1 /*#define CHASE_CHAIN*/
3 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that: (1) source code distributions
8 * retain the above copyright notice and this paragraph in its entirety, (2)
9 * distributions including binary code include the above copyright notice and
10 * this paragraph in its entirety in the documentation or other materials
11 * provided with the distribution, and (3) all advertising materials mentioning
12 * features or use of this software display the following acknowledgement:
13 * ``This product includes software developed by the University of California,
14 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15 * the University nor the names of its contributors may be used to endorse
16 * or promote products derived from this software without specific prior
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23 static const char rcsid
[] _U_
=
24 "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
32 #include <pcap-stdinc.h>
39 #ifdef HAVE_SYS_BITYPES_H
40 #include <sys/bitypes.h>
42 #include <sys/types.h>
43 #include <sys/socket.h>
47 * XXX - why was this included even on UNIX?
56 #include <sys/param.h>
59 #include <netinet/in.h>
60 #include <arpa/inet.h>
76 #include "ethertype.h"
80 #include "ieee80211.h"
82 #include "sunatmpos.h"
85 #include "pcap/ipnet.h"
87 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
88 #include <linux/if_packet.h>
89 #include <linux/filter.h>
91 #ifdef HAVE_NET_PFVAR_H
92 #include <sys/socket.h>
94 #include <net/pfvar.h>
95 #include <net/if_pflog.h>
98 #define offsetof(s, e) ((size_t)&((s *)0)->e)
102 #include <netdb.h> /* for "struct addrinfo" */
105 #include <pcap/namedb.h>
107 #define ETHERMTU 1500
110 #define IPPROTO_SCTP 132
113 #ifdef HAVE_OS_PROTO_H
114 #include "os-proto.h"
117 #define JMP(c) ((c)|BPF_JMP|BPF_K)
120 static jmp_buf top_ctx
;
121 static pcap_t
*bpf_pcap
;
123 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
125 static u_int orig_linktype
= (u_int
)-1, orig_nl
= (u_int
)-1, label_stack_depth
= (u_int
)-1;
127 static u_int orig_linktype
= -1U, orig_nl
= -1U, label_stack_depth
= -1U;
132 static int pcap_fddipad
;
137 bpf_error(const char *fmt
, ...)
142 if (bpf_pcap
!= NULL
)
143 (void)vsnprintf(pcap_geterr(bpf_pcap
), PCAP_ERRBUF_SIZE
,
150 static void init_linktype(pcap_t
*);
152 static void init_regs(void);
153 static int alloc_reg(void);
154 static void free_reg(int);
156 static struct block
*root
;
159 * Value passed to gen_load_a() to indicate what the offset argument
163 OR_PACKET
, /* relative to the beginning of the packet */
164 OR_LINK
, /* relative to the beginning of the link-layer header */
165 OR_MACPL
, /* relative to the end of the MAC-layer header */
166 OR_NET
, /* relative to the network-layer header */
167 OR_NET_NOSNAP
, /* relative to the network-layer header, with no SNAP header at the link layer */
168 OR_TRAN_IPV4
, /* relative to the transport-layer header, with IPv4 network layer */
169 OR_TRAN_IPV6
/* relative to the transport-layer header, with IPv6 network layer */
174 * As errors are handled by a longjmp, anything allocated must be freed
175 * in the longjmp handler, so it must be reachable from that handler.
176 * One thing that's allocated is the result of pcap_nametoaddrinfo();
177 * it must be freed with freeaddrinfo(). This variable points to any
178 * addrinfo structure that would need to be freed.
180 static struct addrinfo
*ai
;
184 * We divy out chunks of memory rather than call malloc each time so
185 * we don't have to worry about leaking memory. It's probably
186 * not a big deal if all this memory was wasted but if this ever
187 * goes into a library that would probably not be a good idea.
189 * XXX - this *is* in a library....
192 #define CHUNK0SIZE 1024
198 static struct chunk chunks
[NCHUNKS
];
199 static int cur_chunk
;
201 static void *newchunk(u_int
);
202 static void freechunks(void);
203 static inline struct block
*new_block(int);
204 static inline struct slist
*new_stmt(int);
205 static struct block
*gen_retblk(int);
206 static inline void syntax(void);
208 static void backpatch(struct block
*, struct block
*);
209 static void merge(struct block
*, struct block
*);
210 static struct block
*gen_cmp(enum e_offrel
, u_int
, u_int
, bpf_int32
);
211 static struct block
*gen_cmp_gt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
212 static struct block
*gen_cmp_ge(enum e_offrel
, u_int
, u_int
, bpf_int32
);
213 static struct block
*gen_cmp_lt(enum e_offrel
, u_int
, u_int
, bpf_int32
);
214 static struct block
*gen_cmp_le(enum e_offrel
, u_int
, u_int
, bpf_int32
);
215 static struct block
*gen_mcmp(enum e_offrel
, u_int
, u_int
, bpf_int32
,
217 static struct block
*gen_bcmp(enum e_offrel
, u_int
, u_int
, const u_char
*);
218 static struct block
*gen_ncmp(enum e_offrel
, bpf_u_int32
, bpf_u_int32
,
219 bpf_u_int32
, bpf_u_int32
, int, bpf_int32
);
220 static struct slist
*gen_load_llrel(u_int
, u_int
);
221 static struct slist
*gen_load_macplrel(u_int
, u_int
);
222 static struct slist
*gen_load_a(enum e_offrel
, u_int
, u_int
);
223 static struct slist
*gen_loadx_iphdrlen(void);
224 static struct block
*gen_uncond(int);
225 static inline struct block
*gen_true(void);
226 static inline struct block
*gen_false(void);
227 static struct block
*gen_ether_linktype(int);
228 static struct block
*gen_ipnet_linktype(int);
229 static struct block
*gen_linux_sll_linktype(int);
230 static struct slist
*gen_load_prism_llprefixlen(void);
231 static struct slist
*gen_load_avs_llprefixlen(void);
232 static struct slist
*gen_load_radiotap_llprefixlen(void);
233 static struct slist
*gen_load_ppi_llprefixlen(void);
234 static void insert_compute_vloffsets(struct block
*);
235 static struct slist
*gen_llprefixlen(void);
236 static struct slist
*gen_off_macpl(void);
237 static int ethertype_to_ppptype(int);
238 static struct block
*gen_linktype(int);
239 static struct block
*gen_snap(bpf_u_int32
, bpf_u_int32
);
240 static struct block
*gen_llc_linktype(int);
241 static struct block
*gen_hostop(bpf_u_int32
, bpf_u_int32
, int, int, u_int
, u_int
);
243 static struct block
*gen_hostop6(struct in6_addr
*, struct in6_addr
*, int, int, u_int
, u_int
);
245 static struct block
*gen_ahostop(const u_char
*, int);
246 static struct block
*gen_ehostop(const u_char
*, int);
247 static struct block
*gen_fhostop(const u_char
*, int);
248 static struct block
*gen_thostop(const u_char
*, int);
249 static struct block
*gen_wlanhostop(const u_char
*, int);
250 static struct block
*gen_ipfchostop(const u_char
*, int);
251 static struct block
*gen_dnhostop(bpf_u_int32
, int);
252 static struct block
*gen_mpls_linktype(int);
253 static struct block
*gen_host(bpf_u_int32
, bpf_u_int32
, int, int, int);
255 static struct block
*gen_host6(struct in6_addr
*, struct in6_addr
*, int, int, int);
258 static struct block
*gen_gateway(const u_char
*, bpf_u_int32
**, int, int);
260 static struct block
*gen_ipfrag(void);
261 static struct block
*gen_portatom(int, bpf_int32
);
262 static struct block
*gen_portrangeatom(int, bpf_int32
, bpf_int32
);
264 static struct block
*gen_portatom6(int, bpf_int32
);
265 static struct block
*gen_portrangeatom6(int, bpf_int32
, bpf_int32
);
267 struct block
*gen_portop(int, int, int);
268 static struct block
*gen_port(int, int, int);
269 struct block
*gen_portrangeop(int, int, int, int);
270 static struct block
*gen_portrange(int, int, int, int);
272 struct block
*gen_portop6(int, int, int);
273 static struct block
*gen_port6(int, int, int);
274 struct block
*gen_portrangeop6(int, int, int, int);
275 static struct block
*gen_portrange6(int, int, int, int);
277 static int lookup_proto(const char *, int);
278 static struct block
*gen_protochain(int, int, int);
279 static struct block
*gen_proto(int, int, int);
280 static struct slist
*xfer_to_x(struct arth
*);
281 static struct slist
*xfer_to_a(struct arth
*);
282 static struct block
*gen_mac_multicast(int);
283 static struct block
*gen_len(int, int);
284 static struct block
*gen_check_802_11_data_frame(void);
286 static struct block
*gen_ppi_dlt_check(void);
287 static struct block
*gen_msg_abbrev(int type
);
298 /* XXX Round up to nearest long. */
299 n
= (n
+ sizeof(long) - 1) & ~(sizeof(long) - 1);
301 /* XXX Round up to structure boundary. */
305 cp
= &chunks
[cur_chunk
];
306 if (n
> cp
->n_left
) {
307 ++cp
, k
= ++cur_chunk
;
309 bpf_error("out of memory");
310 size
= CHUNK0SIZE
<< k
;
311 cp
->m
= (void *)malloc(size
);
313 bpf_error("out of memory");
314 memset((char *)cp
->m
, 0, size
);
317 bpf_error("out of memory");
320 return (void *)((char *)cp
->m
+ cp
->n_left
);
329 for (i
= 0; i
< NCHUNKS
; ++i
)
330 if (chunks
[i
].m
!= NULL
) {
337 * A strdup whose allocations are freed after code generation is over.
341 register const char *s
;
343 int n
= strlen(s
) + 1;
344 char *cp
= newchunk(n
);
350 static inline struct block
*
356 p
= (struct block
*)newchunk(sizeof(*p
));
363 static inline struct slist
*
369 p
= (struct slist
*)newchunk(sizeof(*p
));
375 static struct block
*
379 struct block
*b
= new_block(BPF_RET
|BPF_K
);
388 bpf_error("syntax error in filter expression");
391 static bpf_u_int32 netmask
;
396 pcap_compile_unsafe(pcap_t
*p
, struct bpf_program
*program
,
397 const char *buf
, int optimize
, bpf_u_int32 mask
);
400 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
401 const char *buf
, int optimize
, bpf_u_int32 mask
)
405 EnterCriticalSection(&g_PcapCompileCriticalSection
);
407 result
= pcap_compile_unsafe(p
, program
, buf
, optimize
, mask
);
409 LeaveCriticalSection(&g_PcapCompileCriticalSection
);
415 pcap_compile_unsafe(pcap_t
*p
, struct bpf_program
*program
,
416 const char *buf
, int optimize
, bpf_u_int32 mask
)
419 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
420 const char *buf
, int optimize
, bpf_u_int32 mask
)
424 const char * volatile xbuf
= buf
;
432 if (setjmp(top_ctx
)) {
446 snaplen
= pcap_snapshot(p
);
448 snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
449 "snaplen of 0 rejects all packets");
453 lex_init(xbuf
? xbuf
: "");
461 root
= gen_retblk(snaplen
);
463 if (optimize
&& !no_optimize
) {
466 (root
->s
.code
== (BPF_RET
|BPF_K
) && root
->s
.k
== 0))
467 bpf_error("expression rejects all packets");
469 program
->bf_insns
= icode_to_fcode(root
, &len
);
470 program
->bf_len
= len
;
478 * entry point for using the compiler with no pcap open
479 * pass in all the stuff that is needed explicitly instead.
482 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
483 struct bpf_program
*program
,
484 const char *buf
, int optimize
, bpf_u_int32 mask
)
489 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
492 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
498 * Clean up a "struct bpf_program" by freeing all the memory allocated
502 pcap_freecode(struct bpf_program
*program
)
505 if (program
->bf_insns
!= NULL
) {
506 free((char *)program
->bf_insns
);
507 program
->bf_insns
= NULL
;
512 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
513 * which of the jt and jf fields has been resolved and which is a pointer
514 * back to another unresolved block (or nil). At least one of the fields
515 * in each block is already resolved.
518 backpatch(list
, target
)
519 struct block
*list
, *target
;
536 * Merge the lists in b0 and b1, using the 'sense' field to indicate
537 * which of jt and jf is the link.
541 struct block
*b0
, *b1
;
543 register struct block
**p
= &b0
;
545 /* Find end of list. */
547 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
549 /* Concatenate the lists. */
557 struct block
*ppi_dlt_check
;
560 * Insert before the statements of the first (root) block any
561 * statements needed to load the lengths of any variable-length
562 * headers into registers.
564 * XXX - a fancier strategy would be to insert those before the
565 * statements of all blocks that use those lengths and that
566 * have no predecessors that use them, so that we only compute
567 * the lengths if we need them. There might be even better
568 * approaches than that.
570 * However, those strategies would be more complicated, and
571 * as we don't generate code to compute a length if the
572 * program has no tests that use the length, and as most
573 * tests will probably use those lengths, we would just
574 * postpone computing the lengths so that it's not done
575 * for tests that fail early, and it's not clear that's
578 insert_compute_vloffsets(p
->head
);
581 * For DLT_PPI captures, generate a check of the per-packet
582 * DLT value to make sure it's DLT_IEEE802_11.
584 ppi_dlt_check
= gen_ppi_dlt_check();
585 if (ppi_dlt_check
!= NULL
)
586 gen_and(ppi_dlt_check
, p
);
588 backpatch(p
, gen_retblk(snaplen
));
589 p
->sense
= !p
->sense
;
590 backpatch(p
, gen_retblk(0));
596 struct block
*b0
, *b1
;
598 backpatch(b0
, b1
->head
);
599 b0
->sense
= !b0
->sense
;
600 b1
->sense
= !b1
->sense
;
602 b1
->sense
= !b1
->sense
;
608 struct block
*b0
, *b1
;
610 b0
->sense
= !b0
->sense
;
611 backpatch(b0
, b1
->head
);
612 b0
->sense
= !b0
->sense
;
621 b
->sense
= !b
->sense
;
624 static struct block
*
625 gen_cmp(offrel
, offset
, size
, v
)
626 enum e_offrel offrel
;
630 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
633 static struct block
*
634 gen_cmp_gt(offrel
, offset
, size
, v
)
635 enum e_offrel offrel
;
639 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
642 static struct block
*
643 gen_cmp_ge(offrel
, offset
, size
, v
)
644 enum e_offrel offrel
;
648 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
651 static struct block
*
652 gen_cmp_lt(offrel
, offset
, size
, v
)
653 enum e_offrel offrel
;
657 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
660 static struct block
*
661 gen_cmp_le(offrel
, offset
, size
, v
)
662 enum e_offrel offrel
;
666 return gen_ncmp(offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
669 static struct block
*
670 gen_mcmp(offrel
, offset
, size
, v
, mask
)
671 enum e_offrel offrel
;
676 return gen_ncmp(offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
679 static struct block
*
680 gen_bcmp(offrel
, offset
, size
, v
)
681 enum e_offrel offrel
;
682 register u_int offset
, size
;
683 register const u_char
*v
;
685 register struct block
*b
, *tmp
;
689 register const u_char
*p
= &v
[size
- 4];
690 bpf_int32 w
= ((bpf_int32
)p
[0] << 24) |
691 ((bpf_int32
)p
[1] << 16) | ((bpf_int32
)p
[2] << 8) | p
[3];
693 tmp
= gen_cmp(offrel
, offset
+ size
- 4, BPF_W
, w
);
700 register const u_char
*p
= &v
[size
- 2];
701 bpf_int32 w
= ((bpf_int32
)p
[0] << 8) | p
[1];
703 tmp
= gen_cmp(offrel
, offset
+ size
- 2, BPF_H
, w
);
710 tmp
= gen_cmp(offrel
, offset
, BPF_B
, (bpf_int32
)v
[0]);
719 * AND the field of size "size" at offset "offset" relative to the header
720 * specified by "offrel" with "mask", and compare it with the value "v"
721 * with the test specified by "jtype"; if "reverse" is true, the test
722 * should test the opposite of "jtype".
724 static struct block
*
725 gen_ncmp(offrel
, offset
, size
, mask
, jtype
, reverse
, v
)
726 enum e_offrel offrel
;
728 bpf_u_int32 offset
, size
, mask
, jtype
;
731 struct slist
*s
, *s2
;
734 s
= gen_load_a(offrel
, offset
, size
);
736 if (mask
!= 0xffffffff) {
737 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
742 b
= new_block(JMP(jtype
));
745 if (reverse
&& (jtype
== BPF_JGT
|| jtype
== BPF_JGE
))
751 * Various code constructs need to know the layout of the data link
752 * layer. These variables give the necessary offsets from the beginning
753 * of the packet data.
757 * This is the offset of the beginning of the link-layer header from
758 * the beginning of the raw packet data.
760 * It's usually 0, except for 802.11 with a fixed-length radio header.
761 * (For 802.11 with a variable-length radio header, we have to generate
762 * code to compute that offset; off_ll is 0 in that case.)
767 * If there's a variable-length header preceding the link-layer header,
768 * "reg_off_ll" is the register number for a register containing the
769 * length of that header, and therefore the offset of the link-layer
770 * header from the beginning of the raw packet data. Otherwise,
771 * "reg_off_ll" is -1.
773 static int reg_off_ll
;
776 * This is the offset of the beginning of the MAC-layer header from
777 * the beginning of the link-layer header.
778 * It's usually 0, except for ATM LANE, where it's the offset, relative
779 * to the beginning of the raw packet data, of the Ethernet header, and
780 * for Ethernet with various additional information.
782 static u_int off_mac
;
785 * This is the offset of the beginning of the MAC-layer payload,
786 * from the beginning of the raw packet data.
788 * I.e., it's the sum of the length of the link-layer header (without,
789 * for example, any 802.2 LLC header, so it's the MAC-layer
790 * portion of that header), plus any prefix preceding the
793 static u_int off_macpl
;
796 * This is 1 if the offset of the beginning of the MAC-layer payload
797 * from the beginning of the link-layer header is variable-length.
799 static int off_macpl_is_variable
;
802 * If the link layer has variable_length headers, "reg_off_macpl"
803 * is the register number for a register containing the length of the
804 * link-layer header plus the length of any variable-length header
805 * preceding the link-layer header. Otherwise, "reg_off_macpl"
808 static int reg_off_macpl
;
811 * "off_linktype" is the offset to information in the link-layer header
812 * giving the packet type. This offset is relative to the beginning
813 * of the link-layer header (i.e., it doesn't include off_ll).
815 * For Ethernet, it's the offset of the Ethernet type field.
817 * For link-layer types that always use 802.2 headers, it's the
818 * offset of the LLC header.
820 * For PPP, it's the offset of the PPP type field.
822 * For Cisco HDLC, it's the offset of the CHDLC type field.
824 * For BSD loopback, it's the offset of the AF_ value.
826 * For Linux cooked sockets, it's the offset of the type field.
828 * It's set to -1 for no encapsulation, in which case, IP is assumed.
830 static u_int off_linktype
;
833 * TRUE if "pppoes" appeared in the filter; it causes link-layer type
834 * checks to check the PPP header, assumed to follow a LAN-style link-
835 * layer header and a PPPoE session header.
837 static int is_pppoes
= 0;
840 * TRUE if the link layer includes an ATM pseudo-header.
842 static int is_atm
= 0;
845 * TRUE if "lane" appeared in the filter; it causes us to generate
846 * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
848 static int is_lane
= 0;
851 * These are offsets for the ATM pseudo-header.
853 static u_int off_vpi
;
854 static u_int off_vci
;
855 static u_int off_proto
;
858 * These are offsets for the MTP2 fields.
863 * These are offsets for the MTP3 fields.
865 static u_int off_sio
;
866 static u_int off_opc
;
867 static u_int off_dpc
;
868 static u_int off_sls
;
871 * This is the offset of the first byte after the ATM pseudo_header,
872 * or -1 if there is no ATM pseudo-header.
874 static u_int off_payload
;
877 * These are offsets to the beginning of the network-layer header.
878 * They are relative to the beginning of the MAC-layer payload (i.e.,
879 * they don't include off_ll or off_macpl).
881 * If the link layer never uses 802.2 LLC:
883 * "off_nl" and "off_nl_nosnap" are the same.
885 * If the link layer always uses 802.2 LLC:
887 * "off_nl" is the offset if there's a SNAP header following
890 * "off_nl_nosnap" is the offset if there's no SNAP header.
892 * If the link layer is Ethernet:
894 * "off_nl" is the offset if the packet is an Ethernet II packet
895 * (we assume no 802.3+802.2+SNAP);
897 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
898 * with an 802.2 header following it.
901 static u_int off_nl_nosnap
;
909 linktype
= pcap_datalink(p
);
911 pcap_fddipad
= p
->fddipad
;
915 * Assume it's not raw ATM with a pseudo-header, for now.
926 * And that we're not doing PPPoE.
931 * And assume we're not doing SS7.
940 * Also assume it's not 802.11.
944 off_macpl_is_variable
= 0;
948 label_stack_depth
= 0;
958 off_nl
= 0; /* XXX in reality, variable! */
959 off_nl_nosnap
= 0; /* no 802.2 LLC */
962 case DLT_ARCNET_LINUX
:
965 off_nl
= 0; /* XXX in reality, variable! */
966 off_nl_nosnap
= 0; /* no 802.2 LLC */
971 off_macpl
= 14; /* Ethernet header length */
972 off_nl
= 0; /* Ethernet II */
973 off_nl_nosnap
= 3; /* 802.3+802.2 */
978 * SLIP doesn't have a link level type. The 16 byte
979 * header is hacked into our SLIP driver.
984 off_nl_nosnap
= 0; /* no 802.2 LLC */
988 /* XXX this may be the same as the DLT_PPP_BSDOS case */
993 off_nl_nosnap
= 0; /* no 802.2 LLC */
1001 off_nl_nosnap
= 0; /* no 802.2 LLC */
1008 off_nl_nosnap
= 0; /* no 802.2 LLC */
1013 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1014 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1018 off_nl_nosnap
= 0; /* no 802.2 LLC */
1023 * This does no include the Ethernet header, and
1024 * only covers session state.
1029 off_nl_nosnap
= 0; /* no 802.2 LLC */
1036 off_nl_nosnap
= 0; /* no 802.2 LLC */
1041 * FDDI doesn't really have a link-level type field.
1042 * We set "off_linktype" to the offset of the LLC header.
1044 * To check for Ethernet types, we assume that SSAP = SNAP
1045 * is being used and pick out the encapsulated Ethernet type.
1046 * XXX - should we generate code to check for SNAP?
1050 off_linktype
+= pcap_fddipad
;
1052 off_macpl
= 13; /* FDDI MAC header length */
1054 off_macpl
+= pcap_fddipad
;
1056 off_nl
= 8; /* 802.2+SNAP */
1057 off_nl_nosnap
= 3; /* 802.2 */
1062 * Token Ring doesn't really have a link-level type field.
1063 * We set "off_linktype" to the offset of the LLC header.
1065 * To check for Ethernet types, we assume that SSAP = SNAP
1066 * is being used and pick out the encapsulated Ethernet type.
1067 * XXX - should we generate code to check for SNAP?
1069 * XXX - the header is actually variable-length.
1070 * Some various Linux patched versions gave 38
1071 * as "off_linktype" and 40 as "off_nl"; however,
1072 * if a token ring packet has *no* routing
1073 * information, i.e. is not source-routed, the correct
1074 * values are 20 and 22, as they are in the vanilla code.
1076 * A packet is source-routed iff the uppermost bit
1077 * of the first byte of the source address, at an
1078 * offset of 8, has the uppermost bit set. If the
1079 * packet is source-routed, the total number of bytes
1080 * of routing information is 2 plus bits 0x1F00 of
1081 * the 16-bit value at an offset of 14 (shifted right
1082 * 8 - figure out which byte that is).
1085 off_macpl
= 14; /* Token Ring MAC header length */
1086 off_nl
= 8; /* 802.2+SNAP */
1087 off_nl_nosnap
= 3; /* 802.2 */
1090 case DLT_IEEE802_11
:
1091 case DLT_PRISM_HEADER
:
1092 case DLT_IEEE802_11_RADIO_AVS
:
1093 case DLT_IEEE802_11_RADIO
:
1095 * 802.11 doesn't really have a link-level type field.
1096 * We set "off_linktype" to the offset of the LLC header.
1098 * To check for Ethernet types, we assume that SSAP = SNAP
1099 * is being used and pick out the encapsulated Ethernet type.
1100 * XXX - should we generate code to check for SNAP?
1102 * We also handle variable-length radio headers here.
1103 * The Prism header is in theory variable-length, but in
1104 * practice it's always 144 bytes long. However, some
1105 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1106 * sometimes or always supply an AVS header, so we
1107 * have to check whether the radio header is a Prism
1108 * header or an AVS header, so, in practice, it's
1112 off_macpl
= 0; /* link-layer header is variable-length */
1113 off_macpl_is_variable
= 1;
1114 off_nl
= 8; /* 802.2+SNAP */
1115 off_nl_nosnap
= 3; /* 802.2 */
1120 * At the moment we treat PPI the same way that we treat
1121 * normal Radiotap encoded packets. The difference is in
1122 * the function that generates the code at the beginning
1123 * to compute the header length. Since this code generator
1124 * of PPI supports bare 802.11 encapsulation only (i.e.
1125 * the encapsulated DLT should be DLT_IEEE802_11) we
1126 * generate code to check for this too.
1129 off_macpl
= 0; /* link-layer header is variable-length */
1130 off_macpl_is_variable
= 1;
1131 off_nl
= 8; /* 802.2+SNAP */
1132 off_nl_nosnap
= 3; /* 802.2 */
1135 case DLT_ATM_RFC1483
:
1136 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1138 * assume routed, non-ISO PDUs
1139 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1141 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1142 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1143 * latter would presumably be treated the way PPPoE
1144 * should be, so you can do "pppoe and udp port 2049"
1145 * or "pppoa and tcp port 80" and have it check for
1146 * PPPo{A,E} and a PPP protocol of IP and....
1149 off_macpl
= 0; /* packet begins with LLC header */
1150 off_nl
= 8; /* 802.2+SNAP */
1151 off_nl_nosnap
= 3; /* 802.2 */
1156 * Full Frontal ATM; you get AALn PDUs with an ATM
1160 off_vpi
= SUNATM_VPI_POS
;
1161 off_vci
= SUNATM_VCI_POS
;
1162 off_proto
= PROTO_POS
;
1163 off_mac
= -1; /* assume LLC-encapsulated, so no MAC-layer header */
1164 off_payload
= SUNATM_PKT_BEGIN_POS
;
1165 off_linktype
= off_payload
;
1166 off_macpl
= off_payload
; /* if LLC-encapsulated */
1167 off_nl
= 8; /* 802.2+SNAP */
1168 off_nl_nosnap
= 3; /* 802.2 */
1177 off_nl_nosnap
= 0; /* no 802.2 LLC */
1180 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket */
1184 off_nl_nosnap
= 0; /* no 802.2 LLC */
1189 * LocalTalk does have a 1-byte type field in the LLAP header,
1190 * but really it just indicates whether there is a "short" or
1191 * "long" DDP packet following.
1196 off_nl_nosnap
= 0; /* no 802.2 LLC */
1199 case DLT_IP_OVER_FC
:
1201 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1202 * link-level type field. We set "off_linktype" to the
1203 * offset of the LLC header.
1205 * To check for Ethernet types, we assume that SSAP = SNAP
1206 * is being used and pick out the encapsulated Ethernet type.
1207 * XXX - should we generate code to check for SNAP? RFC
1208 * 2625 says SNAP should be used.
1212 off_nl
= 8; /* 802.2+SNAP */
1213 off_nl_nosnap
= 3; /* 802.2 */
1218 * XXX - we should set this to handle SNAP-encapsulated
1219 * frames (NLPID of 0x80).
1224 off_nl_nosnap
= 0; /* no 802.2 LLC */
1228 * the only BPF-interesting FRF.16 frames are non-control frames;
1229 * Frame Relay has a variable length link-layer
1230 * so lets start with offset 4 for now and increments later on (FIXME);
1236 off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1239 case DLT_APPLE_IP_OVER_IEEE1394
:
1243 off_nl_nosnap
= 0; /* no 802.2 LLC */
1246 case DLT_SYMANTEC_FIREWALL
:
1249 off_nl
= 0; /* Ethernet II */
1250 off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1253 #ifdef HAVE_NET_PFVAR_H
1256 off_macpl
= PFLOG_HDRLEN
;
1258 off_nl_nosnap
= 0; /* no 802.2 LLC */
1262 case DLT_JUNIPER_MFR
:
1263 case DLT_JUNIPER_MLFR
:
1264 case DLT_JUNIPER_MLPPP
:
1265 case DLT_JUNIPER_PPP
:
1266 case DLT_JUNIPER_CHDLC
:
1267 case DLT_JUNIPER_FRELAY
:
1271 off_nl_nosnap
= -1; /* no 802.2 LLC */
1274 case DLT_JUNIPER_ATM1
:
1275 off_linktype
= 4; /* in reality variable between 4-8 */
1276 off_macpl
= 4; /* in reality variable between 4-8 */
1281 case DLT_JUNIPER_ATM2
:
1282 off_linktype
= 8; /* in reality variable between 8-12 */
1283 off_macpl
= 8; /* in reality variable between 8-12 */
1288 /* frames captured on a Juniper PPPoE service PIC
1289 * contain raw ethernet frames */
1290 case DLT_JUNIPER_PPPOE
:
1291 case DLT_JUNIPER_ETHER
:
1294 off_nl
= 18; /* Ethernet II */
1295 off_nl_nosnap
= 21; /* 802.3+802.2 */
1298 case DLT_JUNIPER_PPPOE_ATM
:
1302 off_nl_nosnap
= -1; /* no 802.2 LLC */
1305 case DLT_JUNIPER_GGSN
:
1309 off_nl_nosnap
= -1; /* no 802.2 LLC */
1312 case DLT_JUNIPER_ES
:
1314 off_macpl
= -1; /* not really a network layer but raw IP addresses */
1315 off_nl
= -1; /* not really a network layer but raw IP addresses */
1316 off_nl_nosnap
= -1; /* no 802.2 LLC */
1319 case DLT_JUNIPER_MONITOR
:
1322 off_nl
= 0; /* raw IP/IP6 header */
1323 off_nl_nosnap
= -1; /* no 802.2 LLC */
1326 case DLT_JUNIPER_SERVICES
:
1328 off_macpl
= -1; /* L3 proto location dep. on cookie type */
1329 off_nl
= -1; /* L3 proto location dep. on cookie type */
1330 off_nl_nosnap
= -1; /* no 802.2 LLC */
1333 case DLT_JUNIPER_VP
:
1340 case DLT_JUNIPER_ST
:
1347 case DLT_JUNIPER_ISM
:
1354 case DLT_JUNIPER_VS
:
1355 case DLT_JUNIPER_SRX_E2E
:
1356 case DLT_JUNIPER_FIBRECHANNEL
:
1357 case DLT_JUNIPER_ATM_CEMIC
:
1376 case DLT_MTP2_WITH_PHDR
:
1409 * Currently, only raw "link[N:M]" filtering is supported.
1411 off_linktype
= -1; /* variable, min 15, max 71 steps of 7 */
1413 off_nl
= -1; /* variable, min 16, max 71 steps of 7 */
1414 off_nl_nosnap
= -1; /* no 802.2 LLC */
1415 off_mac
= 1; /* step over the kiss length byte */
1420 off_macpl
= 24; /* ipnet header length */
1425 case DLT_NETANALYZER
:
1426 off_mac
= 4; /* MAC header is past 4-byte pseudo-header */
1427 off_linktype
= 16; /* includes 4-byte pseudo-header */
1428 off_macpl
= 18; /* pseudo-header+Ethernet header length */
1429 off_nl
= 0; /* Ethernet II */
1430 off_nl_nosnap
= 3; /* 802.3+802.2 */
1433 case DLT_NETANALYZER_TRANSPARENT
:
1434 off_mac
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1435 off_linktype
= 24; /* includes 4-byte pseudo-header+preamble+SFD */
1436 off_macpl
= 26; /* pseudo-header+preamble+SFD+Ethernet header length */
1437 off_nl
= 0; /* Ethernet II */
1438 off_nl_nosnap
= 3; /* 802.3+802.2 */
1443 * For values in the range in which we've assigned new
1444 * DLT_ values, only raw "link[N:M]" filtering is supported.
1446 if (linktype
>= DLT_MATCHING_MIN
&&
1447 linktype
<= DLT_MATCHING_MAX
) {
1456 bpf_error("unknown data link type %d", linktype
);
1461 * Load a value relative to the beginning of the link-layer header.
1462 * The link-layer header doesn't necessarily begin at the beginning
1463 * of the packet data; there might be a variable-length prefix containing
1464 * radio information.
1466 static struct slist
*
1467 gen_load_llrel(offset
, size
)
1470 struct slist
*s
, *s2
;
1472 s
= gen_llprefixlen();
1475 * If "s" is non-null, it has code to arrange that the X register
1476 * contains the length of the prefix preceding the link-layer
1479 * Otherwise, the length of the prefix preceding the link-layer
1480 * header is "off_ll".
1484 * There's a variable-length prefix preceding the
1485 * link-layer header. "s" points to a list of statements
1486 * that put the length of that prefix into the X register.
1487 * do an indirect load, to use the X register as an offset.
1489 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1494 * There is no variable-length header preceding the
1495 * link-layer header; add in off_ll, which, if there's
1496 * a fixed-length header preceding the link-layer header,
1497 * is the length of that header.
1499 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1500 s
->s
.k
= offset
+ off_ll
;
1506 * Load a value relative to the beginning of the MAC-layer payload.
1508 static struct slist
*
1509 gen_load_macplrel(offset
, size
)
1512 struct slist
*s
, *s2
;
1514 s
= gen_off_macpl();
1517 * If s is non-null, the offset of the MAC-layer payload is
1518 * variable, and s points to a list of instructions that
1519 * arrange that the X register contains that offset.
1521 * Otherwise, the offset of the MAC-layer payload is constant,
1522 * and is in off_macpl.
1526 * The offset of the MAC-layer payload is in the X
1527 * register. Do an indirect load, to use the X register
1530 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1535 * The offset of the MAC-layer payload is constant,
1536 * and is in off_macpl; load the value at that offset
1537 * plus the specified offset.
1539 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1540 s
->s
.k
= off_macpl
+ offset
;
1546 * Load a value relative to the beginning of the specified header.
1548 static struct slist
*
1549 gen_load_a(offrel
, offset
, size
)
1550 enum e_offrel offrel
;
1553 struct slist
*s
, *s2
;
1558 s
= new_stmt(BPF_LD
|BPF_ABS
|size
);
1563 s
= gen_load_llrel(offset
, size
);
1567 s
= gen_load_macplrel(offset
, size
);
1571 s
= gen_load_macplrel(off_nl
+ offset
, size
);
1575 s
= gen_load_macplrel(off_nl_nosnap
+ offset
, size
);
1580 * Load the X register with the length of the IPv4 header
1581 * (plus the offset of the link-layer header, if it's
1582 * preceded by a variable-length header such as a radio
1583 * header), in bytes.
1585 s
= gen_loadx_iphdrlen();
1588 * Load the item at {offset of the MAC-layer payload} +
1589 * {offset, relative to the start of the MAC-layer
1590 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1591 * {specified offset}.
1593 * (If the offset of the MAC-layer payload is variable,
1594 * it's included in the value in the X register, and
1597 s2
= new_stmt(BPF_LD
|BPF_IND
|size
);
1598 s2
->s
.k
= off_macpl
+ off_nl
+ offset
;
1603 s
= gen_load_macplrel(off_nl
+ 40 + offset
, size
);
1614 * Generate code to load into the X register the sum of the length of
1615 * the IPv4 header and any variable-length header preceding the link-layer
1618 static struct slist
*
1619 gen_loadx_iphdrlen()
1621 struct slist
*s
, *s2
;
1623 s
= gen_off_macpl();
1626 * There's a variable-length prefix preceding the
1627 * link-layer header, or the link-layer header is itself
1628 * variable-length. "s" points to a list of statements
1629 * that put the offset of the MAC-layer payload into
1632 * The 4*([k]&0xf) addressing mode can't be used, as we
1633 * don't have a constant offset, so we have to load the
1634 * value in question into the A register and add to it
1635 * the value from the X register.
1637 s2
= new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
1640 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
1643 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
1648 * The A register now contains the length of the
1649 * IP header. We need to add to it the offset of
1650 * the MAC-layer payload, which is still in the X
1651 * register, and move the result into the X register.
1653 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
1654 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
1657 * There is no variable-length header preceding the
1658 * link-layer header, and the link-layer header is
1659 * fixed-length; load the length of the IPv4 header,
1660 * which is at an offset of off_nl from the beginning
1661 * of the MAC-layer payload, and thus at an offset
1662 * of off_mac_pl + off_nl from the beginning of the
1665 s
= new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
1666 s
->s
.k
= off_macpl
+ off_nl
;
1671 static struct block
*
1678 s
= new_stmt(BPF_LD
|BPF_IMM
);
1680 b
= new_block(JMP(BPF_JEQ
));
1686 static inline struct block
*
1689 return gen_uncond(1);
1692 static inline struct block
*
1695 return gen_uncond(0);
1699 * Byte-swap a 32-bit number.
1700 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1701 * big-endian platforms.)
1703 #define SWAPLONG(y) \
1704 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1707 * Generate code to match a particular packet type.
1709 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1710 * value, if <= ETHERMTU. We use that to determine whether to
1711 * match the type/length field or to check the type/length field for
1712 * a value <= ETHERMTU to see whether it's a type field and then do
1713 * the appropriate test.
1715 static struct block
*
1716 gen_ether_linktype(proto
)
1719 struct block
*b0
, *b1
;
1725 case LLCSAP_NETBEUI
:
1727 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1728 * so we check the DSAP and SSAP.
1730 * LLCSAP_IP checks for IP-over-802.2, rather
1731 * than IP-over-Ethernet or IP-over-SNAP.
1733 * XXX - should we check both the DSAP and the
1734 * SSAP, like this, or should we check just the
1735 * DSAP, as we do for other types <= ETHERMTU
1736 * (i.e., other SAP values)?
1738 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1740 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)
1741 ((proto
<< 8) | proto
));
1749 * Ethernet_II frames, which are Ethernet
1750 * frames with a frame type of ETHERTYPE_IPX;
1752 * Ethernet_802.3 frames, which are 802.3
1753 * frames (i.e., the type/length field is
1754 * a length field, <= ETHERMTU, rather than
1755 * a type field) with the first two bytes
1756 * after the Ethernet/802.3 header being
1759 * Ethernet_802.2 frames, which are 802.3
1760 * frames with an 802.2 LLC header and
1761 * with the IPX LSAP as the DSAP in the LLC
1764 * Ethernet_SNAP frames, which are 802.3
1765 * frames with an LLC header and a SNAP
1766 * header and with an OUI of 0x000000
1767 * (encapsulated Ethernet) and a protocol
1768 * ID of ETHERTYPE_IPX in the SNAP header.
1770 * XXX - should we generate the same code both
1771 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1775 * This generates code to check both for the
1776 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1778 b0
= gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1779 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)0xFFFF);
1783 * Now we add code to check for SNAP frames with
1784 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1786 b0
= gen_snap(0x000000, ETHERTYPE_IPX
);
1790 * Now we generate code to check for 802.3
1791 * frames in general.
1793 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1797 * Now add the check for 802.3 frames before the
1798 * check for Ethernet_802.2 and Ethernet_802.3,
1799 * as those checks should only be done on 802.3
1800 * frames, not on Ethernet frames.
1805 * Now add the check for Ethernet_II frames, and
1806 * do that before checking for the other frame
1809 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1810 (bpf_int32
)ETHERTYPE_IPX
);
1814 case ETHERTYPE_ATALK
:
1815 case ETHERTYPE_AARP
:
1817 * EtherTalk (AppleTalk protocols on Ethernet link
1818 * layer) may use 802.2 encapsulation.
1822 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1823 * we check for an Ethernet type field less than
1824 * 1500, which means it's an 802.3 length field.
1826 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1830 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1831 * SNAP packets with an organization code of
1832 * 0x080007 (Apple, for Appletalk) and a protocol
1833 * type of ETHERTYPE_ATALK (Appletalk).
1835 * 802.2-encapsulated ETHERTYPE_AARP packets are
1836 * SNAP packets with an organization code of
1837 * 0x000000 (encapsulated Ethernet) and a protocol
1838 * type of ETHERTYPE_AARP (Appletalk ARP).
1840 if (proto
== ETHERTYPE_ATALK
)
1841 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
);
1842 else /* proto == ETHERTYPE_AARP */
1843 b1
= gen_snap(0x000000, ETHERTYPE_AARP
);
1847 * Check for Ethernet encapsulation (Ethertalk
1848 * phase 1?); we just check for the Ethernet
1851 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
1857 if (proto
<= ETHERMTU
) {
1859 * This is an LLC SAP value, so the frames
1860 * that match would be 802.2 frames.
1861 * Check that the frame is an 802.2 frame
1862 * (i.e., that the length/type field is
1863 * a length field, <= ETHERMTU) and
1864 * then check the DSAP.
1866 b0
= gen_cmp_gt(OR_LINK
, off_linktype
, BPF_H
, ETHERMTU
);
1868 b1
= gen_cmp(OR_LINK
, off_linktype
+ 2, BPF_B
,
1874 * This is an Ethernet type, so compare
1875 * the length/type field with it (if
1876 * the frame is an 802.2 frame, the length
1877 * field will be <= ETHERMTU, and, as
1878 * "proto" is > ETHERMTU, this test
1879 * will fail and the frame won't match,
1880 * which is what we want).
1882 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1889 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1890 * or IPv6 then we have an error.
1892 static struct block
*
1893 gen_ipnet_linktype(proto
)
1899 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
1900 (bpf_int32
)IPH_AF_INET
);
1903 case ETHERTYPE_IPV6
:
1904 return gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
1905 (bpf_int32
)IPH_AF_INET6
);
1916 * Generate code to match a particular packet type.
1918 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1919 * value, if <= ETHERMTU. We use that to determine whether to
1920 * match the type field or to check the type field for the special
1921 * LINUX_SLL_P_802_2 value and then do the appropriate test.
1923 static struct block
*
1924 gen_linux_sll_linktype(proto
)
1927 struct block
*b0
, *b1
;
1933 case LLCSAP_NETBEUI
:
1935 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1936 * so we check the DSAP and SSAP.
1938 * LLCSAP_IP checks for IP-over-802.2, rather
1939 * than IP-over-Ethernet or IP-over-SNAP.
1941 * XXX - should we check both the DSAP and the
1942 * SSAP, like this, or should we check just the
1943 * DSAP, as we do for other types <= ETHERMTU
1944 * (i.e., other SAP values)?
1946 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1947 b1
= gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_int32
)
1948 ((proto
<< 8) | proto
));
1954 * Ethernet_II frames, which are Ethernet
1955 * frames with a frame type of ETHERTYPE_IPX;
1957 * Ethernet_802.3 frames, which have a frame
1958 * type of LINUX_SLL_P_802_3;
1960 * Ethernet_802.2 frames, which are 802.3
1961 * frames with an 802.2 LLC header (i.e, have
1962 * a frame type of LINUX_SLL_P_802_2) and
1963 * with the IPX LSAP as the DSAP in the LLC
1966 * Ethernet_SNAP frames, which are 802.3
1967 * frames with an LLC header and a SNAP
1968 * header and with an OUI of 0x000000
1969 * (encapsulated Ethernet) and a protocol
1970 * ID of ETHERTYPE_IPX in the SNAP header.
1972 * First, do the checks on LINUX_SLL_P_802_2
1973 * frames; generate the check for either
1974 * Ethernet_802.2 or Ethernet_SNAP frames, and
1975 * then put a check for LINUX_SLL_P_802_2 frames
1978 b0
= gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)LLCSAP_IPX
);
1979 b1
= gen_snap(0x000000, ETHERTYPE_IPX
);
1981 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
1985 * Now check for 802.3 frames and OR that with
1986 * the previous test.
1988 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_3
);
1992 * Now add the check for Ethernet_II frames, and
1993 * do that before checking for the other frame
1996 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
1997 (bpf_int32
)ETHERTYPE_IPX
);
2001 case ETHERTYPE_ATALK
:
2002 case ETHERTYPE_AARP
:
2004 * EtherTalk (AppleTalk protocols on Ethernet link
2005 * layer) may use 802.2 encapsulation.
2009 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2010 * we check for the 802.2 protocol type in the
2011 * "Ethernet type" field.
2013 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, LINUX_SLL_P_802_2
);
2016 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2017 * SNAP packets with an organization code of
2018 * 0x080007 (Apple, for Appletalk) and a protocol
2019 * type of ETHERTYPE_ATALK (Appletalk).
2021 * 802.2-encapsulated ETHERTYPE_AARP packets are
2022 * SNAP packets with an organization code of
2023 * 0x000000 (encapsulated Ethernet) and a protocol
2024 * type of ETHERTYPE_AARP (Appletalk ARP).
2026 if (proto
== ETHERTYPE_ATALK
)
2027 b1
= gen_snap(0x080007, ETHERTYPE_ATALK
);
2028 else /* proto == ETHERTYPE_AARP */
2029 b1
= gen_snap(0x000000, ETHERTYPE_AARP
);
2033 * Check for Ethernet encapsulation (Ethertalk
2034 * phase 1?); we just check for the Ethernet
2037 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
2043 if (proto
<= ETHERMTU
) {
2045 * This is an LLC SAP value, so the frames
2046 * that match would be 802.2 frames.
2047 * Check for the 802.2 protocol type
2048 * in the "Ethernet type" field, and
2049 * then check the DSAP.
2051 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2053 b1
= gen_cmp(OR_LINK
, off_macpl
, BPF_B
,
2059 * This is an Ethernet type, so compare
2060 * the length/type field with it (if
2061 * the frame is an 802.2 frame, the length
2062 * field will be <= ETHERMTU, and, as
2063 * "proto" is > ETHERMTU, this test
2064 * will fail and the frame won't match,
2065 * which is what we want).
2067 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2073 static struct slist
*
2074 gen_load_prism_llprefixlen()
2076 struct slist
*s1
, *s2
;
2077 struct slist
*sjeq_avs_cookie
;
2078 struct slist
*sjcommon
;
2081 * This code is not compatible with the optimizer, as
2082 * we are generating jmp instructions within a normal
2083 * slist of instructions
2088 * Generate code to load the length of the radio header into
2089 * the register assigned to hold that length, if one has been
2090 * assigned. (If one hasn't been assigned, no code we've
2091 * generated uses that prefix, so we don't need to generate any
2094 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2095 * or always use the AVS header rather than the Prism header.
2096 * We load a 4-byte big-endian value at the beginning of the
2097 * raw packet data, and see whether, when masked with 0xFFFFF000,
2098 * it's equal to 0x80211000. If so, that indicates that it's
2099 * an AVS header (the masked-out bits are the version number).
2100 * Otherwise, it's a Prism header.
2102 * XXX - the Prism header is also, in theory, variable-length,
2103 * but no known software generates headers that aren't 144
2106 if (reg_off_ll
!= -1) {
2110 s1
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2114 * AND it with 0xFFFFF000.
2116 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
2117 s2
->s
.k
= 0xFFFFF000;
2121 * Compare with 0x80211000.
2123 sjeq_avs_cookie
= new_stmt(JMP(BPF_JEQ
));
2124 sjeq_avs_cookie
->s
.k
= 0x80211000;
2125 sappend(s1
, sjeq_avs_cookie
);
2130 * The 4 bytes at an offset of 4 from the beginning of
2131 * the AVS header are the length of the AVS header.
2132 * That field is big-endian.
2134 s2
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2137 sjeq_avs_cookie
->s
.jt
= s2
;
2140 * Now jump to the code to allocate a register
2141 * into which to save the header length and
2142 * store the length there. (The "jump always"
2143 * instruction needs to have the k field set;
2144 * it's added to the PC, so, as we're jumping
2145 * over a single instruction, it should be 1.)
2147 sjcommon
= new_stmt(JMP(BPF_JA
));
2149 sappend(s1
, sjcommon
);
2152 * Now for the code that handles the Prism header.
2153 * Just load the length of the Prism header (144)
2154 * into the A register. Have the test for an AVS
2155 * header branch here if we don't have an AVS header.
2157 s2
= new_stmt(BPF_LD
|BPF_W
|BPF_IMM
);
2160 sjeq_avs_cookie
->s
.jf
= s2
;
2163 * Now allocate a register to hold that value and store
2164 * it. The code for the AVS header will jump here after
2165 * loading the length of the AVS header.
2167 s2
= new_stmt(BPF_ST
);
2168 s2
->s
.k
= reg_off_ll
;
2170 sjcommon
->s
.jf
= s2
;
2173 * Now move it into the X register.
2175 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2183 static struct slist
*
2184 gen_load_avs_llprefixlen()
2186 struct slist
*s1
, *s2
;
2189 * Generate code to load the length of the AVS header into
2190 * the register assigned to hold that length, if one has been
2191 * assigned. (If one hasn't been assigned, no code we've
2192 * generated uses that prefix, so we don't need to generate any
2195 if (reg_off_ll
!= -1) {
2197 * The 4 bytes at an offset of 4 from the beginning of
2198 * the AVS header are the length of the AVS header.
2199 * That field is big-endian.
2201 s1
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2205 * Now allocate a register to hold that value and store
2208 s2
= new_stmt(BPF_ST
);
2209 s2
->s
.k
= reg_off_ll
;
2213 * Now move it into the X register.
2215 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2223 static struct slist
*
2224 gen_load_radiotap_llprefixlen()
2226 struct slist
*s1
, *s2
;
2229 * Generate code to load the length of the radiotap header into
2230 * the register assigned to hold that length, if one has been
2231 * assigned. (If one hasn't been assigned, no code we've
2232 * generated uses that prefix, so we don't need to generate any
2235 if (reg_off_ll
!= -1) {
2237 * The 2 bytes at offsets of 2 and 3 from the beginning
2238 * of the radiotap header are the length of the radiotap
2239 * header; unfortunately, it's little-endian, so we have
2240 * to load it a byte at a time and construct the value.
2244 * Load the high-order byte, at an offset of 3, shift it
2245 * left a byte, and put the result in the X register.
2247 s1
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2249 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
2252 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2256 * Load the next byte, at an offset of 2, and OR the
2257 * value from the X register into it.
2259 s2
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2262 s2
= new_stmt(BPF_ALU
|BPF_OR
|BPF_X
);
2266 * Now allocate a register to hold that value and store
2269 s2
= new_stmt(BPF_ST
);
2270 s2
->s
.k
= reg_off_ll
;
2274 * Now move it into the X register.
2276 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2285 * At the moment we treat PPI as normal Radiotap encoded
2286 * packets. The difference is in the function that generates
2287 * the code at the beginning to compute the header length.
2288 * Since this code generator of PPI supports bare 802.11
2289 * encapsulation only (i.e. the encapsulated DLT should be
2290 * DLT_IEEE802_11) we generate code to check for this too;
2291 * that's done in finish_parse().
2293 static struct slist
*
2294 gen_load_ppi_llprefixlen()
2296 struct slist
*s1
, *s2
;
2299 * Generate code to load the length of the radiotap header
2300 * into the register assigned to hold that length, if one has
2303 if (reg_off_ll
!= -1) {
2305 * The 2 bytes at offsets of 2 and 3 from the beginning
2306 * of the radiotap header are the length of the radiotap
2307 * header; unfortunately, it's little-endian, so we have
2308 * to load it a byte at a time and construct the value.
2312 * Load the high-order byte, at an offset of 3, shift it
2313 * left a byte, and put the result in the X register.
2315 s1
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2317 s2
= new_stmt(BPF_ALU
|BPF_LSH
|BPF_K
);
2320 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2324 * Load the next byte, at an offset of 2, and OR the
2325 * value from the X register into it.
2327 s2
= new_stmt(BPF_LD
|BPF_B
|BPF_ABS
);
2330 s2
= new_stmt(BPF_ALU
|BPF_OR
|BPF_X
);
2334 * Now allocate a register to hold that value and store
2337 s2
= new_stmt(BPF_ST
);
2338 s2
->s
.k
= reg_off_ll
;
2342 * Now move it into the X register.
2344 s2
= new_stmt(BPF_MISC
|BPF_TAX
);
2353 * Load a value relative to the beginning of the link-layer header after the 802.11
2354 * header, i.e. LLC_SNAP.
2355 * The link-layer header doesn't necessarily begin at the beginning
2356 * of the packet data; there might be a variable-length prefix containing
2357 * radio information.
2359 static struct slist
*
2360 gen_load_802_11_header_len(struct slist
*s
, struct slist
*snext
)
2363 struct slist
*sjset_data_frame_1
;
2364 struct slist
*sjset_data_frame_2
;
2365 struct slist
*sjset_qos
;
2366 struct slist
*sjset_radiotap_flags
;
2367 struct slist
*sjset_radiotap_tsft
;
2368 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
2369 struct slist
*s_roundup
;
2371 if (reg_off_macpl
== -1) {
2373 * No register has been assigned to the offset of
2374 * the MAC-layer payload, which means nobody needs
2375 * it; don't bother computing it - just return
2376 * what we already have.
2382 * This code is not compatible with the optimizer, as
2383 * we are generating jmp instructions within a normal
2384 * slist of instructions
2389 * If "s" is non-null, it has code to arrange that the X register
2390 * contains the length of the prefix preceding the link-layer
2393 * Otherwise, the length of the prefix preceding the link-layer
2394 * header is "off_ll".
2398 * There is no variable-length header preceding the
2399 * link-layer header.
2401 * Load the length of the fixed-length prefix preceding
2402 * the link-layer header (if any) into the X register,
2403 * and store it in the reg_off_macpl register.
2404 * That length is off_ll.
2406 s
= new_stmt(BPF_LDX
|BPF_IMM
);
2411 * The X register contains the offset of the beginning of the
2412 * link-layer header; add 24, which is the minimum length
2413 * of the MAC header for a data frame, to that, and store it
2414 * in reg_off_macpl, and then load the Frame Control field,
2415 * which is at the offset in the X register, with an indexed load.
2417 s2
= new_stmt(BPF_MISC
|BPF_TXA
);
2419 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
2422 s2
= new_stmt(BPF_ST
);
2423 s2
->s
.k
= reg_off_macpl
;
2426 s2
= new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
2431 * Check the Frame Control field to see if this is a data frame;
2432 * a data frame has the 0x08 bit (b3) in that field set and the
2433 * 0x04 bit (b2) clear.
2435 sjset_data_frame_1
= new_stmt(JMP(BPF_JSET
));
2436 sjset_data_frame_1
->s
.k
= 0x08;
2437 sappend(s
, sjset_data_frame_1
);
2440 * If b3 is set, test b2, otherwise go to the first statement of
2441 * the rest of the program.
2443 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(JMP(BPF_JSET
));
2444 sjset_data_frame_2
->s
.k
= 0x04;
2445 sappend(s
, sjset_data_frame_2
);
2446 sjset_data_frame_1
->s
.jf
= snext
;
2449 * If b2 is not set, this is a data frame; test the QoS bit.
2450 * Otherwise, go to the first statement of the rest of the
2453 sjset_data_frame_2
->s
.jt
= snext
;
2454 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(JMP(BPF_JSET
));
2455 sjset_qos
->s
.k
= 0x80; /* QoS bit */
2456 sappend(s
, sjset_qos
);
2459 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2461 * Otherwise, go to the first statement of the rest of the
2464 sjset_qos
->s
.jt
= s2
= new_stmt(BPF_LD
|BPF_MEM
);
2465 s2
->s
.k
= reg_off_macpl
;
2467 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_IMM
);
2470 s2
= new_stmt(BPF_ST
);
2471 s2
->s
.k
= reg_off_macpl
;
2475 * If we have a radiotap header, look at it to see whether
2476 * there's Atheros padding between the MAC-layer header
2479 * Note: all of the fields in the radiotap header are
2480 * little-endian, so we byte-swap all of the values
2481 * we test against, as they will be loaded as big-endian
2484 if (linktype
== DLT_IEEE802_11_RADIO
) {
2486 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2487 * in the presence flag?
2489 sjset_qos
->s
.jf
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_W
);
2493 sjset_radiotap_flags
= new_stmt(JMP(BPF_JSET
));
2494 sjset_radiotap_flags
->s
.k
= SWAPLONG(0x00000002);
2495 sappend(s
, sjset_radiotap_flags
);
2498 * If not, skip all of this.
2500 sjset_radiotap_flags
->s
.jf
= snext
;
2503 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2505 sjset_radiotap_tsft
= sjset_radiotap_flags
->s
.jt
=
2506 new_stmt(JMP(BPF_JSET
));
2507 sjset_radiotap_tsft
->s
.k
= SWAPLONG(0x00000001);
2508 sappend(s
, sjset_radiotap_tsft
);
2511 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2512 * at an offset of 16 from the beginning of the raw packet
2513 * data (8 bytes for the radiotap header and 8 bytes for
2516 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2519 sjset_radiotap_tsft
->s
.jt
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
2523 sjset_tsft_datapad
= new_stmt(JMP(BPF_JSET
));
2524 sjset_tsft_datapad
->s
.k
= 0x20;
2525 sappend(s
, sjset_tsft_datapad
);
2528 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2529 * at an offset of 8 from the beginning of the raw packet
2530 * data (8 bytes for the radiotap header).
2532 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2535 sjset_radiotap_tsft
->s
.jf
= s2
= new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
2539 sjset_notsft_datapad
= new_stmt(JMP(BPF_JSET
));
2540 sjset_notsft_datapad
->s
.k
= 0x20;
2541 sappend(s
, sjset_notsft_datapad
);
2544 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2545 * set, round the length of the 802.11 header to
2546 * a multiple of 4. Do that by adding 3 and then
2547 * dividing by and multiplying by 4, which we do by
2550 s_roundup
= new_stmt(BPF_LD
|BPF_MEM
);
2551 s_roundup
->s
.k
= reg_off_macpl
;
2552 sappend(s
, s_roundup
);
2553 s2
= new_stmt(BPF_ALU
|BPF_ADD
|BPF_IMM
);
2556 s2
= new_stmt(BPF_ALU
|BPF_AND
|BPF_IMM
);
2559 s2
= new_stmt(BPF_ST
);
2560 s2
->s
.k
= reg_off_macpl
;
2563 sjset_tsft_datapad
->s
.jt
= s_roundup
;
2564 sjset_tsft_datapad
->s
.jf
= snext
;
2565 sjset_notsft_datapad
->s
.jt
= s_roundup
;
2566 sjset_notsft_datapad
->s
.jf
= snext
;
2568 sjset_qos
->s
.jf
= snext
;
2574 insert_compute_vloffsets(b
)
2580 * For link-layer types that have a variable-length header
2581 * preceding the link-layer header, generate code to load
2582 * the offset of the link-layer header into the register
2583 * assigned to that offset, if any.
2587 case DLT_PRISM_HEADER
:
2588 s
= gen_load_prism_llprefixlen();
2591 case DLT_IEEE802_11_RADIO_AVS
:
2592 s
= gen_load_avs_llprefixlen();
2595 case DLT_IEEE802_11_RADIO
:
2596 s
= gen_load_radiotap_llprefixlen();
2600 s
= gen_load_ppi_llprefixlen();
2609 * For link-layer types that have a variable-length link-layer
2610 * header, generate code to load the offset of the MAC-layer
2611 * payload into the register assigned to that offset, if any.
2615 case DLT_IEEE802_11
:
2616 case DLT_PRISM_HEADER
:
2617 case DLT_IEEE802_11_RADIO_AVS
:
2618 case DLT_IEEE802_11_RADIO
:
2620 s
= gen_load_802_11_header_len(s
, b
->stmts
);
2625 * If we have any offset-loading code, append all the
2626 * existing statements in the block to those statements,
2627 * and make the resulting list the list of statements
2631 sappend(s
, b
->stmts
);
2636 static struct block
*
2637 gen_ppi_dlt_check(void)
2639 struct slist
*s_load_dlt
;
2642 if (linktype
== DLT_PPI
)
2644 /* Create the statements that check for the DLT
2646 s_load_dlt
= new_stmt(BPF_LD
|BPF_W
|BPF_ABS
);
2647 s_load_dlt
->s
.k
= 4;
2649 b
= new_block(JMP(BPF_JEQ
));
2651 b
->stmts
= s_load_dlt
;
2652 b
->s
.k
= SWAPLONG(DLT_IEEE802_11
);
2662 static struct slist
*
2663 gen_prism_llprefixlen(void)
2667 if (reg_off_ll
== -1) {
2669 * We haven't yet assigned a register for the length
2670 * of the radio header; allocate one.
2672 reg_off_ll
= alloc_reg();
2676 * Load the register containing the radio length
2677 * into the X register.
2679 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2680 s
->s
.k
= reg_off_ll
;
2684 static struct slist
*
2685 gen_avs_llprefixlen(void)
2689 if (reg_off_ll
== -1) {
2691 * We haven't yet assigned a register for the length
2692 * of the AVS header; allocate one.
2694 reg_off_ll
= alloc_reg();
2698 * Load the register containing the AVS length
2699 * into the X register.
2701 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2702 s
->s
.k
= reg_off_ll
;
2706 static struct slist
*
2707 gen_radiotap_llprefixlen(void)
2711 if (reg_off_ll
== -1) {
2713 * We haven't yet assigned a register for the length
2714 * of the radiotap header; allocate one.
2716 reg_off_ll
= alloc_reg();
2720 * Load the register containing the radiotap length
2721 * into the X register.
2723 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2724 s
->s
.k
= reg_off_ll
;
2729 * At the moment we treat PPI as normal Radiotap encoded
2730 * packets. The difference is in the function that generates
2731 * the code at the beginning to compute the header length.
2732 * Since this code generator of PPI supports bare 802.11
2733 * encapsulation only (i.e. the encapsulated DLT should be
2734 * DLT_IEEE802_11) we generate code to check for this too.
2736 static struct slist
*
2737 gen_ppi_llprefixlen(void)
2741 if (reg_off_ll
== -1) {
2743 * We haven't yet assigned a register for the length
2744 * of the radiotap header; allocate one.
2746 reg_off_ll
= alloc_reg();
2750 * Load the register containing the PPI length
2751 * into the X register.
2753 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2754 s
->s
.k
= reg_off_ll
;
2759 * Generate code to compute the link-layer header length, if necessary,
2760 * putting it into the X register, and to return either a pointer to a
2761 * "struct slist" for the list of statements in that code, or NULL if
2762 * no code is necessary.
2764 static struct slist
*
2765 gen_llprefixlen(void)
2769 case DLT_PRISM_HEADER
:
2770 return gen_prism_llprefixlen();
2772 case DLT_IEEE802_11_RADIO_AVS
:
2773 return gen_avs_llprefixlen();
2775 case DLT_IEEE802_11_RADIO
:
2776 return gen_radiotap_llprefixlen();
2779 return gen_ppi_llprefixlen();
2787 * Generate code to load the register containing the offset of the
2788 * MAC-layer payload into the X register; if no register for that offset
2789 * has been allocated, allocate it first.
2791 static struct slist
*
2796 if (off_macpl_is_variable
) {
2797 if (reg_off_macpl
== -1) {
2799 * We haven't yet assigned a register for the offset
2800 * of the MAC-layer payload; allocate one.
2802 reg_off_macpl
= alloc_reg();
2806 * Load the register containing the offset of the MAC-layer
2807 * payload into the X register.
2809 s
= new_stmt(BPF_LDX
|BPF_MEM
);
2810 s
->s
.k
= reg_off_macpl
;
2814 * That offset isn't variable, so we don't need to
2815 * generate any code.
2822 * Map an Ethernet type to the equivalent PPP type.
2825 ethertype_to_ppptype(proto
)
2835 case ETHERTYPE_IPV6
:
2844 case ETHERTYPE_ATALK
:
2858 * I'm assuming the "Bridging PDU"s that go
2859 * over PPP are Spanning Tree Protocol
2873 * Generate code to match a particular packet type by matching the
2874 * link-layer type field or fields in the 802.2 LLC header.
2876 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2877 * value, if <= ETHERMTU.
2879 static struct block
*
2883 struct block
*b0
, *b1
, *b2
;
2885 /* are we checking MPLS-encapsulated packets? */
2886 if (label_stack_depth
> 0) {
2890 /* FIXME add other L3 proto IDs */
2891 return gen_mpls_linktype(Q_IP
);
2893 case ETHERTYPE_IPV6
:
2895 /* FIXME add other L3 proto IDs */
2896 return gen_mpls_linktype(Q_IPV6
);
2899 bpf_error("unsupported protocol over mpls");
2905 * Are we testing PPPoE packets?
2909 * The PPPoE session header is part of the
2910 * MAC-layer payload, so all references
2911 * should be relative to the beginning of
2916 * We use Ethernet protocol types inside libpcap;
2917 * map them to the corresponding PPP protocol types.
2919 proto
= ethertype_to_ppptype(proto
);
2920 return gen_cmp(OR_MACPL
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
2926 case DLT_NETANALYZER
:
2927 case DLT_NETANALYZER_TRANSPARENT
:
2928 return gen_ether_linktype(proto
);
2936 proto
= (proto
<< 8 | LLCSAP_ISONS
);
2940 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
2947 case DLT_IEEE802_11
:
2948 case DLT_PRISM_HEADER
:
2949 case DLT_IEEE802_11_RADIO_AVS
:
2950 case DLT_IEEE802_11_RADIO
:
2953 * Check that we have a data frame.
2955 b0
= gen_check_802_11_data_frame();
2958 * Now check for the specified link-layer type.
2960 b1
= gen_llc_linktype(proto
);
2968 * XXX - check for asynchronous frames, as per RFC 1103.
2970 return gen_llc_linktype(proto
);
2976 * XXX - check for LLC PDUs, as per IEEE 802.5.
2978 return gen_llc_linktype(proto
);
2982 case DLT_ATM_RFC1483
:
2984 case DLT_IP_OVER_FC
:
2985 return gen_llc_linktype(proto
);
2991 * If "is_lane" is set, check for a LANE-encapsulated
2992 * version of this protocol, otherwise check for an
2993 * LLC-encapsulated version of this protocol.
2995 * We assume LANE means Ethernet, not Token Ring.
2999 * Check that the packet doesn't begin with an
3000 * LE Control marker. (We've already generated
3003 b0
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
3008 * Now generate an Ethernet test.
3010 b1
= gen_ether_linktype(proto
);
3015 * Check for LLC encapsulation and then check the
3018 b0
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3019 b1
= gen_llc_linktype(proto
);
3027 return gen_linux_sll_linktype(proto
);
3032 case DLT_SLIP_BSDOS
:
3035 * These types don't provide any type field; packets
3036 * are always IPv4 or IPv6.
3038 * XXX - for IPv4, check for a version number of 4, and,
3039 * for IPv6, check for a version number of 6?
3044 /* Check for a version number of 4. */
3045 return gen_mcmp(OR_LINK
, 0, BPF_B
, 0x40, 0xF0);
3047 case ETHERTYPE_IPV6
:
3048 /* Check for a version number of 6. */
3049 return gen_mcmp(OR_LINK
, 0, BPF_B
, 0x60, 0xF0);
3053 return gen_false(); /* always false */
3060 * Raw IPv4, so no type field.
3062 if (proto
== ETHERTYPE_IP
)
3063 return gen_true(); /* always true */
3065 /* Checking for something other than IPv4; always false */
3072 * Raw IPv6, so no type field.
3075 if (proto
== ETHERTYPE_IPV6
)
3076 return gen_true(); /* always true */
3079 /* Checking for something other than IPv6; always false */
3086 case DLT_PPP_SERIAL
:
3089 * We use Ethernet protocol types inside libpcap;
3090 * map them to the corresponding PPP protocol types.
3092 proto
= ethertype_to_ppptype(proto
);
3093 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
3099 * We use Ethernet protocol types inside libpcap;
3100 * map them to the corresponding PPP protocol types.
3106 * Also check for Van Jacobson-compressed IP.
3107 * XXX - do this for other forms of PPP?
3109 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_IP
);
3110 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJC
);
3112 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
, PPP_VJNC
);
3117 proto
= ethertype_to_ppptype(proto
);
3118 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
3128 * For DLT_NULL, the link-layer header is a 32-bit
3129 * word containing an AF_ value in *host* byte order,
3130 * and for DLT_ENC, the link-layer header begins
3131 * with a 32-bit work containing an AF_ value in
3134 * In addition, if we're reading a saved capture file,
3135 * the host byte order in the capture may not be the
3136 * same as the host byte order on this machine.
3138 * For DLT_LOOP, the link-layer header is a 32-bit
3139 * word containing an AF_ value in *network* byte order.
3141 * XXX - AF_ values may, unfortunately, be platform-
3142 * dependent; for example, FreeBSD's AF_INET6 is 24
3143 * whilst NetBSD's and OpenBSD's is 26.
3145 * This means that, when reading a capture file, just
3146 * checking for our AF_INET6 value won't work if the
3147 * capture file came from another OS.
3156 case ETHERTYPE_IPV6
:
3163 * Not a type on which we support filtering.
3164 * XXX - support those that have AF_ values
3165 * #defined on this platform, at least?
3170 if (linktype
== DLT_NULL
|| linktype
== DLT_ENC
) {
3172 * The AF_ value is in host byte order, but
3173 * the BPF interpreter will convert it to
3174 * network byte order.
3176 * If this is a save file, and it's from a
3177 * machine with the opposite byte order to
3178 * ours, we byte-swap the AF_ value.
3180 * Then we run it through "htonl()", and
3181 * generate code to compare against the result.
3183 if (bpf_pcap
->sf
.rfile
!= NULL
&&
3184 bpf_pcap
->sf
.swapped
)
3185 proto
= SWAPLONG(proto
);
3186 proto
= htonl(proto
);
3188 return (gen_cmp(OR_LINK
, 0, BPF_W
, (bpf_int32
)proto
));
3190 #ifdef HAVE_NET_PFVAR_H
3193 * af field is host byte order in contrast to the rest of
3196 if (proto
== ETHERTYPE_IP
)
3197 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
3198 BPF_B
, (bpf_int32
)AF_INET
));
3200 else if (proto
== ETHERTYPE_IPV6
)
3201 return (gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, af
),
3202 BPF_B
, (bpf_int32
)AF_INET6
));
3208 #endif /* HAVE_NET_PFVAR_H */
3211 case DLT_ARCNET_LINUX
:
3213 * XXX should we check for first fragment if the protocol
3222 case ETHERTYPE_IPV6
:
3223 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3224 (bpf_int32
)ARCTYPE_INET6
));
3228 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3229 (bpf_int32
)ARCTYPE_IP
);
3230 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3231 (bpf_int32
)ARCTYPE_IP_OLD
);
3236 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3237 (bpf_int32
)ARCTYPE_ARP
);
3238 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3239 (bpf_int32
)ARCTYPE_ARP_OLD
);
3243 case ETHERTYPE_REVARP
:
3244 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3245 (bpf_int32
)ARCTYPE_REVARP
));
3247 case ETHERTYPE_ATALK
:
3248 return (gen_cmp(OR_LINK
, off_linktype
, BPF_B
,
3249 (bpf_int32
)ARCTYPE_ATALK
));
3256 case ETHERTYPE_ATALK
:
3266 * XXX - assumes a 2-byte Frame Relay header with
3267 * DLCI and flags. What if the address is longer?
3273 * Check for the special NLPID for IP.
3275 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0xcc);
3278 case ETHERTYPE_IPV6
:
3280 * Check for the special NLPID for IPv6.
3282 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | 0x8e);
3287 * Check for several OSI protocols.
3289 * Frame Relay packets typically have an OSI
3290 * NLPID at the beginning; we check for each
3293 * What we check for is the NLPID and a frame
3294 * control field of UI, i.e. 0x03 followed
3297 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3298 b1
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3299 b2
= gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3311 bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3313 case DLT_JUNIPER_MFR
:
3314 case DLT_JUNIPER_MLFR
:
3315 case DLT_JUNIPER_MLPPP
:
3316 case DLT_JUNIPER_ATM1
:
3317 case DLT_JUNIPER_ATM2
:
3318 case DLT_JUNIPER_PPPOE
:
3319 case DLT_JUNIPER_PPPOE_ATM
:
3320 case DLT_JUNIPER_GGSN
:
3321 case DLT_JUNIPER_ES
:
3322 case DLT_JUNIPER_MONITOR
:
3323 case DLT_JUNIPER_SERVICES
:
3324 case DLT_JUNIPER_ETHER
:
3325 case DLT_JUNIPER_PPP
:
3326 case DLT_JUNIPER_FRELAY
:
3327 case DLT_JUNIPER_CHDLC
:
3328 case DLT_JUNIPER_VP
:
3329 case DLT_JUNIPER_ST
:
3330 case DLT_JUNIPER_ISM
:
3331 case DLT_JUNIPER_VS
:
3332 case DLT_JUNIPER_SRX_E2E
:
3333 case DLT_JUNIPER_FIBRECHANNEL
:
3334 case DLT_JUNIPER_ATM_CEMIC
:
3336 /* just lets verify the magic number for now -
3337 * on ATM we may have up to 6 different encapsulations on the wire
3338 * and need a lot of heuristics to figure out that the payload
3341 * FIXME encapsulation specific BPF_ filters
3343 return gen_mcmp(OR_LINK
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3346 return gen_ipnet_linktype(proto
);
3348 case DLT_LINUX_IRDA
:
3349 bpf_error("IrDA link-layer type filtering not implemented");
3352 bpf_error("DOCSIS link-layer type filtering not implemented");
3355 case DLT_MTP2_WITH_PHDR
:
3356 bpf_error("MTP2 link-layer type filtering not implemented");
3359 bpf_error("ERF link-layer type filtering not implemented");
3362 bpf_error("PFSYNC link-layer type filtering not implemented");
3364 case DLT_LINUX_LAPD
:
3365 bpf_error("LAPD link-layer type filtering not implemented");
3369 case DLT_USB_LINUX_MMAPPED
:
3370 bpf_error("USB link-layer type filtering not implemented");
3372 case DLT_BLUETOOTH_HCI_H4
:
3373 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3374 bpf_error("Bluetooth link-layer type filtering not implemented");
3377 case DLT_CAN_SOCKETCAN
:
3378 bpf_error("CAN link-layer type filtering not implemented");
3380 case DLT_IEEE802_15_4
:
3381 case DLT_IEEE802_15_4_LINUX
:
3382 case DLT_IEEE802_15_4_NONASK_PHY
:
3383 case DLT_IEEE802_15_4_NOFCS
:
3384 bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3386 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3387 bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3390 bpf_error("SITA link-layer type filtering not implemented");
3393 bpf_error("RAIF1 link-layer type filtering not implemented");
3396 bpf_error("IPMB link-layer type filtering not implemented");
3399 bpf_error("AX.25 link-layer type filtering not implemented");
3403 * All the types that have no encapsulation should either be
3404 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3405 * all packets are IP packets, or should be handled in some
3406 * special case, if none of them are (if some are and some
3407 * aren't, the lack of encapsulation is a problem, as we'd
3408 * have to find some other way of determining the packet type).
3410 * Therefore, if "off_linktype" is -1, there's an error.
3412 if (off_linktype
== (u_int
)-1)
3416 * Any type not handled above should always have an Ethernet
3417 * type at an offset of "off_linktype".
3419 return gen_cmp(OR_LINK
, off_linktype
, BPF_H
, (bpf_int32
)proto
);
3423 * Check for an LLC SNAP packet with a given organization code and
3424 * protocol type; we check the entire contents of the 802.2 LLC and
3425 * snap headers, checking for DSAP and SSAP of SNAP and a control
3426 * field of 0x03 in the LLC header, and for the specified organization
3427 * code and protocol type in the SNAP header.
3429 static struct block
*
3430 gen_snap(orgcode
, ptype
)
3431 bpf_u_int32 orgcode
;
3434 u_char snapblock
[8];
3436 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
3437 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
3438 snapblock
[2] = 0x03; /* control = UI */
3439 snapblock
[3] = (orgcode
>> 16); /* upper 8 bits of organization code */
3440 snapblock
[4] = (orgcode
>> 8); /* middle 8 bits of organization code */
3441 snapblock
[5] = (orgcode
>> 0); /* lower 8 bits of organization code */
3442 snapblock
[6] = (ptype
>> 8); /* upper 8 bits of protocol type */
3443 snapblock
[7] = (ptype
>> 0); /* lower 8 bits of protocol type */
3444 return gen_bcmp(OR_MACPL
, 0, 8, snapblock
);
3448 * Generate code to match a particular packet type, for link-layer types
3449 * using 802.2 LLC headers.
3451 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3452 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3454 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3455 * value, if <= ETHERMTU. We use that to determine whether to
3456 * match the DSAP or both DSAP and LSAP or to check the OUI and
3457 * protocol ID in a SNAP header.
3459 static struct block
*
3460 gen_llc_linktype(proto
)
3464 * XXX - handle token-ring variable-length header.
3470 case LLCSAP_NETBEUI
:
3472 * XXX - should we check both the DSAP and the
3473 * SSAP, like this, or should we check just the
3474 * DSAP, as we do for other types <= ETHERMTU
3475 * (i.e., other SAP values)?
3477 return gen_cmp(OR_MACPL
, 0, BPF_H
, (bpf_u_int32
)
3478 ((proto
<< 8) | proto
));
3482 * XXX - are there ever SNAP frames for IPX on
3483 * non-Ethernet 802.x networks?
3485 return gen_cmp(OR_MACPL
, 0, BPF_B
,
3486 (bpf_int32
)LLCSAP_IPX
);
3488 case ETHERTYPE_ATALK
:
3490 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3491 * SNAP packets with an organization code of
3492 * 0x080007 (Apple, for Appletalk) and a protocol
3493 * type of ETHERTYPE_ATALK (Appletalk).
3495 * XXX - check for an organization code of
3496 * encapsulated Ethernet as well?
3498 return gen_snap(0x080007, ETHERTYPE_ATALK
);
3502 * XXX - we don't have to check for IPX 802.3
3503 * here, but should we check for the IPX Ethertype?
3505 if (proto
<= ETHERMTU
) {
3507 * This is an LLC SAP value, so check
3510 return gen_cmp(OR_MACPL
, 0, BPF_B
, (bpf_int32
)proto
);
3513 * This is an Ethernet type; we assume that it's
3514 * unlikely that it'll appear in the right place
3515 * at random, and therefore check only the
3516 * location that would hold the Ethernet type
3517 * in a SNAP frame with an organization code of
3518 * 0x000000 (encapsulated Ethernet).
3520 * XXX - if we were to check for the SNAP DSAP and
3521 * LSAP, as per XXX, and were also to check for an
3522 * organization code of 0x000000 (encapsulated
3523 * Ethernet), we'd do
3525 * return gen_snap(0x000000, proto);
3527 * here; for now, we don't, as per the above.
3528 * I don't know whether it's worth the extra CPU
3529 * time to do the right check or not.
3531 return gen_cmp(OR_MACPL
, 6, BPF_H
, (bpf_int32
)proto
);
3536 static struct block
*
3537 gen_hostop(addr
, mask
, dir
, proto
, src_off
, dst_off
)
3541 u_int src_off
, dst_off
;
3543 struct block
*b0
, *b1
;
3557 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3558 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3564 b0
= gen_hostop(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3565 b1
= gen_hostop(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3572 b0
= gen_linktype(proto
);
3573 b1
= gen_mcmp(OR_NET
, offset
, BPF_W
, (bpf_int32
)addr
, mask
);
3579 static struct block
*
3580 gen_hostop6(addr
, mask
, dir
, proto
, src_off
, dst_off
)
3581 struct in6_addr
*addr
;
3582 struct in6_addr
*mask
;
3584 u_int src_off
, dst_off
;
3586 struct block
*b0
, *b1
;
3601 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3602 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3608 b0
= gen_hostop6(addr
, mask
, Q_SRC
, proto
, src_off
, dst_off
);
3609 b1
= gen_hostop6(addr
, mask
, Q_DST
, proto
, src_off
, dst_off
);
3616 /* this order is important */
3617 a
= (u_int32_t
*)addr
;
3618 m
= (u_int32_t
*)mask
;
3619 b1
= gen_mcmp(OR_NET
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
3620 b0
= gen_mcmp(OR_NET
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
3622 b0
= gen_mcmp(OR_NET
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
3624 b0
= gen_mcmp(OR_NET
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
3626 b0
= gen_linktype(proto
);
3632 static struct block
*
3633 gen_ehostop(eaddr
, dir
)
3634 register const u_char
*eaddr
;
3637 register struct block
*b0
, *b1
;
3641 return gen_bcmp(OR_LINK
, off_mac
+ 6, 6, eaddr
);
3644 return gen_bcmp(OR_LINK
, off_mac
+ 0, 6, eaddr
);
3647 b0
= gen_ehostop(eaddr
, Q_SRC
);
3648 b1
= gen_ehostop(eaddr
, Q_DST
);
3654 b0
= gen_ehostop(eaddr
, Q_SRC
);
3655 b1
= gen_ehostop(eaddr
, Q_DST
);
3660 bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3664 bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3668 bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3672 bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3676 bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3680 bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3688 * Like gen_ehostop, but for DLT_FDDI
3690 static struct block
*
3691 gen_fhostop(eaddr
, dir
)
3692 register const u_char
*eaddr
;
3695 struct block
*b0
, *b1
;
3700 return gen_bcmp(OR_LINK
, 6 + 1 + pcap_fddipad
, 6, eaddr
);
3702 return gen_bcmp(OR_LINK
, 6 + 1, 6, eaddr
);
3707 return gen_bcmp(OR_LINK
, 0 + 1 + pcap_fddipad
, 6, eaddr
);
3709 return gen_bcmp(OR_LINK
, 0 + 1, 6, eaddr
);
3713 b0
= gen_fhostop(eaddr
, Q_SRC
);
3714 b1
= gen_fhostop(eaddr
, Q_DST
);
3720 b0
= gen_fhostop(eaddr
, Q_SRC
);
3721 b1
= gen_fhostop(eaddr
, Q_DST
);
3726 bpf_error("'addr1' is only supported on 802.11");
3730 bpf_error("'addr2' is only supported on 802.11");
3734 bpf_error("'addr3' is only supported on 802.11");
3738 bpf_error("'addr4' is only supported on 802.11");
3742 bpf_error("'ra' is only supported on 802.11");
3746 bpf_error("'ta' is only supported on 802.11");
3754 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3756 static struct block
*
3757 gen_thostop(eaddr
, dir
)
3758 register const u_char
*eaddr
;
3761 register struct block
*b0
, *b1
;
3765 return gen_bcmp(OR_LINK
, 8, 6, eaddr
);
3768 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
3771 b0
= gen_thostop(eaddr
, Q_SRC
);
3772 b1
= gen_thostop(eaddr
, Q_DST
);
3778 b0
= gen_thostop(eaddr
, Q_SRC
);
3779 b1
= gen_thostop(eaddr
, Q_DST
);
3784 bpf_error("'addr1' is only supported on 802.11");
3788 bpf_error("'addr2' is only supported on 802.11");
3792 bpf_error("'addr3' is only supported on 802.11");
3796 bpf_error("'addr4' is only supported on 802.11");
3800 bpf_error("'ra' is only supported on 802.11");
3804 bpf_error("'ta' is only supported on 802.11");
3812 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3813 * various 802.11 + radio headers.
3815 static struct block
*
3816 gen_wlanhostop(eaddr
, dir
)
3817 register const u_char
*eaddr
;
3820 register struct block
*b0
, *b1
, *b2
;
3821 register struct slist
*s
;
3823 #ifdef ENABLE_WLAN_FILTERING_PATCH
3826 * We need to disable the optimizer because the optimizer is buggy
3827 * and wipes out some LD instructions generated by the below
3828 * code to validate the Frame Control bits
3831 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3838 * For control frames, there is no SA.
3840 * For management frames, SA is at an
3841 * offset of 10 from the beginning of
3844 * For data frames, SA is at an offset
3845 * of 10 from the beginning of the packet
3846 * if From DS is clear, at an offset of
3847 * 16 from the beginning of the packet
3848 * if From DS is set and To DS is clear,
3849 * and an offset of 24 from the beginning
3850 * of the packet if From DS is set and To DS
3855 * Generate the tests to be done for data frames
3858 * First, check for To DS set, i.e. check "link[1] & 0x01".
3860 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3861 b1
= new_block(JMP(BPF_JSET
));
3862 b1
->s
.k
= 0x01; /* To DS */
3866 * If To DS is set, the SA is at 24.
3868 b0
= gen_bcmp(OR_LINK
, 24, 6, eaddr
);
3872 * Now, check for To DS not set, i.e. check
3873 * "!(link[1] & 0x01)".
3875 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3876 b2
= new_block(JMP(BPF_JSET
));
3877 b2
->s
.k
= 0x01; /* To DS */
3882 * If To DS is not set, the SA is at 16.
3884 b1
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
3888 * Now OR together the last two checks. That gives
3889 * the complete set of checks for data frames with
3895 * Now check for From DS being set, and AND that with
3896 * the ORed-together checks.
3898 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3899 b1
= new_block(JMP(BPF_JSET
));
3900 b1
->s
.k
= 0x02; /* From DS */
3905 * Now check for data frames with From DS not set.
3907 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
3908 b2
= new_block(JMP(BPF_JSET
));
3909 b2
->s
.k
= 0x02; /* From DS */
3914 * If From DS isn't set, the SA is at 10.
3916 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
3920 * Now OR together the checks for data frames with
3921 * From DS not set and for data frames with From DS
3922 * set; that gives the checks done for data frames.
3927 * Now check for a data frame.
3928 * I.e, check "link[0] & 0x08".
3930 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3931 b1
= new_block(JMP(BPF_JSET
));
3936 * AND that with the checks done for data frames.
3941 * If the high-order bit of the type value is 0, this
3942 * is a management frame.
3943 * I.e, check "!(link[0] & 0x08)".
3945 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3946 b2
= new_block(JMP(BPF_JSET
));
3952 * For management frames, the SA is at 10.
3954 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
3958 * OR that with the checks done for data frames.
3959 * That gives the checks done for management and
3965 * If the low-order bit of the type value is 1,
3966 * this is either a control frame or a frame
3967 * with a reserved type, and thus not a
3970 * I.e., check "!(link[0] & 0x04)".
3972 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
3973 b1
= new_block(JMP(BPF_JSET
));
3979 * AND that with the checks for data and management
3989 * For control frames, there is no DA.
3991 * For management frames, DA is at an
3992 * offset of 4 from the beginning of
3995 * For data frames, DA is at an offset
3996 * of 4 from the beginning of the packet
3997 * if To DS is clear and at an offset of
3998 * 16 from the beginning of the packet
4003 * Generate the tests to be done for data frames.
4005 * First, check for To DS set, i.e. "link[1] & 0x01".
4007 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
4008 b1
= new_block(JMP(BPF_JSET
));
4009 b1
->s
.k
= 0x01; /* To DS */
4013 * If To DS is set, the DA is at 16.
4015 b0
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
4019 * Now, check for To DS not set, i.e. check
4020 * "!(link[1] & 0x01)".
4022 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
4023 b2
= new_block(JMP(BPF_JSET
));
4024 b2
->s
.k
= 0x01; /* To DS */
4029 * If To DS is not set, the DA is at 4.
4031 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4035 * Now OR together the last two checks. That gives
4036 * the complete set of checks for data frames.
4041 * Now check for a data frame.
4042 * I.e, check "link[0] & 0x08".
4044 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4045 b1
= new_block(JMP(BPF_JSET
));
4050 * AND that with the checks done for data frames.
4055 * If the high-order bit of the type value is 0, this
4056 * is a management frame.
4057 * I.e, check "!(link[0] & 0x08)".
4059 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4060 b2
= new_block(JMP(BPF_JSET
));
4066 * For management frames, the DA is at 4.
4068 b1
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4072 * OR that with the checks done for data frames.
4073 * That gives the checks done for management and
4079 * If the low-order bit of the type value is 1,
4080 * this is either a control frame or a frame
4081 * with a reserved type, and thus not a
4084 * I.e., check "!(link[0] & 0x04)".
4086 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4087 b1
= new_block(JMP(BPF_JSET
));
4093 * AND that with the checks for data and management
4101 * Not present in management frames; addr1 in other
4106 * If the high-order bit of the type value is 0, this
4107 * is a management frame.
4108 * I.e, check "(link[0] & 0x08)".
4110 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4111 b1
= new_block(JMP(BPF_JSET
));
4118 b0
= gen_bcmp(OR_LINK
, 4, 6, eaddr
);
4121 * AND that with the check of addr1.
4128 * Not present in management frames; addr2, if present,
4133 * Not present in CTS or ACK control frames.
4135 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4136 IEEE80211_FC0_TYPE_MASK
);
4138 b1
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4139 IEEE80211_FC0_SUBTYPE_MASK
);
4141 b2
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4142 IEEE80211_FC0_SUBTYPE_MASK
);
4148 * If the high-order bit of the type value is 0, this
4149 * is a management frame.
4150 * I.e, check "(link[0] & 0x08)".
4152 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
4153 b1
= new_block(JMP(BPF_JSET
));
4158 * AND that with the check for frames other than
4159 * CTS and ACK frames.
4166 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4171 * XXX - add BSSID keyword?
4174 return (gen_bcmp(OR_LINK
, 4, 6, eaddr
));
4178 * Not present in CTS or ACK control frames.
4180 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4181 IEEE80211_FC0_TYPE_MASK
);
4183 b1
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4184 IEEE80211_FC0_SUBTYPE_MASK
);
4186 b2
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4187 IEEE80211_FC0_SUBTYPE_MASK
);
4191 b1
= gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4197 * Not present in control frames.
4199 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4200 IEEE80211_FC0_TYPE_MASK
);
4202 b1
= gen_bcmp(OR_LINK
, 16, 6, eaddr
);
4208 * Present only if the direction mask has both "From DS"
4209 * and "To DS" set. Neither control frames nor management
4210 * frames should have both of those set, so we don't
4211 * check the frame type.
4213 b0
= gen_mcmp(OR_LINK
, 1, BPF_B
,
4214 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4215 b1
= gen_bcmp(OR_LINK
, 24, 6, eaddr
);
4220 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
4221 b1
= gen_wlanhostop(eaddr
, Q_DST
);
4227 b0
= gen_wlanhostop(eaddr
, Q_SRC
);
4228 b1
= gen_wlanhostop(eaddr
, Q_DST
);
4237 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4238 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4239 * as the RFC states.)
4241 static struct block
*
4242 gen_ipfchostop(eaddr
, dir
)
4243 register const u_char
*eaddr
;
4246 register struct block
*b0
, *b1
;
4250 return gen_bcmp(OR_LINK
, 10, 6, eaddr
);
4253 return gen_bcmp(OR_LINK
, 2, 6, eaddr
);
4256 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
4257 b1
= gen_ipfchostop(eaddr
, Q_DST
);
4263 b0
= gen_ipfchostop(eaddr
, Q_SRC
);
4264 b1
= gen_ipfchostop(eaddr
, Q_DST
);
4269 bpf_error("'addr1' is only supported on 802.11");
4273 bpf_error("'addr2' is only supported on 802.11");
4277 bpf_error("'addr3' is only supported on 802.11");
4281 bpf_error("'addr4' is only supported on 802.11");
4285 bpf_error("'ra' is only supported on 802.11");
4289 bpf_error("'ta' is only supported on 802.11");
4297 * This is quite tricky because there may be pad bytes in front of the
4298 * DECNET header, and then there are two possible data packet formats that
4299 * carry both src and dst addresses, plus 5 packet types in a format that
4300 * carries only the src node, plus 2 types that use a different format and
4301 * also carry just the src node.
4305 * Instead of doing those all right, we just look for data packets with
4306 * 0 or 1 bytes of padding. If you want to look at other packets, that
4307 * will require a lot more hacking.
4309 * To add support for filtering on DECNET "areas" (network numbers)
4310 * one would want to add a "mask" argument to this routine. That would
4311 * make the filter even more inefficient, although one could be clever
4312 * and not generate masking instructions if the mask is 0xFFFF.
4314 static struct block
*
4315 gen_dnhostop(addr
, dir
)
4319 struct block
*b0
, *b1
, *b2
, *tmp
;
4320 u_int offset_lh
; /* offset if long header is received */
4321 u_int offset_sh
; /* offset if short header is received */
4326 offset_sh
= 1; /* follows flags */
4327 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
4331 offset_sh
= 3; /* follows flags, dstnode */
4332 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4336 /* Inefficient because we do our Calvinball dance twice */
4337 b0
= gen_dnhostop(addr
, Q_SRC
);
4338 b1
= gen_dnhostop(addr
, Q_DST
);
4344 /* Inefficient because we do our Calvinball dance twice */
4345 b0
= gen_dnhostop(addr
, Q_SRC
);
4346 b1
= gen_dnhostop(addr
, Q_DST
);
4351 bpf_error("ISO host filtering not implemented");
4356 b0
= gen_linktype(ETHERTYPE_DN
);
4357 /* Check for pad = 1, long header case */
4358 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
4359 (bpf_int32
)ntohs(0x0681), (bpf_int32
)ntohs(0x07FF));
4360 b1
= gen_cmp(OR_NET
, 2 + 1 + offset_lh
,
4361 BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4363 /* Check for pad = 0, long header case */
4364 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x06, (bpf_int32
)0x7);
4365 b2
= gen_cmp(OR_NET
, 2 + offset_lh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4368 /* Check for pad = 1, short header case */
4369 tmp
= gen_mcmp(OR_NET
, 2, BPF_H
,
4370 (bpf_int32
)ntohs(0x0281), (bpf_int32
)ntohs(0x07FF));
4371 b2
= gen_cmp(OR_NET
, 2 + 1 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4374 /* Check for pad = 0, short header case */
4375 tmp
= gen_mcmp(OR_NET
, 2, BPF_B
, (bpf_int32
)0x02, (bpf_int32
)0x7);
4376 b2
= gen_cmp(OR_NET
, 2 + offset_sh
, BPF_H
, (bpf_int32
)ntohs((u_short
)addr
));
4380 /* Combine with test for linktype */
4386 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4387 * test the bottom-of-stack bit, and then check the version number
4388 * field in the IP header.
4390 static struct block
*
4391 gen_mpls_linktype(proto
)
4394 struct block
*b0
, *b1
;
4399 /* match the bottom-of-stack bit */
4400 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
4401 /* match the IPv4 version number */
4402 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x40, 0xf0);
4407 /* match the bottom-of-stack bit */
4408 b0
= gen_mcmp(OR_NET
, -2, BPF_B
, 0x01, 0x01);
4409 /* match the IPv4 version number */
4410 b1
= gen_mcmp(OR_NET
, 0, BPF_B
, 0x60, 0xf0);
4419 static struct block
*
4420 gen_host(addr
, mask
, proto
, dir
, type
)
4427 struct block
*b0
, *b1
;
4428 const char *typestr
;
4438 b0
= gen_host(addr
, mask
, Q_IP
, dir
, type
);
4440 * Only check for non-IPv4 addresses if we're not
4441 * checking MPLS-encapsulated packets.
4443 if (label_stack_depth
== 0) {
4444 b1
= gen_host(addr
, mask
, Q_ARP
, dir
, type
);
4446 b0
= gen_host(addr
, mask
, Q_RARP
, dir
, type
);
4452 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_IP
, 12, 16);
4455 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_REVARP
, 14, 24);
4458 return gen_hostop(addr
, mask
, dir
, ETHERTYPE_ARP
, 14, 24);
4461 bpf_error("'tcp' modifier applied to %s", typestr
);
4464 bpf_error("'sctp' modifier applied to %s", typestr
);
4467 bpf_error("'udp' modifier applied to %s", typestr
);
4470 bpf_error("'icmp' modifier applied to %s", typestr
);
4473 bpf_error("'igmp' modifier applied to %s", typestr
);
4476 bpf_error("'igrp' modifier applied to %s", typestr
);
4479 bpf_error("'pim' modifier applied to %s", typestr
);
4482 bpf_error("'vrrp' modifier applied to %s", typestr
);
4485 bpf_error("'carp' modifier applied to %s", typestr
);
4488 bpf_error("ATALK host filtering not implemented");
4491 bpf_error("AARP host filtering not implemented");
4494 return gen_dnhostop(addr
, dir
);
4497 bpf_error("SCA host filtering not implemented");
4500 bpf_error("LAT host filtering not implemented");
4503 bpf_error("MOPDL host filtering not implemented");
4506 bpf_error("MOPRC host filtering not implemented");
4510 bpf_error("'ip6' modifier applied to ip host");
4513 bpf_error("'icmp6' modifier applied to %s", typestr
);
4517 bpf_error("'ah' modifier applied to %s", typestr
);
4520 bpf_error("'esp' modifier applied to %s", typestr
);
4523 bpf_error("ISO host filtering not implemented");
4526 bpf_error("'esis' modifier applied to %s", typestr
);
4529 bpf_error("'isis' modifier applied to %s", typestr
);
4532 bpf_error("'clnp' modifier applied to %s", typestr
);
4535 bpf_error("'stp' modifier applied to %s", typestr
);
4538 bpf_error("IPX host filtering not implemented");
4541 bpf_error("'netbeui' modifier applied to %s", typestr
);
4544 bpf_error("'radio' modifier applied to %s", typestr
);
4553 static struct block
*
4554 gen_host6(addr
, mask
, proto
, dir
, type
)
4555 struct in6_addr
*addr
;
4556 struct in6_addr
*mask
;
4561 const char *typestr
;
4571 return gen_host6(addr
, mask
, Q_IPV6
, dir
, type
);
4574 bpf_error("'ip' modifier applied to ip6 %s", typestr
);
4577 bpf_error("'rarp' modifier applied to ip6 %s", typestr
);
4580 bpf_error("'arp' modifier applied to ip6 %s", typestr
);
4583 bpf_error("'sctp' modifier applied to %s", typestr
);
4586 bpf_error("'tcp' modifier applied to %s", typestr
);
4589 bpf_error("'udp' modifier applied to %s", typestr
);
4592 bpf_error("'icmp' modifier applied to %s", typestr
);
4595 bpf_error("'igmp' modifier applied to %s", typestr
);
4598 bpf_error("'igrp' modifier applied to %s", typestr
);
4601 bpf_error("'pim' modifier applied to %s", typestr
);
4604 bpf_error("'vrrp' modifier applied to %s", typestr
);
4607 bpf_error("'carp' modifier applied to %s", typestr
);
4610 bpf_error("ATALK host filtering not implemented");
4613 bpf_error("AARP host filtering not implemented");
4616 bpf_error("'decnet' modifier applied to ip6 %s", typestr
);
4619 bpf_error("SCA host filtering not implemented");
4622 bpf_error("LAT host filtering not implemented");
4625 bpf_error("MOPDL host filtering not implemented");
4628 bpf_error("MOPRC host filtering not implemented");
4631 return gen_hostop6(addr
, mask
, dir
, ETHERTYPE_IPV6
, 8, 24);
4634 bpf_error("'icmp6' modifier applied to %s", typestr
);
4637 bpf_error("'ah' modifier applied to %s", typestr
);
4640 bpf_error("'esp' modifier applied to %s", typestr
);
4643 bpf_error("ISO host filtering not implemented");
4646 bpf_error("'esis' modifier applied to %s", typestr
);
4649 bpf_error("'isis' modifier applied to %s", typestr
);
4652 bpf_error("'clnp' modifier applied to %s", typestr
);
4655 bpf_error("'stp' modifier applied to %s", typestr
);
4658 bpf_error("IPX host filtering not implemented");
4661 bpf_error("'netbeui' modifier applied to %s", typestr
);
4664 bpf_error("'radio' modifier applied to %s", typestr
);
4674 static struct block
*
4675 gen_gateway(eaddr
, alist
, proto
, dir
)
4676 const u_char
*eaddr
;
4677 bpf_u_int32
**alist
;
4681 struct block
*b0
, *b1
, *tmp
;
4684 bpf_error("direction applied to 'gateway'");
4693 case DLT_NETANALYZER
:
4694 case DLT_NETANALYZER_TRANSPARENT
:
4695 b0
= gen_ehostop(eaddr
, Q_OR
);
4698 b0
= gen_fhostop(eaddr
, Q_OR
);
4701 b0
= gen_thostop(eaddr
, Q_OR
);
4703 case DLT_IEEE802_11
:
4704 case DLT_PRISM_HEADER
:
4705 case DLT_IEEE802_11_RADIO_AVS
:
4706 case DLT_IEEE802_11_RADIO
:
4708 b0
= gen_wlanhostop(eaddr
, Q_OR
);
4713 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4715 * Check that the packet doesn't begin with an
4716 * LE Control marker. (We've already generated
4719 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
4724 * Now check the MAC address.
4726 b0
= gen_ehostop(eaddr
, Q_OR
);
4729 case DLT_IP_OVER_FC
:
4730 b0
= gen_ipfchostop(eaddr
, Q_OR
);
4734 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4736 b1
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
, Q_HOST
);
4738 tmp
= gen_host(**alist
++, 0xffffffff, proto
, Q_OR
,
4747 bpf_error("illegal modifier of 'gateway'");
4753 gen_proto_abbrev(proto
)
4762 b1
= gen_proto(IPPROTO_SCTP
, Q_IP
, Q_DEFAULT
);
4764 b0
= gen_proto(IPPROTO_SCTP
, Q_IPV6
, Q_DEFAULT
);
4770 b1
= gen_proto(IPPROTO_TCP
, Q_IP
, Q_DEFAULT
);
4772 b0
= gen_proto(IPPROTO_TCP
, Q_IPV6
, Q_DEFAULT
);
4778 b1
= gen_proto(IPPROTO_UDP
, Q_IP
, Q_DEFAULT
);
4780 b0
= gen_proto(IPPROTO_UDP
, Q_IPV6
, Q_DEFAULT
);
4786 b1
= gen_proto(IPPROTO_ICMP
, Q_IP
, Q_DEFAULT
);
4789 #ifndef IPPROTO_IGMP
4790 #define IPPROTO_IGMP 2
4794 b1
= gen_proto(IPPROTO_IGMP
, Q_IP
, Q_DEFAULT
);
4797 #ifndef IPPROTO_IGRP
4798 #define IPPROTO_IGRP 9
4801 b1
= gen_proto(IPPROTO_IGRP
, Q_IP
, Q_DEFAULT
);
4805 #define IPPROTO_PIM 103
4809 b1
= gen_proto(IPPROTO_PIM
, Q_IP
, Q_DEFAULT
);
4811 b0
= gen_proto(IPPROTO_PIM
, Q_IPV6
, Q_DEFAULT
);
4816 #ifndef IPPROTO_VRRP
4817 #define IPPROTO_VRRP 112
4821 b1
= gen_proto(IPPROTO_VRRP
, Q_IP
, Q_DEFAULT
);
4824 #ifndef IPPROTO_CARP
4825 #define IPPROTO_CARP 112
4829 b1
= gen_proto(IPPROTO_CARP
, Q_IP
, Q_DEFAULT
);
4833 b1
= gen_linktype(ETHERTYPE_IP
);
4837 b1
= gen_linktype(ETHERTYPE_ARP
);
4841 b1
= gen_linktype(ETHERTYPE_REVARP
);
4845 bpf_error("link layer applied in wrong context");
4848 b1
= gen_linktype(ETHERTYPE_ATALK
);
4852 b1
= gen_linktype(ETHERTYPE_AARP
);
4856 b1
= gen_linktype(ETHERTYPE_DN
);
4860 b1
= gen_linktype(ETHERTYPE_SCA
);
4864 b1
= gen_linktype(ETHERTYPE_LAT
);
4868 b1
= gen_linktype(ETHERTYPE_MOPDL
);
4872 b1
= gen_linktype(ETHERTYPE_MOPRC
);
4877 b1
= gen_linktype(ETHERTYPE_IPV6
);
4880 #ifndef IPPROTO_ICMPV6
4881 #define IPPROTO_ICMPV6 58
4884 b1
= gen_proto(IPPROTO_ICMPV6
, Q_IPV6
, Q_DEFAULT
);
4889 #define IPPROTO_AH 51
4892 b1
= gen_proto(IPPROTO_AH
, Q_IP
, Q_DEFAULT
);
4894 b0
= gen_proto(IPPROTO_AH
, Q_IPV6
, Q_DEFAULT
);
4900 #define IPPROTO_ESP 50
4903 b1
= gen_proto(IPPROTO_ESP
, Q_IP
, Q_DEFAULT
);
4905 b0
= gen_proto(IPPROTO_ESP
, Q_IPV6
, Q_DEFAULT
);
4911 b1
= gen_linktype(LLCSAP_ISONS
);
4915 b1
= gen_proto(ISO9542_ESIS
, Q_ISO
, Q_DEFAULT
);
4919 b1
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
4922 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
4923 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4924 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
4926 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
4928 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4930 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4934 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
4935 b0
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4936 b1
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
); /* FIXME extract the circuit-type bits */
4938 b0
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
4940 b0
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4942 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4946 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
4947 b0
= gen_proto(ISIS_L1_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4948 b1
= gen_proto(ISIS_L2_LAN_IIH
, Q_ISIS
, Q_DEFAULT
);
4950 b0
= gen_proto(ISIS_PTP_IIH
, Q_ISIS
, Q_DEFAULT
);
4955 b0
= gen_proto(ISIS_L1_LSP
, Q_ISIS
, Q_DEFAULT
);
4956 b1
= gen_proto(ISIS_L2_LSP
, Q_ISIS
, Q_DEFAULT
);
4961 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4962 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4964 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4966 b0
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4971 b0
= gen_proto(ISIS_L1_CSNP
, Q_ISIS
, Q_DEFAULT
);
4972 b1
= gen_proto(ISIS_L2_CSNP
, Q_ISIS
, Q_DEFAULT
);
4977 b0
= gen_proto(ISIS_L1_PSNP
, Q_ISIS
, Q_DEFAULT
);
4978 b1
= gen_proto(ISIS_L2_PSNP
, Q_ISIS
, Q_DEFAULT
);
4983 b1
= gen_proto(ISO8473_CLNP
, Q_ISO
, Q_DEFAULT
);
4987 b1
= gen_linktype(LLCSAP_8021D
);
4991 b1
= gen_linktype(LLCSAP_IPX
);
4995 b1
= gen_linktype(LLCSAP_NETBEUI
);
4999 bpf_error("'radio' is not a valid protocol type");
5007 static struct block
*
5013 /* not IPv4 frag other than the first frag */
5014 s
= gen_load_a(OR_NET
, 6, BPF_H
);
5015 b
= new_block(JMP(BPF_JSET
));
5024 * Generate a comparison to a port value in the transport-layer header
5025 * at the specified offset from the beginning of that header.
5027 * XXX - this handles a variable-length prefix preceding the link-layer
5028 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5029 * variable-length link-layer headers (such as Token Ring or 802.11
5032 static struct block
*
5033 gen_portatom(off
, v
)
5037 return gen_cmp(OR_TRAN_IPV4
, off
, BPF_H
, v
);
5041 static struct block
*
5042 gen_portatom6(off
, v
)
5046 return gen_cmp(OR_TRAN_IPV6
, off
, BPF_H
, v
);
5051 gen_portop(port
, proto
, dir
)
5052 int port
, proto
, dir
;
5054 struct block
*b0
, *b1
, *tmp
;
5056 /* ip proto 'proto' and not a fragment other than the first fragment */
5057 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
5063 b1
= gen_portatom(0, (bpf_int32
)port
);
5067 b1
= gen_portatom(2, (bpf_int32
)port
);
5072 tmp
= gen_portatom(0, (bpf_int32
)port
);
5073 b1
= gen_portatom(2, (bpf_int32
)port
);
5078 tmp
= gen_portatom(0, (bpf_int32
)port
);
5079 b1
= gen_portatom(2, (bpf_int32
)port
);
5091 static struct block
*
5092 gen_port(port
, ip_proto
, dir
)
5097 struct block
*b0
, *b1
, *tmp
;
5102 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5103 * not LLC encapsulation with LLCSAP_IP.
5105 * For IEEE 802 networks - which includes 802.5 token ring
5106 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5107 * says that SNAP encapsulation is used, not LLC encapsulation
5110 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5111 * RFC 2225 say that SNAP encapsulation is used, not LLC
5112 * encapsulation with LLCSAP_IP.
5114 * So we always check for ETHERTYPE_IP.
5116 b0
= gen_linktype(ETHERTYPE_IP
);
5122 b1
= gen_portop(port
, ip_proto
, dir
);
5126 tmp
= gen_portop(port
, IPPROTO_TCP
, dir
);
5127 b1
= gen_portop(port
, IPPROTO_UDP
, dir
);
5129 tmp
= gen_portop(port
, IPPROTO_SCTP
, dir
);
5142 gen_portop6(port
, proto
, dir
)
5143 int port
, proto
, dir
;
5145 struct block
*b0
, *b1
, *tmp
;
5147 /* ip6 proto 'proto' */
5148 /* XXX - catch the first fragment of a fragmented packet? */
5149 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
5153 b1
= gen_portatom6(0, (bpf_int32
)port
);
5157 b1
= gen_portatom6(2, (bpf_int32
)port
);
5162 tmp
= gen_portatom6(0, (bpf_int32
)port
);
5163 b1
= gen_portatom6(2, (bpf_int32
)port
);
5168 tmp
= gen_portatom6(0, (bpf_int32
)port
);
5169 b1
= gen_portatom6(2, (bpf_int32
)port
);
5181 static struct block
*
5182 gen_port6(port
, ip_proto
, dir
)
5187 struct block
*b0
, *b1
, *tmp
;
5189 /* link proto ip6 */
5190 b0
= gen_linktype(ETHERTYPE_IPV6
);
5196 b1
= gen_portop6(port
, ip_proto
, dir
);
5200 tmp
= gen_portop6(port
, IPPROTO_TCP
, dir
);
5201 b1
= gen_portop6(port
, IPPROTO_UDP
, dir
);
5203 tmp
= gen_portop6(port
, IPPROTO_SCTP
, dir
);
5215 /* gen_portrange code */
5216 static struct block
*
5217 gen_portrangeatom(off
, v1
, v2
)
5221 struct block
*b1
, *b2
;
5225 * Reverse the order of the ports, so v1 is the lower one.
5234 b1
= gen_cmp_ge(OR_TRAN_IPV4
, off
, BPF_H
, v1
);
5235 b2
= gen_cmp_le(OR_TRAN_IPV4
, off
, BPF_H
, v2
);
5243 gen_portrangeop(port1
, port2
, proto
, dir
)
5248 struct block
*b0
, *b1
, *tmp
;
5250 /* ip proto 'proto' and not a fragment other than the first fragment */
5251 tmp
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)proto
);
5257 b1
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5261 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5266 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5267 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5272 tmp
= gen_portrangeatom(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5273 b1
= gen_portrangeatom(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5285 static struct block
*
5286 gen_portrange(port1
, port2
, ip_proto
, dir
)
5291 struct block
*b0
, *b1
, *tmp
;
5294 b0
= gen_linktype(ETHERTYPE_IP
);
5300 b1
= gen_portrangeop(port1
, port2
, ip_proto
, dir
);
5304 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_TCP
, dir
);
5305 b1
= gen_portrangeop(port1
, port2
, IPPROTO_UDP
, dir
);
5307 tmp
= gen_portrangeop(port1
, port2
, IPPROTO_SCTP
, dir
);
5319 static struct block
*
5320 gen_portrangeatom6(off
, v1
, v2
)
5324 struct block
*b1
, *b2
;
5328 * Reverse the order of the ports, so v1 is the lower one.
5337 b1
= gen_cmp_ge(OR_TRAN_IPV6
, off
, BPF_H
, v1
);
5338 b2
= gen_cmp_le(OR_TRAN_IPV6
, off
, BPF_H
, v2
);
5346 gen_portrangeop6(port1
, port2
, proto
, dir
)
5351 struct block
*b0
, *b1
, *tmp
;
5353 /* ip6 proto 'proto' */
5354 /* XXX - catch the first fragment of a fragmented packet? */
5355 b0
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)proto
);
5359 b1
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5363 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5368 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5369 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5374 tmp
= gen_portrangeatom6(0, (bpf_int32
)port1
, (bpf_int32
)port2
);
5375 b1
= gen_portrangeatom6(2, (bpf_int32
)port1
, (bpf_int32
)port2
);
5387 static struct block
*
5388 gen_portrange6(port1
, port2
, ip_proto
, dir
)
5393 struct block
*b0
, *b1
, *tmp
;
5395 /* link proto ip6 */
5396 b0
= gen_linktype(ETHERTYPE_IPV6
);
5402 b1
= gen_portrangeop6(port1
, port2
, ip_proto
, dir
);
5406 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_TCP
, dir
);
5407 b1
= gen_portrangeop6(port1
, port2
, IPPROTO_UDP
, dir
);
5409 tmp
= gen_portrangeop6(port1
, port2
, IPPROTO_SCTP
, dir
);
5422 lookup_proto(name
, proto
)
5423 register const char *name
;
5433 v
= pcap_nametoproto(name
);
5434 if (v
== PROTO_UNDEF
)
5435 bpf_error("unknown ip proto '%s'", name
);
5439 /* XXX should look up h/w protocol type based on linktype */
5440 v
= pcap_nametoeproto(name
);
5441 if (v
== PROTO_UNDEF
) {
5442 v
= pcap_nametollc(name
);
5443 if (v
== PROTO_UNDEF
)
5444 bpf_error("unknown ether proto '%s'", name
);
5449 if (strcmp(name
, "esis") == 0)
5451 else if (strcmp(name
, "isis") == 0)
5453 else if (strcmp(name
, "clnp") == 0)
5456 bpf_error("unknown osi proto '%s'", name
);
5476 static struct block
*
5477 gen_protochain(v
, proto
, dir
)
5482 #ifdef NO_PROTOCHAIN
5483 return gen_proto(v
, proto
, dir
);
5485 struct block
*b0
, *b
;
5486 struct slist
*s
[100];
5487 int fix2
, fix3
, fix4
, fix5
;
5488 int ahcheck
, again
, end
;
5490 int reg2
= alloc_reg();
5492 memset(s
, 0, sizeof(s
));
5493 fix2
= fix3
= fix4
= fix5
= 0;
5500 b0
= gen_protochain(v
, Q_IP
, dir
);
5501 b
= gen_protochain(v
, Q_IPV6
, dir
);
5505 bpf_error("bad protocol applied for 'protochain'");
5510 * We don't handle variable-length prefixes before the link-layer
5511 * header, or variable-length link-layer headers, here yet.
5512 * We might want to add BPF instructions to do the protochain
5513 * work, to simplify that and, on platforms that have a BPF
5514 * interpreter with the new instructions, let the filtering
5515 * be done in the kernel. (We already require a modified BPF
5516 * engine to do the protochain stuff, to support backward
5517 * branches, and backward branch support is unlikely to appear
5518 * in kernel BPF engines.)
5522 case DLT_IEEE802_11
:
5523 case DLT_PRISM_HEADER
:
5524 case DLT_IEEE802_11_RADIO_AVS
:
5525 case DLT_IEEE802_11_RADIO
:
5527 bpf_error("'protochain' not supported with 802.11");
5530 no_optimize
= 1; /*this code is not compatible with optimzer yet */
5533 * s[0] is a dummy entry to protect other BPF insn from damage
5534 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
5535 * hard to find interdependency made by jump table fixup.
5538 s
[i
] = new_stmt(0); /*dummy*/
5543 b0
= gen_linktype(ETHERTYPE_IP
);
5546 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
5547 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 9;
5549 /* X = ip->ip_hl << 2 */
5550 s
[i
] = new_stmt(BPF_LDX
|BPF_MSH
|BPF_B
);
5551 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5556 b0
= gen_linktype(ETHERTYPE_IPV6
);
5558 /* A = ip6->ip_nxt */
5559 s
[i
] = new_stmt(BPF_LD
|BPF_ABS
|BPF_B
);
5560 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 6;
5562 /* X = sizeof(struct ip6_hdr) */
5563 s
[i
] = new_stmt(BPF_LDX
|BPF_IMM
);
5569 bpf_error("unsupported proto to gen_protochain");
5573 /* again: if (A == v) goto end; else fall through; */
5575 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5577 s
[i
]->s
.jt
= NULL
; /*later*/
5578 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5582 #ifndef IPPROTO_NONE
5583 #define IPPROTO_NONE 59
5585 /* if (A == IPPROTO_NONE) goto end */
5586 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5587 s
[i
]->s
.jt
= NULL
; /*later*/
5588 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5589 s
[i
]->s
.k
= IPPROTO_NONE
;
5590 s
[fix5
]->s
.jf
= s
[i
];
5595 if (proto
== Q_IPV6
) {
5596 int v6start
, v6end
, v6advance
, j
;
5599 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
5600 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5601 s
[i
]->s
.jt
= NULL
; /*later*/
5602 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5603 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
5604 s
[fix2
]->s
.jf
= s
[i
];
5606 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
5607 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5608 s
[i
]->s
.jt
= NULL
; /*later*/
5609 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5610 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
5612 /* if (A == IPPROTO_ROUTING) goto v6advance */
5613 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5614 s
[i
]->s
.jt
= NULL
; /*later*/
5615 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
5616 s
[i
]->s
.k
= IPPROTO_ROUTING
;
5618 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5619 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5620 s
[i
]->s
.jt
= NULL
; /*later*/
5621 s
[i
]->s
.jf
= NULL
; /*later*/
5622 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
5632 * A = P[X + packet head];
5633 * X = X + (P[X + packet head + 1] + 1) * 8;
5635 /* A = P[X + packet head] */
5636 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5637 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5640 s
[i
] = new_stmt(BPF_ST
);
5643 /* A = P[X + packet head + 1]; */
5644 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5645 s
[i
]->s
.k
= off_macpl
+ off_nl
+ 1;
5648 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5652 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
5656 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
);
5660 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5663 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
5667 /* goto again; (must use BPF_JA for backward jump) */
5668 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
5669 s
[i
]->s
.k
= again
- i
- 1;
5670 s
[i
- 1]->s
.jf
= s
[i
];
5674 for (j
= v6start
; j
<= v6end
; j
++)
5675 s
[j
]->s
.jt
= s
[v6advance
];
5680 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5682 s
[fix2
]->s
.jf
= s
[i
];
5688 /* if (A == IPPROTO_AH) then fall through; else goto end; */
5689 s
[i
] = new_stmt(BPF_JMP
|BPF_JEQ
|BPF_K
);
5690 s
[i
]->s
.jt
= NULL
; /*later*/
5691 s
[i
]->s
.jf
= NULL
; /*later*/
5692 s
[i
]->s
.k
= IPPROTO_AH
;
5694 s
[fix3
]->s
.jf
= s
[ahcheck
];
5701 * X = X + (P[X + 1] + 2) * 4;
5704 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
5706 /* A = P[X + packet head]; */
5707 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5708 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5711 s
[i
] = new_stmt(BPF_ST
);
5715 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(BPF_MISC
|BPF_TXA
);
5718 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5722 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5724 /* A = P[X + packet head] */
5725 s
[i
] = new_stmt(BPF_LD
|BPF_IND
|BPF_B
);
5726 s
[i
]->s
.k
= off_macpl
+ off_nl
;
5729 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5733 s
[i
] = new_stmt(BPF_ALU
|BPF_MUL
|BPF_K
);
5737 s
[i
] = new_stmt(BPF_MISC
|BPF_TAX
);
5740 s
[i
] = new_stmt(BPF_LD
|BPF_MEM
);
5744 /* goto again; (must use BPF_JA for backward jump) */
5745 s
[i
] = new_stmt(BPF_JMP
|BPF_JA
);
5746 s
[i
]->s
.k
= again
- i
- 1;
5751 s
[i
] = new_stmt(BPF_ALU
|BPF_ADD
|BPF_K
);
5753 s
[fix2
]->s
.jt
= s
[end
];
5754 s
[fix4
]->s
.jf
= s
[end
];
5755 s
[fix5
]->s
.jt
= s
[end
];
5762 for (i
= 0; i
< max
- 1; i
++)
5763 s
[i
]->next
= s
[i
+ 1];
5764 s
[max
- 1]->next
= NULL
;
5769 b
= new_block(JMP(BPF_JEQ
));
5770 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
5780 static struct block
*
5781 gen_check_802_11_data_frame()
5784 struct block
*b0
, *b1
;
5787 * A data frame has the 0x08 bit (b3) in the frame control field set
5788 * and the 0x04 bit (b2) clear.
5790 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5791 b0
= new_block(JMP(BPF_JSET
));
5795 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
5796 b1
= new_block(JMP(BPF_JSET
));
5807 * Generate code that checks whether the packet is a packet for protocol
5808 * <proto> and whether the type field in that protocol's header has
5809 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5810 * IP packet and checks the protocol number in the IP header against <v>.
5812 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5813 * against Q_IP and Q_IPV6.
5815 static struct block
*
5816 gen_proto(v
, proto
, dir
)
5821 struct block
*b0
, *b1
;
5828 if (dir
!= Q_DEFAULT
)
5829 bpf_error("direction applied to 'proto'");
5834 b0
= gen_proto(v
, Q_IP
, dir
);
5835 b1
= gen_proto(v
, Q_IPV6
, dir
);
5843 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5844 * not LLC encapsulation with LLCSAP_IP.
5846 * For IEEE 802 networks - which includes 802.5 token ring
5847 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5848 * says that SNAP encapsulation is used, not LLC encapsulation
5851 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5852 * RFC 2225 say that SNAP encapsulation is used, not LLC
5853 * encapsulation with LLCSAP_IP.
5855 * So we always check for ETHERTYPE_IP.
5857 b0
= gen_linktype(ETHERTYPE_IP
);
5859 b1
= gen_cmp(OR_NET
, 9, BPF_B
, (bpf_int32
)v
);
5861 b1
= gen_protochain(v
, Q_IP
);
5871 * Frame Relay packets typically have an OSI
5872 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5873 * generates code to check for all the OSI
5874 * NLPIDs, so calling it and then adding a check
5875 * for the particular NLPID for which we're
5876 * looking is bogus, as we can just check for
5879 * What we check for is the NLPID and a frame
5880 * control field value of UI, i.e. 0x03 followed
5883 * XXX - assumes a 2-byte Frame Relay header with
5884 * DLCI and flags. What if the address is longer?
5886 * XXX - what about SNAP-encapsulated frames?
5888 return gen_cmp(OR_LINK
, 2, BPF_H
, (0x03<<8) | v
);
5894 * Cisco uses an Ethertype lookalike - for OSI,
5897 b0
= gen_linktype(LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
5898 /* OSI in C-HDLC is stuffed with a fudge byte */
5899 b1
= gen_cmp(OR_NET_NOSNAP
, 1, BPF_B
, (long)v
);
5904 b0
= gen_linktype(LLCSAP_ISONS
);
5905 b1
= gen_cmp(OR_NET_NOSNAP
, 0, BPF_B
, (long)v
);
5911 b0
= gen_proto(ISO10589_ISIS
, Q_ISO
, Q_DEFAULT
);
5913 * 4 is the offset of the PDU type relative to the IS-IS
5916 b1
= gen_cmp(OR_NET_NOSNAP
, 4, BPF_B
, (long)v
);
5921 bpf_error("arp does not encapsulate another protocol");
5925 bpf_error("rarp does not encapsulate another protocol");
5929 bpf_error("atalk encapsulation is not specifiable");
5933 bpf_error("decnet encapsulation is not specifiable");
5937 bpf_error("sca does not encapsulate another protocol");
5941 bpf_error("lat does not encapsulate another protocol");
5945 bpf_error("moprc does not encapsulate another protocol");
5949 bpf_error("mopdl does not encapsulate another protocol");
5953 return gen_linktype(v
);
5956 bpf_error("'udp proto' is bogus");
5960 bpf_error("'tcp proto' is bogus");
5964 bpf_error("'sctp proto' is bogus");
5968 bpf_error("'icmp proto' is bogus");
5972 bpf_error("'igmp proto' is bogus");
5976 bpf_error("'igrp proto' is bogus");
5980 bpf_error("'pim proto' is bogus");
5984 bpf_error("'vrrp proto' is bogus");
5988 bpf_error("'carp proto' is bogus");
5993 b0
= gen_linktype(ETHERTYPE_IPV6
);
5996 * Also check for a fragment header before the final
5999 b2
= gen_cmp(OR_NET
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6000 b1
= gen_cmp(OR_NET
, 40, BPF_B
, (bpf_int32
)v
);
6002 b2
= gen_cmp(OR_NET
, 6, BPF_B
, (bpf_int32
)v
);
6005 b1
= gen_protochain(v
, Q_IPV6
);
6011 bpf_error("'icmp6 proto' is bogus");
6015 bpf_error("'ah proto' is bogus");
6018 bpf_error("'ah proto' is bogus");
6021 bpf_error("'stp proto' is bogus");
6024 bpf_error("'ipx proto' is bogus");
6027 bpf_error("'netbeui proto' is bogus");
6030 bpf_error("'radio proto' is bogus");
6041 register const char *name
;
6044 int proto
= q
.proto
;
6048 bpf_u_int32 mask
, addr
;
6050 bpf_u_int32
**alist
;
6053 struct sockaddr_in
*sin4
;
6054 struct sockaddr_in6
*sin6
;
6055 struct addrinfo
*res
, *res0
;
6056 struct in6_addr mask128
;
6058 struct block
*b
, *tmp
;
6059 int port
, real_proto
;
6065 addr
= pcap_nametonetaddr(name
);
6067 bpf_error("unknown network '%s'", name
);
6068 /* Left justify network addr and calculate its network mask */
6070 while (addr
&& (addr
& 0xff000000) == 0) {
6074 return gen_host(addr
, mask
, proto
, dir
, q
.addr
);
6078 if (proto
== Q_LINK
) {
6082 case DLT_NETANALYZER
:
6083 case DLT_NETANALYZER_TRANSPARENT
:
6084 eaddr
= pcap_ether_hostton(name
);
6087 "unknown ether host '%s'", name
);
6088 b
= gen_ehostop(eaddr
, dir
);
6093 eaddr
= pcap_ether_hostton(name
);
6096 "unknown FDDI host '%s'", name
);
6097 b
= gen_fhostop(eaddr
, dir
);
6102 eaddr
= pcap_ether_hostton(name
);
6105 "unknown token ring host '%s'", name
);
6106 b
= gen_thostop(eaddr
, dir
);
6110 case DLT_IEEE802_11
:
6111 case DLT_PRISM_HEADER
:
6112 case DLT_IEEE802_11_RADIO_AVS
:
6113 case DLT_IEEE802_11_RADIO
:
6115 eaddr
= pcap_ether_hostton(name
);
6118 "unknown 802.11 host '%s'", name
);
6119 b
= gen_wlanhostop(eaddr
, dir
);
6123 case DLT_IP_OVER_FC
:
6124 eaddr
= pcap_ether_hostton(name
);
6127 "unknown Fibre Channel host '%s'", name
);
6128 b
= gen_ipfchostop(eaddr
, dir
);
6137 * Check that the packet doesn't begin
6138 * with an LE Control marker. (We've
6139 * already generated a test for LANE.)
6141 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
6145 eaddr
= pcap_ether_hostton(name
);
6148 "unknown ether host '%s'", name
);
6149 b
= gen_ehostop(eaddr
, dir
);
6155 bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6156 } else if (proto
== Q_DECNET
) {
6157 unsigned short dn_addr
= __pcap_nametodnaddr(name
);
6159 * I don't think DECNET hosts can be multihomed, so
6160 * there is no need to build up a list of addresses
6162 return (gen_host(dn_addr
, 0, proto
, dir
, q
.addr
));
6165 alist
= pcap_nametoaddr(name
);
6166 if (alist
== NULL
|| *alist
== NULL
)
6167 bpf_error("unknown host '%s'", name
);
6169 if (off_linktype
== (u_int
)-1 && tproto
== Q_DEFAULT
)
6171 b
= gen_host(**alist
++, 0xffffffff, tproto
, dir
, q
.addr
);
6173 tmp
= gen_host(**alist
++, 0xffffffff,
6174 tproto
, dir
, q
.addr
);
6180 memset(&mask128
, 0xff, sizeof(mask128
));
6181 res0
= res
= pcap_nametoaddrinfo(name
);
6183 bpf_error("unknown host '%s'", name
);
6186 tproto
= tproto6
= proto
;
6187 if (off_linktype
== -1 && tproto
== Q_DEFAULT
) {
6191 for (res
= res0
; res
; res
= res
->ai_next
) {
6192 switch (res
->ai_family
) {
6194 if (tproto
== Q_IPV6
)
6197 sin4
= (struct sockaddr_in
*)
6199 tmp
= gen_host(ntohl(sin4
->sin_addr
.s_addr
),
6200 0xffffffff, tproto
, dir
, q
.addr
);
6203 if (tproto6
== Q_IP
)
6206 sin6
= (struct sockaddr_in6
*)
6208 tmp
= gen_host6(&sin6
->sin6_addr
,
6209 &mask128
, tproto6
, dir
, q
.addr
);
6221 bpf_error("unknown host '%s'%s", name
,
6222 (proto
== Q_DEFAULT
)
6224 : " for specified address family");
6231 if (proto
!= Q_DEFAULT
&&
6232 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6233 bpf_error("illegal qualifier of 'port'");
6234 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
6235 bpf_error("unknown port '%s'", name
);
6236 if (proto
== Q_UDP
) {
6237 if (real_proto
== IPPROTO_TCP
)
6238 bpf_error("port '%s' is tcp", name
);
6239 else if (real_proto
== IPPROTO_SCTP
)
6240 bpf_error("port '%s' is sctp", name
);
6242 /* override PROTO_UNDEF */
6243 real_proto
= IPPROTO_UDP
;
6245 if (proto
== Q_TCP
) {
6246 if (real_proto
== IPPROTO_UDP
)
6247 bpf_error("port '%s' is udp", name
);
6249 else if (real_proto
== IPPROTO_SCTP
)
6250 bpf_error("port '%s' is sctp", name
);
6252 /* override PROTO_UNDEF */
6253 real_proto
= IPPROTO_TCP
;
6255 if (proto
== Q_SCTP
) {
6256 if (real_proto
== IPPROTO_UDP
)
6257 bpf_error("port '%s' is udp", name
);
6259 else if (real_proto
== IPPROTO_TCP
)
6260 bpf_error("port '%s' is tcp", name
);
6262 /* override PROTO_UNDEF */
6263 real_proto
= IPPROTO_SCTP
;
6266 bpf_error("illegal port number %d < 0", port
);
6268 bpf_error("illegal port number %d > 65535", port
);
6270 return gen_port(port
, real_proto
, dir
);
6272 b
= gen_port(port
, real_proto
, dir
);
6273 gen_or(gen_port6(port
, real_proto
, dir
), b
);
6278 if (proto
!= Q_DEFAULT
&&
6279 proto
!= Q_UDP
&& proto
!= Q_TCP
&& proto
!= Q_SCTP
)
6280 bpf_error("illegal qualifier of 'portrange'");
6281 if (pcap_nametoportrange(name
, &port1
, &port2
, &real_proto
) == 0)
6282 bpf_error("unknown port in range '%s'", name
);
6283 if (proto
== Q_UDP
) {
6284 if (real_proto
== IPPROTO_TCP
)
6285 bpf_error("port in range '%s' is tcp", name
);
6286 else if (real_proto
== IPPROTO_SCTP
)
6287 bpf_error("port in range '%s' is sctp", name
);
6289 /* override PROTO_UNDEF */
6290 real_proto
= IPPROTO_UDP
;
6292 if (proto
== Q_TCP
) {
6293 if (real_proto
== IPPROTO_UDP
)
6294 bpf_error("port in range '%s' is udp", name
);
6295 else if (real_proto
== IPPROTO_SCTP
)
6296 bpf_error("port in range '%s' is sctp", name
);
6298 /* override PROTO_UNDEF */
6299 real_proto
= IPPROTO_TCP
;
6301 if (proto
== Q_SCTP
) {
6302 if (real_proto
== IPPROTO_UDP
)
6303 bpf_error("port in range '%s' is udp", name
);
6304 else if (real_proto
== IPPROTO_TCP
)
6305 bpf_error("port in range '%s' is tcp", name
);
6307 /* override PROTO_UNDEF */
6308 real_proto
= IPPROTO_SCTP
;
6311 bpf_error("illegal port number %d < 0", port1
);
6313 bpf_error("illegal port number %d > 65535", port1
);
6315 bpf_error("illegal port number %d < 0", port2
);
6317 bpf_error("illegal port number %d > 65535", port2
);
6320 return gen_portrange(port1
, port2
, real_proto
, dir
);
6322 b
= gen_portrange(port1
, port2
, real_proto
, dir
);
6323 gen_or(gen_portrange6(port1
, port2
, real_proto
, dir
), b
);
6329 eaddr
= pcap_ether_hostton(name
);
6331 bpf_error("unknown ether host: %s", name
);
6333 alist
= pcap_nametoaddr(name
);
6334 if (alist
== NULL
|| *alist
== NULL
)
6335 bpf_error("unknown host '%s'", name
);
6336 b
= gen_gateway(eaddr
, alist
, proto
, dir
);
6340 bpf_error("'gateway' not supported in this configuration");
6344 real_proto
= lookup_proto(name
, proto
);
6345 if (real_proto
>= 0)
6346 return gen_proto(real_proto
, proto
, dir
);
6348 bpf_error("unknown protocol: %s", name
);
6351 real_proto
= lookup_proto(name
, proto
);
6352 if (real_proto
>= 0)
6353 return gen_protochain(real_proto
, proto
, dir
);
6355 bpf_error("unknown protocol: %s", name
);
6366 gen_mcode(s1
, s2
, masklen
, q
)
6367 register const char *s1
, *s2
;
6368 register int masklen
;
6371 register int nlen
, mlen
;
6374 nlen
= __pcap_atoin(s1
, &n
);
6375 /* Promote short ipaddr */
6379 mlen
= __pcap_atoin(s2
, &m
);
6380 /* Promote short ipaddr */
6383 bpf_error("non-network bits set in \"%s mask %s\"",
6386 /* Convert mask len to mask */
6388 bpf_error("mask length must be <= 32");
6391 * X << 32 is not guaranteed by C to be 0; it's
6396 m
= 0xffffffff << (32 - masklen
);
6398 bpf_error("non-network bits set in \"%s/%d\"",
6405 return gen_host(n
, m
, q
.proto
, q
.dir
, q
.addr
);
6408 bpf_error("Mask syntax for networks only");
6417 register const char *s
;
6422 int proto
= q
.proto
;
6428 else if (q
.proto
== Q_DECNET
)
6429 vlen
= __pcap_atodn(s
, &v
);
6431 vlen
= __pcap_atoin(s
, &v
);
6438 if (proto
== Q_DECNET
)
6439 return gen_host(v
, 0, proto
, dir
, q
.addr
);
6440 else if (proto
== Q_LINK
) {
6441 bpf_error("illegal link layer address");
6444 if (s
== NULL
&& q
.addr
== Q_NET
) {
6445 /* Promote short net number */
6446 while (v
&& (v
& 0xff000000) == 0) {
6451 /* Promote short ipaddr */
6455 return gen_host(v
, mask
, proto
, dir
, q
.addr
);
6460 proto
= IPPROTO_UDP
;
6461 else if (proto
== Q_TCP
)
6462 proto
= IPPROTO_TCP
;
6463 else if (proto
== Q_SCTP
)
6464 proto
= IPPROTO_SCTP
;
6465 else if (proto
== Q_DEFAULT
)
6466 proto
= PROTO_UNDEF
;
6468 bpf_error("illegal qualifier of 'port'");
6471 bpf_error("illegal port number %u > 65535", v
);
6474 return gen_port((int)v
, proto
, dir
);
6478 b
= gen_port((int)v
, proto
, dir
);
6479 gen_or(gen_port6((int)v
, proto
, dir
), b
);
6486 proto
= IPPROTO_UDP
;
6487 else if (proto
== Q_TCP
)
6488 proto
= IPPROTO_TCP
;
6489 else if (proto
== Q_SCTP
)
6490 proto
= IPPROTO_SCTP
;
6491 else if (proto
== Q_DEFAULT
)
6492 proto
= PROTO_UNDEF
;
6494 bpf_error("illegal qualifier of 'portrange'");
6497 bpf_error("illegal port number %u > 65535", v
);
6500 return gen_portrange((int)v
, (int)v
, proto
, dir
);
6504 b
= gen_portrange((int)v
, (int)v
, proto
, dir
);
6505 gen_or(gen_portrange6((int)v
, (int)v
, proto
, dir
), b
);
6511 bpf_error("'gateway' requires a name");
6515 return gen_proto((int)v
, proto
, dir
);
6518 return gen_protochain((int)v
, proto
, dir
);
6533 gen_mcode6(s1
, s2
, masklen
, q
)
6534 register const char *s1
, *s2
;
6535 register int masklen
;
6538 struct addrinfo
*res
;
6539 struct in6_addr
*addr
;
6540 struct in6_addr mask
;
6545 bpf_error("no mask %s supported", s2
);
6547 res
= pcap_nametoaddrinfo(s1
);
6549 bpf_error("invalid ip6 address %s", s1
);
6552 bpf_error("%s resolved to multiple address", s1
);
6553 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
6555 if (sizeof(mask
) * 8 < masklen
)
6556 bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask
) * 8));
6557 memset(&mask
, 0, sizeof(mask
));
6558 memset(&mask
, 0xff, masklen
/ 8);
6560 mask
.s6_addr
[masklen
/ 8] =
6561 (0xff << (8 - masklen
% 8)) & 0xff;
6564 a
= (u_int32_t
*)addr
;
6565 m
= (u_int32_t
*)&mask
;
6566 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
6567 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
6568 bpf_error("non-network bits set in \"%s/%d\"", s1
, masklen
);
6576 bpf_error("Mask syntax for networks only");
6580 b
= gen_host6(addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
6586 bpf_error("invalid qualifier against IPv6 address");
6595 register const u_char
*eaddr
;
6598 struct block
*b
, *tmp
;
6600 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
6603 case DLT_NETANALYZER
:
6604 case DLT_NETANALYZER_TRANSPARENT
:
6605 return gen_ehostop(eaddr
, (int)q
.dir
);
6607 return gen_fhostop(eaddr
, (int)q
.dir
);
6609 return gen_thostop(eaddr
, (int)q
.dir
);
6610 case DLT_IEEE802_11
:
6611 case DLT_PRISM_HEADER
:
6612 case DLT_IEEE802_11_RADIO_AVS
:
6613 case DLT_IEEE802_11_RADIO
:
6615 return gen_wlanhostop(eaddr
, (int)q
.dir
);
6619 * Check that the packet doesn't begin with an
6620 * LE Control marker. (We've already generated
6623 tmp
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
, BPF_H
,
6628 * Now check the MAC address.
6630 b
= gen_ehostop(eaddr
, (int)q
.dir
);
6635 case DLT_IP_OVER_FC
:
6636 return gen_ipfchostop(eaddr
, (int)q
.dir
);
6638 bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6642 bpf_error("ethernet address used in non-ether expression");
6649 struct slist
*s0
, *s1
;
6652 * This is definitely not the best way to do this, but the
6653 * lists will rarely get long.
6660 static struct slist
*
6666 s
= new_stmt(BPF_LDX
|BPF_MEM
);
6671 static struct slist
*
6677 s
= new_stmt(BPF_LD
|BPF_MEM
);
6683 * Modify "index" to use the value stored into its register as an
6684 * offset relative to the beginning of the header for the protocol
6685 * "proto", and allocate a register and put an item "size" bytes long
6686 * (1, 2, or 4) at that offset into that register, making it the register
6690 gen_load(proto
, inst
, size
)
6695 struct slist
*s
, *tmp
;
6697 int regno
= alloc_reg();
6699 free_reg(inst
->regno
);
6703 bpf_error("data size must be 1, 2, or 4");
6719 bpf_error("unsupported index operation");
6723 * The offset is relative to the beginning of the packet
6724 * data, if we have a radio header. (If we don't, this
6727 if (linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
6728 linktype
!= DLT_IEEE802_11_RADIO
&&
6729 linktype
!= DLT_PRISM_HEADER
)
6730 bpf_error("radio information not present in capture");
6733 * Load into the X register the offset computed into the
6734 * register specified by "index".
6736 s
= xfer_to_x(inst
);
6739 * Load the item at that offset.
6741 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6743 sappend(inst
->s
, s
);
6748 * The offset is relative to the beginning of
6749 * the link-layer header.
6751 * XXX - what about ATM LANE? Should the index be
6752 * relative to the beginning of the AAL5 frame, so
6753 * that 0 refers to the beginning of the LE Control
6754 * field, or relative to the beginning of the LAN
6755 * frame, so that 0 refers, for Ethernet LANE, to
6756 * the beginning of the destination address?
6758 s
= gen_llprefixlen();
6761 * If "s" is non-null, it has code to arrange that the
6762 * X register contains the length of the prefix preceding
6763 * the link-layer header. Add to it the offset computed
6764 * into the register specified by "index", and move that
6765 * into the X register. Otherwise, just load into the X
6766 * register the offset computed into the register specified
6770 sappend(s
, xfer_to_a(inst
));
6771 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6772 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6774 s
= xfer_to_x(inst
);
6777 * Load the item at the sum of the offset we've put in the
6778 * X register and the offset of the start of the link
6779 * layer header (which is 0 if the radio header is
6780 * variable-length; that header length is what we put
6781 * into the X register and then added to the index).
6783 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6786 sappend(inst
->s
, s
);
6802 * The offset is relative to the beginning of
6803 * the network-layer header.
6804 * XXX - are there any cases where we want
6807 s
= gen_off_macpl();
6810 * If "s" is non-null, it has code to arrange that the
6811 * X register contains the offset of the MAC-layer
6812 * payload. Add to it the offset computed into the
6813 * register specified by "index", and move that into
6814 * the X register. Otherwise, just load into the X
6815 * register the offset computed into the register specified
6819 sappend(s
, xfer_to_a(inst
));
6820 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6821 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6823 s
= xfer_to_x(inst
);
6826 * Load the item at the sum of the offset we've put in the
6827 * X register, the offset of the start of the network
6828 * layer header from the beginning of the MAC-layer
6829 * payload, and the purported offset of the start of the
6830 * MAC-layer payload (which might be 0 if there's a
6831 * variable-length prefix before the link-layer header
6832 * or the link-layer header itself is variable-length;
6833 * the variable-length offset of the start of the
6834 * MAC-layer payload is what we put into the X register
6835 * and then added to the index).
6837 tmp
= new_stmt(BPF_LD
|BPF_IND
|size
);
6838 tmp
->s
.k
= off_macpl
+ off_nl
;
6840 sappend(inst
->s
, s
);
6843 * Do the computation only if the packet contains
6844 * the protocol in question.
6846 b
= gen_proto_abbrev(proto
);
6848 gen_and(inst
->b
, b
);
6862 * The offset is relative to the beginning of
6863 * the transport-layer header.
6865 * Load the X register with the length of the IPv4 header
6866 * (plus the offset of the link-layer header, if it's
6867 * a variable-length header), in bytes.
6869 * XXX - are there any cases where we want
6871 * XXX - we should, if we're built with
6872 * IPv6 support, generate code to load either
6873 * IPv4, IPv6, or both, as appropriate.
6875 s
= gen_loadx_iphdrlen();
6878 * The X register now contains the sum of the length
6879 * of any variable-length header preceding the link-layer
6880 * header, any variable-length link-layer header, and the
6881 * length of the network-layer header.
6883 * Load into the A register the offset relative to
6884 * the beginning of the transport layer header,
6885 * add the X register to that, move that to the
6886 * X register, and load with an offset from the
6887 * X register equal to the offset of the network
6888 * layer header relative to the beginning of
6889 * the MAC-layer payload plus the fixed-length
6890 * portion of the offset of the MAC-layer payload
6891 * from the beginning of the raw packet data.
6893 sappend(s
, xfer_to_a(inst
));
6894 sappend(s
, new_stmt(BPF_ALU
|BPF_ADD
|BPF_X
));
6895 sappend(s
, new_stmt(BPF_MISC
|BPF_TAX
));
6896 sappend(s
, tmp
= new_stmt(BPF_LD
|BPF_IND
|size
));
6897 tmp
->s
.k
= off_macpl
+ off_nl
;
6898 sappend(inst
->s
, s
);
6901 * Do the computation only if the packet contains
6902 * the protocol in question - which is true only
6903 * if this is an IP datagram and is the first or
6904 * only fragment of that datagram.
6906 gen_and(gen_proto_abbrev(proto
), b
= gen_ipfrag());
6908 gen_and(inst
->b
, b
);
6910 gen_and(gen_proto_abbrev(Q_IP
), b
);
6916 bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6920 inst
->regno
= regno
;
6921 s
= new_stmt(BPF_ST
);
6923 sappend(inst
->s
, s
);
6929 gen_relation(code
, a0
, a1
, reversed
)
6931 struct arth
*a0
, *a1
;
6934 struct slist
*s0
, *s1
, *s2
;
6935 struct block
*b
, *tmp
;
6939 if (code
== BPF_JEQ
) {
6940 s2
= new_stmt(BPF_ALU
|BPF_SUB
|BPF_X
);
6941 b
= new_block(JMP(code
));
6945 b
= new_block(BPF_JMP
|code
|BPF_X
);
6951 sappend(a0
->s
, a1
->s
);
6955 free_reg(a0
->regno
);
6956 free_reg(a1
->regno
);
6958 /* 'and' together protocol checks */
6961 gen_and(a0
->b
, tmp
= a1
->b
);
6977 int regno
= alloc_reg();
6978 struct arth
*a
= (struct arth
*)newchunk(sizeof(*a
));
6981 s
= new_stmt(BPF_LD
|BPF_LEN
);
6982 s
->next
= new_stmt(BPF_ST
);
6983 s
->next
->s
.k
= regno
;
6998 a
= (struct arth
*)newchunk(sizeof(*a
));
7002 s
= new_stmt(BPF_LD
|BPF_IMM
);
7004 s
->next
= new_stmt(BPF_ST
);
7020 s
= new_stmt(BPF_ALU
|BPF_NEG
);
7023 s
= new_stmt(BPF_ST
);
7031 gen_arth(code
, a0
, a1
)
7033 struct arth
*a0
, *a1
;
7035 struct slist
*s0
, *s1
, *s2
;
7039 s2
= new_stmt(BPF_ALU
|BPF_X
|code
);
7044 sappend(a0
->s
, a1
->s
);
7046 free_reg(a0
->regno
);
7047 free_reg(a1
->regno
);
7049 s0
= new_stmt(BPF_ST
);
7050 a0
->regno
= s0
->s
.k
= alloc_reg();
7057 * Here we handle simple allocation of the scratch registers.
7058 * If too many registers are alloc'd, the allocator punts.
7060 static int regused
[BPF_MEMWORDS
];
7064 * Initialize the table of used registers and the current register.
7070 memset(regused
, 0, sizeof regused
);
7074 * Return the next free register.
7079 int n
= BPF_MEMWORDS
;
7082 if (regused
[curreg
])
7083 curreg
= (curreg
+ 1) % BPF_MEMWORDS
;
7085 regused
[curreg
] = 1;
7089 bpf_error("too many registers needed to evaluate expression");
7095 * Return a register to the table so it can
7105 static struct block
*
7112 s
= new_stmt(BPF_LD
|BPF_LEN
);
7113 b
= new_block(JMP(jmp
));
7124 return gen_len(BPF_JGE
, n
);
7128 * Actually, this is less than or equal.
7136 b
= gen_len(BPF_JGT
, n
);
7143 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7144 * the beginning of the link-layer header.
7145 * XXX - that means you can't test values in the radiotap header, but
7146 * as that header is difficult if not impossible to parse generally
7147 * without a loop, that might not be a severe problem. A new keyword
7148 * "radio" could be added for that, although what you'd really want
7149 * would be a way of testing particular radio header values, which
7150 * would generate code appropriate to the radio header in question.
7153 gen_byteop(op
, idx
, val
)
7164 return gen_cmp(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7167 b
= gen_cmp_lt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7171 b
= gen_cmp_gt(OR_LINK
, (u_int
)idx
, BPF_B
, (bpf_int32
)val
);
7175 s
= new_stmt(BPF_ALU
|BPF_OR
|BPF_K
);
7179 s
= new_stmt(BPF_ALU
|BPF_AND
|BPF_K
);
7183 b
= new_block(JMP(BPF_JEQ
));
7190 static u_char abroadcast
[] = { 0x0 };
7193 gen_broadcast(proto
)
7196 bpf_u_int32 hostmask
;
7197 struct block
*b0
, *b1
, *b2
;
7198 static u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7206 case DLT_ARCNET_LINUX
:
7207 return gen_ahostop(abroadcast
, Q_DST
);
7209 case DLT_NETANALYZER
:
7210 case DLT_NETANALYZER_TRANSPARENT
:
7211 return gen_ehostop(ebroadcast
, Q_DST
);
7213 return gen_fhostop(ebroadcast
, Q_DST
);
7215 return gen_thostop(ebroadcast
, Q_DST
);
7216 case DLT_IEEE802_11
:
7217 case DLT_PRISM_HEADER
:
7218 case DLT_IEEE802_11_RADIO_AVS
:
7219 case DLT_IEEE802_11_RADIO
:
7221 return gen_wlanhostop(ebroadcast
, Q_DST
);
7222 case DLT_IP_OVER_FC
:
7223 return gen_ipfchostop(ebroadcast
, Q_DST
);
7227 * Check that the packet doesn't begin with an
7228 * LE Control marker. (We've already generated
7231 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
7236 * Now check the MAC address.
7238 b0
= gen_ehostop(ebroadcast
, Q_DST
);
7244 bpf_error("not a broadcast link");
7250 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7251 * as an indication that we don't know the netmask, and fail
7254 if (netmask
== PCAP_NETMASK_UNKNOWN
)
7255 bpf_error("netmask not known, so 'ip broadcast' not supported");
7256 b0
= gen_linktype(ETHERTYPE_IP
);
7257 hostmask
= ~netmask
;
7258 b1
= gen_mcmp(OR_NET
, 16, BPF_W
, (bpf_int32
)0, hostmask
);
7259 b2
= gen_mcmp(OR_NET
, 16, BPF_W
,
7260 (bpf_int32
)(~0 & hostmask
), hostmask
);
7265 bpf_error("only link-layer/IP broadcast filters supported");
7271 * Generate code to test the low-order bit of a MAC address (that's
7272 * the bottom bit of the *first* byte).
7274 static struct block
*
7275 gen_mac_multicast(offset
)
7278 register struct block
*b0
;
7279 register struct slist
*s
;
7281 /* link[offset] & 1 != 0 */
7282 s
= gen_load_a(OR_LINK
, offset
, BPF_B
);
7283 b0
= new_block(JMP(BPF_JSET
));
7290 gen_multicast(proto
)
7293 register struct block
*b0
, *b1
, *b2
;
7294 register struct slist
*s
;
7302 case DLT_ARCNET_LINUX
:
7303 /* all ARCnet multicasts use the same address */
7304 return gen_ahostop(abroadcast
, Q_DST
);
7306 case DLT_NETANALYZER
:
7307 case DLT_NETANALYZER_TRANSPARENT
:
7308 /* ether[0] & 1 != 0 */
7309 return gen_mac_multicast(0);
7312 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7314 * XXX - was that referring to bit-order issues?
7316 /* fddi[1] & 1 != 0 */
7317 return gen_mac_multicast(1);
7319 /* tr[2] & 1 != 0 */
7320 return gen_mac_multicast(2);
7321 case DLT_IEEE802_11
:
7322 case DLT_PRISM_HEADER
:
7323 case DLT_IEEE802_11_RADIO_AVS
:
7324 case DLT_IEEE802_11_RADIO
:
7329 * For control frames, there is no DA.
7331 * For management frames, DA is at an
7332 * offset of 4 from the beginning of
7335 * For data frames, DA is at an offset
7336 * of 4 from the beginning of the packet
7337 * if To DS is clear and at an offset of
7338 * 16 from the beginning of the packet
7343 * Generate the tests to be done for data frames.
7345 * First, check for To DS set, i.e. "link[1] & 0x01".
7347 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
7348 b1
= new_block(JMP(BPF_JSET
));
7349 b1
->s
.k
= 0x01; /* To DS */
7353 * If To DS is set, the DA is at 16.
7355 b0
= gen_mac_multicast(16);
7359 * Now, check for To DS not set, i.e. check
7360 * "!(link[1] & 0x01)".
7362 s
= gen_load_a(OR_LINK
, 1, BPF_B
);
7363 b2
= new_block(JMP(BPF_JSET
));
7364 b2
->s
.k
= 0x01; /* To DS */
7369 * If To DS is not set, the DA is at 4.
7371 b1
= gen_mac_multicast(4);
7375 * Now OR together the last two checks. That gives
7376 * the complete set of checks for data frames.
7381 * Now check for a data frame.
7382 * I.e, check "link[0] & 0x08".
7384 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7385 b1
= new_block(JMP(BPF_JSET
));
7390 * AND that with the checks done for data frames.
7395 * If the high-order bit of the type value is 0, this
7396 * is a management frame.
7397 * I.e, check "!(link[0] & 0x08)".
7399 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7400 b2
= new_block(JMP(BPF_JSET
));
7406 * For management frames, the DA is at 4.
7408 b1
= gen_mac_multicast(4);
7412 * OR that with the checks done for data frames.
7413 * That gives the checks done for management and
7419 * If the low-order bit of the type value is 1,
7420 * this is either a control frame or a frame
7421 * with a reserved type, and thus not a
7424 * I.e., check "!(link[0] & 0x04)".
7426 s
= gen_load_a(OR_LINK
, 0, BPF_B
);
7427 b1
= new_block(JMP(BPF_JSET
));
7433 * AND that with the checks for data and management
7438 case DLT_IP_OVER_FC
:
7439 b0
= gen_mac_multicast(2);
7444 * Check that the packet doesn't begin with an
7445 * LE Control marker. (We've already generated
7448 b1
= gen_cmp(OR_LINK
, SUNATM_PKT_BEGIN_POS
,
7452 /* ether[off_mac] & 1 != 0 */
7453 b0
= gen_mac_multicast(off_mac
);
7461 /* Link not known to support multicasts */
7465 b0
= gen_linktype(ETHERTYPE_IP
);
7466 b1
= gen_cmp_ge(OR_NET
, 16, BPF_B
, (bpf_int32
)224);
7472 b0
= gen_linktype(ETHERTYPE_IPV6
);
7473 b1
= gen_cmp(OR_NET
, 24, BPF_B
, (bpf_int32
)255);
7478 bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7484 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7485 * Outbound traffic is sent by this machine, while inbound traffic is
7486 * sent by a remote machine (and may include packets destined for a
7487 * unicast or multicast link-layer address we are not subscribing to).
7488 * These are the same definitions implemented by pcap_setdirection().
7489 * Capturing only unicast traffic destined for this host is probably
7490 * better accomplished using a higher-layer filter.
7496 register struct block
*b0
;
7499 * Only some data link types support inbound/outbound qualifiers.
7503 b0
= gen_relation(BPF_JEQ
,
7504 gen_load(Q_LINK
, gen_loadi(0), 1),
7511 /* match outgoing packets */
7512 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, IPNET_OUTBOUND
);
7514 /* match incoming packets */
7515 b0
= gen_cmp(OR_LINK
, 2, BPF_H
, IPNET_INBOUND
);
7520 /* match outgoing packets */
7521 b0
= gen_cmp(OR_LINK
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
7523 /* to filter on inbound traffic, invert the match */
7528 #ifdef HAVE_NET_PFVAR_H
7530 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, dir
), BPF_B
,
7531 (bpf_int32
)((dir
== 0) ? PF_IN
: PF_OUT
));
7537 /* match outgoing packets */
7538 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_OUT
);
7540 /* match incoming packets */
7541 b0
= gen_cmp(OR_LINK
, 0, BPF_B
, PPP_PPPD_IN
);
7545 case DLT_JUNIPER_MFR
:
7546 case DLT_JUNIPER_MLFR
:
7547 case DLT_JUNIPER_MLPPP
:
7548 case DLT_JUNIPER_ATM1
:
7549 case DLT_JUNIPER_ATM2
:
7550 case DLT_JUNIPER_PPPOE
:
7551 case DLT_JUNIPER_PPPOE_ATM
:
7552 case DLT_JUNIPER_GGSN
:
7553 case DLT_JUNIPER_ES
:
7554 case DLT_JUNIPER_MONITOR
:
7555 case DLT_JUNIPER_SERVICES
:
7556 case DLT_JUNIPER_ETHER
:
7557 case DLT_JUNIPER_PPP
:
7558 case DLT_JUNIPER_FRELAY
:
7559 case DLT_JUNIPER_CHDLC
:
7560 case DLT_JUNIPER_VP
:
7561 case DLT_JUNIPER_ST
:
7562 case DLT_JUNIPER_ISM
:
7563 case DLT_JUNIPER_VS
:
7564 case DLT_JUNIPER_SRX_E2E
:
7565 case DLT_JUNIPER_FIBRECHANNEL
:
7566 case DLT_JUNIPER_ATM_CEMIC
:
7568 /* juniper flags (including direction) are stored
7569 * the byte after the 3-byte magic number */
7571 /* match outgoing packets */
7572 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 0, 0x01);
7574 /* match incoming packets */
7575 b0
= gen_mcmp(OR_LINK
, 3, BPF_B
, 1, 0x01);
7581 * If we have packet meta-data indicating a direction,
7582 * check it, otherwise give up as this link-layer type
7583 * has nothing in the packet data.
7585 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7587 * We infer that this is Linux with PF_PACKET support.
7588 * If this is a *live* capture, we can look at
7589 * special meta-data in the filter expression;
7590 * if it's a savefile, we can't.
7592 if (bpf_pcap
->sf
.rfile
!= NULL
) {
7593 /* We have a FILE *, so this is a savefile */
7594 bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7599 /* match outgoing packets */
7600 b0
= gen_cmp(OR_LINK
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
7603 /* to filter on inbound traffic, invert the match */
7606 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7607 bpf_error("inbound/outbound not supported on linktype %d",
7611 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7616 #ifdef HAVE_NET_PFVAR_H
7617 /* PF firewall log matched interface */
7619 gen_pf_ifname(const char *ifname
)
7624 if (linktype
!= DLT_PFLOG
) {
7625 bpf_error("ifname supported only on PF linktype");
7628 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
7629 off
= offsetof(struct pfloghdr
, ifname
);
7630 if (strlen(ifname
) >= len
) {
7631 bpf_error("ifname interface names can only be %d characters",
7635 b0
= gen_bcmp(OR_LINK
, off
, strlen(ifname
), (const u_char
*)ifname
);
7639 /* PF firewall log ruleset name */
7641 gen_pf_ruleset(char *ruleset
)
7645 if (linktype
!= DLT_PFLOG
) {
7646 bpf_error("ruleset supported only on PF linktype");
7650 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
7651 bpf_error("ruleset names can only be %ld characters",
7652 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
7656 b0
= gen_bcmp(OR_LINK
, offsetof(struct pfloghdr
, ruleset
),
7657 strlen(ruleset
), (const u_char
*)ruleset
);
7661 /* PF firewall log rule number */
7667 if (linktype
!= DLT_PFLOG
) {
7668 bpf_error("rnr supported only on PF linktype");
7672 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
7677 /* PF firewall log sub-rule number */
7679 gen_pf_srnr(int srnr
)
7683 if (linktype
!= DLT_PFLOG
) {
7684 bpf_error("srnr supported only on PF linktype");
7688 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
7693 /* PF firewall log reason code */
7695 gen_pf_reason(int reason
)
7699 if (linktype
!= DLT_PFLOG
) {
7700 bpf_error("reason supported only on PF linktype");
7704 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, reason
), BPF_B
,
7709 /* PF firewall log action */
7711 gen_pf_action(int action
)
7715 if (linktype
!= DLT_PFLOG
) {
7716 bpf_error("action supported only on PF linktype");
7720 b0
= gen_cmp(OR_LINK
, offsetof(struct pfloghdr
, action
), BPF_B
,
7724 #else /* !HAVE_NET_PFVAR_H */
7726 gen_pf_ifname(const char *ifname
)
7728 bpf_error("libpcap was compiled without pf support");
7734 gen_pf_ruleset(char *ruleset
)
7736 bpf_error("libpcap was compiled on a machine without pf support");
7744 bpf_error("libpcap was compiled on a machine without pf support");
7750 gen_pf_srnr(int srnr
)
7752 bpf_error("libpcap was compiled on a machine without pf support");
7758 gen_pf_reason(int reason
)
7760 bpf_error("libpcap was compiled on a machine without pf support");
7766 gen_pf_action(int action
)
7768 bpf_error("libpcap was compiled on a machine without pf support");
7772 #endif /* HAVE_NET_PFVAR_H */
7774 /* IEEE 802.11 wireless header */
7776 gen_p80211_type(int type
, int mask
)
7782 case DLT_IEEE802_11
:
7783 case DLT_PRISM_HEADER
:
7784 case DLT_IEEE802_11_RADIO_AVS
:
7785 case DLT_IEEE802_11_RADIO
:
7786 b0
= gen_mcmp(OR_LINK
, 0, BPF_B
, (bpf_int32
)type
,
7791 bpf_error("802.11 link-layer types supported only on 802.11");
7799 gen_p80211_fcdir(int fcdir
)
7805 case DLT_IEEE802_11
:
7806 case DLT_PRISM_HEADER
:
7807 case DLT_IEEE802_11_RADIO_AVS
:
7808 case DLT_IEEE802_11_RADIO
:
7812 bpf_error("frame direction supported only with 802.11 headers");
7816 b0
= gen_mcmp(OR_LINK
, 1, BPF_B
, (bpf_int32
)fcdir
,
7817 (bpf_u_int32
)IEEE80211_FC1_DIR_MASK
);
7824 register const u_char
*eaddr
;
7830 case DLT_ARCNET_LINUX
:
7831 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
7833 return (gen_ahostop(eaddr
, (int)q
.dir
));
7835 bpf_error("ARCnet address used in non-arc expression");
7841 bpf_error("aid supported only on ARCnet");
7844 bpf_error("ARCnet address used in non-arc expression");
7849 static struct block
*
7850 gen_ahostop(eaddr
, dir
)
7851 register const u_char
*eaddr
;
7854 register struct block
*b0
, *b1
;
7857 /* src comes first, different from Ethernet */
7859 return gen_bcmp(OR_LINK
, 0, 1, eaddr
);
7862 return gen_bcmp(OR_LINK
, 1, 1, eaddr
);
7865 b0
= gen_ahostop(eaddr
, Q_SRC
);
7866 b1
= gen_ahostop(eaddr
, Q_DST
);
7872 b0
= gen_ahostop(eaddr
, Q_SRC
);
7873 b1
= gen_ahostop(eaddr
, Q_DST
);
7878 bpf_error("'addr1' is only supported on 802.11");
7882 bpf_error("'addr2' is only supported on 802.11");
7886 bpf_error("'addr3' is only supported on 802.11");
7890 bpf_error("'addr4' is only supported on 802.11");
7894 bpf_error("'ra' is only supported on 802.11");
7898 bpf_error("'ta' is only supported on 802.11");
7906 * support IEEE 802.1Q VLAN trunk over ethernet
7912 struct block
*b0
, *b1
;
7914 /* can't check for VLAN-encapsulated packets inside MPLS */
7915 if (label_stack_depth
> 0)
7916 bpf_error("no VLAN match after MPLS");
7919 * Check for a VLAN packet, and then change the offsets to point
7920 * to the type and data fields within the VLAN packet. Just
7921 * increment the offsets, so that we can support a hierarchy, e.g.
7922 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7925 * XXX - this is a bit of a kludge. If we were to split the
7926 * compiler into a parser that parses an expression and
7927 * generates an expression tree, and a code generator that
7928 * takes an expression tree (which could come from our
7929 * parser or from some other parser) and generates BPF code,
7930 * we could perhaps make the offsets parameters of routines
7931 * and, in the handler for an "AND" node, pass to subnodes
7932 * other than the VLAN node the adjusted offsets.
7934 * This would mean that "vlan" would, instead of changing the
7935 * behavior of *all* tests after it, change only the behavior
7936 * of tests ANDed with it. That would change the documented
7937 * semantics of "vlan", which might break some expressions.
7938 * However, it would mean that "(vlan and ip) or ip" would check
7939 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7940 * checking only for VLAN-encapsulated IP, so that could still
7941 * be considered worth doing; it wouldn't break expressions
7942 * that are of the form "vlan and ..." or "vlan N and ...",
7943 * which I suspect are the most common expressions involving
7944 * "vlan". "vlan or ..." doesn't necessarily do what the user
7945 * would really want, now, as all the "or ..." tests would
7946 * be done assuming a VLAN, even though the "or" could be viewed
7947 * as meaning "or, if this isn't a VLAN packet...".
7954 case DLT_NETANALYZER
:
7955 case DLT_NETANALYZER_TRANSPARENT
:
7956 /* check for VLAN, including QinQ */
7957 b0
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
7958 (bpf_int32
)ETHERTYPE_8021Q
);
7959 b1
= gen_cmp(OR_LINK
, off_linktype
, BPF_H
,
7960 (bpf_int32
)ETHERTYPE_8021QINQ
);
7964 /* If a specific VLAN is requested, check VLAN id */
7965 if (vlan_num
>= 0) {
7966 b1
= gen_mcmp(OR_MACPL
, 0, BPF_H
,
7967 (bpf_int32
)vlan_num
, 0x0fff);
7981 bpf_error("no VLAN support for data link type %d",
7996 struct block
*b0
,*b1
;
7999 * Change the offsets to point to the type and data fields within
8000 * the MPLS packet. Just increment the offsets, so that we
8001 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8002 * capture packets with an outer label of 100000 and an inner
8005 * XXX - this is a bit of a kludge. See comments in gen_vlan().
8009 if (label_stack_depth
> 0) {
8010 /* just match the bottom-of-stack bit clear */
8011 b0
= gen_mcmp(OR_MACPL
, orig_nl
-2, BPF_B
, 0, 0x01);
8014 * Indicate that we're checking MPLS-encapsulated headers,
8015 * to make sure higher level code generators don't try to
8016 * match against IP-related protocols such as Q_ARP, Q_RARP
8021 case DLT_C_HDLC
: /* fall through */
8023 case DLT_NETANALYZER
:
8024 case DLT_NETANALYZER_TRANSPARENT
:
8025 b0
= gen_linktype(ETHERTYPE_MPLS
);
8029 b0
= gen_linktype(PPP_MPLS_UCAST
);
8032 /* FIXME add other DLT_s ...
8033 * for Frame-Relay/and ATM this may get messy due to SNAP headers
8034 * leave it for now */
8037 bpf_error("no MPLS support for data link type %d",
8045 /* If a specific MPLS label is requested, check it */
8046 if (label_num
>= 0) {
8047 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
8048 b1
= gen_mcmp(OR_MACPL
, orig_nl
, BPF_W
, (bpf_int32
)label_num
,
8049 0xfffff000); /* only compare the first 20 bits */
8056 label_stack_depth
++;
8061 * Support PPPOE discovery and session.
8066 /* check for PPPoE discovery */
8067 return gen_linktype((bpf_int32
)ETHERTYPE_PPPOED
);
8076 * Test against the PPPoE session link-layer type.
8078 b0
= gen_linktype((bpf_int32
)ETHERTYPE_PPPOES
);
8081 * Change the offsets to point to the type and data fields within
8082 * the PPP packet, and note that this is PPPoE rather than
8085 * XXX - this is a bit of a kludge. If we were to split the
8086 * compiler into a parser that parses an expression and
8087 * generates an expression tree, and a code generator that
8088 * takes an expression tree (which could come from our
8089 * parser or from some other parser) and generates BPF code,
8090 * we could perhaps make the offsets parameters of routines
8091 * and, in the handler for an "AND" node, pass to subnodes
8092 * other than the PPPoE node the adjusted offsets.
8094 * This would mean that "pppoes" would, instead of changing the
8095 * behavior of *all* tests after it, change only the behavior
8096 * of tests ANDed with it. That would change the documented
8097 * semantics of "pppoes", which might break some expressions.
8098 * However, it would mean that "(pppoes and ip) or ip" would check
8099 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8100 * checking only for VLAN-encapsulated IP, so that could still
8101 * be considered worth doing; it wouldn't break expressions
8102 * that are of the form "pppoes and ..." which I suspect are the
8103 * most common expressions involving "pppoes". "pppoes or ..."
8104 * doesn't necessarily do what the user would really want, now,
8105 * as all the "or ..." tests would be done assuming PPPoE, even
8106 * though the "or" could be viewed as meaning "or, if this isn't
8107 * a PPPoE packet...".
8109 orig_linktype
= off_linktype
; /* save original values */
8114 * The "network-layer" protocol is PPPoE, which has a 6-byte
8115 * PPPoE header, followed by a PPP packet.
8117 * There is no HDLC encapsulation for the PPP packet (it's
8118 * encapsulated in PPPoES instead), so the link-layer type
8119 * starts at the first byte of the PPP packet. For PPPoE,
8120 * that offset is relative to the beginning of the total
8121 * link-layer payload, including any 802.2 LLC header, so
8122 * it's 6 bytes past off_nl.
8124 off_linktype
= off_nl
+ 6;
8127 * The network-layer offsets are relative to the beginning
8128 * of the MAC-layer payload; that's past the 6-byte
8129 * PPPoE header and the 2-byte PPP header.
8132 off_nl_nosnap
= 6+2;
8138 gen_atmfield_code(atmfield
, jvalue
, jtype
, reverse
)
8150 bpf_error("'vpi' supported only on raw ATM");
8151 if (off_vpi
== (u_int
)-1)
8153 b0
= gen_ncmp(OR_LINK
, off_vpi
, BPF_B
, 0xffffffff, jtype
,
8159 bpf_error("'vci' supported only on raw ATM");
8160 if (off_vci
== (u_int
)-1)
8162 b0
= gen_ncmp(OR_LINK
, off_vci
, BPF_H
, 0xffffffff, jtype
,
8167 if (off_proto
== (u_int
)-1)
8168 abort(); /* XXX - this isn't on FreeBSD */
8169 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0x0f, jtype
,
8174 if (off_payload
== (u_int
)-1)
8176 b0
= gen_ncmp(OR_LINK
, off_payload
+ MSG_TYPE_POS
, BPF_B
,
8177 0xffffffff, jtype
, reverse
, jvalue
);
8182 bpf_error("'callref' supported only on raw ATM");
8183 if (off_proto
== (u_int
)-1)
8185 b0
= gen_ncmp(OR_LINK
, off_proto
, BPF_B
, 0xffffffff,
8186 jtype
, reverse
, jvalue
);
8196 gen_atmtype_abbrev(type
)
8199 struct block
*b0
, *b1
;
8204 /* Get all packets in Meta signalling Circuit */
8206 bpf_error("'metac' supported only on raw ATM");
8207 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8208 b1
= gen_atmfield_code(A_VCI
, 1, BPF_JEQ
, 0);
8213 /* Get all packets in Broadcast Circuit*/
8215 bpf_error("'bcc' supported only on raw ATM");
8216 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8217 b1
= gen_atmfield_code(A_VCI
, 2, BPF_JEQ
, 0);
8222 /* Get all cells in Segment OAM F4 circuit*/
8224 bpf_error("'oam4sc' supported only on raw ATM");
8225 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8226 b1
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
8231 /* Get all cells in End-to-End OAM F4 Circuit*/
8233 bpf_error("'oam4ec' supported only on raw ATM");
8234 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8235 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
8240 /* Get all packets in connection Signalling Circuit */
8242 bpf_error("'sc' supported only on raw ATM");
8243 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8244 b1
= gen_atmfield_code(A_VCI
, 5, BPF_JEQ
, 0);
8249 /* Get all packets in ILMI Circuit */
8251 bpf_error("'ilmic' supported only on raw ATM");
8252 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8253 b1
= gen_atmfield_code(A_VCI
, 16, BPF_JEQ
, 0);
8258 /* Get all LANE packets */
8260 bpf_error("'lane' supported only on raw ATM");
8261 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
8264 * Arrange that all subsequent tests assume LANE
8265 * rather than LLC-encapsulated packets, and set
8266 * the offsets appropriately for LANE-encapsulated
8269 * "off_mac" is the offset of the Ethernet header,
8270 * which is 2 bytes past the ATM pseudo-header
8271 * (skipping the pseudo-header and 2-byte LE Client
8272 * field). The other offsets are Ethernet offsets
8273 * relative to "off_mac".
8276 off_mac
= off_payload
+ 2; /* MAC header */
8277 off_linktype
= off_mac
+ 12;
8278 off_macpl
= off_mac
+ 14; /* Ethernet */
8279 off_nl
= 0; /* Ethernet II */
8280 off_nl_nosnap
= 3; /* 802.3+802.2 */
8284 /* Get all LLC-encapsulated packets */
8286 bpf_error("'llc' supported only on raw ATM");
8287 b1
= gen_atmfield_code(A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
8298 * Filtering for MTP2 messages based on li value
8299 * FISU, length is null
8300 * LSSU, length is 1 or 2
8301 * MSU, length is 3 or more
8304 gen_mtp2type_abbrev(type
)
8307 struct block
*b0
, *b1
;
8312 if ( (linktype
!= DLT_MTP2
) &&
8313 (linktype
!= DLT_ERF
) &&
8314 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8315 bpf_error("'fisu' supported only on MTP2");
8316 /* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8317 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JEQ
, 0, 0);
8321 if ( (linktype
!= DLT_MTP2
) &&
8322 (linktype
!= DLT_ERF
) &&
8323 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8324 bpf_error("'lssu' supported only on MTP2");
8325 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 1, 2);
8326 b1
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 0);
8331 if ( (linktype
!= DLT_MTP2
) &&
8332 (linktype
!= DLT_ERF
) &&
8333 (linktype
!= DLT_MTP2_WITH_PHDR
) )
8334 bpf_error("'msu' supported only on MTP2");
8335 b0
= gen_ncmp(OR_PACKET
, off_li
, BPF_B
, 0x3f, BPF_JGT
, 0, 2);
8345 gen_mtp3field_code(mtp3field
, jvalue
, jtype
, reverse
)
8352 bpf_u_int32 val1
, val2
, val3
;
8354 switch (mtp3field
) {
8357 if (off_sio
== (u_int
)-1)
8358 bpf_error("'sio' supported only on SS7");
8359 /* sio coded on 1 byte so max value 255 */
8361 bpf_error("sio value %u too big; max value = 255",
8363 b0
= gen_ncmp(OR_PACKET
, off_sio
, BPF_B
, 0xffffffff,
8364 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8368 if (off_opc
== (u_int
)-1)
8369 bpf_error("'opc' supported only on SS7");
8370 /* opc coded on 14 bits so max value 16383 */
8372 bpf_error("opc value %u too big; max value = 16383",
8374 /* the following instructions are made to convert jvalue
8375 * to the form used to write opc in an ss7 message*/
8376 val1
= jvalue
& 0x00003c00;
8378 val2
= jvalue
& 0x000003fc;
8380 val3
= jvalue
& 0x00000003;
8382 jvalue
= val1
+ val2
+ val3
;
8383 b0
= gen_ncmp(OR_PACKET
, off_opc
, BPF_W
, 0x00c0ff0f,
8384 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8388 if (off_dpc
== (u_int
)-1)
8389 bpf_error("'dpc' supported only on SS7");
8390 /* dpc coded on 14 bits so max value 16383 */
8392 bpf_error("dpc value %u too big; max value = 16383",
8394 /* the following instructions are made to convert jvalue
8395 * to the forme used to write dpc in an ss7 message*/
8396 val1
= jvalue
& 0x000000ff;
8398 val2
= jvalue
& 0x00003f00;
8400 jvalue
= val1
+ val2
;
8401 b0
= gen_ncmp(OR_PACKET
, off_dpc
, BPF_W
, 0xff3f0000,
8402 (u_int
)jtype
, reverse
, (u_int
)jvalue
);
8406 if (off_sls
== (u_int
)-1)
8407 bpf_error("'sls' supported only on SS7");
8408 /* sls coded on 4 bits so max value 15 */
8410 bpf_error("sls value %u too big; max value = 15",
8412 /* the following instruction is made to convert jvalue
8413 * to the forme used to write sls in an ss7 message*/
8414 jvalue
= jvalue
<< 4;
8415 b0
= gen_ncmp(OR_PACKET
, off_sls
, BPF_B
, 0xf0,
8416 (u_int
)jtype
,reverse
, (u_int
)jvalue
);
8425 static struct block
*
8426 gen_msg_abbrev(type
)
8432 * Q.2931 signalling protocol messages for handling virtual circuits
8433 * establishment and teardown
8438 b1
= gen_atmfield_code(A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
8442 b1
= gen_atmfield_code(A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
8446 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
8450 b1
= gen_atmfield_code(A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
8454 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
8457 case A_RELEASE_DONE
:
8458 b1
= gen_atmfield_code(A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
8468 gen_atmmulti_abbrev(type
)
8471 struct block
*b0
, *b1
;
8477 bpf_error("'oam' supported only on raw ATM");
8478 b1
= gen_atmmulti_abbrev(A_OAMF4
);
8483 bpf_error("'oamf4' supported only on raw ATM");
8485 b0
= gen_atmfield_code(A_VCI
, 3, BPF_JEQ
, 0);
8486 b1
= gen_atmfield_code(A_VCI
, 4, BPF_JEQ
, 0);
8488 b0
= gen_atmfield_code(A_VPI
, 0, BPF_JEQ
, 0);
8494 * Get Q.2931 signalling messages for switched
8495 * virtual connection
8498 bpf_error("'connectmsg' supported only on raw ATM");
8499 b0
= gen_msg_abbrev(A_SETUP
);
8500 b1
= gen_msg_abbrev(A_CALLPROCEED
);
8502 b0
= gen_msg_abbrev(A_CONNECT
);
8504 b0
= gen_msg_abbrev(A_CONNECTACK
);
8506 b0
= gen_msg_abbrev(A_RELEASE
);
8508 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
8510 b0
= gen_atmtype_abbrev(A_SC
);
8516 bpf_error("'metaconnect' supported only on raw ATM");
8517 b0
= gen_msg_abbrev(A_SETUP
);
8518 b1
= gen_msg_abbrev(A_CALLPROCEED
);
8520 b0
= gen_msg_abbrev(A_CONNECT
);
8522 b0
= gen_msg_abbrev(A_RELEASE
);
8524 b0
= gen_msg_abbrev(A_RELEASE_DONE
);
8526 b0
= gen_atmtype_abbrev(A_METAC
);