange(cstate
, (uint16_t)v
, (uint16_t)v
,
7237 gen_or(gen_portrange6(cstate
, (uint16_t)v
, (uint16_t)v
,
7243 bpf_error(cstate
, "'gateway' requires a name");
7247 return gen_proto(cstate
, v
, proto
);
7249 #if !defined(NO_PROTOCHAIN)
7251 return gen_protochain(cstate
, v
, proto
);
7267 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7270 struct addrinfo
*res
;
7271 struct in6_addr
*addr
;
7272 struct in6_addr mask
;
7274 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7277 * Catch errors reported by us and routines below us, and return NULL
7280 if (setjmp(cstate
->top_ctx
))
7283 res
= pcap_nametoaddrinfo(s
);
7285 bpf_error(cstate
, "invalid ip6 address %s", s
);
7288 bpf_error(cstate
, "%s resolved to multiple address", s
);
7289 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7291 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7292 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7293 memset(&mask
, 0, sizeof(mask
));
7294 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7296 mask
.s6_addr
[masklen
/ 8] =
7297 (0xff << (8 - masklen
% 8)) & 0xff;
7300 memcpy(a
, addr
, sizeof(a
));
7301 memcpy(m
, &mask
, sizeof(m
));
7302 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7303 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7304 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7312 bpf_error(cstate
, "Mask syntax for networks only");
7316 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7322 // Q_GATEWAY only (see the grammar)
7323 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7330 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7332 struct block
*b
, *tmp
;
7335 * Catch errors reported by us and routines below us, and return NULL
7338 if (setjmp(cstate
->top_ctx
))
7341 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7342 cstate
->e
= pcap_ether_aton(s
);
7343 if (cstate
->e
== NULL
)
7344 bpf_error(cstate
, "malloc");
7345 switch (cstate
->linktype
) {
7347 case DLT_NETANALYZER
:
7348 case DLT_NETANALYZER_TRANSPARENT
:
7349 tmp
= gen_prevlinkhdr_check(cstate
);
7350 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7355 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7358 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7360 case DLT_IEEE802_11
:
7361 case DLT_PRISM_HEADER
:
7362 case DLT_IEEE802_11_RADIO_AVS
:
7363 case DLT_IEEE802_11_RADIO
:
7365 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7367 case DLT_IP_OVER_FC
:
7368 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7373 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7380 bpf_error(cstate
, "ethernet address used in non-ether expression");
7385 sappend(struct slist
*s0
, struct slist
*s1
)
7388 * This is definitely not the best way to do this, but the
7389 * lists will rarely get long.
7396 static struct slist
*
7397 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7401 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7406 static struct slist
*
7407 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7411 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7417 * Modify "index" to use the value stored into its register as an
7418 * offset relative to the beginning of the header for the protocol
7419 * "proto", and allocate a register and put an item "size" bytes long
7420 * (1, 2, or 4) at that offset into that register, making it the register
7423 static struct arth
*
7424 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7428 struct slist
*s
, *tmp
;
7430 int regno
= alloc_reg(cstate
);
7432 free_reg(cstate
, inst
->regno
);
7436 bpf_error(cstate
, "data size must be 1, 2, or 4");
7453 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7457 * The offset is relative to the beginning of the packet
7458 * data, if we have a radio header. (If we don't, this
7461 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7462 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7463 cstate
->linktype
!= DLT_PRISM_HEADER
)
7464 bpf_error(cstate
, "radio information not present in capture");
7467 * Load into the X register the offset computed into the
7468 * register specified by "index".
7470 s
= xfer_to_x(cstate
, inst
);
7473 * Load the item at that offset.
7475 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7477 sappend(inst
->s
, s
);
7482 * The offset is relative to the beginning of
7483 * the link-layer header.
7485 * XXX - what about ATM LANE? Should the index be
7486 * relative to the beginning of the AAL5 frame, so
7487 * that 0 refers to the beginning of the LE Control
7488 * field, or relative to the beginning of the LAN
7489 * frame, so that 0 refers, for Ethernet LANE, to
7490 * the beginning of the destination address?
7492 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7495 * If "s" is non-null, it has code to arrange that the
7496 * X register contains the length of the prefix preceding
7497 * the link-layer header. Add to it the offset computed
7498 * into the register specified by "index", and move that
7499 * into the X register. Otherwise, just load into the X
7500 * register the offset computed into the register specified
7504 sappend(s
, xfer_to_a(cstate
, inst
));
7505 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7506 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7508 s
= xfer_to_x(cstate
, inst
);
7511 * Load the item at the sum of the offset we've put in the
7512 * X register and the offset of the start of the link
7513 * layer header (which is 0 if the radio header is
7514 * variable-length; that header length is what we put
7515 * into the X register and then added to the index).
7517 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7518 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7520 sappend(inst
->s
, s
);
7534 * The offset is relative to the beginning of
7535 * the network-layer header.
7536 * XXX - are there any cases where we want
7537 * cstate->off_nl_nosnap?
7539 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7542 * If "s" is non-null, it has code to arrange that the
7543 * X register contains the variable part of the offset
7544 * of the link-layer payload. Add to it the offset
7545 * computed into the register specified by "index",
7546 * and move that into the X register. Otherwise, just
7547 * load into the X register the offset computed into
7548 * the register specified by "index".
7551 sappend(s
, xfer_to_a(cstate
, inst
));
7552 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7553 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7555 s
= xfer_to_x(cstate
, inst
);
7558 * Load the item at the sum of the offset we've put in the
7559 * X register, the offset of the start of the network
7560 * layer header from the beginning of the link-layer
7561 * payload, and the constant part of the offset of the
7562 * start of the link-layer payload.
7564 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7565 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7567 sappend(inst
->s
, s
);
7570 * Do the computation only if the packet contains
7571 * the protocol in question.
7573 b
= gen_proto_abbrev_internal(cstate
, proto
);
7575 gen_and(inst
->b
, b
);
7589 * The offset is relative to the beginning of
7590 * the transport-layer header.
7592 * Load the X register with the length of the IPv4 header
7593 * (plus the offset of the link-layer header, if it's
7594 * a variable-length header), in bytes.
7596 * XXX - are there any cases where we want
7597 * cstate->off_nl_nosnap?
7598 * XXX - we should, if we're built with
7599 * IPv6 support, generate code to load either
7600 * IPv4, IPv6, or both, as appropriate.
7602 s
= gen_loadx_iphdrlen(cstate
);
7605 * The X register now contains the sum of the variable
7606 * part of the offset of the link-layer payload and the
7607 * length of the network-layer header.
7609 * Load into the A register the offset relative to
7610 * the beginning of the transport layer header,
7611 * add the X register to that, move that to the
7612 * X register, and load with an offset from the
7613 * X register equal to the sum of the constant part of
7614 * the offset of the link-layer payload and the offset,
7615 * relative to the beginning of the link-layer payload,
7616 * of the network-layer header.
7618 sappend(s
, xfer_to_a(cstate
, inst
));
7619 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7620 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7621 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7622 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7623 sappend(inst
->s
, s
);
7626 * Do the computation only if the packet contains
7627 * the protocol in question - which is true only
7628 * if this is an IP datagram and is the first or
7629 * only fragment of that datagram.
7631 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7633 gen_and(inst
->b
, b
);
7634 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7639 * Do the computation only if the packet contains
7640 * the protocol in question.
7642 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7644 gen_and(inst
->b
, b
);
7648 * Check if we have an icmp6 next header
7650 b
= gen_ip6_proto(cstate
, 58);
7652 gen_and(inst
->b
, b
);
7655 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7657 * If "s" is non-null, it has code to arrange that the
7658 * X register contains the variable part of the offset
7659 * of the link-layer payload. Add to it the offset
7660 * computed into the register specified by "index",
7661 * and move that into the X register. Otherwise, just
7662 * load into the X register the offset computed into
7663 * the register specified by "index".
7666 sappend(s
, xfer_to_a(cstate
, inst
));
7667 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7668 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7670 s
= xfer_to_x(cstate
, inst
);
7673 * Load the item at the sum of the offset we've put in the
7674 * X register, the offset of the start of the network
7675 * layer header from the beginning of the link-layer
7676 * payload, and the constant part of the offset of the
7677 * start of the link-layer payload.
7679 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7680 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7683 sappend(inst
->s
, s
);
7687 inst
->regno
= regno
;
7688 s
= new_stmt(cstate
, BPF_ST
);
7690 sappend(inst
->s
, s
);
7696 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7700 * Catch errors reported by us and routines below us, and return NULL
7703 if (setjmp(cstate
->top_ctx
))
7706 return gen_load_internal(cstate
, proto
, inst
, size
);
7709 static struct block
*
7710 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7711 struct arth
*a1
, int reversed
)
7713 struct slist
*s0
, *s1
, *s2
;
7714 struct block
*b
, *tmp
;
7716 s0
= xfer_to_x(cstate
, a1
);
7717 s1
= xfer_to_a(cstate
, a0
);
7718 if (code
== BPF_JEQ
) {
7719 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7720 b
= new_block(cstate
, JMP(code
));
7724 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7730 sappend(a0
->s
, a1
->s
);
7734 free_reg(cstate
, a0
->regno
);
7735 free_reg(cstate
, a1
->regno
);
7737 /* 'and' together protocol checks */
7740 gen_and(a0
->b
, tmp
= a1
->b
);
7754 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7755 struct arth
*a1
, int reversed
)
7758 * Catch errors reported by us and routines below us, and return NULL
7761 if (setjmp(cstate
->top_ctx
))
7764 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7768 gen_loadlen(compiler_state_t
*cstate
)
7775 * Catch errors reported by us and routines below us, and return NULL
7778 if (setjmp(cstate
->top_ctx
))
7781 regno
= alloc_reg(cstate
);
7782 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7783 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7784 s
->next
= new_stmt(cstate
, BPF_ST
);
7785 s
->next
->s
.k
= regno
;
7792 static struct arth
*
7793 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7799 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7801 reg
= alloc_reg(cstate
);
7803 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7805 s
->next
= new_stmt(cstate
, BPF_ST
);
7814 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7817 * Catch errors reported by us and routines below us, and return NULL
7820 if (setjmp(cstate
->top_ctx
))
7823 return gen_loadi_internal(cstate
, val
);
7827 * The a_arg dance is to avoid annoying whining by compilers that
7828 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7829 * It's not *used* after setjmp returns.
7832 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7834 struct arth
*a
= a_arg
;
7838 * Catch errors reported by us and routines below us, and return NULL
7841 if (setjmp(cstate
->top_ctx
))
7844 s
= xfer_to_a(cstate
, a
);
7846 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7849 s
= new_stmt(cstate
, BPF_ST
);
7857 * The a0_arg dance is to avoid annoying whining by compilers that
7858 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7859 * It's not *used* after setjmp returns.
7862 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7865 struct arth
*a0
= a0_arg
;
7866 struct slist
*s0
, *s1
, *s2
;
7869 * Catch errors reported by us and routines below us, and return NULL
7872 if (setjmp(cstate
->top_ctx
))
7876 * Disallow division by, or modulus by, zero; we do this here
7877 * so that it gets done even if the optimizer is disabled.
7879 * Also disallow shifts by a value greater than 31; we do this
7880 * here, for the same reason.
7882 if (code
== BPF_DIV
) {
7883 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7884 bpf_error(cstate
, "division by zero");
7885 } else if (code
== BPF_MOD
) {
7886 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7887 bpf_error(cstate
, "modulus by zero");
7888 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7889 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7890 bpf_error(cstate
, "shift by more than 31 bits");
7892 s0
= xfer_to_x(cstate
, a1
);
7893 s1
= xfer_to_a(cstate
, a0
);
7894 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
7899 sappend(a0
->s
, a1
->s
);
7901 free_reg(cstate
, a0
->regno
);
7902 free_reg(cstate
, a1
->regno
);
7904 s0
= new_stmt(cstate
, BPF_ST
);
7905 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
7912 * Initialize the table of used registers and the current register.
7915 init_regs(compiler_state_t
*cstate
)
7918 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
7922 * Return the next free register.
7925 alloc_reg(compiler_state_t
*cstate
)
7927 int n
= BPF_MEMWORDS
;
7930 if (cstate
->regused
[cstate
->curreg
])
7931 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
7933 cstate
->regused
[cstate
->curreg
] = 1;
7934 return cstate
->curreg
;
7937 bpf_error(cstate
, "too many registers needed to evaluate expression");
7942 * Return a register to the table so it can
7946 free_reg(compiler_state_t
*cstate
, int n
)
7948 cstate
->regused
[n
] = 0;
7951 static struct block
*
7952 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
7956 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7957 return gen_jmp(cstate
, jmp
, n
, s
);
7961 gen_greater(compiler_state_t
*cstate
, int n
)
7964 * Catch errors reported by us and routines below us, and return NULL
7967 if (setjmp(cstate
->top_ctx
))
7970 return gen_len(cstate
, BPF_JGE
, n
);
7974 * Actually, this is less than or equal.
7977 gen_less(compiler_state_t
*cstate
, int n
)
7982 * Catch errors reported by us and routines below us, and return NULL
7985 if (setjmp(cstate
->top_ctx
))
7988 b
= gen_len(cstate
, BPF_JGT
, n
);
7995 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7996 * the beginning of the link-layer header.
7997 * XXX - that means you can't test values in the radiotap header, but
7998 * as that header is difficult if not impossible to parse generally
7999 * without a loop, that might not be a severe problem. A new keyword
8000 * "radio" could be added for that, although what you'd really want
8001 * would be a way of testing particular radio header values, which
8002 * would generate code appropriate to the radio header in question.
8005 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8011 * Catch errors reported by us and routines below us, and return NULL
8014 if (setjmp(cstate
->top_ctx
))
8017 assert_maxval(cstate
, "byte argument", val
, UINT8_MAX
);
8024 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8027 return gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8030 return gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8033 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8037 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8041 // Load the required byte first.
8042 struct slist
*s0
= gen_load_a(cstate
, OR_LINKHDR
, idx
, BPF_B
);
8044 b
= gen_jmp(cstate
, BPF_JEQ
, 0, s0
);
8051 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8053 bpf_u_int32 hostmask
;
8054 struct block
*b0
, *b1
, *b2
;
8055 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8058 * Catch errors reported by us and routines below us, and return NULL
8061 if (setjmp(cstate
->top_ctx
))
8068 switch (cstate
->linktype
) {
8070 case DLT_ARCNET_LINUX
:
8071 // ARCnet broadcast is [8-bit] destination address 0.
8072 return gen_ahostop(cstate
, 0, Q_DST
);
8074 case DLT_NETANALYZER
:
8075 case DLT_NETANALYZER_TRANSPARENT
:
8076 b1
= gen_prevlinkhdr_check(cstate
);
8077 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8082 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8084 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8085 case DLT_IEEE802_11
:
8086 case DLT_PRISM_HEADER
:
8087 case DLT_IEEE802_11_RADIO_AVS
:
8088 case DLT_IEEE802_11_RADIO
:
8090 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8091 case DLT_IP_OVER_FC
:
8092 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8094 fail_kw_on_dlt(cstate
, "broadcast");
8099 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8100 * as an indication that we don't know the netmask, and fail
8103 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8104 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8105 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8106 hostmask
= ~cstate
->netmask
;
8107 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8108 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
8113 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
8118 * Generate code to test the low-order bit of a MAC address (that's
8119 * the bottom bit of the *first* byte).
8121 static struct block
*
8122 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8124 register struct slist
*s
;
8126 /* link[offset] & 1 != 0 */
8127 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8128 return gen_set(cstate
, 1, s
);
8132 gen_multicast(compiler_state_t
*cstate
, int proto
)
8134 register struct block
*b0
, *b1
, *b2
;
8135 register struct slist
*s
;
8138 * Catch errors reported by us and routines below us, and return NULL
8141 if (setjmp(cstate
->top_ctx
))
8148 switch (cstate
->linktype
) {
8150 case DLT_ARCNET_LINUX
:
8151 // ARCnet multicast is the same as broadcast.
8152 return gen_ahostop(cstate
, 0, Q_DST
);
8154 case DLT_NETANALYZER
:
8155 case DLT_NETANALYZER_TRANSPARENT
:
8156 b1
= gen_prevlinkhdr_check(cstate
);
8157 /* ether[0] & 1 != 0 */
8158 b0
= gen_mac_multicast(cstate
, 0);
8164 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8166 * XXX - was that referring to bit-order issues?
8168 /* fddi[1] & 1 != 0 */
8169 return gen_mac_multicast(cstate
, 1);
8171 /* tr[2] & 1 != 0 */
8172 return gen_mac_multicast(cstate
, 2);
8173 case DLT_IEEE802_11
:
8174 case DLT_PRISM_HEADER
:
8175 case DLT_IEEE802_11_RADIO_AVS
:
8176 case DLT_IEEE802_11_RADIO
:
8181 * For control frames, there is no DA.
8183 * For management frames, DA is at an
8184 * offset of 4 from the beginning of
8187 * For data frames, DA is at an offset
8188 * of 4 from the beginning of the packet
8189 * if To DS is clear and at an offset of
8190 * 16 from the beginning of the packet
8195 * Generate the tests to be done for data frames.
8197 * First, check for To DS set, i.e. "link[1] & 0x01".
8199 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8200 b1
= gen_set(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8203 * If To DS is set, the DA is at 16.
8205 b0
= gen_mac_multicast(cstate
, 16);
8209 * Now, check for To DS not set, i.e. check
8210 * "!(link[1] & 0x01)".
8212 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8213 b2
= gen_unset(cstate
, IEEE80211_FC1_DIR_TODS
, s
);
8216 * If To DS is not set, the DA is at 4.
8218 b1
= gen_mac_multicast(cstate
, 4);
8222 * Now OR together the last two checks. That gives
8223 * the complete set of checks for data frames.
8228 * Now check for a data frame.
8229 * I.e, check "link[0] & 0x08".
8231 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8232 b1
= gen_set(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8235 * AND that with the checks done for data frames.
8240 * If the high-order bit of the type value is 0, this
8241 * is a management frame.
8242 * I.e, check "!(link[0] & 0x08)".
8244 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8245 b2
= gen_unset(cstate
, IEEE80211_FC0_TYPE_DATA
, s
);
8248 * For management frames, the DA is at 4.
8250 b1
= gen_mac_multicast(cstate
, 4);
8254 * OR that with the checks done for data frames.
8255 * That gives the checks done for management and
8261 * If the low-order bit of the type value is 1,
8262 * this is either a control frame or a frame
8263 * with a reserved type, and thus not a
8266 * I.e., check "!(link[0] & 0x04)".
8268 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8269 b1
= gen_unset(cstate
, IEEE80211_FC0_TYPE_CTL
, s
);
8272 * AND that with the checks for data and management
8277 case DLT_IP_OVER_FC
:
8278 return gen_mac_multicast(cstate
, 2);
8282 fail_kw_on_dlt(cstate
, "multicast");
8286 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8287 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8292 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8293 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8297 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8303 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8304 * we can look at special meta-data in the filter expression; otherwise we
8305 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8306 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8307 * pcap_activate() conditionally sets.
8310 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8312 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8314 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8316 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8321 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8323 register struct block
*b0
;
8326 * Catch errors reported by us and routines below us, and return NULL
8329 if (setjmp(cstate
->top_ctx
))
8333 * Only some data link types support ifindex qualifiers.
8335 switch (cstate
->linktype
) {
8336 case DLT_LINUX_SLL2
:
8337 /* match packets on this interface */
8338 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8341 #if defined(__linux__)
8342 require_basic_bpf_extensions(cstate
, "ifindex");
8344 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8346 #else /* defined(__linux__) */
8347 fail_kw_on_dlt(cstate
, "ifindex");
8349 #endif /* defined(__linux__) */
8355 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8356 * Outbound traffic is sent by this machine, while inbound traffic is
8357 * sent by a remote machine (and may include packets destined for a
8358 * unicast or multicast link-layer address we are not subscribing to).
8359 * These are the same definitions implemented by pcap_setdirection().
8360 * Capturing only unicast traffic destined for this host is probably
8361 * better accomplished using a higher-layer filter.
8364 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8366 register struct block
*b0
;
8369 * Catch errors reported by us and routines below us, and return NULL
8372 if (setjmp(cstate
->top_ctx
))
8376 * Only some data link types support inbound/outbound qualifiers.
8378 switch (cstate
->linktype
) {
8380 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8381 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8385 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8386 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8390 /* match outgoing packets */
8391 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8393 /* to filter on inbound traffic, invert the match */
8398 case DLT_LINUX_SLL2
:
8399 /* match outgoing packets */
8400 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8402 /* to filter on inbound traffic, invert the match */
8408 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8409 outbound
? PF_OUT
: PF_IN
);
8413 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8416 case DLT_JUNIPER_MFR
:
8417 case DLT_JUNIPER_MLFR
:
8418 case DLT_JUNIPER_MLPPP
:
8419 case DLT_JUNIPER_ATM1
:
8420 case DLT_JUNIPER_ATM2
:
8421 case DLT_JUNIPER_PPPOE
:
8422 case DLT_JUNIPER_PPPOE_ATM
:
8423 case DLT_JUNIPER_GGSN
:
8424 case DLT_JUNIPER_ES
:
8425 case DLT_JUNIPER_MONITOR
:
8426 case DLT_JUNIPER_SERVICES
:
8427 case DLT_JUNIPER_ETHER
:
8428 case DLT_JUNIPER_PPP
:
8429 case DLT_JUNIPER_FRELAY
:
8430 case DLT_JUNIPER_CHDLC
:
8431 case DLT_JUNIPER_VP
:
8432 case DLT_JUNIPER_ST
:
8433 case DLT_JUNIPER_ISM
:
8434 case DLT_JUNIPER_VS
:
8435 case DLT_JUNIPER_SRX_E2E
:
8436 case DLT_JUNIPER_FIBRECHANNEL
:
8437 case DLT_JUNIPER_ATM_CEMIC
:
8438 /* juniper flags (including direction) are stored
8439 * the byte after the 3-byte magic number */
8440 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8445 * If we have packet meta-data indicating a direction,
8446 * and that metadata can be checked by BPF code, check
8447 * it. Otherwise, give up, as this link-layer type has
8448 * nothing in the packet data.
8450 * Currently, the only platform where a BPF filter can
8451 * check that metadata is Linux with the in-kernel
8452 * BPF interpreter. If other packet capture mechanisms
8453 * and BPF filters also supported this, it would be
8454 * nice. It would be even better if they made that
8455 * metadata available so that we could provide it
8456 * with newer capture APIs, allowing it to be saved
8459 #if defined(__linux__)
8460 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8461 /* match outgoing packets */
8462 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8465 /* to filter on inbound traffic, invert the match */
8468 #else /* defined(__linux__) */
8469 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8471 #endif /* defined(__linux__) */
8476 /* PF firewall log matched interface */
8478 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8484 * Catch errors reported by us and routines below us, and return NULL
8487 if (setjmp(cstate
->top_ctx
))
8490 assert_pflog(cstate
, "ifname");
8492 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8493 off
= offsetof(struct pfloghdr
, ifname
);
8494 if (strlen(ifname
) >= len
) {
8495 bpf_error(cstate
, "ifname interface names can only be %d characters",
8499 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8500 (const u_char
*)ifname
);
8504 /* PF firewall log ruleset name */
8506 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8511 * Catch errors reported by us and routines below us, and return NULL
8514 if (setjmp(cstate
->top_ctx
))
8517 assert_pflog(cstate
, "ruleset");
8519 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8520 bpf_error(cstate
, "ruleset names can only be %ld characters",
8521 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8525 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8526 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8530 /* PF firewall log rule number */
8532 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8537 * Catch errors reported by us and routines below us, and return NULL
8540 if (setjmp(cstate
->top_ctx
))
8543 assert_pflog(cstate
, "rnr");
8545 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8550 /* PF firewall log sub-rule number */
8552 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8557 * Catch errors reported by us and routines below us, and return NULL
8560 if (setjmp(cstate
->top_ctx
))
8563 assert_pflog(cstate
, "srnr");
8565 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8570 /* PF firewall log reason code */
8572 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8577 * Catch errors reported by us and routines below us, and return NULL
8580 if (setjmp(cstate
->top_ctx
))
8583 assert_pflog(cstate
, "reason");
8585 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8586 (bpf_u_int32
)reason
);
8590 /* PF firewall log action */
8592 gen_pf_action(compiler_state_t
*cstate
, int action
)
8597 * Catch errors reported by us and routines below us, and return NULL
8600 if (setjmp(cstate
->top_ctx
))
8603 assert_pflog(cstate
, "action");
8605 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8606 (bpf_u_int32
)action
);
8610 /* IEEE 802.11 wireless header */
8612 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8617 * Catch errors reported by us and routines below us, and return NULL
8620 if (setjmp(cstate
->top_ctx
))
8623 switch (cstate
->linktype
) {
8625 case DLT_IEEE802_11
:
8626 case DLT_PRISM_HEADER
:
8627 case DLT_IEEE802_11_RADIO_AVS
:
8628 case DLT_IEEE802_11_RADIO
:
8630 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8634 fail_kw_on_dlt(cstate
, "type/subtype");
8642 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8647 * Catch errors reported by us and routines below us, and return NULL
8650 if (setjmp(cstate
->top_ctx
))
8653 switch (cstate
->linktype
) {
8655 case DLT_IEEE802_11
:
8656 case DLT_PRISM_HEADER
:
8657 case DLT_IEEE802_11_RADIO_AVS
:
8658 case DLT_IEEE802_11_RADIO
:
8663 fail_kw_on_dlt(cstate
, "dir");
8667 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8668 IEEE80211_FC1_DIR_MASK
);
8673 // Process an ARCnet host address string.
8675 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8678 * Catch errors reported by us and routines below us, and return NULL
8681 if (setjmp(cstate
->top_ctx
))
8684 switch (cstate
->linktype
) {
8687 case DLT_ARCNET_LINUX
:
8688 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8689 q
.proto
== Q_LINK
) {
8692 * The lexer currently defines the address format in a
8693 * way that makes this error condition never true.
8694 * Let's check it anyway in case this part of the lexer
8695 * changes in future.
8697 if (! pcapint_atoan(s
, &addr
))
8698 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8699 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8701 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8705 bpf_error(cstate
, "aid supported only on ARCnet");
8710 // Compare an ARCnet host address with the given value.
8711 static struct block
*
8712 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8714 register struct block
*b0
, *b1
;
8718 * ARCnet is different from Ethernet: the source address comes before
8719 * the destination address, each is one byte long. This holds for all
8720 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8721 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8722 * by Datapoint (document number 61610-01).
8725 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8728 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8731 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8732 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8738 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8739 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8749 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8756 static struct block
*
8757 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8759 struct block
*b0
, *b1
;
8761 /* check for VLAN, including 802.1ad and QinQ */
8762 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8763 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8766 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8772 static struct block
*
8773 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8775 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8776 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8779 static struct block
*
8780 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8783 struct block
*b0
, *b1
;
8785 b0
= gen_vlan_tpid_test(cstate
);
8788 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8794 * Both payload and link header type follow the VLAN tags so that
8795 * both need to be updated.
8797 cstate
->off_linkpl
.constant_part
+= 4;
8798 cstate
->off_linktype
.constant_part
+= 4;
8803 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8804 /* add v to variable part of off */
8806 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8807 bpf_u_int32 v
, struct slist
*s
)
8811 if (!off
->is_variable
)
8812 off
->is_variable
= 1;
8814 off
->reg
= alloc_reg(cstate
);
8816 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8819 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8822 s2
= new_stmt(cstate
, BPF_ST
);
8828 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8829 * and link type offsets first
8832 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8836 /* offset determined at run time, shift variable part */
8838 cstate
->is_vlan_vloffset
= 1;
8839 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8840 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8842 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8843 sappend(s
.next
, b_tpid
->head
->stmts
);
8844 b_tpid
->head
->stmts
= s
.next
;
8848 * patch block b_vid (VLAN id test) to load VID value either from packet
8849 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8852 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8854 struct slist
*s
, *s2
, *sjeq
;
8857 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8858 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8860 /* true -> next instructions, false -> beginning of b_vid */
8861 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8863 sjeq
->s
.jf
= b_vid
->stmts
;
8866 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8867 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8871 /* Jump to the test in b_vid. We need to jump one instruction before
8872 * the end of the b_vid block so that we only skip loading the TCI
8873 * from packet data and not the 'and' instruction extracting VID.
8876 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
8878 s2
= new_stmt(cstate
, JMP(BPF_JA
));
8882 /* insert our statements at the beginning of b_vid */
8883 sappend(s
, b_vid
->stmts
);
8888 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8889 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8890 * tag can be either in metadata or in packet data; therefore if the
8891 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8892 * header for VLAN tag. As the decision is done at run time, we need
8893 * update variable part of the offsets
8895 static struct block
*
8896 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8899 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
8902 /* generate new filter code based on extracting packet
8904 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8905 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8907 b0
= gen_jmp(cstate
, BPF_JEQ
, 1, s
);
8910 * This is tricky. We need to insert the statements updating variable
8911 * parts of offsets before the traditional TPID and VID tests so
8912 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8913 * we do not want this update to affect those checks. That's why we
8914 * generate both test blocks first and insert the statements updating
8915 * variable parts of both offsets after that. This wouldn't work if
8916 * there already were variable length link header when entering this
8917 * function but gen_vlan_bpf_extensions() isn't called in that case.
8919 b_tpid
= gen_vlan_tpid_test(cstate
);
8921 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
8923 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
8928 gen_vlan_patch_vid_test(cstate
, b_vid
);
8938 * support IEEE 802.1Q VLAN trunk over ethernet
8941 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
8946 * Catch errors reported by us and routines below us, and return NULL
8949 if (setjmp(cstate
->top_ctx
))
8952 /* can't check for VLAN-encapsulated packets inside MPLS */
8953 if (cstate
->label_stack_depth
> 0)
8954 bpf_error(cstate
, "no VLAN match after MPLS");
8957 * Check for a VLAN packet, and then change the offsets to point
8958 * to the type and data fields within the VLAN packet. Just
8959 * increment the offsets, so that we can support a hierarchy, e.g.
8960 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
8963 * XXX - this is a bit of a kludge. If we were to split the
8964 * compiler into a parser that parses an expression and
8965 * generates an expression tree, and a code generator that
8966 * takes an expression tree (which could come from our
8967 * parser or from some other parser) and generates BPF code,
8968 * we could perhaps make the offsets parameters of routines
8969 * and, in the handler for an "AND" node, pass to subnodes
8970 * other than the VLAN node the adjusted offsets.
8972 * This would mean that "vlan" would, instead of changing the
8973 * behavior of *all* tests after it, change only the behavior
8974 * of tests ANDed with it. That would change the documented
8975 * semantics of "vlan", which might break some expressions.
8976 * However, it would mean that "(vlan and ip) or ip" would check
8977 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8978 * checking only for VLAN-encapsulated IP, so that could still
8979 * be considered worth doing; it wouldn't break expressions
8980 * that are of the form "vlan and ..." or "vlan N and ...",
8981 * which I suspect are the most common expressions involving
8982 * "vlan". "vlan or ..." doesn't necessarily do what the user
8983 * would really want, now, as all the "or ..." tests would
8984 * be done assuming a VLAN, even though the "or" could be viewed
8985 * as meaning "or, if this isn't a VLAN packet...".
8987 switch (cstate
->linktype
) {
8991 * Newer version of the Linux kernel pass around
8992 * packets in which the VLAN tag has been removed
8993 * from the packet data and put into metadata.
8995 * This requires special treatment.
8997 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8998 /* Verify that this is the outer part of the packet and
8999 * not encapsulated somehow. */
9000 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9001 cstate
->off_linkhdr
.constant_part
==
9002 cstate
->off_outermostlinkhdr
.constant_part
) {
9004 * Do we need special VLAN handling?
9006 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9007 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9010 b0
= gen_vlan_no_bpf_extensions(cstate
,
9011 vlan_num
, has_vlan_tag
);
9014 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9018 case DLT_NETANALYZER
:
9019 case DLT_NETANALYZER_TRANSPARENT
:
9020 case DLT_IEEE802_11
:
9021 case DLT_PRISM_HEADER
:
9022 case DLT_IEEE802_11_RADIO_AVS
:
9023 case DLT_IEEE802_11_RADIO
:
9025 * These are either Ethernet packets with an additional
9026 * metadata header (the NetAnalyzer types), or 802.11
9027 * packets, possibly with an additional metadata header.
9029 * For the first of those, the VLAN tag is in the normal
9030 * place, so the special-case handling above isn't
9033 * For the second of those, we don't do the special-case
9036 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9040 bpf_error(cstate
, "no VLAN support for %s",
9041 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9045 cstate
->vlan_stack_depth
++;
9053 * The label_num_arg dance is to avoid annoying whining by compilers that
9054 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9055 * It's not *used* after setjmp returns.
9057 static struct block
*
9058 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
9061 struct block
*b0
, *b1
;
9063 if (cstate
->label_stack_depth
> 0) {
9064 /* just match the bottom-of-stack bit clear */
9065 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9068 * We're not in an MPLS stack yet, so check the link-layer
9069 * type against MPLS.
9071 switch (cstate
->linktype
) {
9073 case DLT_C_HDLC
: /* fall through */
9076 case DLT_NETANALYZER
:
9077 case DLT_NETANALYZER_TRANSPARENT
:
9078 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9082 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9085 /* FIXME add other DLT_s ...
9086 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9087 * leave it for now */
9090 bpf_error(cstate
, "no MPLS support for %s",
9091 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9096 /* If a specific MPLS label is requested, check it */
9097 if (has_label_num
) {
9098 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
9099 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9100 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9101 0xfffff000); /* only compare the first 20 bits */
9107 * Change the offsets to point to the type and data fields within
9108 * the MPLS packet. Just increment the offsets, so that we
9109 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9110 * capture packets with an outer label of 100000 and an inner
9113 * Increment the MPLS stack depth as well; this indicates that
9114 * we're checking MPLS-encapsulated headers, to make sure higher
9115 * level code generators don't try to match against IP-related
9116 * protocols such as Q_ARP, Q_RARP etc.
9118 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9120 cstate
->off_nl_nosnap
+= 4;
9121 cstate
->off_nl
+= 4;
9122 cstate
->label_stack_depth
++;
9127 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
9130 * Catch errors reported by us and routines below us, and return NULL
9133 if (setjmp(cstate
->top_ctx
))
9136 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
9140 * Support PPPOE discovery and session.
9143 gen_pppoed(compiler_state_t
*cstate
)
9146 * Catch errors reported by us and routines below us, and return NULL
9149 if (setjmp(cstate
->top_ctx
))
9152 /* check for PPPoE discovery */
9153 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9157 * RFC 2516 Section 4:
9159 * The Ethernet payload for PPPoE is as follows:
9162 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9163 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9164 * | VER | TYPE | CODE | SESSION_ID |
9165 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9166 * | LENGTH | payload ~
9167 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9170 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9172 struct block
*b0
, *b1
;
9175 * Catch errors reported by us and routines below us, and return NULL
9178 if (setjmp(cstate
->top_ctx
))
9182 * Test against the PPPoE session link-layer type.
9184 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9186 /* If a specific session is requested, check PPPoE session id */
9188 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
9189 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9195 * Change the offsets to point to the type and data fields within
9196 * the PPP packet, and note that this is PPPoE rather than
9199 * XXX - this is a bit of a kludge. See the comments in
9202 * The "network-layer" protocol is PPPoE, which has a 6-byte
9203 * PPPoE header, followed by a PPP packet.
9205 * There is no HDLC encapsulation for the PPP packet (it's
9206 * encapsulated in PPPoES instead), so the link-layer type
9207 * starts at the first byte of the PPP packet. For PPPoE,
9208 * that offset is relative to the beginning of the total
9209 * link-layer payload, including any 802.2 LLC header, so
9210 * it's 6 bytes past cstate->off_nl.
9212 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9213 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9214 cstate
->off_linkpl
.reg
);
9216 cstate
->off_linktype
= cstate
->off_linkhdr
;
9217 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9220 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9225 /* Check that this is Geneve and the VNI is correct if
9226 * specified. Parameterized to handle both IPv4 and IPv6. */
9227 static struct block
*
9228 gen_geneve_check(compiler_state_t
*cstate
,
9229 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9230 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9232 struct block
*b0
, *b1
;
9234 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9236 /* Check that we are operating on version 0. Otherwise, we
9237 * can't decode the rest of the fields. The version is 2 bits
9238 * in the first byte of the Geneve header. */
9239 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9244 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9245 vni
<<= 8; /* VNI is in the upper 3 bytes */
9246 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9254 /* The IPv4 and IPv6 Geneve checks need to do two things:
9255 * - Verify that this actually is Geneve with the right VNI.
9256 * - Place the IP header length (plus variable link prefix if
9257 * needed) into register A to be used later to compute
9258 * the inner packet offsets. */
9259 static struct block
*
9260 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9262 struct block
*b0
, *b1
;
9263 struct slist
*s
, *s1
;
9265 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9267 /* Load the IP header length into A. */
9268 s
= gen_loadx_iphdrlen(cstate
);
9270 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9273 /* Forcibly append these statements to the true condition
9274 * of the protocol check by creating a new block that is
9275 * always true and ANDing them. */
9276 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9283 static struct block
*
9284 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9286 struct block
*b0
, *b1
;
9287 struct slist
*s
, *s1
;
9289 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9291 /* Load the IP header length. We need to account for a
9292 * variable length link prefix if there is one. */
9293 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9295 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9299 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9303 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9307 /* Forcibly append these statements to the true condition
9308 * of the protocol check by creating a new block that is
9309 * always true and ANDing them. */
9310 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9313 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9320 /* We need to store three values based on the Geneve header::
9321 * - The offset of the linktype.
9322 * - The offset of the end of the Geneve header.
9323 * - The offset of the end of the encapsulated MAC header. */
9324 static struct slist
*
9325 gen_geneve_offsets(compiler_state_t
*cstate
)
9327 struct slist
*s
, *s1
, *s_proto
;
9329 /* First we need to calculate the offset of the Geneve header
9330 * itself. This is composed of the IP header previously calculated
9331 * (include any variable link prefix) and stored in A plus the
9332 * fixed sized headers (fixed link prefix, MAC length, and UDP
9334 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9335 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9337 /* Stash this in X since we'll need it later. */
9338 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9341 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9343 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9347 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9348 cstate
->off_linktype
.is_variable
= 1;
9349 cstate
->off_linktype
.constant_part
= 0;
9351 s1
= new_stmt(cstate
, BPF_ST
);
9352 s1
->s
.k
= cstate
->off_linktype
.reg
;
9355 /* Load the Geneve option length and mask and shift to get the
9356 * number of bytes. It is stored in the first byte of the Geneve
9358 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9362 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9366 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9370 /* Add in the rest of the Geneve base header. */
9371 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9375 /* Add the Geneve header length to its offset and store. */
9376 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9380 /* Set the encapsulated type as Ethernet. Even though we may
9381 * not actually have Ethernet inside there are two reasons this
9383 * - The linktype field is always in EtherType format regardless
9384 * of whether it is in Geneve or an inner Ethernet frame.
9385 * - The only link layer that we have specific support for is
9386 * Ethernet. We will confirm that the packet actually is
9387 * Ethernet at runtime before executing these checks. */
9388 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9390 s1
= new_stmt(cstate
, BPF_ST
);
9391 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9394 /* Calculate whether we have an Ethernet header or just raw IP/
9395 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9396 * and linktype by 14 bytes so that the network header can be found
9397 * seamlessly. Otherwise, keep what we've calculated already. */
9399 /* We have a bare jmp so we can't use the optimizer. */
9400 cstate
->no_optimize
= 1;
9402 /* Load the EtherType in the Geneve header, 2 bytes in. */
9403 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9407 /* Load X with the end of the Geneve header. */
9408 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9409 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9412 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9413 * end of this check, we should have the total length in X. In
9414 * the non-Ethernet case, it's already there. */
9415 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9416 s_proto
->s
.k
= ETHERTYPE_TEB
;
9417 sappend(s
, s_proto
);
9419 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9423 /* Since this is Ethernet, use the EtherType of the payload
9424 * directly as the linktype. Overwrite what we already have. */
9425 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9429 s1
= new_stmt(cstate
, BPF_ST
);
9430 s1
->s
.k
= cstate
->off_linktype
.reg
;
9433 /* Advance two bytes further to get the end of the Ethernet
9435 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9439 /* Move the result to X. */
9440 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9443 /* Store the final result of our linkpl calculation. */
9444 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9445 cstate
->off_linkpl
.is_variable
= 1;
9446 cstate
->off_linkpl
.constant_part
= 0;
9448 s1
= new_stmt(cstate
, BPF_STX
);
9449 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9458 /* Check to see if this is a Geneve packet. */
9460 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9462 struct block
*b0
, *b1
;
9466 * Catch errors reported by us and routines below us, and return NULL
9469 if (setjmp(cstate
->top_ctx
))
9472 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9473 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9478 /* Later filters should act on the payload of the Geneve frame,
9479 * update all of the header pointers. Attach this code so that
9480 * it gets executed in the event that the Geneve filter matches. */
9481 s
= gen_geneve_offsets(cstate
);
9483 b1
= gen_true(cstate
);
9484 sappend(s
, b1
->stmts
);
9489 cstate
->is_encap
= 1;
9494 /* Check that this is VXLAN and the VNI is correct if
9495 * specified. Parameterized to handle both IPv4 and IPv6. */
9496 static struct block
*
9497 gen_vxlan_check(compiler_state_t
*cstate
,
9498 struct block
*(*gen_portfn
)(compiler_state_t
*, uint16_t, int, int),
9499 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9501 struct block
*b0
, *b1
;
9503 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9505 /* Check that the VXLAN header has the flag bits set
9507 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9512 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9513 vni
<<= 8; /* VNI is in the upper 3 bytes */
9514 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9522 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9523 * - Verify that this actually is VXLAN with the right VNI.
9524 * - Place the IP header length (plus variable link prefix if
9525 * needed) into register A to be used later to compute
9526 * the inner packet offsets. */
9527 static struct block
*
9528 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9530 struct block
*b0
, *b1
;
9531 struct slist
*s
, *s1
;
9533 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9535 /* Load the IP header length into A. */
9536 s
= gen_loadx_iphdrlen(cstate
);
9538 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9541 /* Forcibly append these statements to the true condition
9542 * of the protocol check by creating a new block that is
9543 * always true and ANDing them. */
9544 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9551 static struct block
*
9552 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9554 struct block
*b0
, *b1
;
9555 struct slist
*s
, *s1
;
9557 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9559 /* Load the IP header length. We need to account for a
9560 * variable length link prefix if there is one. */
9561 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9563 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9567 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9571 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9575 /* Forcibly append these statements to the true condition
9576 * of the protocol check by creating a new block that is
9577 * always true and ANDing them. */
9578 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9581 b1
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9588 /* We need to store three values based on the VXLAN header:
9589 * - The offset of the linktype.
9590 * - The offset of the end of the VXLAN header.
9591 * - The offset of the end of the encapsulated MAC header. */
9592 static struct slist
*
9593 gen_vxlan_offsets(compiler_state_t
*cstate
)
9595 struct slist
*s
, *s1
;
9597 /* Calculate the offset of the VXLAN header itself. This
9598 * includes the IP header computed previously (including any
9599 * variable link prefix) and stored in A plus the fixed size
9600 * headers (fixed link prefix, MAC length, UDP header). */
9601 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9602 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9604 /* Add the VXLAN header length to its offset and store */
9605 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9609 /* Push the link header. VXLAN packets always contain Ethernet
9611 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9613 s1
= new_stmt(cstate
, BPF_ST
);
9614 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9617 /* As the payload is an Ethernet packet, we can use the
9618 * EtherType of the payload directly as the linktype. */
9619 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9623 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9624 cstate
->off_linktype
.is_variable
= 1;
9625 cstate
->off_linktype
.constant_part
= 0;
9627 s1
= new_stmt(cstate
, BPF_ST
);
9628 s1
->s
.k
= cstate
->off_linktype
.reg
;
9631 /* Two bytes further is the end of the Ethernet header and the
9632 * start of the payload. */
9633 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9637 /* Move the result to X. */
9638 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9641 /* Store the final result of our linkpl calculation. */
9642 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9643 cstate
->off_linkpl
.is_variable
= 1;
9644 cstate
->off_linkpl
.constant_part
= 0;
9646 s1
= new_stmt(cstate
, BPF_STX
);
9647 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9655 /* Check to see if this is a VXLAN packet. */
9657 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9659 struct block
*b0
, *b1
;
9663 * Catch errors reported by us and routines below us, and return NULL
9666 if (setjmp(cstate
->top_ctx
))
9669 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9670 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9675 /* Later filters should act on the payload of the VXLAN frame,
9676 * update all of the header pointers. Attach this code so that
9677 * it gets executed in the event that the VXLAN filter matches. */
9678 s
= gen_vxlan_offsets(cstate
);
9680 b1
= gen_true(cstate
);
9681 sappend(s
, b1
->stmts
);
9686 cstate
->is_encap
= 1;
9691 /* Check that the encapsulated frame has a link layer header
9692 * for Ethernet filters. */
9693 static struct block
*
9694 gen_encap_ll_check(compiler_state_t
*cstate
)
9697 struct slist
*s
, *s1
;
9699 /* The easiest way to see if there is a link layer present
9700 * is to check if the link layer header and payload are not
9703 /* Geneve always generates pure variable offsets so we can
9704 * compare only the registers. */
9705 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9706 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9708 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9709 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9712 b0
= gen_jmp(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
, 0, s
);
9718 static struct block
*
9719 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9720 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9724 assert_atm(cstate
, atmkw(atmfield
));
9729 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9730 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9731 0xffffffffU
, jtype
, reverse
, jvalue
);
9735 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9736 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9737 0xffffffffU
, jtype
, reverse
, jvalue
);
9746 static struct block
*
9747 gen_atm_vpi(compiler_state_t
*cstate
, const uint8_t v
)
9749 return gen_atmfield_code_internal(cstate
, A_VPI
, v
, BPF_JEQ
, 0);
9752 static struct block
*
9753 gen_atm_vci(compiler_state_t
*cstate
, const uint16_t v
)
9755 return gen_atmfield_code_internal(cstate
, A_VCI
, v
, BPF_JEQ
, 0);
9758 static struct block
*
9759 gen_atm_prototype(compiler_state_t
*cstate
, const uint8_t v
)
9761 return gen_mcmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
, v
, 0x0fU
);
9764 static struct block
*
9765 gen_atmtype_llc(compiler_state_t
*cstate
)
9769 b0
= gen_atm_prototype(cstate
, PT_LLC
);
9770 cstate
->linktype
= cstate
->prevlinktype
;
9775 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9776 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9779 * Catch errors reported by us and routines below us, and return NULL
9782 if (setjmp(cstate
->top_ctx
))
9785 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9790 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9792 struct block
*b0
, *b1
;
9795 * Catch errors reported by us and routines below us, and return NULL
9798 if (setjmp(cstate
->top_ctx
))
9801 assert_atm(cstate
, atmkw(type
));
9806 /* Get all packets in Meta signalling Circuit */
9807 b0
= gen_atm_vpi(cstate
, 0);
9808 b1
= gen_atm_vci(cstate
, 1);
9813 /* Get all packets in Broadcast Circuit*/
9814 b0
= gen_atm_vpi(cstate
, 0);
9815 b1
= gen_atm_vci(cstate
, 2);
9820 /* Get all cells in Segment OAM F4 circuit*/
9821 b0
= gen_atm_vpi(cstate
, 0);
9822 b1
= gen_atm_vci(cstate
, 3);
9827 /* Get all cells in End-to-End OAM F4 Circuit*/
9828 b0
= gen_atm_vpi(cstate
, 0);
9829 b1
= gen_atm_vci(cstate
, 4);
9834 /* Get all packets in connection Signalling Circuit */
9835 b0
= gen_atm_vpi(cstate
, 0);
9836 b1
= gen_atm_vci(cstate
, 5);
9841 /* Get all packets in ILMI Circuit */
9842 b0
= gen_atm_vpi(cstate
, 0);
9843 b1
= gen_atm_vci(cstate
, 16);
9848 /* Get all LANE packets */
9849 b1
= gen_atm_prototype(cstate
, PT_LANE
);
9852 * Arrange that all subsequent tests assume LANE
9853 * rather than LLC-encapsulated packets, and set
9854 * the offsets appropriately for LANE-encapsulated
9857 * We assume LANE means Ethernet, not Token Ring.
9859 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
9860 cstate
->off_payload
+ 2, /* Ethernet header */
9862 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
9863 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
9864 cstate
->off_nl
= 0; /* Ethernet II */
9865 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
9875 * Filtering for MTP2 messages based on li value
9876 * FISU, length is null
9877 * LSSU, length is 1 or 2
9878 * MSU, length is 3 or more
9879 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9882 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
9884 struct block
*b0
, *b1
;
9887 * Catch errors reported by us and routines below us, and return NULL
9890 if (setjmp(cstate
->top_ctx
))
9893 assert_ss7(cstate
, ss7kw(type
));
9898 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9899 0x3fU
, BPF_JEQ
, 0, 0U);
9903 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9904 0x3fU
, BPF_JGT
, 1, 2U);
9905 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9906 0x3fU
, BPF_JGT
, 0, 0U);
9911 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
9912 0x3fU
, BPF_JGT
, 0, 2U);
9916 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9917 0xff80U
, BPF_JEQ
, 0, 0U);
9921 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9922 0xff80U
, BPF_JGT
, 1, 0x0100U
);
9923 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9924 0xff80U
, BPF_JGT
, 0, 0U);
9929 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
9930 0xff80U
, BPF_JGT
, 0, 0x0100U
);
9940 * These maximum valid values are all-ones, so they double as the bitmasks
9941 * before any bitwise shifting.
9943 #define MTP2_SIO_MAXVAL UINT8_MAX
9944 #define MTP3_PC_MAXVAL 0x3fffU
9945 #define MTP3_SLS_MAXVAL 0xfU
9947 static struct block
*
9948 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
9949 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9957 newoff_sio
= cstate
->off_sio
;
9958 newoff_opc
= cstate
->off_opc
;
9959 newoff_dpc
= cstate
->off_dpc
;
9960 newoff_sls
= cstate
->off_sls
;
9962 assert_ss7(cstate
, ss7kw(mtp3field
));
9964 switch (mtp3field
) {
9967 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
9969 * SIO is the simplest field: the size is one byte and the offset is a
9970 * multiple of bytes, so the only detail to get right is the value of
9971 * the [right-to-left] field offset.
9974 newoff_sio
+= 3; /* offset for MTP2_HSL */
9978 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
9979 // Here the bitmask means "do not apply a bitmask".
9980 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
9981 jtype
, reverse
, jvalue
);
9985 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
9987 * SLS, OPC and DPC are more complicated: none of these is sized in a
9988 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
9989 * diagrams are meant to be read right-to-left. This means in the
9990 * diagrams within individual fields and concatenations thereof
9991 * bitwise shifts and masks can be noted in the common left-to-right
9992 * manner until each final value is ready to be byte-swapped and
9993 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
9994 * similar problem in a similar way.
9996 * Offsets of fields within the packet header always have the
9997 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
9998 * DLTs the offset does not include the F (Flag) field at the
9999 * beginning of each message.
10001 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10002 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10003 * be tested entirely using a single BPF_W comparison. In this case
10004 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10005 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10006 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10007 * correlates with the [RTL] packet diagram until the byte-swapping is
10010 * The code below uses this approach for OPC, which spans 3 bytes.
10011 * DPC and SLS use shorter loads, SLS also uses a different offset.
10018 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10019 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
10020 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
10021 SWAPLONG(jvalue
<< 14));
10029 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10030 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
10031 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
10032 SWAPSHORT(jvalue
));
10040 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
10041 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
10042 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
10053 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10054 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10057 * Catch errors reported by us and routines below us, and return NULL
10060 if (setjmp(cstate
->top_ctx
))
10063 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
10067 static struct block
*
10068 gen_msg_abbrev(compiler_state_t
*cstate
, const uint8_t type
)
10071 * Q.2931 signalling protocol messages for handling virtual circuits
10072 * establishment and teardown
10074 return gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
,
10079 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10081 struct block
*b0
, *b1
;
10084 * Catch errors reported by us and routines below us, and return NULL
10087 if (setjmp(cstate
->top_ctx
))
10090 assert_atm(cstate
, atmkw(type
));
10096 b0
= gen_atm_vci(cstate
, 3);
10097 b1
= gen_atm_vci(cstate
, 4);
10099 b0
= gen_atm_vpi(cstate
, 0);
10105 b0
= gen_atm_vci(cstate
, 3);
10106 b1
= gen_atm_vci(cstate
, 4);
10108 b0
= gen_atm_vpi(cstate
, 0);
10114 * Get Q.2931 signalling messages for switched
10115 * virtual connection
10117 b0
= gen_msg_abbrev(cstate
, SETUP
);
10118 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
10120 b0
= gen_msg_abbrev(cstate
, CONNECT
);
10122 b0
= gen_msg_abbrev(cstate
, CONNECT_ACK
);
10124 b0
= gen_msg_abbrev(cstate
, RELEASE
);
10126 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
10128 b0
= gen_atmtype_abbrev(cstate
, A_SC
);
10132 case A_METACONNECT
:
10133 b0
= gen_msg_abbrev(cstate
, SETUP
);
10134 b1
= gen_msg_abbrev(cstate
, CALL_PROCEED
);
10136 b0
= gen_msg_abbrev(cstate
, CONNECT
);
10138 b0
= gen_msg_abbrev(cstate
, RELEASE
);
10140 b0
= gen_msg_abbrev(cstate
, RELEASE_DONE
);
10142 b0
= gen_atmtype_abbrev(cstate
, A_METAC
);