1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.216 2005-01-12 09:02:55 hannes Exp $ (LBL)";
32 #include <pcap-stdinc.h>
34 #include <sys/types.h>
35 #include <sys/socket.h>
39 * XXX - why was this included even on UNIX?
48 #include <sys/param.h>
51 #include <netinet/in.h>
67 #include "ethertype.h"
72 #include "sunatmpos.h"
78 #define offsetof(s, e) ((size_t)&((s *)0)->e)
82 #include <netdb.h> /* for "struct addrinfo" */
85 #include <pcap-namedb.h>
90 #define IPPROTO_SCTP 132
93 #ifdef HAVE_OS_PROTO_H
97 #define JMP(c) ((c)|BPF_JMP|BPF_K)
100 static jmp_buf top_ctx
;
101 static pcap_t
*bpf_pcap
;
103 /* Hack for updating VLAN, MPLS offsets. */
104 static u_int orig_linktype
= -1U, orig_nl
= -1U, orig_nl_nosnap
= -1U;
108 static int pcap_fddipad
;
113 bpf_error(const char *fmt
, ...)
119 if (bpf_pcap
!= NULL
)
120 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
127 static void init_linktype(pcap_t
*);
129 static int alloc_reg(void);
130 static void free_reg(int);
132 static struct block
*root
;
135 * We divy out chunks of memory rather than call malloc each time so
136 * we don't have to worry about leaking memory. It's probably
137 * not a big deal if all this memory was wasted but if this ever
138 * goes into a library that would probably not be a good idea.
140 * XXX - this *is* in a library....
143 #define CHUNK0SIZE 1024
149 static struct chunk chunks
[NCHUNKS
];
150 static int cur_chunk
;
152 static void *newchunk(u_int
);
153 static void freechunks(void);
154 static inline struct block
*new_block(int);
155 static inline struct slist
*new_stmt(int);
156 static struct block
*gen_retblk(int);
157 static inline void syntax(void);
159 static void backpatch(struct block
*, struct block
*);
160 static void merge(struct block
*, struct block
*);
161 static struct block
*gen_cmp(u_int
, u_int
, bpf_int32
);
162 static struct block
*gen_cmp_gt(u_int
, u_int
, bpf_int32
);
163 static struct block
*gen_mcmp(u_int
, u_int
, bpf_int32
, bpf_u_int32
);
164 static struct block
*gen_bcmp(u_int
, u_int
, const u_char
*);
165 static struct block
*gen_ncmp(bpf_u_int32
, bpf_u_int32
, bpf_u_int32
,
166 bpf_u_int32
, bpf_u_int32
, int);
167 static struct block
*gen_uncond(int);
168 static inline struct block
*gen_true(void);
169 static inline struct block
*gen_false(void);
170 static struct block
*gen_ether_linktype(int);
171 static struct block
*gen_linux_sll_linktype(int);
172 static struct block
*gen_linktype(int);
173 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
, u_int
);
174 static struct block
*gen_llc(int);
175 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
177 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
179 static struct block
*gen_ahostop(const u_char
*, int);
180 static struct block
*gen_ehostop(const u_char
*, int);
181 static struct block
*gen_fhostop(const u_char
*, int);
182 static struct block
*gen_thostop(const u_char
*, int);
183 static struct block
*gen_wlanhostop(const u_char
*, int);
184 static struct block
*gen_ipfchostop(const u_char
*, int);
185 static struct block
*gen_dnhostop(bpf_u_int32
, int, u_int
);
186 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int);
188 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int);
191 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
193 static struct block
*gen_ipfrag(void);
194 static struct block
*gen_portatom(int, bpf_int32
);
196 static struct block
*gen_portatom6(int, bpf_int32
);
198 struct block
*gen_portop(int, int, int);
199 static struct block
*gen_port(int, int, int);
201 struct block
*gen_portop6(int, int, int);
202 static struct block
*gen_port6(int, int, int);
204 static int lookup_proto(const char *, int);
205 static struct block
*gen_protochain(int, int, int);
206 static struct block
*gen_proto(int, int, int);
207 static struct slist
*xfer_to_x(struct arth
*);
208 static struct slist
*xfer_to_a(struct arth
*);
209 static struct block
*gen_mac_multicast(int);
210 static struct block
*gen_len(int, int);
212 static struct block
*gen_msg_abbrev(int type
);
223 /* XXX Round up to nearest long. */
224 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
226 /* XXX Round up to structure boundary. */
230 cp
= &chunks
[cur_chunk
];
231 if (n
> cp
->n_left
) {
232 ++cp
, k
= ++cur_chunk
;
234 bpf_error("out of memory");
235 size
= CHUNK0SIZE
<< k
;
236 cp
->m
= (void *)malloc(size
);
238 bpf_error("out of memory");
239 memset((char *)cp
->m
, 0, size
);
242 bpf_error("out of memory");
245 return (void *)((char *)cp
->m
+ cp
->n_left
);
254 for (i
= 0; i
< NCHUNKS
; ++i
)
255 if (chunks
[i
].m
!= NULL
) {
262 * A strdup whose allocations are freed after code generation is over.
266 register const char *s
;
268 int n
= strlen(s
) + 1;
269 char *cp
= newchunk(n
);
275 static inline struct block
*
281 p
= (struct block
*)newchunk(sizeof(*p
));
288 static inline struct slist
*
294 p
= (struct slist
*)newchunk(sizeof(*p
));
300 static struct block
*
304 struct block
*b
= new_block(BPF_RET
|BPF_K
);
313 bpf_error("syntax error in filter expression");
316 static bpf_u_int32 netmask
;
321 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
322 char *buf
, int optimize
, bpf_u_int32 mask
)
331 if (setjmp(top_ctx
)) {
339 snaplen
= pcap_snapshot(p
);
341 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
342 "snaplen of 0 rejects all packets");
346 lex_init(buf
? buf
: "");
354 root
= gen_retblk(snaplen
);
356 if (optimize
&& !no_optimize
) {
359 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
360 bpf_error("expression rejects all packets");
362 program
->bf_insns
= icode_to_fcode(root
, &len
);
363 program
->bf_len
= len
;
371 * entry point for using the compiler with no pcap open
372 * pass in all the stuff that is needed explicitly instead.
375 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
376 struct bpf_program
*program
,
377 char *buf
, int optimize
, bpf_u_int32 mask
)
382 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
385 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
391 * Clean up a "struct bpf_program" by freeing all the memory allocated
395 pcap_freecode(struct bpf_program
*program
)
398 if (program
->bf_insns
!= NULL
) {
399 free((char *)program
->bf_insns
);
400 program
->bf_insns
= NULL
;
405 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
406 * which of the jt and jf fields has been resolved and which is a pointer
407 * back to another unresolved block (or nil). At least one of the fields
408 * in each block is already resolved.
411 backpatch(list
, target
)
412 struct block
*list
, *target
;
429 * Merge the lists in b0 and b1, using the 'sense' field to indicate
430 * which of jt and jf is the link.
434 struct block
*b0
, *b1
;
436 register struct block
**p
= &b0
;
438 /* Find end of list. */
440 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
442 /* Concatenate the lists. */
450 backpatch(p
, gen_retblk(snaplen
));
451 p
->sense
= !p
->sense
;
452 backpatch(p
, gen_retblk(0));
458 struct block
*b0
, *b1
;
460 backpatch(b0
, b1
->head
);
461 b0
->sense
= !b0
->sense
;
462 b1
->sense
= !b1
->sense
;
464 b1
->sense
= !b1
->sense
;
470 struct block
*b0
, *b1
;
472 b0
->sense
= !b0
->sense
;
473 backpatch(b0
, b1
->head
);
474 b0
->sense
= !b0
->sense
;
483 b
->sense
= !b
->sense
;
486 static struct block
*
487 gen_cmp(offset
, size
, v
)
494 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
497 b
= new_block(JMP(BPF_JEQ
));
504 static struct block
*
505 gen_cmp_gt(offset
, size
, v
)
512 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
515 b
= new_block(JMP(BPF_JGT
));
522 static struct block
*
523 gen_mcmp(offset
, size
, v
, mask
)
528 struct block
*b
= gen_cmp(offset
, size
, v
);
531 if (mask
!= 0xffffffff) {
532 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
539 static struct block
*
540 gen_bcmp(offset
, size
, v
)
541 register u_int offset
, size
;
542 register const u_char
*v
;
544 register struct block
*b
, *tmp
;
548 register const u_char
*p
= &v
[size
- 4];
549 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
550 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
552 tmp
= gen_cmp(offset
+ size
- 4, BPF_W
, w
);
559 register const u_char
*p
= &v
[size
- 2];
560 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
562 tmp
= gen_cmp(offset
+ size
- 2, BPF_H
, w
);
569 tmp
= gen_cmp(offset
, BPF_B
, (bpf_int32
)v
[0]);
577 static struct block
*
578 gen_ncmp(datasize
, offset
, mask
, jtype
, jvalue
, reverse
)
579 bpf_u_int32 datasize
, offset
, mask
, jtype
, jvalue
;
585 s
= new_stmt(BPF_LD
|datasize
|BPF_ABS
);
588 if (mask
!= 0xffffffff) {
589 s
->next
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
593 b
= new_block(JMP(jtype
));
596 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
602 * Various code constructs need to know the layout of the data link
603 * layer. These variables give the necessary offsets.
607 * This is the offset of the beginning of the MAC-layer header.
608 * It's usually 0, except for ATM LANE.
610 static u_int off_mac
;
613 * "off_linktype" is the offset to information in the link-layer header
614 * giving the packet type.
616 * For Ethernet, it's the offset of the Ethernet type field.
618 * For link-layer types that always use 802.2 headers, it's the
619 * offset of the LLC header.
621 * For PPP, it's the offset of the PPP type field.
623 * For Cisco HDLC, it's the offset of the CHDLC type field.
625 * For BSD loopback, it's the offset of the AF_ value.
627 * For Linux cooked sockets, it's the offset of the type field.
629 * It's set to -1 for no encapsulation, in which case, IP is assumed.
631 static u_int off_linktype
;
634 * TRUE if the link layer includes an ATM pseudo-header.
636 static int is_atm
= 0;
639 * TRUE if "lane" appeared in the filter; it causes us to generate
640 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
642 static int is_lane
= 0;
645 * These are offsets for the ATM pseudo-header.
647 static u_int off_vpi
;
648 static u_int off_vci
;
649 static u_int off_proto
;
652 * This is the offset of the first byte after the ATM pseudo_header,
653 * or -1 if there is no ATM pseudo-header.
655 static u_int off_payload
;
658 * These are offsets to the beginning of the network-layer header.
660 * If the link layer never uses 802.2 LLC:
662 * "off_nl" and "off_nl_nosnap" are the same.
664 * If the link layer always uses 802.2 LLC:
666 * "off_nl" is the offset if there's a SNAP header following
669 * "off_nl_nosnap" is the offset if there's no SNAP header.
671 * If the link layer is Ethernet:
673 * "off_nl" is the offset if the packet is an Ethernet II packet
674 * (we assume no 802.3+802.2+SNAP);
676 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
677 * with an 802.2 header following it.
680 static u_int off_nl_nosnap
;
688 linktype
= pcap_datalink(p
);
690 pcap_fddipad
= p
->fddipad
;
694 * Assume it's not raw ATM with a pseudo-header, for now.
712 off_nl
= 6; /* XXX in reality, variable! */
713 off_nl_nosnap
= 6; /* no 802.2 LLC */
716 case DLT_ARCNET_LINUX
:
718 off_nl
= 8; /* XXX in reality, variable! */
719 off_nl_nosnap
= 8; /* no 802.2 LLC */
724 off_nl
= 14; /* Ethernet II */
725 off_nl_nosnap
= 17; /* 802.3+802.2 */
730 * SLIP doesn't have a link level type. The 16 byte
731 * header is hacked into our SLIP driver.
735 off_nl_nosnap
= 16; /* no 802.2 LLC */
739 /* XXX this may be the same as the DLT_PPP_BSDOS case */
743 off_nl_nosnap
= 24; /* no 802.2 LLC */
750 off_nl_nosnap
= 4; /* no 802.2 LLC */
756 off_nl_nosnap
= 12; /* no 802.2 LLC */
760 case DLT_PPP_WITHDIRECTION
:
761 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
762 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
765 off_nl_nosnap
= 4; /* no 802.2 LLC */
770 * This does no include the Ethernet header, and
771 * only covers session state.
775 off_nl_nosnap
= 8; /* no 802.2 LLC */
781 off_nl_nosnap
= 24; /* no 802.2 LLC */
786 * FDDI doesn't really have a link-level type field.
787 * We set "off_linktype" to the offset of the LLC header.
789 * To check for Ethernet types, we assume that SSAP = SNAP
790 * is being used and pick out the encapsulated Ethernet type.
791 * XXX - should we generate code to check for SNAP?
795 off_linktype
+= pcap_fddipad
;
797 off_nl
= 21; /* FDDI+802.2+SNAP */
798 off_nl_nosnap
= 16; /* FDDI+802.2 */
800 off_nl
+= pcap_fddipad
;
801 off_nl_nosnap
+= pcap_fddipad
;
807 * Token Ring doesn't really have a link-level type field.
808 * We set "off_linktype" to the offset of the LLC header.
810 * To check for Ethernet types, we assume that SSAP = SNAP
811 * is being used and pick out the encapsulated Ethernet type.
812 * XXX - should we generate code to check for SNAP?
814 * XXX - the header is actually variable-length.
815 * Some various Linux patched versions gave 38
816 * as "off_linktype" and 40 as "off_nl"; however,
817 * if a token ring packet has *no* routing
818 * information, i.e. is not source-routed, the correct
819 * values are 20 and 22, as they are in the vanilla code.
821 * A packet is source-routed iff the uppermost bit
822 * of the first byte of the source address, at an
823 * offset of 8, has the uppermost bit set. If the
824 * packet is source-routed, the total number of bytes
825 * of routing information is 2 plus bits 0x1F00 of
826 * the 16-bit value at an offset of 14 (shifted right
827 * 8 - figure out which byte that is).
830 off_nl
= 22; /* Token Ring+802.2+SNAP */
831 off_nl_nosnap
= 17; /* Token Ring+802.2 */
836 * 802.11 doesn't really have a link-level type field.
837 * We set "off_linktype" to the offset of the LLC header.
839 * To check for Ethernet types, we assume that SSAP = SNAP
840 * is being used and pick out the encapsulated Ethernet type.
841 * XXX - should we generate code to check for SNAP?
843 * XXX - the header is actually variable-length. We
844 * assume a 24-byte link-layer header, as appears in
845 * data frames in networks with no bridges. If the
846 * fromds and tods 802.11 header bits are both set,
847 * it's actually supposed to be 30 bytes.
850 off_nl
= 32; /* 802.11+802.2+SNAP */
851 off_nl_nosnap
= 27; /* 802.11+802.2 */
854 case DLT_PRISM_HEADER
:
856 * Same as 802.11, but with an additional header before
857 * the 802.11 header, containing a bunch of additional
858 * information including radio-level information.
860 * The header is 144 bytes long.
862 * XXX - same variable-length header problem; at least
863 * the Prism header is fixed-length.
865 off_linktype
= 144+24;
866 off_nl
= 144+32; /* Prism+802.11+802.2+SNAP */
867 off_nl_nosnap
= 144+27; /* Prism+802.11+802.2 */
870 case DLT_IEEE802_11_RADIO_AVS
:
872 * Same as 802.11, but with an additional header before
873 * the 802.11 header, containing a bunch of additional
874 * information including radio-level information.
876 * The header is 64 bytes long, at least in its
877 * current incarnation.
879 * XXX - same variable-length header problem, only
880 * more so; this header is also variable-length,
881 * with the length being the 32-bit big-endian
882 * number at an offset of 4 from the beginning
883 * of the radio header.
885 off_linktype
= 64+24;
886 off_nl
= 64+32; /* Radio+802.11+802.2+SNAP */
887 off_nl_nosnap
= 64+27; /* Radio+802.11+802.2 */
890 case DLT_IEEE802_11_RADIO
:
892 * Same as 802.11, but with an additional header before
893 * the 802.11 header, containing a bunch of additional
894 * information including radio-level information.
896 * XXX - same variable-length header problem, only
897 * even *more* so; this header is also variable-length,
898 * with the length being the 16-bit number at an offset
899 * of 2 from the beginning of the radio header, and it's
900 * device-dependent (different devices might supply
901 * different amounts of information), so we can't even
902 * assume a fixed length for the current version of the
905 * Therefore, currently, only raw "link[N:M]" filtering is
913 case DLT_ATM_RFC1483
:
914 case DLT_ATM_CLIP
: /* Linux ATM defines this */
916 * assume routed, non-ISO PDUs
917 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
920 off_nl
= 8; /* 802.2+SNAP */
921 off_nl_nosnap
= 3; /* 802.2 */
926 * Full Frontal ATM; you get AALn PDUs with an ATM
930 off_vpi
= SUNATM_VPI_POS
;
931 off_vci
= SUNATM_VCI_POS
;
932 off_proto
= PROTO_POS
;
933 off_mac
= -1; /* LLC-encapsulated, so no MAC-layer header */
934 off_payload
= SUNATM_PKT_BEGIN_POS
;
935 off_linktype
= off_payload
;
936 off_nl
= off_payload
+8; /* 802.2+SNAP */
937 off_nl_nosnap
= off_payload
+3; /* 802.2 */
943 off_nl_nosnap
= 0; /* no 802.2 LLC */
946 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
949 off_nl_nosnap
= 16; /* no 802.2 LLC */
954 * LocalTalk does have a 1-byte type field in the LLAP header,
955 * but really it just indicates whether there is a "short" or
956 * "long" DDP packet following.
960 off_nl_nosnap
= 0; /* no 802.2 LLC */
965 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
966 * link-level type field. We set "off_linktype" to the
967 * offset of the LLC header.
969 * To check for Ethernet types, we assume that SSAP = SNAP
970 * is being used and pick out the encapsulated Ethernet type.
971 * XXX - should we generate code to check for SNAP? RFC
972 * 2625 says SNAP should be used.
975 off_nl
= 24; /* IPFC+802.2+SNAP */
976 off_nl_nosnap
= 19; /* IPFC+802.2 */
981 * XXX - we should set this to handle SNAP-encapsulated
982 * frames (NLPID of 0x80).
986 off_nl_nosnap
= 0; /* no 802.2 LLC */
989 case DLT_APPLE_IP_OVER_IEEE1394
:
992 off_nl_nosnap
= 0; /* no 802.2 LLC */
997 * Currently, only raw "link[N:M]" filtering is supported.
1006 * Currently, only raw "link[N:M]" filtering is supported.
1013 case DLT_SYMANTEC_FIREWALL
:
1015 off_nl
= 44; /* Ethernet II */
1016 off_nl_nosnap
= 44; /* XXX - what does it do with 802.3 packets? */
1021 /* XXX read from header? */
1022 off_nl
= PFLOG_HDRLEN
;
1023 off_nl_nosnap
= PFLOG_HDRLEN
;
1026 case DLT_JUNIPER_MLPPP
:
1032 case DLT_JUNIPER_ATM1
:
1033 off_linktype
= 4; /* in reality variable between 4-8 */
1038 case DLT_JUNIPER_ATM2
:
1039 off_linktype
= 8; /* in reality variable between 8-12 */
1052 bpf_error("unknown data link type %d", linktype
);
1056 static struct block
*
1063 s
= new_stmt(BPF_LD
|BPF_IMM
);
1065 b
= new_block(JMP(BPF_JEQ
));
1071 static inline struct block
*
1074 return gen_uncond(1);
1077 static inline struct block
*
1080 return gen_uncond(0);
1084 * Byte-swap a 32-bit number.
1085 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1086 * big-endian platforms.)
1088 #define SWAPLONG(y) \
1089 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1091 static struct block
*
1092 gen_ether_linktype(proto
)
1095 struct block
*b0
, *b1
;
1101 * OSI protocols always use 802.2 encapsulation.
1102 * XXX - should we check both the DSAP and the
1103 * SSAP, like this, or should we check just the
1106 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1108 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1109 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1114 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1116 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1117 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1121 case LLCSAP_NETBEUI
:
1123 * NetBEUI always uses 802.2 encapsulation.
1124 * XXX - should we check both the DSAP and the
1125 * SSAP, like this, or should we check just the
1128 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1130 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1131 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1139 * Ethernet_II frames, which are Ethernet
1140 * frames with a frame type of ETHERTYPE_IPX;
1142 * Ethernet_802.3 frames, which are 802.3
1143 * frames (i.e., the type/length field is
1144 * a length field, <= ETHERMTU, rather than
1145 * a type field) with the first two bytes
1146 * after the Ethernet/802.3 header being
1149 * Ethernet_802.2 frames, which are 802.3
1150 * frames with an 802.2 LLC header and
1151 * with the IPX LSAP as the DSAP in the LLC
1154 * Ethernet_SNAP frames, which are 802.3
1155 * frames with an LLC header and a SNAP
1156 * header and with an OUI of 0x000000
1157 * (encapsulated Ethernet) and a protocol
1158 * ID of ETHERTYPE_IPX in the SNAP header.
1160 * XXX - should we generate the same code both
1161 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1165 * This generates code to check both for the
1166 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1168 b0
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1169 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)0xFFFF);
1173 * Now we add code to check for SNAP frames with
1174 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1176 b0
= gen_snap(0x000000, ETHERTYPE_IPX
, 14);
1180 * Now we generate code to check for 802.3
1181 * frames in general.
1183 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1187 * Now add the check for 802.3 frames before the
1188 * check for Ethernet_802.2 and Ethernet_802.3,
1189 * as those checks should only be done on 802.3
1190 * frames, not on Ethernet frames.
1195 * Now add the check for Ethernet_II frames, and
1196 * do that before checking for the other frame
1199 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_IPX
);
1203 case ETHERTYPE_ATALK
:
1204 case ETHERTYPE_AARP
:
1206 * EtherTalk (AppleTalk protocols on Ethernet link
1207 * layer) may use 802.2 encapsulation.
1211 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1212 * we check for an Ethernet type field less than
1213 * 1500, which means it's an 802.3 length field.
1215 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1219 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1220 * SNAP packets with an organization code of
1221 * 0x080007 (Apple, for Appletalk) and a protocol
1222 * type of ETHERTYPE_ATALK (Appletalk).
1224 * 802.2-encapsulated ETHERTYPE_AARP packets are
1225 * SNAP packets with an organization code of
1226 * 0x000000 (encapsulated Ethernet) and a protocol
1227 * type of ETHERTYPE_AARP (Appletalk ARP).
1229 if (proto
== ETHERTYPE_ATALK
)
1230 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
, 14);
1231 else /* proto == ETHERTYPE_AARP */
1232 b1
= gen_snap(0x000000, ETHERTYPE_AARP
, 14);
1236 * Check for Ethernet encapsulation (Ethertalk
1237 * phase 1?); we just check for the Ethernet
1240 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1246 if (proto
<= ETHERMTU
) {
1248 * This is an LLC SAP value, so the frames
1249 * that match would be 802.2 frames.
1250 * Check that the frame is an 802.2 frame
1251 * (i.e., that the length/type field is
1252 * a length field, <= ETHERMTU) and
1253 * then check the DSAP.
1255 b0
= gen_cmp_gt(off_linktype
, BPF_H
, ETHERMTU
);
1257 b1
= gen_cmp(off_linktype
+ 2, BPF_B
, (bpf_int32
)proto
);
1262 * This is an Ethernet type, so compare
1263 * the length/type field with it (if
1264 * the frame is an 802.2 frame, the length
1265 * field will be <= ETHERMTU, and, as
1266 * "proto" is > ETHERMTU, this test
1267 * will fail and the frame won't match,
1268 * which is what we want).
1270 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1275 static struct block
*
1276 gen_linux_sll_linktype(proto
)
1279 struct block
*b0
, *b1
;
1284 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1285 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1286 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1292 * OSI protocols always use 802.2 encapsulation.
1293 * XXX - should we check both the DSAP and the
1294 * SSAP, like this, or should we check just the
1297 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1298 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1299 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1303 case LLCSAP_NETBEUI
:
1305 * NetBEUI always uses 802.2 encapsulation.
1306 * XXX - should we check both the DSAP and the
1307 * LSAP, like this, or should we check just the
1310 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1311 b1
= gen_cmp(off_linktype
+ 2, BPF_H
, (bpf_int32
)
1312 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1318 * Ethernet_II frames, which are Ethernet
1319 * frames with a frame type of ETHERTYPE_IPX;
1321 * Ethernet_802.3 frames, which have a frame
1322 * type of LINUX_SLL_P_802_3;
1324 * Ethernet_802.2 frames, which are 802.3
1325 * frames with an 802.2 LLC header (i.e, have
1326 * a frame type of LINUX_SLL_P_802_2) and
1327 * with the IPX LSAP as the DSAP in the LLC
1330 * Ethernet_SNAP frames, which are 802.3
1331 * frames with an LLC header and a SNAP
1332 * header and with an OUI of 0x000000
1333 * (encapsulated Ethernet) and a protocol
1334 * ID of ETHERTYPE_IPX in the SNAP header.
1336 * First, do the checks on LINUX_SLL_P_802_2
1337 * frames; generate the check for either
1338 * Ethernet_802.2 or Ethernet_SNAP frames, and
1339 * then put a check for LINUX_SLL_P_802_2 frames
1342 b0
= gen_cmp(off_linktype
+ 2, BPF_B
,
1343 (bpf_int32
)LLCSAP_IPX
);
1344 b1
= gen_snap(0x000000, ETHERTYPE_IPX
,
1347 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1351 * Now check for 802.3 frames and OR that with
1352 * the previous test.
1354 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1358 * Now add the check for Ethernet_II frames, and
1359 * do that before checking for the other frame
1362 b0
= gen_cmp(off_linktype
, BPF_H
,
1363 (bpf_int32
)ETHERTYPE_IPX
);
1367 case ETHERTYPE_ATALK
:
1368 case ETHERTYPE_AARP
:
1370 * EtherTalk (AppleTalk protocols on Ethernet link
1371 * layer) may use 802.2 encapsulation.
1375 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1376 * we check for the 802.2 protocol type in the
1377 * "Ethernet type" field.
1379 b0
= gen_cmp(off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1382 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1383 * SNAP packets with an organization code of
1384 * 0x080007 (Apple, for Appletalk) and a protocol
1385 * type of ETHERTYPE_ATALK (Appletalk).
1387 * 802.2-encapsulated ETHERTYPE_AARP packets are
1388 * SNAP packets with an organization code of
1389 * 0x000000 (encapsulated Ethernet) and a protocol
1390 * type of ETHERTYPE_AARP (Appletalk ARP).
1392 if (proto
== ETHERTYPE_ATALK
)
1393 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
,
1395 else /* proto == ETHERTYPE_AARP */
1396 b1
= gen_snap(0x000000, ETHERTYPE_AARP
,
1401 * Check for Ethernet encapsulation (Ethertalk
1402 * phase 1?); we just check for the Ethernet
1405 b0
= gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1411 if (proto
<= ETHERMTU
) {
1413 * This is an LLC SAP value, so the frames
1414 * that match would be 802.2 frames.
1415 * Check for the 802.2 protocol type
1416 * in the "Ethernet type" field, and
1417 * then check the DSAP.
1419 b0
= gen_cmp(off_linktype
, BPF_H
,
1421 b1
= gen_cmp(off_linktype
+ 2, BPF_B
,
1427 * This is an Ethernet type, so compare
1428 * the length/type field with it (if
1429 * the frame is an 802.2 frame, the length
1430 * field will be <= ETHERMTU, and, as
1431 * "proto" is > ETHERMTU, this test
1432 * will fail and the frame won't match,
1433 * which is what we want).
1435 return gen_cmp(off_linktype
, BPF_H
,
1441 static struct block
*
1445 struct block
*b0
, *b1
, *b2
;
1450 return gen_ether_linktype(proto
);
1458 proto
= (proto
<< 8 | LLCSAP_ISONS
);
1462 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1468 case DLT_IEEE802_11
:
1469 case DLT_PRISM_HEADER
:
1470 case DLT_IEEE802_11_RADIO
:
1473 case DLT_ATM_RFC1483
:
1475 case DLT_IP_OVER_FC
:
1476 return gen_llc(proto
);
1482 * If "is_lane" is set, check for a LANE-encapsulated
1483 * version of this protocol, otherwise check for an
1484 * LLC-encapsulated version of this protocol.
1486 * We assume LANE means Ethernet, not Token Ring.
1490 * Check that the packet doesn't begin with an
1491 * LE Control marker. (We've already generated
1494 b0
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
1498 * Now generate an Ethernet test.
1500 b1
= gen_ether_linktype(proto
);
1505 * Check for LLC encapsulation and then check the
1508 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
1509 b1
= gen_llc(proto
);
1515 return gen_linux_sll_linktype(proto
);
1520 case DLT_SLIP_BSDOS
:
1523 * These types don't provide any type field; packets
1526 * XXX - for IPv4, check for a version number of 4, and,
1527 * for IPv6, check for a version number of 6?
1533 case ETHERTYPE_IPV6
:
1535 return gen_true(); /* always true */
1538 return gen_false(); /* always false */
1544 case DLT_PPP_WITHDIRECTION
:
1545 case DLT_PPP_SERIAL
:
1548 * We use Ethernet protocol types inside libpcap;
1549 * map them to the corresponding PPP protocol types.
1558 case ETHERTYPE_IPV6
:
1567 case ETHERTYPE_ATALK
:
1581 * I'm assuming the "Bridging PDU"s that go
1582 * over PPP are Spanning Tree Protocol
1596 * We use Ethernet protocol types inside libpcap;
1597 * map them to the corresponding PPP protocol types.
1602 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_IP
);
1603 b1
= gen_cmp(off_linktype
, BPF_H
, PPP_VJC
);
1605 b0
= gen_cmp(off_linktype
, BPF_H
, PPP_VJNC
);
1610 case ETHERTYPE_IPV6
:
1620 case ETHERTYPE_ATALK
:
1634 * I'm assuming the "Bridging PDU"s that go
1635 * over PPP are Spanning Tree Protocol
1651 * For DLT_NULL, the link-layer header is a 32-bit
1652 * word containing an AF_ value in *host* byte order,
1653 * and for DLT_ENC, the link-layer header begins
1654 * with a 32-bit work containing an AF_ value in
1657 * In addition, if we're reading a saved capture file,
1658 * the host byte order in the capture may not be the
1659 * same as the host byte order on this machine.
1661 * For DLT_LOOP, the link-layer header is a 32-bit
1662 * word containing an AF_ value in *network* byte order.
1664 * XXX - AF_ values may, unfortunately, be platform-
1665 * dependent; for example, FreeBSD's AF_INET6 is 24
1666 * whilst NetBSD's and OpenBSD's is 26.
1668 * This means that, when reading a capture file, just
1669 * checking for our AF_INET6 value won't work if the
1670 * capture file came from another OS.
1679 case ETHERTYPE_IPV6
:
1686 * Not a type on which we support filtering.
1687 * XXX - support those that have AF_ values
1688 * #defined on this platform, at least?
1693 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
1695 * The AF_ value is in host byte order, but
1696 * the BPF interpreter will convert it to
1697 * network byte order.
1699 * If this is a save file, and it's from a
1700 * machine with the opposite byte order to
1701 * ours, we byte-swap the AF_ value.
1703 * Then we run it through "htonl()", and
1704 * generate code to compare against the result.
1706 if (bpf_pcap
->sf
.rfile
!= NULL
&&
1707 bpf_pcap
->sf
.swapped
)
1708 proto
= SWAPLONG(proto
);
1709 proto
= htonl(proto
);
1711 return (gen_cmp(0, BPF_W
, (bpf_int32
)proto
));
1715 * af field is host byte order in contrast to the rest of
1718 if (proto
== ETHERTYPE_IP
)
1719 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1720 (bpf_int32
)AF_INET
));
1722 else if (proto
== ETHERTYPE_IPV6
)
1723 return (gen_cmp(offsetof(struct pfloghdr
, af
), BPF_B
,
1724 (bpf_int32
)AF_INET6
));
1732 case DLT_ARCNET_LINUX
:
1734 * XXX should we check for first fragment if the protocol
1743 case ETHERTYPE_IPV6
:
1744 return (gen_cmp(off_linktype
, BPF_B
,
1745 (bpf_int32
)ARCTYPE_INET6
));
1749 b0
= gen_cmp(off_linktype
, BPF_B
,
1750 (bpf_int32
)ARCTYPE_IP
);
1751 b1
= gen_cmp(off_linktype
, BPF_B
,
1752 (bpf_int32
)ARCTYPE_IP_OLD
);
1757 b0
= gen_cmp(off_linktype
, BPF_B
,
1758 (bpf_int32
)ARCTYPE_ARP
);
1759 b1
= gen_cmp(off_linktype
, BPF_B
,
1760 (bpf_int32
)ARCTYPE_ARP_OLD
);
1764 case ETHERTYPE_REVARP
:
1765 return (gen_cmp(off_linktype
, BPF_B
,
1766 (bpf_int32
)ARCTYPE_REVARP
));
1768 case ETHERTYPE_ATALK
:
1769 return (gen_cmp(off_linktype
, BPF_B
,
1770 (bpf_int32
)ARCTYPE_ATALK
));
1777 case ETHERTYPE_ATALK
:
1787 * XXX - assumes a 2-byte Frame Relay header with
1788 * DLCI and flags. What if the address is longer?
1794 * Check for the special NLPID for IP.
1796 return gen_cmp(2, BPF_H
, (0x03<<8) | 0xcc);
1799 case ETHERTYPE_IPV6
:
1801 * Check for the special NLPID for IPv6.
1803 return gen_cmp(2, BPF_H
, (0x03<<8) | 0x8e);
1808 * Check for several OSI protocols.
1810 * Frame Relay packets typically have an OSI
1811 * NLPID at the beginning; we check for each
1814 * What we check for is the NLPID and a frame
1815 * control field of UI, i.e. 0x03 followed
1818 b0
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
1819 b1
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
1820 b2
= gen_cmp(2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
1831 case DLT_JUNIPER_MLPPP
:
1832 case DLT_JUNIPER_ATM1
:
1833 case DLT_JUNIPER_ATM2
:
1834 /* just lets verify the magic number for now -
1835 * we may have up to 6 different encapsulations on the wire
1836 * and need a lot of heuristics to figure out that the payload
1839 * FIXME encapsulation specific BPF_ filters
1841 return gen_mcmp(0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
1843 case DLT_LINUX_IRDA
:
1844 bpf_error("IrDA link-layer type filtering not implemented");
1847 bpf_error("DOCSIS link-layer type filtering not implemented");
1851 * All the types that have no encapsulation should either be
1852 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
1853 * all packets are IP packets, or should be handled in some
1854 * special case, if none of them are (if some are and some
1855 * aren't, the lack of encapsulation is a problem, as we'd
1856 * have to find some other way of determining the packet type).
1858 * Therefore, if "off_linktype" is -1, there's an error.
1860 if (off_linktype
== (u_int
)-1)
1864 * Any type not handled above should always have an Ethernet
1865 * type at an offset of "off_linktype". (PPP is partially
1866 * handled above - the protocol type is mapped from the
1867 * Ethernet and LLC types we use internally to the corresponding
1868 * PPP type - but the PPP type is always specified by a value
1869 * at "off_linktype", so we don't have to do the code generation
1872 return gen_cmp(off_linktype
, BPF_H
, (bpf_int32
)proto
);
1876 * Check for an LLC SNAP packet with a given organization code and
1877 * protocol type; we check the entire contents of the 802.2 LLC and
1878 * snap headers, checking for DSAP and SSAP of SNAP and a control
1879 * field of 0x03 in the LLC header, and for the specified organization
1880 * code and protocol type in the SNAP header.
1882 static struct block
*
1883 gen_snap(orgcode
, ptype
, offset
)
1884 bpf_u_int32 orgcode
;
1888 u_char snapblock
[8];
1890 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
1891 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
1892 snapblock
[2] = 0x03; /* control = UI */
1893 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
1894 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
1895 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
1896 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
1897 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
1898 return gen_bcmp(offset
, 8, snapblock
);
1902 * Check for a given protocol value assuming an 802.2 LLC header.
1904 static struct block
*
1909 * XXX - handle token-ring variable-length header.
1914 return gen_cmp(off_linktype
, BPF_H
, (long)
1915 ((LLCSAP_IP
<< 8) | LLCSAP_IP
));
1918 return gen_cmp(off_linktype
, BPF_H
, (long)
1919 ((LLCSAP_ISONS
<< 8) | LLCSAP_ISONS
));
1921 case LLCSAP_NETBEUI
:
1922 return gen_cmp(off_linktype
, BPF_H
, (long)
1923 ((LLCSAP_NETBEUI
<< 8) | LLCSAP_NETBEUI
));
1927 * XXX - are there ever SNAP frames for IPX on
1928 * non-Ethernet 802.x networks?
1930 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1932 case ETHERTYPE_ATALK
:
1934 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1935 * SNAP packets with an organization code of
1936 * 0x080007 (Apple, for Appletalk) and a protocol
1937 * type of ETHERTYPE_ATALK (Appletalk).
1939 * XXX - check for an organization code of
1940 * encapsulated Ethernet as well?
1942 return gen_snap(0x080007, ETHERTYPE_ATALK
, off_linktype
);
1946 * XXX - we don't have to check for IPX 802.3
1947 * here, but should we check for the IPX Ethertype?
1949 if (proto
<= ETHERMTU
) {
1951 * This is an LLC SAP value, so check
1954 return gen_cmp(off_linktype
, BPF_B
, (bpf_int32
)proto
);
1957 * This is an Ethernet type; we assume that it's
1958 * unlikely that it'll appear in the right place
1959 * at random, and therefore check only the
1960 * location that would hold the Ethernet type
1961 * in a SNAP frame with an organization code of
1962 * 0x000000 (encapsulated Ethernet).
1964 * XXX - if we were to check for the SNAP DSAP and
1965 * LSAP, as per XXX, and were also to check for an
1966 * organization code of 0x000000 (encapsulated
1967 * Ethernet), we'd do
1969 * return gen_snap(0x000000, proto,
1972 * here; for now, we don't, as per the above.
1973 * I don't know whether it's worth the extra CPU
1974 * time to do the right check or not.
1976 return gen_cmp(off_linktype
+6, BPF_H
, (bpf_int32
)proto
);
1981 static struct block
*
1982 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
1986 u_int src_off
, dst_off
;
1988 struct block
*b0
, *b1
;
2002 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2003 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2009 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2010 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2017 b0
= gen_linktype(proto
);
2018 b1
= gen_mcmp(offset
, BPF_W
, (bpf_int32
)addr
, mask
);
2024 static struct block
*
2025 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
2026 struct in6_addr
*addr
;
2027 struct in6_addr
*mask
;
2029 u_int src_off
, dst_off
;
2031 struct block
*b0
, *b1
;
2046 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2047 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2053 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
2054 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
2061 /* this order is important */
2062 a
= (u_int32_t
*)addr
;
2063 m
= (u_int32_t
*)mask
;
2064 b1
= gen_mcmp(offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
2065 b0
= gen_mcmp(offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
2067 b0
= gen_mcmp(offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
2069 b0
= gen_mcmp(offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
2071 b0
= gen_linktype(proto
);
2077 static struct block
*
2078 gen_ehostop(eaddr
, dir
)
2079 register const u_char
*eaddr
;
2082 register struct block
*b0
, *b1
;
2086 return gen_bcmp(off_mac
+ 6, 6, eaddr
);
2089 return gen_bcmp(off_mac
+ 0, 6, eaddr
);
2092 b0
= gen_ehostop(eaddr
, Q_SRC
);
2093 b1
= gen_ehostop(eaddr
, Q_DST
);
2099 b0
= gen_ehostop(eaddr
, Q_SRC
);
2100 b1
= gen_ehostop(eaddr
, Q_DST
);
2109 * Like gen_ehostop, but for DLT_FDDI
2111 static struct block
*
2112 gen_fhostop(eaddr
, dir
)
2113 register const u_char
*eaddr
;
2116 struct block
*b0
, *b1
;
2121 return gen_bcmp(6 + 1 + pcap_fddipad
, 6, eaddr
);
2123 return gen_bcmp(6 + 1, 6, eaddr
);
2128 return gen_bcmp(0 + 1 + pcap_fddipad
, 6, eaddr
);
2130 return gen_bcmp(0 + 1, 6, eaddr
);
2134 b0
= gen_fhostop(eaddr
, Q_SRC
);
2135 b1
= gen_fhostop(eaddr
, Q_DST
);
2141 b0
= gen_fhostop(eaddr
, Q_SRC
);
2142 b1
= gen_fhostop(eaddr
, Q_DST
);
2151 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
2153 static struct block
*
2154 gen_thostop(eaddr
, dir
)
2155 register const u_char
*eaddr
;
2158 register struct block
*b0
, *b1
;
2162 return gen_bcmp(8, 6, eaddr
);
2165 return gen_bcmp(2, 6, eaddr
);
2168 b0
= gen_thostop(eaddr
, Q_SRC
);
2169 b1
= gen_thostop(eaddr
, Q_DST
);
2175 b0
= gen_thostop(eaddr
, Q_SRC
);
2176 b1
= gen_thostop(eaddr
, Q_DST
);
2185 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN)
2187 static struct block
*
2188 gen_wlanhostop(eaddr
, dir
)
2189 register const u_char
*eaddr
;
2192 register struct block
*b0
, *b1
, *b2
;
2193 register struct slist
*s
;
2200 * For control frames, there is no SA.
2202 * For management frames, SA is at an
2203 * offset of 10 from the beginning of
2206 * For data frames, SA is at an offset
2207 * of 10 from the beginning of the packet
2208 * if From DS is clear, at an offset of
2209 * 16 from the beginning of the packet
2210 * if From DS is set and To DS is clear,
2211 * and an offset of 24 from the beginning
2212 * of the packet if From DS is set and To DS
2217 * Generate the tests to be done for data frames
2220 * First, check for To DS set, i.e. check "link[1] & 0x01".
2222 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2224 b1
= new_block(JMP(BPF_JSET
));
2225 b1
->s
.k
= 0x01; /* To DS */
2229 * If To DS is set, the SA is at 24.
2231 b0
= gen_bcmp(24, 6, eaddr
);
2235 * Now, check for To DS not set, i.e. check
2236 * "!(link[1] & 0x01)".
2238 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2240 b2
= new_block(JMP(BPF_JSET
));
2241 b2
->s
.k
= 0x01; /* To DS */
2246 * If To DS is not set, the SA is at 16.
2248 b1
= gen_bcmp(16, 6, eaddr
);
2252 * Now OR together the last two checks. That gives
2253 * the complete set of checks for data frames with
2259 * Now check for From DS being set, and AND that with
2260 * the ORed-together checks.
2262 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2264 b1
= new_block(JMP(BPF_JSET
));
2265 b1
->s
.k
= 0x02; /* From DS */
2270 * Now check for data frames with From DS not set.
2272 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2274 b2
= new_block(JMP(BPF_JSET
));
2275 b2
->s
.k
= 0x02; /* From DS */
2280 * If From DS isn't set, the SA is at 10.
2282 b1
= gen_bcmp(10, 6, eaddr
);
2286 * Now OR together the checks for data frames with
2287 * From DS not set and for data frames with From DS
2288 * set; that gives the checks done for data frames.
2293 * Now check for a data frame.
2294 * I.e, check "link[0] & 0x08".
2296 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2298 b1
= new_block(JMP(BPF_JSET
));
2303 * AND that with the checks done for data frames.
2308 * If the high-order bit of the type value is 0, this
2309 * is a management frame.
2310 * I.e, check "!(link[0] & 0x08)".
2312 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2314 b2
= new_block(JMP(BPF_JSET
));
2320 * For management frames, the SA is at 10.
2322 b1
= gen_bcmp(10, 6, eaddr
);
2326 * OR that with the checks done for data frames.
2327 * That gives the checks done for management and
2333 * If the low-order bit of the type value is 1,
2334 * this is either a control frame or a frame
2335 * with a reserved type, and thus not a
2338 * I.e., check "!(link[0] & 0x04)".
2340 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2342 b1
= new_block(JMP(BPF_JSET
));
2348 * AND that with the checks for data and management
2358 * For control frames, there is no DA.
2360 * For management frames, DA is at an
2361 * offset of 4 from the beginning of
2364 * For data frames, DA is at an offset
2365 * of 4 from the beginning of the packet
2366 * if To DS is clear and at an offset of
2367 * 16 from the beginning of the packet
2372 * Generate the tests to be done for data frames.
2374 * First, check for To DS set, i.e. "link[1] & 0x01".
2376 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2378 b1
= new_block(JMP(BPF_JSET
));
2379 b1
->s
.k
= 0x01; /* To DS */
2383 * If To DS is set, the DA is at 16.
2385 b0
= gen_bcmp(16, 6, eaddr
);
2389 * Now, check for To DS not set, i.e. check
2390 * "!(link[1] & 0x01)".
2392 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2394 b2
= new_block(JMP(BPF_JSET
));
2395 b2
->s
.k
= 0x01; /* To DS */
2400 * If To DS is not set, the DA is at 4.
2402 b1
= gen_bcmp(4, 6, eaddr
);
2406 * Now OR together the last two checks. That gives
2407 * the complete set of checks for data frames.
2412 * Now check for a data frame.
2413 * I.e, check "link[0] & 0x08".
2415 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2417 b1
= new_block(JMP(BPF_JSET
));
2422 * AND that with the checks done for data frames.
2427 * If the high-order bit of the type value is 0, this
2428 * is a management frame.
2429 * I.e, check "!(link[0] & 0x08)".
2431 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2433 b2
= new_block(JMP(BPF_JSET
));
2439 * For management frames, the DA is at 4.
2441 b1
= gen_bcmp(4, 6, eaddr
);
2445 * OR that with the checks done for data frames.
2446 * That gives the checks done for management and
2452 * If the low-order bit of the type value is 1,
2453 * this is either a control frame or a frame
2454 * with a reserved type, and thus not a
2457 * I.e., check "!(link[0] & 0x04)".
2459 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2461 b1
= new_block(JMP(BPF_JSET
));
2467 * AND that with the checks for data and management
2474 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2475 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2481 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
2482 b1
= gen_wlanhostop(eaddr
, Q_DST
);
2491 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
2492 * (We assume that the addresses are IEEE 48-bit MAC addresses,
2493 * as the RFC states.)
2495 static struct block
*
2496 gen_ipfchostop(eaddr
, dir
)
2497 register const u_char
*eaddr
;
2500 register struct block
*b0
, *b1
;
2504 return gen_bcmp(10, 6, eaddr
);
2507 return gen_bcmp(2, 6, eaddr
);
2510 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2511 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2517 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
2518 b1
= gen_ipfchostop(eaddr
, Q_DST
);
2527 * This is quite tricky because there may be pad bytes in front of the
2528 * DECNET header, and then there are two possible data packet formats that
2529 * carry both src and dst addresses, plus 5 packet types in a format that
2530 * carries only the src node, plus 2 types that use a different format and
2531 * also carry just the src node.
2535 * Instead of doing those all right, we just look for data packets with
2536 * 0 or 1 bytes of padding. If you want to look at other packets, that
2537 * will require a lot more hacking.
2539 * To add support for filtering on DECNET "areas" (network numbers)
2540 * one would want to add a "mask" argument to this routine. That would
2541 * make the filter even more inefficient, although one could be clever
2542 * and not generate masking instructions if the mask is 0xFFFF.
2544 static struct block
*
2545 gen_dnhostop(addr
, dir
, base_off
)
2550 struct block
*b0
, *b1
, *b2
, *tmp
;
2551 u_int offset_lh
; /* offset if long header is received */
2552 u_int offset_sh
; /* offset if short header is received */
2557 offset_sh
= 1; /* follows flags */
2558 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
2562 offset_sh
= 3; /* follows flags, dstnode */
2563 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
2567 /* Inefficient because we do our Calvinball dance twice */
2568 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2569 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2575 /* Inefficient because we do our Calvinball dance twice */
2576 b0
= gen_dnhostop(addr
, Q_SRC
, base_off
);
2577 b1
= gen_dnhostop(addr
, Q_DST
, base_off
);
2582 bpf_error("ISO host filtering not implemented");
2587 b0
= gen_linktype(ETHERTYPE_DN
);
2588 /* Check for pad = 1, long header case */
2589 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2590 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
2591 b1
= gen_cmp(base_off
+ 2 + 1 + offset_lh
,
2592 BPF_H
, (bpf_int32
)ntohs(addr
));
2594 /* Check for pad = 0, long header case */
2595 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
2596 b2
= gen_cmp(base_off
+ 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2599 /* Check for pad = 1, short header case */
2600 tmp
= gen_mcmp(base_off
+ 2, BPF_H
,
2601 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
2602 b2
= gen_cmp(base_off
+ 2 + 1 + offset_sh
,
2603 BPF_H
, (bpf_int32
)ntohs(addr
));
2606 /* Check for pad = 0, short header case */
2607 tmp
= gen_mcmp(base_off
+ 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
2608 b2
= gen_cmp(base_off
+ 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs(addr
));
2612 /* Combine with test for linktype */
2617 static struct block
*
2618 gen_host(addr
, mask
, proto
, dir
)
2624 struct block
*b0
, *b1
;
2629 b0
= gen_host(addr
, mask
, Q_IP
, dir
);
2630 if (off_linktype
!= (u_int
)-1) {
2631 b1
= gen_host(addr
, mask
, Q_ARP
, dir
);
2633 b0
= gen_host(addr
, mask
, Q_RARP
, dir
);
2639 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
,
2640 off_nl
+ 12, off_nl
+ 16);
2643 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
,
2644 off_nl
+ 14, off_nl
+ 24);
2647 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
,
2648 off_nl
+ 14, off_nl
+ 24);
2651 bpf_error("'tcp' modifier applied to host");
2654 bpf_error("'sctp' modifier applied to host");
2657 bpf_error("'udp' modifier applied to host");
2660 bpf_error("'icmp' modifier applied to host");
2663 bpf_error("'igmp' modifier applied to host");
2666 bpf_error("'igrp' modifier applied to host");
2669 bpf_error("'pim' modifier applied to host");
2672 bpf_error("'vrrp' modifier applied to host");
2675 bpf_error("ATALK host filtering not implemented");
2678 bpf_error("AARP host filtering not implemented");
2681 return gen_dnhostop(addr
, dir
, off_nl
);
2684 bpf_error("SCA host filtering not implemented");
2687 bpf_error("LAT host filtering not implemented");
2690 bpf_error("MOPDL host filtering not implemented");
2693 bpf_error("MOPRC host filtering not implemented");
2697 bpf_error("'ip6' modifier applied to ip host");
2700 bpf_error("'icmp6' modifier applied to host");
2704 bpf_error("'ah' modifier applied to host");
2707 bpf_error("'esp' modifier applied to host");
2710 bpf_error("ISO host filtering not implemented");
2713 bpf_error("'esis' modifier applied to host");
2716 bpf_error("'isis' modifier applied to host");
2719 bpf_error("'clnp' modifier applied to host");
2722 bpf_error("'stp' modifier applied to host");
2725 bpf_error("IPX host filtering not implemented");
2728 bpf_error("'netbeui' modifier applied to host");
2737 static struct block
*
2738 gen_host6(addr
, mask
, proto
, dir
)
2739 struct in6_addr
*addr
;
2740 struct in6_addr
*mask
;
2747 return gen_host6(addr
, mask
, Q_IPV6
, dir
);
2750 bpf_error("'ip' modifier applied to ip6 host");
2753 bpf_error("'rarp' modifier applied to ip6 host");
2756 bpf_error("'arp' modifier applied to ip6 host");
2759 bpf_error("'sctp' modifier applied to host");
2762 bpf_error("'tcp' modifier applied to host");
2765 bpf_error("'udp' modifier applied to host");
2768 bpf_error("'icmp' modifier applied to host");
2771 bpf_error("'igmp' modifier applied to host");
2774 bpf_error("'igrp' modifier applied to host");
2777 bpf_error("'pim' modifier applied to host");
2780 bpf_error("'vrrp' modifier applied to host");
2783 bpf_error("ATALK host filtering not implemented");
2786 bpf_error("AARP host filtering not implemented");
2789 bpf_error("'decnet' modifier applied to ip6 host");
2792 bpf_error("SCA host filtering not implemented");
2795 bpf_error("LAT host filtering not implemented");
2798 bpf_error("MOPDL host filtering not implemented");
2801 bpf_error("MOPRC host filtering not implemented");
2804 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
,
2805 off_nl
+ 8, off_nl
+ 24);
2808 bpf_error("'icmp6' modifier applied to host");
2811 bpf_error("'ah' modifier applied to host");
2814 bpf_error("'esp' modifier applied to host");
2817 bpf_error("ISO host filtering not implemented");
2820 bpf_error("'esis' modifier applied to host");
2823 bpf_error("'isis' modifier applied to host");
2826 bpf_error("'clnp' modifier applied to host");
2829 bpf_error("'stp' modifier applied to host");
2832 bpf_error("IPX host filtering not implemented");
2835 bpf_error("'netbeui' modifier applied to host");
2845 static struct block
*
2846 gen_gateway(eaddr
, alist
, proto
, dir
)
2847 const u_char
*eaddr
;
2848 bpf_u_int32
**alist
;
2852 struct block
*b0
, *b1
, *tmp
;
2855 bpf_error("direction applied to 'gateway'");
2862 if (linktype
== DLT_EN10MB
)
2863 b0
= gen_ehostop(eaddr
, Q_OR
);
2864 else if (linktype
== DLT_FDDI
)
2865 b0
= gen_fhostop(eaddr
, Q_OR
);
2866 else if (linktype
== DLT_IEEE802
)
2867 b0
= gen_thostop(eaddr
, Q_OR
);
2868 else if (linktype
== DLT_IEEE802_11
)
2869 b0
= gen_wlanhostop(eaddr
, Q_OR
);
2870 else if (linktype
== DLT_SUNATM
&& is_lane
) {
2872 * Check that the packet doesn't begin with an
2873 * LE Control marker. (We've already generated
2876 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
2880 * Now check the MAC address.
2882 b0
= gen_ehostop(eaddr
, Q_OR
);
2884 } else if (linktype
== DLT_IP_OVER_FC
)
2885 b0
= gen_ipfchostop(eaddr
, Q_OR
);
2888 "'gateway' supported only on ethernet/FDDI/token ring/802.11/Fibre Channel");
2890 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2892 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
);
2900 bpf_error("illegal modifier of 'gateway'");
2906 gen_proto_abbrev(proto
)
2915 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
2917 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
2923 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
2925 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
2931 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
2933 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
2939 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
2942 #ifndef IPPROTO_IGMP
2943 #define IPPROTO_IGMP 2
2947 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
2950 #ifndef IPPROTO_IGRP
2951 #define IPPROTO_IGRP 9
2954 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
2958 #define IPPROTO_PIM 103
2962 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
2964 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
2969 #ifndef IPPROTO_VRRP
2970 #define IPPROTO_VRRP 112
2974 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
2978 b1
= gen_linktype(ETHERTYPE_IP
);
2982 b1
= gen_linktype(ETHERTYPE_ARP
);
2986 b1
= gen_linktype(ETHERTYPE_REVARP
);
2990 bpf_error("link layer applied in wrong context");
2993 b1
= gen_linktype(ETHERTYPE_ATALK
);
2997 b1
= gen_linktype(ETHERTYPE_AARP
);
3001 b1
= gen_linktype(ETHERTYPE_DN
);
3005 b1
= gen_linktype(ETHERTYPE_SCA
);
3009 b1
= gen_linktype(ETHERTYPE_LAT
);
3013 b1
= gen_linktype(ETHERTYPE_MOPDL
);
3017 b1
= gen_linktype(ETHERTYPE_MOPRC
);
3022 b1
= gen_linktype(ETHERTYPE_IPV6
);
3025 #ifndef IPPROTO_ICMPV6
3026 #define IPPROTO_ICMPV6 58
3029 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
3034 #define IPPROTO_AH 51
3037 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
3039 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
3045 #define IPPROTO_ESP 50
3048 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
3050 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
3056 b1
= gen_linktype(LLCSAP_ISONS
);
3060 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
3064 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3067 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
3068 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3069 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3071 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3073 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3075 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3079 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
3080 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3081 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
3083 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3085 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3087 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3091 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
3092 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3093 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
3095 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
3100 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
3101 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
3106 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3107 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3109 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3111 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3116 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
3117 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
3122 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
3123 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
3128 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
3132 b1
= gen_linktype(LLCSAP_8021D
);
3136 b1
= gen_linktype(LLCSAP_IPX
);
3140 b1
= gen_linktype(LLCSAP_NETBEUI
);
3149 static struct block
*
3156 s
= new_stmt(BPF_LD
|BPF_H
|BPF_ABS
);
3157 s
->s
.k
= off_nl
+ 6;
3158 b
= new_block(JMP(BPF_JSET
));
3166 static struct block
*
3167 gen_portatom(off
, v
)
3174 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3177 s
->next
= new_stmt(BPF_LD
|BPF_IND
|BPF_H
);
3178 s
->next
->s
.k
= off_nl
+ off
;
3180 b
= new_block(JMP(BPF_JEQ
));
3188 static struct block
*
3189 gen_portatom6(off
, v
)
3193 return gen_cmp(off_nl
+ 40 + off
, BPF_H
, v
);
3198 gen_portop(port
, proto
, dir
)
3199 int port
, proto
, dir
;
3201 struct block
*b0
, *b1
, *tmp
;
3203 /* ip proto 'proto' */
3204 tmp
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)proto
);
3210 b1
= gen_portatom(0, (bpf_int32
)port
);
3214 b1
= gen_portatom(2, (bpf_int32
)port
);
3219 tmp
= gen_portatom(0, (bpf_int32
)port
);
3220 b1
= gen_portatom(2, (bpf_int32
)port
);
3225 tmp
= gen_portatom(0, (bpf_int32
)port
);
3226 b1
= gen_portatom(2, (bpf_int32
)port
);
3238 static struct block
*
3239 gen_port(port
, ip_proto
, dir
)
3244 struct block
*b0
, *b1
, *tmp
;
3249 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3250 * not LLC encapsulation with LLCSAP_IP.
3252 * For IEEE 802 networks - which includes 802.5 token ring
3253 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3254 * says that SNAP encapsulation is used, not LLC encapsulation
3257 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3258 * RFC 2225 say that SNAP encapsulation is used, not LLC
3259 * encapsulation with LLCSAP_IP.
3261 * So we always check for ETHERTYPE_IP.
3263 b0
= gen_linktype(ETHERTYPE_IP
);
3269 b1
= gen_portop(port
, ip_proto
, dir
);
3273 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
3274 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
3276 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
3289 gen_portop6(port
, proto
, dir
)
3290 int port
, proto
, dir
;
3292 struct block
*b0
, *b1
, *tmp
;
3294 /* ip proto 'proto' */
3295 b0
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)proto
);
3299 b1
= gen_portatom6(0, (bpf_int32
)port
);
3303 b1
= gen_portatom6(2, (bpf_int32
)port
);
3308 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3309 b1
= gen_portatom6(2, (bpf_int32
)port
);
3314 tmp
= gen_portatom6(0, (bpf_int32
)port
);
3315 b1
= gen_portatom6(2, (bpf_int32
)port
);
3327 static struct block
*
3328 gen_port6(port
, ip_proto
, dir
)
3333 struct block
*b0
, *b1
, *tmp
;
3335 /* ether proto ip */
3336 b0
= gen_linktype(ETHERTYPE_IPV6
);
3342 b1
= gen_portop6(port
, ip_proto
, dir
);
3346 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
3347 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
3349 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
3362 lookup_proto(name
, proto
)
3363 register const char *name
;
3373 v
= pcap_nametoproto(name
);
3374 if (v
== PROTO_UNDEF
)
3375 bpf_error("unknown ip proto '%s'", name
);
3379 /* XXX should look up h/w protocol type based on linktype */
3380 v
= pcap_nametoeproto(name
);
3381 if (v
== PROTO_UNDEF
)
3382 bpf_error("unknown ether proto '%s'", name
);
3386 if (strcmp(name
, "esis") == 0)
3388 else if (strcmp(name
, "isis") == 0)
3390 else if (strcmp(name
, "clnp") == 0)
3393 bpf_error("unknown osi proto '%s'", name
);
3413 static struct block
*
3414 gen_protochain(v
, proto
, dir
)
3419 #ifdef NO_PROTOCHAIN
3420 return gen_proto(v
, proto
, dir
);
3422 struct block
*b0
, *b
;
3423 struct slist
*s
[100];
3424 int fix2
, fix3
, fix4
, fix5
;
3425 int ahcheck
, again
, end
;
3427 int reg2
= alloc_reg();
3429 memset(s
, 0, sizeof(s
));
3430 fix2
= fix3
= fix4
= fix5
= 0;
3437 b0
= gen_protochain(v
, Q_IP
, dir
);
3438 b
= gen_protochain(v
, Q_IPV6
, dir
);
3442 bpf_error("bad protocol applied for 'protochain'");
3446 no_optimize
= 1; /*this code is not compatible with optimzer yet */
3449 * s[0] is a dummy entry to protect other BPF insn from damaged
3450 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
3451 * hard to find interdependency made by jump table fixup.
3454 s
[i
] = new_stmt(0); /*dummy*/
3459 b0
= gen_linktype(ETHERTYPE_IP
);
3462 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3463 s
[i
]->s
.k
= off_nl
+ 9;
3465 /* X = ip->ip_hl << 2 */
3466 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
3472 b0
= gen_linktype(ETHERTYPE_IPV6
);
3474 /* A = ip6->ip_nxt */
3475 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
3476 s
[i
]->s
.k
= off_nl
+ 6;
3478 /* X = sizeof(struct ip6_hdr) */
3479 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
3485 bpf_error("unsupported proto to gen_protochain");
3489 /* again: if (A == v) goto end; else fall through; */
3491 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3493 s
[i
]->s
.jt
= NULL
; /*later*/
3494 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3498 #ifndef IPPROTO_NONE
3499 #define IPPROTO_NONE 59
3501 /* if (A == IPPROTO_NONE) goto end */
3502 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3503 s
[i
]->s
.jt
= NULL
; /*later*/
3504 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3505 s
[i
]->s
.k
= IPPROTO_NONE
;
3506 s
[fix5
]->s
.jf
= s
[i
];
3511 if (proto
== Q_IPV6
) {
3512 int v6start
, v6end
, v6advance
, j
;
3515 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
3516 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3517 s
[i
]->s
.jt
= NULL
; /*later*/
3518 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3519 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
3520 s
[fix2
]->s
.jf
= s
[i
];
3522 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
3523 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3524 s
[i
]->s
.jt
= NULL
; /*later*/
3525 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3526 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
3528 /* if (A == IPPROTO_ROUTING) goto v6advance */
3529 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3530 s
[i
]->s
.jt
= NULL
; /*later*/
3531 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
3532 s
[i
]->s
.k
= IPPROTO_ROUTING
;
3534 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
3535 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3536 s
[i
]->s
.jt
= NULL
; /*later*/
3537 s
[i
]->s
.jf
= NULL
; /*later*/
3538 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
3549 * X = X + (P[X + 1] + 1) * 8;
3552 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3554 /* A = P[X + packet head] */
3555 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3559 s
[i
] = new_stmt(BPF_ST
);
3563 s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3566 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3570 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3572 /* A = P[X + packet head]; */
3573 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3577 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3581 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3585 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3588 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3592 /* goto again; (must use BPF_JA for backward jump) */
3593 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3594 s
[i
]->s
.k
= again
- i
- 1;
3595 s
[i
- 1]->s
.jf
= s
[i
];
3599 for (j
= v6start
; j
<= v6end
; j
++)
3600 s
[j
]->s
.jt
= s
[v6advance
];
3605 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3607 s
[fix2
]->s
.jf
= s
[i
];
3613 /* if (A == IPPROTO_AH) then fall through; else goto end; */
3614 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
3615 s
[i
]->s
.jt
= NULL
; /*later*/
3616 s
[i
]->s
.jf
= NULL
; /*later*/
3617 s
[i
]->s
.k
= IPPROTO_AH
;
3619 s
[fix3
]->s
.jf
= s
[ahcheck
];
3626 * X = X + (P[X + 1] + 2) * 4;
3629 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3631 /* A = P[X + packet head]; */
3632 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3636 s
[i
] = new_stmt(BPF_ST
);
3640 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
3643 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3647 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3649 /* A = P[X + packet head] */
3650 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
3654 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3658 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
3662 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
3665 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
3669 /* goto again; (must use BPF_JA for backward jump) */
3670 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
3671 s
[i
]->s
.k
= again
- i
- 1;
3676 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
3678 s
[fix2
]->s
.jt
= s
[end
];
3679 s
[fix4
]->s
.jf
= s
[end
];
3680 s
[fix5
]->s
.jt
= s
[end
];
3687 for (i
= 0; i
< max
- 1; i
++)
3688 s
[i
]->next
= s
[i
+ 1];
3689 s
[max
- 1]->next
= NULL
;
3694 b
= new_block(JMP(BPF_JEQ
));
3695 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
3705 static struct block
*
3706 gen_proto(v
, proto
, dir
)
3711 struct block
*b0
, *b1
;
3713 if (dir
!= Q_DEFAULT
)
3714 bpf_error("direction applied to 'proto'");
3719 b0
= gen_proto(v
, Q_IP
, dir
);
3720 b1
= gen_proto(v
, Q_IPV6
, dir
);
3728 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
3729 * not LLC encapsulation with LLCSAP_IP.
3731 * For IEEE 802 networks - which includes 802.5 token ring
3732 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
3733 * says that SNAP encapsulation is used, not LLC encapsulation
3736 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
3737 * RFC 2225 say that SNAP encapsulation is used, not LLC
3738 * encapsulation with LLCSAP_IP.
3740 * So we always check for ETHERTYPE_IP.
3742 b0
= gen_linktype(ETHERTYPE_IP
);
3744 b1
= gen_cmp(off_nl
+ 9, BPF_B
, (bpf_int32
)v
);
3746 b1
= gen_protochain(v
, Q_IP
);
3756 * Frame Relay packets typically have an OSI
3757 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
3758 * generates code to check for all the OSI
3759 * NLPIDs, so calling it and then adding a check
3760 * for the particular NLPID for which we're
3761 * looking is bogus, as we can just check for
3764 * What we check for is the NLPID and a frame
3765 * control field value of UI, i.e. 0x03 followed
3768 * XXX - assumes a 2-byte Frame Relay header with
3769 * DLCI and flags. What if the address is longer?
3771 * XXX - what about SNAP-encapsulated frames?
3773 return gen_cmp(2, BPF_H
, (0x03<<8) | v
);
3779 * Cisco uses an Ethertype lookalike - for OSI,
3782 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
3783 /* OSI in C-HDLC is stuffed with a fudge byte */
3784 b1
= gen_cmp(off_nl_nosnap
+1, BPF_B
, (long)v
);
3789 b0
= gen_linktype(LLCSAP_ISONS
);
3790 b1
= gen_cmp(off_nl_nosnap
, BPF_B
, (long)v
);
3796 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
3798 * 4 is the offset of the PDU type relative to the IS-IS
3801 b1
= gen_cmp(off_nl_nosnap
+4, BPF_B
, (long)v
);
3806 bpf_error("arp does not encapsulate another protocol");
3810 bpf_error("rarp does not encapsulate another protocol");
3814 bpf_error("atalk encapsulation is not specifiable");
3818 bpf_error("decnet encapsulation is not specifiable");
3822 bpf_error("sca does not encapsulate another protocol");
3826 bpf_error("lat does not encapsulate another protocol");
3830 bpf_error("moprc does not encapsulate another protocol");
3834 bpf_error("mopdl does not encapsulate another protocol");
3838 return gen_linktype(v
);
3841 bpf_error("'udp proto' is bogus");
3845 bpf_error("'tcp proto' is bogus");
3849 bpf_error("'sctp proto' is bogus");
3853 bpf_error("'icmp proto' is bogus");
3857 bpf_error("'igmp proto' is bogus");
3861 bpf_error("'igrp proto' is bogus");
3865 bpf_error("'pim proto' is bogus");
3869 bpf_error("'vrrp proto' is bogus");
3874 b0
= gen_linktype(ETHERTYPE_IPV6
);
3876 b1
= gen_cmp(off_nl
+ 6, BPF_B
, (bpf_int32
)v
);
3878 b1
= gen_protochain(v
, Q_IPV6
);
3884 bpf_error("'icmp6 proto' is bogus");
3888 bpf_error("'ah proto' is bogus");
3891 bpf_error("'ah proto' is bogus");
3894 bpf_error("'stp proto' is bogus");
3897 bpf_error("'ipx proto' is bogus");
3900 bpf_error("'netbeui proto' is bogus");
3911 register const char *name
;
3914 int proto
= q
.proto
;
3918 bpf_u_int32 mask
, addr
;
3920 bpf_u_int32
**alist
;
3923 struct sockaddr_in
*sin
;
3924 struct sockaddr_in6
*sin6
;
3925 struct addrinfo
*res
, *res0
;
3926 struct in6_addr mask128
;
3928 struct block
*b
, *tmp
;
3929 int port
, real_proto
;
3934 addr
= pcap_nametonetaddr(name
);
3936 bpf_error("unknown network '%s'", name
);
3937 /* Left justify network addr and calculate its network mask */
3939 while (addr
&& (addr
& 0xff000000) == 0) {
3943 return gen_host(addr
, mask
, proto
, dir
);
3947 if (proto
== Q_LINK
) {
3951 eaddr
= pcap_ether_hostton(name
);
3954 "unknown ether host '%s'", name
);
3955 b
= gen_ehostop(eaddr
, dir
);
3960 eaddr
= pcap_ether_hostton(name
);
3963 "unknown FDDI host '%s'", name
);
3964 b
= gen_fhostop(eaddr
, dir
);
3969 eaddr
= pcap_ether_hostton(name
);
3972 "unknown token ring host '%s'", name
);
3973 b
= gen_thostop(eaddr
, dir
);
3977 case DLT_IEEE802_11
:
3978 eaddr
= pcap_ether_hostton(name
);
3981 "unknown 802.11 host '%s'", name
);
3982 b
= gen_wlanhostop(eaddr
, dir
);
3986 case DLT_IP_OVER_FC
:
3987 eaddr
= pcap_ether_hostton(name
);
3990 "unknown Fibre Channel host '%s'", name
);
3991 b
= gen_ipfchostop(eaddr
, dir
);
4000 * Check that the packet doesn't begin
4001 * with an LE Control marker. (We've
4002 * already generated a test for LANE.)
4004 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
,
4008 eaddr
= pcap_ether_hostton(name
);
4011 "unknown ether host '%s'", name
);
4012 b
= gen_ehostop(eaddr
, dir
);
4018 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
4019 } else if (proto
== Q_DECNET
) {
4020 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
4022 * I don't think DECNET hosts can be multihomed, so
4023 * there is no need to build up a list of addresses
4025 return (gen_host(dn_addr
, 0, proto
, dir
));
4028 alist
= pcap_nametoaddr(name
);
4029 if (alist
== NULL
|| *alist
== NULL
)
4030 bpf_error("unknown host '%s'", name
);
4032 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
4034 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
);
4036 tmp
= gen_host(**alist
++, 0xffffffff,
4043 memset(&mask128
, 0xff, sizeof(mask128
));
4044 res0
= res
= pcap_nametoaddrinfo(name
);
4046 bpf_error("unknown host '%s'", name
);
4048 tproto
= tproto6
= proto
;
4049 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
4053 for (res
= res0
; res
; res
= res
->ai_next
) {
4054 switch (res
->ai_family
) {
4056 if (tproto
== Q_IPV6
)
4059 sin
= (struct sockaddr_in
*)
4061 tmp
= gen_host(ntohl(sin
->sin_addr
.s_addr
),
4062 0xffffffff, tproto
, dir
);
4065 if (tproto6
== Q_IP
)
4068 sin6
= (struct sockaddr_in6
*)
4070 tmp
= gen_host6(&sin6
->sin6_addr
,
4071 &mask128
, tproto6
, dir
);
4082 bpf_error("unknown host '%s'%s", name
,
4083 (proto
== Q_DEFAULT
)
4085 : " for specified address family");
4092 if (proto
!= Q_DEFAULT
&&
4093 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
4094 bpf_error("illegal qualifier of 'port'");
4095 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
4096 bpf_error("unknown port '%s'", name
);
4097 if (proto
== Q_UDP
) {
4098 if (real_proto
== IPPROTO_TCP
)
4099 bpf_error("port '%s' is tcp", name
);
4100 else if (real_proto
== IPPROTO_SCTP
)
4101 bpf_error("port '%s' is sctp", name
);
4103 /* override PROTO_UNDEF */
4104 real_proto
= IPPROTO_UDP
;
4106 if (proto
== Q_TCP
) {
4107 if (real_proto
== IPPROTO_UDP
)
4108 bpf_error("port '%s' is udp", name
);
4110 else if (real_proto
== IPPROTO_SCTP
)
4111 bpf_error("port '%s' is sctp", name
);
4113 /* override PROTO_UNDEF */
4114 real_proto
= IPPROTO_TCP
;
4116 if (proto
== Q_SCTP
) {
4117 if (real_proto
== IPPROTO_UDP
)
4118 bpf_error("port '%s' is udp", name
);
4120 else if (real_proto
== IPPROTO_TCP
)
4121 bpf_error("port '%s' is tcp", name
);
4123 /* override PROTO_UNDEF */
4124 real_proto
= IPPROTO_SCTP
;
4127 return gen_port(port
, real_proto
, dir
);
4131 b
= gen_port(port
, real_proto
, dir
);
4132 gen_or(gen_port6(port
, real_proto
, dir
), b
);
4139 eaddr
= pcap_ether_hostton(name
);
4141 bpf_error("unknown ether host: %s", name
);
4143 alist
= pcap_nametoaddr(name
);
4144 if (alist
== NULL
|| *alist
== NULL
)
4145 bpf_error("unknown host '%s'", name
);
4146 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
4150 bpf_error("'gateway' not supported in this configuration");
4154 real_proto
= lookup_proto(name
, proto
);
4155 if (real_proto
>= 0)
4156 return gen_proto(real_proto
, proto
, dir
);
4158 bpf_error("unknown protocol: %s", name
);
4161 real_proto
= lookup_proto(name
, proto
);
4162 if (real_proto
>= 0)
4163 return gen_protochain(real_proto
, proto
, dir
);
4165 bpf_error("unknown protocol: %s", name
);
4177 gen_mcode(s1
, s2
, masklen
, q
)
4178 register const char *s1
, *s2
;
4179 register int masklen
;
4182 register int nlen
, mlen
;
4185 nlen
= __pcap_atoin(s1
, &n
);
4186 /* Promote short ipaddr */
4190 mlen
= __pcap_atoin(s2
, &m
);
4191 /* Promote short ipaddr */
4194 bpf_error("non-network bits set in \"%s mask %s\"",
4197 /* Convert mask len to mask */
4199 bpf_error("mask length must be <= 32");
4200 m
= 0xffffffff << (32 - masklen
);
4202 bpf_error("non-network bits set in \"%s/%d\"",
4209 return gen_host(n
, m
, q
.proto
, q
.dir
);
4212 bpf_error("Mask syntax for networks only");
4220 register const char *s
;
4225 int proto
= q
.proto
;
4231 else if (q
.proto
== Q_DECNET
)
4232 vlen
= __pcap_atodn(s
, &v
);
4234 vlen
= __pcap_atoin(s
, &v
);
4241 if (proto
== Q_DECNET
)
4242 return gen_host(v
, 0, proto
, dir
);
4243 else if (proto
== Q_LINK
) {
4244 bpf_error("illegal link layer address");
4247 if (s
== NULL
&& q
.addr
== Q_NET
) {
4248 /* Promote short net number */
4249 while (v
&& (v
& 0xff000000) == 0) {
4254 /* Promote short ipaddr */
4258 return gen_host(v
, mask
, proto
, dir
);
4263 proto
= IPPROTO_UDP
;
4264 else if (proto
== Q_TCP
)
4265 proto
= IPPROTO_TCP
;
4266 else if (proto
== Q_SCTP
)
4267 proto
= IPPROTO_SCTP
;
4268 else if (proto
== Q_DEFAULT
)
4269 proto
= PROTO_UNDEF
;
4271 bpf_error("illegal qualifier of 'port'");
4274 return gen_port((int)v
, proto
, dir
);
4278 b
= gen_port((int)v
, proto
, dir
);
4279 gen_or(gen_port6((int)v
, proto
, dir
), b
);
4285 bpf_error("'gateway' requires a name");
4289 return gen_proto((int)v
, proto
, dir
);
4292 return gen_protochain((int)v
, proto
, dir
);
4307 gen_mcode6(s1
, s2
, masklen
, q
)
4308 register const char *s1
, *s2
;
4309 register int masklen
;
4312 struct addrinfo
*res
;
4313 struct in6_addr
*addr
;
4314 struct in6_addr mask
;
4319 bpf_error("no mask %s supported", s2
);
4321 res
= pcap_nametoaddrinfo(s1
);
4323 bpf_error("invalid ip6 address %s", s1
);
4325 bpf_error("%s resolved to multiple address", s1
);
4326 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
4328 if (sizeof(mask
) * 8 < masklen
)
4329 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
4330 memset(&mask
, 0, sizeof(mask
));
4331 memset(&mask
, 0xff, masklen
/ 8);
4333 mask
.s6_addr
[masklen
/ 8] =
4334 (0xff << (8 - masklen
% 8)) & 0xff;
4337 a
= (u_int32_t
*)addr
;
4338 m
= (u_int32_t
*)&mask
;
4339 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
4340 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
4341 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
4349 bpf_error("Mask syntax for networks only");
4353 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
);
4358 bpf_error("invalid qualifier against IPv6 address");
4366 register const u_char
*eaddr
;
4369 struct block
*b
, *tmp
;
4371 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
4372 if (linktype
== DLT_EN10MB
)
4373 return gen_ehostop(eaddr
, (int)q
.dir
);
4374 if (linktype
== DLT_FDDI
)
4375 return gen_fhostop(eaddr
, (int)q
.dir
);
4376 if (linktype
== DLT_IEEE802
)
4377 return gen_thostop(eaddr
, (int)q
.dir
);
4378 if (linktype
== DLT_IEEE802_11
)
4379 return gen_wlanhostop(eaddr
, (int)q
.dir
);
4380 if (linktype
== DLT_SUNATM
&& is_lane
) {
4382 * Check that the packet doesn't begin with an
4383 * LE Control marker. (We've already generated
4386 tmp
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4390 * Now check the MAC address.
4392 b
= gen_ehostop(eaddr
, (int)q
.dir
);
4396 if (linktype
== DLT_IP_OVER_FC
)
4397 return gen_ipfchostop(eaddr
, (int)q
.dir
);
4398 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4400 bpf_error("ethernet address used in non-ether expression");
4406 struct slist
*s0
, *s1
;
4409 * This is definitely not the best way to do this, but the
4410 * lists will rarely get long.
4417 static struct slist
*
4423 s
= new_stmt(BPF_LDX
|BPF_MEM
);
4428 static struct slist
*
4434 s
= new_stmt(BPF_LD
|BPF_MEM
);
4440 gen_load(proto
, index
, size
)
4445 struct slist
*s
, *tmp
;
4447 int regno
= alloc_reg();
4449 free_reg(index
->regno
);
4453 bpf_error("data size must be 1, 2, or 4");
4469 bpf_error("unsupported index operation");
4473 * XXX - what about ATM LANE? Should the index be
4474 * relative to the beginning of the AAL5 frame, so
4475 * that 0 refers to the beginning of the LE Control
4476 * field, or relative to the beginning of the LAN
4477 * frame, so that 0 refers, for Ethernet LANE, to
4478 * the beginning of the destination address?
4480 s
= xfer_to_x(index
);
4481 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4483 sappend(index
->s
, s
);
4498 /* XXX Note that we assume a fixed link header here. */
4499 s
= xfer_to_x(index
);
4500 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
4503 sappend(index
->s
, s
);
4505 b
= gen_proto_abbrev(proto
);
4507 gen_and(index
->b
, b
);
4519 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
4521 sappend(s
, xfer_to_a(index
));
4522 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
4523 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
4524 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
4526 sappend(index
->s
, s
);
4528 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
4530 gen_and(index
->b
, b
);
4532 gen_and(gen_proto_abbrev(Q_IP
), b
);
4538 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
4542 index
->regno
= regno
;
4543 s
= new_stmt(BPF_ST
);
4545 sappend(index
->s
, s
);
4551 gen_relation(code
, a0
, a1
, reversed
)
4553 struct arth
*a0
, *a1
;
4556 struct slist
*s0
, *s1
, *s2
;
4557 struct block
*b
, *tmp
;
4561 if (code
== BPF_JEQ
) {
4562 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
4563 b
= new_block(JMP(code
));
4567 b
= new_block(BPF_JMP
|code
|BPF_X
);
4573 sappend(a0
->s
, a1
->s
);
4577 free_reg(a0
->regno
);
4578 free_reg(a1
->regno
);
4580 /* 'and' together protocol checks */
4583 gen_and(a0
->b
, tmp
= a1
->b
);
4599 int regno
= alloc_reg();
4600 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
4603 s
= new_stmt(BPF_LD
|BPF_LEN
);
4604 s
->next
= new_stmt(BPF_ST
);
4605 s
->next
->s
.k
= regno
;
4620 a
= (struct arth
*)newchunk(sizeof(*a
));
4624 s
= new_stmt(BPF_LD
|BPF_IMM
);
4626 s
->next
= new_stmt(BPF_ST
);
4642 s
= new_stmt(BPF_ALU
|BPF_NEG
);
4645 s
= new_stmt(BPF_ST
);
4653 gen_arth(code
, a0
, a1
)
4655 struct arth
*a0
, *a1
;
4657 struct slist
*s0
, *s1
, *s2
;
4661 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
4666 sappend(a0
->s
, a1
->s
);
4668 free_reg(a0
->regno
);
4669 free_reg(a1
->regno
);
4671 s0
= new_stmt(BPF_ST
);
4672 a0
->regno
= s0
->s
.k
= alloc_reg();
4679 * Here we handle simple allocation of the scratch registers.
4680 * If too many registers are alloc'd, the allocator punts.
4682 static int regused
[BPF_MEMWORDS
];
4686 * Return the next free register.
4691 int n
= BPF_MEMWORDS
;
4694 if (regused
[curreg
])
4695 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
4697 regused
[curreg
] = 1;
4701 bpf_error("too many registers needed to evaluate expression");
4706 * Return a register to the table so it can
4716 static struct block
*
4723 s
= new_stmt(BPF_LD
|BPF_LEN
);
4724 b
= new_block(JMP(jmp
));
4735 return gen_len(BPF_JGE
, n
);
4739 * Actually, this is less than or equal.
4747 b
= gen_len(BPF_JGT
, n
);
4754 gen_byteop(op
, idx
, val
)
4765 return gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4768 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4769 b
->s
.code
= JMP(BPF_JGE
);
4774 b
= gen_cmp((u_int
)idx
, BPF_B
, (bpf_int32
)val
);
4775 b
->s
.code
= JMP(BPF_JGT
);
4779 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
4783 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
4787 b
= new_block(JMP(BPF_JEQ
));
4794 static u_char abroadcast
[] = { 0x0 };
4797 gen_broadcast(proto
)
4800 bpf_u_int32 hostmask
;
4801 struct block
*b0
, *b1
, *b2
;
4802 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
4808 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4809 return gen_ahostop(abroadcast
, Q_DST
);
4810 if (linktype
== DLT_EN10MB
)
4811 return gen_ehostop(ebroadcast
, Q_DST
);
4812 if (linktype
== DLT_FDDI
)
4813 return gen_fhostop(ebroadcast
, Q_DST
);
4814 if (linktype
== DLT_IEEE802
)
4815 return gen_thostop(ebroadcast
, Q_DST
);
4816 if (linktype
== DLT_IEEE802_11
)
4817 return gen_wlanhostop(ebroadcast
, Q_DST
);
4818 if (linktype
== DLT_IP_OVER_FC
)
4819 return gen_ipfchostop(ebroadcast
, Q_DST
);
4820 if (linktype
== DLT_SUNATM
&& is_lane
) {
4822 * Check that the packet doesn't begin with an
4823 * LE Control marker. (We've already generated
4826 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
4830 * Now check the MAC address.
4832 b0
= gen_ehostop(ebroadcast
, Q_DST
);
4836 bpf_error("not a broadcast link");
4840 b0
= gen_linktype(ETHERTYPE_IP
);
4841 hostmask
= ~netmask
;
4842 b1
= gen_mcmp(off_nl
+ 16, BPF_W
, (bpf_int32
)0, hostmask
);
4843 b2
= gen_mcmp(off_nl
+ 16, BPF_W
,
4844 (bpf_int32
)(~0 & hostmask
), hostmask
);
4849 bpf_error("only link-layer/IP broadcast filters supported");
4854 * Generate code to test the low-order bit of a MAC address (that's
4855 * the bottom bit of the *first* byte).
4857 static struct block
*
4858 gen_mac_multicast(offset
)
4861 register struct block
*b0
;
4862 register struct slist
*s
;
4864 /* link[offset] & 1 != 0 */
4865 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4867 b0
= new_block(JMP(BPF_JSET
));
4874 gen_multicast(proto
)
4877 register struct block
*b0
, *b1
, *b2
;
4878 register struct slist
*s
;
4884 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
4885 /* all ARCnet multicasts use the same address */
4886 return gen_ahostop(abroadcast
, Q_DST
);
4888 if (linktype
== DLT_EN10MB
) {
4889 /* ether[0] & 1 != 0 */
4890 return gen_mac_multicast(0);
4893 if (linktype
== DLT_FDDI
) {
4895 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
4897 * XXX - was that referring to bit-order issues?
4899 /* fddi[1] & 1 != 0 */
4900 return gen_mac_multicast(1);
4903 if (linktype
== DLT_IEEE802
) {
4904 /* tr[2] & 1 != 0 */
4905 return gen_mac_multicast(2);
4908 if (linktype
== DLT_IEEE802_11
) {
4912 * For control frames, there is no DA.
4914 * For management frames, DA is at an
4915 * offset of 4 from the beginning of
4918 * For data frames, DA is at an offset
4919 * of 4 from the beginning of the packet
4920 * if To DS is clear and at an offset of
4921 * 16 from the beginning of the packet
4926 * Generate the tests to be done for data frames.
4928 * First, check for To DS set, i.e. "link[1] & 0x01".
4930 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4932 b1
= new_block(JMP(BPF_JSET
));
4933 b1
->s
.k
= 0x01; /* To DS */
4937 * If To DS is set, the DA is at 16.
4939 b0
= gen_mac_multicast(16);
4943 * Now, check for To DS not set, i.e. check
4944 * "!(link[1] & 0x01)".
4946 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4948 b2
= new_block(JMP(BPF_JSET
));
4949 b2
->s
.k
= 0x01; /* To DS */
4954 * If To DS is not set, the DA is at 4.
4956 b1
= gen_mac_multicast(4);
4960 * Now OR together the last two checks. That gives
4961 * the complete set of checks for data frames.
4966 * Now check for a data frame.
4967 * I.e, check "link[0] & 0x08".
4969 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4971 b1
= new_block(JMP(BPF_JSET
));
4976 * AND that with the checks done for data frames.
4981 * If the high-order bit of the type value is 0, this
4982 * is a management frame.
4983 * I.e, check "!(link[0] & 0x08)".
4985 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
4987 b2
= new_block(JMP(BPF_JSET
));
4993 * For management frames, the DA is at 4.
4995 b1
= gen_mac_multicast(4);
4999 * OR that with the checks done for data frames.
5000 * That gives the checks done for management and
5006 * If the low-order bit of the type value is 1,
5007 * this is either a control frame or a frame
5008 * with a reserved type, and thus not a
5011 * I.e., check "!(link[0] & 0x04)".
5013 s
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
5015 b1
= new_block(JMP(BPF_JSET
));
5021 * AND that with the checks for data and management
5028 if (linktype
== DLT_IP_OVER_FC
) {
5029 b0
= gen_mac_multicast(2);
5033 if (linktype
== DLT_SUNATM
&& is_lane
) {
5035 * Check that the packet doesn't begin with an
5036 * LE Control marker. (We've already generated
5039 b1
= gen_cmp(SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
5042 /* ether[off_mac] & 1 != 0 */
5043 b0
= gen_mac_multicast(off_mac
);
5048 /* Link not known to support multicasts */
5052 b0
= gen_linktype(ETHERTYPE_IP
);
5053 b1
= gen_cmp(off_nl
+ 16, BPF_B
, (bpf_int32
)224);
5054 b1
->s
.code
= JMP(BPF_JGE
);
5060 b0
= gen_linktype(ETHERTYPE_IPV6
);
5061 b1
= gen_cmp(off_nl
+ 24, BPF_B
, (bpf_int32
)255);
5066 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
5071 * generate command for inbound/outbound. It's here so we can
5072 * make it link-type specific. 'dir' = 0 implies "inbound",
5073 * = 1 implies "outbound".
5079 register struct block
*b0
;
5082 * Only some data link types support inbound/outbound qualifiers.
5086 b0
= gen_relation(BPF_JEQ
,
5087 gen_load(Q_LINK
, gen_loadi(0), 1),
5095 * Match packets sent by this machine.
5097 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_OUTGOING
);
5100 * Match packets sent to this machine.
5101 * (No broadcast or multicast packets, or
5102 * packets sent to some other machine and
5103 * received promiscuously.)
5105 * XXX - packets sent to other machines probably
5106 * shouldn't be matched, but what about broadcast
5107 * or multicast packets we received?
5109 b0
= gen_cmp(0, BPF_H
, LINUX_SLL_HOST
);
5114 b0
= gen_cmp(offsetof(struct pfloghdr
, dir
), BPF_B
,
5115 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
5118 case DLT_PPP_WITHDIRECTION
:
5120 /* match outgoing packets */
5121 b0
= gen_cmp(0, BPF_B
, PPP_WITHDIRECTION_OUT
);
5123 /* match incoming packets */
5124 b0
= gen_cmp(0, BPF_B
, PPP_WITHDIRECTION_IN
);
5128 case DLT_JUNIPER_MLPPP
:
5129 case DLT_JUNIPER_ATM1
:
5130 case DLT_JUNIPER_ATM2
:
5131 /* juniper flags (including direction) are stored
5132 * the byte after the 3-byte magic number */
5134 /* match outgoing packets */
5135 b0
= gen_mcmp(3, BPF_B
, 0, 0x01);
5137 /* match incoming packets */
5138 b0
= gen_mcmp(3, BPF_B
, 1, 0x01);
5143 bpf_error("inbound/outbound not supported on linktype %d",
5151 /* PF firewall log matched interface */
5153 gen_pf_ifname(const char *ifname
)
5158 if (linktype
== DLT_PFLOG
) {
5159 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
5160 off
= offsetof(struct pfloghdr
, ifname
);
5162 bpf_error("ifname not supported on linktype 0x%x", linktype
);
5165 if (strlen(ifname
) >= len
) {
5166 bpf_error("ifname interface names can only be %d characters",
5170 b0
= gen_bcmp(off
, strlen(ifname
), (const u_char
*)ifname
);
5174 /* PF firewall log matched interface */
5176 gen_pf_ruleset(char *ruleset
)
5180 if (linktype
!= DLT_PFLOG
) {
5181 bpf_error("ruleset not supported on linktype 0x%x", linktype
);
5184 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
5185 bpf_error("ruleset names can only be %ld characters",
5186 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
5189 b0
= gen_bcmp(offsetof(struct pfloghdr
, ruleset
),
5190 strlen(ruleset
), (const u_char
*)ruleset
);
5194 /* PF firewall log rule number */
5200 if (linktype
== DLT_PFLOG
) {
5201 b0
= gen_cmp(offsetof(struct pfloghdr
, rulenr
), BPF_W
,
5204 bpf_error("rnr not supported on linktype 0x%x", linktype
);
5211 /* PF firewall log sub-rule number */
5213 gen_pf_srnr(int srnr
)
5217 if (linktype
!= DLT_PFLOG
) {
5218 bpf_error("srnr not supported on linktype 0x%x", linktype
);
5222 b0
= gen_cmp(offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
5227 /* PF firewall log reason code */
5229 gen_pf_reason(int reason
)
5233 if (linktype
== DLT_PFLOG
) {
5234 b0
= gen_cmp(offsetof(struct pfloghdr
, reason
), BPF_B
,
5237 bpf_error("reason not supported on linktype 0x%x", linktype
);
5244 /* PF firewall log action */
5246 gen_pf_action(int action
)
5250 if (linktype
== DLT_PFLOG
) {
5251 b0
= gen_cmp(offsetof(struct pfloghdr
, action
), BPF_B
,
5254 bpf_error("action not supported on linktype 0x%x", linktype
);
5263 register const u_char
*eaddr
;
5266 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
5267 if (linktype
== DLT_ARCNET
|| linktype
== DLT_ARCNET_LINUX
)
5268 return gen_ahostop(eaddr
, (int)q
.dir
);
5270 bpf_error("ARCnet address used in non-arc expression");
5274 static struct block
*
5275 gen_ahostop(eaddr
, dir
)
5276 register const u_char
*eaddr
;
5279 register struct block
*b0
, *b1
;
5282 /* src comes first, different from Ethernet */
5284 return gen_bcmp(0, 1, eaddr
);
5287 return gen_bcmp(1, 1, eaddr
);
5290 b0
= gen_ahostop(eaddr
, Q_SRC
);
5291 b1
= gen_ahostop(eaddr
, Q_DST
);
5297 b0
= gen_ahostop(eaddr
, Q_SRC
);
5298 b1
= gen_ahostop(eaddr
, Q_DST
);
5307 * support IEEE 802.1Q VLAN trunk over ethernet
5316 * Change the offsets to point to the type and data fields within
5317 * the VLAN packet. This is somewhat of a kludge.
5319 if (orig_nl
== (u_int
)-1) {
5320 orig_linktype
= off_linktype
; /* save original values */
5322 orig_nl_nosnap
= off_nl_nosnap
;
5333 bpf_error("no VLAN support for data link type %d",
5339 /* check for VLAN */
5340 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_8021Q
);
5342 /* If a specific VLAN is requested, check VLAN id */
5343 if (vlan_num
>= 0) {
5346 b1
= gen_mcmp(orig_nl
, BPF_H
, (bpf_int32
)vlan_num
, 0x0fff);
5364 * Change the offsets to point to the type and data fields within
5365 * the MPLS packet. This is somewhat of a kludge.
5367 if (orig_nl
== (u_int
)-1) {
5368 orig_linktype
= off_linktype
; /* save original values */
5370 orig_nl_nosnap
= off_nl_nosnap
;
5379 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5387 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)PPP_MPLS_UCAST
);
5395 b0
= gen_cmp(orig_linktype
, BPF_H
, (bpf_int32
)ETHERTYPE_MPLS
);
5398 /* FIXME add other DLT_s ...
5399 * for Frame-Relay/and ATM this may get messy due to SNAP headers
5400 * leave it for now */
5403 bpf_error("no MPLS support for data link type %d",
5408 bpf_error("'mpls' can't be combined with 'vlan' or another 'mpls'");
5412 /* If a specific MPLS label is requested, check it */
5413 if (label_num
>= 0) {
5416 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
5417 b1
= gen_mcmp(orig_nl
, BPF_W
, (bpf_int32
)label_num
, 0xfffff000); /* only compare the first 20 bits */
5426 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
5438 bpf_error("'vpi' supported only on raw ATM");
5439 if (off_vpi
== (u_int
)-1)
5441 b0
= gen_ncmp(BPF_B
, off_vpi
, 0xffffffff, (u_int
)jtype
,
5442 (u_int
)jvalue
, reverse
);
5447 bpf_error("'vci' supported only on raw ATM");
5448 if (off_vci
== (u_int
)-1)
5450 b0
= gen_ncmp(BPF_H
, off_vci
, 0xffffffff, (u_int
)jtype
,
5451 (u_int
)jvalue
, reverse
);
5455 if (off_proto
== (u_int
)-1)
5456 abort(); /* XXX - this isn't on FreeBSD */
5457 b0
= gen_ncmp(BPF_B
, off_proto
, 0x0f, (u_int
)jtype
,
5458 (u_int
)jvalue
, reverse
);
5462 if (off_payload
== (u_int
)-1)
5464 b0
= gen_ncmp(BPF_B
, off_payload
+ MSG_TYPE_POS
, 0xffffffff,
5465 (u_int
)jtype
, (u_int
)jvalue
, reverse
);
5470 bpf_error("'callref' supported only on raw ATM");
5471 if (off_proto
== (u_int
)-1)
5473 b0
= gen_ncmp(BPF_B
, off_proto
, 0xffffffff, (u_int
)jtype
,
5474 (u_int
)jvalue
, reverse
);
5484 gen_atmtype_abbrev(type
)
5487 struct block
*b0
, *b1
;
5492 /* Get all packets in Meta signalling Circuit */
5494 bpf_error("'metac' supported only on raw ATM");
5495 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5496 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
5501 /* Get all packets in Broadcast Circuit*/
5503 bpf_error("'bcc' supported only on raw ATM");
5504 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5505 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
5510 /* Get all cells in Segment OAM F4 circuit*/
5512 bpf_error("'oam4sc' supported only on raw ATM");
5513 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5514 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5519 /* Get all cells in End-to-End OAM F4 Circuit*/
5521 bpf_error("'oam4ec' supported only on raw ATM");
5522 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5523 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5528 /* Get all packets in connection Signalling Circuit */
5530 bpf_error("'sc' supported only on raw ATM");
5531 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5532 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
5537 /* Get all packets in ILMI Circuit */
5539 bpf_error("'ilmic' supported only on raw ATM");
5540 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5541 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
5546 /* Get all LANE packets */
5548 bpf_error("'lane' supported only on raw ATM");
5549 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
5552 * Arrange that all subsequent tests assume LANE
5553 * rather than LLC-encapsulated packets, and set
5554 * the offsets appropriately for LANE-encapsulated
5557 * "off_mac" is the offset of the Ethernet header,
5558 * which is 2 bytes past the ATM pseudo-header
5559 * (skipping the pseudo-header and 2-byte LE Client
5560 * field). The other offsets are Ethernet offsets
5561 * relative to "off_mac".
5564 off_mac
= off_payload
+ 2; /* MAC header */
5565 off_linktype
= off_mac
+ 12;
5566 off_nl
= off_mac
+ 14; /* Ethernet II */
5567 off_nl_nosnap
= off_mac
+ 17; /* 802.3+802.2 */
5571 /* Get all LLC-encapsulated packets */
5573 bpf_error("'llc' supported only on raw ATM");
5574 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
5585 static struct block
*
5586 gen_msg_abbrev(type
)
5592 * Q.2931 signalling protocol messages for handling virtual circuits
5593 * establishment and teardown
5598 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
5602 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
5606 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
5610 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
5614 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
5617 case A_RELEASE_DONE
:
5618 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
5628 gen_atmmulti_abbrev(type
)
5631 struct block
*b0
, *b1
;
5637 bpf_error("'oam' supported only on raw ATM");
5638 b1
= gen_atmmulti_abbrev(A_OAMF4
);
5643 bpf_error("'oamf4' supported only on raw ATM");
5645 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
5646 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
5648 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
5654 * Get Q.2931 signalling messages for switched
5655 * virtual connection
5658 bpf_error("'connectmsg' supported only on raw ATM");
5659 b0
= gen_msg_abbrev(A_SETUP
);
5660 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5662 b0
= gen_msg_abbrev(A_CONNECT
);
5664 b0
= gen_msg_abbrev(A_CONNECTACK
);
5666 b0
= gen_msg_abbrev(A_RELEASE
);
5668 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5670 b0
= gen_atmtype_abbrev(A_SC
);
5676 bpf_error("'metaconnect' supported only on raw ATM");
5677 b0
= gen_msg_abbrev(A_SETUP
);
5678 b1
= gen_msg_abbrev(A_CALLPROCEED
);
5680 b0
= gen_msg_abbrev(A_CONNECT
);
5682 b0
= gen_msg_abbrev(A_RELEASE
);
5684 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
5686 b0
= gen_atmtype_abbrev(A_METAC
);