2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21 * Optimization module for BPF code intermediate representation.
28 #include <pcap-types.h>
43 #ifdef HAVE_OS_PROTO_H
49 * The internal "debug printout" flag for the filter expression optimizer.
50 * The code to print that stuff is present only if BDEBUG is defined, so
51 * the flag, and the routine to set it, are defined only if BDEBUG is
54 static int pcap_optimizer_debug
;
57 * Routine to set that flag.
59 * This is intended for libpcap developers, not for general use.
60 * If you want to set these in a program, you'll have to declare this
61 * routine yourself, with the appropriate DLL import attribute on Windows;
62 * it's not declared in any header file, and won't be declared in any
63 * header file provided by libpcap.
65 PCAP_API
void pcap_set_optimizer_debug(int value
);
68 pcap_set_optimizer_debug(int value
)
70 pcap_optimizer_debug
= value
;
74 * The internal "print dot graph" flag for the filter expression optimizer.
75 * The code to print that stuff is present only if BDEBUG is defined, so
76 * the flag, and the routine to set it, are defined only if BDEBUG is
79 static int pcap_print_dot_graph
;
82 * Routine to set that flag.
84 * This is intended for libpcap developers, not for general use.
85 * If you want to set these in a program, you'll have to declare this
86 * routine yourself, with the appropriate DLL import attribute on Windows;
87 * it's not declared in any header file, and won't be declared in any
88 * header file provided by libpcap.
90 PCAP_API
void pcap_set_print_dot_graph(int value
);
93 pcap_set_print_dot_graph(int value
)
95 pcap_print_dot_graph
= value
;
103 * Takes a 32-bit integer as an argument.
105 * If handed a non-zero value, returns the index of the lowest set bit,
106 * counting upwards from zero.
108 * If handed zero, the results are platform- and compiler-dependent.
109 * Keep it out of the light, don't give it any water, don't feed it
110 * after midnight, and don't pass zero to it.
112 * This is the same as the count of trailing zeroes in the word.
114 #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
116 * GCC 3.4 and later; we have __builtin_ctz().
118 #define lowest_set_bit(mask) ((u_int)__builtin_ctz(mask))
119 #elif defined(_MSC_VER)
121 * Visual Studio; we support only 2005 and later, so use
127 #pragma intrinsic(_BitScanForward)
130 static __forceinline u_int
131 lowest_set_bit(int mask
)
136 * Don't sign-extend mask if long is longer than int.
137 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
139 if (_BitScanForward(&bit
, (unsigned int)mask
) == 0)
140 abort(); /* mask is zero */
143 #elif defined(MSDOS) && defined(__DJGPP__)
145 * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146 * we've already included.
148 #define lowest_set_bit(mask) ((u_int)(ffs((mask)) - 1))
149 #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
151 * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152 * or some other platform (UN*X conforming to a sufficient recent version
153 * of the Single UNIX Specification).
156 #define lowest_set_bit(mask) (u_int)((ffs((mask)) - 1))
160 * Use a perfect-hash-function-based function.
163 lowest_set_bit(int mask
)
165 unsigned int v
= (unsigned int)mask
;
167 static const u_int MultiplyDeBruijnBitPosition
[32] = {
168 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
173 * We strip off all but the lowermost set bit (v & ~v),
174 * and perform a minimal perfect hash on it to look up the
175 * number of low-order zero bits in a table.
179 * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
181 * http://supertech.csail.mit.edu/papers/debruijn.pdf
183 return (MultiplyDeBruijnBitPosition
[((v
& -v
) * 0x077CB531U
) >> 27]);
188 * Represents a deleted instruction.
193 * Register numbers for use-def values.
194 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195 * location. A_ATOM is the accumulator and X_ATOM is the index
198 #define A_ATOM BPF_MEMWORDS
199 #define X_ATOM (BPF_MEMWORDS+1)
202 * This define is used to represent *both* the accumulator and
203 * x register in use-def computations.
204 * Currently, the use-def code assumes only one definition per instruction.
206 #define AX_ATOM N_ATOMS
209 * These data structures are used in a Cocke and Shwarz style
210 * value numbering scheme. Since the flowgraph is acyclic,
211 * exit values can be propagated from a node's predecessors
212 * provided it is uniquely defined.
217 int val
; /* the value number */
218 struct valnode
*next
;
221 /* Integer constants mapped with the load immediate opcode. */
222 #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0U)
226 bpf_u_int32 const_val
;
231 * Place to longjmp to on an error.
236 * The buffer into which to put error message.
241 * A flag to indicate that further optimization is needed.
242 * Iterative passes are continued until a given pass yields no
243 * code simplification or branch movement.
248 * XXX - detect loops that do nothing but repeated AND/OR pullups
250 * If 100 passes in a row do nothing but that, treat that as a
251 * sign that we're in a loop that just shuffles in a cycle in
252 * which each pass just shuffles the code and we eventually
253 * get back to the original configuration.
255 * XXX - we need a non-heuristic way of detecting, or preventing,
258 int non_branch_movement_performed
;
260 u_int n_blocks
; /* number of blocks in the CFG; guaranteed to be > 0, as it's a RET instruction at a minimum */
261 struct block
**blocks
;
262 u_int n_edges
; /* twice n_blocks, so guaranteed to be > 0 */
266 * A bit vector set representation of the dominators.
267 * We round up the set size to the next power of two.
269 u_int nodewords
; /* number of 32-bit words for a bit vector of "number of nodes" bits; guaranteed to be > 0 */
270 u_int edgewords
; /* number of 32-bit words for a bit vector of "number of edges" bits; guaranteed to be > 0 */
271 struct block
**levels
;
274 #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
276 * True if a is in uset {p}
278 #define SET_MEMBER(p, a) \
279 ((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
284 #define SET_INSERT(p, a) \
285 (p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
288 * Delete 'a' from uset p.
290 #define SET_DELETE(p, a) \
291 (p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
295 * n must be guaranteed to be > 0
297 #define SET_INTERSECT(a, b, n)\
299 register bpf_u_int32 *_x = a, *_y = b;\
300 register u_int _n = n;\
301 do *_x++ &= *_y++; while (--_n != 0);\
306 * n must be guaranteed to be > 0
308 #define SET_SUBTRACT(a, b, n)\
310 register bpf_u_int32 *_x = a, *_y = b;\
311 register u_int _n = n;\
312 do *_x++ &=~ *_y++; while (--_n != 0);\
317 * n must be guaranteed to be > 0
319 #define SET_UNION(a, b, n)\
321 register bpf_u_int32 *_x = a, *_y = b;\
322 register u_int _n = n;\
323 do *_x++ |= *_y++; while (--_n != 0);\
327 uset all_closure_sets
;
331 struct valnode
*hashtbl
[MODULUS
];
335 struct vmapinfo
*vmap
;
336 struct valnode
*vnode_base
;
337 struct valnode
*next_vnode
;
342 * Place to longjmp to on an error.
347 * The buffer into which to put error message.
352 * Some pointers used to convert the basic block form of the code,
353 * into the array form that BPF requires. 'fstart' will point to
354 * the malloc'd array while 'ftail' is used during the recursive
357 struct bpf_insn
*fstart
;
358 struct bpf_insn
*ftail
;
361 static void opt_init(opt_state_t
*, struct icode
*);
362 static void opt_cleanup(opt_state_t
*);
363 static void PCAP_NORETURN
opt_error(opt_state_t
*, const char *, ...)
364 PCAP_PRINTFLIKE(2, 3);
366 static void intern_blocks(opt_state_t
*, struct icode
*);
368 static void find_inedges(opt_state_t
*, struct block
*);
370 static void opt_dump(opt_state_t
*, struct icode
*);
374 #define MAX(a,b) ((a)>(b)?(a):(b))
378 find_levels_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*b
)
389 find_levels_r(opt_state
, ic
, JT(b
));
390 find_levels_r(opt_state
, ic
, JF(b
));
391 level
= MAX(JT(b
)->level
, JF(b
)->level
) + 1;
395 b
->link
= opt_state
->levels
[level
];
396 opt_state
->levels
[level
] = b
;
400 * Level graph. The levels go from 0 at the leaves to
401 * N_LEVELS at the root. The opt_state->levels[] array points to the
402 * first node of the level list, whose elements are linked
403 * with the 'link' field of the struct block.
406 find_levels(opt_state_t
*opt_state
, struct icode
*ic
)
408 memset((char *)opt_state
->levels
, 0, opt_state
->n_blocks
* sizeof(*opt_state
->levels
));
410 find_levels_r(opt_state
, ic
, ic
->root
);
414 * Find dominator relationships.
415 * Assumes graph has been leveled.
418 find_dom(opt_state_t
*opt_state
, struct block
*root
)
426 * Initialize sets to contain all nodes.
428 x
= opt_state
->all_dom_sets
;
430 * In opt_init(), we've also made sure the product doesn't
433 i
= opt_state
->n_blocks
* opt_state
->nodewords
;
438 /* Root starts off empty. */
439 for (i
= opt_state
->nodewords
; i
!= 0;) {
444 /* root->level is the highest level no found. */
445 for (level
= root
->level
; level
>= 0; --level
) {
446 for (b
= opt_state
->levels
[level
]; b
; b
= b
->link
) {
447 SET_INSERT(b
->dom
, b
->id
);
450 SET_INTERSECT(JT(b
)->dom
, b
->dom
, opt_state
->nodewords
);
451 SET_INTERSECT(JF(b
)->dom
, b
->dom
, opt_state
->nodewords
);
457 propedom(opt_state_t
*opt_state
, struct edge
*ep
)
459 SET_INSERT(ep
->edom
, ep
->id
);
461 SET_INTERSECT(ep
->succ
->et
.edom
, ep
->edom
, opt_state
->edgewords
);
462 SET_INTERSECT(ep
->succ
->ef
.edom
, ep
->edom
, opt_state
->edgewords
);
467 * Compute edge dominators.
468 * Assumes graph has been leveled and predecessors established.
471 find_edom(opt_state_t
*opt_state
, struct block
*root
)
478 x
= opt_state
->all_edge_sets
;
480 * In opt_init(), we've also made sure the product doesn't
483 for (i
= opt_state
->n_edges
* opt_state
->edgewords
; i
!= 0; ) {
488 /* root->level is the highest level no found. */
489 memset(root
->et
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
490 memset(root
->ef
.edom
, 0, opt_state
->edgewords
* sizeof(*(uset
)0));
491 for (level
= root
->level
; level
>= 0; --level
) {
492 for (b
= opt_state
->levels
[level
]; b
!= 0; b
= b
->link
) {
493 propedom(opt_state
, &b
->et
);
494 propedom(opt_state
, &b
->ef
);
500 * Find the backwards transitive closure of the flow graph. These sets
501 * are backwards in the sense that we find the set of nodes that reach
502 * a given node, not the set of nodes that can be reached by a node.
504 * Assumes graph has been leveled.
507 find_closure(opt_state_t
*opt_state
, struct block
*root
)
513 * Initialize sets to contain no nodes.
515 memset((char *)opt_state
->all_closure_sets
, 0,
516 opt_state
->n_blocks
* opt_state
->nodewords
* sizeof(*opt_state
->all_closure_sets
));
518 /* root->level is the highest level no found. */
519 for (level
= root
->level
; level
>= 0; --level
) {
520 for (b
= opt_state
->levels
[level
]; b
; b
= b
->link
) {
521 SET_INSERT(b
->closure
, b
->id
);
524 SET_UNION(JT(b
)->closure
, b
->closure
, opt_state
->nodewords
);
525 SET_UNION(JF(b
)->closure
, b
->closure
, opt_state
->nodewords
);
531 * Return the register number that is used by s.
533 * Returns ATOM_A if A is used, ATOM_X if X is used, AX_ATOM if both A and X
534 * are used, the scratch memory location's number if a scratch memory
535 * location is used (e.g., 0 for M[0]), or -1 if none of those are used.
537 * The implementation should probably change to an array access.
540 atomuse(struct stmt
*s
)
542 register int c
= s
->code
;
547 switch (BPF_CLASS(c
)) {
550 return (BPF_RVAL(c
) == BPF_A
) ? A_ATOM
:
551 (BPF_RVAL(c
) == BPF_X
) ? X_ATOM
: -1;
556 * As there are fewer than 2^31 memory locations,
557 * s->k should be convertable to int without problems.
559 return (BPF_MODE(c
) == BPF_IND
) ? X_ATOM
:
560 (BPF_MODE(c
) == BPF_MEM
) ? (int)s
->k
: -1;
570 if (BPF_SRC(c
) == BPF_X
)
575 return BPF_MISCOP(c
) == BPF_TXA
? X_ATOM
: A_ATOM
;
582 * Return the register number that is defined by 's'. We assume that
583 * a single stmt cannot define more than one register. If no register
584 * is defined, return -1.
586 * The implementation should probably change to an array access.
589 atomdef(struct stmt
*s
)
594 switch (BPF_CLASS(s
->code
)) {
608 return BPF_MISCOP(s
->code
) == BPF_TAX
? X_ATOM
: A_ATOM
;
614 * Compute the sets of registers used, defined, and killed by 'b'.
616 * "Used" means that a statement in 'b' uses the register before any
617 * statement in 'b' defines it, i.e. it uses the value left in
618 * that register by a predecessor block of this block.
619 * "Defined" means that a statement in 'b' defines it.
620 * "Killed" means that a statement in 'b' defines it before any
621 * statement in 'b' uses it, i.e. it kills the value left in that
622 * register by a predecessor block of this block.
625 compute_local_ud(struct block
*b
)
628 atomset def
= 0, use
= 0, killed
= 0;
631 for (s
= b
->stmts
; s
; s
= s
->next
) {
632 if (s
->s
.code
== NOP
)
634 atom
= atomuse(&s
->s
);
636 if (atom
== AX_ATOM
) {
637 if (!ATOMELEM(def
, X_ATOM
))
638 use
|= ATOMMASK(X_ATOM
);
639 if (!ATOMELEM(def
, A_ATOM
))
640 use
|= ATOMMASK(A_ATOM
);
642 else if (atom
< N_ATOMS
) {
643 if (!ATOMELEM(def
, atom
))
644 use
|= ATOMMASK(atom
);
649 atom
= atomdef(&s
->s
);
651 if (!ATOMELEM(use
, atom
))
652 killed
|= ATOMMASK(atom
);
653 def
|= ATOMMASK(atom
);
656 if (BPF_CLASS(b
->s
.code
) == BPF_JMP
) {
658 * XXX - what about RET?
660 atom
= atomuse(&b
->s
);
662 if (atom
== AX_ATOM
) {
663 if (!ATOMELEM(def
, X_ATOM
))
664 use
|= ATOMMASK(X_ATOM
);
665 if (!ATOMELEM(def
, A_ATOM
))
666 use
|= ATOMMASK(A_ATOM
);
668 else if (atom
< N_ATOMS
) {
669 if (!ATOMELEM(def
, atom
))
670 use
|= ATOMMASK(atom
);
683 * Assume graph is already leveled.
686 find_ud(opt_state_t
*opt_state
, struct block
*root
)
692 * root->level is the highest level no found;
693 * count down from there.
695 maxlevel
= root
->level
;
696 for (i
= maxlevel
; i
>= 0; --i
)
697 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
702 for (i
= 1; i
<= maxlevel
; ++i
) {
703 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
704 p
->out_use
|= JT(p
)->in_use
| JF(p
)->in_use
;
705 p
->in_use
|= p
->out_use
&~ p
->kill
;
710 init_val(opt_state_t
*opt_state
)
712 opt_state
->curval
= 0;
713 opt_state
->next_vnode
= opt_state
->vnode_base
;
714 memset((char *)opt_state
->vmap
, 0, opt_state
->maxval
* sizeof(*opt_state
->vmap
));
715 memset((char *)opt_state
->hashtbl
, 0, sizeof opt_state
->hashtbl
);
719 * Because we really don't have an IR, this stuff is a little messy.
721 * This routine looks in the table of existing value number for a value
722 * with generated from an operation with the specified opcode and
723 * the specified values. If it finds it, it returns its value number,
724 * otherwise it makes a new entry in the table and returns the
725 * value number of that entry.
728 F(opt_state_t
*opt_state
, int code
, bpf_u_int32 v0
, bpf_u_int32 v1
)
734 hash
= (u_int
)code
^ (v0
<< 4) ^ (v1
<< 8);
737 for (p
= opt_state
->hashtbl
[hash
]; p
; p
= p
->next
)
738 if (p
->code
== code
&& p
->v0
== v0
&& p
->v1
== v1
)
742 * Not found. Allocate a new value, and assign it a new
745 * opt_state->curval starts out as 0, which means VAL_UNKNOWN; we
746 * increment it before using it as the new value number, which
747 * means we never assign VAL_UNKNOWN.
749 * XXX - unless we overflow, but we probably won't have 2^32-1
750 * values; we treat 32 bits as effectively infinite.
752 val
= ++opt_state
->curval
;
753 if (BPF_MODE(code
) == BPF_IMM
&&
754 (BPF_CLASS(code
) == BPF_LD
|| BPF_CLASS(code
) == BPF_LDX
)) {
755 opt_state
->vmap
[val
].const_val
= v0
;
756 opt_state
->vmap
[val
].is_const
= 1;
758 p
= opt_state
->next_vnode
++;
763 p
->next
= opt_state
->hashtbl
[hash
];
764 opt_state
->hashtbl
[hash
] = p
;
770 vstore(struct stmt
*s
, bpf_u_int32
*valp
, bpf_u_int32 newval
, int alter
)
772 if (alter
&& newval
!= VAL_UNKNOWN
&& *valp
== newval
)
779 * Do constant-folding on binary operators.
780 * (Unary operators are handled elsewhere.)
783 fold_op(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 v0
, bpf_u_int32 v1
)
787 a
= opt_state
->vmap
[v0
].const_val
;
788 b
= opt_state
->vmap
[v1
].const_val
;
790 switch (BPF_OP(s
->code
)) {
805 opt_error(opt_state
, "division by zero");
811 opt_error(opt_state
, "modulus by zero");
829 * A left shift of more than the width of the type
830 * is undefined in C; we'll just treat it as shifting
833 * XXX - the BPF interpreter doesn't check for this,
834 * so its behavior is dependent on the behavior of
835 * the processor on which it's running. There are
836 * processors on which it shifts all the bits out
837 * and processors on which it does no shift.
847 * A right shift of more than the width of the type
848 * is undefined in C; we'll just treat it as shifting
851 * XXX - the BPF interpreter doesn't check for this,
852 * so its behavior is dependent on the behavior of
853 * the processor on which it's running. There are
854 * processors on which it shifts all the bits out
855 * and processors on which it does no shift.
867 s
->code
= BPF_LD
|BPF_IMM
;
869 * XXX - optimizer loop detection.
871 opt_state
->non_branch_movement_performed
= 1;
875 static inline struct slist
*
876 this_op(struct slist
*s
)
878 while (s
!= 0 && s
->s
.code
== NOP
)
884 opt_not(struct block
*b
)
886 struct block
*tmp
= JT(b
);
893 opt_peep(opt_state_t
*opt_state
, struct block
*b
)
896 struct slist
*next
, *last
;
904 for (/*empty*/; /*empty*/; s
= next
) {
910 break; /* nothing left in the block */
913 * Find the next real instruction after that one
916 next
= this_op(s
->next
);
918 break; /* no next instruction */
922 * st M[k] --> st M[k]
925 if (s
->s
.code
== BPF_ST
&&
926 next
->s
.code
== (BPF_LDX
|BPF_MEM
) &&
927 s
->s
.k
== next
->s
.k
) {
929 * XXX - optimizer loop detection.
931 opt_state
->non_branch_movement_performed
= 1;
933 next
->s
.code
= BPF_MISC
|BPF_TAX
;
939 if (s
->s
.code
== (BPF_LD
|BPF_IMM
) &&
940 next
->s
.code
== (BPF_MISC
|BPF_TAX
)) {
941 s
->s
.code
= BPF_LDX
|BPF_IMM
;
942 next
->s
.code
= BPF_MISC
|BPF_TXA
;
944 * XXX - optimizer loop detection.
946 opt_state
->non_branch_movement_performed
= 1;
950 * This is an ugly special case, but it happens
951 * when you say tcp[k] or udp[k] where k is a constant.
953 if (s
->s
.code
== (BPF_LD
|BPF_IMM
)) {
954 struct slist
*add
, *tax
, *ild
;
957 * Check that X isn't used on exit from this
958 * block (which the optimizer might cause).
959 * We know the code generator won't generate
960 * any local dependencies.
962 if (ATOMELEM(b
->out_use
, X_ATOM
))
966 * Check that the instruction following the ldi
967 * is an addx, or it's an ldxms with an addx
968 * following it (with 0 or more nops between the
971 if (next
->s
.code
!= (BPF_LDX
|BPF_MSH
|BPF_B
))
974 add
= this_op(next
->next
);
975 if (add
== 0 || add
->s
.code
!= (BPF_ALU
|BPF_ADD
|BPF_X
))
979 * Check that a tax follows that (with 0 or more
980 * nops between them).
982 tax
= this_op(add
->next
);
983 if (tax
== 0 || tax
->s
.code
!= (BPF_MISC
|BPF_TAX
))
987 * Check that an ild follows that (with 0 or more
988 * nops between them).
990 ild
= this_op(tax
->next
);
991 if (ild
== 0 || BPF_CLASS(ild
->s
.code
) != BPF_LD
||
992 BPF_MODE(ild
->s
.code
) != BPF_IND
)
995 * We want to turn this sequence:
998 * (005) ldxms [14] {next} -- optional
1001 * (008) ild [x+0] {ild}
1003 * into this sequence:
1011 * XXX We need to check that X is not
1012 * subsequently used, because we want to change
1013 * what'll be in it after this sequence.
1015 * We know we can eliminate the accumulator
1016 * modifications earlier in the sequence since
1017 * it is defined by the last stmt of this sequence
1018 * (i.e., the last statement of the sequence loads
1019 * a value into the accumulator, so we can eliminate
1020 * earlier operations on the accumulator).
1027 * XXX - optimizer loop detection.
1029 opt_state
->non_branch_movement_performed
= 1;
1030 opt_state
->done
= 0;
1034 * If the comparison at the end of a block is an equality
1035 * comparison against a constant, and nobody uses the value
1036 * we leave in the A register at the end of a block, and
1037 * the operation preceding the comparison is an arithmetic
1038 * operation, we can sometime optimize it away.
1040 if (b
->s
.code
== (BPF_JMP
|BPF_JEQ
|BPF_K
) &&
1041 !ATOMELEM(b
->out_use
, A_ATOM
)) {
1043 * We can optimize away certain subtractions of the
1046 if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_X
)) {
1047 val
= b
->val
[X_ATOM
];
1048 if (opt_state
->vmap
[val
].is_const
) {
1050 * If we have a subtract to do a comparison,
1051 * and the X register is a known constant,
1052 * we can merge this value into the
1058 b
->s
.k
+= opt_state
->vmap
[val
].const_val
;
1061 * XXX - optimizer loop detection.
1063 opt_state
->non_branch_movement_performed
= 1;
1064 opt_state
->done
= 0;
1065 } else if (b
->s
.k
== 0) {
1067 * If the X register isn't a constant,
1068 * and the comparison in the test is
1069 * against 0, we can compare with the
1070 * X register, instead:
1076 b
->s
.code
= BPF_JMP
|BPF_JEQ
|BPF_X
;
1078 * XXX - optimizer loop detection.
1080 opt_state
->non_branch_movement_performed
= 1;
1081 opt_state
->done
= 0;
1085 * Likewise, a constant subtract can be simplified:
1088 * jeq #y -> jeq #(x+y)
1090 else if (last
->s
.code
== (BPF_ALU
|BPF_SUB
|BPF_K
)) {
1092 b
->s
.k
+= last
->s
.k
;
1094 * XXX - optimizer loop detection.
1096 opt_state
->non_branch_movement_performed
= 1;
1097 opt_state
->done
= 0;
1100 * And, similarly, a constant AND can be simplified
1101 * if we're testing against 0, i.e.:
1106 else if (last
->s
.code
== (BPF_ALU
|BPF_AND
|BPF_K
) &&
1109 b
->s
.code
= BPF_JMP
|BPF_K
|BPF_JSET
;
1112 * XXX - optimizer loop detection.
1114 opt_state
->non_branch_movement_performed
= 1;
1115 opt_state
->done
= 0;
1121 * jset #ffffffff -> always
1123 if (b
->s
.code
== (BPF_JMP
|BPF_K
|BPF_JSET
)) {
1126 if (b
->s
.k
== 0xffffffffU
)
1130 * If we're comparing against the index register, and the index
1131 * register is a known constant, we can just compare against that
1134 val
= b
->val
[X_ATOM
];
1135 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_X
) {
1136 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1137 b
->s
.code
&= ~BPF_X
;
1141 * If the accumulator is a known constant, we can compute the
1142 * comparison result.
1144 val
= b
->val
[A_ATOM
];
1145 if (opt_state
->vmap
[val
].is_const
&& BPF_SRC(b
->s
.code
) == BPF_K
) {
1146 bpf_u_int32 v
= opt_state
->vmap
[val
].const_val
;
1147 switch (BPF_OP(b
->s
.code
)) {
1168 if (JF(b
) != JT(b
)) {
1170 * XXX - optimizer loop detection.
1172 opt_state
->non_branch_movement_performed
= 1;
1173 opt_state
->done
= 0;
1183 * Compute the symbolic value of expression of 's', and update
1184 * anything it defines in the value table 'val'. If 'alter' is true,
1185 * do various optimizations. This code would be cleaner if symbolic
1186 * evaluation and code transformations weren't folded together.
1189 opt_stmt(opt_state_t
*opt_state
, struct stmt
*s
, bpf_u_int32 val
[], int alter
)
1196 case BPF_LD
|BPF_ABS
|BPF_W
:
1197 case BPF_LD
|BPF_ABS
|BPF_H
:
1198 case BPF_LD
|BPF_ABS
|BPF_B
:
1199 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1200 vstore(s
, &val
[A_ATOM
], v
, alter
);
1203 case BPF_LD
|BPF_IND
|BPF_W
:
1204 case BPF_LD
|BPF_IND
|BPF_H
:
1205 case BPF_LD
|BPF_IND
|BPF_B
:
1207 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1208 s
->code
= BPF_LD
|BPF_ABS
|BPF_SIZE(s
->code
);
1209 s
->k
+= opt_state
->vmap
[v
].const_val
;
1210 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1212 * XXX - optimizer loop detection.
1214 opt_state
->non_branch_movement_performed
= 1;
1215 opt_state
->done
= 0;
1218 v
= F(opt_state
, s
->code
, s
->k
, v
);
1219 vstore(s
, &val
[A_ATOM
], v
, alter
);
1222 case BPF_LD
|BPF_LEN
:
1223 v
= F(opt_state
, s
->code
, 0L, 0L);
1224 vstore(s
, &val
[A_ATOM
], v
, alter
);
1227 case BPF_LD
|BPF_IMM
:
1229 vstore(s
, &val
[A_ATOM
], v
, alter
);
1232 case BPF_LDX
|BPF_IMM
:
1234 vstore(s
, &val
[X_ATOM
], v
, alter
);
1237 case BPF_LDX
|BPF_MSH
|BPF_B
:
1238 v
= F(opt_state
, s
->code
, s
->k
, 0L);
1239 vstore(s
, &val
[X_ATOM
], v
, alter
);
1242 case BPF_ALU
|BPF_NEG
:
1243 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1244 s
->code
= BPF_LD
|BPF_IMM
;
1246 * Do this negation as unsigned arithmetic; that's
1247 * what modern BPF engines do, and it guarantees
1248 * that all possible values can be negated. (Yeah,
1249 * negating 0x80000000, the minimum signed 32-bit
1250 * two's-complement value, results in 0x80000000,
1251 * so it's still negative, but we *should* be doing
1252 * all unsigned arithmetic here, to match what
1253 * modern BPF engines do.)
1255 * Express it as 0U - (unsigned value) so that we
1256 * don't get compiler warnings about negating an
1257 * unsigned value and don't get UBSan warnings
1258 * about the result of negating 0x80000000 being
1261 s
->k
= 0U - opt_state
->vmap
[val
[A_ATOM
]].const_val
;
1262 val
[A_ATOM
] = K(s
->k
);
1265 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], 0L);
1268 case BPF_ALU
|BPF_ADD
|BPF_K
:
1269 case BPF_ALU
|BPF_SUB
|BPF_K
:
1270 case BPF_ALU
|BPF_MUL
|BPF_K
:
1271 case BPF_ALU
|BPF_DIV
|BPF_K
:
1272 case BPF_ALU
|BPF_MOD
|BPF_K
:
1273 case BPF_ALU
|BPF_AND
|BPF_K
:
1274 case BPF_ALU
|BPF_OR
|BPF_K
:
1275 case BPF_ALU
|BPF_XOR
|BPF_K
:
1276 case BPF_ALU
|BPF_LSH
|BPF_K
:
1277 case BPF_ALU
|BPF_RSH
|BPF_K
:
1278 op
= BPF_OP(s
->code
);
1282 * Optimize operations where the constant
1285 * Don't optimize away "sub #0"
1286 * as it may be needed later to
1287 * fixup the generated math code.
1289 * Fail if we're dividing by zero or taking
1290 * a modulus by zero.
1292 if (op
== BPF_ADD
||
1293 op
== BPF_LSH
|| op
== BPF_RSH
||
1294 op
== BPF_OR
|| op
== BPF_XOR
) {
1298 if (op
== BPF_MUL
|| op
== BPF_AND
) {
1299 s
->code
= BPF_LD
|BPF_IMM
;
1300 val
[A_ATOM
] = K(s
->k
);
1304 opt_error(opt_state
,
1305 "division by zero");
1307 opt_error(opt_state
,
1310 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1311 fold_op(opt_state
, s
, val
[A_ATOM
], K(s
->k
));
1312 val
[A_ATOM
] = K(s
->k
);
1316 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1319 case BPF_ALU
|BPF_ADD
|BPF_X
:
1320 case BPF_ALU
|BPF_SUB
|BPF_X
:
1321 case BPF_ALU
|BPF_MUL
|BPF_X
:
1322 case BPF_ALU
|BPF_DIV
|BPF_X
:
1323 case BPF_ALU
|BPF_MOD
|BPF_X
:
1324 case BPF_ALU
|BPF_AND
|BPF_X
:
1325 case BPF_ALU
|BPF_OR
|BPF_X
:
1326 case BPF_ALU
|BPF_XOR
|BPF_X
:
1327 case BPF_ALU
|BPF_LSH
|BPF_X
:
1328 case BPF_ALU
|BPF_RSH
|BPF_X
:
1329 op
= BPF_OP(s
->code
);
1330 if (alter
&& opt_state
->vmap
[val
[X_ATOM
]].is_const
) {
1331 if (opt_state
->vmap
[val
[A_ATOM
]].is_const
) {
1332 fold_op(opt_state
, s
, val
[A_ATOM
], val
[X_ATOM
]);
1333 val
[A_ATOM
] = K(s
->k
);
1336 s
->code
= BPF_ALU
|BPF_K
|op
;
1337 s
->k
= opt_state
->vmap
[val
[X_ATOM
]].const_val
;
1338 if ((op
== BPF_LSH
|| op
== BPF_RSH
) &&
1340 opt_error(opt_state
,
1341 "shift by more than 31 bits");
1343 * XXX - optimizer loop detection.
1345 opt_state
->non_branch_movement_performed
= 1;
1346 opt_state
->done
= 0;
1348 F(opt_state
, s
->code
, val
[A_ATOM
], K(s
->k
));
1353 * Check if we're doing something to an accumulator
1354 * that is 0, and simplify. This may not seem like
1355 * much of a simplification but it could open up further
1357 * XXX We could also check for mul by 1, etc.
1359 if (alter
&& opt_state
->vmap
[val
[A_ATOM
]].is_const
1360 && opt_state
->vmap
[val
[A_ATOM
]].const_val
== 0) {
1361 if (op
== BPF_ADD
|| op
== BPF_OR
|| op
== BPF_XOR
) {
1362 s
->code
= BPF_MISC
|BPF_TXA
;
1363 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1366 else if (op
== BPF_MUL
|| op
== BPF_DIV
|| op
== BPF_MOD
||
1367 op
== BPF_AND
|| op
== BPF_LSH
|| op
== BPF_RSH
) {
1368 s
->code
= BPF_LD
|BPF_IMM
;
1370 vstore(s
, &val
[A_ATOM
], K(s
->k
), alter
);
1373 else if (op
== BPF_NEG
) {
1378 val
[A_ATOM
] = F(opt_state
, s
->code
, val
[A_ATOM
], val
[X_ATOM
]);
1381 case BPF_MISC
|BPF_TXA
:
1382 vstore(s
, &val
[A_ATOM
], val
[X_ATOM
], alter
);
1385 case BPF_LD
|BPF_MEM
:
1387 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1388 s
->code
= BPF_LD
|BPF_IMM
;
1389 s
->k
= opt_state
->vmap
[v
].const_val
;
1391 * XXX - optimizer loop detection.
1393 opt_state
->non_branch_movement_performed
= 1;
1394 opt_state
->done
= 0;
1396 vstore(s
, &val
[A_ATOM
], v
, alter
);
1399 case BPF_MISC
|BPF_TAX
:
1400 vstore(s
, &val
[X_ATOM
], val
[A_ATOM
], alter
);
1403 case BPF_LDX
|BPF_MEM
:
1405 if (alter
&& opt_state
->vmap
[v
].is_const
) {
1406 s
->code
= BPF_LDX
|BPF_IMM
;
1407 s
->k
= opt_state
->vmap
[v
].const_val
;
1409 * XXX - optimizer loop detection.
1411 opt_state
->non_branch_movement_performed
= 1;
1412 opt_state
->done
= 0;
1414 vstore(s
, &val
[X_ATOM
], v
, alter
);
1418 vstore(s
, &val
[s
->k
], val
[A_ATOM
], alter
);
1422 vstore(s
, &val
[s
->k
], val
[X_ATOM
], alter
);
1428 deadstmt(opt_state_t
*opt_state
, register struct stmt
*s
, register struct stmt
*last
[])
1434 if (atom
== AX_ATOM
) {
1445 * XXX - optimizer loop detection.
1447 opt_state
->non_branch_movement_performed
= 1;
1448 opt_state
->done
= 0;
1449 last
[atom
]->code
= NOP
;
1456 opt_deadstores(opt_state_t
*opt_state
, register struct block
*b
)
1458 register struct slist
*s
;
1460 struct stmt
*last
[N_ATOMS
];
1462 memset((char *)last
, 0, sizeof last
);
1464 for (s
= b
->stmts
; s
!= 0; s
= s
->next
)
1465 deadstmt(opt_state
, &s
->s
, last
);
1466 deadstmt(opt_state
, &b
->s
, last
);
1468 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1469 if (last
[atom
] && !ATOMELEM(b
->out_use
, atom
)) {
1470 last
[atom
]->code
= NOP
;
1472 * XXX - optimizer loop detection.
1474 opt_state
->non_branch_movement_performed
= 1;
1475 opt_state
->done
= 0;
1480 opt_blk(opt_state_t
*opt_state
, struct block
*b
, int do_stmts
)
1485 bpf_u_int32 aval
, xval
;
1488 for (s
= b
->stmts
; s
&& s
->next
; s
= s
->next
)
1489 if (BPF_CLASS(s
->s
.code
) == BPF_JMP
) {
1496 * Initialize the atom values.
1501 * We have no predecessors, so everything is undefined
1502 * upon entry to this block.
1504 memset((char *)b
->val
, 0, sizeof(b
->val
));
1507 * Inherit values from our predecessors.
1509 * First, get the values from the predecessor along the
1510 * first edge leading to this node.
1512 memcpy((char *)b
->val
, (char *)p
->pred
->val
, sizeof(b
->val
));
1514 * Now look at all the other nodes leading to this node.
1515 * If, for the predecessor along that edge, a register
1516 * has a different value from the one we have (i.e.,
1517 * control paths are merging, and the merging paths
1518 * assign different values to that register), give the
1519 * register the undefined value of 0.
1521 while ((p
= p
->next
) != NULL
) {
1522 for (i
= 0; i
< N_ATOMS
; ++i
)
1523 if (b
->val
[i
] != p
->pred
->val
[i
])
1527 aval
= b
->val
[A_ATOM
];
1528 xval
= b
->val
[X_ATOM
];
1529 for (s
= b
->stmts
; s
; s
= s
->next
)
1530 opt_stmt(opt_state
, &s
->s
, b
->val
, do_stmts
);
1533 * This is a special case: if we don't use anything from this
1534 * block, and we load the accumulator or index register with a
1535 * value that is already there, or if this block is a return,
1536 * eliminate all the statements.
1538 * XXX - what if it does a store? Presumably that falls under
1539 * the heading of "if we don't use anything from this block",
1540 * i.e., if we use any memory location set to a different
1541 * value by this block, then we use something from this block.
1543 * XXX - why does it matter whether we use anything from this
1544 * block? If the accumulator or index register doesn't change
1545 * its value, isn't that OK even if we use that value?
1547 * XXX - if we load the accumulator with a different value,
1548 * and the block ends with a conditional branch, we obviously
1549 * can't eliminate it, as the branch depends on that value.
1550 * For the index register, the conditional branch only depends
1551 * on the index register value if the test is against the index
1552 * register value rather than a constant; if nothing uses the
1553 * value we put into the index register, and we're not testing
1554 * against the index register's value, and there aren't any
1555 * other problems that would keep us from eliminating this
1556 * block, can we eliminate it?
1559 ((b
->out_use
== 0 &&
1560 aval
!= VAL_UNKNOWN
&& b
->val
[A_ATOM
] == aval
&&
1561 xval
!= VAL_UNKNOWN
&& b
->val
[X_ATOM
] == xval
) ||
1562 BPF_CLASS(b
->s
.code
) == BPF_RET
)) {
1563 if (b
->stmts
!= 0) {
1566 * XXX - optimizer loop detection.
1568 opt_state
->non_branch_movement_performed
= 1;
1569 opt_state
->done
= 0;
1572 opt_peep(opt_state
, b
);
1573 opt_deadstores(opt_state
, b
);
1576 * Set up values for branch optimizer.
1578 if (BPF_SRC(b
->s
.code
) == BPF_K
)
1579 b
->oval
= K(b
->s
.k
);
1581 b
->oval
= b
->val
[X_ATOM
];
1582 b
->et
.code
= b
->s
.code
;
1583 b
->ef
.code
= -b
->s
.code
;
1587 * Return true if any register that is used on exit from 'succ', has
1588 * an exit value that is different from the corresponding exit value
1592 use_conflict(struct block
*b
, struct block
*succ
)
1595 atomset use
= succ
->out_use
;
1600 for (atom
= 0; atom
< N_ATOMS
; ++atom
)
1601 if (ATOMELEM(use
, atom
))
1602 if (b
->val
[atom
] != succ
->val
[atom
])
1608 * Given a block that is the successor of an edge, and an edge that
1609 * dominates that edge, return either a pointer to a child of that
1610 * block (a block to which that block jumps) if that block is a
1611 * candidate to replace the successor of the latter edge or NULL
1612 * if neither of the children of the first block are candidates.
1614 static struct block
*
1615 fold_edge(struct block
*child
, struct edge
*ep
)
1618 bpf_u_int32 aval0
, aval1
, oval0
, oval1
;
1619 int code
= ep
->code
;
1623 * This edge is a "branch if false" edge.
1629 * This edge is a "branch if true" edge.
1635 * If the opcode for the branch at the end of the block we
1636 * were handed isn't the same as the opcode for the branch
1637 * to which the edge we were handed corresponds, the tests
1638 * for those branches aren't testing the same conditions,
1639 * so the blocks to which the first block branches aren't
1640 * candidates to replace the successor of the edge.
1642 if (child
->s
.code
!= code
)
1645 aval0
= child
->val
[A_ATOM
];
1646 oval0
= child
->oval
;
1647 aval1
= ep
->pred
->val
[A_ATOM
];
1648 oval1
= ep
->pred
->oval
;
1651 * If the A register value on exit from the successor block
1652 * isn't the same as the A register value on exit from the
1653 * predecessor of the edge, the blocks to which the first
1654 * block branches aren't candidates to replace the successor
1662 * The operands of the branch instructions are
1663 * identical, so the branches are testing the
1664 * same condition, and the result is true if a true
1665 * branch was taken to get here, otherwise false.
1667 return sense
? JT(child
) : JF(child
);
1669 if (sense
&& code
== (BPF_JMP
|BPF_JEQ
|BPF_K
))
1671 * At this point, we only know the comparison if we
1672 * came down the true branch, and it was an equality
1673 * comparison with a constant.
1675 * I.e., if we came down the true branch, and the branch
1676 * was an equality comparison with a constant, we know the
1677 * accumulator contains that constant. If we came down
1678 * the false branch, or the comparison wasn't with a
1679 * constant, we don't know what was in the accumulator.
1681 * We rely on the fact that distinct constants have distinct
1690 * If we can make this edge go directly to a child of the edge's current
1694 opt_j(opt_state_t
*opt_state
, struct edge
*ep
)
1696 register u_int i
, k
;
1697 register struct block
*target
;
1700 * Does this edge go to a block where, if the test
1701 * at the end of it succeeds, it goes to a block
1702 * that's a leaf node of the DAG, i.e. a return
1704 * If so, there's nothing to optimize.
1706 if (JT(ep
->succ
) == 0)
1710 * Does this edge go to a block that goes, in turn, to
1711 * the same block regardless of whether the test at the
1712 * end succeeds or fails?
1714 if (JT(ep
->succ
) == JF(ep
->succ
)) {
1716 * Common branch targets can be eliminated, provided
1717 * there is no data dependency.
1719 * Check whether any register used on exit from the
1720 * block to which the successor of this edge goes
1721 * has a value at that point that's different from
1722 * the value it has on exit from the predecessor of
1723 * this edge. If not, the predecessor of this edge
1724 * can just go to the block to which the successor
1725 * of this edge goes, bypassing the successor of this
1726 * edge, as the successor of this edge isn't doing
1727 * any calculations whose results are different
1728 * from what the blocks before it did and isn't
1729 * doing any tests the results of which matter.
1731 if (!use_conflict(ep
->pred
, JT(ep
->succ
))) {
1734 * Make this edge go to the block to
1735 * which the successor of that edge
1738 * XXX - optimizer loop detection.
1740 opt_state
->non_branch_movement_performed
= 1;
1741 opt_state
->done
= 0;
1742 ep
->succ
= JT(ep
->succ
);
1746 * For each edge dominator that matches the successor of this
1747 * edge, promote the edge successor to the its grandchild.
1749 * XXX We violate the set abstraction here in favor a reasonably
1753 for (i
= 0; i
< opt_state
->edgewords
; ++i
) {
1754 /* i'th word in the bitset of dominators */
1755 register bpf_u_int32 x
= ep
->edom
[i
];
1758 /* Find the next dominator in that word and mark it as found */
1759 k
= lowest_set_bit(x
);
1760 x
&=~ ((bpf_u_int32
)1 << k
);
1761 k
+= i
* BITS_PER_WORD
;
1763 target
= fold_edge(ep
->succ
, opt_state
->edges
[k
]);
1765 * We have a candidate to replace the successor
1768 * Check that there is no data dependency between
1769 * nodes that will be violated if we move the edge;
1770 * i.e., if any register used on exit from the
1771 * candidate has a value at that point different
1772 * from the value it has when we exit the
1773 * predecessor of that edge, there's a data
1774 * dependency that will be violated.
1776 if (target
!= 0 && !use_conflict(ep
->pred
, target
)) {
1778 * It's safe to replace the successor of
1779 * ep; do so, and note that we've made
1780 * at least one change.
1782 * XXX - this is one of the operations that
1783 * happens when the optimizer gets into
1784 * one of those infinite loops.
1786 opt_state
->done
= 0;
1788 if (JT(target
) != 0)
1790 * Start over unless we hit a leaf.
1800 * XXX - is this, and and_pullup(), what's described in section 6.1.2
1801 * "Predicate Assertion Propagation" in the BPF+ paper?
1803 * Note that this looks at block dominators, not edge dominators.
1806 * "A or B" compiles into
1819 or_pullup(opt_state_t
*opt_state
, struct block
*b
)
1824 struct block
**diffp
, **samep
;
1832 * Make sure each predecessor loads the same value.
1835 val
= ep
->pred
->val
[A_ATOM
];
1836 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
1837 if (val
!= ep
->pred
->val
[A_ATOM
])
1841 * For the first edge in the list of edges coming into this block,
1842 * see whether the predecessor of that edge comes here via a true
1843 * branch or a false branch.
1845 if (JT(b
->in_edges
->pred
) == b
)
1846 diffp
= &JT(b
->in_edges
->pred
); /* jt */
1848 diffp
= &JF(b
->in_edges
->pred
); /* jf */
1851 * diffp is a pointer to a pointer to the block.
1853 * Go down the false chain looking as far as you can,
1854 * making sure that each jump-compare is doing the
1855 * same as the original block.
1857 * If you reach the bottom before you reach a
1858 * different jump-compare, just exit. There's nothing
1859 * to do here. XXX - no, this version is checking for
1860 * the value leaving the block; that's from the BPF+
1866 * Done if that's not going anywhere XXX
1872 * Done if that predecessor blah blah blah isn't
1873 * going the same place we're going XXX
1875 * Does the true edge of this block point to the same
1876 * location as the true edge of b?
1878 if (JT(*diffp
) != JT(b
))
1882 * Done if this node isn't a dominator of that
1883 * node blah blah blah XXX
1885 * Does b dominate diffp?
1887 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
1891 * Break out of the loop if that node's value of A
1892 * isn't the value of A above XXX
1894 if ((*diffp
)->val
[A_ATOM
] != val
)
1898 * Get the JF for that node XXX
1899 * Go down the false path.
1901 diffp
= &JF(*diffp
);
1906 * Now that we've found a different jump-compare in a chain
1907 * below b, search further down until we find another
1908 * jump-compare that looks at the original value. This
1909 * jump-compare should get pulled up. XXX again we're
1910 * comparing values not jump-compares.
1912 samep
= &JF(*diffp
);
1915 * Done if that's not going anywhere XXX
1921 * Done if that predecessor blah blah blah isn't
1922 * going the same place we're going XXX
1924 if (JT(*samep
) != JT(b
))
1928 * Done if this node isn't a dominator of that
1929 * node blah blah blah XXX
1931 * Does b dominate samep?
1933 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
1937 * Break out of the loop if that node's value of A
1938 * is the value of A above XXX
1940 if ((*samep
)->val
[A_ATOM
] == val
)
1943 /* XXX Need to check that there are no data dependencies
1944 between dp0 and dp1. Currently, the code generator
1945 will not produce such dependencies. */
1946 samep
= &JF(*samep
);
1949 /* XXX This doesn't cover everything. */
1950 for (i
= 0; i
< N_ATOMS
; ++i
)
1951 if ((*samep
)->val
[i
] != pred
->val
[i
])
1954 /* Pull up the node. */
1960 * At the top of the chain, each predecessor needs to point at the
1961 * pulled up node. Inside the chain, there is only one predecessor
1965 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
1966 if (JT(ep
->pred
) == b
)
1967 JT(ep
->pred
) = pull
;
1969 JF(ep
->pred
) = pull
;
1976 * XXX - this is one of the operations that happens when the
1977 * optimizer gets into one of those infinite loops.
1979 opt_state
->done
= 0;
1983 and_pullup(opt_state_t
*opt_state
, struct block
*b
)
1988 struct block
**diffp
, **samep
;
1996 * Make sure each predecessor loads the same value.
1998 val
= ep
->pred
->val
[A_ATOM
];
1999 for (ep
= ep
->next
; ep
!= 0; ep
= ep
->next
)
2000 if (val
!= ep
->pred
->val
[A_ATOM
])
2003 if (JT(b
->in_edges
->pred
) == b
)
2004 diffp
= &JT(b
->in_edges
->pred
);
2006 diffp
= &JF(b
->in_edges
->pred
);
2013 if (JF(*diffp
) != JF(b
))
2016 if (!SET_MEMBER((*diffp
)->dom
, b
->id
))
2019 if ((*diffp
)->val
[A_ATOM
] != val
)
2022 diffp
= &JT(*diffp
);
2025 samep
= &JT(*diffp
);
2030 if (JF(*samep
) != JF(b
))
2033 if (!SET_MEMBER((*samep
)->dom
, b
->id
))
2036 if ((*samep
)->val
[A_ATOM
] == val
)
2039 /* XXX Need to check that there are no data dependencies
2040 between diffp and samep. Currently, the code generator
2041 will not produce such dependencies. */
2042 samep
= &JT(*samep
);
2045 /* XXX This doesn't cover everything. */
2046 for (i
= 0; i
< N_ATOMS
; ++i
)
2047 if ((*samep
)->val
[i
] != pred
->val
[i
])
2050 /* Pull up the node. */
2056 * At the top of the chain, each predecessor needs to point at the
2057 * pulled up node. Inside the chain, there is only one predecessor
2061 for (ep
= b
->in_edges
; ep
!= 0; ep
= ep
->next
) {
2062 if (JT(ep
->pred
) == b
)
2063 JT(ep
->pred
) = pull
;
2065 JF(ep
->pred
) = pull
;
2072 * XXX - this is one of the operations that happens when the
2073 * optimizer gets into one of those infinite loops.
2075 opt_state
->done
= 0;
2079 opt_blks(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
2084 init_val(opt_state
);
2085 maxlevel
= ic
->root
->level
;
2087 find_inedges(opt_state
, ic
->root
);
2088 for (i
= maxlevel
; i
>= 0; --i
)
2089 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
)
2090 opt_blk(opt_state
, p
, do_stmts
);
2094 * No point trying to move branches; it can't possibly
2095 * make a difference at this point.
2097 * XXX - this might be after we detect a loop where
2098 * we were just looping infinitely moving branches
2099 * in such a fashion that we went through two or more
2100 * versions of the machine code, eventually returning
2101 * to the first version. (We're really not doing a
2102 * full loop detection, we're just testing for two
2103 * passes in a row where where we do nothing but
2109 * Is this what the BPF+ paper describes in sections 6.1.1,
2112 for (i
= 1; i
<= maxlevel
; ++i
) {
2113 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
2114 opt_j(opt_state
, &p
->et
);
2115 opt_j(opt_state
, &p
->ef
);
2119 find_inedges(opt_state
, ic
->root
);
2120 for (i
= 1; i
<= maxlevel
; ++i
) {
2121 for (p
= opt_state
->levels
[i
]; p
; p
= p
->link
) {
2122 or_pullup(opt_state
, p
);
2123 and_pullup(opt_state
, p
);
2129 link_inedge(struct edge
*parent
, struct block
*child
)
2131 parent
->next
= child
->in_edges
;
2132 child
->in_edges
= parent
;
2136 find_inedges(opt_state_t
*opt_state
, struct block
*root
)
2142 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
2143 opt_state
->blocks
[i
]->in_edges
= 0;
2146 * Traverse the graph, adding each edge to the predecessor
2147 * list of its successors. Skip the leaves (i.e. level 0).
2149 for (level
= root
->level
; level
> 0; --level
) {
2150 for (b
= opt_state
->levels
[level
]; b
!= 0; b
= b
->link
) {
2151 link_inedge(&b
->et
, JT(b
));
2152 link_inedge(&b
->ef
, JF(b
));
2158 opt_root(struct block
**b
)
2160 struct slist
*tmp
, *s
;
2164 while (BPF_CLASS((*b
)->s
.code
) == BPF_JMP
&& JT(*b
) == JF(*b
))
2173 * If the root node is a return, then there is no
2174 * point executing any statements (since the bpf machine
2175 * has no side effects).
2177 if (BPF_CLASS((*b
)->s
.code
) == BPF_RET
)
2182 opt_loop(opt_state_t
*opt_state
, struct icode
*ic
, int do_stmts
)
2186 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2187 printf("opt_loop(root, %d) begin\n", do_stmts
);
2188 opt_dump(opt_state
, ic
);
2193 * XXX - optimizer loop detection.
2197 opt_state
->done
= 1;
2199 * XXX - optimizer loop detection.
2201 opt_state
->non_branch_movement_performed
= 0;
2202 find_levels(opt_state
, ic
);
2203 find_dom(opt_state
, ic
->root
);
2204 find_closure(opt_state
, ic
->root
);
2205 find_ud(opt_state
, ic
->root
);
2206 find_edom(opt_state
, ic
->root
);
2207 opt_blks(opt_state
, ic
, do_stmts
);
2209 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2210 printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts
, opt_state
->done
);
2211 opt_dump(opt_state
, ic
);
2216 * Was anything done in this optimizer pass?
2218 if (opt_state
->done
) {
2220 * No, so we've reached a fixed point.
2227 * XXX - was anything done other than branch movement
2230 if (opt_state
->non_branch_movement_performed
) {
2232 * Yes. Clear any loop-detection counter;
2233 * we're making some form of progress (assuming
2234 * we can't get into a cycle doing *other*
2235 * optimizations...).
2240 * No - increment the counter, and quit if
2244 if (loop_count
>= 100) {
2246 * We've done nothing but branch movement
2247 * for 100 passes; we're probably
2248 * in a cycle and will never reach a
2251 * XXX - yes, we really need a non-
2252 * heuristic way of detecting a cycle.
2254 opt_state
->done
= 1;
2262 * Optimize the filter code in its dag representation.
2263 * Return 0 on success, -1 on error.
2266 bpf_optimize(struct icode
*ic
, char *errbuf
)
2268 opt_state_t opt_state
;
2270 memset(&opt_state
, 0, sizeof(opt_state
));
2271 opt_state
.errbuf
= errbuf
;
2272 opt_state
.non_branch_movement_performed
= 0;
2273 if (setjmp(opt_state
.top_ctx
)) {
2274 opt_cleanup(&opt_state
);
2277 opt_init(&opt_state
, ic
);
2278 opt_loop(&opt_state
, ic
, 0);
2279 opt_loop(&opt_state
, ic
, 1);
2280 intern_blocks(&opt_state
, ic
);
2282 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2283 printf("after intern_blocks()\n");
2284 opt_dump(&opt_state
, ic
);
2287 opt_root(&ic
->root
);
2289 if (pcap_optimizer_debug
> 1 || pcap_print_dot_graph
) {
2290 printf("after opt_root()\n");
2291 opt_dump(&opt_state
, ic
);
2294 opt_cleanup(&opt_state
);
2299 make_marks(struct icode
*ic
, struct block
*p
)
2301 if (!isMarked(ic
, p
)) {
2303 if (BPF_CLASS(p
->s
.code
) != BPF_RET
) {
2304 make_marks(ic
, JT(p
));
2305 make_marks(ic
, JF(p
));
2311 * Mark code array such that isMarked(ic->cur_mark, i) is true
2312 * only for nodes that are alive.
2315 mark_code(struct icode
*ic
)
2318 make_marks(ic
, ic
->root
);
2322 * True iff the two stmt lists load the same value from the packet into
2326 eq_slist(struct slist
*x
, struct slist
*y
)
2329 while (x
&& x
->s
.code
== NOP
)
2331 while (y
&& y
->s
.code
== NOP
)
2337 if (x
->s
.code
!= y
->s
.code
|| x
->s
.k
!= y
->s
.k
)
2345 eq_blk(struct block
*b0
, struct block
*b1
)
2347 if (b0
->s
.code
== b1
->s
.code
&&
2348 b0
->s
.k
== b1
->s
.k
&&
2349 b0
->et
.succ
== b1
->et
.succ
&&
2350 b0
->ef
.succ
== b1
->ef
.succ
)
2351 return eq_slist(b0
->stmts
, b1
->stmts
);
2356 intern_blocks(opt_state_t
*opt_state
, struct icode
*ic
)
2360 int done1
; /* don't shadow global */
2363 for (i
= 0; i
< opt_state
->n_blocks
; ++i
)
2364 opt_state
->blocks
[i
]->link
= 0;
2368 for (i
= opt_state
->n_blocks
- 1; i
!= 0; ) {
2370 if (!isMarked(ic
, opt_state
->blocks
[i
]))
2372 for (j
= i
+ 1; j
< opt_state
->n_blocks
; ++j
) {
2373 if (!isMarked(ic
, opt_state
->blocks
[j
]))
2375 if (eq_blk(opt_state
->blocks
[i
], opt_state
->blocks
[j
])) {
2376 opt_state
->blocks
[i
]->link
= opt_state
->blocks
[j
]->link
?
2377 opt_state
->blocks
[j
]->link
: opt_state
->blocks
[j
];
2382 for (i
= 0; i
< opt_state
->n_blocks
; ++i
) {
2383 p
= opt_state
->blocks
[i
];
2388 JT(p
) = JT(p
)->link
;
2392 JF(p
) = JF(p
)->link
;
2400 opt_cleanup(opt_state_t
*opt_state
)
2402 free((void *)opt_state
->vnode_base
);
2403 free((void *)opt_state
->vmap
);
2404 free((void *)opt_state
->edges
);
2405 free((void *)opt_state
->space
);
2406 free((void *)opt_state
->levels
);
2407 free((void *)opt_state
->blocks
);
2411 * For optimizer errors.
2413 static void PCAP_NORETURN
2414 opt_error(opt_state_t
*opt_state
, const char *fmt
, ...)
2418 if (opt_state
->errbuf
!= NULL
) {
2420 (void)vsnprintf(opt_state
->errbuf
,
2421 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2424 longjmp(opt_state
->top_ctx
, 1);
2429 * Return the number of stmts in 's'.
2432 slength(struct slist
*s
)
2436 for (; s
; s
= s
->next
)
2437 if (s
->s
.code
!= NOP
)
2443 * Return the number of nodes reachable by 'p'.
2444 * All nodes should be initially unmarked.
2447 count_blocks(struct icode
*ic
, struct block
*p
)
2449 if (p
== 0 || isMarked(ic
, p
))
2452 return count_blocks(ic
, JT(p
)) + count_blocks(ic
, JF(p
)) + 1;
2456 * Do a depth first search on the flow graph, numbering the
2457 * the basic blocks, and entering them into the 'blocks' array.`
2460 number_blks_r(opt_state_t
*opt_state
, struct icode
*ic
, struct block
*p
)
2464 if (p
== 0 || isMarked(ic
, p
))
2468 n
= opt_state
->n_blocks
++;
2469 if (opt_state
->n_blocks
== 0) {
2473 opt_error(opt_state
, "filter is too complex to optimize");
2476 opt_state
->blocks
[n
] = p
;
2478 number_blks_r(opt_state
, ic
, JT(p
));
2479 number_blks_r(opt_state
, ic
, JF(p
));
2483 * Return the number of stmts in the flowgraph reachable by 'p'.
2484 * The nodes should be unmarked before calling.
2486 * Note that "stmts" means "instructions", and that this includes
2488 * side-effect statements in 'p' (slength(p->stmts));
2490 * statements in the true branch from 'p' (count_stmts(JT(p)));
2492 * statements in the false branch from 'p' (count_stmts(JF(p)));
2494 * the conditional jump itself (1);
2496 * an extra long jump if the true branch requires it (p->longjt);
2498 * an extra long jump if the false branch requires it (p->longjf).
2501 count_stmts(struct icode
*ic
, struct block
*p
)
2505 if (p
== 0 || isMarked(ic
, p
))
2508 n
= count_stmts(ic
, JT(p
)) + count_stmts(ic
, JF(p
));
2509 return slength(p
->stmts
) + n
+ 1 + p
->longjt
+ p
->longjf
;
2513 * Allocate memory. All allocation is done before optimization
2514 * is begun. A linear bound on the size of all data structures is computed
2515 * from the total number of blocks and/or statements.
2518 opt_init(opt_state_t
*opt_state
, struct icode
*ic
)
2521 int i
, n
, max_stmts
;
2523 size_t block_memsize
, edge_memsize
;
2526 * First, count the blocks, so we can malloc an array to map
2527 * block number to block. Then, put the blocks into the array.
2530 n
= count_blocks(ic
, ic
->root
);
2531 opt_state
->blocks
= (struct block
**)calloc(n
, sizeof(*opt_state
->blocks
));
2532 if (opt_state
->blocks
== NULL
)
2533 opt_error(opt_state
, "malloc");
2535 opt_state
->n_blocks
= 0;
2536 number_blks_r(opt_state
, ic
, ic
->root
);
2538 opt_state
->n_edges
= 2 * opt_state
->n_blocks
;
2539 if ((opt_state
->n_edges
/ 2) != opt_state
->n_blocks
) {
2543 opt_error(opt_state
, "filter is too complex to optimize");
2545 opt_state
->edges
= (struct edge
**)calloc(opt_state
->n_edges
, sizeof(*opt_state
->edges
));
2546 if (opt_state
->edges
== NULL
) {
2547 opt_error(opt_state
, "malloc");
2551 * The number of levels is bounded by the number of nodes.
2553 opt_state
->levels
= (struct block
**)calloc(opt_state
->n_blocks
, sizeof(*opt_state
->levels
));
2554 if (opt_state
->levels
== NULL
) {
2555 opt_error(opt_state
, "malloc");
2558 opt_state
->edgewords
= opt_state
->n_edges
/ BITS_PER_WORD
+ 1;
2559 opt_state
->nodewords
= opt_state
->n_blocks
/ BITS_PER_WORD
+ 1;
2562 * Make sure opt_state->n_blocks * opt_state->nodewords fits
2563 * in a u_int; we use it as a u_int number-of-iterations
2566 product
= opt_state
->n_blocks
* opt_state
->nodewords
;
2567 if ((product
/ opt_state
->n_blocks
) != opt_state
->nodewords
) {
2569 * XXX - just punt and don't try to optimize?
2570 * In practice, this is unlikely to happen with
2573 opt_error(opt_state
, "filter is too complex to optimize");
2577 * Make sure the total memory required for that doesn't
2580 block_memsize
= (size_t)2 * product
* sizeof(*opt_state
->space
);
2581 if ((block_memsize
/ product
) != 2 * sizeof(*opt_state
->space
)) {
2582 opt_error(opt_state
, "filter is too complex to optimize");
2586 * Make sure opt_state->n_edges * opt_state->edgewords fits
2587 * in a u_int; we use it as a u_int number-of-iterations
2590 product
= opt_state
->n_edges
* opt_state
->edgewords
;
2591 if ((product
/ opt_state
->n_edges
) != opt_state
->edgewords
) {
2592 opt_error(opt_state
, "filter is too complex to optimize");
2596 * Make sure the total memory required for that doesn't
2599 edge_memsize
= (size_t)product
* sizeof(*opt_state
->space
);
2600 if (edge_memsize
/ product
!= sizeof(*opt_state
->space
)) {
2601 opt_error(opt_state
, "filter is too complex to optimize");
2605 * Make sure the total memory required for both of them dosn't
2608 if (block_memsize
> SIZE_MAX
- edge_memsize
) {
2609 opt_error(opt_state
, "filter is too complex to optimize");
2613 opt_state
->space
= (bpf_u_int32
*)malloc(block_memsize
+ edge_memsize
);
2614 if (opt_state
->space
== NULL
) {
2615 opt_error(opt_state
, "malloc");
2617 p
= opt_state
->space
;
2618 opt_state
->all_dom_sets
= p
;
2619 for (i
= 0; i
< n
; ++i
) {
2620 opt_state
->blocks
[i
]->dom
= p
;
2621 p
+= opt_state
->nodewords
;
2623 opt_state
->all_closure_sets
= p
;
2624 for (i
= 0; i
< n
; ++i
) {
2625 opt_state
->blocks
[i
]->closure
= p
;
2626 p
+= opt_state
->nodewords
;
2628 opt_state
->all_edge_sets
= p
;
2629 for (i
= 0; i
< n
; ++i
) {
2630 register struct block
*b
= opt_state
->blocks
[i
];
2633 p
+= opt_state
->edgewords
;
2635 p
+= opt_state
->edgewords
;
2637 opt_state
->edges
[i
] = &b
->et
;
2638 b
->ef
.id
= opt_state
->n_blocks
+ i
;
2639 opt_state
->edges
[opt_state
->n_blocks
+ i
] = &b
->ef
;
2644 for (i
= 0; i
< n
; ++i
)
2645 max_stmts
+= slength(opt_state
->blocks
[i
]->stmts
) + 1;
2647 * We allocate at most 3 value numbers per statement,
2648 * so this is an upper bound on the number of valnodes
2651 opt_state
->maxval
= 3 * max_stmts
;
2652 opt_state
->vmap
= (struct vmapinfo
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vmap
));
2653 if (opt_state
->vmap
== NULL
) {
2654 opt_error(opt_state
, "malloc");
2656 opt_state
->vnode_base
= (struct valnode
*)calloc(opt_state
->maxval
, sizeof(*opt_state
->vnode_base
));
2657 if (opt_state
->vnode_base
== NULL
) {
2658 opt_error(opt_state
, "malloc");
2663 * This is only used when supporting optimizer debugging. It is
2664 * global state, so do *not* do more than one compile in parallel
2665 * and expect it to provide meaningful information.
2671 static void PCAP_NORETURN
conv_error(conv_state_t
*, const char *, ...)
2672 PCAP_PRINTFLIKE(2, 3);
2675 * Returns true if successful. Returns false if a branch has
2676 * an offset that is too large. If so, we have marked that
2677 * branch so that on a subsequent iteration, it will be treated
2681 convert_code_r(conv_state_t
*conv_state
, struct icode
*ic
, struct block
*p
)
2683 struct bpf_insn
*dst
;
2687 u_int extrajmps
; /* number of extra jumps inserted */
2688 struct slist
**offset
= NULL
;
2690 if (p
== 0 || isMarked(ic
, p
))
2694 if (convert_code_r(conv_state
, ic
, JF(p
)) == 0)
2696 if (convert_code_r(conv_state
, ic
, JT(p
)) == 0)
2699 slen
= slength(p
->stmts
);
2700 dst
= conv_state
->ftail
-= (slen
+ 1 + p
->longjt
+ p
->longjf
);
2701 /* inflate length by any extra jumps */
2703 p
->offset
= (int)(dst
- conv_state
->fstart
);
2705 /* generate offset[] for convenience */
2707 offset
= (struct slist
**)calloc(slen
, sizeof(struct slist
*));
2709 conv_error(conv_state
, "not enough core");
2714 for (off
= 0; off
< slen
&& src
; off
++) {
2716 printf("off=%d src=%x\n", off
, src
);
2723 for (src
= p
->stmts
; src
; src
= src
->next
) {
2724 if (src
->s
.code
== NOP
)
2726 dst
->code
= (u_short
)src
->s
.code
;
2729 /* fill block-local relative jump */
2730 if (BPF_CLASS(src
->s
.code
) != BPF_JMP
|| src
->s
.code
== (BPF_JMP
|BPF_JA
)) {
2732 if (src
->s
.jt
|| src
->s
.jf
) {
2734 conv_error(conv_state
, "illegal jmp destination");
2740 if (off
== slen
- 2) /*???*/
2746 const char ljerr
[] = "%s for block-local relative jump: off=%d";
2749 printf("code=%x off=%d %x %x\n", src
->s
.code
,
2750 off
, src
->s
.jt
, src
->s
.jf
);
2753 if (!src
->s
.jt
|| !src
->s
.jf
) {
2755 conv_error(conv_state
, ljerr
, "no jmp destination", off
);
2760 for (i
= 0; i
< slen
; i
++) {
2761 if (offset
[i
] == src
->s
.jt
) {
2764 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2768 if (i
- off
- 1 >= 256) {
2770 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2773 dst
->jt
= (u_char
)(i
- off
- 1);
2776 if (offset
[i
] == src
->s
.jf
) {
2779 conv_error(conv_state
, ljerr
, "multiple matches", off
);
2782 if (i
- off
- 1 >= 256) {
2784 conv_error(conv_state
, ljerr
, "out-of-range jump", off
);
2787 dst
->jf
= (u_char
)(i
- off
- 1);
2793 conv_error(conv_state
, ljerr
, "no destination found", off
);
2805 if (dst
- conv_state
->fstart
< NBIDS
)
2806 bids
[dst
- conv_state
->fstart
] = p
->id
+ 1;
2808 dst
->code
= (u_short
)p
->s
.code
;
2812 off
= JT(p
)->offset
- (p
->offset
+ slen
) - 1;
2814 /* offset too large for branch, must add a jump */
2815 if (p
->longjt
== 0) {
2816 /* mark this instruction and retry */
2820 /* branch if T to following jump */
2821 if (extrajmps
>= 256) {
2822 conv_error(conv_state
, "too many extra jumps");
2825 dst
->jt
= (u_char
)extrajmps
;
2827 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2828 dst
[extrajmps
].k
= off
- extrajmps
;
2831 dst
->jt
= (u_char
)off
;
2832 off
= JF(p
)->offset
- (p
->offset
+ slen
) - 1;
2834 /* offset too large for branch, must add a jump */
2835 if (p
->longjf
== 0) {
2836 /* mark this instruction and retry */
2840 /* branch if F to following jump */
2841 /* if two jumps are inserted, F goes to second one */
2842 if (extrajmps
>= 256) {
2843 conv_error(conv_state
, "too many extra jumps");
2846 dst
->jf
= (u_char
)extrajmps
;
2848 dst
[extrajmps
].code
= BPF_JMP
|BPF_JA
;
2849 dst
[extrajmps
].k
= off
- extrajmps
;
2852 dst
->jf
= (u_char
)off
;
2859 * Convert flowgraph intermediate representation to the
2860 * BPF array representation. Set *lenp to the number of instructions.
2862 * This routine does *NOT* leak the memory pointed to by fp. It *must
2863 * not* do free(fp) before returning fp; doing so would make no sense,
2864 * as the BPF array pointed to by the return value of icode_to_fcode()
2865 * must be valid - it's being returned for use in a bpf_program structure.
2867 * If it appears that icode_to_fcode() is leaking, the problem is that
2868 * the program using pcap_compile() is failing to free the memory in
2869 * the BPF program when it's done - the leak is in the program, not in
2870 * the routine that happens to be allocating the memory. (By analogy, if
2871 * a program calls fopen() without ever calling fclose() on the FILE *,
2872 * it will leak the FILE structure; the leak is not in fopen(), it's in
2873 * the program.) Change the program to use pcap_freecode() when it's
2874 * done with the filter program. See the pcap man page.
2877 icode_to_fcode(struct icode
*ic
, struct block
*root
, u_int
*lenp
,
2881 struct bpf_insn
*fp
;
2882 conv_state_t conv_state
;
2884 conv_state
.fstart
= NULL
;
2885 conv_state
.errbuf
= errbuf
;
2886 if (setjmp(conv_state
.top_ctx
) != 0) {
2887 free(conv_state
.fstart
);
2892 * Loop doing convert_code_r() until no branches remain
2893 * with too-large offsets.
2897 n
= *lenp
= count_stmts(ic
, root
);
2899 fp
= (struct bpf_insn
*)malloc(sizeof(*fp
) * n
);
2901 (void)snprintf(errbuf
, PCAP_ERRBUF_SIZE
,
2906 memset((char *)fp
, 0, sizeof(*fp
) * n
);
2907 conv_state
.fstart
= fp
;
2908 conv_state
.ftail
= fp
+ n
;
2911 if (convert_code_r(&conv_state
, ic
, root
))
2920 * For iconv_to_fconv() errors.
2922 static void PCAP_NORETURN
2923 conv_error(conv_state_t
*conv_state
, const char *fmt
, ...)
2928 (void)vsnprintf(conv_state
->errbuf
,
2929 PCAP_ERRBUF_SIZE
, fmt
, ap
);
2931 longjmp(conv_state
->top_ctx
, 1);
2936 * Make a copy of a BPF program and put it in the "fcode" member of
2939 * If we fail to allocate memory for the copy, fill in the "errbuf"
2940 * member of the "pcap_t" with an error message, and return -1;
2941 * otherwise, return 0.
2944 install_bpf_program(pcap_t
*p
, struct bpf_program
*fp
)
2949 * Validate the program.
2951 if (!pcap_validate_filter(fp
->bf_insns
, fp
->bf_len
)) {
2952 snprintf(p
->errbuf
, sizeof(p
->errbuf
),
2953 "BPF program is not valid");
2958 * Free up any already installed program.
2960 pcap_freecode(&p
->fcode
);
2962 prog_size
= sizeof(*fp
->bf_insns
) * fp
->bf_len
;
2963 p
->fcode
.bf_len
= fp
->bf_len
;
2964 p
->fcode
.bf_insns
= (struct bpf_insn
*)malloc(prog_size
);
2965 if (p
->fcode
.bf_insns
== NULL
) {
2966 pcap_fmt_errmsg_for_errno(p
->errbuf
, sizeof(p
->errbuf
),
2970 memcpy(p
->fcode
.bf_insns
, fp
->bf_insns
, prog_size
);
2976 dot_dump_node(struct icode
*ic
, struct block
*block
, struct bpf_program
*prog
,
2979 int icount
, noffset
;
2982 if (block
== NULL
|| isMarked(ic
, block
))
2986 icount
= slength(block
->stmts
) + 1 + block
->longjt
+ block
->longjf
;
2987 noffset
= min(block
->offset
+ icount
, (int)prog
->bf_len
);
2989 fprintf(out
, "\tblock%u [shape=ellipse, id=\"block-%u\" label=\"BLOCK%u\\n", block
->id
, block
->id
, block
->id
);
2990 for (i
= block
->offset
; i
< noffset
; i
++) {
2991 fprintf(out
, "\\n%s", bpf_image(prog
->bf_insns
+ i
, i
));
2993 fprintf(out
, "\" tooltip=\"");
2994 for (i
= 0; i
< BPF_MEMWORDS
; i
++)
2995 if (block
->val
[i
] != VAL_UNKNOWN
)
2996 fprintf(out
, "val[%d]=%d ", i
, block
->val
[i
]);
2997 fprintf(out
, "val[A]=%d ", block
->val
[A_ATOM
]);
2998 fprintf(out
, "val[X]=%d", block
->val
[X_ATOM
]);
3000 if (JT(block
) == NULL
)
3001 fprintf(out
, ", peripheries=2");
3002 fprintf(out
, "];\n");
3004 dot_dump_node(ic
, JT(block
), prog
, out
);
3005 dot_dump_node(ic
, JF(block
), prog
, out
);
3009 dot_dump_edge(struct icode
*ic
, struct block
*block
, FILE *out
)
3011 if (block
== NULL
|| isMarked(ic
, block
))
3016 fprintf(out
, "\t\"block%u\":se -> \"block%u\":n [label=\"T\"]; \n",
3017 block
->id
, JT(block
)->id
);
3018 fprintf(out
, "\t\"block%u\":sw -> \"block%u\":n [label=\"F\"]; \n",
3019 block
->id
, JF(block
)->id
);
3021 dot_dump_edge(ic
, JT(block
), out
);
3022 dot_dump_edge(ic
, JF(block
), out
);
3025 /* Output the block CFG using graphviz/DOT language
3026 * In the CFG, block's code, value index for each registers at EXIT,
3027 * and the jump relationship is show.
3029 * example DOT for BPF `ip src host 1.1.1.1' is:
3031 block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
3032 block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
3033 block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
3034 block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
3035 "block0":se -> "block1":n [label="T"];
3036 "block0":sw -> "block3":n [label="F"];
3037 "block1":se -> "block2":n [label="T"];
3038 "block1":sw -> "block3":n [label="F"];
3041 * After install graphviz on https://www.graphviz.org/, save it as bpf.dot
3042 * and run `dot -Tpng -O bpf.dot' to draw the graph.
3045 dot_dump(struct icode
*ic
, char *errbuf
)
3047 struct bpf_program f
;
3050 memset(bids
, 0, sizeof bids
);
3051 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
3052 if (f
.bf_insns
== NULL
)
3055 fprintf(out
, "digraph BPF {\n");
3057 dot_dump_node(ic
, ic
->root
, &f
, out
);
3059 dot_dump_edge(ic
, ic
->root
, out
);
3060 fprintf(out
, "}\n");
3062 free((char *)f
.bf_insns
);
3067 plain_dump(struct icode
*ic
, char *errbuf
)
3069 struct bpf_program f
;
3071 memset(bids
, 0, sizeof bids
);
3072 f
.bf_insns
= icode_to_fcode(ic
, ic
->root
, &f
.bf_len
, errbuf
);
3073 if (f
.bf_insns
== NULL
)
3077 free((char *)f
.bf_insns
);
3082 opt_dump(opt_state_t
*opt_state
, struct icode
*ic
)
3085 char errbuf
[PCAP_ERRBUF_SIZE
];
3088 * If the CFG, in DOT format, is requested, output it rather than
3089 * the code that would be generated from that graph.
3091 if (pcap_print_dot_graph
)
3092 status
= dot_dump(ic
, errbuf
);
3094 status
= plain_dump(ic
, errbuf
);
3096 opt_error(opt_state
, "opt_dump: icode_to_fcode failed: %s", errbuf
);