]> The Tcpdump Group git mirrors - libpcap/blob - pcap-linux.c
Fixes from Phil Wood:
[libpcap] / pcap-linux.c
1 /*
2 * pcap-linux.c: Packet capture interface to the Linux kernel
3 *
4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org>
5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de>
6 *
7 * License: BSD
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 * 3. The names of the authors may not be used to endorse or promote
20 * products derived from this software without specific prior
21 * written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
26 */
27 #ifndef lint
28 static const char rcsid[] =
29 "@(#) $Header: /tcpdump/master/libpcap/pcap-linux.c,v 1.72 2001-12-10 05:49:40 guy Exp $ (LBL)";
30 #endif
31
32 /*
33 * Known problems with 2.0[.x] kernels:
34 *
35 * - The loopback device gives every packet twice; on 2.2[.x] kernels,
36 * if we use PF_PACKET, we can filter out the transmitted version
37 * of the packet by using data in the "sockaddr_ll" returned by
38 * "recvfrom()", but, on 2.0[.x] kernels, we have to use
39 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a
40 * "sockaddr_pkt" which doesn't give us enough information to let
41 * us do that.
42 *
43 * - We have to set the interface's IFF_PROMISC flag ourselves, if
44 * we're to run in promiscuous mode, which means we have to turn
45 * it off ourselves when we're done; the kernel doesn't keep track
46 * of how many sockets are listening promiscuously, which means
47 * it won't get turned off automatically when no sockets are
48 * listening promiscuously. We catch "pcap_close()" and, for
49 * interfaces we put into promiscuous mode, take them out of
50 * promiscuous mode - which isn't necessarily the right thing to
51 * do, if another socket also requested promiscuous mode between
52 * the time when we opened the socket and the time when we close
53 * the socket.
54 *
55 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()"
56 * return the amount of data that you could have read, rather than
57 * the amount that was returned, so we can't just allocate a buffer
58 * whose size is the snapshot length and pass the snapshot length
59 * as the byte count, and also pass MSG_TRUNC, so that the return
60 * value tells us how long the packet was on the wire.
61 *
62 * This means that, if we want to get the actual size of the packet,
63 * so we can return it in the "len" field of the packet header,
64 * we have to read the entire packet, not just the part that fits
65 * within the snapshot length, and thus waste CPU time copying data
66 * from the kernel that our caller won't see.
67 *
68 * We have to get the actual size, and supply it in "len", because
69 * otherwise, the IP dissector in tcpdump, for example, will complain
70 * about "truncated-ip", as the packet will appear to have been
71 * shorter, on the wire, than the IP header said it should have been.
72 */
73
74
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
78
79 #include "pcap-int.h"
80 #include "sll.h"
81
82 #include <errno.h>
83 #include <stdlib.h>
84 #include <unistd.h>
85 #include <fcntl.h>
86 #include <string.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/utsname.h>
90 #include <net/if.h>
91 #include <netinet/in.h>
92 #include <linux/if_ether.h>
93 #include <net/if_arp.h>
94
95 /*
96 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET
97 * sockets rather than SOCK_PACKET sockets.
98 *
99 * To use them, we include <linux/if_packet.h> rather than
100 * <netpacket/packet.h>; we do so because
101 *
102 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or
103 * later kernels and libc5, and don't provide a <netpacket/packet.h>
104 * file;
105 *
106 * not all versions of glibc2 have a <netpacket/packet.h> file
107 * that defines stuff needed for some of the 2.4-or-later-kernel
108 * features, so if the system has a 2.4 or later kernel, we
109 * still can't use those features.
110 *
111 * We're already including a number of other <linux/XXX.h> headers, and
112 * this code is Linux-specific (no other OS has PF_PACKET sockets as
113 * a raw packet capture mechanism), so it's not as if you gain any
114 * useful portability by using <netpacket/packet.h>
115 *
116 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET
117 * isn't defined? It only defines one data structure in 2.0.x, so
118 * it shouldn't cause any problems.
119 */
120 #ifdef PF_PACKET
121 # include <linux/if_packet.h>
122
123 /*
124 * On at least some Linux distributions (for example, Red Hat 5.2),
125 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if
126 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define
127 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of
128 * the PACKET_xxx stuff.
129 *
130 * So we check whether PACKET_HOST is defined, and assume that we have
131 * PF_PACKET sockets only if it is defined.
132 */
133 # ifdef PACKET_HOST
134 # define HAVE_PF_PACKET_SOCKETS
135 # endif /* PACKET_HOST */
136 #endif /* PF_PACKET */
137
138 #ifdef SO_ATTACH_FILTER
139 #include <linux/types.h>
140 #include <linux/filter.h>
141 #endif
142
143 #ifndef __GLIBC__
144 typedef int socklen_t;
145 #endif
146
147 #ifndef MSG_TRUNC
148 /*
149 * This is being compiled on a system that lacks MSG_TRUNC; define it
150 * with the value it has in the 2.2 and later kernels, so that, on
151 * those kernels, when we pass it in the flags argument to "recvfrom()"
152 * we're passing the right value and thus get the MSG_TRUNC behavior
153 * we want. (We don't get that behavior on 2.0[.x] kernels, because
154 * they didn't support MSG_TRUNC.)
155 */
156 #define MSG_TRUNC 0x20
157 #endif
158
159 #define MAX_LINKHEADER_SIZE 256
160
161 /*
162 * When capturing on all interfaces we use this as the buffer size.
163 * Should be bigger then all MTUs that occur in real life.
164 * 64kB should be enough for now.
165 */
166 #define BIGGER_THAN_ALL_MTUS (64*1024)
167
168 /*
169 * Prototypes for internal functions
170 */
171 static void map_arphrd_to_dlt(pcap_t *, int);
172 static int live_open_old(pcap_t *, char *, int, int, char *);
173 static int live_open_new(pcap_t *, char *, int, int, char *);
174 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *);
175
176 /*
177 * Wrap some ioctl calls
178 */
179 #ifdef HAVE_PF_PACKET_SOCKETS
180 static int iface_get_id(int fd, const char *device, char *ebuf);
181 #endif
182 static int iface_get_mtu(int fd, const char *device, char *ebuf);
183 static int iface_get_arptype(int fd, const char *device, char *ebuf);
184 #ifdef HAVE_PF_PACKET_SOCKETS
185 static int iface_bind(int fd, int ifindex, char *ebuf);
186 #endif
187 static int iface_bind_old(int fd, const char *device, char *ebuf);
188
189 #ifdef SO_ATTACH_FILTER
190 static int fix_program(pcap_t *handle, struct sock_fprog *fcode);
191 static int fix_offset(struct bpf_insn *p);
192 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode);
193 static int reset_kernel_filter(pcap_t *handle);
194
195 static struct sock_filter total_insn
196 = BPF_STMT(BPF_RET | BPF_K, 0);
197 static struct sock_fprog total_fcode
198 = { 1, &total_insn };
199 #endif
200
201 /*
202 * Get a handle for a live capture from the given device. You can
203 * pass NULL as device to get all packages (without link level
204 * information of course). If you pass 1 as promisc the interface
205 * will be set to promiscous mode (XXX: I think this usage should
206 * be deprecated and functions be added to select that later allow
207 * modification of that values -- Torsten).
208 *
209 * See also pcap(3).
210 */
211 pcap_t *
212 pcap_open_live(char *device, int snaplen, int promisc, int to_ms, char *ebuf)
213 {
214 pcap_t *handle;
215 int mtu;
216 struct utsname utsname;
217
218 /* Allocate a handle for this session. */
219
220 handle = malloc(sizeof(*handle));
221 if (handle == NULL) {
222 snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
223 pcap_strerror(errno));
224 return NULL;
225 }
226
227 /* Initialize some components of the pcap structure. */
228
229 memset(handle, 0, sizeof(*handle));
230 handle->snapshot = snaplen;
231 handle->md.timeout = to_ms;
232
233 /*
234 * NULL and "any" are special devices which give us the hint to
235 * monitor all devices.
236 */
237 if (!device || strcmp(device, "any") == 0) {
238 device = NULL;
239 handle->md.device = strdup("any");
240 if (promisc) {
241 promisc = 0;
242 /* Just a warning. */
243 snprintf(ebuf, PCAP_ERRBUF_SIZE,
244 "Promiscuous mode not supported on the \"any\" device");
245 }
246
247 } else
248 handle->md.device = strdup(device);
249
250 if (handle->md.device == NULL) {
251 snprintf(ebuf, PCAP_ERRBUF_SIZE, "strdup: %s",
252 pcap_strerror(errno) );
253 free(handle);
254 return NULL;
255 }
256
257 /*
258 * Current Linux kernels use the protocol family PF_PACKET to
259 * allow direct access to all packets on the network while
260 * older kernels had a special socket type SOCK_PACKET to
261 * implement this feature.
262 * While this old implementation is kind of obsolete we need
263 * to be compatible with older kernels for a while so we are
264 * trying both methods with the newer method preferred.
265 */
266
267 if (! (live_open_new(handle, device, promisc, to_ms, ebuf) ||
268 live_open_old(handle, device, promisc, to_ms, ebuf)) )
269 {
270 /*
271 * Both methods to open the packet socket failed. Tidy
272 * up and report our failure (ebuf is expected to be
273 * set by the functions above).
274 */
275
276 free(handle->md.device);
277 free(handle);
278 return NULL;
279 }
280
281 /*
282 * Compute the buffer size.
283 *
284 * If we're using SOCK_PACKET, this might be a 2.0[.x] kernel,
285 * and might require special handling - check.
286 */
287 if (handle->md.sock_packet && (uname(&utsname) < 0 ||
288 strncmp(utsname.release, "2.0", 3) == 0)) {
289 /*
290 * We're using a SOCK_PACKET structure, and either
291 * we couldn't find out what kernel release this is,
292 * or it's a 2.0[.x] kernel.
293 *
294 * In the 2.0[.x] kernel, a "recvfrom()" on
295 * a SOCK_PACKET socket, with MSG_TRUNC set, will
296 * return the number of bytes read, so if we pass
297 * a length based on the snapshot length, it'll
298 * return the number of bytes from the packet
299 * copied to userland, not the actual length
300 * of the packet.
301 *
302 * This means that, for example, the IP dissector
303 * in tcpdump will get handed a packet length less
304 * than the length in the IP header, and will
305 * complain about "truncated-ip".
306 *
307 * So we don't bother trying to copy from the
308 * kernel only the bytes in which we're interested,
309 * but instead copy them all, just as the older
310 * versions of libpcap for Linux did.
311 *
312 * The buffer therefore needs to be big enough to
313 * hold the largest packet we can get from this
314 * device. Unfortunately, we can't get the MRU
315 * of the network; we can only get the MTU. The
316 * MTU may be too small, in which case a packet larger
317 * than the buffer size will be truncated *and* we
318 * won't get the actual packet size.
319 *
320 * However, if the snapshot length is larger than
321 * the buffer size based on the MTU, we use the
322 * snapshot length as the buffer size, instead;
323 * this means that with a sufficiently large snapshot
324 * length we won't artificially truncate packets
325 * to the MTU-based size.
326 *
327 * This mess just one of many problems with packet
328 * capture on 2.0[.x] kernels; you really want a
329 * 2.2[.x] or later kernel if you want packet capture
330 * to work well.
331 */
332 mtu = iface_get_mtu(handle->fd, device, ebuf);
333 if (mtu == -1) {
334 close(handle->fd);
335 free(handle->md.device);
336 free(handle);
337 return NULL;
338 }
339 handle->bufsize = MAX_LINKHEADER_SIZE + mtu;
340 if (handle->bufsize < handle->snapshot)
341 handle->bufsize = handle->snapshot;
342 } else {
343 /*
344 * This is a 2.2[.x] or later kernel (we know that
345 * either because we're not using a SOCK_PACKET
346 * socket - PF_PACKET is supported only in 2.2
347 * and later kernels - or because we checked the
348 * kernel version).
349 *
350 * We can safely pass "recvfrom()" a byte count
351 * based on the snapshot length.
352 */
353 handle->bufsize = handle->snapshot;
354 }
355
356 /* Allocate the buffer */
357
358 handle->buffer = malloc(handle->bufsize + handle->offset);
359 if (!handle->buffer) {
360 snprintf(ebuf, PCAP_ERRBUF_SIZE,
361 "malloc: %s", pcap_strerror(errno));
362 close(handle->fd);
363 free(handle->md.device);
364 free(handle);
365 return NULL;
366 }
367
368 return handle;
369 }
370
371 /*
372 * Read at most max_packets from the capture stream and call the callback
373 * for each of them. Returns the number of packets handled or -1 if an
374 * error occured.
375 */
376 int
377 pcap_read(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user)
378 {
379 /*
380 * Currently, on Linux only one packet is delivered per read,
381 * so we don't loop.
382 */
383 return pcap_read_packet(handle, callback, user);
384 }
385
386 /*
387 * Read a packet from the socket calling the handler provided by
388 * the user. Returns the number of packets received or -1 if an
389 * error occured.
390 */
391 static int
392 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata)
393 {
394 u_char *bp;
395 int offset;
396 #ifdef HAVE_PF_PACKET_SOCKETS
397 struct sockaddr_ll from;
398 struct sll_header *hdrp;
399 #else
400 struct sockaddr from;
401 #endif
402 socklen_t fromlen;
403 int packet_len, caplen;
404 struct pcap_pkthdr pcap_header;
405
406 #ifdef HAVE_PF_PACKET_SOCKETS
407 /*
408 * If this is a cooked device, leave extra room for a
409 * fake packet header.
410 */
411 if (handle->md.cooked)
412 offset = SLL_HDR_LEN;
413 else
414 offset = 0;
415 #else
416 /*
417 * This system doesn't have PF_PACKET sockets, so it doesn't
418 * support cooked devices.
419 */
420 offset = 0;
421 #endif
422
423 /* Receive a single packet from the kernel */
424
425 bp = handle->buffer + handle->offset;
426 do {
427 fromlen = sizeof(from);
428 packet_len = recvfrom(
429 handle->fd, bp + offset,
430 handle->bufsize - offset, MSG_TRUNC,
431 (struct sockaddr *) &from, &fromlen);
432 } while (packet_len == -1 && errno == EINTR);
433
434 /* Check if an error occured */
435
436 if (packet_len == -1) {
437 if (errno == EAGAIN)
438 return 0; /* no packet there */
439 else {
440 snprintf(handle->errbuf, sizeof(handle->errbuf),
441 "recvfrom: %s", pcap_strerror(errno));
442 return -1;
443 }
444 }
445
446 #ifdef HAVE_PF_PACKET_SOCKETS
447 /*
448 * If this is from the loopback device, reject outgoing packets;
449 * we'll see the packet as an incoming packet as well, and
450 * we don't want to see it twice.
451 *
452 * We can only do this if we're using PF_PACKET; the address
453 * returned for SOCK_PACKET is a "sockaddr_pkt" which lacks
454 * the relevant packet type information.
455 */
456 if (!handle->md.sock_packet &&
457 from.sll_ifindex == handle->md.lo_ifindex &&
458 from.sll_pkttype == PACKET_OUTGOING)
459 return 0;
460 #endif
461
462 #ifdef HAVE_PF_PACKET_SOCKETS
463 /*
464 * If this is a cooked device, fill in the fake packet header.
465 */
466 if (handle->md.cooked) {
467 /*
468 * Add the length of the fake header to the length
469 * of packet data we read.
470 */
471 packet_len += SLL_HDR_LEN;
472
473 hdrp = (struct sll_header *)bp;
474
475 /*
476 * Map the PACKET_ value to a LINUX_SLL_ value; we
477 * want the same numerical value to be used in
478 * the link-layer header even if the numerical values
479 * for the PACKET_ #defines change, so that programs
480 * that look at the packet type field will always be
481 * able to handle DLT_LINUX_SLL captures.
482 */
483 switch (from.sll_pkttype) {
484
485 case PACKET_HOST:
486 hdrp->sll_pkttype = htons(LINUX_SLL_HOST);
487 break;
488
489 case PACKET_BROADCAST:
490 hdrp->sll_pkttype = htons(LINUX_SLL_BROADCAST);
491 break;
492
493 case PACKET_MULTICAST:
494 hdrp->sll_pkttype = htons(LINUX_SLL_MULTICAST);
495 break;
496
497 case PACKET_OTHERHOST:
498 hdrp->sll_pkttype = htons(LINUX_SLL_OTHERHOST);
499 break;
500
501 case PACKET_OUTGOING:
502 hdrp->sll_pkttype = htons(LINUX_SLL_OUTGOING);
503 break;
504
505 default:
506 hdrp->sll_pkttype = -1;
507 break;
508 }
509
510 hdrp->sll_hatype = htons(from.sll_hatype);
511 hdrp->sll_halen = htons(from.sll_halen);
512 memcpy(hdrp->sll_addr, from.sll_addr,
513 (from.sll_halen > SLL_ADDRLEN) ?
514 SLL_ADDRLEN :
515 from.sll_halen);
516 hdrp->sll_protocol = from.sll_protocol;
517 }
518 #endif
519
520 /*
521 * XXX: According to the kernel source we should get the real
522 * packet len if calling recvfrom with MSG_TRUNC set. It does
523 * not seem to work here :(, but it is supported by this code
524 * anyway.
525 * To be honest the code RELIES on that feature so this is really
526 * broken with 2.2.x kernels.
527 * I spend a day to figure out what's going on and I found out
528 * that the following is happening:
529 *
530 * The packet comes from a random interface and the packet_rcv
531 * hook is called with a clone of the packet. That code inserts
532 * the packet into the receive queue of the packet socket.
533 * If a filter is attached to that socket that filter is run
534 * first - and there lies the problem. The default filter always
535 * cuts the packet at the snaplen:
536 *
537 * # tcpdump -d
538 * (000) ret #68
539 *
540 * So the packet filter cuts down the packet. The recvfrom call
541 * says "hey, it's only 68 bytes, it fits into the buffer" with
542 * the result that we don't get the real packet length. This
543 * is valid at least until kernel 2.2.17pre6.
544 *
545 * We currently handle this by making a copy of the filter
546 * program, fixing all "ret" instructions with non-zero
547 * operands to have an operand of 65535 so that the filter
548 * doesn't truncate the packet, and supplying that modified
549 * filter to the kernel.
550 */
551
552 caplen = packet_len;
553 if (caplen > handle->snapshot)
554 caplen = handle->snapshot;
555
556 /* Run the packet filter if not using kernel filter */
557 if (!handle->md.use_bpf && handle->fcode.bf_insns) {
558 if (bpf_filter(handle->fcode.bf_insns, bp,
559 packet_len, caplen) == 0)
560 {
561 /* rejected by filter */
562 return 0;
563 }
564 }
565
566 /* Fill in our own header data */
567
568 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) {
569 snprintf(handle->errbuf, sizeof(handle->errbuf),
570 "ioctl: %s", pcap_strerror(errno));
571 return -1;
572 }
573 pcap_header.caplen = caplen;
574 pcap_header.len = packet_len;
575
576 /*
577 * Count the packet.
578 *
579 * Arguably, we should count them before we check the filter,
580 * as on many other platforms "ps_recv" counts packets
581 * handed to the filter rather than packets that passed
582 * the filter, but if filtering is done in the kernel, we
583 * can't get a count of packets that passed the filter,
584 * and that would mean the meaning of "ps_recv" wouldn't
585 * be the same on all Linux systems.
586 *
587 * XXX - it's not the same on all systems in any case;
588 * ideally, we should have a "get the statistics" call
589 * that supplies more counts and indicates which of them
590 * it supplies, so that we supply a count of packets
591 * handed to the filter only on platforms where that
592 * information is available.
593 *
594 * We count them here even if we can get the packet count
595 * from the kernel, as we can only determine at run time
596 * whether we'll be able to get it from the kernel (if
597 * HAVE_TPACKET_STATS isn't defined, we can't get it from
598 * the kernel, but if it is defined, the library might
599 * have been built with a 2.4 or later kernel, but we
600 * might be running on a 2.2[.x] kernel without Alexey
601 * Kuznetzov's turbopacket patches, and thus the kernel
602 * might not be able to supply those statistics). We
603 * could, I guess, try, when opening the socket, to get
604 * the statistics, and if we can not increment the count
605 * here, but it's not clear that always incrementing
606 * the count is more expensive than always testing a flag
607 * in memory.
608 */
609 handle->md.stat.ps_recv++;
610
611 /* Call the user supplied callback function */
612 callback(userdata, &pcap_header, bp);
613
614 return 1;
615 }
616
617 /*
618 * Get the statistics for the given packet capture handle.
619 * Reports the number of dropped packets iff the kernel supports
620 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later
621 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket
622 * patches); otherwise, that information isn't available, and we lie
623 * and report 0 as the count of dropped packets.
624 */
625 int
626 pcap_stats(pcap_t *handle, struct pcap_stat *stats)
627 {
628 #ifdef HAVE_TPACKET_STATS
629 struct tpacket_stats kstats;
630 socklen_t len = sizeof (struct tpacket_stats);
631
632 /*
633 * Try to get the packet counts from the kernel.
634 */
635 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS,
636 &kstats, &len) > -1) {
637 /*
638 * In "linux/net/packet/af_packet.c", at least in the
639 * 2.4.9 kernel, "tp_packets" is incremented for every
640 * packet that passes the packet filter *and* is
641 * successfully queued on the socket; "tp_drops" is
642 * incremented for every packet dropped because there's
643 * not enough free space in the socket buffer.
644 *
645 * When the statistics are returned for a PACKET_STATISTICS
646 * "getsockopt()" call, "tp_drops" is added to "tp_packets",
647 * so that "tp_packets" counts all packets handed to
648 * the PF_PACKET socket, including packets dropped because
649 * there wasn't room on the socket buffer - but not
650 * including packets that didn't pass the filter.
651 *
652 * In the BSD BPF, the count of received packets is
653 * incremented for every packet handed to BPF, regardless
654 * of whether it passed the filter.
655 *
656 * We can't make "pcap_stats()" work the same on both
657 * platforms, but the best approximation is to return
658 * "tp_packets" as the count of packets and "tp_drops"
659 * as the count of drops.
660 *
661 * Note that "tp_packets" may include packets not yet
662 * processed by libpcap; the packets may have been
663 * queued on the socket but not read yet. (The equivalent
664 * may be true on other platforms.)
665 */
666 handle->md.stat.ps_recv = kstats.tp_packets;
667 handle->md.stat.ps_drop = kstats.tp_drops;
668 }
669 else
670 {
671 /*
672 * If the error was EOPNOTSUPP, fall through, so that
673 * if you build the library on a system with
674 * "struct tpacket_stats" and run it on a system
675 * that doesn't, it works as it does if the library
676 * is built on a system without "struct tpacket_stats".
677 */
678 if (errno != EOPNOTSUPP) {
679 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE,
680 "pcap_stats: %s", pcap_strerror(errno));
681 return -1;
682 }
683 }
684 #endif
685 /*
686 * "ps_recv" counts only packets that passed the filter.
687 *
688 * "ps_drop" is maintained only on systems that support
689 * the PACKET_STATISTICS "getsockopt()" argument.
690 */
691 *stats = handle->md.stat;
692 return 0;
693 }
694
695 /*
696 * Attach the given BPF code to the packet capture device.
697 */
698 int
699 pcap_setfilter(pcap_t *handle, struct bpf_program *filter)
700 {
701 #ifdef SO_ATTACH_FILTER
702 struct sock_fprog fcode;
703 int can_filter_in_kernel;
704 #endif
705
706 if (!handle)
707 return -1;
708 if (!filter) {
709 strncpy(handle->errbuf, "setfilter: No filter specified",
710 sizeof(handle->errbuf));
711 return -1;
712 }
713
714 /* Make our private copy of the filter */
715
716 if (install_bpf_program(handle, filter) < 0) {
717 snprintf(handle->errbuf, sizeof(handle->errbuf),
718 "malloc: %s", pcap_strerror(errno));
719 return -1;
720 }
721
722 /*
723 * Run user level packet filter by default. Will be overriden if
724 * installing a kernel filter succeeds.
725 */
726 handle->md.use_bpf = 0;
727
728 /*
729 * If we're reading from a savefile, don't try to install
730 * a kernel filter.
731 */
732 if (handle->sf.rfile != NULL)
733 return 0;
734
735 /* Install kernel level filter if possible */
736
737 #ifdef SO_ATTACH_FILTER
738 #ifdef USHRT_MAX
739 if (handle->fcode.bf_len > USHRT_MAX) {
740 /*
741 * fcode.len is an unsigned short for current kernel.
742 * I have yet to see BPF-Code with that much
743 * instructions but still it is possible. So for the
744 * sake of correctness I added this check.
745 */
746 fprintf(stderr, "Warning: Filter too complex for kernel\n");
747 fcode.filter = NULL;
748 can_filter_in_kernel = 0;
749 } else
750 #endif /* USHRT_MAX */
751 {
752 /*
753 * Oh joy, the Linux kernel uses struct sock_fprog instead
754 * of struct bpf_program and of course the length field is
755 * of different size. Pointed out by Sebastian
756 *
757 * Oh, and we also need to fix it up so that all "ret"
758 * instructions with non-zero operands have 65535 as the
759 * operand, and so that, if we're in cooked mode, all
760 * memory-reference instructions use special magic offsets
761 * in references to the link-layer header and assume that
762 * the link-layer payload begins at 0; "fix_program()"
763 * will do that.
764 */
765 switch (fix_program(handle, &fcode)) {
766
767 case -1:
768 default:
769 /*
770 * Fatal error; just quit.
771 * (The "default" case shouldn't happen; we
772 * return -1 for that reason.)
773 */
774 return -1;
775
776 case 0:
777 /*
778 * The program performed checks that we can't make
779 * work in the kernel.
780 */
781 can_filter_in_kernel = 0;
782 break;
783
784 case 1:
785 /*
786 * We have a filter that'll work in the kernel.
787 */
788 can_filter_in_kernel = 1;
789 break;
790 }
791 }
792
793 if (can_filter_in_kernel) {
794 if (set_kernel_filter(handle, &fcode) == 0)
795 {
796 /* Installation succeded - using kernel filter. */
797 handle->md.use_bpf = 1;
798 }
799 else
800 {
801 /*
802 * Print a warning if we weren't able to install
803 * the filter for a reason other than "this kernel
804 * isn't configured to support socket filters.
805 */
806 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) {
807 fprintf(stderr,
808 "Warning: Kernel filter failed: %s\n",
809 pcap_strerror(errno));
810 }
811 }
812 }
813
814 /*
815 * If we're not using the kernel filter, get rid of any kernel
816 * filter that might've been there before, e.g. because the
817 * previous filter could work in the kernel, or because some other
818 * code attached a filter to the socket by some means other than
819 * calling "pcap_setfilter()". Otherwise, the kernel filter may
820 * filter out packets that would pass the new userland filter.
821 */
822 if (!handle->md.use_bpf)
823 reset_kernel_filter(handle);
824
825 /*
826 * Free up the copy of the filter that was made by "fix_program()".
827 */
828 if (fcode.filter != NULL)
829 free(fcode.filter);
830 #endif /* SO_ATTACH_FILTER */
831
832 return 0;
833 }
834
835 /*
836 * Linux uses the ARP hardware type to identify the type of an
837 * interface. pcap uses the DLT_xxx constants for this. This
838 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx
839 * constant, as arguments, and sets "handle->linktype" to the
840 * appropriate DLT_XXX constant and sets "handle->offset" to
841 * the appropriate value (to make "handle->offset" plus link-layer
842 * header length be a multiple of 4, so that the link-layer payload
843 * will be aligned on a 4-byte boundary when capturing packets).
844 * (If the offset isn't set here, it'll be 0; add code as appropriate
845 * for cases where it shouldn't be 0.)
846 *
847 * Sets the link type to -1 if unable to map the type.
848 */
849 static void map_arphrd_to_dlt(pcap_t *handle, int arptype)
850 {
851 switch (arptype) {
852
853 case ARPHRD_ETHER:
854 case ARPHRD_METRICOM:
855 case ARPHRD_LOOPBACK:
856 handle->linktype = DLT_EN10MB;
857 handle->offset = 2;
858 break;
859
860 case ARPHRD_EETHER:
861 handle->linktype = DLT_EN3MB;
862 break;
863
864 case ARPHRD_AX25:
865 handle->linktype = DLT_AX25;
866 break;
867
868 case ARPHRD_PRONET:
869 handle->linktype = DLT_PRONET;
870 break;
871
872 case ARPHRD_CHAOS:
873 handle->linktype = DLT_CHAOS;
874 break;
875
876 #ifndef ARPHRD_IEEE802_TR
877 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */
878 #endif
879 case ARPHRD_IEEE802_TR:
880 case ARPHRD_IEEE802:
881 handle->linktype = DLT_IEEE802;
882 handle->offset = 2;
883 break;
884
885 case ARPHRD_ARCNET:
886 handle->linktype = DLT_ARCNET;
887 break;
888
889 case ARPHRD_FDDI:
890 handle->linktype = DLT_FDDI;
891 handle->offset = 3;
892 break;
893
894 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */
895 #define ARPHRD_ATM 19
896 #endif
897 case ARPHRD_ATM:
898 /*
899 * The Classical IP implementation in ATM for Linux
900 * supports both what RFC 1483 calls "LLC Encapsulation",
901 * in which each packet has an LLC header, possibly
902 * with a SNAP header as well, prepended to it, and
903 * what RFC 1483 calls "VC Based Multiplexing", in which
904 * different virtual circuits carry different network
905 * layer protocols, and no header is prepended to packets.
906 *
907 * They both have an ARPHRD_ type of ARPHRD_ATM, so
908 * you can't use the ARPHRD_ type to find out whether
909 * captured packets will have an LLC header, and,
910 * while there's a socket ioctl to *set* the encapsulation
911 * type, there's no ioctl to *get* the encapsulation type.
912 *
913 * This means that
914 *
915 * programs that dissect Linux Classical IP frames
916 * would have to check for an LLC header and,
917 * depending on whether they see one or not, dissect
918 * the frame as LLC-encapsulated or as raw IP (I
919 * don't know whether there's any traffic other than
920 * IP that would show up on the socket, or whether
921 * there's any support for IPv6 in the Linux
922 * Classical IP code);
923 *
924 * filter expressions would have to compile into
925 * code that checks for an LLC header and does
926 * the right thing.
927 *
928 * Both of those are a nuisance - and, at least on systems
929 * that support PF_PACKET sockets, we don't have to put
930 * up with those nuisances; instead, we can just capture
931 * in cooked mode. That's what we'll do.
932 */
933 handle->linktype = DLT_LINUX_SLL;
934 break;
935
936 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */
937 #define ARPHRD_IEEE80211 801
938 #endif
939 case ARPHRD_IEEE80211:
940 handle->linktype = DLT_IEEE802_11;
941 break;
942
943 case ARPHRD_PPP:
944 /*
945 * Some PPP code in the kernel supplies no link-layer
946 * header whatsoever to PF_PACKET sockets; other PPP
947 * code supplies PPP link-layer headers ("syncppp.c");
948 * some PPP code might supply random link-layer
949 * headers (PPP over ISDN - there's code in Ethereal,
950 * for example, to cope with PPP-over-ISDN captures
951 * with which the Ethereal developers have had to cope,
952 * heuristically trying to determine which of the
953 * oddball link-layer headers particular packets have).
954 *
955 * As such, we just punt, and run all PPP interfaces
956 * in cooked mode.
957 */
958 handle->linktype = DLT_LINUX_SLL;
959 break;
960
961 case ARPHRD_HDLC:
962 handle->linktype = DLT_C_HDLC;
963 break;
964
965 /* Not sure if this is correct for all tunnels, but it
966 * works for CIPE */
967 case ARPHRD_TUNNEL:
968 #ifndef ARPHRD_SIT
969 #define ARPHRD_SIT 776 /* From Linux 2.2.14 */
970 #endif
971 case ARPHRD_SIT:
972 case ARPHRD_CSLIP:
973 case ARPHRD_SLIP6:
974 case ARPHRD_CSLIP6:
975 case ARPHRD_ADAPT:
976 case ARPHRD_SLIP:
977 /*
978 * XXX - should some of those be mapped to DLT_LINUX_SLL
979 * instead? Should we just map all of them to DLT_LINUX_SLL?
980 */
981 handle->linktype = DLT_RAW;
982 break;
983
984 case ARPHRD_LOCALTLK:
985 handle->linktype = DLT_LTALK;
986 break;
987
988 default:
989 handle->linktype = -1;
990 break;
991 }
992 }
993
994 /* ===== Functions to interface to the newer kernels ================== */
995
996 /*
997 * Try to open a packet socket using the new kernel interface.
998 * Returns 0 on failure.
999 * FIXME: 0 uses to mean success (Sebastian)
1000 */
1001 static int
1002 live_open_new(pcap_t *handle, char *device, int promisc,
1003 int to_ms, char *ebuf)
1004 {
1005 #ifdef HAVE_PF_PACKET_SOCKETS
1006 int sock_fd = -1, device_id, arptype;
1007 struct packet_mreq mr;
1008
1009 /* One shot loop used for error handling - bail out with break */
1010
1011 do {
1012 /*
1013 * Open a socket with protocol family packet. If a device is
1014 * given we try to open it in raw mode otherwise we use
1015 * the cooked interface.
1016 */
1017 sock_fd = device ?
1018 socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL))
1019 : socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL));
1020
1021 if (sock_fd == -1) {
1022 snprintf(ebuf, PCAP_ERRBUF_SIZE, "socket: %s",
1023 pcap_strerror(errno) );
1024 break;
1025 }
1026
1027 /* It seems the kernel supports the new interface. */
1028 handle->md.sock_packet = 0;
1029
1030 /*
1031 * Get the interface index of the loopback device.
1032 * If the attempt fails, don't fail, just set the
1033 * "md.lo_ifindex" to -1.
1034 *
1035 * XXX - can there be more than one device that loops
1036 * packets back, i.e. devices other than "lo"? If so,
1037 * we'd need to find them all, and have an array of
1038 * indices for them, and check all of them in
1039 * "pcap_read_packet()".
1040 */
1041 handle->md.lo_ifindex = iface_get_id(sock_fd, "lo", ebuf);
1042
1043 /*
1044 * Default value for offset to align link-layer payload
1045 * on a 4-byte boundary.
1046 */
1047 handle->offset = 0;
1048
1049 /*
1050 * What kind of frames do we have to deal with? Fall back
1051 * to cooked mode if we have an unknown interface type.
1052 */
1053
1054 if (device) {
1055 /* Assume for now we don't need cooked mode. */
1056 handle->md.cooked = 0;
1057
1058 arptype = iface_get_arptype(sock_fd, device, ebuf);
1059 if (arptype == -1)
1060 break;
1061 map_arphrd_to_dlt(handle, arptype);
1062 if (handle->linktype == -1 ||
1063 handle->linktype == DLT_LINUX_SLL ||
1064 (handle->linktype == DLT_EN10MB &&
1065 (strncmp("isdn", device, 4) == 0 ||
1066 strncmp("isdY", device, 4) == 0))) {
1067 /*
1068 * Unknown interface type (-1), or a
1069 * device we explicitly chose to run
1070 * in cooked mode (e.g., PPP devices),
1071 * or an ISDN device (whose link-layer
1072 * type we can only determine by using
1073 * APIs that may be different on different
1074 * kernels) - reopen in cooked mode.
1075 */
1076 if (close(sock_fd) == -1) {
1077 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1078 "close: %s", pcap_strerror(errno));
1079 break;
1080 }
1081 sock_fd = socket(PF_PACKET, SOCK_DGRAM,
1082 htons(ETH_P_ALL));
1083 if (sock_fd == -1) {
1084 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1085 "socket: %s", pcap_strerror(errno));
1086 break;
1087 }
1088 handle->md.cooked = 1;
1089
1090 if (handle->linktype == -1) {
1091 /*
1092 * Warn that we're falling back on
1093 * cooked mode; we may want to
1094 * update "map_arphrd_to_dlt()"
1095 * to handle the new type.
1096 */
1097 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1098 "arptype %d not "
1099 "supported by libpcap - "
1100 "falling back to cooked "
1101 "socket",
1102 arptype);
1103 }
1104 handle->linktype = DLT_LINUX_SLL;
1105 }
1106
1107 device_id = iface_get_id(sock_fd, device, ebuf);
1108 if (device_id == -1)
1109 break;
1110
1111 if (iface_bind(sock_fd, device_id, ebuf) == -1)
1112 break;
1113 } else {
1114 /*
1115 * This is cooked mode.
1116 */
1117 handle->md.cooked = 1;
1118 handle->linktype = DLT_LINUX_SLL;
1119
1120 /*
1121 * XXX - squelch GCC complaints about
1122 * uninitialized variables; if we can't
1123 * select promiscuous mode on all interfaces,
1124 * we should move the code below into the
1125 * "if (device)" branch of the "if" and
1126 * get rid of the next statement.
1127 */
1128 device_id = -1;
1129 }
1130
1131 /* Select promiscuous mode on/off */
1132
1133 #ifdef SOL_PACKET
1134 /*
1135 * Hmm, how can we set promiscuous mode on all interfaces?
1136 * I am not sure if that is possible at all.
1137 */
1138
1139 if (device) {
1140 memset(&mr, 0, sizeof(mr));
1141 mr.mr_ifindex = device_id;
1142 mr.mr_type = promisc ?
1143 PACKET_MR_PROMISC : PACKET_MR_ALLMULTI;
1144 if (setsockopt(sock_fd, SOL_PACKET,
1145 PACKET_ADD_MEMBERSHIP, &mr, sizeof(mr)) == -1)
1146 {
1147 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1148 "setsockopt: %s", pcap_strerror(errno));
1149 break;
1150 }
1151 }
1152 #endif
1153
1154 /* Save the socket FD in the pcap structure */
1155
1156 handle->fd = sock_fd;
1157
1158 return 1;
1159
1160 } while(0);
1161
1162 if (sock_fd != -1)
1163 close(sock_fd);
1164 return 0;
1165 #else
1166 strncpy(ebuf,
1167 "New packet capturing interface not supported by build "
1168 "environment", PCAP_ERRBUF_SIZE);
1169 return 0;
1170 #endif
1171 }
1172
1173 #ifdef HAVE_PF_PACKET_SOCKETS
1174 /*
1175 * Return the index of the given device name. Fill ebuf and return
1176 * -1 on failure.
1177 */
1178 static int
1179 iface_get_id(int fd, const char *device, char *ebuf)
1180 {
1181 struct ifreq ifr;
1182
1183 memset(&ifr, 0, sizeof(ifr));
1184 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1185
1186 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) {
1187 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1188 "ioctl: %s", pcap_strerror(errno));
1189 return -1;
1190 }
1191
1192 return ifr.ifr_ifindex;
1193 }
1194
1195 /*
1196 * Bind the socket associated with FD to the given device.
1197 */
1198 static int
1199 iface_bind(int fd, int ifindex, char *ebuf)
1200 {
1201 struct sockaddr_ll sll;
1202
1203 memset(&sll, 0, sizeof(sll));
1204 sll.sll_family = AF_PACKET;
1205 sll.sll_ifindex = ifindex;
1206 sll.sll_protocol = htons(ETH_P_ALL);
1207
1208 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) {
1209 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1210 "bind: %s", pcap_strerror(errno));
1211 return -1;
1212 }
1213
1214 return 0;
1215 }
1216
1217 #endif
1218
1219
1220 /* ===== Functions to interface to the older kernels ================== */
1221
1222 /*
1223 * With older kernels promiscuous mode is kind of interesting because we
1224 * have to reset the interface before exiting. The problem can't really
1225 * be solved without some daemon taking care of managing usage counts.
1226 * If we put the interface into promiscuous mode, we set a flag indicating
1227 * that we must take it out of that mode when the interface is closed,
1228 * and, when closing the interface, if that flag is set we take it out
1229 * of promiscuous mode.
1230 */
1231
1232 /*
1233 * List of pcaps for which we turned promiscuous mode on by hand.
1234 * If there are any such pcaps, we arrange to call "pcap_close_all()"
1235 * when we exit, and have it close all of them to turn promiscuous mode
1236 * off.
1237 */
1238 static struct pcap *pcaps_to_close;
1239
1240 /*
1241 * TRUE if we've already called "atexit()" to cause "pcap_close_all()" to
1242 * be called on exit.
1243 */
1244 static int did_atexit;
1245
1246 static void pcap_close_all(void)
1247 {
1248 struct pcap *handle;
1249
1250 while ((handle = pcaps_to_close) != NULL)
1251 pcap_close(handle);
1252 }
1253
1254 void pcap_close_linux( pcap_t *handle )
1255 {
1256 struct pcap *p, *prevp;
1257 struct ifreq ifr;
1258
1259 if (handle->md.clear_promisc) {
1260 /*
1261 * We put the interface into promiscuous mode; take
1262 * it out of promiscuous mode.
1263 *
1264 * XXX - if somebody else wants it in promiscuous mode,
1265 * this code cannot know that, so it'll take it out
1266 * of promiscuous mode. That's not fixable in 2.0[.x]
1267 * kernels.
1268 */
1269 memset(&ifr, 0, sizeof(ifr));
1270 strncpy(ifr.ifr_name, handle->md.device, sizeof(ifr.ifr_name));
1271 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) {
1272 fprintf(stderr,
1273 "Can't restore interface flags (SIOCGIFFLAGS failed: %s).\n"
1274 "Please adjust manually.\n"
1275 "Hint: This can't happen with Linux >= 2.2.0.\n",
1276 strerror(errno));
1277 } else {
1278 if (ifr.ifr_flags & IFF_PROMISC) {
1279 /*
1280 * Promiscuous mode is currently on; turn it
1281 * off.
1282 */
1283 ifr.ifr_flags &= ~IFF_PROMISC;
1284 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) {
1285 fprintf(stderr,
1286 "Can't restore interface flags (SIOCSIFFLAGS failed: %s).\n"
1287 "Please adjust manually.\n"
1288 "Hint: This can't happen with Linux >= 2.2.0.\n",
1289 strerror(errno));
1290 }
1291 }
1292 }
1293
1294 /*
1295 * Take this pcap out of the list of pcaps for which we
1296 * have to take the interface out of promiscuous mode.
1297 */
1298 for (p = pcaps_to_close, prevp = NULL; p != NULL;
1299 prevp = p, p = p->md.next) {
1300 if (p == handle) {
1301 /*
1302 * Found it. Remove it from the list.
1303 */
1304 if (prevp == NULL) {
1305 /*
1306 * It was at the head of the list.
1307 */
1308 pcaps_to_close = p->md.next;
1309 } else {
1310 /*
1311 * It was in the middle of the list.
1312 */
1313 prevp->md.next = p->md.next;
1314 }
1315 break;
1316 }
1317 }
1318 }
1319 if (handle->md.device != NULL)
1320 free(handle->md.device);
1321 }
1322
1323 /*
1324 * Try to open a packet socket using the old kernel interface.
1325 * Returns 0 on failure.
1326 * FIXME: 0 uses to mean success (Sebastian)
1327 */
1328 static int
1329 live_open_old(pcap_t *handle, char *device, int promisc,
1330 int to_ms, char *ebuf)
1331 {
1332 int sock_fd = -1, arptype;
1333 struct ifreq ifr;
1334
1335 do {
1336 /* Open the socket */
1337
1338 sock_fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL));
1339 if (sock_fd == -1) {
1340 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1341 "socket: %s", pcap_strerror(errno));
1342 break;
1343 }
1344
1345 /* It worked - we are using the old interface */
1346 handle->md.sock_packet = 1;
1347
1348 /* ...which means we get the link-layer header. */
1349 handle->md.cooked = 0;
1350
1351 /* Bind to the given device */
1352
1353 if (!device) {
1354 strncpy(ebuf, "pcap_open_live: The \"any\" device isn't supported on 2.0[.x]-kernel systems",
1355 PCAP_ERRBUF_SIZE);
1356 break;
1357 }
1358 if (iface_bind_old(sock_fd, device, ebuf) == -1)
1359 break;
1360
1361 /* Go to promisc mode */
1362 if (promisc) {
1363 memset(&ifr, 0, sizeof(ifr));
1364 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1365 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) {
1366 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1367 "ioctl: %s", pcap_strerror(errno));
1368 break;
1369 }
1370 if ((ifr.ifr_flags & IFF_PROMISC) == 0) {
1371 /*
1372 * Promiscuous mode isn't currently on,
1373 * so turn it on, and remember that
1374 * we should turn it off when the
1375 * pcap_t is closed.
1376 */
1377
1378 /*
1379 * If we haven't already done so, arrange
1380 * to have "pcap_close_all()" called when
1381 * we exit.
1382 */
1383 if (!did_atexit) {
1384 if (atexit(pcap_close_all) == -1) {
1385 /*
1386 * "atexit()" failed; don't
1387 * put the interface in
1388 * promiscuous mode, just
1389 * give up.
1390 */
1391 strncpy(ebuf, "atexit failed",
1392 PCAP_ERRBUF_SIZE);
1393 break;
1394 }
1395 }
1396
1397 ifr.ifr_flags |= IFF_PROMISC;
1398 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) {
1399 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1400 "ioctl: %s",
1401 pcap_strerror(errno));
1402 break;
1403 }
1404 handle->md.clear_promisc = 1;
1405
1406 /*
1407 * Add this to the list of pcaps
1408 * to close when we exit.
1409 */
1410 handle->md.next = pcaps_to_close;
1411 pcaps_to_close = handle;
1412 }
1413 }
1414
1415 /* All done - fill in the pcap handle */
1416
1417 arptype = iface_get_arptype(sock_fd, device, ebuf);
1418 if (arptype == -1)
1419 break;
1420
1421 /* Save the socket FD in the pcap structure */
1422
1423 handle->fd = sock_fd;
1424
1425 /*
1426 * Default value for offset to align link-layer payload
1427 * on a 4-byte boundary.
1428 */
1429 handle->offset = 0;
1430
1431 /*
1432 * XXX - handle ISDN types here? We can't fall back on
1433 * cooked sockets, so we'd have to figure out from the
1434 * device name what type of link-layer encapsulation
1435 * it's using, and map that to an appropriate DLT_
1436 * value, meaning we'd map "isdnN" devices to DLT_RAW
1437 * (they supply raw IP packets with no link-layer
1438 * header) and "isdY" devices to a new DLT_I4L_IP
1439 * type that has only an Ethernet packet type as
1440 * a link-layer header.
1441 */
1442 map_arphrd_to_dlt(handle, arptype);
1443 if (handle->linktype == -1 ||
1444 handle->linktype == DLT_LINUX_SLL) {
1445 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1446 "interface type of %s not supported", device);
1447 break;
1448 }
1449
1450 return 1;
1451
1452 } while (0);
1453
1454 if (sock_fd != -1)
1455 close(sock_fd);
1456 return 0;
1457 }
1458
1459 /*
1460 * Bind the socket associated with FD to the given device using the
1461 * interface of the old kernels.
1462 */
1463 static int
1464 iface_bind_old(int fd, const char *device, char *ebuf)
1465 {
1466 struct sockaddr saddr;
1467
1468 memset(&saddr, 0, sizeof(saddr));
1469 strncpy(saddr.sa_data, device, sizeof(saddr.sa_data));
1470 if (bind(fd, &saddr, sizeof(saddr)) == -1) {
1471 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1472 "bind: %s", pcap_strerror(errno));
1473 return -1;
1474 }
1475
1476 return 0;
1477 }
1478
1479
1480 /* ===== System calls available on all supported kernels ============== */
1481
1482 /*
1483 * Query the kernel for the MTU of the given interface.
1484 */
1485 static int
1486 iface_get_mtu(int fd, const char *device, char *ebuf)
1487 {
1488 struct ifreq ifr;
1489
1490 if (!device)
1491 return BIGGER_THAN_ALL_MTUS;
1492
1493 memset(&ifr, 0, sizeof(ifr));
1494 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1495
1496 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) {
1497 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1498 "ioctl: %s", pcap_strerror(errno));
1499 return -1;
1500 }
1501
1502 return ifr.ifr_mtu;
1503 }
1504
1505 /*
1506 * Get the hardware type of the given interface as ARPHRD_xxx constant.
1507 */
1508 static int
1509 iface_get_arptype(int fd, const char *device, char *ebuf)
1510 {
1511 struct ifreq ifr;
1512
1513 memset(&ifr, 0, sizeof(ifr));
1514 strncpy(ifr.ifr_name, device, sizeof(ifr.ifr_name));
1515
1516 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) {
1517 snprintf(ebuf, PCAP_ERRBUF_SIZE,
1518 "ioctl: %s", pcap_strerror(errno));
1519 return -1;
1520 }
1521
1522 return ifr.ifr_hwaddr.sa_family;
1523 }
1524
1525 #ifdef SO_ATTACH_FILTER
1526 static int
1527 fix_program(pcap_t *handle, struct sock_fprog *fcode)
1528 {
1529 size_t prog_size;
1530 register int i;
1531 register struct bpf_insn *p;
1532 struct bpf_insn *f;
1533 int len;
1534
1535 /*
1536 * Make a copy of the filter, and modify that copy if
1537 * necessary.
1538 */
1539 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len;
1540 len = handle->fcode.bf_len;
1541 f = (struct bpf_insn *)malloc(prog_size);
1542 if (f == NULL) {
1543 snprintf(handle->errbuf, sizeof(handle->errbuf),
1544 "malloc: %s", pcap_strerror(errno));
1545 return -1;
1546 }
1547 memcpy(f, handle->fcode.bf_insns, prog_size);
1548 fcode->len = len;
1549 fcode->filter = (struct sock_filter *) f;
1550
1551 for (i = 0; i < len; ++i) {
1552 p = &f[i];
1553 /*
1554 * What type of instruction is this?
1555 */
1556 switch (BPF_CLASS(p->code)) {
1557
1558 case BPF_RET:
1559 /*
1560 * It's a return instruction; is the snapshot
1561 * length a constant, rather than the contents
1562 * of the accumulator?
1563 */
1564 if (BPF_MODE(p->code) == BPF_K) {
1565 /*
1566 * Yes - if the value to be returned,
1567 * i.e. the snapshot length, is anything
1568 * other than 0, make it 65535, so that
1569 * the packet is truncated by "recvfrom()",
1570 * not by the filter.
1571 *
1572 * XXX - there's nothing we can easily do
1573 * if it's getting the value from the
1574 * accumulator; we'd have to insert
1575 * code to force non-zero values to be
1576 * 65535.
1577 */
1578 if (p->k != 0)
1579 p->k = 65535;
1580 }
1581 break;
1582
1583 case BPF_LD:
1584 case BPF_LDX:
1585 /*
1586 * It's a load instruction; is it loading
1587 * from the packet?
1588 */
1589 switch (BPF_MODE(p->code)) {
1590
1591 case BPF_ABS:
1592 case BPF_IND:
1593 case BPF_MSH:
1594 /*
1595 * Yes; are we in cooked mode?
1596 */
1597 if (handle->md.cooked) {
1598 /*
1599 * Yes, so we need to fix this
1600 * instruction.
1601 */
1602 if (fix_offset(p) < 0) {
1603 /*
1604 * We failed to do so.
1605 * Return 0, so our caller
1606 * knows to punt to userland.
1607 */
1608 return 0;
1609 }
1610 }
1611 break;
1612 }
1613 break;
1614 }
1615 }
1616 return 1; /* we succeeded */
1617 }
1618
1619 static int
1620 fix_offset(struct bpf_insn *p)
1621 {
1622 /*
1623 * What's the offset?
1624 */
1625 if (p->k >= SLL_HDR_LEN) {
1626 /*
1627 * It's within the link-layer payload; that starts at an
1628 * offset of 0, as far as the kernel packet filter is
1629 * concerned, so subtract the length of the link-layer
1630 * header.
1631 */
1632 p->k -= SLL_HDR_LEN;
1633 } else if (p->k == 14) {
1634 /*
1635 * It's the protocol field; map it to the special magic
1636 * kernel offset for that field.
1637 */
1638 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL;
1639 } else {
1640 /*
1641 * It's within the header, but it's not one of those
1642 * fields; we can't do that in the kernel, so punt
1643 * to userland.
1644 */
1645 return -1;
1646 }
1647 return 0;
1648 }
1649
1650 static int
1651 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode)
1652 {
1653 int total_filter_on = 0;
1654 int save_mode;
1655 int ret;
1656 int save_errno;
1657
1658 /*
1659 * The socket filter code doesn't discard all packets queued
1660 * up on the socket when the filter is changed; this means
1661 * that packets that don't match the new filter may show up
1662 * after the new filter is put onto the socket, if those
1663 * packets haven't yet been read.
1664 *
1665 * This means, for example, that if you do a tcpdump capture
1666 * with a filter, the first few packets in the capture might
1667 * be packets that wouldn't have passed the filter.
1668 *
1669 * We therefore discard all packets queued up on the socket
1670 * when setting a kernel filter. (This isn't an issue for
1671 * userland filters, as the userland filtering is done after
1672 * packets are queued up.)
1673 *
1674 * To flush those packets, we put the socket in read-only mode,
1675 * and read packets from the socket until there are no more to
1676 * read.
1677 *
1678 * In order to keep that from being an infinite loop - i.e.,
1679 * to keep more packets from arriving while we're draining
1680 * the queue - we put the "total filter", which is a filter
1681 * that rejects all packets, onto the socket before draining
1682 * the queue.
1683 *
1684 * This code deliberately ignores any errors, so that you may
1685 * get bogus packets if an error occurs, rather than having
1686 * the filtering done in userland even if it could have been
1687 * done in the kernel.
1688 */
1689 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
1690 &total_fcode, sizeof(total_fcode)) == 0) {
1691 char drain[1];
1692
1693 /*
1694 * Note that we've put the total filter onto the socket.
1695 */
1696 total_filter_on = 1;
1697
1698 /*
1699 * Save the socket's current mode, and put it in
1700 * non-blocking mode; we drain it by reading packets
1701 * until we get an error (which we assume is a
1702 * "nothing more to be read" error).
1703 */
1704 save_mode = fcntl(handle->fd, F_GETFL, 0);
1705 if (save_mode != -1 &&
1706 fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) >= 0) {
1707 while (recv(handle->fd, &drain, sizeof drain,
1708 MSG_TRUNC) >= 0)
1709 ;
1710 fcntl(handle->fd, F_SETFL, save_mode);
1711 }
1712 }
1713
1714 /*
1715 * Now attach the new filter.
1716 */
1717 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER,
1718 fcode, sizeof(*fcode));
1719 if (ret == -1 && total_filter_on) {
1720 /*
1721 * Well, we couldn't set that filter on the socket,
1722 * but we could set the total filter on the socket.
1723 *
1724 * This could, for example, mean that the filter was
1725 * too big to put into the kernel, so we'll have to
1726 * filter in userland; in any case, we'll be doing
1727 * filtering in userland, so we need to remove the
1728 * total filter so we see packets.
1729 */
1730 save_errno = errno;
1731
1732 /*
1733 * XXX - if this fails, we're really screwed;
1734 * we have the total filter on the socket,
1735 * and it won't come off. What do we do then?
1736 */
1737 reset_kernel_filter(handle);
1738
1739 errno = save_errno;
1740 }
1741 return ret;
1742 }
1743
1744 static int
1745 reset_kernel_filter(pcap_t *handle)
1746 {
1747 /* setsockopt() barfs unless it get a dummy parameter */
1748 int dummy;
1749
1750 return setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER,
1751 &dummy, sizeof(dummy));
1752 }
1753 #endif