]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
generate code for icmp6
[libpcap] / gencode.c
1 /*#define CHASE_CHAIN*/
2 /*
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
17 * written permission.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 */
22
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26
27 #include <pcap-types.h>
28 #ifdef _WIN32
29 #include <ws2tcpip.h>
30 #else
31 #include <sys/socket.h>
32
33 #ifdef __NetBSD__
34 #include <sys/param.h>
35 #endif
36
37 #include <netinet/in.h>
38 #include <arpa/inet.h>
39 #endif /* _WIN32 */
40
41 #include <stdlib.h>
42 #include <string.h>
43 #include <memory.h>
44 #include <setjmp.h>
45 #include <stdarg.h>
46
47 #ifdef MSDOS
48 #include "pcap-dos.h"
49 #endif
50
51 #include "pcap-int.h"
52
53 #include "ethertype.h"
54 #include "nlpid.h"
55 #include "llc.h"
56 #include "gencode.h"
57 #include "ieee80211.h"
58 #include "atmuni31.h"
59 #include "sunatmpos.h"
60 #include "ppp.h"
61 #include "pcap/sll.h"
62 #include "pcap/ipnet.h"
63 #include "arcnet.h"
64
65 #include "grammar.h"
66 #include "scanner.h"
67
68 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
69 #include <linux/types.h>
70 #include <linux/if_packet.h>
71 #include <linux/filter.h>
72 #endif
73
74 #ifdef HAVE_NET_PFVAR_H
75 #include <sys/socket.h>
76 #include <net/if.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #endif
80
81 #ifndef offsetof
82 #define offsetof(s, e) ((size_t)&((s *)0)->e)
83 #endif
84
85 #ifdef INET6
86 #ifdef _WIN32
87 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
88 /* IPv6 address */
89 struct in6_addr
90 {
91 union
92 {
93 uint8_t u6_addr8[16];
94 uint16_t u6_addr16[8];
95 uint32_t u6_addr32[4];
96 } in6_u;
97 #define s6_addr in6_u.u6_addr8
98 #define s6_addr16 in6_u.u6_addr16
99 #define s6_addr32 in6_u.u6_addr32
100 #define s6_addr64 in6_u.u6_addr64
101 };
102
103 typedef unsigned short sa_family_t;
104
105 #define __SOCKADDR_COMMON(sa_prefix) \
106 sa_family_t sa_prefix##family
107
108 /* Ditto, for IPv6. */
109 struct sockaddr_in6
110 {
111 __SOCKADDR_COMMON (sin6_);
112 uint16_t sin6_port; /* Transport layer port # */
113 uint32_t sin6_flowinfo; /* IPv6 flow information */
114 struct in6_addr sin6_addr; /* IPv6 address */
115 };
116
117 #ifndef EAI_ADDRFAMILY
118 struct addrinfo {
119 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
120 int ai_family; /* PF_xxx */
121 int ai_socktype; /* SOCK_xxx */
122 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
123 size_t ai_addrlen; /* length of ai_addr */
124 char *ai_canonname; /* canonical name for hostname */
125 struct sockaddr *ai_addr; /* binary address */
126 struct addrinfo *ai_next; /* next structure in linked list */
127 };
128 #endif /* EAI_ADDRFAMILY */
129 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
130 #else /* _WIN32 */
131 #include <netdb.h> /* for "struct addrinfo" */
132 #endif /* _WIN32 */
133 #endif /* INET6 */
134 #include <pcap/namedb.h>
135
136 #include "nametoaddr.h"
137
138 #define ETHERMTU 1500
139
140 #ifndef ETHERTYPE_TEB
141 #define ETHERTYPE_TEB 0x6558
142 #endif
143
144 #ifndef IPPROTO_HOPOPTS
145 #define IPPROTO_HOPOPTS 0
146 #endif
147 #ifndef IPPROTO_ROUTING
148 #define IPPROTO_ROUTING 43
149 #endif
150 #ifndef IPPROTO_FRAGMENT
151 #define IPPROTO_FRAGMENT 44
152 #endif
153 #ifndef IPPROTO_DSTOPTS
154 #define IPPROTO_DSTOPTS 60
155 #endif
156 #ifndef IPPROTO_SCTP
157 #define IPPROTO_SCTP 132
158 #endif
159
160 #define GENEVE_PORT 6081
161
162 #ifdef HAVE_OS_PROTO_H
163 #include "os-proto.h"
164 #endif
165
166 #define JMP(c) ((c)|BPF_JMP|BPF_K)
167
168 /*
169 * "Push" the current value of the link-layer header type and link-layer
170 * header offset onto a "stack", and set a new value. (It's not a
171 * full-blown stack; we keep only the top two items.)
172 */
173 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
174 { \
175 (cs)->prevlinktype = (cs)->linktype; \
176 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
177 (cs)->linktype = (new_linktype); \
178 (cs)->off_linkhdr.is_variable = (new_is_variable); \
179 (cs)->off_linkhdr.constant_part = (new_constant_part); \
180 (cs)->off_linkhdr.reg = (new_reg); \
181 (cs)->is_geneve = 0; \
182 }
183
184 /*
185 * Offset "not set" value.
186 */
187 #define OFFSET_NOT_SET 0xffffffffU
188
189 /*
190 * Absolute offsets, which are offsets from the beginning of the raw
191 * packet data, are, in the general case, the sum of a variable value
192 * and a constant value; the variable value may be absent, in which
193 * case the offset is only the constant value, and the constant value
194 * may be zero, in which case the offset is only the variable value.
195 *
196 * bpf_abs_offset is a structure containing all that information:
197 *
198 * is_variable is 1 if there's a variable part.
199 *
200 * constant_part is the constant part of the value, possibly zero;
201 *
202 * if is_variable is 1, reg is the register number for a register
203 * containing the variable value if the register has been assigned,
204 * and -1 otherwise.
205 */
206 typedef struct {
207 int is_variable;
208 u_int constant_part;
209 int reg;
210 } bpf_abs_offset;
211
212 /*
213 * Value passed to gen_load_a() to indicate what the offset argument
214 * is relative to the beginning of.
215 */
216 enum e_offrel {
217 OR_PACKET, /* full packet data */
218 OR_LINKHDR, /* link-layer header */
219 OR_PREVLINKHDR, /* previous link-layer header */
220 OR_LLC, /* 802.2 LLC header */
221 OR_PREVMPLSHDR, /* previous MPLS header */
222 OR_LINKTYPE, /* link-layer type */
223 OR_LINKPL, /* link-layer payload */
224 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
225 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
226 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
227 };
228
229 /*
230 * We divy out chunks of memory rather than call malloc each time so
231 * we don't have to worry about leaking memory. It's probably
232 * not a big deal if all this memory was wasted but if this ever
233 * goes into a library that would probably not be a good idea.
234 *
235 * XXX - this *is* in a library....
236 */
237 #define NCHUNKS 16
238 #define CHUNK0SIZE 1024
239 struct chunk {
240 size_t n_left;
241 void *m;
242 };
243
244 /* Code generator state */
245
246 struct _compiler_state {
247 jmp_buf top_ctx;
248 pcap_t *bpf_pcap;
249
250 struct icode ic;
251
252 int snaplen;
253
254 int linktype;
255 int prevlinktype;
256 int outermostlinktype;
257
258 bpf_u_int32 netmask;
259 int no_optimize;
260
261 /* Hack for handling VLAN and MPLS stacks. */
262 u_int label_stack_depth;
263 u_int vlan_stack_depth;
264
265 /* XXX */
266 u_int pcap_fddipad;
267
268 #ifdef INET6
269 /*
270 * As errors are handled by a longjmp, anything allocated must
271 * be freed in the longjmp handler, so it must be reachable
272 * from that handler.
273 *
274 * One thing that's allocated is the result of pcap_nametoaddrinfo();
275 * it must be freed with freeaddrinfo(). This variable points to
276 * any addrinfo structure that would need to be freed.
277 */
278 struct addrinfo *ai;
279 #endif
280
281 /*
282 * Various code constructs need to know the layout of the packet.
283 * These values give the necessary offsets from the beginning
284 * of the packet data.
285 */
286
287 /*
288 * Absolute offset of the beginning of the link-layer header.
289 */
290 bpf_abs_offset off_linkhdr;
291
292 /*
293 * If we're checking a link-layer header for a packet encapsulated
294 * in another protocol layer, this is the equivalent information
295 * for the previous layers' link-layer header from the beginning
296 * of the raw packet data.
297 */
298 bpf_abs_offset off_prevlinkhdr;
299
300 /*
301 * This is the equivalent information for the outermost layers'
302 * link-layer header.
303 */
304 bpf_abs_offset off_outermostlinkhdr;
305
306 /*
307 * Absolute offset of the beginning of the link-layer payload.
308 */
309 bpf_abs_offset off_linkpl;
310
311 /*
312 * "off_linktype" is the offset to information in the link-layer
313 * header giving the packet type. This is an absolute offset
314 * from the beginning of the packet.
315 *
316 * For Ethernet, it's the offset of the Ethernet type field; this
317 * means that it must have a value that skips VLAN tags.
318 *
319 * For link-layer types that always use 802.2 headers, it's the
320 * offset of the LLC header; this means that it must have a value
321 * that skips VLAN tags.
322 *
323 * For PPP, it's the offset of the PPP type field.
324 *
325 * For Cisco HDLC, it's the offset of the CHDLC type field.
326 *
327 * For BSD loopback, it's the offset of the AF_ value.
328 *
329 * For Linux cooked sockets, it's the offset of the type field.
330 *
331 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
332 * encapsulation, in which case, IP is assumed.
333 */
334 bpf_abs_offset off_linktype;
335
336 /*
337 * TRUE if the link layer includes an ATM pseudo-header.
338 */
339 int is_atm;
340
341 /*
342 * TRUE if "geneve" appeared in the filter; it causes us to
343 * generate code that checks for a Geneve header and assume
344 * that later filters apply to the encapsulated payload.
345 */
346 int is_geneve;
347
348 /*
349 * TRUE if we need variable length part of VLAN offset
350 */
351 int is_vlan_vloffset;
352
353 /*
354 * These are offsets for the ATM pseudo-header.
355 */
356 u_int off_vpi;
357 u_int off_vci;
358 u_int off_proto;
359
360 /*
361 * These are offsets for the MTP2 fields.
362 */
363 u_int off_li;
364 u_int off_li_hsl;
365
366 /*
367 * These are offsets for the MTP3 fields.
368 */
369 u_int off_sio;
370 u_int off_opc;
371 u_int off_dpc;
372 u_int off_sls;
373
374 /*
375 * This is the offset of the first byte after the ATM pseudo_header,
376 * or -1 if there is no ATM pseudo-header.
377 */
378 u_int off_payload;
379
380 /*
381 * These are offsets to the beginning of the network-layer header.
382 * They are relative to the beginning of the link-layer payload
383 * (i.e., they don't include off_linkhdr.constant_part or
384 * off_linkpl.constant_part).
385 *
386 * If the link layer never uses 802.2 LLC:
387 *
388 * "off_nl" and "off_nl_nosnap" are the same.
389 *
390 * If the link layer always uses 802.2 LLC:
391 *
392 * "off_nl" is the offset if there's a SNAP header following
393 * the 802.2 header;
394 *
395 * "off_nl_nosnap" is the offset if there's no SNAP header.
396 *
397 * If the link layer is Ethernet:
398 *
399 * "off_nl" is the offset if the packet is an Ethernet II packet
400 * (we assume no 802.3+802.2+SNAP);
401 *
402 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
403 * with an 802.2 header following it.
404 */
405 u_int off_nl;
406 u_int off_nl_nosnap;
407
408 /*
409 * Here we handle simple allocation of the scratch registers.
410 * If too many registers are alloc'd, the allocator punts.
411 */
412 int regused[BPF_MEMWORDS];
413 int curreg;
414
415 /*
416 * Memory chunks.
417 */
418 struct chunk chunks[NCHUNKS];
419 int cur_chunk;
420 };
421
422 void
423 bpf_syntax_error(compiler_state_t *cstate, const char *msg)
424 {
425 bpf_error(cstate, "syntax error in filter expression: %s", msg);
426 /* NOTREACHED */
427 }
428
429 /* VARARGS */
430 void
431 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
432 {
433 va_list ap;
434
435 va_start(ap, fmt);
436 if (cstate->bpf_pcap != NULL)
437 (void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap),
438 PCAP_ERRBUF_SIZE, fmt, ap);
439 va_end(ap);
440 longjmp(cstate->top_ctx, 1);
441 /* NOTREACHED */
442 }
443
444 static void init_linktype(compiler_state_t *, pcap_t *);
445
446 static void init_regs(compiler_state_t *);
447 static int alloc_reg(compiler_state_t *);
448 static void free_reg(compiler_state_t *, int);
449
450 static void initchunks(compiler_state_t *cstate);
451 static void *newchunk(compiler_state_t *cstate, size_t);
452 static void freechunks(compiler_state_t *cstate);
453 static inline struct block *new_block(compiler_state_t *cstate, int);
454 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
455 static struct block *gen_retblk(compiler_state_t *cstate, int);
456 static inline void syntax(compiler_state_t *cstate);
457
458 static void backpatch(struct block *, struct block *);
459 static void merge(struct block *, struct block *);
460 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
461 u_int, bpf_int32);
462 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
463 u_int, bpf_int32);
464 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
465 u_int, bpf_int32);
466 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
467 u_int, bpf_int32);
468 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
469 u_int, bpf_int32);
470 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
471 u_int, bpf_int32, bpf_u_int32);
472 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
473 u_int, const u_char *);
474 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
475 bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
476 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
477 u_int, u_int);
478 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
479 u_int);
480 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
481 static struct block *gen_uncond(compiler_state_t *, int);
482 static inline struct block *gen_true(compiler_state_t *);
483 static inline struct block *gen_false(compiler_state_t *);
484 static struct block *gen_ether_linktype(compiler_state_t *, int);
485 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
486 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
487 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
488 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
489 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
490 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
491 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
492 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
493 bpf_abs_offset *);
494 static int ethertype_to_ppptype(int);
495 static struct block *gen_linktype(compiler_state_t *, int);
496 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
497 static struct block *gen_llc_linktype(compiler_state_t *, int);
498 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
499 int, int, u_int, u_int);
500 #ifdef INET6
501 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
502 struct in6_addr *, int, int, u_int, u_int);
503 #endif
504 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
505 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
506 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
507 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
508 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
509 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
510 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
511 static struct block *gen_mpls_linktype(compiler_state_t *, int);
512 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
513 int, int, int);
514 #ifdef INET6
515 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
516 struct in6_addr *, int, int, int);
517 #endif
518 #ifndef INET6
519 static struct block *gen_gateway(compiler_state_t *, const u_char *,
520 bpf_u_int32 **, int, int);
521 #endif
522 static struct block *gen_ipfrag(compiler_state_t *);
523 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
524 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
525 bpf_int32);
526 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
527 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
528 bpf_int32);
529 struct block *gen_portop(compiler_state_t *, int, int, int);
530 static struct block *gen_port(compiler_state_t *, int, int, int);
531 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
532 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
533 struct block *gen_portop6(compiler_state_t *, int, int, int);
534 static struct block *gen_port6(compiler_state_t *, int, int, int);
535 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
536 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
537 static int lookup_proto(compiler_state_t *, const char *, int);
538 static struct block *gen_protochain(compiler_state_t *, int, int, int);
539 static struct block *gen_proto(compiler_state_t *, int, int, int);
540 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
541 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
542 static struct block *gen_mac_multicast(compiler_state_t *, int);
543 static struct block *gen_len(compiler_state_t *, int, int);
544 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
545 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
546
547 static struct block *gen_ppi_dlt_check(compiler_state_t *);
548 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
549
550 static void
551 initchunks(compiler_state_t *cstate)
552 {
553 int i;
554
555 for (i = 0; i < NCHUNKS; i++) {
556 cstate->chunks[i].n_left = 0;
557 cstate->chunks[i].m = NULL;
558 }
559 cstate->cur_chunk = 0;
560 }
561
562 static void *
563 newchunk(compiler_state_t *cstate, size_t n)
564 {
565 struct chunk *cp;
566 int k;
567 size_t size;
568
569 #ifndef __NetBSD__
570 /* XXX Round up to nearest long. */
571 n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
572 #else
573 /* XXX Round up to structure boundary. */
574 n = ALIGN(n);
575 #endif
576
577 cp = &cstate->chunks[cstate->cur_chunk];
578 if (n > cp->n_left) {
579 ++cp, k = ++cstate->cur_chunk;
580 if (k >= NCHUNKS)
581 bpf_error(cstate, "out of memory");
582 size = CHUNK0SIZE << k;
583 cp->m = (void *)malloc(size);
584 if (cp->m == NULL)
585 bpf_error(cstate, "out of memory");
586 memset((char *)cp->m, 0, size);
587 cp->n_left = size;
588 if (n > size)
589 bpf_error(cstate, "out of memory");
590 }
591 cp->n_left -= n;
592 return (void *)((char *)cp->m + cp->n_left);
593 }
594
595 static void
596 freechunks(compiler_state_t *cstate)
597 {
598 int i;
599
600 for (i = 0; i < NCHUNKS; ++i)
601 if (cstate->chunks[i].m != NULL)
602 free(cstate->chunks[i].m);
603 }
604
605 /*
606 * A strdup whose allocations are freed after code generation is over.
607 */
608 char *
609 sdup(compiler_state_t *cstate, const char *s)
610 {
611 size_t n = strlen(s) + 1;
612 char *cp = newchunk(cstate, n);
613
614 strlcpy(cp, s, n);
615 return (cp);
616 }
617
618 static inline struct block *
619 new_block(compiler_state_t *cstate, int code)
620 {
621 struct block *p;
622
623 p = (struct block *)newchunk(cstate, sizeof(*p));
624 p->s.code = code;
625 p->head = p;
626
627 return p;
628 }
629
630 static inline struct slist *
631 new_stmt(compiler_state_t *cstate, int code)
632 {
633 struct slist *p;
634
635 p = (struct slist *)newchunk(cstate, sizeof(*p));
636 p->s.code = code;
637
638 return p;
639 }
640
641 static struct block *
642 gen_retblk(compiler_state_t *cstate, int v)
643 {
644 struct block *b = new_block(cstate, BPF_RET|BPF_K);
645
646 b->s.k = v;
647 return b;
648 }
649
650 static inline void
651 syntax(compiler_state_t *cstate)
652 {
653 bpf_error(cstate, "syntax error in filter expression");
654 }
655
656 int
657 pcap_compile(pcap_t *p, struct bpf_program *program,
658 const char *buf, int optimize, bpf_u_int32 mask)
659 {
660 #ifdef _WIN32
661 static int done = 0;
662 #endif
663 compiler_state_t cstate;
664 const char * volatile xbuf = buf;
665 yyscan_t scanner = NULL;
666 YY_BUFFER_STATE in_buffer = NULL;
667 u_int len;
668 int rc;
669
670 /*
671 * If this pcap_t hasn't been activated, it doesn't have a
672 * link-layer type, so we can't use it.
673 */
674 if (!p->activated) {
675 pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
676 "not-yet-activated pcap_t passed to pcap_compile");
677 return (-1);
678 }
679
680 #ifdef _WIN32
681 if (!done)
682 pcap_wsockinit();
683 done = 1;
684 #endif
685
686 #ifdef ENABLE_REMOTE
687 /*
688 * If the device on which we're capturing need to be notified
689 * that a new filter is being compiled, do so.
690 *
691 * This allows them to save a copy of it, in case, for example,
692 * they're implementing a form of remote packet capture, and
693 * want the remote machine to filter out the packets in which
694 * it's sending the packets it's captured.
695 *
696 * XXX - the fact that we happen to be compiling a filter
697 * doesn't necessarily mean we'll be installing it as the
698 * filter for this pcap_t; we might be running it from userland
699 * on captured packets to do packet classification. We really
700 * need a better way of handling this, but this is all that
701 * the WinPcap code did.
702 */
703 if (p->save_current_filter_op != NULL)
704 (p->save_current_filter_op)(p, buf);
705 #endif
706
707 initchunks(&cstate);
708 cstate.no_optimize = 0;
709 #ifdef INET6
710 cstate.ai = NULL;
711 #endif
712 cstate.ic.root = NULL;
713 cstate.ic.cur_mark = 0;
714 cstate.bpf_pcap = p;
715 init_regs(&cstate);
716
717 if (setjmp(cstate.top_ctx)) {
718 #ifdef INET6
719 if (cstate.ai != NULL)
720 freeaddrinfo(cstate.ai);
721 #endif
722 rc = -1;
723 goto quit;
724 }
725
726 cstate.netmask = mask;
727
728 cstate.snaplen = pcap_snapshot(p);
729 if (cstate.snaplen == 0) {
730 pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
731 "snaplen of 0 rejects all packets");
732 rc = -1;
733 goto quit;
734 }
735
736 if (pcap_lex_init(&scanner) != 0)
737 bpf_error(&cstate, "can't initialize scanner: %s", pcap_strerror(errno));
738 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
739
740 /*
741 * Associate the compiler state with the lexical analyzer
742 * state.
743 */
744 pcap_set_extra(&cstate, scanner);
745
746 init_linktype(&cstate, p);
747 (void)pcap_parse(scanner, &cstate);
748
749 if (cstate.ic.root == NULL)
750 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
751
752 if (optimize && !cstate.no_optimize) {
753 bpf_optimize(&cstate, &cstate.ic);
754 if (cstate.ic.root == NULL ||
755 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0))
756 bpf_error(&cstate, "expression rejects all packets");
757 }
758 program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len);
759 program->bf_len = len;
760
761 rc = 0; /* We're all okay */
762
763 quit:
764 /*
765 * Clean up everything for the lexical analyzer.
766 */
767 if (in_buffer != NULL)
768 pcap__delete_buffer(in_buffer, scanner);
769 if (scanner != NULL)
770 pcap_lex_destroy(scanner);
771
772 /*
773 * Clean up our own allocated memory.
774 */
775 freechunks(&cstate);
776
777 return (rc);
778 }
779
780 /*
781 * entry point for using the compiler with no pcap open
782 * pass in all the stuff that is needed explicitly instead.
783 */
784 int
785 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
786 struct bpf_program *program,
787 const char *buf, int optimize, bpf_u_int32 mask)
788 {
789 pcap_t *p;
790 int ret;
791
792 p = pcap_open_dead(linktype_arg, snaplen_arg);
793 if (p == NULL)
794 return (-1);
795 ret = pcap_compile(p, program, buf, optimize, mask);
796 pcap_close(p);
797 return (ret);
798 }
799
800 /*
801 * Clean up a "struct bpf_program" by freeing all the memory allocated
802 * in it.
803 */
804 void
805 pcap_freecode(struct bpf_program *program)
806 {
807 program->bf_len = 0;
808 if (program->bf_insns != NULL) {
809 free((char *)program->bf_insns);
810 program->bf_insns = NULL;
811 }
812 }
813
814 /*
815 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
816 * which of the jt and jf fields has been resolved and which is a pointer
817 * back to another unresolved block (or nil). At least one of the fields
818 * in each block is already resolved.
819 */
820 static void
821 backpatch(list, target)
822 struct block *list, *target;
823 {
824 struct block *next;
825
826 while (list) {
827 if (!list->sense) {
828 next = JT(list);
829 JT(list) = target;
830 } else {
831 next = JF(list);
832 JF(list) = target;
833 }
834 list = next;
835 }
836 }
837
838 /*
839 * Merge the lists in b0 and b1, using the 'sense' field to indicate
840 * which of jt and jf is the link.
841 */
842 static void
843 merge(b0, b1)
844 struct block *b0, *b1;
845 {
846 register struct block **p = &b0;
847
848 /* Find end of list. */
849 while (*p)
850 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
851
852 /* Concatenate the lists. */
853 *p = b1;
854 }
855
856 void
857 finish_parse(compiler_state_t *cstate, struct block *p)
858 {
859 struct block *ppi_dlt_check;
860
861 /*
862 * Insert before the statements of the first (root) block any
863 * statements needed to load the lengths of any variable-length
864 * headers into registers.
865 *
866 * XXX - a fancier strategy would be to insert those before the
867 * statements of all blocks that use those lengths and that
868 * have no predecessors that use them, so that we only compute
869 * the lengths if we need them. There might be even better
870 * approaches than that.
871 *
872 * However, those strategies would be more complicated, and
873 * as we don't generate code to compute a length if the
874 * program has no tests that use the length, and as most
875 * tests will probably use those lengths, we would just
876 * postpone computing the lengths so that it's not done
877 * for tests that fail early, and it's not clear that's
878 * worth the effort.
879 */
880 insert_compute_vloffsets(cstate, p->head);
881
882 /*
883 * For DLT_PPI captures, generate a check of the per-packet
884 * DLT value to make sure it's DLT_IEEE802_11.
885 *
886 * XXX - TurboCap cards use DLT_PPI for Ethernet.
887 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
888 * with appropriate Ethernet information and use that rather
889 * than using something such as DLT_PPI where you don't know
890 * the link-layer header type until runtime, which, in the
891 * general case, would force us to generate both Ethernet *and*
892 * 802.11 code (*and* anything else for which PPI is used)
893 * and choose between them early in the BPF program?
894 */
895 ppi_dlt_check = gen_ppi_dlt_check(cstate);
896 if (ppi_dlt_check != NULL)
897 gen_and(ppi_dlt_check, p);
898
899 backpatch(p, gen_retblk(cstate, cstate->snaplen));
900 p->sense = !p->sense;
901 backpatch(p, gen_retblk(cstate, 0));
902 cstate->ic.root = p->head;
903 }
904
905 void
906 gen_and(b0, b1)
907 struct block *b0, *b1;
908 {
909 backpatch(b0, b1->head);
910 b0->sense = !b0->sense;
911 b1->sense = !b1->sense;
912 merge(b1, b0);
913 b1->sense = !b1->sense;
914 b1->head = b0->head;
915 }
916
917 void
918 gen_or(b0, b1)
919 struct block *b0, *b1;
920 {
921 b0->sense = !b0->sense;
922 backpatch(b0, b1->head);
923 b0->sense = !b0->sense;
924 merge(b1, b0);
925 b1->head = b0->head;
926 }
927
928 void
929 gen_not(b)
930 struct block *b;
931 {
932 b->sense = !b->sense;
933 }
934
935 static struct block *
936 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
937 u_int size, bpf_int32 v)
938 {
939 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
940 }
941
942 static struct block *
943 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
944 u_int size, bpf_int32 v)
945 {
946 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
947 }
948
949 static struct block *
950 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
951 u_int size, bpf_int32 v)
952 {
953 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
954 }
955
956 static struct block *
957 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
958 u_int size, bpf_int32 v)
959 {
960 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
961 }
962
963 static struct block *
964 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
965 u_int size, bpf_int32 v)
966 {
967 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
968 }
969
970 static struct block *
971 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
972 u_int size, bpf_int32 v, bpf_u_int32 mask)
973 {
974 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
975 }
976
977 static struct block *
978 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
979 u_int size, const u_char *v)
980 {
981 register struct block *b, *tmp;
982
983 b = NULL;
984 while (size >= 4) {
985 register const u_char *p = &v[size - 4];
986 bpf_int32 w = ((bpf_int32)p[0] << 24) |
987 ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
988
989 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w);
990 if (b != NULL)
991 gen_and(b, tmp);
992 b = tmp;
993 size -= 4;
994 }
995 while (size >= 2) {
996 register const u_char *p = &v[size - 2];
997 bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
998
999 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w);
1000 if (b != NULL)
1001 gen_and(b, tmp);
1002 b = tmp;
1003 size -= 2;
1004 }
1005 if (size > 0) {
1006 tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
1007 if (b != NULL)
1008 gen_and(b, tmp);
1009 b = tmp;
1010 }
1011 return b;
1012 }
1013
1014 /*
1015 * AND the field of size "size" at offset "offset" relative to the header
1016 * specified by "offrel" with "mask", and compare it with the value "v"
1017 * with the test specified by "jtype"; if "reverse" is true, the test
1018 * should test the opposite of "jtype".
1019 */
1020 static struct block *
1021 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1022 bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1023 bpf_int32 v)
1024 {
1025 struct slist *s, *s2;
1026 struct block *b;
1027
1028 s = gen_load_a(cstate, offrel, offset, size);
1029
1030 if (mask != 0xffffffff) {
1031 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1032 s2->s.k = mask;
1033 sappend(s, s2);
1034 }
1035
1036 b = new_block(cstate, JMP(jtype));
1037 b->stmts = s;
1038 b->s.k = v;
1039 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1040 gen_not(b);
1041 return b;
1042 }
1043
1044 static void
1045 init_linktype(compiler_state_t *cstate, pcap_t *p)
1046 {
1047 cstate->pcap_fddipad = p->fddipad;
1048
1049 /*
1050 * We start out with only one link-layer header.
1051 */
1052 cstate->outermostlinktype = pcap_datalink(p);
1053 cstate->off_outermostlinkhdr.constant_part = 0;
1054 cstate->off_outermostlinkhdr.is_variable = 0;
1055 cstate->off_outermostlinkhdr.reg = -1;
1056
1057 cstate->prevlinktype = cstate->outermostlinktype;
1058 cstate->off_prevlinkhdr.constant_part = 0;
1059 cstate->off_prevlinkhdr.is_variable = 0;
1060 cstate->off_prevlinkhdr.reg = -1;
1061
1062 cstate->linktype = cstate->outermostlinktype;
1063 cstate->off_linkhdr.constant_part = 0;
1064 cstate->off_linkhdr.is_variable = 0;
1065 cstate->off_linkhdr.reg = -1;
1066
1067 /*
1068 * XXX
1069 */
1070 cstate->off_linkpl.constant_part = 0;
1071 cstate->off_linkpl.is_variable = 0;
1072 cstate->off_linkpl.reg = -1;
1073
1074 cstate->off_linktype.constant_part = 0;
1075 cstate->off_linktype.is_variable = 0;
1076 cstate->off_linktype.reg = -1;
1077
1078 /*
1079 * Assume it's not raw ATM with a pseudo-header, for now.
1080 */
1081 cstate->is_atm = 0;
1082 cstate->off_vpi = -1;
1083 cstate->off_vci = -1;
1084 cstate->off_proto = -1;
1085 cstate->off_payload = -1;
1086
1087 /*
1088 * And not Geneve.
1089 */
1090 cstate->is_geneve = 0;
1091
1092 /*
1093 * No variable length VLAN offset by default
1094 */
1095 cstate->is_vlan_vloffset = 0;
1096
1097 /*
1098 * And assume we're not doing SS7.
1099 */
1100 cstate->off_li = -1;
1101 cstate->off_li_hsl = -1;
1102 cstate->off_sio = -1;
1103 cstate->off_opc = -1;
1104 cstate->off_dpc = -1;
1105 cstate->off_sls = -1;
1106
1107 cstate->label_stack_depth = 0;
1108 cstate->vlan_stack_depth = 0;
1109
1110 switch (cstate->linktype) {
1111
1112 case DLT_ARCNET:
1113 cstate->off_linktype.constant_part = 2;
1114 cstate->off_linkpl.constant_part = 6;
1115 cstate->off_nl = 0; /* XXX in reality, variable! */
1116 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1117 break;
1118
1119 case DLT_ARCNET_LINUX:
1120 cstate->off_linktype.constant_part = 4;
1121 cstate->off_linkpl.constant_part = 8;
1122 cstate->off_nl = 0; /* XXX in reality, variable! */
1123 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1124 break;
1125
1126 case DLT_EN10MB:
1127 cstate->off_linktype.constant_part = 12;
1128 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1129 cstate->off_nl = 0; /* Ethernet II */
1130 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1131 break;
1132
1133 case DLT_SLIP:
1134 /*
1135 * SLIP doesn't have a link level type. The 16 byte
1136 * header is hacked into our SLIP driver.
1137 */
1138 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1139 cstate->off_linkpl.constant_part = 16;
1140 cstate->off_nl = 0;
1141 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1142 break;
1143
1144 case DLT_SLIP_BSDOS:
1145 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1146 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1147 /* XXX end */
1148 cstate->off_linkpl.constant_part = 24;
1149 cstate->off_nl = 0;
1150 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1151 break;
1152
1153 case DLT_NULL:
1154 case DLT_LOOP:
1155 cstate->off_linktype.constant_part = 0;
1156 cstate->off_linkpl.constant_part = 4;
1157 cstate->off_nl = 0;
1158 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1159 break;
1160
1161 case DLT_ENC:
1162 cstate->off_linktype.constant_part = 0;
1163 cstate->off_linkpl.constant_part = 12;
1164 cstate->off_nl = 0;
1165 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1166 break;
1167
1168 case DLT_PPP:
1169 case DLT_PPP_PPPD:
1170 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1171 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1172 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1173 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1174 cstate->off_nl = 0;
1175 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1176 break;
1177
1178 case DLT_PPP_ETHER:
1179 /*
1180 * This does no include the Ethernet header, and
1181 * only covers session state.
1182 */
1183 cstate->off_linktype.constant_part = 6;
1184 cstate->off_linkpl.constant_part = 8;
1185 cstate->off_nl = 0;
1186 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1187 break;
1188
1189 case DLT_PPP_BSDOS:
1190 cstate->off_linktype.constant_part = 5;
1191 cstate->off_linkpl.constant_part = 24;
1192 cstate->off_nl = 0;
1193 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1194 break;
1195
1196 case DLT_FDDI:
1197 /*
1198 * FDDI doesn't really have a link-level type field.
1199 * We set "off_linktype" to the offset of the LLC header.
1200 *
1201 * To check for Ethernet types, we assume that SSAP = SNAP
1202 * is being used and pick out the encapsulated Ethernet type.
1203 * XXX - should we generate code to check for SNAP?
1204 */
1205 cstate->off_linktype.constant_part = 13;
1206 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1207 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1208 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1209 cstate->off_nl = 8; /* 802.2+SNAP */
1210 cstate->off_nl_nosnap = 3; /* 802.2 */
1211 break;
1212
1213 case DLT_IEEE802:
1214 /*
1215 * Token Ring doesn't really have a link-level type field.
1216 * We set "off_linktype" to the offset of the LLC header.
1217 *
1218 * To check for Ethernet types, we assume that SSAP = SNAP
1219 * is being used and pick out the encapsulated Ethernet type.
1220 * XXX - should we generate code to check for SNAP?
1221 *
1222 * XXX - the header is actually variable-length.
1223 * Some various Linux patched versions gave 38
1224 * as "off_linktype" and 40 as "off_nl"; however,
1225 * if a token ring packet has *no* routing
1226 * information, i.e. is not source-routed, the correct
1227 * values are 20 and 22, as they are in the vanilla code.
1228 *
1229 * A packet is source-routed iff the uppermost bit
1230 * of the first byte of the source address, at an
1231 * offset of 8, has the uppermost bit set. If the
1232 * packet is source-routed, the total number of bytes
1233 * of routing information is 2 plus bits 0x1F00 of
1234 * the 16-bit value at an offset of 14 (shifted right
1235 * 8 - figure out which byte that is).
1236 */
1237 cstate->off_linktype.constant_part = 14;
1238 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1239 cstate->off_nl = 8; /* 802.2+SNAP */
1240 cstate->off_nl_nosnap = 3; /* 802.2 */
1241 break;
1242
1243 case DLT_PRISM_HEADER:
1244 case DLT_IEEE802_11_RADIO_AVS:
1245 case DLT_IEEE802_11_RADIO:
1246 cstate->off_linkhdr.is_variable = 1;
1247 /* Fall through, 802.11 doesn't have a variable link
1248 * prefix but is otherwise the same. */
1249
1250 case DLT_IEEE802_11:
1251 /*
1252 * 802.11 doesn't really have a link-level type field.
1253 * We set "off_linktype.constant_part" to the offset of
1254 * the LLC header.
1255 *
1256 * To check for Ethernet types, we assume that SSAP = SNAP
1257 * is being used and pick out the encapsulated Ethernet type.
1258 * XXX - should we generate code to check for SNAP?
1259 *
1260 * We also handle variable-length radio headers here.
1261 * The Prism header is in theory variable-length, but in
1262 * practice it's always 144 bytes long. However, some
1263 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1264 * sometimes or always supply an AVS header, so we
1265 * have to check whether the radio header is a Prism
1266 * header or an AVS header, so, in practice, it's
1267 * variable-length.
1268 */
1269 cstate->off_linktype.constant_part = 24;
1270 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1271 cstate->off_linkpl.is_variable = 1;
1272 cstate->off_nl = 8; /* 802.2+SNAP */
1273 cstate->off_nl_nosnap = 3; /* 802.2 */
1274 break;
1275
1276 case DLT_PPI:
1277 /*
1278 * At the moment we treat PPI the same way that we treat
1279 * normal Radiotap encoded packets. The difference is in
1280 * the function that generates the code at the beginning
1281 * to compute the header length. Since this code generator
1282 * of PPI supports bare 802.11 encapsulation only (i.e.
1283 * the encapsulated DLT should be DLT_IEEE802_11) we
1284 * generate code to check for this too.
1285 */
1286 cstate->off_linktype.constant_part = 24;
1287 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1288 cstate->off_linkpl.is_variable = 1;
1289 cstate->off_linkhdr.is_variable = 1;
1290 cstate->off_nl = 8; /* 802.2+SNAP */
1291 cstate->off_nl_nosnap = 3; /* 802.2 */
1292 break;
1293
1294 case DLT_ATM_RFC1483:
1295 case DLT_ATM_CLIP: /* Linux ATM defines this */
1296 /*
1297 * assume routed, non-ISO PDUs
1298 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1299 *
1300 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1301 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1302 * latter would presumably be treated the way PPPoE
1303 * should be, so you can do "pppoe and udp port 2049"
1304 * or "pppoa and tcp port 80" and have it check for
1305 * PPPo{A,E} and a PPP protocol of IP and....
1306 */
1307 cstate->off_linktype.constant_part = 0;
1308 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1309 cstate->off_nl = 8; /* 802.2+SNAP */
1310 cstate->off_nl_nosnap = 3; /* 802.2 */
1311 break;
1312
1313 case DLT_SUNATM:
1314 /*
1315 * Full Frontal ATM; you get AALn PDUs with an ATM
1316 * pseudo-header.
1317 */
1318 cstate->is_atm = 1;
1319 cstate->off_vpi = SUNATM_VPI_POS;
1320 cstate->off_vci = SUNATM_VCI_POS;
1321 cstate->off_proto = PROTO_POS;
1322 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1323 cstate->off_linktype.constant_part = cstate->off_payload;
1324 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1325 cstate->off_nl = 8; /* 802.2+SNAP */
1326 cstate->off_nl_nosnap = 3; /* 802.2 */
1327 break;
1328
1329 case DLT_RAW:
1330 case DLT_IPV4:
1331 case DLT_IPV6:
1332 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1333 cstate->off_linkpl.constant_part = 0;
1334 cstate->off_nl = 0;
1335 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1336 break;
1337
1338 case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
1339 cstate->off_linktype.constant_part = 14;
1340 cstate->off_linkpl.constant_part = 16;
1341 cstate->off_nl = 0;
1342 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1343 break;
1344
1345 case DLT_LTALK:
1346 /*
1347 * LocalTalk does have a 1-byte type field in the LLAP header,
1348 * but really it just indicates whether there is a "short" or
1349 * "long" DDP packet following.
1350 */
1351 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1352 cstate->off_linkpl.constant_part = 0;
1353 cstate->off_nl = 0;
1354 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1355 break;
1356
1357 case DLT_IP_OVER_FC:
1358 /*
1359 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1360 * link-level type field. We set "off_linktype" to the
1361 * offset of the LLC header.
1362 *
1363 * To check for Ethernet types, we assume that SSAP = SNAP
1364 * is being used and pick out the encapsulated Ethernet type.
1365 * XXX - should we generate code to check for SNAP? RFC
1366 * 2625 says SNAP should be used.
1367 */
1368 cstate->off_linktype.constant_part = 16;
1369 cstate->off_linkpl.constant_part = 16;
1370 cstate->off_nl = 8; /* 802.2+SNAP */
1371 cstate->off_nl_nosnap = 3; /* 802.2 */
1372 break;
1373
1374 case DLT_FRELAY:
1375 /*
1376 * XXX - we should set this to handle SNAP-encapsulated
1377 * frames (NLPID of 0x80).
1378 */
1379 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1380 cstate->off_linkpl.constant_part = 0;
1381 cstate->off_nl = 0;
1382 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1383 break;
1384
1385 /*
1386 * the only BPF-interesting FRF.16 frames are non-control frames;
1387 * Frame Relay has a variable length link-layer
1388 * so lets start with offset 4 for now and increments later on (FIXME);
1389 */
1390 case DLT_MFR:
1391 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1392 cstate->off_linkpl.constant_part = 0;
1393 cstate->off_nl = 4;
1394 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1395 break;
1396
1397 case DLT_APPLE_IP_OVER_IEEE1394:
1398 cstate->off_linktype.constant_part = 16;
1399 cstate->off_linkpl.constant_part = 18;
1400 cstate->off_nl = 0;
1401 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1402 break;
1403
1404 case DLT_SYMANTEC_FIREWALL:
1405 cstate->off_linktype.constant_part = 6;
1406 cstate->off_linkpl.constant_part = 44;
1407 cstate->off_nl = 0; /* Ethernet II */
1408 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1409 break;
1410
1411 #ifdef HAVE_NET_PFVAR_H
1412 case DLT_PFLOG:
1413 cstate->off_linktype.constant_part = 0;
1414 cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1415 cstate->off_nl = 0;
1416 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1417 break;
1418 #endif
1419
1420 case DLT_JUNIPER_MFR:
1421 case DLT_JUNIPER_MLFR:
1422 case DLT_JUNIPER_MLPPP:
1423 case DLT_JUNIPER_PPP:
1424 case DLT_JUNIPER_CHDLC:
1425 case DLT_JUNIPER_FRELAY:
1426 cstate->off_linktype.constant_part = 4;
1427 cstate->off_linkpl.constant_part = 4;
1428 cstate->off_nl = 0;
1429 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1430 break;
1431
1432 case DLT_JUNIPER_ATM1:
1433 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1434 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1435 cstate->off_nl = 0;
1436 cstate->off_nl_nosnap = 10;
1437 break;
1438
1439 case DLT_JUNIPER_ATM2:
1440 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1441 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1442 cstate->off_nl = 0;
1443 cstate->off_nl_nosnap = 10;
1444 break;
1445
1446 /* frames captured on a Juniper PPPoE service PIC
1447 * contain raw ethernet frames */
1448 case DLT_JUNIPER_PPPOE:
1449 case DLT_JUNIPER_ETHER:
1450 cstate->off_linkpl.constant_part = 14;
1451 cstate->off_linktype.constant_part = 16;
1452 cstate->off_nl = 18; /* Ethernet II */
1453 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1454 break;
1455
1456 case DLT_JUNIPER_PPPOE_ATM:
1457 cstate->off_linktype.constant_part = 4;
1458 cstate->off_linkpl.constant_part = 6;
1459 cstate->off_nl = 0;
1460 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1461 break;
1462
1463 case DLT_JUNIPER_GGSN:
1464 cstate->off_linktype.constant_part = 6;
1465 cstate->off_linkpl.constant_part = 12;
1466 cstate->off_nl = 0;
1467 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1468 break;
1469
1470 case DLT_JUNIPER_ES:
1471 cstate->off_linktype.constant_part = 6;
1472 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1473 cstate->off_nl = -1; /* not really a network layer but raw IP addresses */
1474 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1475 break;
1476
1477 case DLT_JUNIPER_MONITOR:
1478 cstate->off_linktype.constant_part = 12;
1479 cstate->off_linkpl.constant_part = 12;
1480 cstate->off_nl = 0; /* raw IP/IP6 header */
1481 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1482 break;
1483
1484 case DLT_BACNET_MS_TP:
1485 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1486 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1487 cstate->off_nl = -1;
1488 cstate->off_nl_nosnap = -1;
1489 break;
1490
1491 case DLT_JUNIPER_SERVICES:
1492 cstate->off_linktype.constant_part = 12;
1493 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1494 cstate->off_nl = -1; /* L3 proto location dep. on cookie type */
1495 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1496 break;
1497
1498 case DLT_JUNIPER_VP:
1499 cstate->off_linktype.constant_part = 18;
1500 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1501 cstate->off_nl = -1;
1502 cstate->off_nl_nosnap = -1;
1503 break;
1504
1505 case DLT_JUNIPER_ST:
1506 cstate->off_linktype.constant_part = 18;
1507 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1508 cstate->off_nl = -1;
1509 cstate->off_nl_nosnap = -1;
1510 break;
1511
1512 case DLT_JUNIPER_ISM:
1513 cstate->off_linktype.constant_part = 8;
1514 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1515 cstate->off_nl = -1;
1516 cstate->off_nl_nosnap = -1;
1517 break;
1518
1519 case DLT_JUNIPER_VS:
1520 case DLT_JUNIPER_SRX_E2E:
1521 case DLT_JUNIPER_FIBRECHANNEL:
1522 case DLT_JUNIPER_ATM_CEMIC:
1523 cstate->off_linktype.constant_part = 8;
1524 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1525 cstate->off_nl = -1;
1526 cstate->off_nl_nosnap = -1;
1527 break;
1528
1529 case DLT_MTP2:
1530 cstate->off_li = 2;
1531 cstate->off_li_hsl = 4;
1532 cstate->off_sio = 3;
1533 cstate->off_opc = 4;
1534 cstate->off_dpc = 4;
1535 cstate->off_sls = 7;
1536 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1537 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1538 cstate->off_nl = -1;
1539 cstate->off_nl_nosnap = -1;
1540 break;
1541
1542 case DLT_MTP2_WITH_PHDR:
1543 cstate->off_li = 6;
1544 cstate->off_li_hsl = 8;
1545 cstate->off_sio = 7;
1546 cstate->off_opc = 8;
1547 cstate->off_dpc = 8;
1548 cstate->off_sls = 11;
1549 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1550 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1551 cstate->off_nl = -1;
1552 cstate->off_nl_nosnap = -1;
1553 break;
1554
1555 case DLT_ERF:
1556 cstate->off_li = 22;
1557 cstate->off_li_hsl = 24;
1558 cstate->off_sio = 23;
1559 cstate->off_opc = 24;
1560 cstate->off_dpc = 24;
1561 cstate->off_sls = 27;
1562 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1563 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1564 cstate->off_nl = -1;
1565 cstate->off_nl_nosnap = -1;
1566 break;
1567
1568 case DLT_PFSYNC:
1569 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1570 cstate->off_linkpl.constant_part = 4;
1571 cstate->off_nl = 0;
1572 cstate->off_nl_nosnap = 0;
1573 break;
1574
1575 case DLT_AX25_KISS:
1576 /*
1577 * Currently, only raw "link[N:M]" filtering is supported.
1578 */
1579 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1580 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1581 cstate->off_nl = -1; /* variable, min 16, max 71 steps of 7 */
1582 cstate->off_nl_nosnap = -1; /* no 802.2 LLC */
1583 break;
1584
1585 case DLT_IPNET:
1586 cstate->off_linktype.constant_part = 1;
1587 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1588 cstate->off_nl = 0;
1589 cstate->off_nl_nosnap = -1;
1590 break;
1591
1592 case DLT_NETANALYZER:
1593 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1594 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1595 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1596 cstate->off_nl = 0; /* Ethernet II */
1597 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1598 break;
1599
1600 case DLT_NETANALYZER_TRANSPARENT:
1601 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1602 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1603 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1604 cstate->off_nl = 0; /* Ethernet II */
1605 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1606 break;
1607
1608 default:
1609 /*
1610 * For values in the range in which we've assigned new
1611 * DLT_ values, only raw "link[N:M]" filtering is supported.
1612 */
1613 if (cstate->linktype >= DLT_MATCHING_MIN &&
1614 cstate->linktype <= DLT_MATCHING_MAX) {
1615 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1616 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1617 cstate->off_nl = -1;
1618 cstate->off_nl_nosnap = -1;
1619 } else {
1620 bpf_error(cstate, "unknown data link type %d", cstate->linktype);
1621 }
1622 break;
1623 }
1624
1625 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1626 }
1627
1628 /*
1629 * Load a value relative to the specified absolute offset.
1630 */
1631 static struct slist *
1632 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1633 u_int offset, u_int size)
1634 {
1635 struct slist *s, *s2;
1636
1637 s = gen_abs_offset_varpart(cstate, abs_offset);
1638
1639 /*
1640 * If "s" is non-null, it has code to arrange that the X register
1641 * contains the variable part of the absolute offset, so we
1642 * generate a load relative to that, with an offset of
1643 * abs_offset->constant_part + offset.
1644 *
1645 * Otherwise, we can do an absolute load with an offset of
1646 * abs_offset->constant_part + offset.
1647 */
1648 if (s != NULL) {
1649 /*
1650 * "s" points to a list of statements that puts the
1651 * variable part of the absolute offset into the X register.
1652 * Do an indirect load, to use the X register as an offset.
1653 */
1654 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1655 s2->s.k = abs_offset->constant_part + offset;
1656 sappend(s, s2);
1657 } else {
1658 /*
1659 * There is no variable part of the absolute offset, so
1660 * just do an absolute load.
1661 */
1662 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1663 s->s.k = abs_offset->constant_part + offset;
1664 }
1665 return s;
1666 }
1667
1668 /*
1669 * Load a value relative to the beginning of the specified header.
1670 */
1671 static struct slist *
1672 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1673 u_int size)
1674 {
1675 struct slist *s, *s2;
1676
1677 switch (offrel) {
1678
1679 case OR_PACKET:
1680 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1681 s->s.k = offset;
1682 break;
1683
1684 case OR_LINKHDR:
1685 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1686 break;
1687
1688 case OR_PREVLINKHDR:
1689 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1690 break;
1691
1692 case OR_LLC:
1693 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1694 break;
1695
1696 case OR_PREVMPLSHDR:
1697 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1698 break;
1699
1700 case OR_LINKPL:
1701 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1702 break;
1703
1704 case OR_LINKPL_NOSNAP:
1705 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1706 break;
1707
1708 case OR_LINKTYPE:
1709 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1710 break;
1711
1712 case OR_TRAN_IPV4:
1713 /*
1714 * Load the X register with the length of the IPv4 header
1715 * (plus the offset of the link-layer header, if it's
1716 * preceded by a variable-length header such as a radio
1717 * header), in bytes.
1718 */
1719 s = gen_loadx_iphdrlen(cstate);
1720
1721 /*
1722 * Load the item at {offset of the link-layer payload} +
1723 * {offset, relative to the start of the link-layer
1724 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1725 * {specified offset}.
1726 *
1727 * If the offset of the link-layer payload is variable,
1728 * the variable part of that offset is included in the
1729 * value in the X register, and we include the constant
1730 * part in the offset of the load.
1731 */
1732 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1733 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1734 sappend(s, s2);
1735 break;
1736
1737 case OR_TRAN_IPV6:
1738 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1739 break;
1740
1741 default:
1742 abort();
1743 return NULL;
1744 }
1745 return s;
1746 }
1747
1748 /*
1749 * Generate code to load into the X register the sum of the length of
1750 * the IPv4 header and the variable part of the offset of the link-layer
1751 * payload.
1752 */
1753 static struct slist *
1754 gen_loadx_iphdrlen(compiler_state_t *cstate)
1755 {
1756 struct slist *s, *s2;
1757
1758 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1759 if (s != NULL) {
1760 /*
1761 * The offset of the link-layer payload has a variable
1762 * part. "s" points to a list of statements that put
1763 * the variable part of that offset into the X register.
1764 *
1765 * The 4*([k]&0xf) addressing mode can't be used, as we
1766 * don't have a constant offset, so we have to load the
1767 * value in question into the A register and add to it
1768 * the value from the X register.
1769 */
1770 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1771 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1772 sappend(s, s2);
1773 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1774 s2->s.k = 0xf;
1775 sappend(s, s2);
1776 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1777 s2->s.k = 2;
1778 sappend(s, s2);
1779
1780 /*
1781 * The A register now contains the length of the IP header.
1782 * We need to add to it the variable part of the offset of
1783 * the link-layer payload, which is still in the X
1784 * register, and move the result into the X register.
1785 */
1786 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1787 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1788 } else {
1789 /*
1790 * The offset of the link-layer payload is a constant,
1791 * so no code was generated to load the (non-existent)
1792 * variable part of that offset.
1793 *
1794 * This means we can use the 4*([k]&0xf) addressing
1795 * mode. Load the length of the IPv4 header, which
1796 * is at an offset of cstate->off_nl from the beginning of
1797 * the link-layer payload, and thus at an offset of
1798 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1799 * of the raw packet data, using that addressing mode.
1800 */
1801 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1802 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1803 }
1804 return s;
1805 }
1806
1807
1808 static struct block *
1809 gen_uncond(compiler_state_t *cstate, int rsense)
1810 {
1811 struct block *b;
1812 struct slist *s;
1813
1814 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1815 s->s.k = !rsense;
1816 b = new_block(cstate, JMP(BPF_JEQ));
1817 b->stmts = s;
1818
1819 return b;
1820 }
1821
1822 static inline struct block *
1823 gen_true(compiler_state_t *cstate)
1824 {
1825 return gen_uncond(cstate, 1);
1826 }
1827
1828 static inline struct block *
1829 gen_false(compiler_state_t *cstate)
1830 {
1831 return gen_uncond(cstate, 0);
1832 }
1833
1834 /*
1835 * Byte-swap a 32-bit number.
1836 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1837 * big-endian platforms.)
1838 */
1839 #define SWAPLONG(y) \
1840 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1841
1842 /*
1843 * Generate code to match a particular packet type.
1844 *
1845 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1846 * value, if <= ETHERMTU. We use that to determine whether to
1847 * match the type/length field or to check the type/length field for
1848 * a value <= ETHERMTU to see whether it's a type field and then do
1849 * the appropriate test.
1850 */
1851 static struct block *
1852 gen_ether_linktype(compiler_state_t *cstate, int proto)
1853 {
1854 struct block *b0, *b1;
1855
1856 switch (proto) {
1857
1858 case LLCSAP_ISONS:
1859 case LLCSAP_IP:
1860 case LLCSAP_NETBEUI:
1861 /*
1862 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1863 * so we check the DSAP and SSAP.
1864 *
1865 * LLCSAP_IP checks for IP-over-802.2, rather
1866 * than IP-over-Ethernet or IP-over-SNAP.
1867 *
1868 * XXX - should we check both the DSAP and the
1869 * SSAP, like this, or should we check just the
1870 * DSAP, as we do for other types <= ETHERMTU
1871 * (i.e., other SAP values)?
1872 */
1873 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1874 gen_not(b0);
1875 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1876 ((proto << 8) | proto));
1877 gen_and(b0, b1);
1878 return b1;
1879
1880 case LLCSAP_IPX:
1881 /*
1882 * Check for;
1883 *
1884 * Ethernet_II frames, which are Ethernet
1885 * frames with a frame type of ETHERTYPE_IPX;
1886 *
1887 * Ethernet_802.3 frames, which are 802.3
1888 * frames (i.e., the type/length field is
1889 * a length field, <= ETHERMTU, rather than
1890 * a type field) with the first two bytes
1891 * after the Ethernet/802.3 header being
1892 * 0xFFFF;
1893 *
1894 * Ethernet_802.2 frames, which are 802.3
1895 * frames with an 802.2 LLC header and
1896 * with the IPX LSAP as the DSAP in the LLC
1897 * header;
1898 *
1899 * Ethernet_SNAP frames, which are 802.3
1900 * frames with an LLC header and a SNAP
1901 * header and with an OUI of 0x000000
1902 * (encapsulated Ethernet) and a protocol
1903 * ID of ETHERTYPE_IPX in the SNAP header.
1904 *
1905 * XXX - should we generate the same code both
1906 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1907 */
1908
1909 /*
1910 * This generates code to check both for the
1911 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1912 */
1913 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1914 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1915 gen_or(b0, b1);
1916
1917 /*
1918 * Now we add code to check for SNAP frames with
1919 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1920 */
1921 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
1922 gen_or(b0, b1);
1923
1924 /*
1925 * Now we generate code to check for 802.3
1926 * frames in general.
1927 */
1928 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1929 gen_not(b0);
1930
1931 /*
1932 * Now add the check for 802.3 frames before the
1933 * check for Ethernet_802.2 and Ethernet_802.3,
1934 * as those checks should only be done on 802.3
1935 * frames, not on Ethernet frames.
1936 */
1937 gen_and(b0, b1);
1938
1939 /*
1940 * Now add the check for Ethernet_II frames, and
1941 * do that before checking for the other frame
1942 * types.
1943 */
1944 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1945 gen_or(b0, b1);
1946 return b1;
1947
1948 case ETHERTYPE_ATALK:
1949 case ETHERTYPE_AARP:
1950 /*
1951 * EtherTalk (AppleTalk protocols on Ethernet link
1952 * layer) may use 802.2 encapsulation.
1953 */
1954
1955 /*
1956 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1957 * we check for an Ethernet type field less than
1958 * 1500, which means it's an 802.3 length field.
1959 */
1960 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1961 gen_not(b0);
1962
1963 /*
1964 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1965 * SNAP packets with an organization code of
1966 * 0x080007 (Apple, for Appletalk) and a protocol
1967 * type of ETHERTYPE_ATALK (Appletalk).
1968 *
1969 * 802.2-encapsulated ETHERTYPE_AARP packets are
1970 * SNAP packets with an organization code of
1971 * 0x000000 (encapsulated Ethernet) and a protocol
1972 * type of ETHERTYPE_AARP (Appletalk ARP).
1973 */
1974 if (proto == ETHERTYPE_ATALK)
1975 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
1976 else /* proto == ETHERTYPE_AARP */
1977 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
1978 gen_and(b0, b1);
1979
1980 /*
1981 * Check for Ethernet encapsulation (Ethertalk
1982 * phase 1?); we just check for the Ethernet
1983 * protocol type.
1984 */
1985 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1986
1987 gen_or(b0, b1);
1988 return b1;
1989
1990 default:
1991 if (proto <= ETHERMTU) {
1992 /*
1993 * This is an LLC SAP value, so the frames
1994 * that match would be 802.2 frames.
1995 * Check that the frame is an 802.2 frame
1996 * (i.e., that the length/type field is
1997 * a length field, <= ETHERMTU) and
1998 * then check the DSAP.
1999 */
2000 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2001 gen_not(b0);
2002 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
2003 gen_and(b0, b1);
2004 return b1;
2005 } else {
2006 /*
2007 * This is an Ethernet type, so compare
2008 * the length/type field with it (if
2009 * the frame is an 802.2 frame, the length
2010 * field will be <= ETHERMTU, and, as
2011 * "proto" is > ETHERMTU, this test
2012 * will fail and the frame won't match,
2013 * which is what we want).
2014 */
2015 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
2016 (bpf_int32)proto);
2017 }
2018 }
2019 }
2020
2021 static struct block *
2022 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2023 {
2024 /*
2025 * For DLT_NULL, the link-layer header is a 32-bit word
2026 * containing an AF_ value in *host* byte order, and for
2027 * DLT_ENC, the link-layer header begins with a 32-bit
2028 * word containing an AF_ value in host byte order.
2029 *
2030 * In addition, if we're reading a saved capture file,
2031 * the host byte order in the capture may not be the
2032 * same as the host byte order on this machine.
2033 *
2034 * For DLT_LOOP, the link-layer header is a 32-bit
2035 * word containing an AF_ value in *network* byte order.
2036 */
2037 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2038 /*
2039 * The AF_ value is in host byte order, but the BPF
2040 * interpreter will convert it to network byte order.
2041 *
2042 * If this is a save file, and it's from a machine
2043 * with the opposite byte order to ours, we byte-swap
2044 * the AF_ value.
2045 *
2046 * Then we run it through "htonl()", and generate
2047 * code to compare against the result.
2048 */
2049 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2050 proto = SWAPLONG(proto);
2051 proto = htonl(proto);
2052 }
2053 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2054 }
2055
2056 /*
2057 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2058 * or IPv6 then we have an error.
2059 */
2060 static struct block *
2061 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2062 {
2063 switch (proto) {
2064
2065 case ETHERTYPE_IP:
2066 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2067 /* NOTREACHED */
2068
2069 case ETHERTYPE_IPV6:
2070 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2071 (bpf_int32)IPH_AF_INET6);
2072 /* NOTREACHED */
2073
2074 default:
2075 break;
2076 }
2077
2078 return gen_false(cstate);
2079 }
2080
2081 /*
2082 * Generate code to match a particular packet type.
2083 *
2084 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2085 * value, if <= ETHERMTU. We use that to determine whether to
2086 * match the type field or to check the type field for the special
2087 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2088 */
2089 static struct block *
2090 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2091 {
2092 struct block *b0, *b1;
2093
2094 switch (proto) {
2095
2096 case LLCSAP_ISONS:
2097 case LLCSAP_IP:
2098 case LLCSAP_NETBEUI:
2099 /*
2100 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2101 * so we check the DSAP and SSAP.
2102 *
2103 * LLCSAP_IP checks for IP-over-802.2, rather
2104 * than IP-over-Ethernet or IP-over-SNAP.
2105 *
2106 * XXX - should we check both the DSAP and the
2107 * SSAP, like this, or should we check just the
2108 * DSAP, as we do for other types <= ETHERMTU
2109 * (i.e., other SAP values)?
2110 */
2111 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2112 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2113 ((proto << 8) | proto));
2114 gen_and(b0, b1);
2115 return b1;
2116
2117 case LLCSAP_IPX:
2118 /*
2119 * Ethernet_II frames, which are Ethernet
2120 * frames with a frame type of ETHERTYPE_IPX;
2121 *
2122 * Ethernet_802.3 frames, which have a frame
2123 * type of LINUX_SLL_P_802_3;
2124 *
2125 * Ethernet_802.2 frames, which are 802.3
2126 * frames with an 802.2 LLC header (i.e, have
2127 * a frame type of LINUX_SLL_P_802_2) and
2128 * with the IPX LSAP as the DSAP in the LLC
2129 * header;
2130 *
2131 * Ethernet_SNAP frames, which are 802.3
2132 * frames with an LLC header and a SNAP
2133 * header and with an OUI of 0x000000
2134 * (encapsulated Ethernet) and a protocol
2135 * ID of ETHERTYPE_IPX in the SNAP header.
2136 *
2137 * First, do the checks on LINUX_SLL_P_802_2
2138 * frames; generate the check for either
2139 * Ethernet_802.2 or Ethernet_SNAP frames, and
2140 * then put a check for LINUX_SLL_P_802_2 frames
2141 * before it.
2142 */
2143 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2144 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2145 gen_or(b0, b1);
2146 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2147 gen_and(b0, b1);
2148
2149 /*
2150 * Now check for 802.3 frames and OR that with
2151 * the previous test.
2152 */
2153 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2154 gen_or(b0, b1);
2155
2156 /*
2157 * Now add the check for Ethernet_II frames, and
2158 * do that before checking for the other frame
2159 * types.
2160 */
2161 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2162 gen_or(b0, b1);
2163 return b1;
2164
2165 case ETHERTYPE_ATALK:
2166 case ETHERTYPE_AARP:
2167 /*
2168 * EtherTalk (AppleTalk protocols on Ethernet link
2169 * layer) may use 802.2 encapsulation.
2170 */
2171
2172 /*
2173 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2174 * we check for the 802.2 protocol type in the
2175 * "Ethernet type" field.
2176 */
2177 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2178
2179 /*
2180 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2181 * SNAP packets with an organization code of
2182 * 0x080007 (Apple, for Appletalk) and a protocol
2183 * type of ETHERTYPE_ATALK (Appletalk).
2184 *
2185 * 802.2-encapsulated ETHERTYPE_AARP packets are
2186 * SNAP packets with an organization code of
2187 * 0x000000 (encapsulated Ethernet) and a protocol
2188 * type of ETHERTYPE_AARP (Appletalk ARP).
2189 */
2190 if (proto == ETHERTYPE_ATALK)
2191 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2192 else /* proto == ETHERTYPE_AARP */
2193 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2194 gen_and(b0, b1);
2195
2196 /*
2197 * Check for Ethernet encapsulation (Ethertalk
2198 * phase 1?); we just check for the Ethernet
2199 * protocol type.
2200 */
2201 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2202
2203 gen_or(b0, b1);
2204 return b1;
2205
2206 default:
2207 if (proto <= ETHERMTU) {
2208 /*
2209 * This is an LLC SAP value, so the frames
2210 * that match would be 802.2 frames.
2211 * Check for the 802.2 protocol type
2212 * in the "Ethernet type" field, and
2213 * then check the DSAP.
2214 */
2215 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2216 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2217 (bpf_int32)proto);
2218 gen_and(b0, b1);
2219 return b1;
2220 } else {
2221 /*
2222 * This is an Ethernet type, so compare
2223 * the length/type field with it (if
2224 * the frame is an 802.2 frame, the length
2225 * field will be <= ETHERMTU, and, as
2226 * "proto" is > ETHERMTU, this test
2227 * will fail and the frame won't match,
2228 * which is what we want).
2229 */
2230 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2231 }
2232 }
2233 }
2234
2235 static struct slist *
2236 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2237 {
2238 struct slist *s1, *s2;
2239 struct slist *sjeq_avs_cookie;
2240 struct slist *sjcommon;
2241
2242 /*
2243 * This code is not compatible with the optimizer, as
2244 * we are generating jmp instructions within a normal
2245 * slist of instructions
2246 */
2247 cstate->no_optimize = 1;
2248
2249 /*
2250 * Generate code to load the length of the radio header into
2251 * the register assigned to hold that length, if one has been
2252 * assigned. (If one hasn't been assigned, no code we've
2253 * generated uses that prefix, so we don't need to generate any
2254 * code to load it.)
2255 *
2256 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2257 * or always use the AVS header rather than the Prism header.
2258 * We load a 4-byte big-endian value at the beginning of the
2259 * raw packet data, and see whether, when masked with 0xFFFFF000,
2260 * it's equal to 0x80211000. If so, that indicates that it's
2261 * an AVS header (the masked-out bits are the version number).
2262 * Otherwise, it's a Prism header.
2263 *
2264 * XXX - the Prism header is also, in theory, variable-length,
2265 * but no known software generates headers that aren't 144
2266 * bytes long.
2267 */
2268 if (cstate->off_linkhdr.reg != -1) {
2269 /*
2270 * Load the cookie.
2271 */
2272 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2273 s1->s.k = 0;
2274
2275 /*
2276 * AND it with 0xFFFFF000.
2277 */
2278 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2279 s2->s.k = 0xFFFFF000;
2280 sappend(s1, s2);
2281
2282 /*
2283 * Compare with 0x80211000.
2284 */
2285 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2286 sjeq_avs_cookie->s.k = 0x80211000;
2287 sappend(s1, sjeq_avs_cookie);
2288
2289 /*
2290 * If it's AVS:
2291 *
2292 * The 4 bytes at an offset of 4 from the beginning of
2293 * the AVS header are the length of the AVS header.
2294 * That field is big-endian.
2295 */
2296 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2297 s2->s.k = 4;
2298 sappend(s1, s2);
2299 sjeq_avs_cookie->s.jt = s2;
2300
2301 /*
2302 * Now jump to the code to allocate a register
2303 * into which to save the header length and
2304 * store the length there. (The "jump always"
2305 * instruction needs to have the k field set;
2306 * it's added to the PC, so, as we're jumping
2307 * over a single instruction, it should be 1.)
2308 */
2309 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2310 sjcommon->s.k = 1;
2311 sappend(s1, sjcommon);
2312
2313 /*
2314 * Now for the code that handles the Prism header.
2315 * Just load the length of the Prism header (144)
2316 * into the A register. Have the test for an AVS
2317 * header branch here if we don't have an AVS header.
2318 */
2319 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2320 s2->s.k = 144;
2321 sappend(s1, s2);
2322 sjeq_avs_cookie->s.jf = s2;
2323
2324 /*
2325 * Now allocate a register to hold that value and store
2326 * it. The code for the AVS header will jump here after
2327 * loading the length of the AVS header.
2328 */
2329 s2 = new_stmt(cstate, BPF_ST);
2330 s2->s.k = cstate->off_linkhdr.reg;
2331 sappend(s1, s2);
2332 sjcommon->s.jf = s2;
2333
2334 /*
2335 * Now move it into the X register.
2336 */
2337 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2338 sappend(s1, s2);
2339
2340 return (s1);
2341 } else
2342 return (NULL);
2343 }
2344
2345 static struct slist *
2346 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2347 {
2348 struct slist *s1, *s2;
2349
2350 /*
2351 * Generate code to load the length of the AVS header into
2352 * the register assigned to hold that length, if one has been
2353 * assigned. (If one hasn't been assigned, no code we've
2354 * generated uses that prefix, so we don't need to generate any
2355 * code to load it.)
2356 */
2357 if (cstate->off_linkhdr.reg != -1) {
2358 /*
2359 * The 4 bytes at an offset of 4 from the beginning of
2360 * the AVS header are the length of the AVS header.
2361 * That field is big-endian.
2362 */
2363 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2364 s1->s.k = 4;
2365
2366 /*
2367 * Now allocate a register to hold that value and store
2368 * it.
2369 */
2370 s2 = new_stmt(cstate, BPF_ST);
2371 s2->s.k = cstate->off_linkhdr.reg;
2372 sappend(s1, s2);
2373
2374 /*
2375 * Now move it into the X register.
2376 */
2377 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2378 sappend(s1, s2);
2379
2380 return (s1);
2381 } else
2382 return (NULL);
2383 }
2384
2385 static struct slist *
2386 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2387 {
2388 struct slist *s1, *s2;
2389
2390 /*
2391 * Generate code to load the length of the radiotap header into
2392 * the register assigned to hold that length, if one has been
2393 * assigned. (If one hasn't been assigned, no code we've
2394 * generated uses that prefix, so we don't need to generate any
2395 * code to load it.)
2396 */
2397 if (cstate->off_linkhdr.reg != -1) {
2398 /*
2399 * The 2 bytes at offsets of 2 and 3 from the beginning
2400 * of the radiotap header are the length of the radiotap
2401 * header; unfortunately, it's little-endian, so we have
2402 * to load it a byte at a time and construct the value.
2403 */
2404
2405 /*
2406 * Load the high-order byte, at an offset of 3, shift it
2407 * left a byte, and put the result in the X register.
2408 */
2409 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2410 s1->s.k = 3;
2411 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2412 sappend(s1, s2);
2413 s2->s.k = 8;
2414 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2415 sappend(s1, s2);
2416
2417 /*
2418 * Load the next byte, at an offset of 2, and OR the
2419 * value from the X register into it.
2420 */
2421 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2422 sappend(s1, s2);
2423 s2->s.k = 2;
2424 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2425 sappend(s1, s2);
2426
2427 /*
2428 * Now allocate a register to hold that value and store
2429 * it.
2430 */
2431 s2 = new_stmt(cstate, BPF_ST);
2432 s2->s.k = cstate->off_linkhdr.reg;
2433 sappend(s1, s2);
2434
2435 /*
2436 * Now move it into the X register.
2437 */
2438 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2439 sappend(s1, s2);
2440
2441 return (s1);
2442 } else
2443 return (NULL);
2444 }
2445
2446 /*
2447 * At the moment we treat PPI as normal Radiotap encoded
2448 * packets. The difference is in the function that generates
2449 * the code at the beginning to compute the header length.
2450 * Since this code generator of PPI supports bare 802.11
2451 * encapsulation only (i.e. the encapsulated DLT should be
2452 * DLT_IEEE802_11) we generate code to check for this too;
2453 * that's done in finish_parse().
2454 */
2455 static struct slist *
2456 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2457 {
2458 struct slist *s1, *s2;
2459
2460 /*
2461 * Generate code to load the length of the radiotap header
2462 * into the register assigned to hold that length, if one has
2463 * been assigned.
2464 */
2465 if (cstate->off_linkhdr.reg != -1) {
2466 /*
2467 * The 2 bytes at offsets of 2 and 3 from the beginning
2468 * of the radiotap header are the length of the radiotap
2469 * header; unfortunately, it's little-endian, so we have
2470 * to load it a byte at a time and construct the value.
2471 */
2472
2473 /*
2474 * Load the high-order byte, at an offset of 3, shift it
2475 * left a byte, and put the result in the X register.
2476 */
2477 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2478 s1->s.k = 3;
2479 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2480 sappend(s1, s2);
2481 s2->s.k = 8;
2482 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2483 sappend(s1, s2);
2484
2485 /*
2486 * Load the next byte, at an offset of 2, and OR the
2487 * value from the X register into it.
2488 */
2489 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2490 sappend(s1, s2);
2491 s2->s.k = 2;
2492 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2493 sappend(s1, s2);
2494
2495 /*
2496 * Now allocate a register to hold that value and store
2497 * it.
2498 */
2499 s2 = new_stmt(cstate, BPF_ST);
2500 s2->s.k = cstate->off_linkhdr.reg;
2501 sappend(s1, s2);
2502
2503 /*
2504 * Now move it into the X register.
2505 */
2506 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2507 sappend(s1, s2);
2508
2509 return (s1);
2510 } else
2511 return (NULL);
2512 }
2513
2514 /*
2515 * Load a value relative to the beginning of the link-layer header after the 802.11
2516 * header, i.e. LLC_SNAP.
2517 * The link-layer header doesn't necessarily begin at the beginning
2518 * of the packet data; there might be a variable-length prefix containing
2519 * radio information.
2520 */
2521 static struct slist *
2522 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2523 {
2524 struct slist *s2;
2525 struct slist *sjset_data_frame_1;
2526 struct slist *sjset_data_frame_2;
2527 struct slist *sjset_qos;
2528 struct slist *sjset_radiotap_flags_present;
2529 struct slist *sjset_radiotap_ext_present;
2530 struct slist *sjset_radiotap_tsft_present;
2531 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2532 struct slist *s_roundup;
2533
2534 if (cstate->off_linkpl.reg == -1) {
2535 /*
2536 * No register has been assigned to the offset of
2537 * the link-layer payload, which means nobody needs
2538 * it; don't bother computing it - just return
2539 * what we already have.
2540 */
2541 return (s);
2542 }
2543
2544 /*
2545 * This code is not compatible with the optimizer, as
2546 * we are generating jmp instructions within a normal
2547 * slist of instructions
2548 */
2549 cstate->no_optimize = 1;
2550
2551 /*
2552 * If "s" is non-null, it has code to arrange that the X register
2553 * contains the length of the prefix preceding the link-layer
2554 * header.
2555 *
2556 * Otherwise, the length of the prefix preceding the link-layer
2557 * header is "off_outermostlinkhdr.constant_part".
2558 */
2559 if (s == NULL) {
2560 /*
2561 * There is no variable-length header preceding the
2562 * link-layer header.
2563 *
2564 * Load the length of the fixed-length prefix preceding
2565 * the link-layer header (if any) into the X register,
2566 * and store it in the cstate->off_linkpl.reg register.
2567 * That length is off_outermostlinkhdr.constant_part.
2568 */
2569 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2570 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2571 }
2572
2573 /*
2574 * The X register contains the offset of the beginning of the
2575 * link-layer header; add 24, which is the minimum length
2576 * of the MAC header for a data frame, to that, and store it
2577 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2578 * which is at the offset in the X register, with an indexed load.
2579 */
2580 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2581 sappend(s, s2);
2582 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2583 s2->s.k = 24;
2584 sappend(s, s2);
2585 s2 = new_stmt(cstate, BPF_ST);
2586 s2->s.k = cstate->off_linkpl.reg;
2587 sappend(s, s2);
2588
2589 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2590 s2->s.k = 0;
2591 sappend(s, s2);
2592
2593 /*
2594 * Check the Frame Control field to see if this is a data frame;
2595 * a data frame has the 0x08 bit (b3) in that field set and the
2596 * 0x04 bit (b2) clear.
2597 */
2598 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2599 sjset_data_frame_1->s.k = 0x08;
2600 sappend(s, sjset_data_frame_1);
2601
2602 /*
2603 * If b3 is set, test b2, otherwise go to the first statement of
2604 * the rest of the program.
2605 */
2606 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2607 sjset_data_frame_2->s.k = 0x04;
2608 sappend(s, sjset_data_frame_2);
2609 sjset_data_frame_1->s.jf = snext;
2610
2611 /*
2612 * If b2 is not set, this is a data frame; test the QoS bit.
2613 * Otherwise, go to the first statement of the rest of the
2614 * program.
2615 */
2616 sjset_data_frame_2->s.jt = snext;
2617 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2618 sjset_qos->s.k = 0x80; /* QoS bit */
2619 sappend(s, sjset_qos);
2620
2621 /*
2622 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2623 * field.
2624 * Otherwise, go to the first statement of the rest of the
2625 * program.
2626 */
2627 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2628 s2->s.k = cstate->off_linkpl.reg;
2629 sappend(s, s2);
2630 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2631 s2->s.k = 2;
2632 sappend(s, s2);
2633 s2 = new_stmt(cstate, BPF_ST);
2634 s2->s.k = cstate->off_linkpl.reg;
2635 sappend(s, s2);
2636
2637 /*
2638 * If we have a radiotap header, look at it to see whether
2639 * there's Atheros padding between the MAC-layer header
2640 * and the payload.
2641 *
2642 * Note: all of the fields in the radiotap header are
2643 * little-endian, so we byte-swap all of the values
2644 * we test against, as they will be loaded as big-endian
2645 * values.
2646 *
2647 * XXX - in the general case, we would have to scan through
2648 * *all* the presence bits, if there's more than one word of
2649 * presence bits. That would require a loop, meaning that
2650 * we wouldn't be able to run the filter in the kernel.
2651 *
2652 * We assume here that the Atheros adapters that insert the
2653 * annoying padding don't have multiple antennae and therefore
2654 * do not generate radiotap headers with multiple presence words.
2655 */
2656 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2657 /*
2658 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2659 * in the first presence flag word?
2660 */
2661 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2662 s2->s.k = 4;
2663 sappend(s, s2);
2664
2665 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2666 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2667 sappend(s, sjset_radiotap_flags_present);
2668
2669 /*
2670 * If not, skip all of this.
2671 */
2672 sjset_radiotap_flags_present->s.jf = snext;
2673
2674 /*
2675 * Otherwise, is the "extension" bit set in that word?
2676 */
2677 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2678 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2679 sappend(s, sjset_radiotap_ext_present);
2680 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2681
2682 /*
2683 * If so, skip all of this.
2684 */
2685 sjset_radiotap_ext_present->s.jt = snext;
2686
2687 /*
2688 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2689 */
2690 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2691 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2692 sappend(s, sjset_radiotap_tsft_present);
2693 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2694
2695 /*
2696 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2697 * at an offset of 16 from the beginning of the raw packet
2698 * data (8 bytes for the radiotap header and 8 bytes for
2699 * the TSFT field).
2700 *
2701 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2702 * is set.
2703 */
2704 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2705 s2->s.k = 16;
2706 sappend(s, s2);
2707 sjset_radiotap_tsft_present->s.jt = s2;
2708
2709 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2710 sjset_tsft_datapad->s.k = 0x20;
2711 sappend(s, sjset_tsft_datapad);
2712
2713 /*
2714 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2715 * at an offset of 8 from the beginning of the raw packet
2716 * data (8 bytes for the radiotap header).
2717 *
2718 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2719 * is set.
2720 */
2721 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2722 s2->s.k = 8;
2723 sappend(s, s2);
2724 sjset_radiotap_tsft_present->s.jf = s2;
2725
2726 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2727 sjset_notsft_datapad->s.k = 0x20;
2728 sappend(s, sjset_notsft_datapad);
2729
2730 /*
2731 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2732 * set, round the length of the 802.11 header to
2733 * a multiple of 4. Do that by adding 3 and then
2734 * dividing by and multiplying by 4, which we do by
2735 * ANDing with ~3.
2736 */
2737 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2738 s_roundup->s.k = cstate->off_linkpl.reg;
2739 sappend(s, s_roundup);
2740 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2741 s2->s.k = 3;
2742 sappend(s, s2);
2743 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2744 s2->s.k = ~3;
2745 sappend(s, s2);
2746 s2 = new_stmt(cstate, BPF_ST);
2747 s2->s.k = cstate->off_linkpl.reg;
2748 sappend(s, s2);
2749
2750 sjset_tsft_datapad->s.jt = s_roundup;
2751 sjset_tsft_datapad->s.jf = snext;
2752 sjset_notsft_datapad->s.jt = s_roundup;
2753 sjset_notsft_datapad->s.jf = snext;
2754 } else
2755 sjset_qos->s.jf = snext;
2756
2757 return s;
2758 }
2759
2760 static void
2761 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2762 {
2763 struct slist *s;
2764
2765 /* There is an implicit dependency between the link
2766 * payload and link header since the payload computation
2767 * includes the variable part of the header. Therefore,
2768 * if nobody else has allocated a register for the link
2769 * header and we need it, do it now. */
2770 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2771 cstate->off_linkhdr.reg == -1)
2772 cstate->off_linkhdr.reg = alloc_reg(cstate);
2773
2774 /*
2775 * For link-layer types that have a variable-length header
2776 * preceding the link-layer header, generate code to load
2777 * the offset of the link-layer header into the register
2778 * assigned to that offset, if any.
2779 *
2780 * XXX - this, and the next switch statement, won't handle
2781 * encapsulation of 802.11 or 802.11+radio information in
2782 * some other protocol stack. That's significantly more
2783 * complicated.
2784 */
2785 switch (cstate->outermostlinktype) {
2786
2787 case DLT_PRISM_HEADER:
2788 s = gen_load_prism_llprefixlen(cstate);
2789 break;
2790
2791 case DLT_IEEE802_11_RADIO_AVS:
2792 s = gen_load_avs_llprefixlen(cstate);
2793 break;
2794
2795 case DLT_IEEE802_11_RADIO:
2796 s = gen_load_radiotap_llprefixlen(cstate);
2797 break;
2798
2799 case DLT_PPI:
2800 s = gen_load_ppi_llprefixlen(cstate);
2801 break;
2802
2803 default:
2804 s = NULL;
2805 break;
2806 }
2807
2808 /*
2809 * For link-layer types that have a variable-length link-layer
2810 * header, generate code to load the offset of the link-layer
2811 * payload into the register assigned to that offset, if any.
2812 */
2813 switch (cstate->outermostlinktype) {
2814
2815 case DLT_IEEE802_11:
2816 case DLT_PRISM_HEADER:
2817 case DLT_IEEE802_11_RADIO_AVS:
2818 case DLT_IEEE802_11_RADIO:
2819 case DLT_PPI:
2820 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2821 break;
2822 }
2823
2824 /*
2825 * If there there is no initialization yet and we need variable
2826 * length offsets for VLAN, initialize them to zero
2827 */
2828 if (s == NULL && cstate->is_vlan_vloffset) {
2829 struct slist *s2;
2830
2831 if (cstate->off_linkpl.reg == -1)
2832 cstate->off_linkpl.reg = alloc_reg(cstate);
2833 if (cstate->off_linktype.reg == -1)
2834 cstate->off_linktype.reg = alloc_reg(cstate);
2835
2836 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2837 s->s.k = 0;
2838 s2 = new_stmt(cstate, BPF_ST);
2839 s2->s.k = cstate->off_linkpl.reg;
2840 sappend(s, s2);
2841 s2 = new_stmt(cstate, BPF_ST);
2842 s2->s.k = cstate->off_linktype.reg;
2843 sappend(s, s2);
2844 }
2845
2846 /*
2847 * If we have any offset-loading code, append all the
2848 * existing statements in the block to those statements,
2849 * and make the resulting list the list of statements
2850 * for the block.
2851 */
2852 if (s != NULL) {
2853 sappend(s, b->stmts);
2854 b->stmts = s;
2855 }
2856 }
2857
2858 static struct block *
2859 gen_ppi_dlt_check(compiler_state_t *cstate)
2860 {
2861 struct slist *s_load_dlt;
2862 struct block *b;
2863
2864 if (cstate->linktype == DLT_PPI)
2865 {
2866 /* Create the statements that check for the DLT
2867 */
2868 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2869 s_load_dlt->s.k = 4;
2870
2871 b = new_block(cstate, JMP(BPF_JEQ));
2872
2873 b->stmts = s_load_dlt;
2874 b->s.k = SWAPLONG(DLT_IEEE802_11);
2875 }
2876 else
2877 {
2878 b = NULL;
2879 }
2880
2881 return b;
2882 }
2883
2884 /*
2885 * Take an absolute offset, and:
2886 *
2887 * if it has no variable part, return NULL;
2888 *
2889 * if it has a variable part, generate code to load the register
2890 * containing that variable part into the X register, returning
2891 * a pointer to that code - if no register for that offset has
2892 * been allocated, allocate it first.
2893 *
2894 * (The code to set that register will be generated later, but will
2895 * be placed earlier in the code sequence.)
2896 */
2897 static struct slist *
2898 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
2899 {
2900 struct slist *s;
2901
2902 if (off->is_variable) {
2903 if (off->reg == -1) {
2904 /*
2905 * We haven't yet assigned a register for the
2906 * variable part of the offset of the link-layer
2907 * header; allocate one.
2908 */
2909 off->reg = alloc_reg(cstate);
2910 }
2911
2912 /*
2913 * Load the register containing the variable part of the
2914 * offset of the link-layer header into the X register.
2915 */
2916 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
2917 s->s.k = off->reg;
2918 return s;
2919 } else {
2920 /*
2921 * That offset isn't variable, there's no variable part,
2922 * so we don't need to generate any code.
2923 */
2924 return NULL;
2925 }
2926 }
2927
2928 /*
2929 * Map an Ethernet type to the equivalent PPP type.
2930 */
2931 static int
2932 ethertype_to_ppptype(proto)
2933 int proto;
2934 {
2935 switch (proto) {
2936
2937 case ETHERTYPE_IP:
2938 proto = PPP_IP;
2939 break;
2940
2941 case ETHERTYPE_IPV6:
2942 proto = PPP_IPV6;
2943 break;
2944
2945 case ETHERTYPE_DN:
2946 proto = PPP_DECNET;
2947 break;
2948
2949 case ETHERTYPE_ATALK:
2950 proto = PPP_APPLE;
2951 break;
2952
2953 case ETHERTYPE_NS:
2954 proto = PPP_NS;
2955 break;
2956
2957 case LLCSAP_ISONS:
2958 proto = PPP_OSI;
2959 break;
2960
2961 case LLCSAP_8021D:
2962 /*
2963 * I'm assuming the "Bridging PDU"s that go
2964 * over PPP are Spanning Tree Protocol
2965 * Bridging PDUs.
2966 */
2967 proto = PPP_BRPDU;
2968 break;
2969
2970 case LLCSAP_IPX:
2971 proto = PPP_IPX;
2972 break;
2973 }
2974 return (proto);
2975 }
2976
2977 /*
2978 * Generate any tests that, for encapsulation of a link-layer packet
2979 * inside another protocol stack, need to be done to check for those
2980 * link-layer packets (and that haven't already been done by a check
2981 * for that encapsulation).
2982 */
2983 static struct block *
2984 gen_prevlinkhdr_check(compiler_state_t *cstate)
2985 {
2986 struct block *b0;
2987
2988 if (cstate->is_geneve)
2989 return gen_geneve_ll_check(cstate);
2990
2991 switch (cstate->prevlinktype) {
2992
2993 case DLT_SUNATM:
2994 /*
2995 * This is LANE-encapsulated Ethernet; check that the LANE
2996 * packet doesn't begin with an LE Control marker, i.e.
2997 * that it's data, not a control message.
2998 *
2999 * (We've already generated a test for LANE.)
3000 */
3001 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3002 gen_not(b0);
3003 return b0;
3004
3005 default:
3006 /*
3007 * No such tests are necessary.
3008 */
3009 return NULL;
3010 }
3011 /*NOTREACHED*/
3012 }
3013
3014 /*
3015 * The three different values we should check for when checking for an
3016 * IPv6 packet with DLT_NULL.
3017 */
3018 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3019 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3020 #define BSD_AFNUM_INET6_DARWIN 30 /* OS X, iOS, other Darwin-based OSes */
3021
3022 /*
3023 * Generate code to match a particular packet type by matching the
3024 * link-layer type field or fields in the 802.2 LLC header.
3025 *
3026 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3027 * value, if <= ETHERMTU.
3028 */
3029 static struct block *
3030 gen_linktype(compiler_state_t *cstate, int proto)
3031 {
3032 struct block *b0, *b1, *b2;
3033 const char *description;
3034
3035 /* are we checking MPLS-encapsulated packets? */
3036 if (cstate->label_stack_depth > 0) {
3037 switch (proto) {
3038 case ETHERTYPE_IP:
3039 case PPP_IP:
3040 /* FIXME add other L3 proto IDs */
3041 return gen_mpls_linktype(cstate, Q_IP);
3042
3043 case ETHERTYPE_IPV6:
3044 case PPP_IPV6:
3045 /* FIXME add other L3 proto IDs */
3046 return gen_mpls_linktype(cstate, Q_IPV6);
3047
3048 default:
3049 bpf_error(cstate, "unsupported protocol over mpls");
3050 /* NOTREACHED */
3051 }
3052 }
3053
3054 switch (cstate->linktype) {
3055
3056 case DLT_EN10MB:
3057 case DLT_NETANALYZER:
3058 case DLT_NETANALYZER_TRANSPARENT:
3059 /* Geneve has an EtherType regardless of whether there is an
3060 * L2 header. */
3061 if (!cstate->is_geneve)
3062 b0 = gen_prevlinkhdr_check(cstate);
3063 else
3064 b0 = NULL;
3065
3066 b1 = gen_ether_linktype(cstate, proto);
3067 if (b0 != NULL)
3068 gen_and(b0, b1);
3069 return b1;
3070 /*NOTREACHED*/
3071 break;
3072
3073 case DLT_C_HDLC:
3074 switch (proto) {
3075
3076 case LLCSAP_ISONS:
3077 proto = (proto << 8 | LLCSAP_ISONS);
3078 /* fall through */
3079
3080 default:
3081 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3082 /*NOTREACHED*/
3083 break;
3084 }
3085 break;
3086
3087 case DLT_IEEE802_11:
3088 case DLT_PRISM_HEADER:
3089 case DLT_IEEE802_11_RADIO_AVS:
3090 case DLT_IEEE802_11_RADIO:
3091 case DLT_PPI:
3092 /*
3093 * Check that we have a data frame.
3094 */
3095 b0 = gen_check_802_11_data_frame(cstate);
3096
3097 /*
3098 * Now check for the specified link-layer type.
3099 */
3100 b1 = gen_llc_linktype(cstate, proto);
3101 gen_and(b0, b1);
3102 return b1;
3103 /*NOTREACHED*/
3104 break;
3105
3106 case DLT_FDDI:
3107 /*
3108 * XXX - check for LLC frames.
3109 */
3110 return gen_llc_linktype(cstate, proto);
3111 /*NOTREACHED*/
3112 break;
3113
3114 case DLT_IEEE802:
3115 /*
3116 * XXX - check for LLC PDUs, as per IEEE 802.5.
3117 */
3118 return gen_llc_linktype(cstate, proto);
3119 /*NOTREACHED*/
3120 break;
3121
3122 case DLT_ATM_RFC1483:
3123 case DLT_ATM_CLIP:
3124 case DLT_IP_OVER_FC:
3125 return gen_llc_linktype(cstate, proto);
3126 /*NOTREACHED*/
3127 break;
3128
3129 case DLT_SUNATM:
3130 /*
3131 * Check for an LLC-encapsulated version of this protocol;
3132 * if we were checking for LANE, linktype would no longer
3133 * be DLT_SUNATM.
3134 *
3135 * Check for LLC encapsulation and then check the protocol.
3136 */
3137 b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3138 b1 = gen_llc_linktype(cstate, proto);
3139 gen_and(b0, b1);
3140 return b1;
3141 /*NOTREACHED*/
3142 break;
3143
3144 case DLT_LINUX_SLL:
3145 return gen_linux_sll_linktype(cstate, proto);
3146 /*NOTREACHED*/
3147 break;
3148
3149 case DLT_SLIP:
3150 case DLT_SLIP_BSDOS:
3151 case DLT_RAW:
3152 /*
3153 * These types don't provide any type field; packets
3154 * are always IPv4 or IPv6.
3155 *
3156 * XXX - for IPv4, check for a version number of 4, and,
3157 * for IPv6, check for a version number of 6?
3158 */
3159 switch (proto) {
3160
3161 case ETHERTYPE_IP:
3162 /* Check for a version number of 4. */
3163 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3164
3165 case ETHERTYPE_IPV6:
3166 /* Check for a version number of 6. */
3167 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3168
3169 default:
3170 return gen_false(cstate); /* always false */
3171 }
3172 /*NOTREACHED*/
3173 break;
3174
3175 case DLT_IPV4:
3176 /*
3177 * Raw IPv4, so no type field.
3178 */
3179 if (proto == ETHERTYPE_IP)
3180 return gen_true(cstate); /* always true */
3181
3182 /* Checking for something other than IPv4; always false */
3183 return gen_false(cstate);
3184 /*NOTREACHED*/
3185 break;
3186
3187 case DLT_IPV6:
3188 /*
3189 * Raw IPv6, so no type field.
3190 */
3191 if (proto == ETHERTYPE_IPV6)
3192 return gen_true(cstate); /* always true */
3193
3194 /* Checking for something other than IPv6; always false */
3195 return gen_false(cstate);
3196 /*NOTREACHED*/
3197 break;
3198
3199 case DLT_PPP:
3200 case DLT_PPP_PPPD:
3201 case DLT_PPP_SERIAL:
3202 case DLT_PPP_ETHER:
3203 /*
3204 * We use Ethernet protocol types inside libpcap;
3205 * map them to the corresponding PPP protocol types.
3206 */
3207 proto = ethertype_to_ppptype(proto);
3208 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3209 /*NOTREACHED*/
3210 break;
3211
3212 case DLT_PPP_BSDOS:
3213 /*
3214 * We use Ethernet protocol types inside libpcap;
3215 * map them to the corresponding PPP protocol types.
3216 */
3217 switch (proto) {
3218
3219 case ETHERTYPE_IP:
3220 /*
3221 * Also check for Van Jacobson-compressed IP.
3222 * XXX - do this for other forms of PPP?
3223 */
3224 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3225 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3226 gen_or(b0, b1);
3227 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3228 gen_or(b1, b0);
3229 return b0;
3230
3231 default:
3232 proto = ethertype_to_ppptype(proto);
3233 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3234 (bpf_int32)proto);
3235 }
3236 /*NOTREACHED*/
3237 break;
3238
3239 case DLT_NULL:
3240 case DLT_LOOP:
3241 case DLT_ENC:
3242 switch (proto) {
3243
3244 case ETHERTYPE_IP:
3245 return (gen_loopback_linktype(cstate, AF_INET));
3246
3247 case ETHERTYPE_IPV6:
3248 /*
3249 * AF_ values may, unfortunately, be platform-
3250 * dependent; AF_INET isn't, because everybody
3251 * used 4.2BSD's value, but AF_INET6 is, because
3252 * 4.2BSD didn't have a value for it (given that
3253 * IPv6 didn't exist back in the early 1980's),
3254 * and they all picked their own values.
3255 *
3256 * This means that, if we're reading from a
3257 * savefile, we need to check for all the
3258 * possible values.
3259 *
3260 * If we're doing a live capture, we only need
3261 * to check for this platform's value; however,
3262 * Npcap uses 24, which isn't Windows's AF_INET6
3263 * value. (Given the multiple different values,
3264 * programs that read pcap files shouldn't be
3265 * checking for their platform's AF_INET6 value
3266 * anyway, they should check for all of the
3267 * possible values. and they might as well do
3268 * that even for live captures.)
3269 */
3270 if (cstate->bpf_pcap->rfile != NULL) {
3271 /*
3272 * Savefile - check for all three
3273 * possible IPv6 values.
3274 */
3275 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3276 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3277 gen_or(b0, b1);
3278 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3279 gen_or(b0, b1);
3280 return (b1);
3281 } else {
3282 /*
3283 * Live capture, so we only need to
3284 * check for the value used on this
3285 * platform.
3286 */
3287 #ifdef _WIN32
3288 /*
3289 * Npcap doesn't use Windows's AF_INET6,
3290 * as that collides with AF_IPX on
3291 * some BSDs (both have the value 23).
3292 * Instead, it uses 24.
3293 */
3294 return (gen_loopback_linktype(cstate, 24));
3295 #else /* _WIN32 */
3296 #ifdef AF_INET6
3297 return (gen_loopback_linktype(cstate, AF_INET6));
3298 #else /* AF_INET6 */
3299 /*
3300 * I guess this platform doesn't support
3301 * IPv6, so we just reject all packets.
3302 */
3303 return gen_false(cstate);
3304 #endif /* AF_INET6 */
3305 #endif /* _WIN32 */
3306 }
3307
3308 default:
3309 /*
3310 * Not a type on which we support filtering.
3311 * XXX - support those that have AF_ values
3312 * #defined on this platform, at least?
3313 */
3314 return gen_false(cstate);
3315 }
3316
3317 #ifdef HAVE_NET_PFVAR_H
3318 case DLT_PFLOG:
3319 /*
3320 * af field is host byte order in contrast to the rest of
3321 * the packet.
3322 */
3323 if (proto == ETHERTYPE_IP)
3324 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3325 BPF_B, (bpf_int32)AF_INET));
3326 else if (proto == ETHERTYPE_IPV6)
3327 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3328 BPF_B, (bpf_int32)AF_INET6));
3329 else
3330 return gen_false(cstate);
3331 /*NOTREACHED*/
3332 break;
3333 #endif /* HAVE_NET_PFVAR_H */
3334
3335 case DLT_ARCNET:
3336 case DLT_ARCNET_LINUX:
3337 /*
3338 * XXX should we check for first fragment if the protocol
3339 * uses PHDS?
3340 */
3341 switch (proto) {
3342
3343 default:
3344 return gen_false(cstate);
3345
3346 case ETHERTYPE_IPV6:
3347 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3348 (bpf_int32)ARCTYPE_INET6));
3349
3350 case ETHERTYPE_IP:
3351 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3352 (bpf_int32)ARCTYPE_IP);
3353 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3354 (bpf_int32)ARCTYPE_IP_OLD);
3355 gen_or(b0, b1);
3356 return (b1);
3357
3358 case ETHERTYPE_ARP:
3359 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3360 (bpf_int32)ARCTYPE_ARP);
3361 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3362 (bpf_int32)ARCTYPE_ARP_OLD);
3363 gen_or(b0, b1);
3364 return (b1);
3365
3366 case ETHERTYPE_REVARP:
3367 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3368 (bpf_int32)ARCTYPE_REVARP));
3369
3370 case ETHERTYPE_ATALK:
3371 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3372 (bpf_int32)ARCTYPE_ATALK));
3373 }
3374 /*NOTREACHED*/
3375 break;
3376
3377 case DLT_LTALK:
3378 switch (proto) {
3379 case ETHERTYPE_ATALK:
3380 return gen_true(cstate);
3381 default:
3382 return gen_false(cstate);
3383 }
3384 /*NOTREACHED*/
3385 break;
3386
3387 case DLT_FRELAY:
3388 /*
3389 * XXX - assumes a 2-byte Frame Relay header with
3390 * DLCI and flags. What if the address is longer?
3391 */
3392 switch (proto) {
3393
3394 case ETHERTYPE_IP:
3395 /*
3396 * Check for the special NLPID for IP.
3397 */
3398 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3399
3400 case ETHERTYPE_IPV6:
3401 /*
3402 * Check for the special NLPID for IPv6.
3403 */
3404 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3405
3406 case LLCSAP_ISONS:
3407 /*
3408 * Check for several OSI protocols.
3409 *
3410 * Frame Relay packets typically have an OSI
3411 * NLPID at the beginning; we check for each
3412 * of them.
3413 *
3414 * What we check for is the NLPID and a frame
3415 * control field of UI, i.e. 0x03 followed
3416 * by the NLPID.
3417 */
3418 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3419 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3420 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3421 gen_or(b1, b2);
3422 gen_or(b0, b2);
3423 return b2;
3424
3425 default:
3426 return gen_false(cstate);
3427 }
3428 /*NOTREACHED*/
3429 break;
3430
3431 case DLT_MFR:
3432 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3433
3434 case DLT_JUNIPER_MFR:
3435 case DLT_JUNIPER_MLFR:
3436 case DLT_JUNIPER_MLPPP:
3437 case DLT_JUNIPER_ATM1:
3438 case DLT_JUNIPER_ATM2:
3439 case DLT_JUNIPER_PPPOE:
3440 case DLT_JUNIPER_PPPOE_ATM:
3441 case DLT_JUNIPER_GGSN:
3442 case DLT_JUNIPER_ES:
3443 case DLT_JUNIPER_MONITOR:
3444 case DLT_JUNIPER_SERVICES:
3445 case DLT_JUNIPER_ETHER:
3446 case DLT_JUNIPER_PPP:
3447 case DLT_JUNIPER_FRELAY:
3448 case DLT_JUNIPER_CHDLC:
3449 case DLT_JUNIPER_VP:
3450 case DLT_JUNIPER_ST:
3451 case DLT_JUNIPER_ISM:
3452 case DLT_JUNIPER_VS:
3453 case DLT_JUNIPER_SRX_E2E:
3454 case DLT_JUNIPER_FIBRECHANNEL:
3455 case DLT_JUNIPER_ATM_CEMIC:
3456
3457 /* just lets verify the magic number for now -
3458 * on ATM we may have up to 6 different encapsulations on the wire
3459 * and need a lot of heuristics to figure out that the payload
3460 * might be;
3461 *
3462 * FIXME encapsulation specific BPF_ filters
3463 */
3464 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3465
3466 case DLT_BACNET_MS_TP:
3467 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3468
3469 case DLT_IPNET:
3470 return gen_ipnet_linktype(cstate, proto);
3471
3472 case DLT_LINUX_IRDA:
3473 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3474
3475 case DLT_DOCSIS:
3476 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3477
3478 case DLT_MTP2:
3479 case DLT_MTP2_WITH_PHDR:
3480 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3481
3482 case DLT_ERF:
3483 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3484
3485 case DLT_PFSYNC:
3486 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3487
3488 case DLT_LINUX_LAPD:
3489 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3490
3491 case DLT_USB_FREEBSD:
3492 case DLT_USB_LINUX:
3493 case DLT_USB_LINUX_MMAPPED:
3494 case DLT_USBPCAP:
3495 bpf_error(cstate, "USB link-layer type filtering not implemented");
3496
3497 case DLT_BLUETOOTH_HCI_H4:
3498 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3499 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3500
3501 case DLT_CAN20B:
3502 case DLT_CAN_SOCKETCAN:
3503 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3504
3505 case DLT_IEEE802_15_4:
3506 case DLT_IEEE802_15_4_LINUX:
3507 case DLT_IEEE802_15_4_NONASK_PHY:
3508 case DLT_IEEE802_15_4_NOFCS:
3509 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3510
3511 case DLT_IEEE802_16_MAC_CPS_RADIO:
3512 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3513
3514 case DLT_SITA:
3515 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3516
3517 case DLT_RAIF1:
3518 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3519
3520 case DLT_IPMB:
3521 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3522
3523 case DLT_AX25_KISS:
3524 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3525
3526 case DLT_NFLOG:
3527 /* Using the fixed-size NFLOG header it is possible to tell only
3528 * the address family of the packet, other meaningful data is
3529 * either missing or behind TLVs.
3530 */
3531 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3532
3533 default:
3534 /*
3535 * Does this link-layer header type have a field
3536 * indicating the type of the next protocol? If
3537 * so, off_linktype.constant_part will be the offset of that
3538 * field in the packet; if not, it will be OFFSET_NOT_SET.
3539 */
3540 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3541 /*
3542 * Yes; assume it's an Ethernet type. (If
3543 * it's not, it needs to be handled specially
3544 * above.)
3545 */
3546 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3547 } else {
3548 /*
3549 * No; report an error.
3550 */
3551 description = pcap_datalink_val_to_description(cstate->linktype);
3552 if (description != NULL) {
3553 bpf_error(cstate, "%s link-layer type filtering not implemented",
3554 description);
3555 } else {
3556 bpf_error(cstate, "DLT %u link-layer type filtering not implemented",
3557 cstate->linktype);
3558 }
3559 }
3560 break;
3561 }
3562 }
3563
3564 /*
3565 * Check for an LLC SNAP packet with a given organization code and
3566 * protocol type; we check the entire contents of the 802.2 LLC and
3567 * snap headers, checking for DSAP and SSAP of SNAP and a control
3568 * field of 0x03 in the LLC header, and for the specified organization
3569 * code and protocol type in the SNAP header.
3570 */
3571 static struct block *
3572 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3573 {
3574 u_char snapblock[8];
3575
3576 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3577 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3578 snapblock[2] = 0x03; /* control = UI */
3579 snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
3580 snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
3581 snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
3582 snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
3583 snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
3584 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3585 }
3586
3587 /*
3588 * Generate code to match frames with an LLC header.
3589 */
3590 struct block *
3591 gen_llc(compiler_state_t *cstate)
3592 {
3593 struct block *b0, *b1;
3594
3595 switch (cstate->linktype) {
3596
3597 case DLT_EN10MB:
3598 /*
3599 * We check for an Ethernet type field less than
3600 * 1500, which means it's an 802.3 length field.
3601 */
3602 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3603 gen_not(b0);
3604
3605 /*
3606 * Now check for the purported DSAP and SSAP not being
3607 * 0xFF, to rule out NetWare-over-802.3.
3608 */
3609 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3610 gen_not(b1);
3611 gen_and(b0, b1);
3612 return b1;
3613
3614 case DLT_SUNATM:
3615 /*
3616 * We check for LLC traffic.
3617 */
3618 b0 = gen_atmtype_abbrev(cstate, A_LLC);
3619 return b0;
3620
3621 case DLT_IEEE802: /* Token Ring */
3622 /*
3623 * XXX - check for LLC frames.
3624 */
3625 return gen_true(cstate);
3626
3627 case DLT_FDDI:
3628 /*
3629 * XXX - check for LLC frames.
3630 */
3631 return gen_true(cstate);
3632
3633 case DLT_ATM_RFC1483:
3634 /*
3635 * For LLC encapsulation, these are defined to have an
3636 * 802.2 LLC header.
3637 *
3638 * For VC encapsulation, they don't, but there's no
3639 * way to check for that; the protocol used on the VC
3640 * is negotiated out of band.
3641 */
3642 return gen_true(cstate);
3643
3644 case DLT_IEEE802_11:
3645 case DLT_PRISM_HEADER:
3646 case DLT_IEEE802_11_RADIO:
3647 case DLT_IEEE802_11_RADIO_AVS:
3648 case DLT_PPI:
3649 /*
3650 * Check that we have a data frame.
3651 */
3652 b0 = gen_check_802_11_data_frame(cstate);
3653 return b0;
3654
3655 default:
3656 bpf_error(cstate, "'llc' not supported for linktype %d", cstate->linktype);
3657 /* NOTREACHED */
3658 }
3659 }
3660
3661 struct block *
3662 gen_llc_i(compiler_state_t *cstate)
3663 {
3664 struct block *b0, *b1;
3665 struct slist *s;
3666
3667 /*
3668 * Check whether this is an LLC frame.
3669 */
3670 b0 = gen_llc(cstate);
3671
3672 /*
3673 * Load the control byte and test the low-order bit; it must
3674 * be clear for I frames.
3675 */
3676 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3677 b1 = new_block(cstate, JMP(BPF_JSET));
3678 b1->s.k = 0x01;
3679 b1->stmts = s;
3680 gen_not(b1);
3681 gen_and(b0, b1);
3682 return b1;
3683 }
3684
3685 struct block *
3686 gen_llc_s(compiler_state_t *cstate)
3687 {
3688 struct block *b0, *b1;
3689
3690 /*
3691 * Check whether this is an LLC frame.
3692 */
3693 b0 = gen_llc(cstate);
3694
3695 /*
3696 * Now compare the low-order 2 bit of the control byte against
3697 * the appropriate value for S frames.
3698 */
3699 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3700 gen_and(b0, b1);
3701 return b1;
3702 }
3703
3704 struct block *
3705 gen_llc_u(compiler_state_t *cstate)
3706 {
3707 struct block *b0, *b1;
3708
3709 /*
3710 * Check whether this is an LLC frame.
3711 */
3712 b0 = gen_llc(cstate);
3713
3714 /*
3715 * Now compare the low-order 2 bit of the control byte against
3716 * the appropriate value for U frames.
3717 */
3718 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3719 gen_and(b0, b1);
3720 return b1;
3721 }
3722
3723 struct block *
3724 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3725 {
3726 struct block *b0, *b1;
3727
3728 /*
3729 * Check whether this is an LLC frame.
3730 */
3731 b0 = gen_llc(cstate);
3732
3733 /*
3734 * Now check for an S frame with the appropriate type.
3735 */
3736 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3737 gen_and(b0, b1);
3738 return b1;
3739 }
3740
3741 struct block *
3742 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3743 {
3744 struct block *b0, *b1;
3745
3746 /*
3747 * Check whether this is an LLC frame.
3748 */
3749 b0 = gen_llc(cstate);
3750
3751 /*
3752 * Now check for a U frame with the appropriate type.
3753 */
3754 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3755 gen_and(b0, b1);
3756 return b1;
3757 }
3758
3759 /*
3760 * Generate code to match a particular packet type, for link-layer types
3761 * using 802.2 LLC headers.
3762 *
3763 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3764 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3765 *
3766 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3767 * value, if <= ETHERMTU. We use that to determine whether to
3768 * match the DSAP or both DSAP and LSAP or to check the OUI and
3769 * protocol ID in a SNAP header.
3770 */
3771 static struct block *
3772 gen_llc_linktype(compiler_state_t *cstate, int proto)
3773 {
3774 /*
3775 * XXX - handle token-ring variable-length header.
3776 */
3777 switch (proto) {
3778
3779 case LLCSAP_IP:
3780 case LLCSAP_ISONS:
3781 case LLCSAP_NETBEUI:
3782 /*
3783 * XXX - should we check both the DSAP and the
3784 * SSAP, like this, or should we check just the
3785 * DSAP, as we do for other SAP values?
3786 */
3787 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3788 ((proto << 8) | proto));
3789
3790 case LLCSAP_IPX:
3791 /*
3792 * XXX - are there ever SNAP frames for IPX on
3793 * non-Ethernet 802.x networks?
3794 */
3795 return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3796 (bpf_int32)LLCSAP_IPX);
3797
3798 case ETHERTYPE_ATALK:
3799 /*
3800 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3801 * SNAP packets with an organization code of
3802 * 0x080007 (Apple, for Appletalk) and a protocol
3803 * type of ETHERTYPE_ATALK (Appletalk).
3804 *
3805 * XXX - check for an organization code of
3806 * encapsulated Ethernet as well?
3807 */
3808 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3809
3810 default:
3811 /*
3812 * XXX - we don't have to check for IPX 802.3
3813 * here, but should we check for the IPX Ethertype?
3814 */
3815 if (proto <= ETHERMTU) {
3816 /*
3817 * This is an LLC SAP value, so check
3818 * the DSAP.
3819 */
3820 return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3821 } else {
3822 /*
3823 * This is an Ethernet type; we assume that it's
3824 * unlikely that it'll appear in the right place
3825 * at random, and therefore check only the
3826 * location that would hold the Ethernet type
3827 * in a SNAP frame with an organization code of
3828 * 0x000000 (encapsulated Ethernet).
3829 *
3830 * XXX - if we were to check for the SNAP DSAP and
3831 * LSAP, as per XXX, and were also to check for an
3832 * organization code of 0x000000 (encapsulated
3833 * Ethernet), we'd do
3834 *
3835 * return gen_snap(cstate, 0x000000, proto);
3836 *
3837 * here; for now, we don't, as per the above.
3838 * I don't know whether it's worth the extra CPU
3839 * time to do the right check or not.
3840 */
3841 return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3842 }
3843 }
3844 }
3845
3846 static struct block *
3847 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3848 int dir, int proto, u_int src_off, u_int dst_off)
3849 {
3850 struct block *b0, *b1;
3851 u_int offset;
3852
3853 switch (dir) {
3854
3855 case Q_SRC:
3856 offset = src_off;
3857 break;
3858
3859 case Q_DST:
3860 offset = dst_off;
3861 break;
3862
3863 case Q_AND:
3864 b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3865 b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3866 gen_and(b0, b1);
3867 return b1;
3868
3869 case Q_OR:
3870 case Q_DEFAULT:
3871 b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3872 b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3873 gen_or(b0, b1);
3874 return b1;
3875
3876 default:
3877 abort();
3878 }
3879 b0 = gen_linktype(cstate, proto);
3880 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3881 gen_and(b0, b1);
3882 return b1;
3883 }
3884
3885 #ifdef INET6
3886 static struct block *
3887 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
3888 struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
3889 {
3890 struct block *b0, *b1;
3891 u_int offset;
3892 uint32_t *a, *m;
3893
3894 switch (dir) {
3895
3896 case Q_SRC:
3897 offset = src_off;
3898 break;
3899
3900 case Q_DST:
3901 offset = dst_off;
3902 break;
3903
3904 case Q_AND:
3905 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3906 b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3907 gen_and(b0, b1);
3908 return b1;
3909
3910 case Q_OR:
3911 case Q_DEFAULT:
3912 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3913 b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3914 gen_or(b0, b1);
3915 return b1;
3916
3917 default:
3918 abort();
3919 }
3920 /* this order is important */
3921 a = (uint32_t *)addr;
3922 m = (uint32_t *)mask;
3923 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3924 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3925 gen_and(b0, b1);
3926 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3927 gen_and(b0, b1);
3928 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3929 gen_and(b0, b1);
3930 b0 = gen_linktype(cstate, proto);
3931 gen_and(b0, b1);
3932 return b1;
3933 }
3934 #endif
3935
3936 static struct block *
3937 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3938 {
3939 register struct block *b0, *b1;
3940
3941 switch (dir) {
3942 case Q_SRC:
3943 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
3944
3945 case Q_DST:
3946 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
3947
3948 case Q_AND:
3949 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3950 b1 = gen_ehostop(cstate, eaddr, Q_DST);
3951 gen_and(b0, b1);
3952 return b1;
3953
3954 case Q_DEFAULT:
3955 case Q_OR:
3956 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3957 b1 = gen_ehostop(cstate, eaddr, Q_DST);
3958 gen_or(b0, b1);
3959 return b1;
3960
3961 case Q_ADDR1:
3962 bpf_error(cstate, "'addr1' is only supported on 802.11 with 802.11 headers");
3963 break;
3964
3965 case Q_ADDR2:
3966 bpf_error(cstate, "'addr2' is only supported on 802.11 with 802.11 headers");
3967 break;
3968
3969 case Q_ADDR3:
3970 bpf_error(cstate, "'addr3' is only supported on 802.11 with 802.11 headers");
3971 break;
3972
3973 case Q_ADDR4:
3974 bpf_error(cstate, "'addr4' is only supported on 802.11 with 802.11 headers");
3975 break;
3976
3977 case Q_RA:
3978 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
3979 break;
3980
3981 case Q_TA:
3982 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
3983 break;
3984 }
3985 abort();
3986 /* NOTREACHED */
3987 }
3988
3989 /*
3990 * Like gen_ehostop, but for DLT_FDDI
3991 */
3992 static struct block *
3993 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3994 {
3995 struct block *b0, *b1;
3996
3997 switch (dir) {
3998 case Q_SRC:
3999 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4000
4001 case Q_DST:
4002 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4003
4004 case Q_AND:
4005 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4006 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4007 gen_and(b0, b1);
4008 return b1;
4009
4010 case Q_DEFAULT:
4011 case Q_OR:
4012 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4013 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4014 gen_or(b0, b1);
4015 return b1;
4016
4017 case Q_ADDR1:
4018 bpf_error(cstate, "'addr1' is only supported on 802.11");
4019 break;
4020
4021 case Q_ADDR2:
4022 bpf_error(cstate, "'addr2' is only supported on 802.11");
4023 break;
4024
4025 case Q_ADDR3:
4026 bpf_error(cstate, "'addr3' is only supported on 802.11");
4027 break;
4028
4029 case Q_ADDR4:
4030 bpf_error(cstate, "'addr4' is only supported on 802.11");
4031 break;
4032
4033 case Q_RA:
4034 bpf_error(cstate, "'ra' is only supported on 802.11");
4035 break;
4036
4037 case Q_TA:
4038 bpf_error(cstate, "'ta' is only supported on 802.11");
4039 break;
4040 }
4041 abort();
4042 /* NOTREACHED */
4043 }
4044
4045 /*
4046 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4047 */
4048 static struct block *
4049 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4050 {
4051 register struct block *b0, *b1;
4052
4053 switch (dir) {
4054 case Q_SRC:
4055 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4056
4057 case Q_DST:
4058 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4059
4060 case Q_AND:
4061 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4062 b1 = gen_thostop(cstate, eaddr, Q_DST);
4063 gen_and(b0, b1);
4064 return b1;
4065
4066 case Q_DEFAULT:
4067 case Q_OR:
4068 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4069 b1 = gen_thostop(cstate, eaddr, Q_DST);
4070 gen_or(b0, b1);
4071 return b1;
4072
4073 case Q_ADDR1:
4074 bpf_error(cstate, "'addr1' is only supported on 802.11");
4075 break;
4076
4077 case Q_ADDR2:
4078 bpf_error(cstate, "'addr2' is only supported on 802.11");
4079 break;
4080
4081 case Q_ADDR3:
4082 bpf_error(cstate, "'addr3' is only supported on 802.11");
4083 break;
4084
4085 case Q_ADDR4:
4086 bpf_error(cstate, "'addr4' is only supported on 802.11");
4087 break;
4088
4089 case Q_RA:
4090 bpf_error(cstate, "'ra' is only supported on 802.11");
4091 break;
4092
4093 case Q_TA:
4094 bpf_error(cstate, "'ta' is only supported on 802.11");
4095 break;
4096 }
4097 abort();
4098 /* NOTREACHED */
4099 }
4100
4101 /*
4102 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4103 * various 802.11 + radio headers.
4104 */
4105 static struct block *
4106 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4107 {
4108 register struct block *b0, *b1, *b2;
4109 register struct slist *s;
4110
4111 #ifdef ENABLE_WLAN_FILTERING_PATCH
4112 /*
4113 * TODO GV 20070613
4114 * We need to disable the optimizer because the optimizer is buggy
4115 * and wipes out some LD instructions generated by the below
4116 * code to validate the Frame Control bits
4117 */
4118 cstate->no_optimize = 1;
4119 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4120
4121 switch (dir) {
4122 case Q_SRC:
4123 /*
4124 * Oh, yuk.
4125 *
4126 * For control frames, there is no SA.
4127 *
4128 * For management frames, SA is at an
4129 * offset of 10 from the beginning of
4130 * the packet.
4131 *
4132 * For data frames, SA is at an offset
4133 * of 10 from the beginning of the packet
4134 * if From DS is clear, at an offset of
4135 * 16 from the beginning of the packet
4136 * if From DS is set and To DS is clear,
4137 * and an offset of 24 from the beginning
4138 * of the packet if From DS is set and To DS
4139 * is set.
4140 */
4141
4142 /*
4143 * Generate the tests to be done for data frames
4144 * with From DS set.
4145 *
4146 * First, check for To DS set, i.e. check "link[1] & 0x01".
4147 */
4148 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4149 b1 = new_block(cstate, JMP(BPF_JSET));
4150 b1->s.k = 0x01; /* To DS */
4151 b1->stmts = s;
4152
4153 /*
4154 * If To DS is set, the SA is at 24.
4155 */
4156 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4157 gen_and(b1, b0);
4158
4159 /*
4160 * Now, check for To DS not set, i.e. check
4161 * "!(link[1] & 0x01)".
4162 */
4163 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4164 b2 = new_block(cstate, JMP(BPF_JSET));
4165 b2->s.k = 0x01; /* To DS */
4166 b2->stmts = s;
4167 gen_not(b2);
4168
4169 /*
4170 * If To DS is not set, the SA is at 16.
4171 */
4172 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4173 gen_and(b2, b1);
4174
4175 /*
4176 * Now OR together the last two checks. That gives
4177 * the complete set of checks for data frames with
4178 * From DS set.
4179 */
4180 gen_or(b1, b0);
4181
4182 /*
4183 * Now check for From DS being set, and AND that with
4184 * the ORed-together checks.
4185 */
4186 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4187 b1 = new_block(cstate, JMP(BPF_JSET));
4188 b1->s.k = 0x02; /* From DS */
4189 b1->stmts = s;
4190 gen_and(b1, b0);
4191
4192 /*
4193 * Now check for data frames with From DS not set.
4194 */
4195 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4196 b2 = new_block(cstate, JMP(BPF_JSET));
4197 b2->s.k = 0x02; /* From DS */
4198 b2->stmts = s;
4199 gen_not(b2);
4200
4201 /*
4202 * If From DS isn't set, the SA is at 10.
4203 */
4204 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4205 gen_and(b2, b1);
4206
4207 /*
4208 * Now OR together the checks for data frames with
4209 * From DS not set and for data frames with From DS
4210 * set; that gives the checks done for data frames.
4211 */
4212 gen_or(b1, b0);
4213
4214 /*
4215 * Now check for a data frame.
4216 * I.e, check "link[0] & 0x08".
4217 */
4218 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4219 b1 = new_block(cstate, JMP(BPF_JSET));
4220 b1->s.k = 0x08;
4221 b1->stmts = s;
4222
4223 /*
4224 * AND that with the checks done for data frames.
4225 */
4226 gen_and(b1, b0);
4227
4228 /*
4229 * If the high-order bit of the type value is 0, this
4230 * is a management frame.
4231 * I.e, check "!(link[0] & 0x08)".
4232 */
4233 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4234 b2 = new_block(cstate, JMP(BPF_JSET));
4235 b2->s.k = 0x08;
4236 b2->stmts = s;
4237 gen_not(b2);
4238
4239 /*
4240 * For management frames, the SA is at 10.
4241 */
4242 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4243 gen_and(b2, b1);
4244
4245 /*
4246 * OR that with the checks done for data frames.
4247 * That gives the checks done for management and
4248 * data frames.
4249 */
4250 gen_or(b1, b0);
4251
4252 /*
4253 * If the low-order bit of the type value is 1,
4254 * this is either a control frame or a frame
4255 * with a reserved type, and thus not a
4256 * frame with an SA.
4257 *
4258 * I.e., check "!(link[0] & 0x04)".
4259 */
4260 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4261 b1 = new_block(cstate, JMP(BPF_JSET));
4262 b1->s.k = 0x04;
4263 b1->stmts = s;
4264 gen_not(b1);
4265
4266 /*
4267 * AND that with the checks for data and management
4268 * frames.
4269 */
4270 gen_and(b1, b0);
4271 return b0;
4272
4273 case Q_DST:
4274 /*
4275 * Oh, yuk.
4276 *
4277 * For control frames, there is no DA.
4278 *
4279 * For management frames, DA is at an
4280 * offset of 4 from the beginning of
4281 * the packet.
4282 *
4283 * For data frames, DA is at an offset
4284 * of 4 from the beginning of the packet
4285 * if To DS is clear and at an offset of
4286 * 16 from the beginning of the packet
4287 * if To DS is set.
4288 */
4289
4290 /*
4291 * Generate the tests to be done for data frames.
4292 *
4293 * First, check for To DS set, i.e. "link[1] & 0x01".
4294 */
4295 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4296 b1 = new_block(cstate, JMP(BPF_JSET));
4297 b1->s.k = 0x01; /* To DS */
4298 b1->stmts = s;
4299
4300 /*
4301 * If To DS is set, the DA is at 16.
4302 */
4303 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4304 gen_and(b1, b0);
4305
4306 /*
4307 * Now, check for To DS not set, i.e. check
4308 * "!(link[1] & 0x01)".
4309 */
4310 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4311 b2 = new_block(cstate, JMP(BPF_JSET));
4312 b2->s.k = 0x01; /* To DS */
4313 b2->stmts = s;
4314 gen_not(b2);
4315
4316 /*
4317 * If To DS is not set, the DA is at 4.
4318 */
4319 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4320 gen_and(b2, b1);
4321
4322 /*
4323 * Now OR together the last two checks. That gives
4324 * the complete set of checks for data frames.
4325 */
4326 gen_or(b1, b0);
4327
4328 /*
4329 * Now check for a data frame.
4330 * I.e, check "link[0] & 0x08".
4331 */
4332 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4333 b1 = new_block(cstate, JMP(BPF_JSET));
4334 b1->s.k = 0x08;
4335 b1->stmts = s;
4336
4337 /*
4338 * AND that with the checks done for data frames.
4339 */
4340 gen_and(b1, b0);
4341
4342 /*
4343 * If the high-order bit of the type value is 0, this
4344 * is a management frame.
4345 * I.e, check "!(link[0] & 0x08)".
4346 */
4347 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4348 b2 = new_block(cstate, JMP(BPF_JSET));
4349 b2->s.k = 0x08;
4350 b2->stmts = s;
4351 gen_not(b2);
4352
4353 /*
4354 * For management frames, the DA is at 4.
4355 */
4356 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4357 gen_and(b2, b1);
4358
4359 /*
4360 * OR that with the checks done for data frames.
4361 * That gives the checks done for management and
4362 * data frames.
4363 */
4364 gen_or(b1, b0);
4365
4366 /*
4367 * If the low-order bit of the type value is 1,
4368 * this is either a control frame or a frame
4369 * with a reserved type, and thus not a
4370 * frame with an SA.
4371 *
4372 * I.e., check "!(link[0] & 0x04)".
4373 */
4374 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4375 b1 = new_block(cstate, JMP(BPF_JSET));
4376 b1->s.k = 0x04;
4377 b1->stmts = s;
4378 gen_not(b1);
4379
4380 /*
4381 * AND that with the checks for data and management
4382 * frames.
4383 */
4384 gen_and(b1, b0);
4385 return b0;
4386
4387 case Q_RA:
4388 /*
4389 * Not present in management frames; addr1 in other
4390 * frames.
4391 */
4392
4393 /*
4394 * If the high-order bit of the type value is 0, this
4395 * is a management frame.
4396 * I.e, check "(link[0] & 0x08)".
4397 */
4398 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4399 b1 = new_block(cstate, JMP(BPF_JSET));
4400 b1->s.k = 0x08;
4401 b1->stmts = s;
4402
4403 /*
4404 * Check addr1.
4405 */
4406 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4407
4408 /*
4409 * AND that with the check of addr1.
4410 */
4411 gen_and(b1, b0);
4412 return (b0);
4413
4414 case Q_TA:
4415 /*
4416 * Not present in management frames; addr2, if present,
4417 * in other frames.
4418 */
4419
4420 /*
4421 * Not present in CTS or ACK control frames.
4422 */
4423 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4424 IEEE80211_FC0_TYPE_MASK);
4425 gen_not(b0);
4426 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4427 IEEE80211_FC0_SUBTYPE_MASK);
4428 gen_not(b1);
4429 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4430 IEEE80211_FC0_SUBTYPE_MASK);
4431 gen_not(b2);
4432 gen_and(b1, b2);
4433 gen_or(b0, b2);
4434
4435 /*
4436 * If the high-order bit of the type value is 0, this
4437 * is a management frame.
4438 * I.e, check "(link[0] & 0x08)".
4439 */
4440 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4441 b1 = new_block(cstate, JMP(BPF_JSET));
4442 b1->s.k = 0x08;
4443 b1->stmts = s;
4444
4445 /*
4446 * AND that with the check for frames other than
4447 * CTS and ACK frames.
4448 */
4449 gen_and(b1, b2);
4450
4451 /*
4452 * Check addr2.
4453 */
4454 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4455 gen_and(b2, b1);
4456 return b1;
4457
4458 /*
4459 * XXX - add BSSID keyword?
4460 */
4461 case Q_ADDR1:
4462 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4463
4464 case Q_ADDR2:
4465 /*
4466 * Not present in CTS or ACK control frames.
4467 */
4468 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4469 IEEE80211_FC0_TYPE_MASK);
4470 gen_not(b0);
4471 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4472 IEEE80211_FC0_SUBTYPE_MASK);
4473 gen_not(b1);
4474 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4475 IEEE80211_FC0_SUBTYPE_MASK);
4476 gen_not(b2);
4477 gen_and(b1, b2);
4478 gen_or(b0, b2);
4479 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4480 gen_and(b2, b1);
4481 return b1;
4482
4483 case Q_ADDR3:
4484 /*
4485 * Not present in control frames.
4486 */
4487 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4488 IEEE80211_FC0_TYPE_MASK);
4489 gen_not(b0);
4490 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4491 gen_and(b0, b1);
4492 return b1;
4493
4494 case Q_ADDR4:
4495 /*
4496 * Present only if the direction mask has both "From DS"
4497 * and "To DS" set. Neither control frames nor management
4498 * frames should have both of those set, so we don't
4499 * check the frame type.
4500 */
4501 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4502 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4503 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4504 gen_and(b0, b1);
4505 return b1;
4506
4507 case Q_AND:
4508 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4509 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4510 gen_and(b0, b1);
4511 return b1;
4512
4513 case Q_DEFAULT:
4514 case Q_OR:
4515 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4516 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4517 gen_or(b0, b1);
4518 return b1;
4519 }
4520 abort();
4521 /* NOTREACHED */
4522 }
4523
4524 /*
4525 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4526 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4527 * as the RFC states.)
4528 */
4529 static struct block *
4530 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4531 {
4532 register struct block *b0, *b1;
4533
4534 switch (dir) {
4535 case Q_SRC:
4536 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4537
4538 case Q_DST:
4539 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4540
4541 case Q_AND:
4542 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4543 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4544 gen_and(b0, b1);
4545 return b1;
4546
4547 case Q_DEFAULT:
4548 case Q_OR:
4549 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4550 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4551 gen_or(b0, b1);
4552 return b1;
4553
4554 case Q_ADDR1:
4555 bpf_error(cstate, "'addr1' is only supported on 802.11");
4556 break;
4557
4558 case Q_ADDR2:
4559 bpf_error(cstate, "'addr2' is only supported on 802.11");
4560 break;
4561
4562 case Q_ADDR3:
4563 bpf_error(cstate, "'addr3' is only supported on 802.11");
4564 break;
4565
4566 case Q_ADDR4:
4567 bpf_error(cstate, "'addr4' is only supported on 802.11");
4568 break;
4569
4570 case Q_RA:
4571 bpf_error(cstate, "'ra' is only supported on 802.11");
4572 break;
4573
4574 case Q_TA:
4575 bpf_error(cstate, "'ta' is only supported on 802.11");
4576 break;
4577 }
4578 abort();
4579 /* NOTREACHED */
4580 }
4581
4582 /*
4583 * This is quite tricky because there may be pad bytes in front of the
4584 * DECNET header, and then there are two possible data packet formats that
4585 * carry both src and dst addresses, plus 5 packet types in a format that
4586 * carries only the src node, plus 2 types that use a different format and
4587 * also carry just the src node.
4588 *
4589 * Yuck.
4590 *
4591 * Instead of doing those all right, we just look for data packets with
4592 * 0 or 1 bytes of padding. If you want to look at other packets, that
4593 * will require a lot more hacking.
4594 *
4595 * To add support for filtering on DECNET "areas" (network numbers)
4596 * one would want to add a "mask" argument to this routine. That would
4597 * make the filter even more inefficient, although one could be clever
4598 * and not generate masking instructions if the mask is 0xFFFF.
4599 */
4600 static struct block *
4601 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4602 {
4603 struct block *b0, *b1, *b2, *tmp;
4604 u_int offset_lh; /* offset if long header is received */
4605 u_int offset_sh; /* offset if short header is received */
4606
4607 switch (dir) {
4608
4609 case Q_DST:
4610 offset_sh = 1; /* follows flags */
4611 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4612 break;
4613
4614 case Q_SRC:
4615 offset_sh = 3; /* follows flags, dstnode */
4616 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4617 break;
4618
4619 case Q_AND:
4620 /* Inefficient because we do our Calvinball dance twice */
4621 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4622 b1 = gen_dnhostop(cstate, addr, Q_DST);
4623 gen_and(b0, b1);
4624 return b1;
4625
4626 case Q_OR:
4627 case Q_DEFAULT:
4628 /* Inefficient because we do our Calvinball dance twice */
4629 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4630 b1 = gen_dnhostop(cstate, addr, Q_DST);
4631 gen_or(b0, b1);
4632 return b1;
4633
4634 case Q_ISO:
4635 bpf_error(cstate, "ISO host filtering not implemented");
4636
4637 default:
4638 abort();
4639 }
4640 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4641 /* Check for pad = 1, long header case */
4642 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4643 (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4644 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4645 BPF_H, (bpf_int32)ntohs((u_short)addr));
4646 gen_and(tmp, b1);
4647 /* Check for pad = 0, long header case */
4648 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4649 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4650 gen_and(tmp, b2);
4651 gen_or(b2, b1);
4652 /* Check for pad = 1, short header case */
4653 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4654 (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4655 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4656 gen_and(tmp, b2);
4657 gen_or(b2, b1);
4658 /* Check for pad = 0, short header case */
4659 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4660 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4661 gen_and(tmp, b2);
4662 gen_or(b2, b1);
4663
4664 /* Combine with test for cstate->linktype */
4665 gen_and(b0, b1);
4666 return b1;
4667 }
4668
4669 /*
4670 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4671 * test the bottom-of-stack bit, and then check the version number
4672 * field in the IP header.
4673 */
4674 static struct block *
4675 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4676 {
4677 struct block *b0, *b1;
4678
4679 switch (proto) {
4680
4681 case Q_IP:
4682 /* match the bottom-of-stack bit */
4683 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4684 /* match the IPv4 version number */
4685 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4686 gen_and(b0, b1);
4687 return b1;
4688
4689 case Q_IPV6:
4690 /* match the bottom-of-stack bit */
4691 b0 = gen_mcmp(cstate, OR_LINKPL, -2, BPF_B, 0x01, 0x01);
4692 /* match the IPv4 version number */
4693 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4694 gen_and(b0, b1);
4695 return b1;
4696
4697 default:
4698 abort();
4699 }
4700 }
4701
4702 static struct block *
4703 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4704 int proto, int dir, int type)
4705 {
4706 struct block *b0, *b1;
4707 const char *typestr;
4708
4709 if (type == Q_NET)
4710 typestr = "net";
4711 else
4712 typestr = "host";
4713
4714 switch (proto) {
4715
4716 case Q_DEFAULT:
4717 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4718 /*
4719 * Only check for non-IPv4 addresses if we're not
4720 * checking MPLS-encapsulated packets.
4721 */
4722 if (cstate->label_stack_depth == 0) {
4723 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4724 gen_or(b0, b1);
4725 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4726 gen_or(b1, b0);
4727 }
4728 return b0;
4729
4730 case Q_IP:
4731 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4732
4733 case Q_RARP:
4734 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4735
4736 case Q_ARP:
4737 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4738
4739 case Q_TCP:
4740 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4741
4742 case Q_SCTP:
4743 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4744
4745 case Q_UDP:
4746 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4747
4748 case Q_ICMP:
4749 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4750
4751 case Q_IGMP:
4752 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4753
4754 case Q_IGRP:
4755 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4756
4757 case Q_PIM:
4758 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4759
4760 case Q_VRRP:
4761 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4762
4763 case Q_CARP:
4764 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4765
4766 case Q_ATALK:
4767 bpf_error(cstate, "ATALK host filtering not implemented");
4768
4769 case Q_AARP:
4770 bpf_error(cstate, "AARP host filtering not implemented");
4771
4772 case Q_DECNET:
4773 return gen_dnhostop(cstate, addr, dir);
4774
4775 case Q_SCA:
4776 bpf_error(cstate, "SCA host filtering not implemented");
4777
4778 case Q_LAT:
4779 bpf_error(cstate, "LAT host filtering not implemented");
4780
4781 case Q_MOPDL:
4782 bpf_error(cstate, "MOPDL host filtering not implemented");
4783
4784 case Q_MOPRC:
4785 bpf_error(cstate, "MOPRC host filtering not implemented");
4786
4787 case Q_IPV6:
4788 bpf_error(cstate, "'ip6' modifier applied to ip host");
4789
4790 case Q_ICMPV6:
4791 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4792
4793 case Q_AH:
4794 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4795
4796 case Q_ESP:
4797 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4798
4799 case Q_ISO:
4800 bpf_error(cstate, "ISO host filtering not implemented");
4801
4802 case Q_ESIS:
4803 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4804
4805 case Q_ISIS:
4806 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4807
4808 case Q_CLNP:
4809 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4810
4811 case Q_STP:
4812 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4813
4814 case Q_IPX:
4815 bpf_error(cstate, "IPX host filtering not implemented");
4816
4817 case Q_NETBEUI:
4818 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4819
4820 case Q_RADIO:
4821 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4822
4823 default:
4824 abort();
4825 }
4826 /* NOTREACHED */
4827 }
4828
4829 #ifdef INET6
4830 static struct block *
4831 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
4832 struct in6_addr *mask, int proto, int dir, int type)
4833 {
4834 const char *typestr;
4835
4836 if (type == Q_NET)
4837 typestr = "net";
4838 else
4839 typestr = "host";
4840
4841 switch (proto) {
4842
4843 case Q_DEFAULT:
4844 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
4845
4846 case Q_LINK:
4847 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
4848
4849 case Q_IP:
4850 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
4851
4852 case Q_RARP:
4853 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
4854
4855 case Q_ARP:
4856 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
4857
4858 case Q_SCTP:
4859 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4860
4861 case Q_TCP:
4862 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4863
4864 case Q_UDP:
4865 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4866
4867 case Q_ICMP:
4868 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4869
4870 case Q_IGMP:
4871 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4872
4873 case Q_IGRP:
4874 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4875
4876 case Q_PIM:
4877 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4878
4879 case Q_VRRP:
4880 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4881
4882 case Q_CARP:
4883 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4884
4885 case Q_ATALK:
4886 bpf_error(cstate, "ATALK host filtering not implemented");
4887
4888 case Q_AARP:
4889 bpf_error(cstate, "AARP host filtering not implemented");
4890
4891 case Q_DECNET:
4892 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
4893
4894 case Q_SCA:
4895 bpf_error(cstate, "SCA host filtering not implemented");
4896
4897 case Q_LAT:
4898 bpf_error(cstate, "LAT host filtering not implemented");
4899
4900 case Q_MOPDL:
4901 bpf_error(cstate, "MOPDL host filtering not implemented");
4902
4903 case Q_MOPRC:
4904 bpf_error(cstate, "MOPRC host filtering not implemented");
4905
4906 case Q_IPV6:
4907 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4908
4909 case Q_ICMPV6:
4910 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4911
4912 case Q_AH:
4913 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4914
4915 case Q_ESP:
4916 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4917
4918 case Q_ISO:
4919 bpf_error(cstate, "ISO host filtering not implemented");
4920
4921 case Q_ESIS:
4922 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4923
4924 case Q_ISIS:
4925 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4926
4927 case Q_CLNP:
4928 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4929
4930 case Q_STP:
4931 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4932
4933 case Q_IPX:
4934 bpf_error(cstate, "IPX host filtering not implemented");
4935
4936 case Q_NETBEUI:
4937 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4938
4939 case Q_RADIO:
4940 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4941
4942 default:
4943 abort();
4944 }
4945 /* NOTREACHED */
4946 }
4947 #endif
4948
4949 #ifndef INET6
4950 static struct block *
4951 gen_gateway(compiler_state_t *cstate, const u_char *eaddr, bpf_u_int32 **alist,
4952 int proto, int dir)
4953 {
4954 struct block *b0, *b1, *tmp;
4955
4956 if (dir != 0)
4957 bpf_error(cstate, "direction applied to 'gateway'");
4958
4959 switch (proto) {
4960 case Q_DEFAULT:
4961 case Q_IP:
4962 case Q_ARP:
4963 case Q_RARP:
4964 switch (cstate->linktype) {
4965 case DLT_EN10MB:
4966 case DLT_NETANALYZER:
4967 case DLT_NETANALYZER_TRANSPARENT:
4968 b1 = gen_prevlinkhdr_check(cstate);
4969 b0 = gen_ehostop(cstate, eaddr, Q_OR);
4970 if (b1 != NULL)
4971 gen_and(b1, b0);
4972 break;
4973 case DLT_FDDI:
4974 b0 = gen_fhostop(cstate, eaddr, Q_OR);
4975 break;
4976 case DLT_IEEE802:
4977 b0 = gen_thostop(cstate, eaddr, Q_OR);
4978 break;
4979 case DLT_IEEE802_11:
4980 case DLT_PRISM_HEADER:
4981 case DLT_IEEE802_11_RADIO_AVS:
4982 case DLT_IEEE802_11_RADIO:
4983 case DLT_PPI:
4984 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
4985 break;
4986 case DLT_SUNATM:
4987 /*
4988 * This is LLC-multiplexed traffic; if it were
4989 * LANE, cstate->linktype would have been set to
4990 * DLT_EN10MB.
4991 */
4992 bpf_error(cstate,
4993 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4994 break;
4995 case DLT_IP_OVER_FC:
4996 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
4997 break;
4998 default:
4999 bpf_error(cstate,
5000 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5001 }
5002 b1 = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR, Q_HOST);
5003 while (*alist) {
5004 tmp = gen_host(cstate, **alist++, 0xffffffff, proto, Q_OR,
5005 Q_HOST);
5006 gen_or(b1, tmp);
5007 b1 = tmp;
5008 }
5009 gen_not(b1);
5010 gen_and(b0, b1);
5011 return b1;
5012 }
5013 bpf_error(cstate, "illegal modifier of 'gateway'");
5014 /* NOTREACHED */
5015 }
5016 #endif
5017
5018 struct block *
5019 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5020 {
5021 struct block *b0;
5022 struct block *b1;
5023
5024 switch (proto) {
5025
5026 case Q_SCTP:
5027 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
5028 b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
5029 gen_or(b0, b1);
5030 break;
5031
5032 case Q_TCP:
5033 b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
5034 b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
5035 gen_or(b0, b1);
5036 break;
5037
5038 case Q_UDP:
5039 b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5040 b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5041 gen_or(b0, b1);
5042 break;
5043
5044 case Q_ICMP:
5045 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5046 break;
5047
5048 #ifndef IPPROTO_IGMP
5049 #define IPPROTO_IGMP 2
5050 #endif
5051
5052 case Q_IGMP:
5053 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5054 break;
5055
5056 #ifndef IPPROTO_IGRP
5057 #define IPPROTO_IGRP 9
5058 #endif
5059 case Q_IGRP:
5060 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5061 break;
5062
5063 #ifndef IPPROTO_PIM
5064 #define IPPROTO_PIM 103
5065 #endif
5066
5067 case Q_PIM:
5068 b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5069 b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5070 gen_or(b0, b1);
5071 break;
5072
5073 #ifndef IPPROTO_VRRP
5074 #define IPPROTO_VRRP 112
5075 #endif
5076
5077 case Q_VRRP:
5078 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5079 break;
5080
5081 #ifndef IPPROTO_CARP
5082 #define IPPROTO_CARP 112
5083 #endif
5084
5085 case Q_CARP:
5086 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5087 break;
5088
5089 case Q_IP:
5090 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5091 break;
5092
5093 case Q_ARP:
5094 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5095 break;
5096
5097 case Q_RARP:
5098 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5099 break;
5100
5101 case Q_LINK:
5102 bpf_error(cstate, "link layer applied in wrong context");
5103
5104 case Q_ATALK:
5105 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5106 break;
5107
5108 case Q_AARP:
5109 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5110 break;
5111
5112 case Q_DECNET:
5113 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5114 break;
5115
5116 case Q_SCA:
5117 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5118 break;
5119
5120 case Q_LAT:
5121 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5122 break;
5123
5124 case Q_MOPDL:
5125 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5126 break;
5127
5128 case Q_MOPRC:
5129 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5130 break;
5131
5132 case Q_IPV6:
5133 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5134 break;
5135
5136 #ifndef IPPROTO_ICMPV6
5137 #define IPPROTO_ICMPV6 58
5138 #endif
5139 case Q_ICMPV6:
5140 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5141 break;
5142
5143 #ifndef IPPROTO_AH
5144 #define IPPROTO_AH 51
5145 #endif
5146 case Q_AH:
5147 b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5148 b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5149 gen_or(b0, b1);
5150 break;
5151
5152 #ifndef IPPROTO_ESP
5153 #define IPPROTO_ESP 50
5154 #endif
5155 case Q_ESP:
5156 b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5157 b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5158 gen_or(b0, b1);
5159 break;
5160
5161 case Q_ISO:
5162 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5163 break;
5164
5165 case Q_ESIS:
5166 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5167 break;
5168
5169 case Q_ISIS:
5170 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5171 break;
5172
5173 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5174 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5175 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5176 gen_or(b0, b1);
5177 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5178 gen_or(b0, b1);
5179 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5180 gen_or(b0, b1);
5181 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5182 gen_or(b0, b1);
5183 break;
5184
5185 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5186 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5187 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5188 gen_or(b0, b1);
5189 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5190 gen_or(b0, b1);
5191 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5192 gen_or(b0, b1);
5193 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5194 gen_or(b0, b1);
5195 break;
5196
5197 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5198 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5199 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5200 gen_or(b0, b1);
5201 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5202 gen_or(b0, b1);
5203 break;
5204
5205 case Q_ISIS_LSP:
5206 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5207 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5208 gen_or(b0, b1);
5209 break;
5210
5211 case Q_ISIS_SNP:
5212 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5213 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5214 gen_or(b0, b1);
5215 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5216 gen_or(b0, b1);
5217 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5218 gen_or(b0, b1);
5219 break;
5220
5221 case Q_ISIS_CSNP:
5222 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5223 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5224 gen_or(b0, b1);
5225 break;
5226
5227 case Q_ISIS_PSNP:
5228 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5229 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5230 gen_or(b0, b1);
5231 break;
5232
5233 case Q_CLNP:
5234 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5235 break;
5236
5237 case Q_STP:
5238 b1 = gen_linktype(cstate, LLCSAP_8021D);
5239 break;
5240
5241 case Q_IPX:
5242 b1 = gen_linktype(cstate, LLCSAP_IPX);
5243 break;
5244
5245 case Q_NETBEUI:
5246 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5247 break;
5248
5249 case Q_RADIO:
5250 bpf_error(cstate, "'radio' is not a valid protocol type");
5251
5252 default:
5253 abort();
5254 }
5255 return b1;
5256 }
5257
5258 static struct block *
5259 gen_ipfrag(compiler_state_t *cstate)
5260 {
5261 struct slist *s;
5262 struct block *b;
5263
5264 /* not IPv4 frag other than the first frag */
5265 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5266 b = new_block(cstate, JMP(BPF_JSET));
5267 b->s.k = 0x1fff;
5268 b->stmts = s;
5269 gen_not(b);
5270
5271 return b;
5272 }
5273
5274 /*
5275 * Generate a comparison to a port value in the transport-layer header
5276 * at the specified offset from the beginning of that header.
5277 *
5278 * XXX - this handles a variable-length prefix preceding the link-layer
5279 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5280 * variable-length link-layer headers (such as Token Ring or 802.11
5281 * headers).
5282 */
5283 static struct block *
5284 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5285 {
5286 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5287 }
5288
5289 static struct block *
5290 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5291 {
5292 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5293 }
5294
5295 struct block *
5296 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5297 {
5298 struct block *b0, *b1, *tmp;
5299
5300 /* ip proto 'proto' and not a fragment other than the first fragment */
5301 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5302 b0 = gen_ipfrag(cstate);
5303 gen_and(tmp, b0);
5304
5305 switch (dir) {
5306 case Q_SRC:
5307 b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5308 break;
5309
5310 case Q_DST:
5311 b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5312 break;
5313
5314 case Q_OR:
5315 case Q_DEFAULT:
5316 tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5317 b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5318 gen_or(tmp, b1);
5319 break;
5320
5321 case Q_AND:
5322 tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5323 b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5324 gen_and(tmp, b1);
5325 break;
5326
5327 default:
5328 abort();
5329 }
5330 gen_and(b0, b1);
5331
5332 return b1;
5333 }
5334
5335 static struct block *
5336 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5337 {
5338 struct block *b0, *b1, *tmp;
5339
5340 /*
5341 * ether proto ip
5342 *
5343 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5344 * not LLC encapsulation with LLCSAP_IP.
5345 *
5346 * For IEEE 802 networks - which includes 802.5 token ring
5347 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5348 * says that SNAP encapsulation is used, not LLC encapsulation
5349 * with LLCSAP_IP.
5350 *
5351 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5352 * RFC 2225 say that SNAP encapsulation is used, not LLC
5353 * encapsulation with LLCSAP_IP.
5354 *
5355 * So we always check for ETHERTYPE_IP.
5356 */
5357 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5358
5359 switch (ip_proto) {
5360 case IPPROTO_UDP:
5361 case IPPROTO_TCP:
5362 case IPPROTO_SCTP:
5363 b1 = gen_portop(cstate, port, ip_proto, dir);
5364 break;
5365
5366 case PROTO_UNDEF:
5367 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5368 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5369 gen_or(tmp, b1);
5370 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5371 gen_or(tmp, b1);
5372 break;
5373
5374 default:
5375 abort();
5376 }
5377 gen_and(b0, b1);
5378 return b1;
5379 }
5380
5381 struct block *
5382 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5383 {
5384 struct block *b0, *b1, *tmp;
5385
5386 /* ip6 proto 'proto' */
5387 /* XXX - catch the first fragment of a fragmented packet? */
5388 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5389
5390 switch (dir) {
5391 case Q_SRC:
5392 b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5393 break;
5394
5395 case Q_DST:
5396 b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5397 break;
5398
5399 case Q_OR:
5400 case Q_DEFAULT:
5401 tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5402 b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5403 gen_or(tmp, b1);
5404 break;
5405
5406 case Q_AND:
5407 tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5408 b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5409 gen_and(tmp, b1);
5410 break;
5411
5412 default:
5413 abort();
5414 }
5415 gen_and(b0, b1);
5416
5417 return b1;
5418 }
5419
5420 static struct block *
5421 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5422 {
5423 struct block *b0, *b1, *tmp;
5424
5425 /* link proto ip6 */
5426 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5427
5428 switch (ip_proto) {
5429 case IPPROTO_UDP:
5430 case IPPROTO_TCP:
5431 case IPPROTO_SCTP:
5432 b1 = gen_portop6(cstate, port, ip_proto, dir);
5433 break;
5434
5435 case PROTO_UNDEF:
5436 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5437 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5438 gen_or(tmp, b1);
5439 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5440 gen_or(tmp, b1);
5441 break;
5442
5443 default:
5444 abort();
5445 }
5446 gen_and(b0, b1);
5447 return b1;
5448 }
5449
5450 /* gen_portrange code */
5451 static struct block *
5452 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5453 bpf_int32 v2)
5454 {
5455 struct block *b1, *b2;
5456
5457 if (v1 > v2) {
5458 /*
5459 * Reverse the order of the ports, so v1 is the lower one.
5460 */
5461 bpf_int32 vtemp;
5462
5463 vtemp = v1;
5464 v1 = v2;
5465 v2 = vtemp;
5466 }
5467
5468 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5469 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5470
5471 gen_and(b1, b2);
5472
5473 return b2;
5474 }
5475
5476 struct block *
5477 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5478 int dir)
5479 {
5480 struct block *b0, *b1, *tmp;
5481
5482 /* ip proto 'proto' and not a fragment other than the first fragment */
5483 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5484 b0 = gen_ipfrag(cstate);
5485 gen_and(tmp, b0);
5486
5487 switch (dir) {
5488 case Q_SRC:
5489 b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5490 break;
5491
5492 case Q_DST:
5493 b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5494 break;
5495
5496 case Q_OR:
5497 case Q_DEFAULT:
5498 tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5499 b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5500 gen_or(tmp, b1);
5501 break;
5502
5503 case Q_AND:
5504 tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5505 b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5506 gen_and(tmp, b1);
5507 break;
5508
5509 default:
5510 abort();
5511 }
5512 gen_and(b0, b1);
5513
5514 return b1;
5515 }
5516
5517 static struct block *
5518 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5519 int dir)
5520 {
5521 struct block *b0, *b1, *tmp;
5522
5523 /* link proto ip */
5524 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5525
5526 switch (ip_proto) {
5527 case IPPROTO_UDP:
5528 case IPPROTO_TCP:
5529 case IPPROTO_SCTP:
5530 b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5531 break;
5532
5533 case PROTO_UNDEF:
5534 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5535 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5536 gen_or(tmp, b1);
5537 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5538 gen_or(tmp, b1);
5539 break;
5540
5541 default:
5542 abort();
5543 }
5544 gen_and(b0, b1);
5545 return b1;
5546 }
5547
5548 static struct block *
5549 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5550 bpf_int32 v2)
5551 {
5552 struct block *b1, *b2;
5553
5554 if (v1 > v2) {
5555 /*
5556 * Reverse the order of the ports, so v1 is the lower one.
5557 */
5558 bpf_int32 vtemp;
5559
5560 vtemp = v1;
5561 v1 = v2;
5562 v2 = vtemp;
5563 }
5564
5565 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5566 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5567
5568 gen_and(b1, b2);
5569
5570 return b2;
5571 }
5572
5573 struct block *
5574 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5575 int dir)
5576 {
5577 struct block *b0, *b1, *tmp;
5578
5579 /* ip6 proto 'proto' */
5580 /* XXX - catch the first fragment of a fragmented packet? */
5581 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5582
5583 switch (dir) {
5584 case Q_SRC:
5585 b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5586 break;
5587
5588 case Q_DST:
5589 b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5590 break;
5591
5592 case Q_OR:
5593 case Q_DEFAULT:
5594 tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5595 b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5596 gen_or(tmp, b1);
5597 break;
5598
5599 case Q_AND:
5600 tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5601 b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5602 gen_and(tmp, b1);
5603 break;
5604
5605 default:
5606 abort();
5607 }
5608 gen_and(b0, b1);
5609
5610 return b1;
5611 }
5612
5613 static struct block *
5614 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5615 int dir)
5616 {
5617 struct block *b0, *b1, *tmp;
5618
5619 /* link proto ip6 */
5620 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5621
5622 switch (ip_proto) {
5623 case IPPROTO_UDP:
5624 case IPPROTO_TCP:
5625 case IPPROTO_SCTP:
5626 b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5627 break;
5628
5629 case PROTO_UNDEF:
5630 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5631 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5632 gen_or(tmp, b1);
5633 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5634 gen_or(tmp, b1);
5635 break;
5636
5637 default:
5638 abort();
5639 }
5640 gen_and(b0, b1);
5641 return b1;
5642 }
5643
5644 static int
5645 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5646 {
5647 register int v;
5648
5649 switch (proto) {
5650
5651 case Q_DEFAULT:
5652 case Q_IP:
5653 case Q_IPV6:
5654 v = pcap_nametoproto(name);
5655 if (v == PROTO_UNDEF)
5656 bpf_error(cstate, "unknown ip proto '%s'", name);
5657 break;
5658
5659 case Q_LINK:
5660 /* XXX should look up h/w protocol type based on cstate->linktype */
5661 v = pcap_nametoeproto(name);
5662 if (v == PROTO_UNDEF) {
5663 v = pcap_nametollc(name);
5664 if (v == PROTO_UNDEF)
5665 bpf_error(cstate, "unknown ether proto '%s'", name);
5666 }
5667 break;
5668
5669 case Q_ISO:
5670 if (strcmp(name, "esis") == 0)
5671 v = ISO9542_ESIS;
5672 else if (strcmp(name, "isis") == 0)
5673 v = ISO10589_ISIS;
5674 else if (strcmp(name, "clnp") == 0)
5675 v = ISO8473_CLNP;
5676 else
5677 bpf_error(cstate, "unknown osi proto '%s'", name);
5678 break;
5679
5680 default:
5681 v = PROTO_UNDEF;
5682 break;
5683 }
5684 return v;
5685 }
5686
5687 #if 0
5688 struct stmt *
5689 gen_joinsp(s, n)
5690 struct stmt **s;
5691 int n;
5692 {
5693 return NULL;
5694 }
5695 #endif
5696
5697 static struct block *
5698 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
5699 {
5700 #ifdef NO_PROTOCHAIN
5701 return gen_proto(cstate, v, proto, dir);
5702 #else
5703 struct block *b0, *b;
5704 struct slist *s[100];
5705 int fix2, fix3, fix4, fix5;
5706 int ahcheck, again, end;
5707 int i, max;
5708 int reg2 = alloc_reg(cstate);
5709
5710 memset(s, 0, sizeof(s));
5711 fix3 = fix4 = fix5 = 0;
5712
5713 switch (proto) {
5714 case Q_IP:
5715 case Q_IPV6:
5716 break;
5717 case Q_DEFAULT:
5718 b0 = gen_protochain(cstate, v, Q_IP, dir);
5719 b = gen_protochain(cstate, v, Q_IPV6, dir);
5720 gen_or(b0, b);
5721 return b;
5722 default:
5723 bpf_error(cstate, "bad protocol applied for 'protochain'");
5724 /*NOTREACHED*/
5725 }
5726
5727 /*
5728 * We don't handle variable-length prefixes before the link-layer
5729 * header, or variable-length link-layer headers, here yet.
5730 * We might want to add BPF instructions to do the protochain
5731 * work, to simplify that and, on platforms that have a BPF
5732 * interpreter with the new instructions, let the filtering
5733 * be done in the kernel. (We already require a modified BPF
5734 * engine to do the protochain stuff, to support backward
5735 * branches, and backward branch support is unlikely to appear
5736 * in kernel BPF engines.)
5737 */
5738 if (cstate->off_linkpl.is_variable)
5739 bpf_error(cstate, "'protochain' not supported with variable length headers");
5740
5741 cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */
5742
5743 /*
5744 * s[0] is a dummy entry to protect other BPF insn from damage
5745 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5746 * hard to find interdependency made by jump table fixup.
5747 */
5748 i = 0;
5749 s[i] = new_stmt(cstate, 0); /*dummy*/
5750 i++;
5751
5752 switch (proto) {
5753 case Q_IP:
5754 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5755
5756 /* A = ip->ip_p */
5757 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5758 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
5759 i++;
5760 /* X = ip->ip_hl << 2 */
5761 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
5762 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5763 i++;
5764 break;
5765
5766 case Q_IPV6:
5767 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5768
5769 /* A = ip6->ip_nxt */
5770 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5771 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
5772 i++;
5773 /* X = sizeof(struct ip6_hdr) */
5774 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
5775 s[i]->s.k = 40;
5776 i++;
5777 break;
5778
5779 default:
5780 bpf_error(cstate, "unsupported proto to gen_protochain");
5781 /*NOTREACHED*/
5782 }
5783
5784 /* again: if (A == v) goto end; else fall through; */
5785 again = i;
5786 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5787 s[i]->s.k = v;
5788 s[i]->s.jt = NULL; /*later*/
5789 s[i]->s.jf = NULL; /*update in next stmt*/
5790 fix5 = i;
5791 i++;
5792
5793 #ifndef IPPROTO_NONE
5794 #define IPPROTO_NONE 59
5795 #endif
5796 /* if (A == IPPROTO_NONE) goto end */
5797 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5798 s[i]->s.jt = NULL; /*later*/
5799 s[i]->s.jf = NULL; /*update in next stmt*/
5800 s[i]->s.k = IPPROTO_NONE;
5801 s[fix5]->s.jf = s[i];
5802 fix2 = i;
5803 i++;
5804
5805 if (proto == Q_IPV6) {
5806 int v6start, v6end, v6advance, j;
5807
5808 v6start = i;
5809 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5810 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5811 s[i]->s.jt = NULL; /*later*/
5812 s[i]->s.jf = NULL; /*update in next stmt*/
5813 s[i]->s.k = IPPROTO_HOPOPTS;
5814 s[fix2]->s.jf = s[i];
5815 i++;
5816 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5817 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5818 s[i]->s.jt = NULL; /*later*/
5819 s[i]->s.jf = NULL; /*update in next stmt*/
5820 s[i]->s.k = IPPROTO_DSTOPTS;
5821 i++;
5822 /* if (A == IPPROTO_ROUTING) goto v6advance */
5823 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5824 s[i]->s.jt = NULL; /*later*/
5825 s[i]->s.jf = NULL; /*update in next stmt*/
5826 s[i]->s.k = IPPROTO_ROUTING;
5827 i++;
5828 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5829 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5830 s[i]->s.jt = NULL; /*later*/
5831 s[i]->s.jf = NULL; /*later*/
5832 s[i]->s.k = IPPROTO_FRAGMENT;
5833 fix3 = i;
5834 v6end = i;
5835 i++;
5836
5837 /* v6advance: */
5838 v6advance = i;
5839
5840 /*
5841 * in short,
5842 * A = P[X + packet head];
5843 * X = X + (P[X + packet head + 1] + 1) * 8;
5844 */
5845 /* A = P[X + packet head] */
5846 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5847 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5848 i++;
5849 /* MEM[reg2] = A */
5850 s[i] = new_stmt(cstate, BPF_ST);
5851 s[i]->s.k = reg2;
5852 i++;
5853 /* A = P[X + packet head + 1]; */
5854 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5855 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
5856 i++;
5857 /* A += 1 */
5858 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5859 s[i]->s.k = 1;
5860 i++;
5861 /* A *= 8 */
5862 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5863 s[i]->s.k = 8;
5864 i++;
5865 /* A += X */
5866 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
5867 s[i]->s.k = 0;
5868 i++;
5869 /* X = A; */
5870 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5871 i++;
5872 /* A = MEM[reg2] */
5873 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5874 s[i]->s.k = reg2;
5875 i++;
5876
5877 /* goto again; (must use BPF_JA for backward jump) */
5878 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5879 s[i]->s.k = again - i - 1;
5880 s[i - 1]->s.jf = s[i];
5881 i++;
5882
5883 /* fixup */
5884 for (j = v6start; j <= v6end; j++)
5885 s[j]->s.jt = s[v6advance];
5886 } else {
5887 /* nop */
5888 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5889 s[i]->s.k = 0;
5890 s[fix2]->s.jf = s[i];
5891 i++;
5892 }
5893
5894 /* ahcheck: */
5895 ahcheck = i;
5896 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5897 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5898 s[i]->s.jt = NULL; /*later*/
5899 s[i]->s.jf = NULL; /*later*/
5900 s[i]->s.k = IPPROTO_AH;
5901 if (fix3)
5902 s[fix3]->s.jf = s[ahcheck];
5903 fix4 = i;
5904 i++;
5905
5906 /*
5907 * in short,
5908 * A = P[X];
5909 * X = X + (P[X + 1] + 2) * 4;
5910 */
5911 /* A = X */
5912 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5913 i++;
5914 /* A = P[X + packet head]; */
5915 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5916 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5917 i++;
5918 /* MEM[reg2] = A */
5919 s[i] = new_stmt(cstate, BPF_ST);
5920 s[i]->s.k = reg2;
5921 i++;
5922 /* A = X */
5923 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5924 i++;
5925 /* A += 1 */
5926 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5927 s[i]->s.k = 1;
5928 i++;
5929 /* X = A */
5930 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5931 i++;
5932 /* A = P[X + packet head] */
5933 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5934 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5935 i++;
5936 /* A += 2 */
5937 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5938 s[i]->s.k = 2;
5939 i++;
5940 /* A *= 4 */
5941 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5942 s[i]->s.k = 4;
5943 i++;
5944 /* X = A; */
5945 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5946 i++;
5947 /* A = MEM[reg2] */
5948 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5949 s[i]->s.k = reg2;
5950 i++;
5951
5952 /* goto again; (must use BPF_JA for backward jump) */
5953 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5954 s[i]->s.k = again - i - 1;
5955 i++;
5956
5957 /* end: nop */
5958 end = i;
5959 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5960 s[i]->s.k = 0;
5961 s[fix2]->s.jt = s[end];
5962 s[fix4]->s.jf = s[end];
5963 s[fix5]->s.jt = s[end];
5964 i++;
5965
5966 /*
5967 * make slist chain
5968 */
5969 max = i;
5970 for (i = 0; i < max - 1; i++)
5971 s[i]->next = s[i + 1];
5972 s[max - 1]->next = NULL;
5973
5974 /*
5975 * emit final check
5976 */
5977 b = new_block(cstate, JMP(BPF_JEQ));
5978 b->stmts = s[1]; /*remember, s[0] is dummy*/
5979 b->s.k = v;
5980
5981 free_reg(cstate, reg2);
5982
5983 gen_and(b0, b);
5984 return b;
5985 #endif
5986 }
5987
5988 static struct block *
5989 gen_check_802_11_data_frame(compiler_state_t *cstate)
5990 {
5991 struct slist *s;
5992 struct block *b0, *b1;
5993
5994 /*
5995 * A data frame has the 0x08 bit (b3) in the frame control field set
5996 * and the 0x04 bit (b2) clear.
5997 */
5998 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
5999 b0 = new_block(cstate, JMP(BPF_JSET));
6000 b0->s.k = 0x08;
6001 b0->stmts = s;
6002
6003 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6004 b1 = new_block(cstate, JMP(BPF_JSET));
6005 b1->s.k = 0x04;
6006 b1->stmts = s;
6007 gen_not(b1);
6008
6009 gen_and(b1, b0);
6010
6011 return b0;
6012 }
6013
6014 /*
6015 * Generate code that checks whether the packet is a packet for protocol
6016 * <proto> and whether the type field in that protocol's header has
6017 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6018 * IP packet and checks the protocol number in the IP header against <v>.
6019 *
6020 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6021 * against Q_IP and Q_IPV6.
6022 */
6023 static struct block *
6024 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
6025 {
6026 struct block *b0, *b1;
6027 #ifndef CHASE_CHAIN
6028 struct block *b2;
6029 #endif
6030
6031 if (dir != Q_DEFAULT)
6032 bpf_error(cstate, "direction applied to 'proto'");
6033
6034 switch (proto) {
6035 case Q_DEFAULT:
6036 b0 = gen_proto(cstate, v, Q_IP, dir);
6037 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6038 gen_or(b0, b1);
6039 return b1;
6040
6041 case Q_IP:
6042 /*
6043 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6044 * not LLC encapsulation with LLCSAP_IP.
6045 *
6046 * For IEEE 802 networks - which includes 802.5 token ring
6047 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6048 * says that SNAP encapsulation is used, not LLC encapsulation
6049 * with LLCSAP_IP.
6050 *
6051 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6052 * RFC 2225 say that SNAP encapsulation is used, not LLC
6053 * encapsulation with LLCSAP_IP.
6054 *
6055 * So we always check for ETHERTYPE_IP.
6056 */
6057 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6058 #ifndef CHASE_CHAIN
6059 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6060 #else
6061 b1 = gen_protochain(cstate, v, Q_IP);
6062 #endif
6063 gen_and(b0, b1);
6064 return b1;
6065
6066 case Q_ISO:
6067 switch (cstate->linktype) {
6068
6069 case DLT_FRELAY:
6070 /*
6071 * Frame Relay packets typically have an OSI
6072 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6073 * generates code to check for all the OSI
6074 * NLPIDs, so calling it and then adding a check
6075 * for the particular NLPID for which we're
6076 * looking is bogus, as we can just check for
6077 * the NLPID.
6078 *
6079 * What we check for is the NLPID and a frame
6080 * control field value of UI, i.e. 0x03 followed
6081 * by the NLPID.
6082 *
6083 * XXX - assumes a 2-byte Frame Relay header with
6084 * DLCI and flags. What if the address is longer?
6085 *
6086 * XXX - what about SNAP-encapsulated frames?
6087 */
6088 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6089 /*NOTREACHED*/
6090 break;
6091
6092 case DLT_C_HDLC:
6093 /*
6094 * Cisco uses an Ethertype lookalike - for OSI,
6095 * it's 0xfefe.
6096 */
6097 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6098 /* OSI in C-HDLC is stuffed with a fudge byte */
6099 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6100 gen_and(b0, b1);
6101 return b1;
6102
6103 default:
6104 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6105 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6106 gen_and(b0, b1);
6107 return b1;
6108 }
6109
6110 case Q_ISIS:
6111 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6112 /*
6113 * 4 is the offset of the PDU type relative to the IS-IS
6114 * header.
6115 */
6116 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6117 gen_and(b0, b1);
6118 return b1;
6119
6120 case Q_ARP:
6121 bpf_error(cstate, "arp does not encapsulate another protocol");
6122 /* NOTREACHED */
6123
6124 case Q_RARP:
6125 bpf_error(cstate, "rarp does not encapsulate another protocol");
6126 /* NOTREACHED */
6127
6128 case Q_ATALK:
6129 bpf_error(cstate, "atalk encapsulation is not specifiable");
6130 /* NOTREACHED */
6131
6132 case Q_DECNET:
6133 bpf_error(cstate, "decnet encapsulation is not specifiable");
6134 /* NOTREACHED */
6135
6136 case Q_SCA:
6137 bpf_error(cstate, "sca does not encapsulate another protocol");
6138 /* NOTREACHED */
6139
6140 case Q_LAT:
6141 bpf_error(cstate, "lat does not encapsulate another protocol");
6142 /* NOTREACHED */
6143
6144 case Q_MOPRC:
6145 bpf_error(cstate, "moprc does not encapsulate another protocol");
6146 /* NOTREACHED */
6147
6148 case Q_MOPDL:
6149 bpf_error(cstate, "mopdl does not encapsulate another protocol");
6150 /* NOTREACHED */
6151
6152 case Q_LINK:
6153 return gen_linktype(cstate, v);
6154
6155 case Q_UDP:
6156 bpf_error(cstate, "'udp proto' is bogus");
6157 /* NOTREACHED */
6158
6159 case Q_TCP:
6160 bpf_error(cstate, "'tcp proto' is bogus");
6161 /* NOTREACHED */
6162
6163 case Q_SCTP:
6164 bpf_error(cstate, "'sctp proto' is bogus");
6165 /* NOTREACHED */
6166
6167 case Q_ICMP:
6168 bpf_error(cstate, "'icmp proto' is bogus");
6169 /* NOTREACHED */
6170
6171 case Q_IGMP:
6172 bpf_error(cstate, "'igmp proto' is bogus");
6173 /* NOTREACHED */
6174
6175 case Q_IGRP:
6176 bpf_error(cstate, "'igrp proto' is bogus");
6177 /* NOTREACHED */
6178
6179 case Q_PIM:
6180 bpf_error(cstate, "'pim proto' is bogus");
6181 /* NOTREACHED */
6182
6183 case Q_VRRP:
6184 bpf_error(cstate, "'vrrp proto' is bogus");
6185 /* NOTREACHED */
6186
6187 case Q_CARP:
6188 bpf_error(cstate, "'carp proto' is bogus");
6189 /* NOTREACHED */
6190
6191 case Q_IPV6:
6192 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6193 #ifndef CHASE_CHAIN
6194 /*
6195 * Also check for a fragment header before the final
6196 * header.
6197 */
6198 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6199 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6200 gen_and(b2, b1);
6201 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6202 gen_or(b2, b1);
6203 #else
6204 b1 = gen_protochain(cstate, v, Q_IPV6);
6205 #endif
6206 gen_and(b0, b1);
6207 return b1;
6208
6209 case Q_ICMPV6:
6210 bpf_error(cstate, "'icmp6 proto' is bogus");
6211
6212 case Q_AH:
6213 bpf_error(cstate, "'ah proto' is bogus");
6214
6215 case Q_ESP:
6216 bpf_error(cstate, "'ah proto' is bogus");
6217
6218 case Q_STP:
6219 bpf_error(cstate, "'stp proto' is bogus");
6220
6221 case Q_IPX:
6222 bpf_error(cstate, "'ipx proto' is bogus");
6223
6224 case Q_NETBEUI:
6225 bpf_error(cstate, "'netbeui proto' is bogus");
6226
6227 case Q_RADIO:
6228 bpf_error(cstate, "'radio proto' is bogus");
6229
6230 default:
6231 abort();
6232 /* NOTREACHED */
6233 }
6234 /* NOTREACHED */
6235 }
6236
6237 struct block *
6238 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6239 {
6240 int proto = q.proto;
6241 int dir = q.dir;
6242 int tproto;
6243 u_char *eaddr;
6244 bpf_u_int32 mask, addr;
6245 #ifndef INET6
6246 bpf_u_int32 **alist;
6247 #else
6248 int tproto6;
6249 struct sockaddr_in *sin4;
6250 struct sockaddr_in6 *sin6;
6251 struct addrinfo *res, *res0;
6252 struct in6_addr mask128;
6253 #endif /*INET6*/
6254 struct block *b, *tmp;
6255 int port, real_proto;
6256 int port1, port2;
6257
6258 switch (q.addr) {
6259
6260 case Q_NET:
6261 addr = pcap_nametonetaddr(name);
6262 if (addr == 0)
6263 bpf_error(cstate, "unknown network '%s'", name);
6264 /* Left justify network addr and calculate its network mask */
6265 mask = 0xffffffff;
6266 while (addr && (addr & 0xff000000) == 0) {
6267 addr <<= 8;
6268 mask <<= 8;
6269 }
6270 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6271
6272 case Q_DEFAULT:
6273 case Q_HOST:
6274 if (proto == Q_LINK) {
6275 switch (cstate->linktype) {
6276
6277 case DLT_EN10MB:
6278 case DLT_NETANALYZER:
6279 case DLT_NETANALYZER_TRANSPARENT:
6280 eaddr = pcap_ether_hostton(name);
6281 if (eaddr == NULL)
6282 bpf_error(cstate,
6283 "unknown ether host '%s'", name);
6284 tmp = gen_prevlinkhdr_check(cstate);
6285 b = gen_ehostop(cstate, eaddr, dir);
6286 if (tmp != NULL)
6287 gen_and(tmp, b);
6288 free(eaddr);
6289 return b;
6290
6291 case DLT_FDDI:
6292 eaddr = pcap_ether_hostton(name);
6293 if (eaddr == NULL)
6294 bpf_error(cstate,
6295 "unknown FDDI host '%s'", name);
6296 b = gen_fhostop(cstate, eaddr, dir);
6297 free(eaddr);
6298 return b;
6299
6300 case DLT_IEEE802:
6301 eaddr = pcap_ether_hostton(name);
6302 if (eaddr == NULL)
6303 bpf_error(cstate,
6304 "unknown token ring host '%s'", name);
6305 b = gen_thostop(cstate, eaddr, dir);
6306 free(eaddr);
6307 return b;
6308
6309 case DLT_IEEE802_11:
6310 case DLT_PRISM_HEADER:
6311 case DLT_IEEE802_11_RADIO_AVS:
6312 case DLT_IEEE802_11_RADIO:
6313 case DLT_PPI:
6314 eaddr = pcap_ether_hostton(name);
6315 if (eaddr == NULL)
6316 bpf_error(cstate,
6317 "unknown 802.11 host '%s'", name);
6318 b = gen_wlanhostop(cstate, eaddr, dir);
6319 free(eaddr);
6320 return b;
6321
6322 case DLT_IP_OVER_FC:
6323 eaddr = pcap_ether_hostton(name);
6324 if (eaddr == NULL)
6325 bpf_error(cstate,
6326 "unknown Fibre Channel host '%s'", name);
6327 b = gen_ipfchostop(cstate, eaddr, dir);
6328 free(eaddr);
6329 return b;
6330 }
6331
6332 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6333 } else if (proto == Q_DECNET) {
6334 unsigned short dn_addr;
6335
6336 if (!__pcap_nametodnaddr(name, &dn_addr)) {
6337 #ifdef DECNETLIB
6338 bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6339 #else
6340 bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6341 name);
6342 #endif
6343 }
6344 /*
6345 * I don't think DECNET hosts can be multihomed, so
6346 * there is no need to build up a list of addresses
6347 */
6348 return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6349 } else {
6350 #ifndef INET6
6351 alist = pcap_nametoaddr(name);
6352 if (alist == NULL || *alist == NULL)
6353 bpf_error(cstate, "unknown host '%s'", name);
6354 tproto = proto;
6355 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6356 tproto == Q_DEFAULT)
6357 tproto = Q_IP;
6358 b = gen_host(cstate, **alist++, 0xffffffff, tproto, dir, q.addr);
6359 while (*alist) {
6360 tmp = gen_host(cstate, **alist++, 0xffffffff,
6361 tproto, dir, q.addr);
6362 gen_or(b, tmp);
6363 b = tmp;
6364 }
6365 return b;
6366 #else
6367 memset(&mask128, 0xff, sizeof(mask128));
6368 res0 = res = pcap_nametoaddrinfo(name);
6369 if (res == NULL)
6370 bpf_error(cstate, "unknown host '%s'", name);
6371 cstate->ai = res;
6372 b = tmp = NULL;
6373 tproto = tproto6 = proto;
6374 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6375 tproto == Q_DEFAULT) {
6376 tproto = Q_IP;
6377 tproto6 = Q_IPV6;
6378 }
6379 for (res = res0; res; res = res->ai_next) {
6380 switch (res->ai_family) {
6381 case AF_INET:
6382 if (tproto == Q_IPV6)
6383 continue;
6384
6385 sin4 = (struct sockaddr_in *)
6386 res->ai_addr;
6387 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6388 0xffffffff, tproto, dir, q.addr);
6389 break;
6390 case AF_INET6:
6391 if (tproto6 == Q_IP)
6392 continue;
6393
6394 sin6 = (struct sockaddr_in6 *)
6395 res->ai_addr;
6396 tmp = gen_host6(cstate, &sin6->sin6_addr,
6397 &mask128, tproto6, dir, q.addr);
6398 break;
6399 default:
6400 continue;
6401 }
6402 if (b)
6403 gen_or(b, tmp);
6404 b = tmp;
6405 }
6406 cstate->ai = NULL;
6407 freeaddrinfo(res0);
6408 if (b == NULL) {
6409 bpf_error(cstate, "unknown host '%s'%s", name,
6410 (proto == Q_DEFAULT)
6411 ? ""
6412 : " for specified address family");
6413 }
6414 return b;
6415 #endif /*INET6*/
6416 }
6417
6418 case Q_PORT:
6419 if (proto != Q_DEFAULT &&
6420 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6421 bpf_error(cstate, "illegal qualifier of 'port'");
6422 if (pcap_nametoport(name, &port, &real_proto) == 0)
6423 bpf_error(cstate, "unknown port '%s'", name);
6424 if (proto == Q_UDP) {
6425 if (real_proto == IPPROTO_TCP)
6426 bpf_error(cstate, "port '%s' is tcp", name);
6427 else if (real_proto == IPPROTO_SCTP)
6428 bpf_error(cstate, "port '%s' is sctp", name);
6429 else
6430 /* override PROTO_UNDEF */
6431 real_proto = IPPROTO_UDP;
6432 }
6433 if (proto == Q_TCP) {
6434 if (real_proto == IPPROTO_UDP)
6435 bpf_error(cstate, "port '%s' is udp", name);
6436
6437 else if (real_proto == IPPROTO_SCTP)
6438 bpf_error(cstate, "port '%s' is sctp", name);
6439 else
6440 /* override PROTO_UNDEF */
6441 real_proto = IPPROTO_TCP;
6442 }
6443 if (proto == Q_SCTP) {
6444 if (real_proto == IPPROTO_UDP)
6445 bpf_error(cstate, "port '%s' is udp", name);
6446
6447 else if (real_proto == IPPROTO_TCP)
6448 bpf_error(cstate, "port '%s' is tcp", name);
6449 else
6450 /* override PROTO_UNDEF */
6451 real_proto = IPPROTO_SCTP;
6452 }
6453 if (port < 0)
6454 bpf_error(cstate, "illegal port number %d < 0", port);
6455 if (port > 65535)
6456 bpf_error(cstate, "illegal port number %d > 65535", port);
6457 b = gen_port(cstate, port, real_proto, dir);
6458 gen_or(gen_port6(cstate, port, real_proto, dir), b);
6459 return b;
6460
6461 case Q_PORTRANGE:
6462 if (proto != Q_DEFAULT &&
6463 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6464 bpf_error(cstate, "illegal qualifier of 'portrange'");
6465 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6466 bpf_error(cstate, "unknown port in range '%s'", name);
6467 if (proto == Q_UDP) {
6468 if (real_proto == IPPROTO_TCP)
6469 bpf_error(cstate, "port in range '%s' is tcp", name);
6470 else if (real_proto == IPPROTO_SCTP)
6471 bpf_error(cstate, "port in range '%s' is sctp", name);
6472 else
6473 /* override PROTO_UNDEF */
6474 real_proto = IPPROTO_UDP;
6475 }
6476 if (proto == Q_TCP) {
6477 if (real_proto == IPPROTO_UDP)
6478 bpf_error(cstate, "port in range '%s' is udp", name);
6479 else if (real_proto == IPPROTO_SCTP)
6480 bpf_error(cstate, "port in range '%s' is sctp", name);
6481 else
6482 /* override PROTO_UNDEF */
6483 real_proto = IPPROTO_TCP;
6484 }
6485 if (proto == Q_SCTP) {
6486 if (real_proto == IPPROTO_UDP)
6487 bpf_error(cstate, "port in range '%s' is udp", name);
6488 else if (real_proto == IPPROTO_TCP)
6489 bpf_error(cstate, "port in range '%s' is tcp", name);
6490 else
6491 /* override PROTO_UNDEF */
6492 real_proto = IPPROTO_SCTP;
6493 }
6494 if (port1 < 0)
6495 bpf_error(cstate, "illegal port number %d < 0", port1);
6496 if (port1 > 65535)
6497 bpf_error(cstate, "illegal port number %d > 65535", port1);
6498 if (port2 < 0)
6499 bpf_error(cstate, "illegal port number %d < 0", port2);
6500 if (port2 > 65535)
6501 bpf_error(cstate, "illegal port number %d > 65535", port2);
6502
6503 b = gen_portrange(cstate, port1, port2, real_proto, dir);
6504 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6505 return b;
6506
6507 case Q_GATEWAY:
6508 #ifndef INET6
6509 eaddr = pcap_ether_hostton(name);
6510 if (eaddr == NULL)
6511 bpf_error(cstate, "unknown ether host: %s", name);
6512
6513 alist = pcap_nametoaddr(name);
6514 if (alist == NULL || *alist == NULL)
6515 bpf_error(cstate, "unknown host '%s'", name);
6516 b = gen_gateway(cstate, eaddr, alist, proto, dir);
6517 free(eaddr);
6518 return b;
6519 #else
6520 bpf_error(cstate, "'gateway' not supported in this configuration");
6521 #endif /*INET6*/
6522
6523 case Q_PROTO:
6524 real_proto = lookup_proto(cstate, name, proto);
6525 if (real_proto >= 0)
6526 return gen_proto(cstate, real_proto, proto, dir);
6527 else
6528 bpf_error(cstate, "unknown protocol: %s", name);
6529
6530 case Q_PROTOCHAIN:
6531 real_proto = lookup_proto(cstate, name, proto);
6532 if (real_proto >= 0)
6533 return gen_protochain(cstate, real_proto, proto, dir);
6534 else
6535 bpf_error(cstate, "unknown protocol: %s", name);
6536
6537 case Q_UNDEF:
6538 syntax(cstate);
6539 /* NOTREACHED */
6540 }
6541 abort();
6542 /* NOTREACHED */
6543 }
6544
6545 struct block *
6546 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6547 unsigned int masklen, struct qual q)
6548 {
6549 register int nlen, mlen;
6550 bpf_u_int32 n, m;
6551
6552 nlen = __pcap_atoin(s1, &n);
6553 /* Promote short ipaddr */
6554 n <<= 32 - nlen;
6555
6556 if (s2 != NULL) {
6557 mlen = __pcap_atoin(s2, &m);
6558 /* Promote short ipaddr */
6559 m <<= 32 - mlen;
6560 if ((n & ~m) != 0)
6561 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6562 s1, s2);
6563 } else {
6564 /* Convert mask len to mask */
6565 if (masklen > 32)
6566 bpf_error(cstate, "mask length must be <= 32");
6567 if (masklen == 0) {
6568 /*
6569 * X << 32 is not guaranteed by C to be 0; it's
6570 * undefined.
6571 */
6572 m = 0;
6573 } else
6574 m = 0xffffffff << (32 - masklen);
6575 if ((n & ~m) != 0)
6576 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6577 s1, masklen);
6578 }
6579
6580 switch (q.addr) {
6581
6582 case Q_NET:
6583 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6584
6585 default:
6586 bpf_error(cstate, "Mask syntax for networks only");
6587 /* NOTREACHED */
6588 }
6589 /* NOTREACHED */
6590 return NULL;
6591 }
6592
6593 struct block *
6594 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
6595 {
6596 bpf_u_int32 mask;
6597 int proto = q.proto;
6598 int dir = q.dir;
6599 register int vlen;
6600
6601 if (s == NULL)
6602 vlen = 32;
6603 else if (q.proto == Q_DECNET) {
6604 vlen = __pcap_atodn(s, &v);
6605 if (vlen == 0)
6606 bpf_error(cstate, "malformed decnet address '%s'", s);
6607 } else
6608 vlen = __pcap_atoin(s, &v);
6609
6610 switch (q.addr) {
6611
6612 case Q_DEFAULT:
6613 case Q_HOST:
6614 case Q_NET:
6615 if (proto == Q_DECNET)
6616 return gen_host(cstate, v, 0, proto, dir, q.addr);
6617 else if (proto == Q_LINK) {
6618 bpf_error(cstate, "illegal link layer address");
6619 } else {
6620 mask = 0xffffffff;
6621 if (s == NULL && q.addr == Q_NET) {
6622 /* Promote short net number */
6623 while (v && (v & 0xff000000) == 0) {
6624 v <<= 8;
6625 mask <<= 8;
6626 }
6627 } else {
6628 /* Promote short ipaddr */
6629 v <<= 32 - vlen;
6630 mask <<= 32 - vlen ;
6631 }
6632 return gen_host(cstate, v, mask, proto, dir, q.addr);
6633 }
6634
6635 case Q_PORT:
6636 if (proto == Q_UDP)
6637 proto = IPPROTO_UDP;
6638 else if (proto == Q_TCP)
6639 proto = IPPROTO_TCP;
6640 else if (proto == Q_SCTP)
6641 proto = IPPROTO_SCTP;
6642 else if (proto == Q_DEFAULT)
6643 proto = PROTO_UNDEF;
6644 else
6645 bpf_error(cstate, "illegal qualifier of 'port'");
6646
6647 if (v > 65535)
6648 bpf_error(cstate, "illegal port number %u > 65535", v);
6649
6650 {
6651 struct block *b;
6652 b = gen_port(cstate, (int)v, proto, dir);
6653 gen_or(gen_port6(cstate, (int)v, proto, dir), b);
6654 return b;
6655 }
6656
6657 case Q_PORTRANGE:
6658 if (proto == Q_UDP)
6659 proto = IPPROTO_UDP;
6660 else if (proto == Q_TCP)
6661 proto = IPPROTO_TCP;
6662 else if (proto == Q_SCTP)
6663 proto = IPPROTO_SCTP;
6664 else if (proto == Q_DEFAULT)
6665 proto = PROTO_UNDEF;
6666 else
6667 bpf_error(cstate, "illegal qualifier of 'portrange'");
6668
6669 if (v > 65535)
6670 bpf_error(cstate, "illegal port number %u > 65535", v);
6671
6672 {
6673 struct block *b;
6674 b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
6675 gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
6676 return b;
6677 }
6678
6679 case Q_GATEWAY:
6680 bpf_error(cstate, "'gateway' requires a name");
6681 /* NOTREACHED */
6682
6683 case Q_PROTO:
6684 return gen_proto(cstate, (int)v, proto, dir);
6685
6686 case Q_PROTOCHAIN:
6687 return gen_protochain(cstate, (int)v, proto, dir);
6688
6689 case Q_UNDEF:
6690 syntax(cstate);
6691 /* NOTREACHED */
6692
6693 default:
6694 abort();
6695 /* NOTREACHED */
6696 }
6697 /* NOTREACHED */
6698 }
6699
6700 #ifdef INET6
6701 struct block *
6702 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
6703 unsigned int masklen, struct qual q)
6704 {
6705 struct addrinfo *res;
6706 struct in6_addr *addr;
6707 struct in6_addr mask;
6708 struct block *b;
6709 uint32_t *a, *m;
6710
6711 if (s2)
6712 bpf_error(cstate, "no mask %s supported", s2);
6713
6714 res = pcap_nametoaddrinfo(s1);
6715 if (!res)
6716 bpf_error(cstate, "invalid ip6 address %s", s1);
6717 cstate->ai = res;
6718 if (res->ai_next)
6719 bpf_error(cstate, "%s resolved to multiple address", s1);
6720 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6721
6722 if (sizeof(mask) * 8 < masklen)
6723 bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6724 memset(&mask, 0, sizeof(mask));
6725 memset(&mask, 0xff, masklen / 8);
6726 if (masklen % 8) {
6727 mask.s6_addr[masklen / 8] =
6728 (0xff << (8 - masklen % 8)) & 0xff;
6729 }
6730
6731 a = (uint32_t *)addr;
6732 m = (uint32_t *)&mask;
6733 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6734 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6735 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
6736 }
6737
6738 switch (q.addr) {
6739
6740 case Q_DEFAULT:
6741 case Q_HOST:
6742 if (masklen != 128)
6743 bpf_error(cstate, "Mask syntax for networks only");
6744 /* FALLTHROUGH */
6745
6746 case Q_NET:
6747 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
6748 cstate->ai = NULL;
6749 freeaddrinfo(res);
6750 return b;
6751
6752 default:
6753 bpf_error(cstate, "invalid qualifier against IPv6 address");
6754 /* NOTREACHED */
6755 }
6756 return NULL;
6757 }
6758 #endif /*INET6*/
6759
6760 struct block *
6761 gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
6762 {
6763 struct block *b, *tmp;
6764
6765 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6766 switch (cstate->linktype) {
6767 case DLT_EN10MB:
6768 case DLT_NETANALYZER:
6769 case DLT_NETANALYZER_TRANSPARENT:
6770 tmp = gen_prevlinkhdr_check(cstate);
6771 b = gen_ehostop(cstate, eaddr, (int)q.dir);
6772 if (tmp != NULL)
6773 gen_and(tmp, b);
6774 return b;
6775 case DLT_FDDI:
6776 return gen_fhostop(cstate, eaddr, (int)q.dir);
6777 case DLT_IEEE802:
6778 return gen_thostop(cstate, eaddr, (int)q.dir);
6779 case DLT_IEEE802_11:
6780 case DLT_PRISM_HEADER:
6781 case DLT_IEEE802_11_RADIO_AVS:
6782 case DLT_IEEE802_11_RADIO:
6783 case DLT_PPI:
6784 return gen_wlanhostop(cstate, eaddr, (int)q.dir);
6785 case DLT_IP_OVER_FC:
6786 return gen_ipfchostop(cstate, eaddr, (int)q.dir);
6787 default:
6788 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6789 break;
6790 }
6791 }
6792 bpf_error(cstate, "ethernet address used in non-ether expression");
6793 /* NOTREACHED */
6794 return NULL;
6795 }
6796
6797 void
6798 sappend(s0, s1)
6799 struct slist *s0, *s1;
6800 {
6801 /*
6802 * This is definitely not the best way to do this, but the
6803 * lists will rarely get long.
6804 */
6805 while (s0->next)
6806 s0 = s0->next;
6807 s0->next = s1;
6808 }
6809
6810 static struct slist *
6811 xfer_to_x(compiler_state_t *cstate, struct arth *a)
6812 {
6813 struct slist *s;
6814
6815 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
6816 s->s.k = a->regno;
6817 return s;
6818 }
6819
6820 static struct slist *
6821 xfer_to_a(compiler_state_t *cstate, struct arth *a)
6822 {
6823 struct slist *s;
6824
6825 s = new_stmt(cstate, BPF_LD|BPF_MEM);
6826 s->s.k = a->regno;
6827 return s;
6828 }
6829
6830 /*
6831 * Modify "index" to use the value stored into its register as an
6832 * offset relative to the beginning of the header for the protocol
6833 * "proto", and allocate a register and put an item "size" bytes long
6834 * (1, 2, or 4) at that offset into that register, making it the register
6835 * for "index".
6836 */
6837 struct arth *
6838 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
6839 {
6840 struct slist *s, *tmp;
6841 struct block *b;
6842 int regno = alloc_reg(cstate);
6843
6844 free_reg(cstate, inst->regno);
6845 switch (size) {
6846
6847 default:
6848 bpf_error(cstate, "data size must be 1, 2, or 4");
6849
6850 case 1:
6851 size = BPF_B;
6852 break;
6853
6854 case 2:
6855 size = BPF_H;
6856 break;
6857
6858 case 4:
6859 size = BPF_W;
6860 break;
6861 }
6862 switch (proto) {
6863 default:
6864 bpf_error(cstate, "unsupported index operation");
6865
6866 case Q_RADIO:
6867 /*
6868 * The offset is relative to the beginning of the packet
6869 * data, if we have a radio header. (If we don't, this
6870 * is an error.)
6871 */
6872 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
6873 cstate->linktype != DLT_IEEE802_11_RADIO &&
6874 cstate->linktype != DLT_PRISM_HEADER)
6875 bpf_error(cstate, "radio information not present in capture");
6876
6877 /*
6878 * Load into the X register the offset computed into the
6879 * register specified by "index".
6880 */
6881 s = xfer_to_x(cstate, inst);
6882
6883 /*
6884 * Load the item at that offset.
6885 */
6886 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6887 sappend(s, tmp);
6888 sappend(inst->s, s);
6889 break;
6890
6891 case Q_LINK:
6892 /*
6893 * The offset is relative to the beginning of
6894 * the link-layer header.
6895 *
6896 * XXX - what about ATM LANE? Should the index be
6897 * relative to the beginning of the AAL5 frame, so
6898 * that 0 refers to the beginning of the LE Control
6899 * field, or relative to the beginning of the LAN
6900 * frame, so that 0 refers, for Ethernet LANE, to
6901 * the beginning of the destination address?
6902 */
6903 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
6904
6905 /*
6906 * If "s" is non-null, it has code to arrange that the
6907 * X register contains the length of the prefix preceding
6908 * the link-layer header. Add to it the offset computed
6909 * into the register specified by "index", and move that
6910 * into the X register. Otherwise, just load into the X
6911 * register the offset computed into the register specified
6912 * by "index".
6913 */
6914 if (s != NULL) {
6915 sappend(s, xfer_to_a(cstate, inst));
6916 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6917 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6918 } else
6919 s = xfer_to_x(cstate, inst);
6920
6921 /*
6922 * Load the item at the sum of the offset we've put in the
6923 * X register and the offset of the start of the link
6924 * layer header (which is 0 if the radio header is
6925 * variable-length; that header length is what we put
6926 * into the X register and then added to the index).
6927 */
6928 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6929 tmp->s.k = cstate->off_linkhdr.constant_part;
6930 sappend(s, tmp);
6931 sappend(inst->s, s);
6932 break;
6933
6934 case Q_IP:
6935 case Q_ARP:
6936 case Q_RARP:
6937 case Q_ATALK:
6938 case Q_DECNET:
6939 case Q_SCA:
6940 case Q_LAT:
6941 case Q_MOPRC:
6942 case Q_MOPDL:
6943 case Q_IPV6:
6944 /*
6945 * The offset is relative to the beginning of
6946 * the network-layer header.
6947 * XXX - are there any cases where we want
6948 * cstate->off_nl_nosnap?
6949 */
6950 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
6951
6952 /*
6953 * If "s" is non-null, it has code to arrange that the
6954 * X register contains the variable part of the offset
6955 * of the link-layer payload. Add to it the offset
6956 * computed into the register specified by "index",
6957 * and move that into the X register. Otherwise, just
6958 * load into the X register the offset computed into
6959 * the register specified by "index".
6960 */
6961 if (s != NULL) {
6962 sappend(s, xfer_to_a(cstate, inst));
6963 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6964 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6965 } else
6966 s = xfer_to_x(cstate, inst);
6967
6968 /*
6969 * Load the item at the sum of the offset we've put in the
6970 * X register, the offset of the start of the network
6971 * layer header from the beginning of the link-layer
6972 * payload, and the constant part of the offset of the
6973 * start of the link-layer payload.
6974 */
6975 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6976 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6977 sappend(s, tmp);
6978 sappend(inst->s, s);
6979
6980 /*
6981 * Do the computation only if the packet contains
6982 * the protocol in question.
6983 */
6984 b = gen_proto_abbrev(cstate, proto);
6985 if (inst->b)
6986 gen_and(inst->b, b);
6987 inst->b = b;
6988 break;
6989
6990 case Q_SCTP:
6991 case Q_TCP:
6992 case Q_UDP:
6993 case Q_ICMP:
6994 case Q_IGMP:
6995 case Q_IGRP:
6996 case Q_PIM:
6997 case Q_VRRP:
6998 case Q_CARP:
6999 /*
7000 * The offset is relative to the beginning of
7001 * the transport-layer header.
7002 *
7003 * Load the X register with the length of the IPv4 header
7004 * (plus the offset of the link-layer header, if it's
7005 * a variable-length header), in bytes.
7006 *
7007 * XXX - are there any cases where we want
7008 * cstate->off_nl_nosnap?
7009 * XXX - we should, if we're built with
7010 * IPv6 support, generate code to load either
7011 * IPv4, IPv6, or both, as appropriate.
7012 */
7013 s = gen_loadx_iphdrlen(cstate);
7014
7015 /*
7016 * The X register now contains the sum of the variable
7017 * part of the offset of the link-layer payload and the
7018 * length of the network-layer header.
7019 *
7020 * Load into the A register the offset relative to
7021 * the beginning of the transport layer header,
7022 * add the X register to that, move that to the
7023 * X register, and load with an offset from the
7024 * X register equal to the sum of the constant part of
7025 * the offset of the link-layer payload and the offset,
7026 * relative to the beginning of the link-layer payload,
7027 * of the network-layer header.
7028 */
7029 sappend(s, xfer_to_a(cstate, inst));
7030 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7031 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7032 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
7033 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7034 sappend(inst->s, s);
7035
7036 /*
7037 * Do the computation only if the packet contains
7038 * the protocol in question - which is true only
7039 * if this is an IP datagram and is the first or
7040 * only fragment of that datagram.
7041 */
7042 gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate));
7043 if (inst->b)
7044 gen_and(inst->b, b);
7045 gen_and(gen_proto_abbrev(cstate, Q_IP), b);
7046 inst->b = b;
7047 break;
7048 case Q_ICMPV6:
7049 /*
7050 * Do the computation only if the packet contains
7051 * the protocol in question.
7052 */
7053 b = gen_proto_abbrev(cstate, Q_IPV6);
7054 if (inst->b) {
7055 gen_and(inst->b, b);
7056 }
7057 inst->b = b;
7058
7059 /*
7060 * Check if we have an icmp6 next header
7061 */
7062 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7063 if (inst->b) {
7064 gen_and(inst->b, b);
7065 }
7066 inst->b = b;
7067
7068
7069 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7070 /*
7071 * If "s" is non-null, it has code to arrange that the
7072 * X register contains the variable part of the offset
7073 * of the link-layer payload. Add to it the offset
7074 * computed into the register specified by "index",
7075 * and move that into the X register. Otherwise, just
7076 * load into the X register the offset computed into
7077 * the register specified by "index".
7078 */
7079 if (s != NULL) {
7080 sappend(s, xfer_to_a(cstate, inst));
7081 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7082 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7083 } else {
7084 s = xfer_to_x(cstate, inst);
7085 }
7086
7087 /*
7088 * Load the item at the sum of the offset we've put in the
7089 * X register, the offset of the start of the network
7090 * layer header from the beginning of the link-layer
7091 * payload, and the constant part of the offset of the
7092 * start of the link-layer payload.
7093 */
7094 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7095 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7096
7097 sappend(s, tmp);
7098 sappend(inst->s, s);
7099
7100 break;
7101 }
7102 inst->regno = regno;
7103 s = new_stmt(cstate, BPF_ST);
7104 s->s.k = regno;
7105 sappend(inst->s, s);
7106
7107 return inst;
7108 }
7109
7110 struct block *
7111 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7112 struct arth *a1, int reversed)
7113 {
7114 struct slist *s0, *s1, *s2;
7115 struct block *b, *tmp;
7116
7117 s0 = xfer_to_x(cstate, a1);
7118 s1 = xfer_to_a(cstate, a0);
7119 if (code == BPF_JEQ) {
7120 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7121 b = new_block(cstate, JMP(code));
7122 sappend(s1, s2);
7123 }
7124 else
7125 b = new_block(cstate, BPF_JMP|code|BPF_X);
7126 if (reversed)
7127 gen_not(b);
7128
7129 sappend(s0, s1);
7130 sappend(a1->s, s0);
7131 sappend(a0->s, a1->s);
7132
7133 b->stmts = a0->s;
7134
7135 free_reg(cstate, a0->regno);
7136 free_reg(cstate, a1->regno);
7137
7138 /* 'and' together protocol checks */
7139 if (a0->b) {
7140 if (a1->b) {
7141 gen_and(a0->b, tmp = a1->b);
7142 }
7143 else
7144 tmp = a0->b;
7145 } else
7146 tmp = a1->b;
7147
7148 if (tmp)
7149 gen_and(tmp, b);
7150
7151 return b;
7152 }
7153
7154 struct arth *
7155 gen_loadlen(compiler_state_t *cstate)
7156 {
7157 int regno = alloc_reg(cstate);
7158 struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a));
7159 struct slist *s;
7160
7161 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7162 s->next = new_stmt(cstate, BPF_ST);
7163 s->next->s.k = regno;
7164 a->s = s;
7165 a->regno = regno;
7166
7167 return a;
7168 }
7169
7170 struct arth *
7171 gen_loadi(compiler_state_t *cstate, int val)
7172 {
7173 struct arth *a;
7174 struct slist *s;
7175 int reg;
7176
7177 a = (struct arth *)newchunk(cstate, sizeof(*a));
7178
7179 reg = alloc_reg(cstate);
7180
7181 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7182 s->s.k = val;
7183 s->next = new_stmt(cstate, BPF_ST);
7184 s->next->s.k = reg;
7185 a->s = s;
7186 a->regno = reg;
7187
7188 return a;
7189 }
7190
7191 struct arth *
7192 gen_neg(compiler_state_t *cstate, struct arth *a)
7193 {
7194 struct slist *s;
7195
7196 s = xfer_to_a(cstate, a);
7197 sappend(a->s, s);
7198 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7199 s->s.k = 0;
7200 sappend(a->s, s);
7201 s = new_stmt(cstate, BPF_ST);
7202 s->s.k = a->regno;
7203 sappend(a->s, s);
7204
7205 return a;
7206 }
7207
7208 struct arth *
7209 gen_arth(compiler_state_t *cstate, int code, struct arth *a0,
7210 struct arth *a1)
7211 {
7212 struct slist *s0, *s1, *s2;
7213
7214 /*
7215 * Disallow division by, or modulus by, zero; we do this here
7216 * so that it gets done even if the optimizer is disabled.
7217 */
7218 if (code == BPF_DIV) {
7219 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7220 bpf_error(cstate, "division by zero");
7221 } else if (code == BPF_MOD) {
7222 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7223 bpf_error(cstate, "modulus by zero");
7224 }
7225 s0 = xfer_to_x(cstate, a1);
7226 s1 = xfer_to_a(cstate, a0);
7227 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7228
7229 sappend(s1, s2);
7230 sappend(s0, s1);
7231 sappend(a1->s, s0);
7232 sappend(a0->s, a1->s);
7233
7234 free_reg(cstate, a0->regno);
7235 free_reg(cstate, a1->regno);
7236
7237 s0 = new_stmt(cstate, BPF_ST);
7238 a0->regno = s0->s.k = alloc_reg(cstate);
7239 sappend(a0->s, s0);
7240
7241 return a0;
7242 }
7243
7244 /*
7245 * Initialize the table of used registers and the current register.
7246 */
7247 static void
7248 init_regs(compiler_state_t *cstate)
7249 {
7250 cstate->curreg = 0;
7251 memset(cstate->regused, 0, sizeof cstate->regused);
7252 }
7253
7254 /*
7255 * Return the next free register.
7256 */
7257 static int
7258 alloc_reg(compiler_state_t *cstate)
7259 {
7260 int n = BPF_MEMWORDS;
7261
7262 while (--n >= 0) {
7263 if (cstate->regused[cstate->curreg])
7264 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7265 else {
7266 cstate->regused[cstate->curreg] = 1;
7267 return cstate->curreg;
7268 }
7269 }
7270 bpf_error(cstate, "too many registers needed to evaluate expression");
7271 /* NOTREACHED */
7272 return 0;
7273 }
7274
7275 /*
7276 * Return a register to the table so it can
7277 * be used later.
7278 */
7279 static void
7280 free_reg(compiler_state_t *cstate, int n)
7281 {
7282 cstate->regused[n] = 0;
7283 }
7284
7285 static struct block *
7286 gen_len(compiler_state_t *cstate, int jmp, int n)
7287 {
7288 struct slist *s;
7289 struct block *b;
7290
7291 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7292 b = new_block(cstate, JMP(jmp));
7293 b->stmts = s;
7294 b->s.k = n;
7295
7296 return b;
7297 }
7298
7299 struct block *
7300 gen_greater(compiler_state_t *cstate, int n)
7301 {
7302 return gen_len(cstate, BPF_JGE, n);
7303 }
7304
7305 /*
7306 * Actually, this is less than or equal.
7307 */
7308 struct block *
7309 gen_less(compiler_state_t *cstate, int n)
7310 {
7311 struct block *b;
7312
7313 b = gen_len(cstate, BPF_JGT, n);
7314 gen_not(b);
7315
7316 return b;
7317 }
7318
7319 /*
7320 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7321 * the beginning of the link-layer header.
7322 * XXX - that means you can't test values in the radiotap header, but
7323 * as that header is difficult if not impossible to parse generally
7324 * without a loop, that might not be a severe problem. A new keyword
7325 * "radio" could be added for that, although what you'd really want
7326 * would be a way of testing particular radio header values, which
7327 * would generate code appropriate to the radio header in question.
7328 */
7329 struct block *
7330 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7331 {
7332 struct block *b;
7333 struct slist *s;
7334
7335 switch (op) {
7336 default:
7337 abort();
7338
7339 case '=':
7340 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7341
7342 case '<':
7343 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7344 return b;
7345
7346 case '>':
7347 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7348 return b;
7349
7350 case '|':
7351 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7352 break;
7353
7354 case '&':
7355 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7356 break;
7357 }
7358 s->s.k = val;
7359 b = new_block(cstate, JMP(BPF_JEQ));
7360 b->stmts = s;
7361 gen_not(b);
7362
7363 return b;
7364 }
7365
7366 static const u_char abroadcast[] = { 0x0 };
7367
7368 struct block *
7369 gen_broadcast(compiler_state_t *cstate, int proto)
7370 {
7371 bpf_u_int32 hostmask;
7372 struct block *b0, *b1, *b2;
7373 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7374
7375 switch (proto) {
7376
7377 case Q_DEFAULT:
7378 case Q_LINK:
7379 switch (cstate->linktype) {
7380 case DLT_ARCNET:
7381 case DLT_ARCNET_LINUX:
7382 return gen_ahostop(cstate, abroadcast, Q_DST);
7383 case DLT_EN10MB:
7384 case DLT_NETANALYZER:
7385 case DLT_NETANALYZER_TRANSPARENT:
7386 b1 = gen_prevlinkhdr_check(cstate);
7387 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7388 if (b1 != NULL)
7389 gen_and(b1, b0);
7390 return b0;
7391 case DLT_FDDI:
7392 return gen_fhostop(cstate, ebroadcast, Q_DST);
7393 case DLT_IEEE802:
7394 return gen_thostop(cstate, ebroadcast, Q_DST);
7395 case DLT_IEEE802_11:
7396 case DLT_PRISM_HEADER:
7397 case DLT_IEEE802_11_RADIO_AVS:
7398 case DLT_IEEE802_11_RADIO:
7399 case DLT_PPI:
7400 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7401 case DLT_IP_OVER_FC:
7402 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7403 default:
7404 bpf_error(cstate, "not a broadcast link");
7405 }
7406 break;
7407
7408 case Q_IP:
7409 /*
7410 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7411 * as an indication that we don't know the netmask, and fail
7412 * in that case.
7413 */
7414 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7415 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7416 b0 = gen_linktype(cstate, ETHERTYPE_IP);
7417 hostmask = ~cstate->netmask;
7418 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7419 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7420 (bpf_int32)(~0 & hostmask), hostmask);
7421 gen_or(b1, b2);
7422 gen_and(b0, b2);
7423 return b2;
7424 }
7425 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7426 /* NOTREACHED */
7427 return NULL;
7428 }
7429
7430 /*
7431 * Generate code to test the low-order bit of a MAC address (that's
7432 * the bottom bit of the *first* byte).
7433 */
7434 static struct block *
7435 gen_mac_multicast(compiler_state_t *cstate, int offset)
7436 {
7437 register struct block *b0;
7438 register struct slist *s;
7439
7440 /* link[offset] & 1 != 0 */
7441 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7442 b0 = new_block(cstate, JMP(BPF_JSET));
7443 b0->s.k = 1;
7444 b0->stmts = s;
7445 return b0;
7446 }
7447
7448 struct block *
7449 gen_multicast(compiler_state_t *cstate, int proto)
7450 {
7451 register struct block *b0, *b1, *b2;
7452 register struct slist *s;
7453
7454 switch (proto) {
7455
7456 case Q_DEFAULT:
7457 case Q_LINK:
7458 switch (cstate->linktype) {
7459 case DLT_ARCNET:
7460 case DLT_ARCNET_LINUX:
7461 /* all ARCnet multicasts use the same address */
7462 return gen_ahostop(cstate, abroadcast, Q_DST);
7463 case DLT_EN10MB:
7464 case DLT_NETANALYZER:
7465 case DLT_NETANALYZER_TRANSPARENT:
7466 b1 = gen_prevlinkhdr_check(cstate);
7467 /* ether[0] & 1 != 0 */
7468 b0 = gen_mac_multicast(cstate, 0);
7469 if (b1 != NULL)
7470 gen_and(b1, b0);
7471 return b0;
7472 case DLT_FDDI:
7473 /*
7474 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7475 *
7476 * XXX - was that referring to bit-order issues?
7477 */
7478 /* fddi[1] & 1 != 0 */
7479 return gen_mac_multicast(cstate, 1);
7480 case DLT_IEEE802:
7481 /* tr[2] & 1 != 0 */
7482 return gen_mac_multicast(cstate, 2);
7483 case DLT_IEEE802_11:
7484 case DLT_PRISM_HEADER:
7485 case DLT_IEEE802_11_RADIO_AVS:
7486 case DLT_IEEE802_11_RADIO:
7487 case DLT_PPI:
7488 /*
7489 * Oh, yuk.
7490 *
7491 * For control frames, there is no DA.
7492 *
7493 * For management frames, DA is at an
7494 * offset of 4 from the beginning of
7495 * the packet.
7496 *
7497 * For data frames, DA is at an offset
7498 * of 4 from the beginning of the packet
7499 * if To DS is clear and at an offset of
7500 * 16 from the beginning of the packet
7501 * if To DS is set.
7502 */
7503
7504 /*
7505 * Generate the tests to be done for data frames.
7506 *
7507 * First, check for To DS set, i.e. "link[1] & 0x01".
7508 */
7509 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7510 b1 = new_block(cstate, JMP(BPF_JSET));
7511 b1->s.k = 0x01; /* To DS */
7512 b1->stmts = s;
7513
7514 /*
7515 * If To DS is set, the DA is at 16.
7516 */
7517 b0 = gen_mac_multicast(cstate, 16);
7518 gen_and(b1, b0);
7519
7520 /*
7521 * Now, check for To DS not set, i.e. check
7522 * "!(link[1] & 0x01)".
7523 */
7524 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7525 b2 = new_block(cstate, JMP(BPF_JSET));
7526 b2->s.k = 0x01; /* To DS */
7527 b2->stmts = s;
7528 gen_not(b2);
7529
7530 /*
7531 * If To DS is not set, the DA is at 4.
7532 */
7533 b1 = gen_mac_multicast(cstate, 4);
7534 gen_and(b2, b1);
7535
7536 /*
7537 * Now OR together the last two checks. That gives
7538 * the complete set of checks for data frames.
7539 */
7540 gen_or(b1, b0);
7541
7542 /*
7543 * Now check for a data frame.
7544 * I.e, check "link[0] & 0x08".
7545 */
7546 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7547 b1 = new_block(cstate, JMP(BPF_JSET));
7548 b1->s.k = 0x08;
7549 b1->stmts = s;
7550
7551 /*
7552 * AND that with the checks done for data frames.
7553 */
7554 gen_and(b1, b0);
7555
7556 /*
7557 * If the high-order bit of the type value is 0, this
7558 * is a management frame.
7559 * I.e, check "!(link[0] & 0x08)".
7560 */
7561 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7562 b2 = new_block(cstate, JMP(BPF_JSET));
7563 b2->s.k = 0x08;
7564 b2->stmts = s;
7565 gen_not(b2);
7566
7567 /*
7568 * For management frames, the DA is at 4.
7569 */
7570 b1 = gen_mac_multicast(cstate, 4);
7571 gen_and(b2, b1);
7572
7573 /*
7574 * OR that with the checks done for data frames.
7575 * That gives the checks done for management and
7576 * data frames.
7577 */
7578 gen_or(b1, b0);
7579
7580 /*
7581 * If the low-order bit of the type value is 1,
7582 * this is either a control frame or a frame
7583 * with a reserved type, and thus not a
7584 * frame with an SA.
7585 *
7586 * I.e., check "!(link[0] & 0x04)".
7587 */
7588 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7589 b1 = new_block(cstate, JMP(BPF_JSET));
7590 b1->s.k = 0x04;
7591 b1->stmts = s;
7592 gen_not(b1);
7593
7594 /*
7595 * AND that with the checks for data and management
7596 * frames.
7597 */
7598 gen_and(b1, b0);
7599 return b0;
7600 case DLT_IP_OVER_FC:
7601 b0 = gen_mac_multicast(cstate, 2);
7602 return b0;
7603 default:
7604 break;
7605 }
7606 /* Link not known to support multicasts */
7607 break;
7608
7609 case Q_IP:
7610 b0 = gen_linktype(cstate, ETHERTYPE_IP);
7611 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7612 gen_and(b0, b1);
7613 return b1;
7614
7615 case Q_IPV6:
7616 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
7617 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7618 gen_and(b0, b1);
7619 return b1;
7620 }
7621 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7622 /* NOTREACHED */
7623 return NULL;
7624 }
7625
7626 /*
7627 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7628 * Outbound traffic is sent by this machine, while inbound traffic is
7629 * sent by a remote machine (and may include packets destined for a
7630 * unicast or multicast link-layer address we are not subscribing to).
7631 * These are the same definitions implemented by pcap_setdirection().
7632 * Capturing only unicast traffic destined for this host is probably
7633 * better accomplished using a higher-layer filter.
7634 */
7635 struct block *
7636 gen_inbound(compiler_state_t *cstate, int dir)
7637 {
7638 register struct block *b0;
7639
7640 /*
7641 * Only some data link types support inbound/outbound qualifiers.
7642 */
7643 switch (cstate->linktype) {
7644 case DLT_SLIP:
7645 b0 = gen_relation(cstate, BPF_JEQ,
7646 gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1),
7647 gen_loadi(cstate, 0),
7648 dir);
7649 break;
7650
7651 case DLT_IPNET:
7652 if (dir) {
7653 /* match outgoing packets */
7654 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7655 } else {
7656 /* match incoming packets */
7657 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7658 }
7659 break;
7660
7661 case DLT_LINUX_SLL:
7662 /* match outgoing packets */
7663 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7664 if (!dir) {
7665 /* to filter on inbound traffic, invert the match */
7666 gen_not(b0);
7667 }
7668 break;
7669
7670 #ifdef HAVE_NET_PFVAR_H
7671 case DLT_PFLOG:
7672 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7673 (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7674 break;
7675 #endif
7676
7677 case DLT_PPP_PPPD:
7678 if (dir) {
7679 /* match outgoing packets */
7680 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7681 } else {
7682 /* match incoming packets */
7683 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7684 }
7685 break;
7686
7687 case DLT_JUNIPER_MFR:
7688 case DLT_JUNIPER_MLFR:
7689 case DLT_JUNIPER_MLPPP:
7690 case DLT_JUNIPER_ATM1:
7691 case DLT_JUNIPER_ATM2:
7692 case DLT_JUNIPER_PPPOE:
7693 case DLT_JUNIPER_PPPOE_ATM:
7694 case DLT_JUNIPER_GGSN:
7695 case DLT_JUNIPER_ES:
7696 case DLT_JUNIPER_MONITOR:
7697 case DLT_JUNIPER_SERVICES:
7698 case DLT_JUNIPER_ETHER:
7699 case DLT_JUNIPER_PPP:
7700 case DLT_JUNIPER_FRELAY:
7701 case DLT_JUNIPER_CHDLC:
7702 case DLT_JUNIPER_VP:
7703 case DLT_JUNIPER_ST:
7704 case DLT_JUNIPER_ISM:
7705 case DLT_JUNIPER_VS:
7706 case DLT_JUNIPER_SRX_E2E:
7707 case DLT_JUNIPER_FIBRECHANNEL:
7708 case DLT_JUNIPER_ATM_CEMIC:
7709
7710 /* juniper flags (including direction) are stored
7711 * the byte after the 3-byte magic number */
7712 if (dir) {
7713 /* match outgoing packets */
7714 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
7715 } else {
7716 /* match incoming packets */
7717 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
7718 }
7719 break;
7720
7721 default:
7722 /*
7723 * If we have packet meta-data indicating a direction,
7724 * check it, otherwise give up as this link-layer type
7725 * has nothing in the packet data.
7726 */
7727 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7728 /*
7729 * This is Linux with PF_PACKET support.
7730 * If this is a *live* capture, we can look at
7731 * special meta-data in the filter expression;
7732 * if it's a savefile, we can't.
7733 */
7734 if (cstate->bpf_pcap->rfile != NULL) {
7735 /* We have a FILE *, so this is a savefile */
7736 bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles",
7737 cstate->linktype);
7738 b0 = NULL;
7739 /* NOTREACHED */
7740 }
7741 /* match outgoing packets */
7742 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7743 PACKET_OUTGOING);
7744 if (!dir) {
7745 /* to filter on inbound traffic, invert the match */
7746 gen_not(b0);
7747 }
7748 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7749 bpf_error(cstate, "inbound/outbound not supported on linktype %d",
7750 cstate->linktype);
7751 b0 = NULL;
7752 /* NOTREACHED */
7753 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7754 }
7755 return (b0);
7756 }
7757
7758 #ifdef HAVE_NET_PFVAR_H
7759 /* PF firewall log matched interface */
7760 struct block *
7761 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7762 {
7763 struct block *b0;
7764 u_int len, off;
7765
7766 if (cstate->linktype != DLT_PFLOG) {
7767 bpf_error(cstate, "ifname supported only on PF linktype");
7768 /* NOTREACHED */
7769 }
7770 len = sizeof(((struct pfloghdr *)0)->ifname);
7771 off = offsetof(struct pfloghdr, ifname);
7772 if (strlen(ifname) >= len) {
7773 bpf_error(cstate, "ifname interface names can only be %d characters",
7774 len-1);
7775 /* NOTREACHED */
7776 }
7777 b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7778 return (b0);
7779 }
7780
7781 /* PF firewall log ruleset name */
7782 struct block *
7783 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7784 {
7785 struct block *b0;
7786
7787 if (cstate->linktype != DLT_PFLOG) {
7788 bpf_error(cstate, "ruleset supported only on PF linktype");
7789 /* NOTREACHED */
7790 }
7791
7792 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7793 bpf_error(cstate, "ruleset names can only be %ld characters",
7794 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7795 /* NOTREACHED */
7796 }
7797
7798 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7799 strlen(ruleset), (const u_char *)ruleset);
7800 return (b0);
7801 }
7802
7803 /* PF firewall log rule number */
7804 struct block *
7805 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7806 {
7807 struct block *b0;
7808
7809 if (cstate->linktype != DLT_PFLOG) {
7810 bpf_error(cstate, "rnr supported only on PF linktype");
7811 /* NOTREACHED */
7812 }
7813
7814 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7815 (bpf_int32)rnr);
7816 return (b0);
7817 }
7818
7819 /* PF firewall log sub-rule number */
7820 struct block *
7821 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7822 {
7823 struct block *b0;
7824
7825 if (cstate->linktype != DLT_PFLOG) {
7826 bpf_error(cstate, "srnr supported only on PF linktype");
7827 /* NOTREACHED */
7828 }
7829
7830 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7831 (bpf_int32)srnr);
7832 return (b0);
7833 }
7834
7835 /* PF firewall log reason code */
7836 struct block *
7837 gen_pf_reason(compiler_state_t *cstate, int reason)
7838 {
7839 struct block *b0;
7840
7841 if (cstate->linktype != DLT_PFLOG) {
7842 bpf_error(cstate, "reason supported only on PF linktype");
7843 /* NOTREACHED */
7844 }
7845
7846 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7847 (bpf_int32)reason);
7848 return (b0);
7849 }
7850
7851 /* PF firewall log action */
7852 struct block *
7853 gen_pf_action(compiler_state_t *cstate, int action)
7854 {
7855 struct block *b0;
7856
7857 if (cstate->linktype != DLT_PFLOG) {
7858 bpf_error(cstate, "action supported only on PF linktype");
7859 /* NOTREACHED */
7860 }
7861
7862 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7863 (bpf_int32)action);
7864 return (b0);
7865 }
7866 #else /* !HAVE_NET_PFVAR_H */
7867 struct block *
7868 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7869 {
7870 bpf_error(cstate, "libpcap was compiled without pf support");
7871 /* NOTREACHED */
7872 return (NULL);
7873 }
7874
7875 struct block *
7876 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7877 {
7878 bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7879 /* NOTREACHED */
7880 return (NULL);
7881 }
7882
7883 struct block *
7884 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7885 {
7886 bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7887 /* NOTREACHED */
7888 return (NULL);
7889 }
7890
7891 struct block *
7892 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7893 {
7894 bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7895 /* NOTREACHED */
7896 return (NULL);
7897 }
7898
7899 struct block *
7900 gen_pf_reason(compiler_state_t *cstate, int reason)
7901 {
7902 bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7903 /* NOTREACHED */
7904 return (NULL);
7905 }
7906
7907 struct block *
7908 gen_pf_action(compiler_state_t *cstate, int action)
7909 {
7910 bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7911 /* NOTREACHED */
7912 return (NULL);
7913 }
7914 #endif /* HAVE_NET_PFVAR_H */
7915
7916 /* IEEE 802.11 wireless header */
7917 struct block *
7918 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
7919 {
7920 struct block *b0;
7921
7922 switch (cstate->linktype) {
7923
7924 case DLT_IEEE802_11:
7925 case DLT_PRISM_HEADER:
7926 case DLT_IEEE802_11_RADIO_AVS:
7927 case DLT_IEEE802_11_RADIO:
7928 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7929 (bpf_int32)mask);
7930 break;
7931
7932 default:
7933 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
7934 /* NOTREACHED */
7935 }
7936
7937 return (b0);
7938 }
7939
7940 struct block *
7941 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
7942 {
7943 struct block *b0;
7944
7945 switch (cstate->linktype) {
7946
7947 case DLT_IEEE802_11:
7948 case DLT_PRISM_HEADER:
7949 case DLT_IEEE802_11_RADIO_AVS:
7950 case DLT_IEEE802_11_RADIO:
7951 break;
7952
7953 default:
7954 bpf_error(cstate, "frame direction supported only with 802.11 headers");
7955 /* NOTREACHED */
7956 }
7957
7958 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
7959 (bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7960
7961 return (b0);
7962 }
7963
7964 struct block *
7965 gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
7966 {
7967 switch (cstate->linktype) {
7968
7969 case DLT_ARCNET:
7970 case DLT_ARCNET_LINUX:
7971 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7972 q.proto == Q_LINK)
7973 return (gen_ahostop(cstate, eaddr, (int)q.dir));
7974 else {
7975 bpf_error(cstate, "ARCnet address used in non-arc expression");
7976 /* NOTREACHED */
7977 }
7978 break;
7979
7980 default:
7981 bpf_error(cstate, "aid supported only on ARCnet");
7982 /* NOTREACHED */
7983 }
7984 bpf_error(cstate, "ARCnet address used in non-arc expression");
7985 /* NOTREACHED */
7986 return NULL;
7987 }
7988
7989 static struct block *
7990 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
7991 {
7992 register struct block *b0, *b1;
7993
7994 switch (dir) {
7995 /* src comes first, different from Ethernet */
7996 case Q_SRC:
7997 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
7998
7999 case Q_DST:
8000 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8001
8002 case Q_AND:
8003 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8004 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8005 gen_and(b0, b1);
8006 return b1;
8007
8008 case Q_DEFAULT:
8009 case Q_OR:
8010 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8011 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8012 gen_or(b0, b1);
8013 return b1;
8014
8015 case Q_ADDR1:
8016 bpf_error(cstate, "'addr1' is only supported on 802.11");
8017 break;
8018
8019 case Q_ADDR2:
8020 bpf_error(cstate, "'addr2' is only supported on 802.11");
8021 break;
8022
8023 case Q_ADDR3:
8024 bpf_error(cstate, "'addr3' is only supported on 802.11");
8025 break;
8026
8027 case Q_ADDR4:
8028 bpf_error(cstate, "'addr4' is only supported on 802.11");
8029 break;
8030
8031 case Q_RA:
8032 bpf_error(cstate, "'ra' is only supported on 802.11");
8033 break;
8034
8035 case Q_TA:
8036 bpf_error(cstate, "'ta' is only supported on 802.11");
8037 break;
8038 }
8039 abort();
8040 /* NOTREACHED */
8041 }
8042
8043 static struct block *
8044 gen_vlan_tpid_test(compiler_state_t *cstate)
8045 {
8046 struct block *b0, *b1;
8047
8048 /* check for VLAN, including QinQ */
8049 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8050 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8051 gen_or(b0,b1);
8052 b0 = b1;
8053 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8054 gen_or(b0,b1);
8055
8056 return b1;
8057 }
8058
8059 static struct block *
8060 gen_vlan_vid_test(compiler_state_t *cstate, int vlan_num)
8061 {
8062 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff);
8063 }
8064
8065 static struct block *
8066 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num)
8067 {
8068 struct block *b0, *b1;
8069
8070 b0 = gen_vlan_tpid_test(cstate);
8071
8072 if (vlan_num >= 0) {
8073 b1 = gen_vlan_vid_test(cstate, vlan_num);
8074 gen_and(b0, b1);
8075 b0 = b1;
8076 }
8077
8078 /*
8079 * Both payload and link header type follow the VLAN tags so that
8080 * both need to be updated.
8081 */
8082 cstate->off_linkpl.constant_part += 4;
8083 cstate->off_linktype.constant_part += 4;
8084
8085 return b0;
8086 }
8087
8088 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8089 /* add v to variable part of off */
8090 static void
8091 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s)
8092 {
8093 struct slist *s2;
8094
8095 if (!off->is_variable)
8096 off->is_variable = 1;
8097 if (off->reg == -1)
8098 off->reg = alloc_reg(cstate);
8099
8100 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8101 s2->s.k = off->reg;
8102 sappend(s, s2);
8103 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8104 s2->s.k = v;
8105 sappend(s, s2);
8106 s2 = new_stmt(cstate, BPF_ST);
8107 s2->s.k = off->reg;
8108 sappend(s, s2);
8109 }
8110
8111 /*
8112 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8113 * and link type offsets first
8114 */
8115 static void
8116 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8117 {
8118 struct slist s;
8119
8120 /* offset determined at run time, shift variable part */
8121 s.next = NULL;
8122 cstate->is_vlan_vloffset = 1;
8123 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8124 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8125
8126 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8127 sappend(s.next, b_tpid->head->stmts);
8128 b_tpid->head->stmts = s.next;
8129 }
8130
8131 /*
8132 * patch block b_vid (VLAN id test) to load VID value either from packet
8133 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8134 */
8135 static void
8136 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8137 {
8138 struct slist *s, *s2, *sjeq;
8139 unsigned cnt;
8140
8141 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8142 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8143
8144 /* true -> next instructions, false -> beginning of b_vid */
8145 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8146 sjeq->s.k = 1;
8147 sjeq->s.jf = b_vid->stmts;
8148 sappend(s, sjeq);
8149
8150 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8151 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8152 sappend(s, s2);
8153 sjeq->s.jt = s2;
8154
8155 /* jump to the test in b_vid (bypass loading VID from packet data) */
8156 cnt = 0;
8157 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8158 cnt++;
8159 s2 = new_stmt(cstate, JMP(BPF_JA));
8160 s2->s.k = cnt;
8161 sappend(s, s2);
8162
8163 /* insert our statements at the beginning of b_vid */
8164 sappend(s, b_vid->stmts);
8165 b_vid->stmts = s;
8166 }
8167
8168 /*
8169 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8170 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8171 * tag can be either in metadata or in packet data; therefore if the
8172 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8173 * header for VLAN tag. As the decision is done at run time, we need
8174 * update variable part of the offsets
8175 */
8176 static struct block *
8177 gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num)
8178 {
8179 struct block *b0, *b_tpid, *b_vid = NULL;
8180 struct slist *s;
8181
8182 /* generate new filter code based on extracting packet
8183 * metadata */
8184 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8185 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8186
8187 b0 = new_block(cstate, JMP(BPF_JEQ));
8188 b0->stmts = s;
8189 b0->s.k = 1;
8190
8191 /*
8192 * This is tricky. We need to insert the statements updating variable
8193 * parts of offsets before the the traditional TPID and VID tests so
8194 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8195 * we do not want this update to affect those checks. That's why we
8196 * generate both test blocks first and insert the statements updating
8197 * variable parts of both offsets after that. This wouldn't work if
8198 * there already were variable length link header when entering this
8199 * function but gen_vlan_bpf_extensions() isn't called in that case.
8200 */
8201 b_tpid = gen_vlan_tpid_test(cstate);
8202 if (vlan_num >= 0)
8203 b_vid = gen_vlan_vid_test(cstate, vlan_num);
8204
8205 gen_vlan_patch_tpid_test(cstate, b_tpid);
8206 gen_or(b0, b_tpid);
8207 b0 = b_tpid;
8208
8209 if (vlan_num >= 0) {
8210 gen_vlan_patch_vid_test(cstate, b_vid);
8211 gen_and(b0, b_vid);
8212 b0 = b_vid;
8213 }
8214
8215 return b0;
8216 }
8217 #endif
8218
8219 /*
8220 * support IEEE 802.1Q VLAN trunk over ethernet
8221 */
8222 struct block *
8223 gen_vlan(compiler_state_t *cstate, int vlan_num)
8224 {
8225 struct block *b0;
8226
8227 /* can't check for VLAN-encapsulated packets inside MPLS */
8228 if (cstate->label_stack_depth > 0)
8229 bpf_error(cstate, "no VLAN match after MPLS");
8230
8231 /*
8232 * Check for a VLAN packet, and then change the offsets to point
8233 * to the type and data fields within the VLAN packet. Just
8234 * increment the offsets, so that we can support a hierarchy, e.g.
8235 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8236 * VLAN 100.
8237 *
8238 * XXX - this is a bit of a kludge. If we were to split the
8239 * compiler into a parser that parses an expression and
8240 * generates an expression tree, and a code generator that
8241 * takes an expression tree (which could come from our
8242 * parser or from some other parser) and generates BPF code,
8243 * we could perhaps make the offsets parameters of routines
8244 * and, in the handler for an "AND" node, pass to subnodes
8245 * other than the VLAN node the adjusted offsets.
8246 *
8247 * This would mean that "vlan" would, instead of changing the
8248 * behavior of *all* tests after it, change only the behavior
8249 * of tests ANDed with it. That would change the documented
8250 * semantics of "vlan", which might break some expressions.
8251 * However, it would mean that "(vlan and ip) or ip" would check
8252 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8253 * checking only for VLAN-encapsulated IP, so that could still
8254 * be considered worth doing; it wouldn't break expressions
8255 * that are of the form "vlan and ..." or "vlan N and ...",
8256 * which I suspect are the most common expressions involving
8257 * "vlan". "vlan or ..." doesn't necessarily do what the user
8258 * would really want, now, as all the "or ..." tests would
8259 * be done assuming a VLAN, even though the "or" could be viewed
8260 * as meaning "or, if this isn't a VLAN packet...".
8261 */
8262 switch (cstate->linktype) {
8263
8264 case DLT_EN10MB:
8265 case DLT_NETANALYZER:
8266 case DLT_NETANALYZER_TRANSPARENT:
8267 #if defined(SKF_AD_VLAN_TAG) && defined(SKF_AD_VLAN_TAG_PRESENT)
8268 /* Verify that this is the outer part of the packet and
8269 * not encapsulated somehow. */
8270 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8271 cstate->off_linkhdr.constant_part ==
8272 cstate->off_outermostlinkhdr.constant_part) {
8273 /*
8274 * Do we need special VLAN handling?
8275 */
8276 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8277 b0 = gen_vlan_bpf_extensions(cstate, vlan_num);
8278 else
8279 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8280 } else
8281 #endif
8282 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8283 break;
8284
8285 case DLT_IEEE802_11:
8286 case DLT_PRISM_HEADER:
8287 case DLT_IEEE802_11_RADIO_AVS:
8288 case DLT_IEEE802_11_RADIO:
8289 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8290 break;
8291
8292 default:
8293 bpf_error(cstate, "no VLAN support for data link type %d",
8294 cstate->linktype);
8295 /*NOTREACHED*/
8296 }
8297
8298 cstate->vlan_stack_depth++;
8299
8300 return (b0);
8301 }
8302
8303 /*
8304 * support for MPLS
8305 */
8306 struct block *
8307 gen_mpls(compiler_state_t *cstate, int label_num)
8308 {
8309 struct block *b0, *b1;
8310
8311 if (cstate->label_stack_depth > 0) {
8312 /* just match the bottom-of-stack bit clear */
8313 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8314 } else {
8315 /*
8316 * We're not in an MPLS stack yet, so check the link-layer
8317 * type against MPLS.
8318 */
8319 switch (cstate->linktype) {
8320
8321 case DLT_C_HDLC: /* fall through */
8322 case DLT_EN10MB:
8323 case DLT_NETANALYZER:
8324 case DLT_NETANALYZER_TRANSPARENT:
8325 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8326 break;
8327
8328 case DLT_PPP:
8329 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8330 break;
8331
8332 /* FIXME add other DLT_s ...
8333 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8334 * leave it for now */
8335
8336 default:
8337 bpf_error(cstate, "no MPLS support for data link type %d",
8338 cstate->linktype);
8339 b0 = NULL;
8340 /*NOTREACHED*/
8341 break;
8342 }
8343 }
8344
8345 /* If a specific MPLS label is requested, check it */
8346 if (label_num >= 0) {
8347 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8348 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8349 0xfffff000); /* only compare the first 20 bits */
8350 gen_and(b0, b1);
8351 b0 = b1;
8352 }
8353
8354 /*
8355 * Change the offsets to point to the type and data fields within
8356 * the MPLS packet. Just increment the offsets, so that we
8357 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8358 * capture packets with an outer label of 100000 and an inner
8359 * label of 1024.
8360 *
8361 * Increment the MPLS stack depth as well; this indicates that
8362 * we're checking MPLS-encapsulated headers, to make sure higher
8363 * level code generators don't try to match against IP-related
8364 * protocols such as Q_ARP, Q_RARP etc.
8365 *
8366 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8367 */
8368 cstate->off_nl_nosnap += 4;
8369 cstate->off_nl += 4;
8370 cstate->label_stack_depth++;
8371 return (b0);
8372 }
8373
8374 /*
8375 * Support PPPOE discovery and session.
8376 */
8377 struct block *
8378 gen_pppoed(compiler_state_t *cstate)
8379 {
8380 /* check for PPPoE discovery */
8381 return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
8382 }
8383
8384 struct block *
8385 gen_pppoes(compiler_state_t *cstate, int sess_num)
8386 {
8387 struct block *b0, *b1;
8388
8389 /*
8390 * Test against the PPPoE session link-layer type.
8391 */
8392 b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
8393
8394 /* If a specific session is requested, check PPPoE session id */
8395 if (sess_num >= 0) {
8396 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
8397 (bpf_int32)sess_num, 0x0000ffff);
8398 gen_and(b0, b1);
8399 b0 = b1;
8400 }
8401
8402 /*
8403 * Change the offsets to point to the type and data fields within
8404 * the PPP packet, and note that this is PPPoE rather than
8405 * raw PPP.
8406 *
8407 * XXX - this is a bit of a kludge. If we were to split the
8408 * compiler into a parser that parses an expression and
8409 * generates an expression tree, and a code generator that
8410 * takes an expression tree (which could come from our
8411 * parser or from some other parser) and generates BPF code,
8412 * we could perhaps make the offsets parameters of routines
8413 * and, in the handler for an "AND" node, pass to subnodes
8414 * other than the PPPoE node the adjusted offsets.
8415 *
8416 * This would mean that "pppoes" would, instead of changing the
8417 * behavior of *all* tests after it, change only the behavior
8418 * of tests ANDed with it. That would change the documented
8419 * semantics of "pppoes", which might break some expressions.
8420 * However, it would mean that "(pppoes and ip) or ip" would check
8421 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8422 * checking only for VLAN-encapsulated IP, so that could still
8423 * be considered worth doing; it wouldn't break expressions
8424 * that are of the form "pppoes and ..." which I suspect are the
8425 * most common expressions involving "pppoes". "pppoes or ..."
8426 * doesn't necessarily do what the user would really want, now,
8427 * as all the "or ..." tests would be done assuming PPPoE, even
8428 * though the "or" could be viewed as meaning "or, if this isn't
8429 * a PPPoE packet...".
8430 *
8431 * The "network-layer" protocol is PPPoE, which has a 6-byte
8432 * PPPoE header, followed by a PPP packet.
8433 *
8434 * There is no HDLC encapsulation for the PPP packet (it's
8435 * encapsulated in PPPoES instead), so the link-layer type
8436 * starts at the first byte of the PPP packet. For PPPoE,
8437 * that offset is relative to the beginning of the total
8438 * link-layer payload, including any 802.2 LLC header, so
8439 * it's 6 bytes past cstate->off_nl.
8440 */
8441 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
8442 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
8443 cstate->off_linkpl.reg);
8444
8445 cstate->off_linktype = cstate->off_linkhdr;
8446 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
8447
8448 cstate->off_nl = 0;
8449 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
8450
8451 return b0;
8452 }
8453
8454 /* Check that this is Geneve and the VNI is correct if
8455 * specified. Parameterized to handle both IPv4 and IPv6. */
8456 static struct block *
8457 gen_geneve_check(compiler_state_t *cstate,
8458 struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
8459 enum e_offrel offrel, int vni)
8460 {
8461 struct block *b0, *b1;
8462
8463 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
8464
8465 /* Check that we are operating on version 0. Otherwise, we
8466 * can't decode the rest of the fields. The version is 2 bits
8467 * in the first byte of the Geneve header. */
8468 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8469 gen_and(b0, b1);
8470 b0 = b1;
8471
8472 if (vni >= 0) {
8473 vni <<= 8; /* VNI is in the upper 3 bytes */
8474 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
8475 0xffffff00);
8476 gen_and(b0, b1);
8477 b0 = b1;
8478 }
8479
8480 return b0;
8481 }
8482
8483 /* The IPv4 and IPv6 Geneve checks need to do two things:
8484 * - Verify that this actually is Geneve with the right VNI.
8485 * - Place the IP header length (plus variable link prefix if
8486 * needed) into register A to be used later to compute
8487 * the inner packet offsets. */
8488 static struct block *
8489 gen_geneve4(compiler_state_t *cstate, int vni)
8490 {
8491 struct block *b0, *b1;
8492 struct slist *s, *s1;
8493
8494 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni);
8495
8496 /* Load the IP header length into A. */
8497 s = gen_loadx_iphdrlen(cstate);
8498
8499 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8500 sappend(s, s1);
8501
8502 /* Forcibly append these statements to the true condition
8503 * of the protocol check by creating a new block that is
8504 * always true and ANDing them. */
8505 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8506 b1->stmts = s;
8507 b1->s.k = 0;
8508
8509 gen_and(b0, b1);
8510
8511 return b1;
8512 }
8513
8514 static struct block *
8515 gen_geneve6(compiler_state_t *cstate, int vni)
8516 {
8517 struct block *b0, *b1;
8518 struct slist *s, *s1;
8519
8520 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni);
8521
8522 /* Load the IP header length. We need to account for a
8523 * variable length link prefix if there is one. */
8524 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
8525 if (s) {
8526 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
8527 s1->s.k = 40;
8528 sappend(s, s1);
8529
8530 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8531 s1->s.k = 0;
8532 sappend(s, s1);
8533 } else {
8534 s = new_stmt(cstate, BPF_LD|BPF_IMM);
8535 s->s.k = 40;
8536 }
8537
8538 /* Forcibly append these statements to the true condition
8539 * of the protocol check by creating a new block that is
8540 * always true and ANDing them. */
8541 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8542 sappend(s, s1);
8543
8544 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8545 b1->stmts = s;
8546 b1->s.k = 0;
8547
8548 gen_and(b0, b1);
8549
8550 return b1;
8551 }
8552
8553 /* We need to store three values based on the Geneve header::
8554 * - The offset of the linktype.
8555 * - The offset of the end of the Geneve header.
8556 * - The offset of the end of the encapsulated MAC header. */
8557 static struct slist *
8558 gen_geneve_offsets(compiler_state_t *cstate)
8559 {
8560 struct slist *s, *s1, *s_proto;
8561
8562 /* First we need to calculate the offset of the Geneve header
8563 * itself. This is composed of the IP header previously calculated
8564 * (include any variable link prefix) and stored in A plus the
8565 * fixed sized headers (fixed link prefix, MAC length, and UDP
8566 * header). */
8567 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8568 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
8569
8570 /* Stash this in X since we'll need it later. */
8571 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8572 sappend(s, s1);
8573
8574 /* The EtherType in Geneve is 2 bytes in. Calculate this and
8575 * store it. */
8576 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8577 s1->s.k = 2;
8578 sappend(s, s1);
8579
8580 cstate->off_linktype.reg = alloc_reg(cstate);
8581 cstate->off_linktype.is_variable = 1;
8582 cstate->off_linktype.constant_part = 0;
8583
8584 s1 = new_stmt(cstate, BPF_ST);
8585 s1->s.k = cstate->off_linktype.reg;
8586 sappend(s, s1);
8587
8588 /* Load the Geneve option length and mask and shift to get the
8589 * number of bytes. It is stored in the first byte of the Geneve
8590 * header. */
8591 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
8592 s1->s.k = 0;
8593 sappend(s, s1);
8594
8595 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8596 s1->s.k = 0x3f;
8597 sappend(s, s1);
8598
8599 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
8600 s1->s.k = 4;
8601 sappend(s, s1);
8602
8603 /* Add in the rest of the Geneve base header. */
8604 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8605 s1->s.k = 8;
8606 sappend(s, s1);
8607
8608 /* Add the Geneve header length to its offset and store. */
8609 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8610 s1->s.k = 0;
8611 sappend(s, s1);
8612
8613 /* Set the encapsulated type as Ethernet. Even though we may
8614 * not actually have Ethernet inside there are two reasons this
8615 * is useful:
8616 * - The linktype field is always in EtherType format regardless
8617 * of whether it is in Geneve or an inner Ethernet frame.
8618 * - The only link layer that we have specific support for is
8619 * Ethernet. We will confirm that the packet actually is
8620 * Ethernet at runtime before executing these checks. */
8621 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
8622
8623 s1 = new_stmt(cstate, BPF_ST);
8624 s1->s.k = cstate->off_linkhdr.reg;
8625 sappend(s, s1);
8626
8627 /* Calculate whether we have an Ethernet header or just raw IP/
8628 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8629 * and linktype by 14 bytes so that the network header can be found
8630 * seamlessly. Otherwise, keep what we've calculated already. */
8631
8632 /* We have a bare jmp so we can't use the optimizer. */
8633 cstate->no_optimize = 1;
8634
8635 /* Load the EtherType in the Geneve header, 2 bytes in. */
8636 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
8637 s1->s.k = 2;
8638 sappend(s, s1);
8639
8640 /* Load X with the end of the Geneve header. */
8641 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8642 s1->s.k = cstate->off_linkhdr.reg;
8643 sappend(s, s1);
8644
8645 /* Check if the EtherType is Transparent Ethernet Bridging. At the
8646 * end of this check, we should have the total length in X. In
8647 * the non-Ethernet case, it's already there. */
8648 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
8649 s_proto->s.k = ETHERTYPE_TEB;
8650 sappend(s, s_proto);
8651
8652 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8653 sappend(s, s1);
8654 s_proto->s.jt = s1;
8655
8656 /* Since this is Ethernet, use the EtherType of the payload
8657 * directly as the linktype. Overwrite what we already have. */
8658 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8659 s1->s.k = 12;
8660 sappend(s, s1);
8661
8662 s1 = new_stmt(cstate, BPF_ST);
8663 s1->s.k = cstate->off_linktype.reg;
8664 sappend(s, s1);
8665
8666 /* Advance two bytes further to get the end of the Ethernet
8667 * header. */
8668 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8669 s1->s.k = 2;
8670 sappend(s, s1);
8671
8672 /* Move the result to X. */
8673 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8674 sappend(s, s1);
8675
8676 /* Store the final result of our linkpl calculation. */
8677 cstate->off_linkpl.reg = alloc_reg(cstate);
8678 cstate->off_linkpl.is_variable = 1;
8679 cstate->off_linkpl.constant_part = 0;
8680
8681 s1 = new_stmt(cstate, BPF_STX);
8682 s1->s.k = cstate->off_linkpl.reg;
8683 sappend(s, s1);
8684 s_proto->s.jf = s1;
8685
8686 cstate->off_nl = 0;
8687
8688 return s;
8689 }
8690
8691 /* Check to see if this is a Geneve packet. */
8692 struct block *
8693 gen_geneve(compiler_state_t *cstate, int vni)
8694 {
8695 struct block *b0, *b1;
8696 struct slist *s;
8697
8698 b0 = gen_geneve4(cstate, vni);
8699 b1 = gen_geneve6(cstate, vni);
8700
8701 gen_or(b0, b1);
8702 b0 = b1;
8703
8704 /* Later filters should act on the payload of the Geneve frame,
8705 * update all of the header pointers. Attach this code so that
8706 * it gets executed in the event that the Geneve filter matches. */
8707 s = gen_geneve_offsets(cstate);
8708
8709 b1 = gen_true(cstate);
8710 sappend(s, b1->stmts);
8711 b1->stmts = s;
8712
8713 gen_and(b0, b1);
8714
8715 cstate->is_geneve = 1;
8716
8717 return b1;
8718 }
8719
8720 /* Check that the encapsulated frame has a link layer header
8721 * for Ethernet filters. */
8722 static struct block *
8723 gen_geneve_ll_check(compiler_state_t *cstate)
8724 {
8725 struct block *b0;
8726 struct slist *s, *s1;
8727
8728 /* The easiest way to see if there is a link layer present
8729 * is to check if the link layer header and payload are not
8730 * the same. */
8731
8732 /* Geneve always generates pure variable offsets so we can
8733 * compare only the registers. */
8734 s = new_stmt(cstate, BPF_LD|BPF_MEM);
8735 s->s.k = cstate->off_linkhdr.reg;
8736
8737 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8738 s1->s.k = cstate->off_linkpl.reg;
8739 sappend(s, s1);
8740
8741 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8742 b0->stmts = s;
8743 b0->s.k = 0;
8744 gen_not(b0);
8745
8746 return b0;
8747 }
8748
8749 struct block *
8750 gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue,
8751 bpf_u_int32 jtype, int reverse)
8752 {
8753 struct block *b0;
8754
8755 switch (atmfield) {
8756
8757 case A_VPI:
8758 if (!cstate->is_atm)
8759 bpf_error(cstate, "'vpi' supported only on raw ATM");
8760 if (cstate->off_vpi == (u_int)-1)
8761 abort();
8762 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
8763 reverse, jvalue);
8764 break;
8765
8766 case A_VCI:
8767 if (!cstate->is_atm)
8768 bpf_error(cstate, "'vci' supported only on raw ATM");
8769 if (cstate->off_vci == (u_int)-1)
8770 abort();
8771 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
8772 reverse, jvalue);
8773 break;
8774
8775 case A_PROTOTYPE:
8776 if (cstate->off_proto == (u_int)-1)
8777 abort(); /* XXX - this isn't on FreeBSD */
8778 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
8779 reverse, jvalue);
8780 break;
8781
8782 case A_MSGTYPE:
8783 if (cstate->off_payload == (u_int)-1)
8784 abort();
8785 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
8786 0xffffffff, jtype, reverse, jvalue);
8787 break;
8788
8789 case A_CALLREFTYPE:
8790 if (!cstate->is_atm)
8791 bpf_error(cstate, "'callref' supported only on raw ATM");
8792 if (cstate->off_proto == (u_int)-1)
8793 abort();
8794 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
8795 jtype, reverse, jvalue);
8796 break;
8797
8798 default:
8799 abort();
8800 }
8801 return b0;
8802 }
8803
8804 struct block *
8805 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
8806 {
8807 struct block *b0, *b1;
8808
8809 switch (type) {
8810
8811 case A_METAC:
8812 /* Get all packets in Meta signalling Circuit */
8813 if (!cstate->is_atm)
8814 bpf_error(cstate, "'metac' supported only on raw ATM");
8815 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8816 b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0);
8817 gen_and(b0, b1);
8818 break;
8819
8820 case A_BCC:
8821 /* Get all packets in Broadcast Circuit*/
8822 if (!cstate->is_atm)
8823 bpf_error(cstate, "'bcc' supported only on raw ATM");
8824 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8825 b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0);
8826 gen_and(b0, b1);
8827 break;
8828
8829 case A_OAMF4SC:
8830 /* Get all cells in Segment OAM F4 circuit*/
8831 if (!cstate->is_atm)
8832 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
8833 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8834 b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8835 gen_and(b0, b1);
8836 break;
8837
8838 case A_OAMF4EC:
8839 /* Get all cells in End-to-End OAM F4 Circuit*/
8840 if (!cstate->is_atm)
8841 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
8842 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8843 b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8844 gen_and(b0, b1);
8845 break;
8846
8847 case A_SC:
8848 /* Get all packets in connection Signalling Circuit */
8849 if (!cstate->is_atm)
8850 bpf_error(cstate, "'sc' supported only on raw ATM");
8851 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8852 b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0);
8853 gen_and(b0, b1);
8854 break;
8855
8856 case A_ILMIC:
8857 /* Get all packets in ILMI Circuit */
8858 if (!cstate->is_atm)
8859 bpf_error(cstate, "'ilmic' supported only on raw ATM");
8860 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8861 b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0);
8862 gen_and(b0, b1);
8863 break;
8864
8865 case A_LANE:
8866 /* Get all LANE packets */
8867 if (!cstate->is_atm)
8868 bpf_error(cstate, "'lane' supported only on raw ATM");
8869 b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8870
8871 /*
8872 * Arrange that all subsequent tests assume LANE
8873 * rather than LLC-encapsulated packets, and set
8874 * the offsets appropriately for LANE-encapsulated
8875 * Ethernet.
8876 *
8877 * We assume LANE means Ethernet, not Token Ring.
8878 */
8879 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
8880 cstate->off_payload + 2, /* Ethernet header */
8881 -1);
8882 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
8883 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
8884 cstate->off_nl = 0; /* Ethernet II */
8885 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
8886 break;
8887
8888 case A_LLC:
8889 /* Get all LLC-encapsulated packets */
8890 if (!cstate->is_atm)
8891 bpf_error(cstate, "'llc' supported only on raw ATM");
8892 b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8893 cstate->linktype = cstate->prevlinktype;
8894 break;
8895
8896 default:
8897 abort();
8898 }
8899 return b1;
8900 }
8901
8902 /*
8903 * Filtering for MTP2 messages based on li value
8904 * FISU, length is null
8905 * LSSU, length is 1 or 2
8906 * MSU, length is 3 or more
8907 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8908 */
8909 struct block *
8910 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
8911 {
8912 struct block *b0, *b1;
8913
8914 switch (type) {
8915
8916 case M_FISU:
8917 if ( (cstate->linktype != DLT_MTP2) &&
8918 (cstate->linktype != DLT_ERF) &&
8919 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8920 bpf_error(cstate, "'fisu' supported only on MTP2");
8921 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8922 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8923 break;
8924
8925 case M_LSSU:
8926 if ( (cstate->linktype != DLT_MTP2) &&
8927 (cstate->linktype != DLT_ERF) &&
8928 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8929 bpf_error(cstate, "'lssu' supported only on MTP2");
8930 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8931 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8932 gen_and(b1, b0);
8933 break;
8934
8935 case M_MSU:
8936 if ( (cstate->linktype != DLT_MTP2) &&
8937 (cstate->linktype != DLT_ERF) &&
8938 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8939 bpf_error(cstate, "'msu' supported only on MTP2");
8940 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8941 break;
8942
8943 case MH_FISU:
8944 if ( (cstate->linktype != DLT_MTP2) &&
8945 (cstate->linktype != DLT_ERF) &&
8946 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8947 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
8948 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8949 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
8950 break;
8951
8952 case MH_LSSU:
8953 if ( (cstate->linktype != DLT_MTP2) &&
8954 (cstate->linktype != DLT_ERF) &&
8955 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8956 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
8957 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
8958 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
8959 gen_and(b1, b0);
8960 break;
8961
8962 case MH_MSU:
8963 if ( (cstate->linktype != DLT_MTP2) &&
8964 (cstate->linktype != DLT_ERF) &&
8965 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8966 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
8967 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
8968 break;
8969
8970 default:
8971 abort();
8972 }
8973 return b0;
8974 }
8975
8976 struct block *
8977 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue,
8978 bpf_u_int32 jtype, int reverse)
8979 {
8980 struct block *b0;
8981 bpf_u_int32 val1 , val2 , val3;
8982 u_int newoff_sio = cstate->off_sio;
8983 u_int newoff_opc = cstate->off_opc;
8984 u_int newoff_dpc = cstate->off_dpc;
8985 u_int newoff_sls = cstate->off_sls;
8986
8987 switch (mtp3field) {
8988
8989 case MH_SIO:
8990 newoff_sio += 3; /* offset for MTP2_HSL */
8991 /* FALLTHROUGH */
8992
8993 case M_SIO:
8994 if (cstate->off_sio == (u_int)-1)
8995 bpf_error(cstate, "'sio' supported only on SS7");
8996 /* sio coded on 1 byte so max value 255 */
8997 if(jvalue > 255)
8998 bpf_error(cstate, "sio value %u too big; max value = 255",
8999 jvalue);
9000 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
9001 (u_int)jtype, reverse, (u_int)jvalue);
9002 break;
9003
9004 case MH_OPC:
9005 newoff_opc+=3;
9006 case M_OPC:
9007 if (cstate->off_opc == (u_int)-1)
9008 bpf_error(cstate, "'opc' supported only on SS7");
9009 /* opc coded on 14 bits so max value 16383 */
9010 if (jvalue > 16383)
9011 bpf_error(cstate, "opc value %u too big; max value = 16383",
9012 jvalue);
9013 /* the following instructions are made to convert jvalue
9014 * to the form used to write opc in an ss7 message*/
9015 val1 = jvalue & 0x00003c00;
9016 val1 = val1 >>10;
9017 val2 = jvalue & 0x000003fc;
9018 val2 = val2 <<6;
9019 val3 = jvalue & 0x00000003;
9020 val3 = val3 <<22;
9021 jvalue = val1 + val2 + val3;
9022 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
9023 (u_int)jtype, reverse, (u_int)jvalue);
9024 break;
9025
9026 case MH_DPC:
9027 newoff_dpc += 3;
9028 /* FALLTHROUGH */
9029
9030 case M_DPC:
9031 if (cstate->off_dpc == (u_int)-1)
9032 bpf_error(cstate, "'dpc' supported only on SS7");
9033 /* dpc coded on 14 bits so max value 16383 */
9034 if (jvalue > 16383)
9035 bpf_error(cstate, "dpc value %u too big; max value = 16383",
9036 jvalue);
9037 /* the following instructions are made to convert jvalue
9038 * to the forme used to write dpc in an ss7 message*/
9039 val1 = jvalue & 0x000000ff;
9040 val1 = val1 << 24;
9041 val2 = jvalue & 0x00003f00;
9042 val2 = val2 << 8;
9043 jvalue = val1 + val2;
9044 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
9045 (u_int)jtype, reverse, (u_int)jvalue);
9046 break;
9047
9048 case MH_SLS:
9049 newoff_sls+=3;
9050 case M_SLS:
9051 if (cstate->off_sls == (u_int)-1)
9052 bpf_error(cstate, "'sls' supported only on SS7");
9053 /* sls coded on 4 bits so max value 15 */
9054 if (jvalue > 15)
9055 bpf_error(cstate, "sls value %u too big; max value = 15",
9056 jvalue);
9057 /* the following instruction is made to convert jvalue
9058 * to the forme used to write sls in an ss7 message*/
9059 jvalue = jvalue << 4;
9060 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
9061 (u_int)jtype,reverse, (u_int)jvalue);
9062 break;
9063
9064 default:
9065 abort();
9066 }
9067 return b0;
9068 }
9069
9070 static struct block *
9071 gen_msg_abbrev(compiler_state_t *cstate, int type)
9072 {
9073 struct block *b1;
9074
9075 /*
9076 * Q.2931 signalling protocol messages for handling virtual circuits
9077 * establishment and teardown
9078 */
9079 switch (type) {
9080
9081 case A_SETUP:
9082 b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9083 break;
9084
9085 case A_CALLPROCEED:
9086 b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9087 break;
9088
9089 case A_CONNECT:
9090 b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9091 break;
9092
9093 case A_CONNECTACK:
9094 b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9095 break;
9096
9097 case A_RELEASE:
9098 b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9099 break;
9100
9101 case A_RELEASE_DONE:
9102 b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9103 break;
9104
9105 default:
9106 abort();
9107 }
9108 return b1;
9109 }
9110
9111 struct block *
9112 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9113 {
9114 struct block *b0, *b1;
9115
9116 switch (type) {
9117
9118 case A_OAM:
9119 if (!cstate->is_atm)
9120 bpf_error(cstate, "'oam' supported only on raw ATM");
9121 b1 = gen_atmmulti_abbrev(cstate, A_OAMF4);
9122 break;
9123
9124 case A_OAMF4:
9125 if (!cstate->is_atm)
9126 bpf_error(cstate, "'oamf4' supported only on raw ATM");
9127 /* OAM F4 type */
9128 b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
9129 b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
9130 gen_or(b0, b1);
9131 b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
9132 gen_and(b0, b1);
9133 break;
9134
9135 case A_CONNECTMSG:
9136 /*
9137 * Get Q.2931 signalling messages for switched
9138 * virtual connection
9139 */
9140 if (!cstate->is_atm)
9141 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9142 b0 = gen_msg_abbrev(cstate, A_SETUP);
9143 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9144 gen_or(b0, b1);
9145 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9146 gen_or(b0, b1);
9147 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9148 gen_or(b0, b1);
9149 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9150 gen_or(b0, b1);
9151 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9152 gen_or(b0, b1);
9153 b0 = gen_atmtype_abbrev(cstate, A_SC);
9154 gen_and(b0, b1);
9155 break;
9156
9157 case A_METACONNECT:
9158 if (!cstate->is_atm)
9159 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9160 b0 = gen_msg_abbrev(cstate, A_SETUP);
9161 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9162 gen_or(b0, b1);
9163 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9164 gen_or(b0, b1);
9165 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9166 gen_or(b0, b1);
9167 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9168 gen_or(b0, b1);
9169 b0 = gen_atmtype_abbrev(cstate, A_METAC);
9170 gen_and(b0, b1);
9171 break;
9172
9173 default:
9174 abort();
9175 }
9176 return b1;
9177 }