]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
Clean up allocation of some lists.
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 *
27 * Modifications: Added PACKET_MMAP support
28 * Paolo Abeni <paolo.abeni@email.it>
29 * Added TPACKET_V3 support
30 * Gabor Tatarka <gabor.tatarka@ericsson.com>
31 *
32 * based on previous works of:
33 * Simon Patarin <patarin@cs.unibo.it>
34 * Phil Wood <cpw@lanl.gov>
35 *
36 * Monitor-mode support for mac80211 includes code taken from the iw
37 * command; the copyright notice for that code is
38 *
39 * Copyright (c) 2007, 2008 Johannes Berg
40 * Copyright (c) 2007 Andy Lutomirski
41 * Copyright (c) 2007 Mike Kershaw
42 * Copyright (c) 2008 Gábor Stefanik
43 *
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions and the following disclaimer.
51 * 2. Redistributions in binary form must reproduce the above copyright
52 * notice, this list of conditions and the following disclaimer in the
53 * documentation and/or other materials provided with the distribution.
54 * 3. The name of the author may not be used to endorse or promote products
55 * derived from this software without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 */
69
70
71 #define _GNU_SOURCE
72
73 #ifdef HAVE_CONFIG_H
74 #include <config.h>
75 #endif
76
77 #include <errno.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <unistd.h>
81 #include <fcntl.h>
82 #include <string.h>
83 #include <limits.h>
84 #include <sys/stat.h>
85 #include <sys/socket.h>
86 #include <sys/ioctl.h>
87 #include <sys/utsname.h>
88 #include <sys/mman.h>
89 #include <linux/if.h>
90 #include <linux/if_packet.h>
91 #include <linux/sockios.h>
92 #include <linux/ethtool.h>
93 #include <netinet/in.h>
94 #include <linux/if_ether.h>
95 #include <linux/if_arp.h>
96 #include <poll.h>
97 #include <dirent.h>
98 #include <sys/eventfd.h>
99
100 #include "pcap-int.h"
101 #include "pcap/sll.h"
102 #include "pcap/vlan.h"
103
104 #include "diag-control.h"
105
106 /*
107 * We require TPACKET_V2 support.
108 */
109 #ifndef TPACKET2_HDRLEN
110 #error "Libpcap will only work if TPACKET_V2 is supported; you must build for a 2.6.27 or later kernel"
111 #endif
112
113 /* check for memory mapped access avaibility. We assume every needed
114 * struct is defined if the macro TPACKET_HDRLEN is defined, because it
115 * uses many ring related structs and macros */
116 #ifdef TPACKET3_HDRLEN
117 # define HAVE_TPACKET3
118 #endif /* TPACKET3_HDRLEN */
119
120 #define packet_mmap_acquire(pkt) \
121 (__atomic_load_n(&pkt->tp_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
122 #define packet_mmap_release(pkt) \
123 (__atomic_store_n(&pkt->tp_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
124 #define packet_mmap_v3_acquire(pkt) \
125 (__atomic_load_n(&pkt->hdr.bh1.block_status, __ATOMIC_ACQUIRE) != TP_STATUS_KERNEL)
126 #define packet_mmap_v3_release(pkt) \
127 (__atomic_store_n(&pkt->hdr.bh1.block_status, TP_STATUS_KERNEL, __ATOMIC_RELEASE))
128
129 #include <linux/types.h>
130 #include <linux/filter.h>
131
132 #ifdef HAVE_LINUX_NET_TSTAMP_H
133 #include <linux/net_tstamp.h>
134 #endif
135
136 /*
137 * For checking whether a device is a bonding device.
138 */
139 #include <linux/if_bonding.h>
140
141 /*
142 * Got libnl?
143 */
144 #ifdef HAVE_LIBNL
145 #include <linux/nl80211.h>
146
147 #include <netlink/genl/genl.h>
148 #include <netlink/genl/family.h>
149 #include <netlink/genl/ctrl.h>
150 #include <netlink/msg.h>
151 #include <netlink/attr.h>
152 #endif /* HAVE_LIBNL */
153
154 #ifndef HAVE_SOCKLEN_T
155 typedef int socklen_t;
156 #endif
157
158 #define MAX_LINKHEADER_SIZE 256
159
160 /*
161 * When capturing on all interfaces we use this as the buffer size.
162 * Should be bigger then all MTUs that occur in real life.
163 * 64kB should be enough for now.
164 */
165 #define BIGGER_THAN_ALL_MTUS (64*1024)
166
167 /*
168 * Private data for capturing on Linux PF_PACKET sockets.
169 */
170 struct pcap_linux {
171 long long sysfs_dropped; /* packets reported dropped by /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors */
172 struct pcap_stat stat;
173
174 char *device; /* device name */
175 int filter_in_userland; /* must filter in userland */
176 int blocks_to_filter_in_userland;
177 int must_do_on_close; /* stuff we must do when we close */
178 int timeout; /* timeout for buffering */
179 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */
180 int ifindex; /* interface index of device we're bound to */
181 int lo_ifindex; /* interface index of the loopback device */
182 int netdown; /* we got an ENETDOWN and haven't resolved it */
183 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */
184 char *mondevice; /* mac80211 monitor device we created */
185 u_char *mmapbuf; /* memory-mapped region pointer */
186 size_t mmapbuflen; /* size of region */
187 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */
188 u_int tp_version; /* version of tpacket_hdr for mmaped ring */
189 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */
190 u_char *oneshot_buffer; /* buffer for copy of packet */
191 int poll_timeout; /* timeout to use in poll() */
192 #ifdef HAVE_TPACKET3
193 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */
194 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */
195 #endif
196 int poll_breakloop_fd; /* fd to an eventfd to break from blocking operations */
197 };
198
199 /*
200 * Stuff to do when we close.
201 */
202 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */
203 #define MUST_DELETE_MONIF 0x00000002 /* delete monitor-mode interface */
204
205 /*
206 * Prototypes for internal functions and methods.
207 */
208 static int get_if_flags(const char *, bpf_u_int32 *, char *);
209 static int is_wifi(const char *);
210 static void map_arphrd_to_dlt(pcap_t *, int, const char *, int);
211 static int pcap_activate_linux(pcap_t *);
212 static int activate_pf_packet(pcap_t *, int);
213 static int setup_mmapped(pcap_t *, int *);
214 static int pcap_can_set_rfmon_linux(pcap_t *);
215 static int pcap_inject_linux(pcap_t *, const void *, int);
216 static int pcap_stats_linux(pcap_t *, struct pcap_stat *);
217 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *);
218 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t);
219 static int pcap_set_datalink_linux(pcap_t *, int);
220 static void pcap_cleanup_linux(pcap_t *);
221
222 union thdr {
223 struct tpacket2_hdr *h2;
224 #ifdef HAVE_TPACKET3
225 struct tpacket_block_desc *h3;
226 #endif
227 u_char *raw;
228 };
229
230 #define RING_GET_FRAME_AT(h, offset) (((u_char **)h->buffer)[(offset)])
231 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset)
232
233 static void destroy_ring(pcap_t *handle);
234 static int create_ring(pcap_t *handle, int *status);
235 static int prepare_tpacket_socket(pcap_t *handle);
236 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *);
237 #ifdef HAVE_TPACKET3
238 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *);
239 #endif
240 static int pcap_setnonblock_linux(pcap_t *p, int nonblock);
241 static int pcap_getnonblock_linux(pcap_t *p);
242 static void pcap_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
243 const u_char *bytes);
244
245 /*
246 * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the
247 * vlan_tci field in the skbuff is. 0 can either mean "not on a VLAN"
248 * or "on VLAN 0". There is no flag set in the tp_status field to
249 * distinguish between them.
250 *
251 * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci
252 * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set
253 * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and
254 * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field.
255 *
256 * With a pre-3.0 kernel, we cannot distinguish between packets with no
257 * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and
258 * there's nothing we can do about that.
259 *
260 * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we
261 * continue the behavior of earlier libpcaps, wherein we treated packets
262 * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets
263 * on VLAN 0. We do this by treating packets with a tp_vlan_tci of 0 and
264 * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having
265 * VLAN tags. This does the right thing on 3.0 and later kernels, and
266 * continues the old unfixably-imperfect behavior on pre-3.0 kernels.
267 *
268 * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it
269 * has that value in 3.0 and later kernels.
270 */
271 #ifdef TP_STATUS_VLAN_VALID
272 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID))
273 #else
274 /*
275 * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID,
276 * so we testwith the value it has in the 3.0 and later kernels, so
277 * we can test it if we're running on a system that has it. (If we're
278 * running on a system that doesn't have it, it won't be set in the
279 * tp_status field, so the tests of it will always fail; that means
280 * we behave the way we did before we introduced this macro.)
281 */
282 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10))
283 #endif
284
285 #ifdef TP_STATUS_VLAN_TPID_VALID
286 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q)
287 #else
288 # define VLAN_TPID(hdr, hv) ETH_P_8021Q
289 #endif
290
291 /*
292 * Required select timeout if we're polling for an "interface disappeared"
293 * indication - 1 millisecond.
294 */
295 static const struct timeval netdown_timeout = {
296 0, 1000 /* 1000 microseconds = 1 millisecond */
297 };
298
299 /*
300 * Wrap some ioctl calls
301 */
302 static int iface_get_id(int fd, const char *device, char *ebuf);
303 static int iface_get_mtu(int fd, const char *device, char *ebuf);
304 static int iface_get_arptype(int fd, const char *device, char *ebuf);
305 static int iface_bind(int fd, int ifindex, char *ebuf, int protocol);
306 static int enter_rfmon_mode(pcap_t *handle, int sock_fd,
307 const char *device);
308 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
309 static int iface_ethtool_get_ts_info(const char *device, pcap_t *handle,
310 char *ebuf);
311 #endif
312 static int iface_get_offload(pcap_t *handle);
313
314 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
315 static int fix_offset(pcap_t *handle, struct bpf_insn *p);
316 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
317 static int reset_kernel_filter(pcap_t *handle);
318
319 static struct sock_filter total_insn
320 = BPF_STMT(BPF_RET | BPF_K, 0);
321 static struct sock_fprog total_fcode
322 = { 1, &total_insn };
323
324 static int iface_dsa_get_proto_info(const char *device, pcap_t *handle);
325
326 pcap_t *
327 pcap_create_interface(const char *device, char *ebuf)
328 {
329 pcap_t *handle;
330
331 handle = PCAP_CREATE_COMMON(ebuf, struct pcap_linux);
332 if (handle == NULL)
333 return NULL;
334
335 handle->activate_op = pcap_activate_linux;
336 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
337
338 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
339 /*
340 * See what time stamp types we support.
341 */
342 if (iface_ethtool_get_ts_info(device, handle, ebuf) == -1) {
343 pcap_close(handle);
344 return NULL;
345 }
346 #endif
347
348 /*
349 * We claim that we support microsecond and nanosecond time
350 * stamps.
351 *
352 * XXX - with adapter-supplied time stamps, can we choose
353 * microsecond or nanosecond time stamps on arbitrary
354 * adapters?
355 */
356 handle->tstamp_precision_list = malloc(2 * sizeof(u_int));
357 if (handle->tstamp_precision_list == NULL) {
358 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
359 errno, "malloc");
360 pcap_close(handle);
361 return NULL;
362 }
363 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO;
364 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO;
365 handle->tstamp_precision_count = 2;
366
367 struct pcap_linux *handlep = handle->priv;
368 handlep->poll_breakloop_fd = eventfd(0, EFD_NONBLOCK);
369
370 return handle;
371 }
372
373 #ifdef HAVE_LIBNL
374 /*
375 * If interface {if_name} is a mac80211 driver, the file
376 * /sys/class/net/{if_name}/phy80211 is a symlink to
377 * /sys/class/ieee80211/{phydev_name}, for some {phydev_name}.
378 *
379 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at
380 * least, has a "wmaster0" device and a "wlan0" device; the
381 * latter is the one with the IP address. Both show up in
382 * "tcpdump -D" output. Capturing on the wmaster0 device
383 * captures with 802.11 headers.
384 *
385 * airmon-ng searches through /sys/class/net for devices named
386 * monN, starting with mon0; as soon as one *doesn't* exist,
387 * it chooses that as the monitor device name. If the "iw"
388 * command exists, it does
389 *
390 * iw dev {if_name} interface add {monif_name} type monitor
391 *
392 * where {monif_name} is the monitor device. It then (sigh) sleeps
393 * .1 second, and then configures the device up. Otherwise, if
394 * /sys/class/ieee80211/{phydev_name}/add_iface is a file, it writes
395 * {mondev_name}, without a newline, to that file, and again (sigh)
396 * sleeps .1 second, and then iwconfig's that device into monitor
397 * mode and configures it up. Otherwise, you can't do monitor mode.
398 *
399 * All these devices are "glued" together by having the
400 * /sys/class/net/{if_name}/phy80211 links pointing to the same
401 * place, so, given a wmaster, wlan, or mon device, you can
402 * find the other devices by looking for devices with
403 * the same phy80211 link.
404 *
405 * To turn monitor mode off, delete the monitor interface,
406 * either with
407 *
408 * iw dev {monif_name} interface del
409 *
410 * or by sending {monif_name}, with no NL, down
411 * /sys/class/ieee80211/{phydev_name}/remove_iface
412 *
413 * Note: if you try to create a monitor device named "monN", and
414 * there's already a "monN" device, it fails, as least with
415 * the netlink interface (which is what iw uses), with a return
416 * value of -ENFILE. (Return values are negative errnos.) We
417 * could probably use that to find an unused device.
418 *
419 * Yes, you can have multiple monitor devices for a given
420 * physical device.
421 */
422
423 /*
424 * Is this a mac80211 device? If so, fill in the physical device path and
425 * return 1; if not, return 0. On an error, fill in handle->errbuf and
426 * return PCAP_ERROR.
427 */
428 static int
429 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path,
430 size_t phydev_max_pathlen)
431 {
432 char *pathstr;
433 ssize_t bytes_read;
434
435 /*
436 * Generate the path string for the symlink to the physical device.
437 */
438 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) {
439 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
440 "%s: Can't generate path name string for /sys/class/net device",
441 device);
442 return PCAP_ERROR;
443 }
444 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen);
445 if (bytes_read == -1) {
446 if (errno == ENOENT || errno == EINVAL) {
447 /*
448 * Doesn't exist, or not a symlink; assume that
449 * means it's not a mac80211 device.
450 */
451 free(pathstr);
452 return 0;
453 }
454 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
455 errno, "%s: Can't readlink %s", device, pathstr);
456 free(pathstr);
457 return PCAP_ERROR;
458 }
459 free(pathstr);
460 phydev_path[bytes_read] = '\0';
461 return 1;
462 }
463
464 struct nl80211_state {
465 struct nl_sock *nl_sock;
466 struct nl_cache *nl_cache;
467 struct genl_family *nl80211;
468 };
469
470 static int
471 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device)
472 {
473 int err;
474
475 state->nl_sock = nl_socket_alloc();
476 if (!state->nl_sock) {
477 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
478 "%s: failed to allocate netlink handle", device);
479 return PCAP_ERROR;
480 }
481
482 if (genl_connect(state->nl_sock)) {
483 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
484 "%s: failed to connect to generic netlink", device);
485 goto out_handle_destroy;
486 }
487
488 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache);
489 if (err < 0) {
490 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
491 "%s: failed to allocate generic netlink cache: %s",
492 device, nl_geterror(-err));
493 goto out_handle_destroy;
494 }
495
496 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211");
497 if (!state->nl80211) {
498 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
499 "%s: nl80211 not found", device);
500 goto out_cache_free;
501 }
502
503 return 0;
504
505 out_cache_free:
506 nl_cache_free(state->nl_cache);
507 out_handle_destroy:
508 nl_socket_free(state->nl_sock);
509 return PCAP_ERROR;
510 }
511
512 static void
513 nl80211_cleanup(struct nl80211_state *state)
514 {
515 genl_family_put(state->nl80211);
516 nl_cache_free(state->nl_cache);
517 nl_socket_free(state->nl_sock);
518 }
519
520 static int
521 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
522 const char *device, const char *mondevice);
523
524 static int
525 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
526 const char *device, const char *mondevice)
527 {
528 struct pcap_linux *handlep = handle->priv;
529 int ifindex;
530 struct nl_msg *msg;
531 int err;
532
533 ifindex = iface_get_id(sock_fd, device, handle->errbuf);
534 if (ifindex == -1)
535 return PCAP_ERROR;
536
537 msg = nlmsg_alloc();
538 if (!msg) {
539 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
540 "%s: failed to allocate netlink msg", device);
541 return PCAP_ERROR;
542 }
543
544 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
545 0, NL80211_CMD_NEW_INTERFACE, 0);
546 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
547 DIAG_OFF_NARROWING
548 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice);
549 DIAG_ON_NARROWING
550 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR);
551
552 err = nl_send_auto_complete(state->nl_sock, msg);
553 if (err < 0) {
554 if (err == -NLE_FAILURE) {
555 /*
556 * Device not available; our caller should just
557 * keep trying. (libnl 2.x maps ENFILE to
558 * NLE_FAILURE; it can also map other errors
559 * to that, but there's not much we can do
560 * about that.)
561 */
562 nlmsg_free(msg);
563 return 0;
564 } else {
565 /*
566 * Real failure, not just "that device is not
567 * available.
568 */
569 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
570 "%s: nl_send_auto_complete failed adding %s interface: %s",
571 device, mondevice, nl_geterror(-err));
572 nlmsg_free(msg);
573 return PCAP_ERROR;
574 }
575 }
576 err = nl_wait_for_ack(state->nl_sock);
577 if (err < 0) {
578 if (err == -NLE_FAILURE) {
579 /*
580 * Device not available; our caller should just
581 * keep trying. (libnl 2.x maps ENFILE to
582 * NLE_FAILURE; it can also map other errors
583 * to that, but there's not much we can do
584 * about that.)
585 */
586 nlmsg_free(msg);
587 return 0;
588 } else {
589 /*
590 * Real failure, not just "that device is not
591 * available.
592 */
593 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
594 "%s: nl_wait_for_ack failed adding %s interface: %s",
595 device, mondevice, nl_geterror(-err));
596 nlmsg_free(msg);
597 return PCAP_ERROR;
598 }
599 }
600
601 /*
602 * Success.
603 */
604 nlmsg_free(msg);
605
606 /*
607 * Try to remember the monitor device.
608 */
609 handlep->mondevice = strdup(mondevice);
610 if (handlep->mondevice == NULL) {
611 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
612 errno, "strdup");
613 /*
614 * Get rid of the monitor device.
615 */
616 del_mon_if(handle, sock_fd, state, device, mondevice);
617 return PCAP_ERROR;
618 }
619 return 1;
620
621 nla_put_failure:
622 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
623 "%s: nl_put failed adding %s interface",
624 device, mondevice);
625 nlmsg_free(msg);
626 return PCAP_ERROR;
627 }
628
629 static int
630 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state,
631 const char *device, const char *mondevice)
632 {
633 int ifindex;
634 struct nl_msg *msg;
635 int err;
636
637 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf);
638 if (ifindex == -1)
639 return PCAP_ERROR;
640
641 msg = nlmsg_alloc();
642 if (!msg) {
643 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
644 "%s: failed to allocate netlink msg", device);
645 return PCAP_ERROR;
646 }
647
648 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0,
649 0, NL80211_CMD_DEL_INTERFACE, 0);
650 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex);
651
652 err = nl_send_auto_complete(state->nl_sock, msg);
653 if (err < 0) {
654 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
655 "%s: nl_send_auto_complete failed deleting %s interface: %s",
656 device, mondevice, nl_geterror(-err));
657 nlmsg_free(msg);
658 return PCAP_ERROR;
659 }
660 err = nl_wait_for_ack(state->nl_sock);
661 if (err < 0) {
662 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
663 "%s: nl_wait_for_ack failed adding %s interface: %s",
664 device, mondevice, nl_geterror(-err));
665 nlmsg_free(msg);
666 return PCAP_ERROR;
667 }
668
669 /*
670 * Success.
671 */
672 nlmsg_free(msg);
673 return 1;
674
675 nla_put_failure:
676 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
677 "%s: nl_put failed deleting %s interface",
678 device, mondevice);
679 nlmsg_free(msg);
680 return PCAP_ERROR;
681 }
682 #endif /* HAVE_LIBNL */
683
684 static int pcap_protocol(pcap_t *handle)
685 {
686 int protocol;
687
688 protocol = handle->opt.protocol;
689 if (protocol == 0)
690 protocol = ETH_P_ALL;
691
692 return htons(protocol);
693 }
694
695 static int
696 pcap_can_set_rfmon_linux(pcap_t *handle)
697 {
698 #ifdef HAVE_LIBNL
699 char phydev_path[PATH_MAX+1];
700 int ret;
701 #endif
702
703 if (strcmp(handle->opt.device, "any") == 0) {
704 /*
705 * Monitor mode makes no sense on the "any" device.
706 */
707 return 0;
708 }
709
710 #ifdef HAVE_LIBNL
711 /*
712 * Bleah. There doesn't seem to be a way to ask a mac80211
713 * device, through libnl, whether it supports monitor mode;
714 * we'll just check whether the device appears to be a
715 * mac80211 device and, if so, assume the device supports
716 * monitor mode.
717 */
718 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path,
719 PATH_MAX);
720 if (ret < 0)
721 return ret; /* error */
722 if (ret == 1)
723 return 1; /* mac80211 device */
724 #endif
725
726 return 0;
727 }
728
729 /*
730 * Grabs the number of missed packets by the interface from
731 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors.
732 *
733 * Compared to /proc/net/dev this avoids counting software drops,
734 * but may be unimplemented and just return 0.
735 * The author has found no straigthforward way to check for support.
736 */
737 static long long int
738 linux_get_stat(const char * if_name, const char * stat) {
739 ssize_t bytes_read;
740 int fd;
741 char buffer[PATH_MAX];
742
743 snprintf(buffer, sizeof(buffer), "/sys/class/net/%s/statistics/%s", if_name, stat);
744 fd = open(buffer, O_RDONLY);
745 if (fd == -1)
746 return 0;
747
748 bytes_read = read(fd, buffer, sizeof(buffer) - 1);
749 close(fd);
750 if (bytes_read == -1)
751 return 0;
752 buffer[bytes_read] = '\0';
753
754 return strtoll(buffer, NULL, 10);
755 }
756
757 static long long int
758 linux_if_drops(const char * if_name)
759 {
760 long long int missed = linux_get_stat(if_name, "rx_missed_errors");
761 long long int fifo = linux_get_stat(if_name, "rx_fifo_errors");
762 return missed + fifo;
763 }
764
765
766 /*
767 * Monitor mode is kind of interesting because we have to reset the
768 * interface before exiting. The problem can't really be solved without
769 * some daemon taking care of managing usage counts. If we put the
770 * interface into monitor mode, we set a flag indicating that we must
771 * take it out of that mode when the interface is closed, and, when
772 * closing the interface, if that flag is set we take it out of monitor
773 * mode.
774 */
775
776 static void pcap_cleanup_linux( pcap_t *handle )
777 {
778 struct pcap_linux *handlep = handle->priv;
779 #ifdef HAVE_LIBNL
780 struct nl80211_state nlstate;
781 int ret;
782 #endif /* HAVE_LIBNL */
783
784 if (handlep->must_do_on_close != 0) {
785 /*
786 * There's something we have to do when closing this
787 * pcap_t.
788 */
789 #ifdef HAVE_LIBNL
790 if (handlep->must_do_on_close & MUST_DELETE_MONIF) {
791 ret = nl80211_init(handle, &nlstate, handlep->device);
792 if (ret >= 0) {
793 ret = del_mon_if(handle, handle->fd, &nlstate,
794 handlep->device, handlep->mondevice);
795 nl80211_cleanup(&nlstate);
796 }
797 if (ret < 0) {
798 fprintf(stderr,
799 "Can't delete monitor interface %s (%s).\n"
800 "Please delete manually.\n",
801 handlep->mondevice, handle->errbuf);
802 }
803 }
804 #endif /* HAVE_LIBNL */
805
806 /*
807 * Take this pcap out of the list of pcaps for which we
808 * have to take the interface out of some mode.
809 */
810 pcap_remove_from_pcaps_to_close(handle);
811 }
812
813 if (handle->fd != -1) {
814 /*
815 * Destroy the ring buffer (assuming we've set it up),
816 * and unmap it if it's mapped.
817 */
818 destroy_ring(handle);
819 }
820
821 if (handlep->oneshot_buffer != NULL) {
822 free(handlep->oneshot_buffer);
823 handlep->oneshot_buffer = NULL;
824 }
825
826 if (handlep->mondevice != NULL) {
827 free(handlep->mondevice);
828 handlep->mondevice = NULL;
829 }
830 if (handlep->device != NULL) {
831 free(handlep->device);
832 handlep->device = NULL;
833 }
834
835 close(handlep->poll_breakloop_fd);
836 pcap_cleanup_live_common(handle);
837 }
838
839 #ifdef HAVE_TPACKET3
840 /*
841 * Some versions of TPACKET_V3 have annoying bugs/misfeatures
842 * around which we have to work. Determine if we have those
843 * problems or not.
844 * 3.19 is the first release with a fixed version of
845 * TPACKET_V3. We treat anything before that as
846 * not having a fixed version; that may really mean
847 * it has *no* version.
848 */
849 static int has_broken_tpacket_v3(void)
850 {
851 struct utsname utsname;
852 const char *release;
853 long major, minor;
854 int matches, verlen;
855
856 /* No version information, assume broken. */
857 if (uname(&utsname) == -1)
858 return 1;
859 release = utsname.release;
860
861 /* A malformed version, ditto. */
862 matches = sscanf(release, "%ld.%ld%n", &major, &minor, &verlen);
863 if (matches != 2)
864 return 1;
865 if (release[verlen] != '.' && release[verlen] != '\0')
866 return 1;
867
868 /* OK, a fixed version. */
869 if (major > 3 || (major == 3 && minor >= 19))
870 return 0;
871
872 /* Too old :( */
873 return 1;
874 }
875 #endif
876
877 /*
878 * Set the timeout to be used in poll() with memory-mapped packet capture.
879 */
880 static void
881 set_poll_timeout(struct pcap_linux *handlep)
882 {
883 #ifdef HAVE_TPACKET3
884 int broken_tpacket_v3 = has_broken_tpacket_v3();
885 #endif
886 if (handlep->timeout == 0) {
887 #ifdef HAVE_TPACKET3
888 /*
889 * XXX - due to a set of (mis)features in the TPACKET_V3
890 * kernel code prior to the 3.19 kernel, blocking forever
891 * with a TPACKET_V3 socket can, if few packets are
892 * arriving and passing the socket filter, cause most
893 * packets to be dropped. See libpcap issue #335 for the
894 * full painful story.
895 *
896 * The workaround is to have poll() time out very quickly,
897 * so we grab the frames handed to us, and return them to
898 * the kernel, ASAP.
899 */
900 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3)
901 handlep->poll_timeout = 1; /* don't block for very long */
902 else
903 #endif
904 handlep->poll_timeout = -1; /* block forever */
905 } else if (handlep->timeout > 0) {
906 #ifdef HAVE_TPACKET3
907 /*
908 * For TPACKET_V3, the timeout is handled by the kernel,
909 * so block forever; that way, we don't get extra timeouts.
910 * Don't do that if we have a broken TPACKET_V3, though.
911 */
912 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3)
913 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */
914 else
915 #endif
916 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */
917 } else {
918 /*
919 * Non-blocking mode; we call poll() to pick up error
920 * indications, but we don't want it to wait for
921 * anything.
922 */
923 handlep->poll_timeout = 0;
924 }
925 }
926
927 static void pcap_breakloop_linux(pcap_t *handle)
928 {
929 pcap_breakloop_common(handle);
930 struct pcap_linux *handlep = handle->priv;
931
932 uint64_t value = 1;
933 /* XXX - what if this fails? */
934 (void)write(handlep->poll_breakloop_fd, &value, sizeof(value));
935 }
936
937 /*
938 * Get a handle for a live capture from the given device. You can
939 * pass NULL as device to get all packages (without link level
940 * information of course). If you pass 1 as promisc the interface
941 * will be set to promiscuous mode (XXX: I think this usage should
942 * be deprecated and functions be added to select that later allow
943 * modification of that values -- Torsten).
944 */
945 static int
946 pcap_activate_linux(pcap_t *handle)
947 {
948 struct pcap_linux *handlep = handle->priv;
949 const char *device;
950 int is_any_device;
951 struct ifreq ifr;
952 int status = 0;
953 int status2 = 0;
954 int ret;
955
956 device = handle->opt.device;
957
958 /*
959 * Make sure the name we were handed will fit into the ioctls we
960 * might perform on the device; if not, return a "No such device"
961 * indication, as the Linux kernel shouldn't support creating
962 * a device whose name won't fit into those ioctls.
963 *
964 * "Will fit" means "will fit, complete with a null terminator",
965 * so if the length, which does *not* include the null terminator,
966 * is greater than *or equal to* the size of the field into which
967 * we'll be copying it, that won't fit.
968 */
969 if (strlen(device) >= sizeof(ifr.ifr_name)) {
970 status = PCAP_ERROR_NO_SUCH_DEVICE;
971 goto fail;
972 }
973
974 /*
975 * Turn a negative snapshot value (invalid), a snapshot value of
976 * 0 (unspecified), or a value bigger than the normal maximum
977 * value, into the maximum allowed value.
978 *
979 * If some application really *needs* a bigger snapshot
980 * length, we should just increase MAXIMUM_SNAPLEN.
981 */
982 if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN)
983 handle->snapshot = MAXIMUM_SNAPLEN;
984
985 handlep->device = strdup(device);
986 if (handlep->device == NULL) {
987 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
988 errno, "strdup");
989 status = PCAP_ERROR;
990 goto fail;
991 }
992
993 /*
994 * The "any" device is a special device which causes us not
995 * to bind to a particular device and thus to look at all
996 * devices.
997 */
998 is_any_device = (strcmp(device, "any") == 0);
999 if (is_any_device) {
1000 if (handle->opt.promisc) {
1001 handle->opt.promisc = 0;
1002 /* Just a warning. */
1003 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
1004 "Promiscuous mode not supported on the \"any\" device");
1005 status = PCAP_WARNING_PROMISC_NOTSUP;
1006 }
1007 }
1008
1009 /* copy timeout value */
1010 handlep->timeout = handle->opt.timeout;
1011
1012 /*
1013 * If we're in promiscuous mode, then we probably want
1014 * to see when the interface drops packets too, so get an
1015 * initial count from
1016 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1017 */
1018 if (handle->opt.promisc)
1019 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1020
1021 /*
1022 * If the "any" device is specified, try to open a SOCK_DGRAM.
1023 * Otherwise, open a SOCK_RAW.
1024 */
1025 ret = activate_pf_packet(handle, is_any_device);
1026 if (ret < 0) {
1027 /*
1028 * Fatal error; the return value is the error code,
1029 * and handle->errbuf has been set to an appropriate
1030 * error message.
1031 */
1032 status = ret;
1033 goto fail;
1034 }
1035 /*
1036 * Success.
1037 * Try to set up memory-mapped access.
1038 */
1039 ret = setup_mmapped(handle, &status);
1040 if (ret == -1) {
1041 /*
1042 * We failed to set up to use it, or the
1043 * kernel supports it, but we failed to
1044 * enable it. status has been set to the
1045 * error status to return and, if it's
1046 * PCAP_ERROR, handle->errbuf contains
1047 * the error message.
1048 */
1049 goto fail;
1050 }
1051
1052 /*
1053 * We succeeded. status has been set to the status to return,
1054 * which might be 0, or might be a PCAP_WARNING_ value.
1055 */
1056 /*
1057 * Now that we have activated the mmap ring, we can
1058 * set the correct protocol.
1059 */
1060 if ((status2 = iface_bind(handle->fd, handlep->ifindex,
1061 handle->errbuf, pcap_protocol(handle))) != 0) {
1062 status = status2;
1063 goto fail;
1064 }
1065
1066 handle->inject_op = pcap_inject_linux;
1067 handle->setfilter_op = pcap_setfilter_linux;
1068 handle->setdirection_op = pcap_setdirection_linux;
1069 handle->set_datalink_op = pcap_set_datalink_linux;
1070 handle->setnonblock_op = pcap_setnonblock_linux;
1071 handle->getnonblock_op = pcap_getnonblock_linux;
1072 handle->cleanup_op = pcap_cleanup_linux;
1073 handle->stats_op = pcap_stats_linux;
1074 handle->breakloop_op = pcap_breakloop_linux;
1075
1076 switch (handlep->tp_version) {
1077
1078 case TPACKET_V2:
1079 handle->read_op = pcap_read_linux_mmap_v2;
1080 break;
1081 #ifdef HAVE_TPACKET3
1082 case TPACKET_V3:
1083 handle->read_op = pcap_read_linux_mmap_v3;
1084 break;
1085 #endif
1086 }
1087 handle->oneshot_callback = pcap_oneshot_linux;
1088 handle->selectable_fd = handle->fd;
1089
1090 return status;
1091
1092 fail:
1093 pcap_cleanup_linux(handle);
1094 return status;
1095 }
1096
1097 static int
1098 pcap_set_datalink_linux(pcap_t *handle, int dlt)
1099 {
1100 handle->linktype = dlt;
1101 return 0;
1102 }
1103
1104 /*
1105 * linux_check_direction()
1106 *
1107 * Do checks based on packet direction.
1108 */
1109 static inline int
1110 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll)
1111 {
1112 struct pcap_linux *handlep = handle->priv;
1113
1114 if (sll->sll_pkttype == PACKET_OUTGOING) {
1115 /*
1116 * Outgoing packet.
1117 * If this is from the loopback device, reject it;
1118 * we'll see the packet as an incoming packet as well,
1119 * and we don't want to see it twice.
1120 */
1121 if (sll->sll_ifindex == handlep->lo_ifindex)
1122 return 0;
1123
1124 /*
1125 * If this is an outgoing CAN or CAN FD frame, and
1126 * the user doesn't only want outgoing packets,
1127 * reject it; CAN devices and drivers, and the CAN
1128 * stack, always arrange to loop back transmitted
1129 * packets, so they also appear as incoming packets.
1130 * We don't want duplicate packets, and we can't
1131 * easily distinguish packets looped back by the CAN
1132 * layer than those received by the CAN layer, so we
1133 * eliminate this packet instead.
1134 */
1135 if ((sll->sll_protocol == LINUX_SLL_P_CAN ||
1136 sll->sll_protocol == LINUX_SLL_P_CANFD) &&
1137 handle->direction != PCAP_D_OUT)
1138 return 0;
1139
1140 /*
1141 * If the user only wants incoming packets, reject it.
1142 */
1143 if (handle->direction == PCAP_D_IN)
1144 return 0;
1145 } else {
1146 /*
1147 * Incoming packet.
1148 * If the user only wants outgoing packets, reject it.
1149 */
1150 if (handle->direction == PCAP_D_OUT)
1151 return 0;
1152 }
1153 return 1;
1154 }
1155
1156 /*
1157 * Check whether the device to which the pcap_t is bound still exists.
1158 * We do so by asking what address the socket is bound to, and checking
1159 * whether the ifindex in the address is -1, meaning "that device is gone",
1160 * or some other value, meaning "that device still exists".
1161 */
1162 static int
1163 device_still_exists(pcap_t *handle)
1164 {
1165 struct pcap_linux *handlep = handle->priv;
1166 struct sockaddr_ll addr;
1167 socklen_t addr_len;
1168
1169 /*
1170 * If handlep->ifindex is -1, the socket isn't bound, meaning
1171 * we're capturing on the "any" device; that device never
1172 * disappears. (It should also never be configured down, so
1173 * we shouldn't even get here, but let's make sure.)
1174 */
1175 if (handlep->ifindex == -1)
1176 return (1); /* it's still here */
1177
1178 /*
1179 * OK, now try to get the address for the socket.
1180 */
1181 addr_len = sizeof (addr);
1182 if (getsockname(handle->fd, (struct sockaddr *) &addr, &addr_len) == -1) {
1183 /*
1184 * Error - report an error and return -1.
1185 */
1186 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1187 errno, "getsockname failed");
1188 return (-1);
1189 }
1190 if (addr.sll_ifindex == -1) {
1191 /*
1192 * This means the device went away.
1193 */
1194 return (0);
1195 }
1196
1197 /*
1198 * The device presumably just went down.
1199 */
1200 return (1);
1201 }
1202
1203 static int
1204 pcap_inject_linux(pcap_t *handle, const void *buf, int size)
1205 {
1206 struct pcap_linux *handlep = handle->priv;
1207 int ret;
1208
1209 if (handlep->ifindex == -1) {
1210 /*
1211 * We don't support sending on the "any" device.
1212 */
1213 pcap_strlcpy(handle->errbuf,
1214 "Sending packets isn't supported on the \"any\" device",
1215 PCAP_ERRBUF_SIZE);
1216 return (-1);
1217 }
1218
1219 if (handlep->cooked) {
1220 /*
1221 * We don't support sending on cooked-mode sockets.
1222 *
1223 * XXX - how do you send on a bound cooked-mode
1224 * socket?
1225 * Is a "sendto()" required there?
1226 */
1227 pcap_strlcpy(handle->errbuf,
1228 "Sending packets isn't supported in cooked mode",
1229 PCAP_ERRBUF_SIZE);
1230 return (-1);
1231 }
1232
1233 ret = (int)send(handle->fd, buf, size, 0);
1234 if (ret == -1) {
1235 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
1236 errno, "send");
1237 return (-1);
1238 }
1239 return (ret);
1240 }
1241
1242 /*
1243 * Get the statistics for the given packet capture handle.
1244 */
1245 static int
1246 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats)
1247 {
1248 struct pcap_linux *handlep = handle->priv;
1249 #ifdef HAVE_TPACKET3
1250 /*
1251 * For sockets using TPACKET_V2, the extra stuff at the end
1252 * of a struct tpacket_stats_v3 will not be filled in, and
1253 * we don't look at it so this is OK even for those sockets.
1254 * In addition, the PF_PACKET socket code in the kernel only
1255 * uses the length parameter to compute how much data to
1256 * copy out and to indicate how much data was copied out, so
1257 * it's OK to base it on the size of a struct tpacket_stats.
1258 *
1259 * XXX - it's probably OK, in fact, to just use a
1260 * struct tpacket_stats for V3 sockets, as we don't
1261 * care about the tp_freeze_q_cnt stat.
1262 */
1263 struct tpacket_stats_v3 kstats;
1264 #else /* HAVE_TPACKET3 */
1265 struct tpacket_stats kstats;
1266 #endif /* HAVE_TPACKET3 */
1267 socklen_t len = sizeof (struct tpacket_stats);
1268
1269 long long if_dropped = 0;
1270
1271 /*
1272 * To fill in ps_ifdrop, we parse
1273 * /sys/class/net/{if_name}/statistics/rx_{missed,fifo}_errors
1274 * for the numbers
1275 */
1276 if (handle->opt.promisc)
1277 {
1278 /*
1279 * XXX - is there any reason to do this by remembering
1280 * the last counts value, subtracting it from the
1281 * current counts value, and adding that to stat.ps_ifdrop,
1282 * maintaining stat.ps_ifdrop as a count, rather than just
1283 * saving the *initial* counts value and setting
1284 * stat.ps_ifdrop to the difference between the current
1285 * value and the initial value?
1286 *
1287 * One reason might be to handle the count wrapping
1288 * around, on platforms where the count is 32 bits
1289 * and where you might get more than 2^32 dropped
1290 * packets; is there any other reason?
1291 *
1292 * (We maintain the count as a long long int so that,
1293 * if the kernel maintains the counts as 64-bit even
1294 * on 32-bit platforms, we can handle the real count.
1295 *
1296 * Unfortunately, we can't report 64-bit counts; we
1297 * need a better API for reporting statistics, such as
1298 * one that reports them in a style similar to the
1299 * pcapng Interface Statistics Block, so that 1) the
1300 * counts are 64-bit, 2) it's easier to add new statistics
1301 * without breaking the ABI, and 3) it's easier to
1302 * indicate to a caller that wants one particular
1303 * statistic that it's not available by just not supplying
1304 * it.)
1305 */
1306 if_dropped = handlep->sysfs_dropped;
1307 handlep->sysfs_dropped = linux_if_drops(handlep->device);
1308 handlep->stat.ps_ifdrop += (u_int)(handlep->sysfs_dropped - if_dropped);
1309 }
1310
1311 /*
1312 * Try to get the packet counts from the kernel.
1313 */
1314 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
1315 &kstats, &len) > -1) {
1316 /*
1317 * "ps_recv" counts only packets that *passed* the
1318 * filter, not packets that didn't pass the filter.
1319 * This includes packets later dropped because we
1320 * ran out of buffer space.
1321 *
1322 * "ps_drop" counts packets dropped because we ran
1323 * out of buffer space. It doesn't count packets
1324 * dropped by the interface driver. It counts only
1325 * packets that passed the filter.
1326 *
1327 * See above for ps_ifdrop.
1328 *
1329 * Both statistics include packets not yet read from
1330 * the kernel by libpcap, and thus not yet seen by
1331 * the application.
1332 *
1333 * In "linux/net/packet/af_packet.c", at least in 2.6.27
1334 * through 5.6 kernels, "tp_packets" is incremented for
1335 * every packet that passes the packet filter *and* is
1336 * successfully copied to the ring buffer; "tp_drops" is
1337 * incremented for every packet dropped because there's
1338 * not enough free space in the ring buffer.
1339 *
1340 * When the statistics are returned for a PACKET_STATISTICS
1341 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
1342 * so that "tp_packets" counts all packets handed to
1343 * the PF_PACKET socket, including packets dropped because
1344 * there wasn't room on the socket buffer - but not
1345 * including packets that didn't pass the filter.
1346 *
1347 * In the BSD BPF, the count of received packets is
1348 * incremented for every packet handed to BPF, regardless
1349 * of whether it passed the filter.
1350 *
1351 * We can't make "pcap_stats()" work the same on both
1352 * platforms, but the best approximation is to return
1353 * "tp_packets" as the count of packets and "tp_drops"
1354 * as the count of drops.
1355 *
1356 * Keep a running total because each call to
1357 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, ....
1358 * resets the counters to zero.
1359 */
1360 handlep->stat.ps_recv += kstats.tp_packets;
1361 handlep->stat.ps_drop += kstats.tp_drops;
1362 *stats = handlep->stat;
1363 return 0;
1364 }
1365
1366 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, errno,
1367 "failed to get statistics from socket");
1368 return -1;
1369 }
1370
1371 /*
1372 * Description string for the "any" device.
1373 */
1374 static const char any_descr[] = "Pseudo-device that captures on all interfaces";
1375
1376 /*
1377 * A PF_PACKET socket can be bound to any network interface.
1378 */
1379 static int
1380 can_be_bound(const char *name _U_)
1381 {
1382 return (1);
1383 }
1384
1385 /*
1386 * Get a socket to use with various interface ioctls.
1387 */
1388 static int
1389 get_if_ioctl_socket(void)
1390 {
1391 int fd;
1392
1393 /*
1394 * This is a bit ugly.
1395 *
1396 * There isn't a socket type that's guaranteed to work.
1397 *
1398 * AF_NETLINK will work *if* you have Netlink configured into the
1399 * kernel (can it be configured out if you have any networking
1400 * support at all?) *and* if you're running a sufficiently recent
1401 * kernel, but not all the kernels we support are sufficiently
1402 * recent - that feature was introduced in Linux 4.6.
1403 *
1404 * AF_UNIX will work *if* you have UNIX-domain sockets configured
1405 * into the kernel and *if* you're not on a system that doesn't
1406 * allow them - some SELinux systems don't allow you create them.
1407 * Most systems probably have them configured in, but not all systems
1408 * have them configured in and allow them to be created.
1409 *
1410 * AF_INET will work *if* you have IPv4 configured into the kernel,
1411 * but, apparently, some systems have network adapters but have
1412 * kernels without IPv4 support.
1413 *
1414 * AF_INET6 will work *if* you have IPv6 configured into the
1415 * kernel, but if you don't have AF_INET, you might not have
1416 * AF_INET6, either (that is, independently on its own grounds).
1417 *
1418 * AF_PACKET would work, except that some of these calls should
1419 * work even if you *don't* have capture permission (you should be
1420 * able to enumerate interfaces and get information about them
1421 * without capture permission; you shouldn't get a failure until
1422 * you try pcap_activate()). (If you don't allow programs to
1423 * get as much information as possible about interfaces if you
1424 * don't have permission to capture, you run the risk of users
1425 * asking "why isn't it showing XXX" - or, worse, if you don't
1426 * show interfaces *at all* if you don't have permission to
1427 * capture on them, "why do no interfaces show up?" - when the
1428 * real problem is a permissions problem. Error reports of that
1429 * type require a lot more back-and-forth to debug, as evidenced
1430 * by many Wireshark bugs/mailing list questions/Q&A questoins.)
1431 *
1432 * So:
1433 *
1434 * we first try an AF_NETLINK socket, where "try" includes
1435 * "try to do a device ioctl on it", as, in the future, once
1436 * pre-4.6 kernels are sufficiently rare, that will probably
1437 * be the mechanism most likely to work;
1438 *
1439 * if that fails, we try an AF_UNIX socket, as that's less
1440 * likely to be configured out on a networking-capable system
1441 * than is IP;
1442 *
1443 * if that fails, we try an AF_INET6 socket;
1444 *
1445 * if that fails, we try an AF_INET socket.
1446 */
1447 fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
1448 if (fd != -1) {
1449 /*
1450 * OK, let's make sure we can do an SIOCGIFNAME
1451 * ioctl.
1452 */
1453 struct ifreq ifr;
1454
1455 memset(&ifr, 0, sizeof(ifr));
1456 if (ioctl(fd, SIOCGIFNAME, &ifr) == 0 ||
1457 errno != EOPNOTSUPP) {
1458 /*
1459 * It succeeded, or failed for some reason
1460 * other than "netlink sockets don't support
1461 * device ioctls". Go with the AF_NETLINK
1462 * socket.
1463 */
1464 return (fd);
1465 }
1466
1467 /*
1468 * OK, that didn't work, so it's as bad as "netlink
1469 * sockets aren't available". Close the socket and
1470 * drive on.
1471 */
1472 close(fd);
1473 }
1474
1475 /*
1476 * Now try an AF_UNIX socket.
1477 */
1478 fd = socket(AF_UNIX, SOCK_RAW, 0);
1479 if (fd != -1) {
1480 /*
1481 * OK, we got it!
1482 */
1483 return (fd);
1484 }
1485
1486 /*
1487 * Now try an AF_INET6 socket.
1488 */
1489 fd = socket(AF_INET6, SOCK_DGRAM, 0);
1490 if (fd != -1) {
1491 return (fd);
1492 }
1493
1494 /*
1495 * Now try an AF_INET socket.
1496 *
1497 * XXX - if that fails, is there anything else we should try?
1498 * AF_CAN, for embedded systems in vehicles, in case they're
1499 * built without Internet protocol support? Any other socket
1500 * types popular in non-Internet embedded systems?
1501 */
1502 return (socket(AF_INET, SOCK_DGRAM, 0));
1503 }
1504
1505 /*
1506 * Get additional flags for a device, using SIOCGIFMEDIA.
1507 */
1508 static int
1509 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf)
1510 {
1511 int sock;
1512 FILE *fh;
1513 unsigned int arptype;
1514 struct ifreq ifr;
1515 struct ethtool_value info;
1516
1517 if (*flags & PCAP_IF_LOOPBACK) {
1518 /*
1519 * Loopback devices aren't wireless, and "connected"/
1520 * "disconnected" doesn't apply to them.
1521 */
1522 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1523 return 0;
1524 }
1525
1526 sock = get_if_ioctl_socket();
1527 if (sock == -1) {
1528 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno,
1529 "Can't create socket to get ethtool information for %s",
1530 name);
1531 return -1;
1532 }
1533
1534 /*
1535 * OK, what type of network is this?
1536 * In particular, is it wired or wireless?
1537 */
1538 if (is_wifi(name)) {
1539 /*
1540 * Wi-Fi, hence wireless.
1541 */
1542 *flags |= PCAP_IF_WIRELESS;
1543 } else {
1544 /*
1545 * OK, what does /sys/class/net/{if_name}/type contain?
1546 * (We don't use that for Wi-Fi, as it'll report
1547 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor-
1548 * mode devices.)
1549 */
1550 char *pathstr;
1551
1552 if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) {
1553 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1554 "%s: Can't generate path name string for /sys/class/net device",
1555 name);
1556 close(sock);
1557 return -1;
1558 }
1559 fh = fopen(pathstr, "r");
1560 if (fh != NULL) {
1561 if (fscanf(fh, "%u", &arptype) == 1) {
1562 /*
1563 * OK, we got an ARPHRD_ type; what is it?
1564 */
1565 switch (arptype) {
1566
1567 case ARPHRD_LOOPBACK:
1568 /*
1569 * These are types to which
1570 * "connected" and "disconnected"
1571 * don't apply, so don't bother
1572 * asking about it.
1573 *
1574 * XXX - add other types?
1575 */
1576 close(sock);
1577 fclose(fh);
1578 free(pathstr);
1579 return 0;
1580
1581 case ARPHRD_IRDA:
1582 case ARPHRD_IEEE80211:
1583 case ARPHRD_IEEE80211_PRISM:
1584 case ARPHRD_IEEE80211_RADIOTAP:
1585 #ifdef ARPHRD_IEEE802154
1586 case ARPHRD_IEEE802154:
1587 #endif
1588 #ifdef ARPHRD_IEEE802154_MONITOR
1589 case ARPHRD_IEEE802154_MONITOR:
1590 #endif
1591 #ifdef ARPHRD_6LOWPAN
1592 case ARPHRD_6LOWPAN:
1593 #endif
1594 /*
1595 * Various wireless types.
1596 */
1597 *flags |= PCAP_IF_WIRELESS;
1598 break;
1599 }
1600 }
1601 fclose(fh);
1602 free(pathstr);
1603 }
1604 }
1605
1606 #ifdef ETHTOOL_GLINK
1607 memset(&ifr, 0, sizeof(ifr));
1608 pcap_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
1609 info.cmd = ETHTOOL_GLINK;
1610 /*
1611 * XXX - while Valgrind handles SIOCETHTOOL and knows that
1612 * the ETHTOOL_GLINK command sets the .data member of the
1613 * structure, Memory Sanitizer doesn't yet do so:
1614 *
1615 * https://bugs.llvm.org/show_bug.cgi?id=45814
1616 *
1617 * For now, we zero it out to squelch warnings; if the bug
1618 * in question is fixed, we can remove this.
1619 */
1620 info.data = 0;
1621 ifr.ifr_data = (caddr_t)&info;
1622 if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) {
1623 int save_errno = errno;
1624
1625 switch (save_errno) {
1626
1627 case EOPNOTSUPP:
1628 case EINVAL:
1629 /*
1630 * OK, this OS version or driver doesn't support
1631 * asking for this information.
1632 * XXX - distinguish between "this doesn't
1633 * support ethtool at all because it's not
1634 * that type of device" vs. "this doesn't
1635 * support ethtool even though it's that
1636 * type of device", and return "unknown".
1637 */
1638 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE;
1639 close(sock);
1640 return 0;
1641
1642 case ENODEV:
1643 /*
1644 * OK, no such device.
1645 * The user will find that out when they try to
1646 * activate the device; just say "OK" and
1647 * don't set anything.
1648 */
1649 close(sock);
1650 return 0;
1651
1652 default:
1653 /*
1654 * Other error.
1655 */
1656 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE,
1657 save_errno,
1658 "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed",
1659 name);
1660 close(sock);
1661 return -1;
1662 }
1663 }
1664
1665 /*
1666 * Is it connected?
1667 */
1668 if (info.data) {
1669 /*
1670 * It's connected.
1671 */
1672 *flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED;
1673 } else {
1674 /*
1675 * It's disconnected.
1676 */
1677 *flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED;
1678 }
1679 #endif
1680
1681 close(sock);
1682 return 0;
1683 }
1684
1685 int
1686 pcap_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf)
1687 {
1688 /*
1689 * Get the list of regular interfaces first.
1690 */
1691 if (pcap_findalldevs_interfaces(devlistp, errbuf, can_be_bound,
1692 get_if_flags) == -1)
1693 return (-1); /* failure */
1694
1695 /*
1696 * Add the "any" device.
1697 * As it refers to all network devices, not to any particular
1698 * network device, the notion of "connected" vs. "disconnected"
1699 * doesn't apply.
1700 */
1701 if (add_dev(devlistp, "any",
1702 PCAP_IF_UP|PCAP_IF_RUNNING|PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE,
1703 any_descr, errbuf) == NULL)
1704 return (-1);
1705
1706 return (0);
1707 }
1708
1709 /*
1710 * Set direction flag: Which packets do we accept on a forwarding
1711 * single device? IN, OUT or both?
1712 */
1713 static int
1714 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d)
1715 {
1716 /*
1717 * It's guaranteed, at this point, that d is a valid
1718 * direction value.
1719 */
1720 handle->direction = d;
1721 return 0;
1722 }
1723
1724 static int
1725 is_wifi(const char *device)
1726 {
1727 char *pathstr;
1728 struct stat statb;
1729
1730 /*
1731 * See if there's a sysfs wireless directory for it.
1732 * If so, it's a wireless interface.
1733 */
1734 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) {
1735 /*
1736 * Just give up here.
1737 */
1738 return 0;
1739 }
1740 if (stat(pathstr, &statb) == 0) {
1741 free(pathstr);
1742 return 1;
1743 }
1744 free(pathstr);
1745
1746 return 0;
1747 }
1748
1749 /*
1750 * Linux uses the ARP hardware type to identify the type of an
1751 * interface. pcap uses the DLT_xxx constants for this. This
1752 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
1753 * constant, as arguments, and sets "handle->linktype" to the
1754 * appropriate DLT_XXX constant and sets "handle->offset" to
1755 * the appropriate value (to make "handle->offset" plus link-layer
1756 * header length be a multiple of 4, so that the link-layer payload
1757 * will be aligned on a 4-byte boundary when capturing packets).
1758 * (If the offset isn't set here, it'll be 0; add code as appropriate
1759 * for cases where it shouldn't be 0.)
1760 *
1761 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture
1762 * in cooked mode; otherwise, we can't use cooked mode, so we have
1763 * to pick some type that works in raw mode, or fail.
1764 *
1765 * Sets the link type to -1 if unable to map the type.
1766 */
1767 static void map_arphrd_to_dlt(pcap_t *handle, int arptype,
1768 const char *device, int cooked_ok)
1769 {
1770 static const char cdma_rmnet[] = "cdma_rmnet";
1771
1772 switch (arptype) {
1773
1774 case ARPHRD_ETHER:
1775 /*
1776 * For various annoying reasons having to do with DHCP
1777 * software, some versions of Android give the mobile-
1778 * phone-network interface an ARPHRD_ value of
1779 * ARPHRD_ETHER, even though the packets supplied by
1780 * that interface have no link-layer header, and begin
1781 * with an IP header, so that the ARPHRD_ value should
1782 * be ARPHRD_NONE.
1783 *
1784 * Detect those devices by checking the device name, and
1785 * use DLT_RAW for them.
1786 */
1787 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) {
1788 handle->linktype = DLT_RAW;
1789 return;
1790 }
1791
1792 /*
1793 * Is this a real Ethernet device? If so, give it a
1794 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so
1795 * that an application can let you choose it, in case you're
1796 * capturing DOCSIS traffic that a Cisco Cable Modem
1797 * Termination System is putting out onto an Ethernet (it
1798 * doesn't put an Ethernet header onto the wire, it puts raw
1799 * DOCSIS frames out on the wire inside the low-level
1800 * Ethernet framing).
1801 *
1802 * XXX - are there any other sorts of "fake Ethernet" that
1803 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as
1804 * a Cisco CMTS won't put traffic onto it or get traffic
1805 * bridged onto it? ISDN is handled in "activate_pf_packet()",
1806 * as we fall back on cooked mode there, and we use
1807 * is_wifi() to check for 802.11 devices; are there any
1808 * others?
1809 */
1810 if (!is_wifi(device)) {
1811 int ret;
1812
1813 /*
1814 * This is not a Wi-Fi device but it could be
1815 * a DSA master/management network device.
1816 */
1817 ret = iface_dsa_get_proto_info(device, handle);
1818 if (ret < 0)
1819 return;
1820
1821 if (ret == 1) {
1822 /*
1823 * This is a DSA master/management network
1824 * device linktype is already set by
1825 * iface_dsa_get_proto_info() set an
1826 * appropriate offset here.
1827 */
1828 handle->offset = 2;
1829 break;
1830 }
1831
1832 /*
1833 * It's not a Wi-Fi device; offer DOCSIS.
1834 */
1835 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
1836 /*
1837 * If that fails, just leave the list empty.
1838 */
1839 if (handle->dlt_list != NULL) {
1840 handle->dlt_list[0] = DLT_EN10MB;
1841 handle->dlt_list[1] = DLT_DOCSIS;
1842 handle->dlt_count = 2;
1843 }
1844 }
1845 /* FALLTHROUGH */
1846
1847 case ARPHRD_METRICOM:
1848 case ARPHRD_LOOPBACK:
1849 handle->linktype = DLT_EN10MB;
1850 handle->offset = 2;
1851 break;
1852
1853 case ARPHRD_EETHER:
1854 handle->linktype = DLT_EN3MB;
1855 break;
1856
1857 case ARPHRD_AX25:
1858 handle->linktype = DLT_AX25_KISS;
1859 break;
1860
1861 case ARPHRD_PRONET:
1862 handle->linktype = DLT_PRONET;
1863 break;
1864
1865 case ARPHRD_CHAOS:
1866 handle->linktype = DLT_CHAOS;
1867 break;
1868 #ifndef ARPHRD_CAN
1869 #define ARPHRD_CAN 280
1870 #endif
1871 case ARPHRD_CAN:
1872 /*
1873 * Map this to DLT_LINUX_SLL; that way, CAN frames will
1874 * have ETH_P_CAN/LINUX_SLL_P_CAN as the protocol and
1875 * CAN FD frames will have ETH_P_CANFD/LINUX_SLL_P_CANFD
1876 * as the protocol, so they can be distinguished by the
1877 * protocol in the SLL header.
1878 */
1879 handle->linktype = DLT_LINUX_SLL;
1880 break;
1881
1882 #ifndef ARPHRD_IEEE802_TR
1883 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
1884 #endif
1885 case ARPHRD_IEEE802_TR:
1886 case ARPHRD_IEEE802:
1887 handle->linktype = DLT_IEEE802;
1888 handle->offset = 2;
1889 break;
1890
1891 case ARPHRD_ARCNET:
1892 handle->linktype = DLT_ARCNET_LINUX;
1893 break;
1894
1895 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */
1896 #define ARPHRD_FDDI 774
1897 #endif
1898 case ARPHRD_FDDI:
1899 handle->linktype = DLT_FDDI;
1900 handle->offset = 3;
1901 break;
1902
1903 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
1904 #define ARPHRD_ATM 19
1905 #endif
1906 case ARPHRD_ATM:
1907 /*
1908 * The Classical IP implementation in ATM for Linux
1909 * supports both what RFC 1483 calls "LLC Encapsulation",
1910 * in which each packet has an LLC header, possibly
1911 * with a SNAP header as well, prepended to it, and
1912 * what RFC 1483 calls "VC Based Multiplexing", in which
1913 * different virtual circuits carry different network
1914 * layer protocols, and no header is prepended to packets.
1915 *
1916 * They both have an ARPHRD_ type of ARPHRD_ATM, so
1917 * you can't use the ARPHRD_ type to find out whether
1918 * captured packets will have an LLC header, and,
1919 * while there's a socket ioctl to *set* the encapsulation
1920 * type, there's no ioctl to *get* the encapsulation type.
1921 *
1922 * This means that
1923 *
1924 * programs that dissect Linux Classical IP frames
1925 * would have to check for an LLC header and,
1926 * depending on whether they see one or not, dissect
1927 * the frame as LLC-encapsulated or as raw IP (I
1928 * don't know whether there's any traffic other than
1929 * IP that would show up on the socket, or whether
1930 * there's any support for IPv6 in the Linux
1931 * Classical IP code);
1932 *
1933 * filter expressions would have to compile into
1934 * code that checks for an LLC header and does
1935 * the right thing.
1936 *
1937 * Both of those are a nuisance - and, at least on systems
1938 * that support PF_PACKET sockets, we don't have to put
1939 * up with those nuisances; instead, we can just capture
1940 * in cooked mode. That's what we'll do, if we can.
1941 * Otherwise, we'll just fail.
1942 */
1943 if (cooked_ok)
1944 handle->linktype = DLT_LINUX_SLL;
1945 else
1946 handle->linktype = -1;
1947 break;
1948
1949 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
1950 #define ARPHRD_IEEE80211 801
1951 #endif
1952 case ARPHRD_IEEE80211:
1953 handle->linktype = DLT_IEEE802_11;
1954 break;
1955
1956 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */
1957 #define ARPHRD_IEEE80211_PRISM 802
1958 #endif
1959 case ARPHRD_IEEE80211_PRISM:
1960 handle->linktype = DLT_PRISM_HEADER;
1961 break;
1962
1963 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */
1964 #define ARPHRD_IEEE80211_RADIOTAP 803
1965 #endif
1966 case ARPHRD_IEEE80211_RADIOTAP:
1967 handle->linktype = DLT_IEEE802_11_RADIO;
1968 break;
1969
1970 case ARPHRD_PPP:
1971 /*
1972 * Some PPP code in the kernel supplies no link-layer
1973 * header whatsoever to PF_PACKET sockets; other PPP
1974 * code supplies PPP link-layer headers ("syncppp.c");
1975 * some PPP code might supply random link-layer
1976 * headers (PPP over ISDN - there's code in Ethereal,
1977 * for example, to cope with PPP-over-ISDN captures
1978 * with which the Ethereal developers have had to cope,
1979 * heuristically trying to determine which of the
1980 * oddball link-layer headers particular packets have).
1981 *
1982 * As such, we just punt, and run all PPP interfaces
1983 * in cooked mode, if we can; otherwise, we just treat
1984 * it as DLT_RAW, for now - if somebody needs to capture,
1985 * on a 2.0[.x] kernel, on PPP devices that supply a
1986 * link-layer header, they'll have to add code here to
1987 * map to the appropriate DLT_ type (possibly adding a
1988 * new DLT_ type, if necessary).
1989 */
1990 if (cooked_ok)
1991 handle->linktype = DLT_LINUX_SLL;
1992 else {
1993 /*
1994 * XXX - handle ISDN types here? We can't fall
1995 * back on cooked sockets, so we'd have to
1996 * figure out from the device name what type of
1997 * link-layer encapsulation it's using, and map
1998 * that to an appropriate DLT_ value, meaning
1999 * we'd map "isdnN" devices to DLT_RAW (they
2000 * supply raw IP packets with no link-layer
2001 * header) and "isdY" devices to a new DLT_I4L_IP
2002 * type that has only an Ethernet packet type as
2003 * a link-layer header.
2004 *
2005 * But sometimes we seem to get random crap
2006 * in the link-layer header when capturing on
2007 * ISDN devices....
2008 */
2009 handle->linktype = DLT_RAW;
2010 }
2011 break;
2012
2013 #ifndef ARPHRD_CISCO
2014 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */
2015 #endif
2016 case ARPHRD_CISCO:
2017 handle->linktype = DLT_C_HDLC;
2018 break;
2019
2020 /* Not sure if this is correct for all tunnels, but it
2021 * works for CIPE */
2022 case ARPHRD_TUNNEL:
2023 #ifndef ARPHRD_SIT
2024 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */
2025 #endif
2026 case ARPHRD_SIT:
2027 case ARPHRD_CSLIP:
2028 case ARPHRD_SLIP6:
2029 case ARPHRD_CSLIP6:
2030 case ARPHRD_ADAPT:
2031 case ARPHRD_SLIP:
2032 #ifndef ARPHRD_RAWHDLC
2033 #define ARPHRD_RAWHDLC 518
2034 #endif
2035 case ARPHRD_RAWHDLC:
2036 #ifndef ARPHRD_DLCI
2037 #define ARPHRD_DLCI 15
2038 #endif
2039 case ARPHRD_DLCI:
2040 /*
2041 * XXX - should some of those be mapped to DLT_LINUX_SLL
2042 * instead? Should we just map all of them to DLT_LINUX_SLL?
2043 */
2044 handle->linktype = DLT_RAW;
2045 break;
2046
2047 #ifndef ARPHRD_FRAD
2048 #define ARPHRD_FRAD 770
2049 #endif
2050 case ARPHRD_FRAD:
2051 handle->linktype = DLT_FRELAY;
2052 break;
2053
2054 case ARPHRD_LOCALTLK:
2055 handle->linktype = DLT_LTALK;
2056 break;
2057
2058 case 18:
2059 /*
2060 * RFC 4338 defines an encapsulation for IP and ARP
2061 * packets that's compatible with the RFC 2625
2062 * encapsulation, but that uses a different ARP
2063 * hardware type and hardware addresses. That
2064 * ARP hardware type is 18; Linux doesn't define
2065 * any ARPHRD_ value as 18, but if it ever officially
2066 * supports RFC 4338-style IP-over-FC, it should define
2067 * one.
2068 *
2069 * For now, we map it to DLT_IP_OVER_FC, in the hopes
2070 * that this will encourage its use in the future,
2071 * should Linux ever officially support RFC 4338-style
2072 * IP-over-FC.
2073 */
2074 handle->linktype = DLT_IP_OVER_FC;
2075 break;
2076
2077 #ifndef ARPHRD_FCPP
2078 #define ARPHRD_FCPP 784
2079 #endif
2080 case ARPHRD_FCPP:
2081 #ifndef ARPHRD_FCAL
2082 #define ARPHRD_FCAL 785
2083 #endif
2084 case ARPHRD_FCAL:
2085 #ifndef ARPHRD_FCPL
2086 #define ARPHRD_FCPL 786
2087 #endif
2088 case ARPHRD_FCPL:
2089 #ifndef ARPHRD_FCFABRIC
2090 #define ARPHRD_FCFABRIC 787
2091 #endif
2092 case ARPHRD_FCFABRIC:
2093 /*
2094 * Back in 2002, Donald Lee at Cray wanted a DLT_ for
2095 * IP-over-FC:
2096 *
2097 * https://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html
2098 *
2099 * and one was assigned.
2100 *
2101 * In a later private discussion (spun off from a message
2102 * on the ethereal-users list) on how to get that DLT_
2103 * value in libpcap on Linux, I ended up deciding that
2104 * the best thing to do would be to have him tweak the
2105 * driver to set the ARPHRD_ value to some ARPHRD_FCxx
2106 * type, and map all those types to DLT_IP_OVER_FC:
2107 *
2108 * I've checked into the libpcap and tcpdump CVS tree
2109 * support for DLT_IP_OVER_FC. In order to use that,
2110 * you'd have to modify your modified driver to return
2111 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" -
2112 * change it to set "dev->type" to ARPHRD_FCFABRIC, for
2113 * example (the exact value doesn't matter, it can be
2114 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or
2115 * ARPHRD_FCFABRIC).
2116 *
2117 * 11 years later, Christian Svensson wanted to map
2118 * various ARPHRD_ values to DLT_FC_2 and
2119 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel
2120 * frames:
2121 *
2122 * https://github.com/mcr/libpcap/pull/29
2123 *
2124 * There doesn't seem to be any network drivers that uses
2125 * any of the ARPHRD_FC* values for IP-over-FC, and
2126 * it's not exactly clear what the "Dummy types for non
2127 * ARP hardware" are supposed to mean (link-layer
2128 * header type? Physical network type?), so it's
2129 * not exactly clear why the ARPHRD_FC* types exist
2130 * in the first place.
2131 *
2132 * For now, we map them to DLT_FC_2, and provide an
2133 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as
2134 * DLT_IP_OVER_FC just in case there's some old
2135 * driver out there that uses one of those types for
2136 * IP-over-FC on which somebody wants to capture
2137 * packets.
2138 */
2139 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3);
2140 /*
2141 * If that fails, just leave the list empty.
2142 */
2143 if (handle->dlt_list != NULL) {
2144 handle->dlt_list[0] = DLT_FC_2;
2145 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS;
2146 handle->dlt_list[2] = DLT_IP_OVER_FC;
2147 handle->dlt_count = 3;
2148 }
2149 handle->linktype = DLT_FC_2;
2150 break;
2151
2152 #ifndef ARPHRD_IRDA
2153 #define ARPHRD_IRDA 783
2154 #endif
2155 case ARPHRD_IRDA:
2156 /* Don't expect IP packet out of this interfaces... */
2157 handle->linktype = DLT_LINUX_IRDA;
2158 /* We need to save packet direction for IrDA decoding,
2159 * so let's use "Linux-cooked" mode. Jean II
2160 *
2161 * XXX - this is handled in activate_pf_packet(). */
2162 /* handlep->cooked = 1; */
2163 break;
2164
2165 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation
2166 * is needed, please report it to <daniele@orlandi.com> */
2167 #ifndef ARPHRD_LAPD
2168 #define ARPHRD_LAPD 8445
2169 #endif
2170 case ARPHRD_LAPD:
2171 /* Don't expect IP packet out of this interfaces... */
2172 handle->linktype = DLT_LINUX_LAPD;
2173 break;
2174
2175 #ifndef ARPHRD_NONE
2176 #define ARPHRD_NONE 0xFFFE
2177 #endif
2178 case ARPHRD_NONE:
2179 /*
2180 * No link-layer header; packets are just IP
2181 * packets, so use DLT_RAW.
2182 */
2183 handle->linktype = DLT_RAW;
2184 break;
2185
2186 #ifndef ARPHRD_IEEE802154
2187 #define ARPHRD_IEEE802154 804
2188 #endif
2189 case ARPHRD_IEEE802154:
2190 handle->linktype = DLT_IEEE802_15_4_NOFCS;
2191 break;
2192
2193 #ifndef ARPHRD_NETLINK
2194 #define ARPHRD_NETLINK 824
2195 #endif
2196 case ARPHRD_NETLINK:
2197 handle->linktype = DLT_NETLINK;
2198 /*
2199 * We need to use cooked mode, so that in sll_protocol we
2200 * pick up the netlink protocol type such as NETLINK_ROUTE,
2201 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc.
2202 *
2203 * XXX - this is handled in activate_pf_packet().
2204 */
2205 /* handlep->cooked = 1; */
2206 break;
2207
2208 #ifndef ARPHRD_VSOCKMON
2209 #define ARPHRD_VSOCKMON 826
2210 #endif
2211 case ARPHRD_VSOCKMON:
2212 handle->linktype = DLT_VSOCK;
2213 break;
2214
2215 default:
2216 handle->linktype = -1;
2217 break;
2218 }
2219 }
2220
2221 #ifdef PACKET_RESERVE
2222 static void
2223 set_dlt_list_cooked(pcap_t *handle, int sock_fd)
2224 {
2225 socklen_t len;
2226 unsigned int tp_reserve;
2227
2228 /*
2229 * If we can't do PACKET_RESERVE, we can't reserve extra space
2230 * for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2.
2231 */
2232 len = sizeof(tp_reserve);
2233 if (getsockopt(sock_fd, SOL_PACKET, PACKET_RESERVE, &tp_reserve,
2234 &len) == 0) {
2235 /*
2236 * Yes, we can do DLL_LINUX_SLL2.
2237 */
2238 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2239 /*
2240 * If that fails, just leave the list empty.
2241 */
2242 if (handle->dlt_list != NULL) {
2243 handle->dlt_list[0] = DLT_LINUX_SLL;
2244 handle->dlt_list[1] = DLT_LINUX_SLL2;
2245 handle->dlt_count = 2;
2246 }
2247 }
2248 }
2249 #else/* PACKET_RESERVE */
2250 /*
2251 * The build environment doesn't define PACKET_RESERVE, so we can't reserve
2252 * extra space for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2.
2253 */
2254 static void
2255 set_dlt_list_cooked(pcap_t *handle _U_, int sock_fd _U_)
2256 {
2257 }
2258 #endif /* PACKET_RESERVE */
2259
2260 /*
2261 * Try to set up a PF_PACKET socket.
2262 * Returns 0 on success and a PCAP_ERROR_ value on failure.
2263 */
2264 static int
2265 activate_pf_packet(pcap_t *handle, int is_any_device)
2266 {
2267 struct pcap_linux *handlep = handle->priv;
2268 const char *device = handle->opt.device;
2269 int status = 0;
2270 int sock_fd, arptype;
2271 #ifdef HAVE_PACKET_AUXDATA
2272 int val;
2273 #endif
2274 int err = 0;
2275 struct packet_mreq mr;
2276 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2277 int bpf_extensions;
2278 socklen_t len = sizeof(bpf_extensions);
2279 #endif
2280
2281 /*
2282 * Open a socket with protocol family packet. If cooked is true,
2283 * we open a SOCK_DGRAM socket for the cooked interface, otherwise
2284 * we open a SOCK_RAW socket for the raw interface.
2285 *
2286 * The protocol is set to 0. This means we will receive no
2287 * packets until we "bind" the socket with a non-zero
2288 * protocol. This allows us to setup the ring buffers without
2289 * dropping any packets.
2290 */
2291 sock_fd = is_any_device ?
2292 socket(PF_PACKET, SOCK_DGRAM, 0) :
2293 socket(PF_PACKET, SOCK_RAW, 0);
2294
2295 if (sock_fd == -1) {
2296 if (errno == EPERM || errno == EACCES) {
2297 /*
2298 * You don't have permission to open the
2299 * socket.
2300 */
2301 status = PCAP_ERROR_PERM_DENIED;
2302 } else {
2303 /*
2304 * Other error.
2305 */
2306 status = PCAP_ERROR;
2307 }
2308 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2309 errno, "socket");
2310 return status;
2311 }
2312
2313 /*
2314 * Get the interface index of the loopback device.
2315 * If the attempt fails, don't fail, just set the
2316 * "handlep->lo_ifindex" to -1.
2317 *
2318 * XXX - can there be more than one device that loops
2319 * packets back, i.e. devices other than "lo"? If so,
2320 * we'd need to find them all, and have an array of
2321 * indices for them, and check all of them in
2322 * "pcap_read_packet()".
2323 */
2324 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf);
2325
2326 /*
2327 * Default value for offset to align link-layer payload
2328 * on a 4-byte boundary.
2329 */
2330 handle->offset = 0;
2331
2332 /*
2333 * What kind of frames do we have to deal with? Fall back
2334 * to cooked mode if we have an unknown interface type
2335 * or a type we know doesn't work well in raw mode.
2336 */
2337 if (!is_any_device) {
2338 /* Assume for now we don't need cooked mode. */
2339 handlep->cooked = 0;
2340
2341 if (handle->opt.rfmon) {
2342 /*
2343 * We were asked to turn on monitor mode.
2344 * Do so before we get the link-layer type,
2345 * because entering monitor mode could change
2346 * the link-layer type.
2347 */
2348 err = enter_rfmon_mode(handle, sock_fd, device);
2349 if (err < 0) {
2350 /* Hard failure */
2351 close(sock_fd);
2352 return err;
2353 }
2354 if (err == 0) {
2355 /*
2356 * Nothing worked for turning monitor mode
2357 * on.
2358 */
2359 close(sock_fd);
2360 return PCAP_ERROR_RFMON_NOTSUP;
2361 }
2362
2363 /*
2364 * Either monitor mode has been turned on for
2365 * the device, or we've been given a different
2366 * device to open for monitor mode. If we've
2367 * been given a different device, use it.
2368 */
2369 if (handlep->mondevice != NULL)
2370 device = handlep->mondevice;
2371 }
2372 arptype = iface_get_arptype(sock_fd, device, handle->errbuf);
2373 if (arptype < 0) {
2374 close(sock_fd);
2375 return arptype;
2376 }
2377 map_arphrd_to_dlt(handle, arptype, device, 1);
2378 if (handle->linktype == -1 ||
2379 handle->linktype == DLT_LINUX_SLL ||
2380 handle->linktype == DLT_LINUX_IRDA ||
2381 handle->linktype == DLT_LINUX_LAPD ||
2382 handle->linktype == DLT_NETLINK ||
2383 (handle->linktype == DLT_EN10MB &&
2384 (strncmp("isdn", device, 4) == 0 ||
2385 strncmp("isdY", device, 4) == 0))) {
2386 /*
2387 * Unknown interface type (-1), or a
2388 * device we explicitly chose to run
2389 * in cooked mode (e.g., PPP devices),
2390 * or an ISDN device (whose link-layer
2391 * type we can only determine by using
2392 * APIs that may be different on different
2393 * kernels) - reopen in cooked mode.
2394 *
2395 * If the type is unknown, return a warning;
2396 * map_arphrd_to_dlt() has already set the
2397 * warning message.
2398 */
2399 if (close(sock_fd) == -1) {
2400 pcap_fmt_errmsg_for_errno(handle->errbuf,
2401 PCAP_ERRBUF_SIZE, errno, "close");
2402 return PCAP_ERROR;
2403 }
2404 sock_fd = socket(PF_PACKET, SOCK_DGRAM, 0);
2405 if (sock_fd < 0) {
2406 /*
2407 * Fatal error. We treat this as
2408 * a generic error; we already know
2409 * that we were able to open a
2410 * PF_PACKET/SOCK_RAW socket, so
2411 * any failure is a "this shouldn't
2412 * happen" case.
2413 */
2414 pcap_fmt_errmsg_for_errno(handle->errbuf,
2415 PCAP_ERRBUF_SIZE, errno, "socket");
2416 return PCAP_ERROR;
2417 }
2418 handlep->cooked = 1;
2419
2420 /*
2421 * Get rid of any link-layer type list
2422 * we allocated - this only supports cooked
2423 * capture.
2424 */
2425 if (handle->dlt_list != NULL) {
2426 free(handle->dlt_list);
2427 handle->dlt_list = NULL;
2428 handle->dlt_count = 0;
2429 set_dlt_list_cooked(handle, sock_fd);
2430 }
2431
2432 if (handle->linktype == -1) {
2433 /*
2434 * Warn that we're falling back on
2435 * cooked mode; we may want to
2436 * update "map_arphrd_to_dlt()"
2437 * to handle the new type.
2438 */
2439 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2440 "arptype %d not "
2441 "supported by libpcap - "
2442 "falling back to cooked "
2443 "socket",
2444 arptype);
2445 }
2446
2447 /*
2448 * IrDA capture is not a real "cooked" capture,
2449 * it's IrLAP frames, not IP packets. The
2450 * same applies to LAPD capture.
2451 */
2452 if (handle->linktype != DLT_LINUX_IRDA &&
2453 handle->linktype != DLT_LINUX_LAPD &&
2454 handle->linktype != DLT_NETLINK)
2455 handle->linktype = DLT_LINUX_SLL;
2456 if (handle->linktype == -1) {
2457 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2458 "unknown arptype %d, defaulting to cooked mode",
2459 arptype);
2460 status = PCAP_WARNING;
2461 }
2462 }
2463
2464 handlep->ifindex = iface_get_id(sock_fd, device,
2465 handle->errbuf);
2466 if (handlep->ifindex == -1) {
2467 close(sock_fd);
2468 return PCAP_ERROR;
2469 }
2470
2471 if ((err = iface_bind(sock_fd, handlep->ifindex,
2472 handle->errbuf, 0)) != 0) {
2473 close(sock_fd);
2474 return err;
2475 }
2476 } else {
2477 /*
2478 * The "any" device.
2479 */
2480 if (handle->opt.rfmon) {
2481 /*
2482 * It doesn't support monitor mode.
2483 */
2484 close(sock_fd);
2485 return PCAP_ERROR_RFMON_NOTSUP;
2486 }
2487
2488 /*
2489 * It uses cooked mode.
2490 */
2491 handlep->cooked = 1;
2492 handle->linktype = DLT_LINUX_SLL;
2493 handle->dlt_list = NULL;
2494 handle->dlt_count = 0;
2495 set_dlt_list_cooked(handle, sock_fd);
2496
2497 /*
2498 * We're not bound to a device.
2499 * For now, we're using this as an indication
2500 * that we can't transmit; stop doing that only
2501 * if we figure out how to transmit in cooked
2502 * mode.
2503 */
2504 handlep->ifindex = -1;
2505 }
2506
2507 /*
2508 * Select promiscuous mode on if "promisc" is set.
2509 *
2510 * Do not turn allmulti mode on if we don't select
2511 * promiscuous mode - on some devices (e.g., Orinoco
2512 * wireless interfaces), allmulti mode isn't supported
2513 * and the driver implements it by turning promiscuous
2514 * mode on, and that screws up the operation of the
2515 * card as a normal networking interface, and on no
2516 * other platform I know of does starting a non-
2517 * promiscuous capture affect which multicast packets
2518 * are received by the interface.
2519 */
2520
2521 /*
2522 * Hmm, how can we set promiscuous mode on all interfaces?
2523 * I am not sure if that is possible at all. For now, we
2524 * silently ignore attempts to turn promiscuous mode on
2525 * for the "any" device (so you don't have to explicitly
2526 * disable it in programs such as tcpdump).
2527 */
2528
2529 if (!is_any_device && handle->opt.promisc) {
2530 memset(&mr, 0, sizeof(mr));
2531 mr.mr_ifindex = handlep->ifindex;
2532 mr.mr_type = PACKET_MR_PROMISC;
2533 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
2534 &mr, sizeof(mr)) == -1) {
2535 pcap_fmt_errmsg_for_errno(handle->errbuf,
2536 PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)");
2537 close(sock_fd);
2538 return PCAP_ERROR;
2539 }
2540 }
2541
2542 /* Enable auxillary data if supported and reserve room for
2543 * reconstructing VLAN headers. */
2544 #ifdef HAVE_PACKET_AUXDATA
2545 val = 1;
2546 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val,
2547 sizeof(val)) == -1 && errno != ENOPROTOOPT) {
2548 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2549 errno, "setsockopt (PACKET_AUXDATA)");
2550 close(sock_fd);
2551 return PCAP_ERROR;
2552 }
2553 handle->offset += VLAN_TAG_LEN;
2554 #endif /* HAVE_PACKET_AUXDATA */
2555
2556 /*
2557 * If we're in cooked mode, make the snapshot length
2558 * large enough to hold a "cooked mode" header plus
2559 * 1 byte of packet data (so we don't pass a byte
2560 * count of 0 to "recvfrom()").
2561 * XXX - we don't know whether this will be DLT_LINUX_SLL
2562 * or DLT_LINUX_SLL2, so make sure it's big enough for
2563 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length
2564 * that small is silly anyway.
2565 */
2566 if (handlep->cooked) {
2567 if (handle->snapshot < SLL2_HDR_LEN + 1)
2568 handle->snapshot = SLL2_HDR_LEN + 1;
2569 }
2570 handle->bufsize = handle->snapshot;
2571
2572 /*
2573 * Set the offset at which to insert VLAN tags.
2574 * That should be the offset of the type field.
2575 */
2576 switch (handle->linktype) {
2577
2578 case DLT_EN10MB:
2579 /*
2580 * The type field is after the destination and source
2581 * MAC address.
2582 */
2583 handlep->vlan_offset = 2 * ETH_ALEN;
2584 break;
2585
2586 case DLT_LINUX_SLL:
2587 /*
2588 * The type field is in the last 2 bytes of the
2589 * DLT_LINUX_SLL header.
2590 */
2591 handlep->vlan_offset = SLL_HDR_LEN - 2;
2592 break;
2593
2594 default:
2595 handlep->vlan_offset = -1; /* unknown */
2596 break;
2597 }
2598
2599 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) {
2600 int nsec_tstamps = 1;
2601
2602 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) {
2603 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS");
2604 close(sock_fd);
2605 return PCAP_ERROR;
2606 }
2607 }
2608
2609 /*
2610 * We've succeeded. Save the socket FD in the pcap structure.
2611 */
2612 handle->fd = sock_fd;
2613
2614 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT)
2615 /*
2616 * Can we generate special code for VLAN checks?
2617 * (XXX - what if we need the special code but it's not supported
2618 * by the OS? Is that possible?)
2619 */
2620 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS,
2621 &bpf_extensions, &len) == 0) {
2622 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) {
2623 /*
2624 * Yes, we can. Request that we do so.
2625 */
2626 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING;
2627 }
2628 }
2629 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */
2630
2631 return status;
2632 }
2633
2634 /*
2635 * Attempt to setup memory-mapped access.
2636 *
2637 * On success, returns 1, and sets *status to 0 if there are no warnings
2638 * or to a PCAP_WARNING_ code if there is a warning.
2639 *
2640 * On error, returns -1, and sets *status to the appropriate error code;
2641 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message.
2642 */
2643 static int
2644 setup_mmapped(pcap_t *handle, int *status)
2645 {
2646 struct pcap_linux *handlep = handle->priv;
2647 int ret;
2648
2649 /*
2650 * Attempt to allocate a buffer to hold the contents of one
2651 * packet, for use by the oneshot callback.
2652 */
2653 handlep->oneshot_buffer = malloc(handle->snapshot);
2654 if (handlep->oneshot_buffer == NULL) {
2655 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2656 errno, "can't allocate oneshot buffer");
2657 *status = PCAP_ERROR;
2658 return -1;
2659 }
2660
2661 if (handle->opt.buffer_size == 0) {
2662 /* by default request 2M for the ring buffer */
2663 handle->opt.buffer_size = 2*1024*1024;
2664 }
2665 ret = prepare_tpacket_socket(handle);
2666 if (ret == -1) {
2667 free(handlep->oneshot_buffer);
2668 *status = PCAP_ERROR;
2669 return ret;
2670 }
2671 ret = create_ring(handle, status);
2672 if (ret == -1) {
2673 /*
2674 * Error attempting to enable memory-mapped capture;
2675 * fail. create_ring() has set *status.
2676 */
2677 free(handlep->oneshot_buffer);
2678 return -1;
2679 }
2680
2681 /*
2682 * Success. *status has been set either to 0 if there are no
2683 * warnings or to a PCAP_WARNING_ value if there is a warning.
2684 *
2685 * handle->offset is used to get the current position into the rx ring.
2686 * handle->cc is used to store the ring size.
2687 */
2688
2689 /*
2690 * Set the timeout to use in poll() before returning.
2691 */
2692 set_poll_timeout(handlep);
2693
2694 return 1;
2695 }
2696
2697 /*
2698 * Attempt to set the socket to the specified version of the memory-mapped
2699 * header.
2700 *
2701 * Return 0 if we succeed; return 1 if we fail because that version isn't
2702 * supported; return -1 on any other error, and set handle->errbuf.
2703 */
2704 static int
2705 init_tpacket(pcap_t *handle, int version, const char *version_str)
2706 {
2707 struct pcap_linux *handlep = handle->priv;
2708 int val = version;
2709 socklen_t len = sizeof(val);
2710
2711 /*
2712 * Probe whether kernel supports the specified TPACKET version;
2713 * this also gets the length of the header for that version.
2714 *
2715 * This socket option was introduced in 2.6.27, which was
2716 * also the first release with TPACKET_V2 support.
2717 */
2718 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) {
2719 if (errno == EINVAL) {
2720 /*
2721 * EINVAL means this specific version of TPACKET
2722 * is not supported. Tell the caller they can try
2723 * with a different one; if they've run out of
2724 * others to try, let them set the error message
2725 * appropriately.
2726 */
2727 return 1;
2728 }
2729
2730 /*
2731 * All other errors are fatal.
2732 */
2733 if (errno == ENOPROTOOPT) {
2734 /*
2735 * PACKET_HDRLEN isn't supported, which means
2736 * that memory-mapped capture isn't supported.
2737 * Indicate that in the message.
2738 */
2739 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2740 "Kernel doesn't support memory-mapped capture; a 2.6.27 or later 2.x kernel is required, with CONFIG_PACKET_MMAP specified for 2.x kernels");
2741 } else {
2742 /*
2743 * Some unexpected error.
2744 */
2745 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2746 errno, "can't get %s header len on packet socket",
2747 version_str);
2748 }
2749 return -1;
2750 }
2751 handlep->tp_hdrlen = val;
2752
2753 val = version;
2754 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val,
2755 sizeof(val)) < 0) {
2756 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
2757 errno, "can't activate %s on packet socket", version_str);
2758 return -1;
2759 }
2760 handlep->tp_version = version;
2761
2762 return 0;
2763 }
2764
2765 /*
2766 * Attempt to set the socket to version 3 of the memory-mapped header and,
2767 * if that fails because version 3 isn't supported, attempt to fall
2768 * back to version 2. If version 2 isn't supported, just fail.
2769 *
2770 * Return 0 if we succeed and -1 on any other error, and set handle->errbuf.
2771 */
2772 static int
2773 prepare_tpacket_socket(pcap_t *handle)
2774 {
2775 int ret;
2776
2777 #ifdef HAVE_TPACKET3
2778 /*
2779 * Try setting the version to TPACKET_V3.
2780 *
2781 * The only mode in which buffering is done on PF_PACKET
2782 * sockets, so that packets might not be delivered
2783 * immediately, is TPACKET_V3 mode.
2784 *
2785 * The buffering cannot be disabled in that mode, so
2786 * if the user has requested immediate mode, we don't
2787 * use TPACKET_V3.
2788 */
2789 if (!handle->opt.immediate) {
2790 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3");
2791 if (ret == 0) {
2792 /*
2793 * Success.
2794 */
2795 return 0;
2796 }
2797 if (ret == -1) {
2798 /*
2799 * We failed for some reason other than "the
2800 * kernel doesn't support TPACKET_V3".
2801 */
2802 return -1;
2803 }
2804
2805 /*
2806 * This means it returned 1, which means "the kernel
2807 * doesn't support TPACKET_V3"; try TPACKET_V2.
2808 */
2809 }
2810 #endif /* HAVE_TPACKET3 */
2811
2812 /*
2813 * Try setting the version to TPACKET_V2.
2814 */
2815 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2");
2816 if (ret == 0) {
2817 /*
2818 * Success.
2819 */
2820 return 0;
2821 }
2822
2823 if (ret == 1) {
2824 /*
2825 * OK, the kernel supports memory-mapped capture, but
2826 * not TPACKET_V2. Set the error message appropriately.
2827 */
2828 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
2829 "Kernel doesn't support TPACKET_V2; a 2.6.27 or later kernel is required");
2830 }
2831
2832 /*
2833 * We failed.
2834 */
2835 return -1;
2836 }
2837
2838 #define MAX(a,b) ((a)>(b)?(a):(b))
2839
2840 /*
2841 * Attempt to set up memory-mapped access.
2842 *
2843 * On success, returns 1, and sets *status to 0 if there are no warnings
2844 * or to a PCAP_WARNING_ code if there is a warning.
2845 *
2846 * On error, returns -1, and sets *status to the appropriate error code;
2847 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message.
2848 */
2849 static int
2850 create_ring(pcap_t *handle, int *status)
2851 {
2852 struct pcap_linux *handlep = handle->priv;
2853 unsigned i, j, frames_per_block;
2854 #ifdef HAVE_TPACKET3
2855 /*
2856 * For sockets using TPACKET_V2, the extra stuff at the end of a
2857 * struct tpacket_req3 will be ignored, so this is OK even for
2858 * those sockets.
2859 */
2860 struct tpacket_req3 req;
2861 #else
2862 struct tpacket_req req;
2863 #endif
2864 socklen_t len;
2865 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff;
2866 unsigned int frame_size;
2867
2868 /*
2869 * Start out assuming no warnings or errors.
2870 */
2871 *status = 0;
2872
2873 /*
2874 * Reserve space for VLAN tag reconstruction.
2875 */
2876 tp_reserve = VLAN_TAG_LEN;
2877
2878 /*
2879 * If we're using DLT_LINUX_SLL2, reserve space for a
2880 * DLT_LINUX_SLL2 header.
2881 *
2882 * XXX - we assume that the kernel is still adding
2883 * 16 bytes of extra space; that happens to
2884 * correspond to SLL_HDR_LEN (whether intentionally
2885 * or not - the kernel code has a raw "16" in
2886 * the expression), so we subtract SLL_HDR_LEN
2887 * from SLL2_HDR_LEN to get the additional space
2888 * needed. That also means we don't bother reserving
2889 * any additional space if we're using DLT_LINUX_SLL.
2890 *
2891 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - SLL_HDR_LEN)?
2892 */
2893 if (handle->linktype == DLT_LINUX_SLL2)
2894 tp_reserve += SLL2_HDR_LEN - SLL_HDR_LEN;
2895
2896 /*
2897 * Try to request that amount of reserve space.
2898 * This must be done before creating the ring buffer.
2899 * If PACKET_RESERVE is supported, creating the ring
2900 * buffer should be, although if creating the ring
2901 * buffer fails, the PACKET_RESERVE call has no effect,
2902 * so falling back on read-from-the-socket capturing
2903 * won't be affected.
2904 */
2905 len = sizeof(tp_reserve);
2906 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE,
2907 &tp_reserve, len) < 0) {
2908 /*
2909 * We treat ENOPROTOOPT as an error, as we
2910 * already determined that we support
2911 * TPACKET_V2 and later; see above.
2912 */
2913 pcap_fmt_errmsg_for_errno(handle->errbuf,
2914 PCAP_ERRBUF_SIZE, errno,
2915 "setsockopt (PACKET_RESERVE)");
2916 *status = PCAP_ERROR;
2917 return -1;
2918 }
2919
2920 switch (handlep->tp_version) {
2921
2922 case TPACKET_V2:
2923 /* Note that with large snapshot length (say 256K, which is
2924 * the default for recent versions of tcpdump, Wireshark,
2925 * TShark, dumpcap or 64K, the value that "-s 0" has given for
2926 * a long time with tcpdump), if we use the snapshot
2927 * length to calculate the frame length, only a few frames
2928 * will be available in the ring even with pretty
2929 * large ring size (and a lot of memory will be unused).
2930 *
2931 * Ideally, we should choose a frame length based on the
2932 * minimum of the specified snapshot length and the maximum
2933 * packet size. That's not as easy as it sounds; consider,
2934 * for example, an 802.11 interface in monitor mode, where
2935 * the frame would include a radiotap header, where the
2936 * maximum radiotap header length is device-dependent.
2937 *
2938 * So, for now, we just do this for Ethernet devices, where
2939 * there's no metadata header, and the link-layer header is
2940 * fixed length. We can get the maximum packet size by
2941 * adding 18, the Ethernet header length plus the CRC length
2942 * (just in case we happen to get the CRC in the packet), to
2943 * the MTU of the interface; we fetch the MTU in the hopes
2944 * that it reflects support for jumbo frames. (Even if the
2945 * interface is just being used for passive snooping, the
2946 * driver might set the size of buffers in the receive ring
2947 * based on the MTU, so that the MTU limits the maximum size
2948 * of packets that we can receive.)
2949 *
2950 * If segmentation/fragmentation or receive offload are
2951 * enabled, we can get reassembled/aggregated packets larger
2952 * than MTU, but bounded to 65535 plus the Ethernet overhead,
2953 * due to kernel and protocol constraints */
2954 frame_size = handle->snapshot;
2955 if (handle->linktype == DLT_EN10MB) {
2956 unsigned int max_frame_len;
2957 int mtu;
2958 int offload;
2959
2960 mtu = iface_get_mtu(handle->fd, handle->opt.device,
2961 handle->errbuf);
2962 if (mtu == -1) {
2963 *status = PCAP_ERROR;
2964 return -1;
2965 }
2966 offload = iface_get_offload(handle);
2967 if (offload == -1) {
2968 *status = PCAP_ERROR;
2969 return -1;
2970 }
2971 if (offload)
2972 max_frame_len = MAX(mtu, 65535);
2973 else
2974 max_frame_len = mtu;
2975 max_frame_len += 18;
2976
2977 if (frame_size > max_frame_len)
2978 frame_size = max_frame_len;
2979 }
2980
2981 /* NOTE: calculus matching those in tpacket_rcv()
2982 * in linux-2.6/net/packet/af_packet.c
2983 */
2984 len = sizeof(sk_type);
2985 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type,
2986 &len) < 0) {
2987 pcap_fmt_errmsg_for_errno(handle->errbuf,
2988 PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)");
2989 *status = PCAP_ERROR;
2990 return -1;
2991 }
2992 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE;
2993 /* XXX: in the kernel maclen is calculated from
2994 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len
2995 * in: packet_snd() in linux-2.6/net/packet/af_packet.c
2996 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c
2997 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c
2998 * but I see no way to get those sizes in userspace,
2999 * like for instance with an ifreq ioctl();
3000 * the best thing I've found so far is MAX_HEADER in
3001 * the kernel part of linux-2.6/include/linux/netdevice.h
3002 * which goes up to 128+48=176; since pcap-linux.c
3003 * defines a MAX_LINKHEADER_SIZE of 256 which is
3004 * greater than that, let's use it.. maybe is it even
3005 * large enough to directly replace macoff..
3006 */
3007 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ;
3008 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve;
3009 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN
3010 * of netoff, which contradicts
3011 * linux-2.6/Documentation/networking/packet_mmap.txt
3012 * documenting that:
3013 * "- Gap, chosen so that packet data (Start+tp_net)
3014 * aligns to TPACKET_ALIGNMENT=16"
3015 */
3016 /* NOTE: in linux-2.6/include/linux/skbuff.h:
3017 * "CPUs often take a performance hit
3018 * when accessing unaligned memory locations"
3019 */
3020 macoff = netoff - maclen;
3021 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size);
3022 /*
3023 * Round the buffer size up to a multiple of the
3024 * frame size (rather than rounding down, which
3025 * would give a buffer smaller than our caller asked
3026 * for, and possibly give zero frames if the requested
3027 * buffer size is too small for one frame).
3028 */
3029 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3030 break;
3031
3032 #ifdef HAVE_TPACKET3
3033 case TPACKET_V3:
3034 /* The "frames" for this are actually buffers that
3035 * contain multiple variable-sized frames.
3036 *
3037 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave
3038 * enough room for at least one reasonably-sized packet
3039 * in the "frame". */
3040 req.tp_frame_size = MAXIMUM_SNAPLEN;
3041 /*
3042 * Round the buffer size up to a multiple of the
3043 * "frame" size (rather than rounding down, which
3044 * would give a buffer smaller than our caller asked
3045 * for, and possibly give zero "frames" if the requested
3046 * buffer size is too small for one "frame").
3047 */
3048 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size;
3049 break;
3050 #endif
3051 default:
3052 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3053 "Internal error: unknown TPACKET_ value %u",
3054 handlep->tp_version);
3055 *status = PCAP_ERROR;
3056 return -1;
3057 }
3058
3059 /* compute the minumum block size that will handle this frame.
3060 * The block has to be page size aligned.
3061 * The max block size allowed by the kernel is arch-dependent and
3062 * it's not explicitly checked here. */
3063 req.tp_block_size = getpagesize();
3064 while (req.tp_block_size < req.tp_frame_size)
3065 req.tp_block_size <<= 1;
3066
3067 frames_per_block = req.tp_block_size/req.tp_frame_size;
3068
3069 /*
3070 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was,
3071 * so we check for PACKET_TIMESTAMP. We check for
3072 * linux/net_tstamp.h just in case a system somehow has
3073 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might
3074 * be unnecessary.
3075 *
3076 * SIOCSHWTSTAMP was introduced in the patch that introduced
3077 * linux/net_tstamp.h, so we don't bother checking whether
3078 * SIOCSHWTSTAMP is defined (if your Linux system has
3079 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your
3080 * Linux system is badly broken).
3081 */
3082 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
3083 /*
3084 * If we were told to do so, ask the kernel and the driver
3085 * to use hardware timestamps.
3086 *
3087 * Hardware timestamps are only supported with mmapped
3088 * captures.
3089 */
3090 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER ||
3091 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) {
3092 struct hwtstamp_config hwconfig;
3093 struct ifreq ifr;
3094 int timesource;
3095
3096 /*
3097 * Ask for hardware time stamps on all packets,
3098 * including transmitted packets.
3099 */
3100 memset(&hwconfig, 0, sizeof(hwconfig));
3101 hwconfig.tx_type = HWTSTAMP_TX_ON;
3102 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL;
3103
3104 memset(&ifr, 0, sizeof(ifr));
3105 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
3106 ifr.ifr_data = (void *)&hwconfig;
3107
3108 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) {
3109 switch (errno) {
3110
3111 case EPERM:
3112 /*
3113 * Treat this as an error, as the
3114 * user should try to run this
3115 * with the appropriate privileges -
3116 * and, if they can't, shouldn't
3117 * try requesting hardware time stamps.
3118 */
3119 *status = PCAP_ERROR_PERM_DENIED;
3120 return -1;
3121
3122 case EOPNOTSUPP:
3123 case ERANGE:
3124 /*
3125 * Treat this as a warning, as the
3126 * only way to fix the warning is to
3127 * get an adapter that supports hardware
3128 * time stamps for *all* packets.
3129 * (ERANGE means "we support hardware
3130 * time stamps, but for packets matching
3131 * that particular filter", so it means
3132 * "we don't support hardware time stamps
3133 * for all incoming packets" here.)
3134 *
3135 * We'll just fall back on the standard
3136 * host time stamps.
3137 */
3138 *status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP;
3139 break;
3140
3141 default:
3142 pcap_fmt_errmsg_for_errno(handle->errbuf,
3143 PCAP_ERRBUF_SIZE, errno,
3144 "SIOCSHWTSTAMP failed");
3145 *status = PCAP_ERROR;
3146 return -1;
3147 }
3148 } else {
3149 /*
3150 * Well, that worked. Now specify the type of
3151 * hardware time stamp we want for this
3152 * socket.
3153 */
3154 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) {
3155 /*
3156 * Hardware timestamp, synchronized
3157 * with the system clock.
3158 */
3159 timesource = SOF_TIMESTAMPING_SYS_HARDWARE;
3160 } else {
3161 /*
3162 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware
3163 * timestamp, not synchronized with the
3164 * system clock.
3165 */
3166 timesource = SOF_TIMESTAMPING_RAW_HARDWARE;
3167 }
3168 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP,
3169 (void *)&timesource, sizeof(timesource))) {
3170 pcap_fmt_errmsg_for_errno(handle->errbuf,
3171 PCAP_ERRBUF_SIZE, errno,
3172 "can't set PACKET_TIMESTAMP");
3173 *status = PCAP_ERROR;
3174 return -1;
3175 }
3176 }
3177 }
3178 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */
3179
3180 /* ask the kernel to create the ring */
3181 retry:
3182 req.tp_block_nr = req.tp_frame_nr / frames_per_block;
3183
3184 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */
3185 req.tp_frame_nr = req.tp_block_nr * frames_per_block;
3186
3187 #ifdef HAVE_TPACKET3
3188 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */
3189 if (handlep->timeout > 0) {
3190 /* Use the user specified timeout as the block timeout */
3191 req.tp_retire_blk_tov = handlep->timeout;
3192 } else if (handlep->timeout == 0) {
3193 /*
3194 * In pcap, this means "infinite timeout"; TPACKET_V3
3195 * doesn't support that, so just set it to UINT_MAX
3196 * milliseconds. In the TPACKET_V3 loop, if the
3197 * timeout is 0, and we haven't yet seen any packets,
3198 * and we block and still don't have any packets, we
3199 * keep blocking until we do.
3200 */
3201 req.tp_retire_blk_tov = UINT_MAX;
3202 } else {
3203 /*
3204 * XXX - this is not valid; use 0, meaning "have the
3205 * kernel pick a default", for now.
3206 */
3207 req.tp_retire_blk_tov = 0;
3208 }
3209 /* private data not used */
3210 req.tp_sizeof_priv = 0;
3211 /* Rx ring - feature request bits - none (rxhash will not be filled) */
3212 req.tp_feature_req_word = 0;
3213 #endif
3214
3215 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3216 (void *) &req, sizeof(req))) {
3217 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) {
3218 /*
3219 * Memory failure; try to reduce the requested ring
3220 * size.
3221 *
3222 * We used to reduce this by half -- do 5% instead.
3223 * That may result in more iterations and a longer
3224 * startup, but the user will be much happier with
3225 * the resulting buffer size.
3226 */
3227 if (req.tp_frame_nr < 20)
3228 req.tp_frame_nr -= 1;
3229 else
3230 req.tp_frame_nr -= req.tp_frame_nr/20;
3231 goto retry;
3232 }
3233 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3234 errno, "can't create rx ring on packet socket");
3235 *status = PCAP_ERROR;
3236 return -1;
3237 }
3238
3239 /* memory map the rx ring */
3240 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size;
3241 handlep->mmapbuf = mmap(0, handlep->mmapbuflen,
3242 PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0);
3243 if (handlep->mmapbuf == MAP_FAILED) {
3244 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3245 errno, "can't mmap rx ring");
3246
3247 /* clear the allocated ring on error*/
3248 destroy_ring(handle);
3249 *status = PCAP_ERROR;
3250 return -1;
3251 }
3252
3253 /* allocate a ring for each frame header pointer*/
3254 handle->cc = req.tp_frame_nr;
3255 handle->buffer = malloc(handle->cc * sizeof(union thdr *));
3256 if (!handle->buffer) {
3257 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
3258 errno, "can't allocate ring of frame headers");
3259
3260 destroy_ring(handle);
3261 *status = PCAP_ERROR;
3262 return -1;
3263 }
3264
3265 /* fill the header ring with proper frame ptr*/
3266 handle->offset = 0;
3267 for (i=0; i<req.tp_block_nr; ++i) {
3268 u_char *base = &handlep->mmapbuf[i*req.tp_block_size];
3269 for (j=0; j<frames_per_block; ++j, ++handle->offset) {
3270 RING_GET_CURRENT_FRAME(handle) = base;
3271 base += req.tp_frame_size;
3272 }
3273 }
3274
3275 handle->bufsize = req.tp_frame_size;
3276 handle->offset = 0;
3277 return 1;
3278 }
3279
3280 /* free all ring related resources*/
3281 static void
3282 destroy_ring(pcap_t *handle)
3283 {
3284 struct pcap_linux *handlep = handle->priv;
3285
3286 /*
3287 * Tell the kernel to destroy the ring.
3288 * We don't check for setsockopt failure, as 1) we can't recover
3289 * from an error and 2) we might not yet have set it up in the
3290 * first place.
3291 */
3292 struct tpacket_req req;
3293 memset(&req, 0, sizeof(req));
3294 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING,
3295 (void *) &req, sizeof(req));
3296
3297 /* if ring is mapped, unmap it*/
3298 if (handlep->mmapbuf) {
3299 /* do not test for mmap failure, as we can't recover from any error */
3300 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen);
3301 handlep->mmapbuf = NULL;
3302 }
3303 }
3304
3305 /*
3306 * Special one-shot callback, used for pcap_next() and pcap_next_ex(),
3307 * for Linux mmapped capture.
3308 *
3309 * The problem is that pcap_next() and pcap_next_ex() expect the packet
3310 * data handed to the callback to be valid after the callback returns,
3311 * but pcap_read_linux_mmap() has to release that packet as soon as
3312 * the callback returns (otherwise, the kernel thinks there's still
3313 * at least one unprocessed packet available in the ring, so a select()
3314 * will immediately return indicating that there's data to process), so,
3315 * in the callback, we have to make a copy of the packet.
3316 *
3317 * Yes, this means that, if the capture is using the ring buffer, using
3318 * pcap_next() or pcap_next_ex() requires more copies than using
3319 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use
3320 * pcap_next() or pcap_next_ex().
3321 */
3322 static void
3323 pcap_oneshot_linux(u_char *user, const struct pcap_pkthdr *h,
3324 const u_char *bytes)
3325 {
3326 struct oneshot_userdata *sp = (struct oneshot_userdata *)user;
3327 pcap_t *handle = sp->pd;
3328 struct pcap_linux *handlep = handle->priv;
3329
3330 *sp->hdr = *h;
3331 memcpy(handlep->oneshot_buffer, bytes, h->caplen);
3332 *sp->pkt = handlep->oneshot_buffer;
3333 }
3334
3335 static int
3336 pcap_getnonblock_linux(pcap_t *handle)
3337 {
3338 struct pcap_linux *handlep = handle->priv;
3339
3340 /* use negative value of timeout to indicate non blocking ops */
3341 return (handlep->timeout<0);
3342 }
3343
3344 static int
3345 pcap_setnonblock_linux(pcap_t *handle, int nonblock)
3346 {
3347 struct pcap_linux *handlep = handle->priv;
3348
3349 /*
3350 * Set the file descriptor to non-blocking mode, as we use
3351 * it for sending packets.
3352 */
3353 if (pcap_setnonblock_fd(handle, nonblock) == -1)
3354 return -1;
3355
3356 /*
3357 * Map each value to their corresponding negation to
3358 * preserve the timeout value provided with pcap_set_timeout.
3359 */
3360 if (nonblock) {
3361 if (handlep->timeout >= 0) {
3362 /*
3363 * Indicate that we're switching to
3364 * non-blocking mode.
3365 */
3366 handlep->timeout = ~handlep->timeout;
3367 }
3368 } else {
3369 if (handlep->timeout < 0) {
3370 handlep->timeout = ~handlep->timeout;
3371 }
3372 }
3373 /* Update the timeout to use in poll(). */
3374 set_poll_timeout(handlep);
3375 return 0;
3376 }
3377
3378 /*
3379 * Get the status field of the ring buffer frame at a specified offset.
3380 */
3381 static inline u_int
3382 pcap_get_ring_frame_status(pcap_t *handle, int offset)
3383 {
3384 struct pcap_linux *handlep = handle->priv;
3385 union thdr h;
3386
3387 h.raw = RING_GET_FRAME_AT(handle, offset);
3388 switch (handlep->tp_version) {
3389 case TPACKET_V2:
3390 return __atomic_load_n(&h.h2->tp_status, __ATOMIC_ACQUIRE);
3391 break;
3392 #ifdef HAVE_TPACKET3
3393 case TPACKET_V3:
3394 return __atomic_load_n(&h.h3->hdr.bh1.block_status, __ATOMIC_ACQUIRE);
3395 break;
3396 #endif
3397 }
3398 /* This should not happen. */
3399 return 0;
3400 }
3401
3402 /*
3403 * Block waiting for frames to be available.
3404 */
3405 static int pcap_wait_for_frames_mmap(pcap_t *handle)
3406 {
3407 struct pcap_linux *handlep = handle->priv;
3408 int timeout;
3409 struct ifreq ifr;
3410 int ret;
3411 struct pollfd pollinfo[2];
3412 pollinfo[0].fd = handle->fd;
3413 pollinfo[0].events = POLLIN;
3414 pollinfo[1].fd = handlep->poll_breakloop_fd;
3415 pollinfo[1].events = POLLIN;
3416
3417 /*
3418 * Keep polling until we either get some packets to read, see
3419 * that we got told to break out of the loop, get a fatal error,
3420 * or discover that the device went away.
3421 *
3422 * In non-blocking mode, we must still do one poll() to catch
3423 * any pending error indications, but the poll() has a timeout
3424 * of 0, so that it doesn't block, and we quit after that one
3425 * poll().
3426 *
3427 * If we've seen an ENETDOWN, it might be the first indication
3428 * that the device went away, or it might just be that it was
3429 * configured down. Unfortunately, there's no guarantee that
3430 * the device has actually been removed as an interface, because:
3431 *
3432 * 1) if, as appears to be the case at least some of the time,
3433 * the PF_PACKET socket code first gets a NETDEV_DOWN indication
3434 * for the device and then gets a NETDEV_UNREGISTER indication
3435 * for it, the first indication will cause a wakeup with ENETDOWN
3436 * but won't set the packet socket's field for the interface index
3437 * to -1, and the second indication won't cause a wakeup (because
3438 * the first indication also caused the protocol hook to be
3439 * unregistered) but will set the packet socket's field for the
3440 * interface index to -1;
3441 *
3442 * 2) even if just a NETDEV_UNREGISTER indication is registered,
3443 * the packet socket's field for the interface index only gets
3444 * set to -1 after the wakeup, so there's a small but non-zero
3445 * risk that a thread blocked waiting for the wakeup will get
3446 * to the "fetch the socket name" code before the interface index
3447 * gets set to -1, so it'll get the old interface index.
3448 *
3449 * Therefore, if we got an ENETDOWN and haven't seen a packet
3450 * since then, we assume that we might be waiting for the interface
3451 * to disappear, and poll with a timeout to try again in a short
3452 * period of time. If we *do* see a packet, the interface has
3453 * come back up again, and is *definitely* still there, so we
3454 * don't need to poll.
3455 */
3456 for (;;) {
3457 /*
3458 * Yes, we do this even in non-blocking mode, as it's
3459 * the only way to get error indications from a
3460 * tpacket socket.
3461 *
3462 * The timeout is 0 in non-blocking mode, so poll()
3463 * returns immediately.
3464 */
3465 timeout = handlep->poll_timeout;
3466
3467 /*
3468 * If we got an ENETDOWN and haven't gotten an indication
3469 * that the device has gone away or that the device is up,
3470 * we don't yet know for certain whether the device has
3471 * gone away or not, do a poll() with a 1-millisecond timeout,
3472 * as we have to poll indefinitely for "device went away"
3473 * indications until we either get one or see that the
3474 * device is up.
3475 */
3476 if (handlep->netdown) {
3477 if (timeout != 0)
3478 timeout = 1;
3479 }
3480 ret = poll(pollinfo, 2, timeout);
3481 if (ret < 0) {
3482 /*
3483 * Error. If it's not EINTR, report it.
3484 */
3485 if (errno != EINTR) {
3486 pcap_fmt_errmsg_for_errno(handle->errbuf,
3487 PCAP_ERRBUF_SIZE, errno,
3488 "can't poll on packet socket");
3489 return PCAP_ERROR;
3490 }
3491
3492 /*
3493 * It's EINTR; if we were told to break out of
3494 * the loop, do so.
3495 */
3496 if (handle->break_loop) {
3497 handle->break_loop = 0;
3498 return PCAP_ERROR_BREAK;
3499 }
3500 } else if (ret > 0) {
3501 /*
3502 * OK, some descriptor is ready.
3503 * Check the socket descriptor first.
3504 *
3505 * As I read the Linux man page, pollinfo[0].revents
3506 * will either be POLLIN, POLLERR, POLLHUP, or POLLNVAL.
3507 */
3508 if (pollinfo[0].revents == POLLIN) {
3509 /*
3510 * OK, we may have packets to
3511 * read.
3512 */
3513 break;
3514 }
3515 if (pollinfo[0].revents != 0) {
3516 /*
3517 * There's some indication other than
3518 * "you can read on this descriptor" on
3519 * the descriptor.
3520 */
3521 if (pollinfo[0].revents & POLLNVAL) {
3522 snprintf(handle->errbuf,
3523 PCAP_ERRBUF_SIZE,
3524 "Invalid polling request on packet socket");
3525 return PCAP_ERROR;
3526 }
3527 if (pollinfo[0].revents & (POLLHUP | POLLRDHUP)) {
3528 snprintf(handle->errbuf,
3529 PCAP_ERRBUF_SIZE,
3530 "Hangup on packet socket");
3531 return PCAP_ERROR;
3532 }
3533 if (pollinfo[0].revents & POLLERR) {
3534 /*
3535 * Get the error.
3536 */
3537 int err;
3538 socklen_t errlen;
3539
3540 errlen = sizeof(err);
3541 if (getsockopt(handle->fd, SOL_SOCKET,
3542 SO_ERROR, &err, &errlen) == -1) {
3543 /*
3544 * The call *itself* returned
3545 * an error; make *that*
3546 * the error.
3547 */
3548 err = errno;
3549 }
3550
3551 /*
3552 * OK, we have the error.
3553 */
3554 if (err == ENETDOWN) {
3555 /*
3556 * The device on which we're
3557 * capturing went away or the
3558 * interface was taken down.
3559 *
3560 * We don't know for certain
3561 * which happened, and the
3562 * next poll() may indicate
3563 * that there are packets
3564 * to be read, so just set
3565 * a flag to get us to do
3566 * checks later, and set
3567 * the required select
3568 * timeout to 1 millisecond
3569 * so that event loops that
3570 * check our socket descriptor
3571 * also time out so that
3572 * they can call us and we
3573 * can do the checks.
3574 */
3575 handlep->netdown = 1;
3576 handle->required_select_timeout = &netdown_timeout;
3577 } else if (err == 0) {
3578 /*
3579 * This shouldn't happen, so
3580 * report a special indication
3581 * that it did.
3582 */
3583 snprintf(handle->errbuf,
3584 PCAP_ERRBUF_SIZE,
3585 "Error condition on packet socket: Reported error was 0");
3586 return PCAP_ERROR;
3587 } else {
3588 pcap_fmt_errmsg_for_errno(handle->errbuf,
3589 PCAP_ERRBUF_SIZE,
3590 err,
3591 "Error condition on packet socket");
3592 return PCAP_ERROR;
3593 }
3594 }
3595 }
3596 /*
3597 * Now check the event device.
3598 */
3599 if (pollinfo[1].revents & POLLIN) {
3600 ssize_t nread;
3601 uint64_t value;
3602
3603 /*
3604 * This should never fail, but, just
3605 * in case....
3606 */
3607 nread = read(handlep->poll_breakloop_fd, &value,
3608 sizeof(value));
3609 if (nread == -1) {
3610 pcap_fmt_errmsg_for_errno(handle->errbuf,
3611 PCAP_ERRBUF_SIZE,
3612 errno,
3613 "Error reading from event FD");
3614 return PCAP_ERROR;
3615 }
3616
3617 /*
3618 * According to the Linux read(2) man
3619 * page, read() will transfer at most
3620 * 2^31-1 bytes, so the return value is
3621 * either -1 or a value between 0
3622 * and 2^31-1, so it's non-negative.
3623 *
3624 * Cast it to size_t to squelch
3625 * warnings from the compiler; add this
3626 * comment to squelch warnings from
3627 * humans reading the code. :-)
3628 *
3629 * Don't treat an EOF as an error, but
3630 * *do* treat a short read as an error;
3631 * that "shouldn't happen", but....
3632 */
3633 if (nread != 0 &&
3634 (size_t)nread < sizeof(value)) {
3635 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3636 "Short read from event FD: expected %zu, got %zd",
3637 sizeof(value), nread);
3638 return PCAP_ERROR;
3639 }
3640
3641 /*
3642 * This event gets signaled by a
3643 * pcap_breakloop() call; if we were told
3644 * to break out of the loop, do so.
3645 */
3646 if (handle->break_loop) {
3647 handle->break_loop = 0;
3648 return PCAP_ERROR_BREAK;
3649 }
3650 }
3651 }
3652
3653 /*
3654 * Either:
3655 *
3656 * 1) we got neither an error from poll() nor any
3657 * readable descriptors, in which case there
3658 * are no packets waiting to read
3659 *
3660 * or
3661 *
3662 * 2) We got readable descriptors but the PF_PACKET
3663 * socket wasn't one of them, in which case there
3664 * are no packets waiting to read
3665 *
3666 * so, if we got an ENETDOWN, we've drained whatever
3667 * packets were available to read at the point of the
3668 * ENETDOWN.
3669 *
3670 * So, if we got an ENETDOWN and haven't gotten an indication
3671 * that the device has gone away or that the device is up,
3672 * we don't yet know for certain whether the device has
3673 * gone away or not, check whether the device exists and is
3674 * up.
3675 */
3676 if (handlep->netdown) {
3677 if (!device_still_exists(handle)) {
3678 /*
3679 * The device doesn't exist any more;
3680 * report that.
3681 *
3682 * XXX - we should really return an
3683 * appropriate error for that, but
3684 * pcap_dispatch() etc. aren't documented
3685 * as having error returns other than
3686 * PCAP_ERROR or PCAP_ERROR_BREAK.
3687 */
3688 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3689 "The interface disappeared");
3690 return PCAP_ERROR;
3691 }
3692
3693 /*
3694 * The device still exists; try to see if it's up.
3695 */
3696 memset(&ifr, 0, sizeof(ifr));
3697 pcap_strlcpy(ifr.ifr_name, handlep->device,
3698 sizeof(ifr.ifr_name));
3699 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
3700 if (errno == ENXIO || errno == ENODEV) {
3701 /*
3702 * OK, *now* it's gone.
3703 *
3704 * XXX - see above comment.
3705 */
3706 snprintf(handle->errbuf,
3707 PCAP_ERRBUF_SIZE,
3708 "The interface disappeared");
3709 return PCAP_ERROR;
3710 } else {
3711 pcap_fmt_errmsg_for_errno(handle->errbuf,
3712 PCAP_ERRBUF_SIZE, errno,
3713 "%s: Can't get flags",
3714 handlep->device);
3715 return PCAP_ERROR;
3716 }
3717 }
3718 if (ifr.ifr_flags & IFF_UP) {
3719 /*
3720 * It's up, so it definitely still exists.
3721 * Cancel the ENETDOWN indication - we
3722 * presumably got it due to the interface
3723 * going down rather than the device going
3724 * away - and revert to "no required select
3725 * timeout.
3726 */
3727 handlep->netdown = 0;
3728 handle->required_select_timeout = NULL;
3729 }
3730 }
3731
3732 /*
3733 * If we're in non-blocking mode, just quit now, rather
3734 * than spinning in a loop doing poll()s that immediately
3735 * time out if there's no indication on any descriptor.
3736 */
3737 if (handlep->poll_timeout == 0)
3738 break;
3739 }
3740 return 0;
3741 }
3742
3743 /* handle a single memory mapped packet */
3744 static int pcap_handle_packet_mmap(
3745 pcap_t *handle,
3746 pcap_handler callback,
3747 u_char *user,
3748 unsigned char *frame,
3749 unsigned int tp_len,
3750 unsigned int tp_mac,
3751 unsigned int tp_snaplen,
3752 unsigned int tp_sec,
3753 unsigned int tp_usec,
3754 int tp_vlan_tci_valid,
3755 __u16 tp_vlan_tci,
3756 __u16 tp_vlan_tpid)
3757 {
3758 struct pcap_linux *handlep = handle->priv;
3759 unsigned char *bp;
3760 struct sockaddr_ll *sll;
3761 struct pcap_pkthdr pcaphdr;
3762 unsigned int snaplen = tp_snaplen;
3763 struct utsname utsname;
3764
3765 /* perform sanity check on internal offset. */
3766 if (tp_mac + tp_snaplen > handle->bufsize) {
3767 /*
3768 * Report some system information as a debugging aid.
3769 */
3770 if (uname(&utsname) != -1) {
3771 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3772 "corrupted frame on kernel ring mac "
3773 "offset %u + caplen %u > frame len %d "
3774 "(kernel %.32s version %s, machine %.16s)",
3775 tp_mac, tp_snaplen, handle->bufsize,
3776 utsname.release, utsname.version,
3777 utsname.machine);
3778 } else {
3779 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3780 "corrupted frame on kernel ring mac "
3781 "offset %u + caplen %u > frame len %d",
3782 tp_mac, tp_snaplen, handle->bufsize);
3783 }
3784 return -1;
3785 }
3786
3787 /* run filter on received packet
3788 * If the kernel filtering is enabled we need to run the
3789 * filter until all the frames present into the ring
3790 * at filter creation time are processed.
3791 * In this case, blocks_to_filter_in_userland is used
3792 * as a counter for the packet we need to filter.
3793 * Note: alternatively it could be possible to stop applying
3794 * the filter when the ring became empty, but it can possibly
3795 * happen a lot later... */
3796 bp = frame + tp_mac;
3797
3798 /* if required build in place the sll header*/
3799 sll = (void *)(frame + TPACKET_ALIGN(handlep->tp_hdrlen));
3800 if (handlep->cooked) {
3801 if (handle->linktype == DLT_LINUX_SLL2) {
3802 struct sll2_header *hdrp;
3803
3804 /*
3805 * The kernel should have left us with enough
3806 * space for an sll header; back up the packet
3807 * data pointer into that space, as that'll be
3808 * the beginning of the packet we pass to the
3809 * callback.
3810 */
3811 bp -= SLL2_HDR_LEN;
3812
3813 /*
3814 * Let's make sure that's past the end of
3815 * the tpacket header, i.e. >=
3816 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3817 * don't step on the header when we construct
3818 * the sll header.
3819 */
3820 if (bp < (u_char *)frame +
3821 TPACKET_ALIGN(handlep->tp_hdrlen) +
3822 sizeof(struct sockaddr_ll)) {
3823 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3824 "cooked-mode frame doesn't have room for sll header");
3825 return -1;
3826 }
3827
3828 /*
3829 * OK, that worked; construct the sll header.
3830 */
3831 hdrp = (struct sll2_header *)bp;
3832 hdrp->sll2_protocol = sll->sll_protocol;
3833 hdrp->sll2_reserved_mbz = 0;
3834 hdrp->sll2_if_index = htonl(sll->sll_ifindex);
3835 hdrp->sll2_hatype = htons(sll->sll_hatype);
3836 hdrp->sll2_pkttype = sll->sll_pkttype;
3837 hdrp->sll2_halen = sll->sll_halen;
3838 memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN);
3839
3840 snaplen += sizeof(struct sll2_header);
3841 } else {
3842 struct sll_header *hdrp;
3843
3844 /*
3845 * The kernel should have left us with enough
3846 * space for an sll header; back up the packet
3847 * data pointer into that space, as that'll be
3848 * the beginning of the packet we pass to the
3849 * callback.
3850 */
3851 bp -= SLL_HDR_LEN;
3852
3853 /*
3854 * Let's make sure that's past the end of
3855 * the tpacket header, i.e. >=
3856 * ((u_char *)thdr + TPACKET_HDRLEN), so we
3857 * don't step on the header when we construct
3858 * the sll header.
3859 */
3860 if (bp < (u_char *)frame +
3861 TPACKET_ALIGN(handlep->tp_hdrlen) +
3862 sizeof(struct sockaddr_ll)) {
3863 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
3864 "cooked-mode frame doesn't have room for sll header");
3865 return -1;
3866 }
3867
3868 /*
3869 * OK, that worked; construct the sll header.
3870 */
3871 hdrp = (struct sll_header *)bp;
3872 hdrp->sll_pkttype = htons(sll->sll_pkttype);
3873 hdrp->sll_hatype = htons(sll->sll_hatype);
3874 hdrp->sll_halen = htons(sll->sll_halen);
3875 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN);
3876 hdrp->sll_protocol = sll->sll_protocol;
3877
3878 snaplen += sizeof(struct sll_header);
3879 }
3880 }
3881
3882 if (handlep->filter_in_userland && handle->fcode.bf_insns) {
3883 struct bpf_aux_data aux_data;
3884
3885 aux_data.vlan_tag_present = tp_vlan_tci_valid;
3886 aux_data.vlan_tag = tp_vlan_tci & 0x0fff;
3887
3888 if (pcap_filter_with_aux_data(handle->fcode.bf_insns,
3889 bp,
3890 tp_len,
3891 snaplen,
3892 &aux_data) == 0)
3893 return 0;
3894 }
3895
3896 if (!linux_check_direction(handle, sll))
3897 return 0;
3898
3899 /* get required packet info from ring header */
3900 pcaphdr.ts.tv_sec = tp_sec;
3901 pcaphdr.ts.tv_usec = tp_usec;
3902 pcaphdr.caplen = tp_snaplen;
3903 pcaphdr.len = tp_len;
3904
3905 /* if required build in place the sll header*/
3906 if (handlep->cooked) {
3907 /* update packet len */
3908 if (handle->linktype == DLT_LINUX_SLL2) {
3909 pcaphdr.caplen += SLL2_HDR_LEN;
3910 pcaphdr.len += SLL2_HDR_LEN;
3911 } else {
3912 pcaphdr.caplen += SLL_HDR_LEN;
3913 pcaphdr.len += SLL_HDR_LEN;
3914 }
3915 }
3916
3917 if (tp_vlan_tci_valid &&
3918 handlep->vlan_offset != -1 &&
3919 tp_snaplen >= (unsigned int) handlep->vlan_offset)
3920 {
3921 struct vlan_tag *tag;
3922
3923 /*
3924 * Move everything in the header, except the type field,
3925 * down VLAN_TAG_LEN bytes, to allow us to insert the
3926 * VLAN tag between that stuff and the type field.
3927 */
3928 bp -= VLAN_TAG_LEN;
3929 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset);
3930
3931 /*
3932 * Now insert the tag.
3933 */
3934 tag = (struct vlan_tag *)(bp + handlep->vlan_offset);
3935 tag->vlan_tpid = htons(tp_vlan_tpid);
3936 tag->vlan_tci = htons(tp_vlan_tci);
3937
3938 /*
3939 * Add the tag to the packet lengths.
3940 */
3941 pcaphdr.caplen += VLAN_TAG_LEN;
3942 pcaphdr.len += VLAN_TAG_LEN;
3943 }
3944
3945 /*
3946 * The only way to tell the kernel to cut off the
3947 * packet at a snapshot length is with a filter program;
3948 * if there's no filter program, the kernel won't cut
3949 * the packet off.
3950 *
3951 * Trim the snapshot length to be no longer than the
3952 * specified snapshot length.
3953 *
3954 * XXX - an alternative is to put a filter, consisting
3955 * of a "ret <snaplen>" instruction, on the socket
3956 * in the activate routine, so that the truncation is
3957 * done in the kernel even if nobody specified a filter;
3958 * that means that less buffer space is consumed in
3959 * the memory-mapped buffer.
3960 */
3961 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot)
3962 pcaphdr.caplen = handle->snapshot;
3963
3964 /* pass the packet to the user */
3965 callback(user, &pcaphdr, bp);
3966
3967 return 1;
3968 }
3969
3970 static int
3971 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback,
3972 u_char *user)
3973 {
3974 struct pcap_linux *handlep = handle->priv;
3975 union thdr h;
3976 int pkts = 0;
3977 int ret;
3978
3979 /* wait for frames availability.*/
3980 h.raw = RING_GET_CURRENT_FRAME(handle);
3981 if (!packet_mmap_acquire(h.h2)) {
3982 /*
3983 * The current frame is owned by the kernel; wait for
3984 * a frame to be handed to us.
3985 */
3986 ret = pcap_wait_for_frames_mmap(handle);
3987 if (ret) {
3988 return ret;
3989 }
3990 }
3991
3992 /* non-positive values of max_packets are used to require all
3993 * packets currently available in the ring */
3994 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) {
3995 /*
3996 * Get the current ring buffer frame, and break if
3997 * it's still owned by the kernel.
3998 */
3999 h.raw = RING_GET_CURRENT_FRAME(handle);
4000 if (!packet_mmap_acquire(h.h2))
4001 break;
4002
4003 ret = pcap_handle_packet_mmap(
4004 handle,
4005 callback,
4006 user,
4007 h.raw,
4008 h.h2->tp_len,
4009 h.h2->tp_mac,
4010 h.h2->tp_snaplen,
4011 h.h2->tp_sec,
4012 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000,
4013 VLAN_VALID(h.h2, h.h2),
4014 h.h2->tp_vlan_tci,
4015 VLAN_TPID(h.h2, h.h2));
4016 if (ret == 1) {
4017 pkts++;
4018 } else if (ret < 0) {
4019 return ret;
4020 }
4021
4022 /*
4023 * Hand this block back to the kernel, and, if we're
4024 * counting blocks that need to be filtered in userland
4025 * after having been filtered by the kernel, count
4026 * the one we've just processed.
4027 */
4028 packet_mmap_release(h.h2);
4029 if (handlep->blocks_to_filter_in_userland > 0) {
4030 handlep->blocks_to_filter_in_userland--;
4031 if (handlep->blocks_to_filter_in_userland == 0) {
4032 /*
4033 * No more blocks need to be filtered
4034 * in userland.
4035 */
4036 handlep->filter_in_userland = 0;
4037 }
4038 }
4039
4040 /* next block */
4041 if (++handle->offset >= handle->cc)
4042 handle->offset = 0;
4043
4044 /* check for break loop condition*/
4045 if (handle->break_loop) {
4046 handle->break_loop = 0;
4047 return PCAP_ERROR_BREAK;
4048 }
4049 }
4050 return pkts;
4051 }
4052
4053 #ifdef HAVE_TPACKET3
4054 static int
4055 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback,
4056 u_char *user)
4057 {
4058 struct pcap_linux *handlep = handle->priv;
4059 union thdr h;
4060 int pkts = 0;
4061 int ret;
4062
4063 again:
4064 if (handlep->current_packet == NULL) {
4065 /* wait for frames availability.*/
4066 h.raw = RING_GET_CURRENT_FRAME(handle);
4067 if (!packet_mmap_v3_acquire(h.h3)) {
4068 /*
4069 * The current frame is owned by the kernel; wait
4070 * for a frame to be handed to us.
4071 */
4072 ret = pcap_wait_for_frames_mmap(handle);
4073 if (ret) {
4074 return ret;
4075 }
4076 }
4077 }
4078 h.raw = RING_GET_CURRENT_FRAME(handle);
4079 if (!packet_mmap_v3_acquire(h.h3)) {
4080 if (pkts == 0 && handlep->timeout == 0) {
4081 /* Block until we see a packet. */
4082 goto again;
4083 }
4084 return pkts;
4085 }
4086
4087 /* non-positive values of max_packets are used to require all
4088 * packets currently available in the ring */
4089 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) {
4090 int packets_to_read;
4091
4092 if (handlep->current_packet == NULL) {
4093 h.raw = RING_GET_CURRENT_FRAME(handle);
4094 if (!packet_mmap_v3_acquire(h.h3))
4095 break;
4096
4097 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt;
4098 handlep->packets_left = h.h3->hdr.bh1.num_pkts;
4099 }
4100 packets_to_read = handlep->packets_left;
4101
4102 if (!PACKET_COUNT_IS_UNLIMITED(max_packets) &&
4103 packets_to_read > (max_packets - pkts)) {
4104 /*
4105 * We've been given a maximum number of packets
4106 * to process, and there are more packets in
4107 * this buffer than that. Only process enough
4108 * of them to get us up to that maximum.
4109 */
4110 packets_to_read = max_packets - pkts;
4111 }
4112
4113 while (packets_to_read-- && !handle->break_loop) {
4114 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet;
4115 ret = pcap_handle_packet_mmap(
4116 handle,
4117 callback,
4118 user,
4119 handlep->current_packet,
4120 tp3_hdr->tp_len,
4121 tp3_hdr->tp_mac,
4122 tp3_hdr->tp_snaplen,
4123 tp3_hdr->tp_sec,
4124 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000,
4125 VLAN_VALID(tp3_hdr, &tp3_hdr->hv1),
4126 tp3_hdr->hv1.tp_vlan_tci,
4127 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1));
4128 if (ret == 1) {
4129 pkts++;
4130 } else if (ret < 0) {
4131 handlep->current_packet = NULL;
4132 return ret;
4133 }
4134 handlep->current_packet += tp3_hdr->tp_next_offset;
4135 handlep->packets_left--;
4136 }
4137
4138 if (handlep->packets_left <= 0) {
4139 /*
4140 * Hand this block back to the kernel, and, if
4141 * we're counting blocks that need to be
4142 * filtered in userland after having been
4143 * filtered by the kernel, count the one we've
4144 * just processed.
4145 */
4146 packet_mmap_v3_release(h.h3);
4147 if (handlep->blocks_to_filter_in_userland > 0) {
4148 handlep->blocks_to_filter_in_userland--;
4149 if (handlep->blocks_to_filter_in_userland == 0) {
4150 /*
4151 * No more blocks need to be filtered
4152 * in userland.
4153 */
4154 handlep->filter_in_userland = 0;
4155 }
4156 }
4157
4158 /* next block */
4159 if (++handle->offset >= handle->cc)
4160 handle->offset = 0;
4161
4162 handlep->current_packet = NULL;
4163 }
4164
4165 /* check for break loop condition*/
4166 if (handle->break_loop) {
4167 handle->break_loop = 0;
4168 return PCAP_ERROR_BREAK;
4169 }
4170 }
4171 if (pkts == 0 && handlep->timeout == 0) {
4172 /* Block until we see a packet. */
4173 goto again;
4174 }
4175 return pkts;
4176 }
4177 #endif /* HAVE_TPACKET3 */
4178
4179 /*
4180 * Attach the given BPF code to the packet capture device.
4181 */
4182 static int
4183 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter)
4184 {
4185 struct pcap_linux *handlep;
4186 struct sock_fprog fcode;
4187 int can_filter_in_kernel;
4188 int err = 0;
4189 int n, offset;
4190
4191 if (!handle)
4192 return -1;
4193 if (!filter) {
4194 pcap_strlcpy(handle->errbuf, "setfilter: No filter specified",
4195 PCAP_ERRBUF_SIZE);
4196 return -1;
4197 }
4198
4199 handlep = handle->priv;
4200
4201 /* Make our private copy of the filter */
4202
4203 if (install_bpf_program(handle, filter) < 0)
4204 /* install_bpf_program() filled in errbuf */
4205 return -1;
4206
4207 /*
4208 * Run user level packet filter by default. Will be overriden if
4209 * installing a kernel filter succeeds.
4210 */
4211 handlep->filter_in_userland = 1;
4212
4213 /* Install kernel level filter if possible */
4214
4215 #ifdef USHRT_MAX
4216 if (handle->fcode.bf_len > USHRT_MAX) {
4217 /*
4218 * fcode.len is an unsigned short for current kernel.
4219 * I have yet to see BPF-Code with that much
4220 * instructions but still it is possible. So for the
4221 * sake of correctness I added this check.
4222 */
4223 fprintf(stderr, "Warning: Filter too complex for kernel\n");
4224 fcode.len = 0;
4225 fcode.filter = NULL;
4226 can_filter_in_kernel = 0;
4227 } else
4228 #endif /* USHRT_MAX */
4229 {
4230 /*
4231 * Oh joy, the Linux kernel uses struct sock_fprog instead
4232 * of struct bpf_program and of course the length field is
4233 * of different size. Pointed out by Sebastian
4234 *
4235 * Oh, and we also need to fix it up so that all "ret"
4236 * instructions with non-zero operands have MAXIMUM_SNAPLEN
4237 * as the operand if we're not capturing in memory-mapped
4238 * mode, and so that, if we're in cooked mode, all memory-
4239 * reference instructions use special magic offsets in
4240 * references to the link-layer header and assume that the
4241 * link-layer payload begins at 0; "fix_program()" will do
4242 * that.
4243 */
4244 switch (fix_program(handle, &fcode)) {
4245
4246 case -1:
4247 default:
4248 /*
4249 * Fatal error; just quit.
4250 * (The "default" case shouldn't happen; we
4251 * return -1 for that reason.)
4252 */
4253 return -1;
4254
4255 case 0:
4256 /*
4257 * The program performed checks that we can't make
4258 * work in the kernel.
4259 */
4260 can_filter_in_kernel = 0;
4261 break;
4262
4263 case 1:
4264 /*
4265 * We have a filter that'll work in the kernel.
4266 */
4267 can_filter_in_kernel = 1;
4268 break;
4269 }
4270 }
4271
4272 /*
4273 * NOTE: at this point, we've set both the "len" and "filter"
4274 * fields of "fcode". As of the 2.6.32.4 kernel, at least,
4275 * those are the only members of the "sock_fprog" structure,
4276 * so we initialize every member of that structure.
4277 *
4278 * If there is anything in "fcode" that is not initialized,
4279 * it is either a field added in a later kernel, or it's
4280 * padding.
4281 *
4282 * If a new field is added, this code needs to be updated
4283 * to set it correctly.
4284 *
4285 * If there are no other fields, then:
4286 *
4287 * if the Linux kernel looks at the padding, it's
4288 * buggy;
4289 *
4290 * if the Linux kernel doesn't look at the padding,
4291 * then if some tool complains that we're passing
4292 * uninitialized data to the kernel, then the tool
4293 * is buggy and needs to understand that it's just
4294 * padding.
4295 */
4296 if (can_filter_in_kernel) {
4297 if ((err = set_kernel_filter(handle, &fcode)) == 0)
4298 {
4299 /*
4300 * Installation succeded - using kernel filter,
4301 * so userland filtering not needed.
4302 */
4303 handlep->filter_in_userland = 0;
4304 }
4305 else if (err == -1) /* Non-fatal error */
4306 {
4307 /*
4308 * Print a warning if we weren't able to install
4309 * the filter for a reason other than "this kernel
4310 * isn't configured to support socket filters.
4311 */
4312 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
4313 fprintf(stderr,
4314 "Warning: Kernel filter failed: %s\n",
4315 pcap_strerror(errno));
4316 }
4317 }
4318 }
4319
4320 /*
4321 * If we're not using the kernel filter, get rid of any kernel
4322 * filter that might've been there before, e.g. because the
4323 * previous filter could work in the kernel, or because some other
4324 * code attached a filter to the socket by some means other than
4325 * calling "pcap_setfilter()". Otherwise, the kernel filter may
4326 * filter out packets that would pass the new userland filter.
4327 */
4328 if (handlep->filter_in_userland) {
4329 if (reset_kernel_filter(handle) == -1) {
4330 pcap_fmt_errmsg_for_errno(handle->errbuf,
4331 PCAP_ERRBUF_SIZE, errno,
4332 "can't remove kernel filter");
4333 err = -2; /* fatal error */
4334 }
4335 }
4336
4337 /*
4338 * Free up the copy of the filter that was made by "fix_program()".
4339 */
4340 if (fcode.filter != NULL)
4341 free(fcode.filter);
4342
4343 if (err == -2)
4344 /* Fatal error */
4345 return -1;
4346
4347 /*
4348 * If we're filtering in userland, there's nothing to do;
4349 * the new filter will be used for the next packet.
4350 */
4351 if (handlep->filter_in_userland)
4352 return 0;
4353
4354 /*
4355 * We're filtering in the kernel; the packets present in
4356 * all blocks currently in the ring were already filtered
4357 * by the old filter, and so will need to be filtered in
4358 * userland by the new filter.
4359 *
4360 * Get an upper bound for the number of such blocks; first,
4361 * walk the ring backward and count the free blocks.
4362 */
4363 offset = handle->offset;
4364 if (--offset < 0)
4365 offset = handle->cc - 1;
4366 for (n=0; n < handle->cc; ++n) {
4367 if (--offset < 0)
4368 offset = handle->cc - 1;
4369 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL)
4370 break;
4371 }
4372
4373 /*
4374 * If we found free blocks, decrement the count of free
4375 * blocks by 1, just in case we lost a race with another
4376 * thread of control that was adding a packet while
4377 * we were counting and that had run the filter before
4378 * we changed it.
4379 *
4380 * XXX - could there be more than one block added in
4381 * this fashion?
4382 *
4383 * XXX - is there a way to avoid that race, e.g. somehow
4384 * wait for all packets that passed the old filter to
4385 * be added to the ring?
4386 */
4387 if (n != 0)
4388 n--;
4389
4390 /*
4391 * Set the count of blocks worth of packets to filter
4392 * in userland to the total number of blocks in the
4393 * ring minus the number of free blocks we found, and
4394 * turn on userland filtering. (The count of blocks
4395 * worth of packets to filter in userland is guaranteed
4396 * not to be zero - n, above, couldn't be set to a
4397 * value > handle->cc, and if it were equal to
4398 * handle->cc, it wouldn't be zero, and thus would
4399 * be decremented to handle->cc - 1.)
4400 */
4401 handlep->blocks_to_filter_in_userland = handle->cc - n;
4402 handlep->filter_in_userland = 1;
4403
4404 return 0;
4405 }
4406
4407 /*
4408 * Return the index of the given device name. Fill ebuf and return
4409 * -1 on failure.
4410 */
4411 static int
4412 iface_get_id(int fd, const char *device, char *ebuf)
4413 {
4414 struct ifreq ifr;
4415
4416 memset(&ifr, 0, sizeof(ifr));
4417 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4418
4419 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
4420 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4421 errno, "SIOCGIFINDEX");
4422 return -1;
4423 }
4424
4425 return ifr.ifr_ifindex;
4426 }
4427
4428 /*
4429 * Bind the socket associated with FD to the given device.
4430 * Return 0 on success or a PCAP_ERROR_ value on a hard error.
4431 */
4432 static int
4433 iface_bind(int fd, int ifindex, char *ebuf, int protocol)
4434 {
4435 struct sockaddr_ll sll;
4436 int ret, err;
4437 socklen_t errlen = sizeof(err);
4438
4439 memset(&sll, 0, sizeof(sll));
4440 sll.sll_family = AF_PACKET;
4441 sll.sll_ifindex = ifindex < 0 ? 0 : ifindex;
4442 sll.sll_protocol = protocol;
4443
4444 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
4445 if (errno == ENETDOWN) {
4446 /*
4447 * Return a "network down" indication, so that
4448 * the application can report that rather than
4449 * saying we had a mysterious failure and
4450 * suggest that they report a problem to the
4451 * libpcap developers.
4452 */
4453 return PCAP_ERROR_IFACE_NOT_UP;
4454 }
4455 if (errno == ENODEV)
4456 ret = PCAP_ERROR_NO_SUCH_DEVICE;
4457 else
4458 ret = PCAP_ERROR;
4459 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4460 errno, "bind");
4461 return ret;
4462 }
4463
4464 /* Any pending errors, e.g., network is down? */
4465
4466 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) {
4467 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4468 errno, "getsockopt (SO_ERROR)");
4469 return PCAP_ERROR;
4470 }
4471
4472 if (err == ENETDOWN) {
4473 /*
4474 * Return a "network down" indication, so that
4475 * the application can report that rather than
4476 * saying we had a mysterious failure and
4477 * suggest that they report a problem to the
4478 * libpcap developers.
4479 */
4480 return PCAP_ERROR_IFACE_NOT_UP;
4481 } else if (err > 0) {
4482 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4483 err, "bind");
4484 return PCAP_ERROR;
4485 }
4486
4487 return 0;
4488 }
4489
4490 /*
4491 * Try to enter monitor mode.
4492 * If we have libnl, try to create a new monitor-mode device and
4493 * capture on that; otherwise, just say "not supported".
4494 */
4495 #ifdef HAVE_LIBNL
4496 static int
4497 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device)
4498 {
4499 struct pcap_linux *handlep = handle->priv;
4500 int ret;
4501 char phydev_path[PATH_MAX+1];
4502 struct nl80211_state nlstate;
4503 struct ifreq ifr;
4504 u_int n;
4505
4506 /*
4507 * Is this a mac80211 device?
4508 */
4509 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX);
4510 if (ret < 0)
4511 return ret; /* error */
4512 if (ret == 0)
4513 return 0; /* no error, but not mac80211 device */
4514
4515 /*
4516 * XXX - is this already a monN device?
4517 * If so, we're done.
4518 */
4519
4520 /*
4521 * OK, it's apparently a mac80211 device.
4522 * Try to find an unused monN device for it.
4523 */
4524 ret = nl80211_init(handle, &nlstate, device);
4525 if (ret != 0)
4526 return ret;
4527 for (n = 0; n < UINT_MAX; n++) {
4528 /*
4529 * Try mon{n}.
4530 */
4531 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */
4532
4533 snprintf(mondevice, sizeof mondevice, "mon%u", n);
4534 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice);
4535 if (ret == 1) {
4536 /*
4537 * Success. We don't clean up the libnl state
4538 * yet, as we'll be using it later.
4539 */
4540 goto added;
4541 }
4542 if (ret < 0) {
4543 /*
4544 * Hard failure. Just return ret; handle->errbuf
4545 * has already been set.
4546 */
4547 nl80211_cleanup(&nlstate);
4548 return ret;
4549 }
4550 }
4551
4552 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
4553 "%s: No free monN interfaces", device);
4554 nl80211_cleanup(&nlstate);
4555 return PCAP_ERROR;
4556
4557 added:
4558
4559 #if 0
4560 /*
4561 * Sleep for .1 seconds.
4562 */
4563 delay.tv_sec = 0;
4564 delay.tv_nsec = 500000000;
4565 nanosleep(&delay, NULL);
4566 #endif
4567
4568 /*
4569 * If we haven't already done so, arrange to have
4570 * "pcap_close_all()" called when we exit.
4571 */
4572 if (!pcap_do_addexit(handle)) {
4573 /*
4574 * "atexit()" failed; don't put the interface
4575 * in rfmon mode, just give up.
4576 */
4577 del_mon_if(handle, sock_fd, &nlstate, device,
4578 handlep->mondevice);
4579 nl80211_cleanup(&nlstate);
4580 return PCAP_ERROR;
4581 }
4582
4583 /*
4584 * Now configure the monitor interface up.
4585 */
4586 memset(&ifr, 0, sizeof(ifr));
4587 pcap_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name));
4588 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
4589 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4590 errno, "%s: Can't get flags for %s", device,
4591 handlep->mondevice);
4592 del_mon_if(handle, sock_fd, &nlstate, device,
4593 handlep->mondevice);
4594 nl80211_cleanup(&nlstate);
4595 return PCAP_ERROR;
4596 }
4597 ifr.ifr_flags |= IFF_UP|IFF_RUNNING;
4598 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
4599 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4600 errno, "%s: Can't set flags for %s", device,
4601 handlep->mondevice);
4602 del_mon_if(handle, sock_fd, &nlstate, device,
4603 handlep->mondevice);
4604 nl80211_cleanup(&nlstate);
4605 return PCAP_ERROR;
4606 }
4607
4608 /*
4609 * Success. Clean up the libnl state.
4610 */
4611 nl80211_cleanup(&nlstate);
4612
4613 /*
4614 * Note that we have to delete the monitor device when we close
4615 * the handle.
4616 */
4617 handlep->must_do_on_close |= MUST_DELETE_MONIF;
4618
4619 /*
4620 * Add this to the list of pcaps to close when we exit.
4621 */
4622 pcap_add_to_pcaps_to_close(handle);
4623
4624 return 1;
4625 }
4626 #else /* HAVE_LIBNL */
4627 static int
4628 enter_rfmon_mode(pcap_t *handle _U_, int sock_fd _U_, const char *device _U_)
4629 {
4630 /*
4631 * We don't have libnl, so we can't do monitor mode.
4632 */
4633 return 0;
4634 }
4635 #endif /* HAVE_LIBNL */
4636
4637 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP)
4638 /*
4639 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values.
4640 */
4641 static const struct {
4642 int soft_timestamping_val;
4643 int pcap_tstamp_val;
4644 } sof_ts_type_map[3] = {
4645 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST },
4646 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER },
4647 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED }
4648 };
4649 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0])
4650
4651 /*
4652 * Set the list of time stamping types to include all types.
4653 */
4654 static int
4655 iface_set_all_ts_types(pcap_t *handle, char *ebuf)
4656 {
4657 u_int i;
4658
4659 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int));
4660 if (handle->tstamp_type_list == NULL) {
4661 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4662 errno, "malloc");
4663 return -1;
4664 }
4665 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++)
4666 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val;
4667 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES;
4668 return 0;
4669 }
4670
4671 #ifdef ETHTOOL_GET_TS_INFO
4672 /*
4673 * Get a list of time stamping capabilities.
4674 */
4675 static int
4676 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf)
4677 {
4678 int fd;
4679 struct ifreq ifr;
4680 struct ethtool_ts_info info;
4681 int num_ts_types;
4682 u_int i, j;
4683
4684 /*
4685 * This doesn't apply to the "any" device; you can't say "turn on
4686 * hardware time stamping for all devices that exist now and arrange
4687 * that it be turned on for any device that appears in the future",
4688 * and not all devices even necessarily *support* hardware time
4689 * stamping, so don't report any time stamp types.
4690 */
4691 if (strcmp(device, "any") == 0) {
4692 handle->tstamp_type_list = NULL;
4693 return 0;
4694 }
4695
4696 /*
4697 * Create a socket from which to fetch time stamping capabilities.
4698 */
4699 fd = get_if_ioctl_socket();
4700 if (fd < 0) {
4701 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4702 errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)");
4703 return -1;
4704 }
4705
4706 memset(&ifr, 0, sizeof(ifr));
4707 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
4708 memset(&info, 0, sizeof(info));
4709 info.cmd = ETHTOOL_GET_TS_INFO;
4710 ifr.ifr_data = (caddr_t)&info;
4711 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) {
4712 int save_errno = errno;
4713
4714 close(fd);
4715 switch (save_errno) {
4716
4717 case EOPNOTSUPP:
4718 case EINVAL:
4719 /*
4720 * OK, this OS version or driver doesn't support
4721 * asking for the time stamping types, so let's
4722 * just return all the possible types.
4723 */
4724 if (iface_set_all_ts_types(handle, ebuf) == -1)
4725 return -1;
4726 return 0;
4727
4728 case ENODEV:
4729 /*
4730 * OK, no such device.
4731 * The user will find that out when they try to
4732 * activate the device; just return an empty
4733 * list of time stamp types.
4734 */
4735 handle->tstamp_type_list = NULL;
4736 return 0;
4737
4738 default:
4739 /*
4740 * Other error.
4741 */
4742 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4743 save_errno,
4744 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed",
4745 device);
4746 return -1;
4747 }
4748 }
4749 close(fd);
4750
4751 /*
4752 * Do we support hardware time stamping of *all* packets?
4753 */
4754 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) {
4755 /*
4756 * No, so don't report any time stamp types.
4757 *
4758 * XXX - some devices either don't report
4759 * HWTSTAMP_FILTER_ALL when they do support it, or
4760 * report HWTSTAMP_FILTER_ALL but map it to only
4761 * time stamping a few PTP packets. See
4762 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2
4763 */
4764 handle->tstamp_type_list = NULL;
4765 return 0;
4766 }
4767
4768 num_ts_types = 0;
4769 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
4770 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val)
4771 num_ts_types++;
4772 }
4773 if (num_ts_types != 0) {
4774 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int));
4775 if (handle->tstamp_type_list == NULL) {
4776 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
4777 errno, "malloc");
4778 return -1;
4779 }
4780 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) {
4781 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) {
4782 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val;
4783 j++;
4784 }
4785 }
4786 handle->tstamp_type_count = num_ts_types;
4787 } else
4788 handle->tstamp_type_list = NULL;
4789
4790 return 0;
4791 }
4792 #else /* ETHTOOL_GET_TS_INFO */
4793 static int
4794 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf)
4795 {
4796 /*
4797 * This doesn't apply to the "any" device; you can't say "turn on
4798 * hardware time stamping for all devices that exist now and arrange
4799 * that it be turned on for any device that appears in the future",
4800 * and not all devices even necessarily *support* hardware time
4801 * stamping, so don't report any time stamp types.
4802 */
4803 if (strcmp(device, "any") == 0) {
4804 handle->tstamp_type_list = NULL;
4805 return 0;
4806 }
4807
4808 /*
4809 * We don't have an ioctl to use to ask what's supported,
4810 * so say we support everything.
4811 */
4812 if (iface_set_all_ts_types(handle, ebuf) == -1)
4813 return -1;
4814 return 0;
4815 }
4816 #endif /* ETHTOOL_GET_TS_INFO */
4817
4818 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */
4819
4820 /*
4821 * Find out if we have any form of fragmentation/reassembly offloading.
4822 *
4823 * We do so using SIOCETHTOOL checking for various types of offloading;
4824 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any
4825 * of the types of offloading, there's nothing we can do to check, so
4826 * we just say "no, we don't".
4827 *
4828 * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as
4829 * indications that the operation isn't supported. We do EPERM
4830 * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't
4831 * support ETHTOOL_GUFO, 2) also doesn't include it in the list
4832 * of ethtool operations that don't require CAP_NET_ADMIN privileges,
4833 * and 3) does the "is this permitted" check before doing the "is
4834 * this even supported" check, so it fails with "this is not permitted"
4835 * rather than "this is not even supported". To work around this
4836 * annoyance, we only treat EPERM as an error for the first feature,
4837 * and assume that they all do the same permission checks, so if the
4838 * first one is allowed all the others are allowed if supported.
4839 */
4840 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO))
4841 static int
4842 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname,
4843 int eperm_ok)
4844 {
4845 struct ifreq ifr;
4846 struct ethtool_value eval;
4847
4848 memset(&ifr, 0, sizeof(ifr));
4849 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name));
4850 eval.cmd = cmd;
4851 eval.data = 0;
4852 ifr.ifr_data = (caddr_t)&eval;
4853 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) {
4854 if (errno == EOPNOTSUPP || errno == EINVAL ||
4855 (errno == EPERM && eperm_ok)) {
4856 /*
4857 * OK, let's just return 0, which, in our
4858 * case, either means "no, what we're asking
4859 * about is not enabled" or "all the flags
4860 * are clear (i.e., nothing is enabled)".
4861 */
4862 return 0;
4863 }
4864 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4865 errno, "%s: SIOCETHTOOL(%s) ioctl failed",
4866 handle->opt.device, cmdname);
4867 return -1;
4868 }
4869 return eval.data;
4870 }
4871
4872 /*
4873 * XXX - it's annoying that we have to check for offloading at all, but,
4874 * given that we have to, it's still annoying that we have to check for
4875 * particular types of offloading, especially that shiny new types of
4876 * offloading may be added - and, worse, may not be checkable with
4877 * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in
4878 * theory, give those to you, but the actual flags being used are
4879 * opaque (defined in a non-uapi header), and there doesn't seem to
4880 * be any obvious way to ask the kernel what all the offloading flags
4881 * are - at best, you can ask for a set of strings(!) to get *names*
4882 * for various flags. (That whole mechanism appears to have been
4883 * designed for the sole purpose of letting ethtool report flags
4884 * by name and set flags by name, with the names having no semantics
4885 * ethtool understands.)
4886 */
4887 static int
4888 iface_get_offload(pcap_t *handle)
4889 {
4890 int ret;
4891
4892 #ifdef ETHTOOL_GTSO
4893 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0);
4894 if (ret == -1)
4895 return -1;
4896 if (ret)
4897 return 1; /* TCP segmentation offloading on */
4898 #endif
4899
4900 #ifdef ETHTOOL_GGSO
4901 /*
4902 * XXX - will this cause large unsegmented packets to be
4903 * handed to PF_PACKET sockets on transmission? If not,
4904 * this need not be checked.
4905 */
4906 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0);
4907 if (ret == -1)
4908 return -1;
4909 if (ret)
4910 return 1; /* generic segmentation offloading on */
4911 #endif
4912
4913 #ifdef ETHTOOL_GFLAGS
4914 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0);
4915 if (ret == -1)
4916 return -1;
4917 if (ret & ETH_FLAG_LRO)
4918 return 1; /* large receive offloading on */
4919 #endif
4920
4921 #ifdef ETHTOOL_GGRO
4922 /*
4923 * XXX - will this cause large reassembled packets to be
4924 * handed to PF_PACKET sockets on receipt? If not,
4925 * this need not be checked.
4926 */
4927 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0);
4928 if (ret == -1)
4929 return -1;
4930 if (ret)
4931 return 1; /* generic (large) receive offloading on */
4932 #endif
4933
4934 #ifdef ETHTOOL_GUFO
4935 /*
4936 * Do this one last, as support for it was removed in later
4937 * kernels, and it fails with EPERM on those kernels rather
4938 * than with EOPNOTSUPP (see explanation in comment for
4939 * iface_ethtool_flag_ioctl()).
4940 */
4941 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1);
4942 if (ret == -1)
4943 return -1;
4944 if (ret)
4945 return 1; /* UDP fragmentation offloading on */
4946 #endif
4947
4948 return 0;
4949 }
4950 #else /* SIOCETHTOOL */
4951 static int
4952 iface_get_offload(pcap_t *handle _U_)
4953 {
4954 /*
4955 * XXX - do we need to get this information if we don't
4956 * have the ethtool ioctls? If so, how do we do that?
4957 */
4958 return 0;
4959 }
4960 #endif /* SIOCETHTOOL */
4961
4962 static struct dsa_proto {
4963 const char *name;
4964 bpf_u_int32 linktype;
4965 } dsa_protos[] = {
4966 /*
4967 * None is special and indicates that the interface does not have
4968 * any tagging protocol configured, and is therefore a standard
4969 * Ethernet interface.
4970 */
4971 { "none", DLT_EN10MB },
4972 { "brcm", DLT_DSA_TAG_BRCM },
4973 { "brcm-prepend", DLT_DSA_TAG_BRCM_PREPEND },
4974 { "dsa", DLT_DSA_TAG_DSA },
4975 { "edsa", DLT_DSA_TAG_EDSA },
4976 };
4977
4978 static int
4979 iface_dsa_get_proto_info(const char *device, pcap_t *handle)
4980 {
4981 char *pathstr;
4982 unsigned int i;
4983 /*
4984 * Make this significantly smaller than PCAP_ERRBUF_SIZE;
4985 * the tag *shouldn't* have some huge long name, and making
4986 * it smaller keeps newer versions of GCC from whining that
4987 * the error message if we don't support the tag could
4988 * overflow the error message buffer.
4989 */
4990 char buf[128];
4991 ssize_t r;
4992 int fd;
4993
4994 fd = asprintf(&pathstr, "/sys/class/net/%s/dsa/tagging", device);
4995 if (fd < 0) {
4996 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
4997 fd, "asprintf");
4998 return PCAP_ERROR;
4999 }
5000
5001 fd = open(pathstr, O_RDONLY);
5002 free(pathstr);
5003 /*
5004 * This is not fatal, kernel >= 4.20 *might* expose this attribute
5005 */
5006 if (fd < 0)
5007 return 0;
5008
5009 r = read(fd, buf, sizeof(buf) - 1);
5010 if (r <= 0) {
5011 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5012 errno, "read");
5013 close(fd);
5014 return PCAP_ERROR;
5015 }
5016 close(fd);
5017
5018 /*
5019 * Buffer should be LF terminated.
5020 */
5021 if (buf[r - 1] == '\n')
5022 r--;
5023 buf[r] = '\0';
5024
5025 for (i = 0; i < sizeof(dsa_protos) / sizeof(dsa_protos[0]); i++) {
5026 if (strlen(dsa_protos[i].name) == (size_t)r &&
5027 strcmp(buf, dsa_protos[i].name) == 0) {
5028 handle->linktype = dsa_protos[i].linktype;
5029 switch (dsa_protos[i].linktype) {
5030 case DLT_EN10MB:
5031 return 0;
5032 default:
5033 return 1;
5034 }
5035 }
5036 }
5037
5038 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
5039 "unsupported DSA tag: %s", buf);
5040
5041 return PCAP_ERROR;
5042 }
5043
5044 /*
5045 * Query the kernel for the MTU of the given interface.
5046 */
5047 static int
5048 iface_get_mtu(int fd, const char *device, char *ebuf)
5049 {
5050 struct ifreq ifr;
5051
5052 if (!device)
5053 return BIGGER_THAN_ALL_MTUS;
5054
5055 memset(&ifr, 0, sizeof(ifr));
5056 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5057
5058 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
5059 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5060 errno, "SIOCGIFMTU");
5061 return -1;
5062 }
5063
5064 return ifr.ifr_mtu;
5065 }
5066
5067 /*
5068 * Get the hardware type of the given interface as ARPHRD_xxx constant.
5069 */
5070 static int
5071 iface_get_arptype(int fd, const char *device, char *ebuf)
5072 {
5073 struct ifreq ifr;
5074 int ret;
5075
5076 memset(&ifr, 0, sizeof(ifr));
5077 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
5078
5079 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
5080 if (errno == ENODEV) {
5081 /*
5082 * No such device.
5083 */
5084 ret = PCAP_ERROR_NO_SUCH_DEVICE;
5085 } else
5086 ret = PCAP_ERROR;
5087 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE,
5088 errno, "SIOCGIFHWADDR");
5089 return ret;
5090 }
5091
5092 return ifr.ifr_hwaddr.sa_family;
5093 }
5094
5095 static int
5096 fix_program(pcap_t *handle, struct sock_fprog *fcode)
5097 {
5098 struct pcap_linux *handlep = handle->priv;
5099 size_t prog_size;
5100 register int i;
5101 register struct bpf_insn *p;
5102 struct bpf_insn *f;
5103 int len;
5104
5105 /*
5106 * Make a copy of the filter, and modify that copy if
5107 * necessary.
5108 */
5109 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
5110 len = handle->fcode.bf_len;
5111 f = (struct bpf_insn *)malloc(prog_size);
5112 if (f == NULL) {
5113 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE,
5114 errno, "malloc");
5115 return -1;
5116 }
5117 memcpy(f, handle->fcode.bf_insns, prog_size);
5118 fcode->len = len;
5119 fcode->filter = (struct sock_filter *) f;
5120
5121 for (i = 0; i < len; ++i) {
5122 p = &f[i];
5123 /*
5124 * What type of instruction is this?
5125 */
5126 switch (BPF_CLASS(p->code)) {
5127
5128 case BPF_LD:
5129 case BPF_LDX:
5130 /*
5131 * It's a load instruction; is it loading
5132 * from the packet?
5133 */
5134 switch (BPF_MODE(p->code)) {
5135
5136 case BPF_ABS:
5137 case BPF_IND:
5138 case BPF_MSH:
5139 /*
5140 * Yes; are we in cooked mode?
5141 */
5142 if (handlep->cooked) {
5143 /*
5144 * Yes, so we need to fix this
5145 * instruction.
5146 */
5147 if (fix_offset(handle, p) < 0) {
5148 /*
5149 * We failed to do so.
5150 * Return 0, so our caller
5151 * knows to punt to userland.
5152 */
5153 return 0;
5154 }
5155 }
5156 break;
5157 }
5158 break;
5159 }
5160 }
5161 return 1; /* we succeeded */
5162 }
5163
5164 static int
5165 fix_offset(pcap_t *handle, struct bpf_insn *p)
5166 {
5167 /*
5168 * Existing references to auxiliary data shouldn't be adjusted.
5169 *
5170 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so
5171 * we use >= and cast SKF_AD_OFF to unsigned.
5172 */
5173 if (p->k >= (bpf_u_int32)SKF_AD_OFF)
5174 return 0;
5175 if (handle->linktype == DLT_LINUX_SLL2) {
5176 /*
5177 * What's the offset?
5178 */
5179 if (p->k >= SLL2_HDR_LEN) {
5180 /*
5181 * It's within the link-layer payload; that starts
5182 * at an offset of 0, as far as the kernel packet
5183 * filter is concerned, so subtract the length of
5184 * the link-layer header.
5185 */
5186 p->k -= SLL2_HDR_LEN;
5187 } else if (p->k == 0) {
5188 /*
5189 * It's the protocol field; map it to the
5190 * special magic kernel offset for that field.
5191 */
5192 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5193 } else if (p->k == 4) {
5194 /*
5195 * It's the ifindex field; map it to the
5196 * special magic kernel offset for that field.
5197 */
5198 p->k = SKF_AD_OFF + SKF_AD_IFINDEX;
5199 } else if (p->k == 10) {
5200 /*
5201 * It's the packet type field; map it to the
5202 * special magic kernel offset for that field.
5203 */
5204 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5205 } else if ((bpf_int32)(p->k) > 0) {
5206 /*
5207 * It's within the header, but it's not one of
5208 * those fields; we can't do that in the kernel,
5209 * so punt to userland.
5210 */
5211 return -1;
5212 }
5213 } else {
5214 /*
5215 * What's the offset?
5216 */
5217 if (p->k >= SLL_HDR_LEN) {
5218 /*
5219 * It's within the link-layer payload; that starts
5220 * at an offset of 0, as far as the kernel packet
5221 * filter is concerned, so subtract the length of
5222 * the link-layer header.
5223 */
5224 p->k -= SLL_HDR_LEN;
5225 } else if (p->k == 0) {
5226 /*
5227 * It's the packet type field; map it to the
5228 * special magic kernel offset for that field.
5229 */
5230 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE;
5231 } else if (p->k == 14) {
5232 /*
5233 * It's the protocol field; map it to the
5234 * special magic kernel offset for that field.
5235 */
5236 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
5237 } else if ((bpf_int32)(p->k) > 0) {
5238 /*
5239 * It's within the header, but it's not one of
5240 * those fields; we can't do that in the kernel,
5241 * so punt to userland.
5242 */
5243 return -1;
5244 }
5245 }
5246 return 0;
5247 }
5248
5249 static int
5250 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
5251 {
5252 int total_filter_on = 0;
5253 int save_mode;
5254 int ret;
5255 int save_errno;
5256
5257 /*
5258 * The socket filter code doesn't discard all packets queued
5259 * up on the socket when the filter is changed; this means
5260 * that packets that don't match the new filter may show up
5261 * after the new filter is put onto the socket, if those
5262 * packets haven't yet been read.
5263 *
5264 * This means, for example, that if you do a tcpdump capture
5265 * with a filter, the first few packets in the capture might
5266 * be packets that wouldn't have passed the filter.
5267 *
5268 * We therefore discard all packets queued up on the socket
5269 * when setting a kernel filter. (This isn't an issue for
5270 * userland filters, as the userland filtering is done after
5271 * packets are queued up.)
5272 *
5273 * To flush those packets, we put the socket in read-only mode,
5274 * and read packets from the socket until there are no more to
5275 * read.
5276 *
5277 * In order to keep that from being an infinite loop - i.e.,
5278 * to keep more packets from arriving while we're draining
5279 * the queue - we put the "total filter", which is a filter
5280 * that rejects all packets, onto the socket before draining
5281 * the queue.
5282 *
5283 * This code deliberately ignores any errors, so that you may
5284 * get bogus packets if an error occurs, rather than having
5285 * the filtering done in userland even if it could have been
5286 * done in the kernel.
5287 */
5288 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5289 &total_fcode, sizeof(total_fcode)) == 0) {
5290 char drain[1];
5291
5292 /*
5293 * Note that we've put the total filter onto the socket.
5294 */
5295 total_filter_on = 1;
5296
5297 /*
5298 * Save the socket's current mode, and put it in
5299 * non-blocking mode; we drain it by reading packets
5300 * until we get an error (which is normally a
5301 * "nothing more to be read" error).
5302 */
5303 save_mode = fcntl(handle->fd, F_GETFL, 0);
5304 if (save_mode == -1) {
5305 pcap_fmt_errmsg_for_errno(handle->errbuf,
5306 PCAP_ERRBUF_SIZE, errno,
5307 "can't get FD flags when changing filter");
5308 return -2;
5309 }
5310 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) {
5311 pcap_fmt_errmsg_for_errno(handle->errbuf,
5312 PCAP_ERRBUF_SIZE, errno,
5313 "can't set nonblocking mode when changing filter");
5314 return -2;
5315 }
5316 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0)
5317 ;
5318 save_errno = errno;
5319 if (save_errno != EAGAIN) {
5320 /*
5321 * Fatal error.
5322 *
5323 * If we can't restore the mode or reset the
5324 * kernel filter, there's nothing we can do.
5325 */
5326 (void)fcntl(handle->fd, F_SETFL, save_mode);
5327 (void)reset_kernel_filter(handle);
5328 pcap_fmt_errmsg_for_errno(handle->errbuf,
5329 PCAP_ERRBUF_SIZE, save_errno,
5330 "recv failed when changing filter");
5331 return -2;
5332 }
5333 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) {
5334 pcap_fmt_errmsg_for_errno(handle->errbuf,
5335 PCAP_ERRBUF_SIZE, errno,
5336 "can't restore FD flags when changing filter");
5337 return -2;
5338 }
5339 }
5340
5341 /*
5342 * Now attach the new filter.
5343 */
5344 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
5345 fcode, sizeof(*fcode));
5346 if (ret == -1 && total_filter_on) {
5347 /*
5348 * Well, we couldn't set that filter on the socket,
5349 * but we could set the total filter on the socket.
5350 *
5351 * This could, for example, mean that the filter was
5352 * too big to put into the kernel, so we'll have to
5353 * filter in userland; in any case, we'll be doing
5354 * filtering in userland, so we need to remove the
5355 * total filter so we see packets.
5356 */
5357 save_errno = errno;
5358
5359 /*
5360 * If this fails, we're really screwed; we have the
5361 * total filter on the socket, and it won't come off.
5362 * Report it as a fatal error.
5363 */
5364 if (reset_kernel_filter(handle) == -1) {
5365 pcap_fmt_errmsg_for_errno(handle->errbuf,
5366 PCAP_ERRBUF_SIZE, errno,
5367 "can't remove kernel total filter");
5368 return -2; /* fatal error */
5369 }
5370
5371 errno = save_errno;
5372 }
5373 return ret;
5374 }
5375
5376 static int
5377 reset_kernel_filter(pcap_t *handle)
5378 {
5379 int ret;
5380 /*
5381 * setsockopt() barfs unless it get a dummy parameter.
5382 * valgrind whines unless the value is initialized,
5383 * as it has no idea that setsockopt() ignores its
5384 * parameter.
5385 */
5386 int dummy = 0;
5387
5388 ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
5389 &dummy, sizeof(dummy));
5390 /*
5391 * Ignore ENOENT - it means "we don't have a filter", so there
5392 * was no filter to remove, and there's still no filter.
5393 *
5394 * Also ignore ENONET, as a lot of kernel versions had a
5395 * typo where ENONET, rather than ENOENT, was returned.
5396 */
5397 if (ret == -1 && errno != ENOENT && errno != ENONET)
5398 return -1;
5399 return 0;
5400 }
5401
5402 int
5403 pcap_set_protocol_linux(pcap_t *p, int protocol)
5404 {
5405 if (pcap_check_activated(p))
5406 return (PCAP_ERROR_ACTIVATED);
5407 p->opt.protocol = protocol;
5408 return (0);
5409 }
5410
5411 /*
5412 * Libpcap version string.
5413 */
5414 const char *
5415 pcap_lib_version(void)
5416 {
5417 #if defined(HAVE_TPACKET3)
5418 return (PCAP_VERSION_STRING " (with TPACKET_V3)");
5419 #else
5420 return (PCAP_VERSION_STRING " (with TPACKET_V2)");
5421 #endif
5422 }