]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Merge pull request #1160 from davidkaroly/cmake-cleanup-cxx
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #ifdef _WIN32
27 #include <ws2tcpip.h>
28 #else
29 #include <sys/socket.h>
30
31 #ifdef __NetBSD__
32 #include <sys/param.h>
33 #endif
34
35 #include <netinet/in.h>
36 #include <arpa/inet.h>
37 #endif /* _WIN32 */
38
39 #include <stdlib.h>
40 #include <string.h>
41 #include <memory.h>
42 #include <setjmp.h>
43 #include <stdarg.h>
44 #include <stdio.h>
45
46 #ifdef MSDOS
47 #include "pcap-dos.h"
48 #endif
49
50 #include "pcap-int.h"
51
52 #include "extract.h"
53
54 #include "ethertype.h"
55 #include "nlpid.h"
56 #include "llc.h"
57 #include "gencode.h"
58 #include "ieee80211.h"
59 #include "atmuni31.h"
60 #include "sunatmpos.h"
61 #include "pflog.h"
62 #include "ppp.h"
63 #include "pcap/sll.h"
64 #include "pcap/ipnet.h"
65 #include "arcnet.h"
66 #include "diag-control.h"
67
68 #include "scanner.h"
69
70 #if defined(linux)
71 #include <linux/types.h>
72 #include <linux/if_packet.h>
73 #include <linux/filter.h>
74 #endif
75
76 #ifndef offsetof
77 #define offsetof(s, e) ((size_t)&((s *)0)->e)
78 #endif
79
80 #ifdef _WIN32
81 #ifdef INET6
82 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
83 /* IPv6 address */
84 struct in6_addr
85 {
86 union
87 {
88 uint8_t u6_addr8[16];
89 uint16_t u6_addr16[8];
90 uint32_t u6_addr32[4];
91 } in6_u;
92 #define s6_addr in6_u.u6_addr8
93 #define s6_addr16 in6_u.u6_addr16
94 #define s6_addr32 in6_u.u6_addr32
95 #define s6_addr64 in6_u.u6_addr64
96 };
97
98 typedef unsigned short sa_family_t;
99
100 #define __SOCKADDR_COMMON(sa_prefix) \
101 sa_family_t sa_prefix##family
102
103 /* Ditto, for IPv6. */
104 struct sockaddr_in6
105 {
106 __SOCKADDR_COMMON (sin6_);
107 uint16_t sin6_port; /* Transport layer port # */
108 uint32_t sin6_flowinfo; /* IPv6 flow information */
109 struct in6_addr sin6_addr; /* IPv6 address */
110 };
111
112 #ifndef EAI_ADDRFAMILY
113 struct addrinfo {
114 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
115 int ai_family; /* PF_xxx */
116 int ai_socktype; /* SOCK_xxx */
117 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
118 size_t ai_addrlen; /* length of ai_addr */
119 char *ai_canonname; /* canonical name for hostname */
120 struct sockaddr *ai_addr; /* binary address */
121 struct addrinfo *ai_next; /* next structure in linked list */
122 };
123 #endif /* EAI_ADDRFAMILY */
124 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
125 #endif /* INET6 */
126 #else /* _WIN32 */
127 #include <netdb.h> /* for "struct addrinfo" */
128 #endif /* _WIN32 */
129 #include <pcap/namedb.h>
130
131 #include "nametoaddr.h"
132
133 #define ETHERMTU 1500
134
135 #ifndef IPPROTO_HOPOPTS
136 #define IPPROTO_HOPOPTS 0
137 #endif
138 #ifndef IPPROTO_ROUTING
139 #define IPPROTO_ROUTING 43
140 #endif
141 #ifndef IPPROTO_FRAGMENT
142 #define IPPROTO_FRAGMENT 44
143 #endif
144 #ifndef IPPROTO_DSTOPTS
145 #define IPPROTO_DSTOPTS 60
146 #endif
147 #ifndef IPPROTO_SCTP
148 #define IPPROTO_SCTP 132
149 #endif
150
151 #define GENEVE_PORT 6081
152
153 #ifdef HAVE_OS_PROTO_H
154 #include "os-proto.h"
155 #endif
156
157 #define JMP(c) ((c)|BPF_JMP|BPF_K)
158
159 /*
160 * "Push" the current value of the link-layer header type and link-layer
161 * header offset onto a "stack", and set a new value. (It's not a
162 * full-blown stack; we keep only the top two items.)
163 */
164 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
165 { \
166 (cs)->prevlinktype = (cs)->linktype; \
167 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
168 (cs)->linktype = (new_linktype); \
169 (cs)->off_linkhdr.is_variable = (new_is_variable); \
170 (cs)->off_linkhdr.constant_part = (new_constant_part); \
171 (cs)->off_linkhdr.reg = (new_reg); \
172 (cs)->is_geneve = 0; \
173 }
174
175 /*
176 * Offset "not set" value.
177 */
178 #define OFFSET_NOT_SET 0xffffffffU
179
180 /*
181 * Absolute offsets, which are offsets from the beginning of the raw
182 * packet data, are, in the general case, the sum of a variable value
183 * and a constant value; the variable value may be absent, in which
184 * case the offset is only the constant value, and the constant value
185 * may be zero, in which case the offset is only the variable value.
186 *
187 * bpf_abs_offset is a structure containing all that information:
188 *
189 * is_variable is 1 if there's a variable part.
190 *
191 * constant_part is the constant part of the value, possibly zero;
192 *
193 * if is_variable is 1, reg is the register number for a register
194 * containing the variable value if the register has been assigned,
195 * and -1 otherwise.
196 */
197 typedef struct {
198 int is_variable;
199 u_int constant_part;
200 int reg;
201 } bpf_abs_offset;
202
203 /*
204 * Value passed to gen_load_a() to indicate what the offset argument
205 * is relative to the beginning of.
206 */
207 enum e_offrel {
208 OR_PACKET, /* full packet data */
209 OR_LINKHDR, /* link-layer header */
210 OR_PREVLINKHDR, /* previous link-layer header */
211 OR_LLC, /* 802.2 LLC header */
212 OR_PREVMPLSHDR, /* previous MPLS header */
213 OR_LINKTYPE, /* link-layer type */
214 OR_LINKPL, /* link-layer payload */
215 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
216 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
217 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
218 };
219
220 /*
221 * We divy out chunks of memory rather than call malloc each time so
222 * we don't have to worry about leaking memory. It's probably
223 * not a big deal if all this memory was wasted but if this ever
224 * goes into a library that would probably not be a good idea.
225 *
226 * XXX - this *is* in a library....
227 */
228 #define NCHUNKS 16
229 #define CHUNK0SIZE 1024
230 struct chunk {
231 size_t n_left;
232 void *m;
233 };
234
235 /*
236 * A chunk can store any of:
237 * - a string (guaranteed alignment 1 but present for completeness)
238 * - a block
239 * - an slist
240 * - an arth
241 * For this simple allocator every allocated chunk gets rounded up to the
242 * alignment needed for any chunk.
243 */
244 struct chunk_align {
245 char dummy;
246 union {
247 char c;
248 struct block b;
249 struct slist s;
250 struct arth a;
251 } u;
252 };
253 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
254
255 /* Code generator state */
256
257 struct _compiler_state {
258 jmp_buf top_ctx;
259 pcap_t *bpf_pcap;
260 int error_set;
261
262 struct icode ic;
263
264 int snaplen;
265
266 int linktype;
267 int prevlinktype;
268 int outermostlinktype;
269
270 bpf_u_int32 netmask;
271 int no_optimize;
272
273 /* Hack for handling VLAN and MPLS stacks. */
274 u_int label_stack_depth;
275 u_int vlan_stack_depth;
276
277 /* XXX */
278 u_int pcap_fddipad;
279
280 /*
281 * As errors are handled by a longjmp, anything allocated must
282 * be freed in the longjmp handler, so it must be reachable
283 * from that handler.
284 *
285 * One thing that's allocated is the result of pcap_nametoaddrinfo();
286 * it must be freed with freeaddrinfo(). This variable points to
287 * any addrinfo structure that would need to be freed.
288 */
289 struct addrinfo *ai;
290
291 /*
292 * Another thing that's allocated is the result of pcap_ether_aton();
293 * it must be freed with free(). This variable points to any
294 * address that would need to be freed.
295 */
296 u_char *e;
297
298 /*
299 * Various code constructs need to know the layout of the packet.
300 * These values give the necessary offsets from the beginning
301 * of the packet data.
302 */
303
304 /*
305 * Absolute offset of the beginning of the link-layer header.
306 */
307 bpf_abs_offset off_linkhdr;
308
309 /*
310 * If we're checking a link-layer header for a packet encapsulated
311 * in another protocol layer, this is the equivalent information
312 * for the previous layers' link-layer header from the beginning
313 * of the raw packet data.
314 */
315 bpf_abs_offset off_prevlinkhdr;
316
317 /*
318 * This is the equivalent information for the outermost layers'
319 * link-layer header.
320 */
321 bpf_abs_offset off_outermostlinkhdr;
322
323 /*
324 * Absolute offset of the beginning of the link-layer payload.
325 */
326 bpf_abs_offset off_linkpl;
327
328 /*
329 * "off_linktype" is the offset to information in the link-layer
330 * header giving the packet type. This is an absolute offset
331 * from the beginning of the packet.
332 *
333 * For Ethernet, it's the offset of the Ethernet type field; this
334 * means that it must have a value that skips VLAN tags.
335 *
336 * For link-layer types that always use 802.2 headers, it's the
337 * offset of the LLC header; this means that it must have a value
338 * that skips VLAN tags.
339 *
340 * For PPP, it's the offset of the PPP type field.
341 *
342 * For Cisco HDLC, it's the offset of the CHDLC type field.
343 *
344 * For BSD loopback, it's the offset of the AF_ value.
345 *
346 * For Linux cooked sockets, it's the offset of the type field.
347 *
348 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
349 * encapsulation, in which case, IP is assumed.
350 */
351 bpf_abs_offset off_linktype;
352
353 /*
354 * TRUE if the link layer includes an ATM pseudo-header.
355 */
356 int is_atm;
357
358 /*
359 * TRUE if "geneve" appeared in the filter; it causes us to
360 * generate code that checks for a Geneve header and assume
361 * that later filters apply to the encapsulated payload.
362 */
363 int is_geneve;
364
365 /*
366 * TRUE if we need variable length part of VLAN offset
367 */
368 int is_vlan_vloffset;
369
370 /*
371 * These are offsets for the ATM pseudo-header.
372 */
373 u_int off_vpi;
374 u_int off_vci;
375 u_int off_proto;
376
377 /*
378 * These are offsets for the MTP2 fields.
379 */
380 u_int off_li;
381 u_int off_li_hsl;
382
383 /*
384 * These are offsets for the MTP3 fields.
385 */
386 u_int off_sio;
387 u_int off_opc;
388 u_int off_dpc;
389 u_int off_sls;
390
391 /*
392 * This is the offset of the first byte after the ATM pseudo_header,
393 * or -1 if there is no ATM pseudo-header.
394 */
395 u_int off_payload;
396
397 /*
398 * These are offsets to the beginning of the network-layer header.
399 * They are relative to the beginning of the link-layer payload
400 * (i.e., they don't include off_linkhdr.constant_part or
401 * off_linkpl.constant_part).
402 *
403 * If the link layer never uses 802.2 LLC:
404 *
405 * "off_nl" and "off_nl_nosnap" are the same.
406 *
407 * If the link layer always uses 802.2 LLC:
408 *
409 * "off_nl" is the offset if there's a SNAP header following
410 * the 802.2 header;
411 *
412 * "off_nl_nosnap" is the offset if there's no SNAP header.
413 *
414 * If the link layer is Ethernet:
415 *
416 * "off_nl" is the offset if the packet is an Ethernet II packet
417 * (we assume no 802.3+802.2+SNAP);
418 *
419 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
420 * with an 802.2 header following it.
421 */
422 u_int off_nl;
423 u_int off_nl_nosnap;
424
425 /*
426 * Here we handle simple allocation of the scratch registers.
427 * If too many registers are alloc'd, the allocator punts.
428 */
429 int regused[BPF_MEMWORDS];
430 int curreg;
431
432 /*
433 * Memory chunks.
434 */
435 struct chunk chunks[NCHUNKS];
436 int cur_chunk;
437 };
438
439 /*
440 * For use by routines outside this file.
441 */
442 /* VARARGS */
443 void
444 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
445 {
446 va_list ap;
447
448 /*
449 * If we've already set an error, don't override it.
450 * The lexical analyzer reports some errors by setting
451 * the error and then returning a LEX_ERROR token, which
452 * is not recognized by any grammar rule, and thus forces
453 * the parse to stop. We don't want the error reported
454 * by the lexical analyzer to be overwritten by the syntax
455 * error.
456 */
457 if (!cstate->error_set) {
458 va_start(ap, fmt);
459 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
460 fmt, ap);
461 va_end(ap);
462 cstate->error_set = 1;
463 }
464 }
465
466 /*
467 * For use *ONLY* in routines in this file.
468 */
469 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
470 PCAP_PRINTFLIKE(2, 3);
471
472 /* VARARGS */
473 static void PCAP_NORETURN
474 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
475 {
476 va_list ap;
477
478 va_start(ap, fmt);
479 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
480 fmt, ap);
481 va_end(ap);
482 longjmp(cstate->top_ctx, 1);
483 /*NOTREACHED*/
484 #ifdef _AIX
485 PCAP_UNREACHABLE
486 #endif /* _AIX */
487 }
488
489 static int init_linktype(compiler_state_t *, pcap_t *);
490
491 static void init_regs(compiler_state_t *);
492 static int alloc_reg(compiler_state_t *);
493 static void free_reg(compiler_state_t *, int);
494
495 static void initchunks(compiler_state_t *cstate);
496 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
497 static void *newchunk(compiler_state_t *cstate, size_t);
498 static void freechunks(compiler_state_t *cstate);
499 static inline struct block *new_block(compiler_state_t *cstate, int);
500 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
501 static struct block *gen_retblk(compiler_state_t *cstate, int);
502 static inline void syntax(compiler_state_t *cstate);
503
504 static void backpatch(struct block *, struct block *);
505 static void merge(struct block *, struct block *);
506 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
507 u_int, bpf_u_int32);
508 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
509 u_int, bpf_u_int32);
510 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
511 u_int, bpf_u_int32);
512 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
513 u_int, bpf_u_int32);
514 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
515 u_int, bpf_u_int32);
516 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
517 u_int, bpf_u_int32, bpf_u_int32);
518 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
519 u_int, const u_char *);
520 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
521 u_int, bpf_u_int32, int, int, bpf_u_int32);
522 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
523 u_int, u_int);
524 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
525 u_int);
526 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
527 static struct block *gen_uncond(compiler_state_t *, int);
528 static inline struct block *gen_true(compiler_state_t *);
529 static inline struct block *gen_false(compiler_state_t *);
530 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
531 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
532 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
533 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
534 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
535 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
536 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
537 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
538 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
539 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
540 bpf_abs_offset *);
541 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
542 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
543 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
544 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
545 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
546 int, bpf_u_int32, u_int, u_int);
547 #ifdef INET6
548 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
549 struct in6_addr *, int, bpf_u_int32, u_int, u_int);
550 #endif
551 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
552 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
553 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
554 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
555 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
556 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
557 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
558 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
559 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
560 int, int, int);
561 #ifdef INET6
562 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
563 struct in6_addr *, int, int, int);
564 #endif
565 #ifndef INET6
566 static struct block *gen_gateway(compiler_state_t *, const u_char *,
567 struct addrinfo *, int, int);
568 #endif
569 static struct block *gen_ipfrag(compiler_state_t *);
570 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
571 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
572 bpf_u_int32);
573 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
574 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
575 bpf_u_int32);
576 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
577 static struct block *gen_port(compiler_state_t *, u_int, int, int);
578 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
579 bpf_u_int32, int);
580 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
581 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
582 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
583 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
584 bpf_u_int32, int);
585 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
586 static int lookup_proto(compiler_state_t *, const char *, int);
587 #if !defined(NO_PROTOCHAIN)
588 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
589 #endif /* !defined(NO_PROTOCHAIN) */
590 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
591 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
592 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
593 static struct block *gen_mac_multicast(compiler_state_t *, int);
594 static struct block *gen_len(compiler_state_t *, int, int);
595 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
596 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
597
598 static struct block *gen_ppi_dlt_check(compiler_state_t *);
599 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
600 bpf_u_int32, int, int);
601 static struct block *gen_atmtype_llc(compiler_state_t *);
602 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
603
604 static void
605 initchunks(compiler_state_t *cstate)
606 {
607 int i;
608
609 for (i = 0; i < NCHUNKS; i++) {
610 cstate->chunks[i].n_left = 0;
611 cstate->chunks[i].m = NULL;
612 }
613 cstate->cur_chunk = 0;
614 }
615
616 static void *
617 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
618 {
619 struct chunk *cp;
620 int k;
621 size_t size;
622
623 /* Round up to chunk alignment. */
624 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
625
626 cp = &cstate->chunks[cstate->cur_chunk];
627 if (n > cp->n_left) {
628 ++cp;
629 k = ++cstate->cur_chunk;
630 if (k >= NCHUNKS) {
631 bpf_set_error(cstate, "out of memory");
632 return (NULL);
633 }
634 size = CHUNK0SIZE << k;
635 cp->m = (void *)malloc(size);
636 if (cp->m == NULL) {
637 bpf_set_error(cstate, "out of memory");
638 return (NULL);
639 }
640 memset((char *)cp->m, 0, size);
641 cp->n_left = size;
642 if (n > size) {
643 bpf_set_error(cstate, "out of memory");
644 return (NULL);
645 }
646 }
647 cp->n_left -= n;
648 return (void *)((char *)cp->m + cp->n_left);
649 }
650
651 static void *
652 newchunk(compiler_state_t *cstate, size_t n)
653 {
654 void *p;
655
656 p = newchunk_nolongjmp(cstate, n);
657 if (p == NULL) {
658 longjmp(cstate->top_ctx, 1);
659 /*NOTREACHED*/
660 }
661 return (p);
662 }
663
664 static void
665 freechunks(compiler_state_t *cstate)
666 {
667 int i;
668
669 for (i = 0; i < NCHUNKS; ++i)
670 if (cstate->chunks[i].m != NULL)
671 free(cstate->chunks[i].m);
672 }
673
674 /*
675 * A strdup whose allocations are freed after code generation is over.
676 * This is used by the lexical analyzer, so it can't longjmp; it just
677 * returns NULL on an allocation error, and the callers must check
678 * for it.
679 */
680 char *
681 sdup(compiler_state_t *cstate, const char *s)
682 {
683 size_t n = strlen(s) + 1;
684 char *cp = newchunk_nolongjmp(cstate, n);
685
686 if (cp == NULL)
687 return (NULL);
688 pcap_strlcpy(cp, s, n);
689 return (cp);
690 }
691
692 static inline struct block *
693 new_block(compiler_state_t *cstate, int code)
694 {
695 struct block *p;
696
697 p = (struct block *)newchunk(cstate, sizeof(*p));
698 p->s.code = code;
699 p->head = p;
700
701 return p;
702 }
703
704 static inline struct slist *
705 new_stmt(compiler_state_t *cstate, int code)
706 {
707 struct slist *p;
708
709 p = (struct slist *)newchunk(cstate, sizeof(*p));
710 p->s.code = code;
711
712 return p;
713 }
714
715 static struct block *
716 gen_retblk(compiler_state_t *cstate, int v)
717 {
718 struct block *b = new_block(cstate, BPF_RET|BPF_K);
719
720 b->s.k = v;
721 return b;
722 }
723
724 static inline PCAP_NORETURN_DEF void
725 syntax(compiler_state_t *cstate)
726 {
727 bpf_error(cstate, "syntax error in filter expression");
728 }
729
730 int
731 pcap_compile(pcap_t *p, struct bpf_program *program,
732 const char *buf, int optimize, bpf_u_int32 mask)
733 {
734 #ifdef _WIN32
735 static int done = 0;
736 #endif
737 compiler_state_t cstate;
738 const char * volatile xbuf = buf;
739 yyscan_t scanner = NULL;
740 volatile YY_BUFFER_STATE in_buffer = NULL;
741 u_int len;
742 int rc;
743
744 /*
745 * If this pcap_t hasn't been activated, it doesn't have a
746 * link-layer type, so we can't use it.
747 */
748 if (!p->activated) {
749 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
750 "not-yet-activated pcap_t passed to pcap_compile");
751 return (PCAP_ERROR);
752 }
753
754 #ifdef _WIN32
755 if (!done)
756 pcap_wsockinit();
757 done = 1;
758 #endif
759
760 #ifdef ENABLE_REMOTE
761 /*
762 * If the device on which we're capturing need to be notified
763 * that a new filter is being compiled, do so.
764 *
765 * This allows them to save a copy of it, in case, for example,
766 * they're implementing a form of remote packet capture, and
767 * want the remote machine to filter out the packets in which
768 * it's sending the packets it's captured.
769 *
770 * XXX - the fact that we happen to be compiling a filter
771 * doesn't necessarily mean we'll be installing it as the
772 * filter for this pcap_t; we might be running it from userland
773 * on captured packets to do packet classification. We really
774 * need a better way of handling this, but this is all that
775 * the WinPcap remote capture code did.
776 */
777 if (p->save_current_filter_op != NULL)
778 (p->save_current_filter_op)(p, buf);
779 #endif
780
781 initchunks(&cstate);
782 cstate.no_optimize = 0;
783 #ifdef INET6
784 cstate.ai = NULL;
785 #endif
786 cstate.e = NULL;
787 cstate.ic.root = NULL;
788 cstate.ic.cur_mark = 0;
789 cstate.bpf_pcap = p;
790 cstate.error_set = 0;
791 init_regs(&cstate);
792
793 cstate.netmask = mask;
794
795 cstate.snaplen = pcap_snapshot(p);
796 if (cstate.snaplen == 0) {
797 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
798 "snaplen of 0 rejects all packets");
799 rc = PCAP_ERROR;
800 goto quit;
801 }
802
803 if (pcap_lex_init(&scanner) != 0)
804 pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
805 errno, "can't initialize scanner");
806 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
807
808 /*
809 * Associate the compiler state with the lexical analyzer
810 * state.
811 */
812 pcap_set_extra(&cstate, scanner);
813
814 if (init_linktype(&cstate, p) == -1) {
815 rc = PCAP_ERROR;
816 goto quit;
817 }
818 if (pcap_parse(scanner, &cstate) != 0) {
819 #ifdef INET6
820 if (cstate.ai != NULL)
821 freeaddrinfo(cstate.ai);
822 #endif
823 if (cstate.e != NULL)
824 free(cstate.e);
825 rc = PCAP_ERROR;
826 goto quit;
827 }
828
829 if (cstate.ic.root == NULL) {
830 /*
831 * Catch errors reported by gen_retblk().
832 */
833 if (setjmp(cstate.top_ctx)) {
834 rc = PCAP_ERROR;
835 goto quit;
836 }
837 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
838 }
839
840 if (optimize && !cstate.no_optimize) {
841 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
842 /* Failure */
843 rc = PCAP_ERROR;
844 goto quit;
845 }
846 if (cstate.ic.root == NULL ||
847 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
848 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
849 "expression rejects all packets");
850 rc = PCAP_ERROR;
851 goto quit;
852 }
853 }
854 program->bf_insns = icode_to_fcode(&cstate.ic,
855 cstate.ic.root, &len, p->errbuf);
856 if (program->bf_insns == NULL) {
857 /* Failure */
858 rc = PCAP_ERROR;
859 goto quit;
860 }
861 program->bf_len = len;
862
863 rc = 0; /* We're all okay */
864
865 quit:
866 /*
867 * Clean up everything for the lexical analyzer.
868 */
869 if (in_buffer != NULL)
870 pcap__delete_buffer(in_buffer, scanner);
871 if (scanner != NULL)
872 pcap_lex_destroy(scanner);
873
874 /*
875 * Clean up our own allocated memory.
876 */
877 freechunks(&cstate);
878
879 return (rc);
880 }
881
882 /*
883 * entry point for using the compiler with no pcap open
884 * pass in all the stuff that is needed explicitly instead.
885 */
886 int
887 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
888 struct bpf_program *program,
889 const char *buf, int optimize, bpf_u_int32 mask)
890 {
891 pcap_t *p;
892 int ret;
893
894 p = pcap_open_dead(linktype_arg, snaplen_arg);
895 if (p == NULL)
896 return (PCAP_ERROR);
897 ret = pcap_compile(p, program, buf, optimize, mask);
898 pcap_close(p);
899 return (ret);
900 }
901
902 /*
903 * Clean up a "struct bpf_program" by freeing all the memory allocated
904 * in it.
905 */
906 void
907 pcap_freecode(struct bpf_program *program)
908 {
909 program->bf_len = 0;
910 if (program->bf_insns != NULL) {
911 free((char *)program->bf_insns);
912 program->bf_insns = NULL;
913 }
914 }
915
916 /*
917 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
918 * which of the jt and jf fields has been resolved and which is a pointer
919 * back to another unresolved block (or nil). At least one of the fields
920 * in each block is already resolved.
921 */
922 static void
923 backpatch(struct block *list, struct block *target)
924 {
925 struct block *next;
926
927 while (list) {
928 if (!list->sense) {
929 next = JT(list);
930 JT(list) = target;
931 } else {
932 next = JF(list);
933 JF(list) = target;
934 }
935 list = next;
936 }
937 }
938
939 /*
940 * Merge the lists in b0 and b1, using the 'sense' field to indicate
941 * which of jt and jf is the link.
942 */
943 static void
944 merge(struct block *b0, struct block *b1)
945 {
946 register struct block **p = &b0;
947
948 /* Find end of list. */
949 while (*p)
950 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
951
952 /* Concatenate the lists. */
953 *p = b1;
954 }
955
956 int
957 finish_parse(compiler_state_t *cstate, struct block *p)
958 {
959 struct block *ppi_dlt_check;
960
961 /*
962 * Catch errors reported by us and routines below us, and return -1
963 * on an error.
964 */
965 if (setjmp(cstate->top_ctx))
966 return (-1);
967
968 /*
969 * Insert before the statements of the first (root) block any
970 * statements needed to load the lengths of any variable-length
971 * headers into registers.
972 *
973 * XXX - a fancier strategy would be to insert those before the
974 * statements of all blocks that use those lengths and that
975 * have no predecessors that use them, so that we only compute
976 * the lengths if we need them. There might be even better
977 * approaches than that.
978 *
979 * However, those strategies would be more complicated, and
980 * as we don't generate code to compute a length if the
981 * program has no tests that use the length, and as most
982 * tests will probably use those lengths, we would just
983 * postpone computing the lengths so that it's not done
984 * for tests that fail early, and it's not clear that's
985 * worth the effort.
986 */
987 insert_compute_vloffsets(cstate, p->head);
988
989 /*
990 * For DLT_PPI captures, generate a check of the per-packet
991 * DLT value to make sure it's DLT_IEEE802_11.
992 *
993 * XXX - TurboCap cards use DLT_PPI for Ethernet.
994 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
995 * with appropriate Ethernet information and use that rather
996 * than using something such as DLT_PPI where you don't know
997 * the link-layer header type until runtime, which, in the
998 * general case, would force us to generate both Ethernet *and*
999 * 802.11 code (*and* anything else for which PPI is used)
1000 * and choose between them early in the BPF program?
1001 */
1002 ppi_dlt_check = gen_ppi_dlt_check(cstate);
1003 if (ppi_dlt_check != NULL)
1004 gen_and(ppi_dlt_check, p);
1005
1006 backpatch(p, gen_retblk(cstate, cstate->snaplen));
1007 p->sense = !p->sense;
1008 backpatch(p, gen_retblk(cstate, 0));
1009 cstate->ic.root = p->head;
1010 return (0);
1011 }
1012
1013 void
1014 gen_and(struct block *b0, struct block *b1)
1015 {
1016 backpatch(b0, b1->head);
1017 b0->sense = !b0->sense;
1018 b1->sense = !b1->sense;
1019 merge(b1, b0);
1020 b1->sense = !b1->sense;
1021 b1->head = b0->head;
1022 }
1023
1024 void
1025 gen_or(struct block *b0, struct block *b1)
1026 {
1027 b0->sense = !b0->sense;
1028 backpatch(b0, b1->head);
1029 b0->sense = !b0->sense;
1030 merge(b1, b0);
1031 b1->head = b0->head;
1032 }
1033
1034 void
1035 gen_not(struct block *b)
1036 {
1037 b->sense = !b->sense;
1038 }
1039
1040 static struct block *
1041 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1042 u_int size, bpf_u_int32 v)
1043 {
1044 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1045 }
1046
1047 static struct block *
1048 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1049 u_int size, bpf_u_int32 v)
1050 {
1051 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1052 }
1053
1054 static struct block *
1055 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1056 u_int size, bpf_u_int32 v)
1057 {
1058 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1059 }
1060
1061 static struct block *
1062 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1063 u_int size, bpf_u_int32 v)
1064 {
1065 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1066 }
1067
1068 static struct block *
1069 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1070 u_int size, bpf_u_int32 v)
1071 {
1072 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1073 }
1074
1075 static struct block *
1076 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1077 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1078 {
1079 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1080 }
1081
1082 static struct block *
1083 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1084 u_int size, const u_char *v)
1085 {
1086 register struct block *b, *tmp;
1087
1088 b = NULL;
1089 while (size >= 4) {
1090 register const u_char *p = &v[size - 4];
1091
1092 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1093 EXTRACT_BE_U_4(p));
1094 if (b != NULL)
1095 gen_and(b, tmp);
1096 b = tmp;
1097 size -= 4;
1098 }
1099 while (size >= 2) {
1100 register const u_char *p = &v[size - 2];
1101
1102 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1103 EXTRACT_BE_U_2(p));
1104 if (b != NULL)
1105 gen_and(b, tmp);
1106 b = tmp;
1107 size -= 2;
1108 }
1109 if (size > 0) {
1110 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1111 if (b != NULL)
1112 gen_and(b, tmp);
1113 b = tmp;
1114 }
1115 return b;
1116 }
1117
1118 /*
1119 * AND the field of size "size" at offset "offset" relative to the header
1120 * specified by "offrel" with "mask", and compare it with the value "v"
1121 * with the test specified by "jtype"; if "reverse" is true, the test
1122 * should test the opposite of "jtype".
1123 */
1124 static struct block *
1125 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1126 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1127 bpf_u_int32 v)
1128 {
1129 struct slist *s, *s2;
1130 struct block *b;
1131
1132 s = gen_load_a(cstate, offrel, offset, size);
1133
1134 if (mask != 0xffffffff) {
1135 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1136 s2->s.k = mask;
1137 sappend(s, s2);
1138 }
1139
1140 b = new_block(cstate, JMP(jtype));
1141 b->stmts = s;
1142 b->s.k = v;
1143 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1144 gen_not(b);
1145 return b;
1146 }
1147
1148 static int
1149 init_linktype(compiler_state_t *cstate, pcap_t *p)
1150 {
1151 cstate->pcap_fddipad = p->fddipad;
1152
1153 /*
1154 * We start out with only one link-layer header.
1155 */
1156 cstate->outermostlinktype = pcap_datalink(p);
1157 cstate->off_outermostlinkhdr.constant_part = 0;
1158 cstate->off_outermostlinkhdr.is_variable = 0;
1159 cstate->off_outermostlinkhdr.reg = -1;
1160
1161 cstate->prevlinktype = cstate->outermostlinktype;
1162 cstate->off_prevlinkhdr.constant_part = 0;
1163 cstate->off_prevlinkhdr.is_variable = 0;
1164 cstate->off_prevlinkhdr.reg = -1;
1165
1166 cstate->linktype = cstate->outermostlinktype;
1167 cstate->off_linkhdr.constant_part = 0;
1168 cstate->off_linkhdr.is_variable = 0;
1169 cstate->off_linkhdr.reg = -1;
1170
1171 /*
1172 * XXX
1173 */
1174 cstate->off_linkpl.constant_part = 0;
1175 cstate->off_linkpl.is_variable = 0;
1176 cstate->off_linkpl.reg = -1;
1177
1178 cstate->off_linktype.constant_part = 0;
1179 cstate->off_linktype.is_variable = 0;
1180 cstate->off_linktype.reg = -1;
1181
1182 /*
1183 * Assume it's not raw ATM with a pseudo-header, for now.
1184 */
1185 cstate->is_atm = 0;
1186 cstate->off_vpi = OFFSET_NOT_SET;
1187 cstate->off_vci = OFFSET_NOT_SET;
1188 cstate->off_proto = OFFSET_NOT_SET;
1189 cstate->off_payload = OFFSET_NOT_SET;
1190
1191 /*
1192 * And not Geneve.
1193 */
1194 cstate->is_geneve = 0;
1195
1196 /*
1197 * No variable length VLAN offset by default
1198 */
1199 cstate->is_vlan_vloffset = 0;
1200
1201 /*
1202 * And assume we're not doing SS7.
1203 */
1204 cstate->off_li = OFFSET_NOT_SET;
1205 cstate->off_li_hsl = OFFSET_NOT_SET;
1206 cstate->off_sio = OFFSET_NOT_SET;
1207 cstate->off_opc = OFFSET_NOT_SET;
1208 cstate->off_dpc = OFFSET_NOT_SET;
1209 cstate->off_sls = OFFSET_NOT_SET;
1210
1211 cstate->label_stack_depth = 0;
1212 cstate->vlan_stack_depth = 0;
1213
1214 switch (cstate->linktype) {
1215
1216 case DLT_ARCNET:
1217 cstate->off_linktype.constant_part = 2;
1218 cstate->off_linkpl.constant_part = 6;
1219 cstate->off_nl = 0; /* XXX in reality, variable! */
1220 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1221 break;
1222
1223 case DLT_ARCNET_LINUX:
1224 cstate->off_linktype.constant_part = 4;
1225 cstate->off_linkpl.constant_part = 8;
1226 cstate->off_nl = 0; /* XXX in reality, variable! */
1227 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1228 break;
1229
1230 case DLT_EN10MB:
1231 cstate->off_linktype.constant_part = 12;
1232 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1233 cstate->off_nl = 0; /* Ethernet II */
1234 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1235 break;
1236
1237 case DLT_SLIP:
1238 /*
1239 * SLIP doesn't have a link level type. The 16 byte
1240 * header is hacked into our SLIP driver.
1241 */
1242 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1243 cstate->off_linkpl.constant_part = 16;
1244 cstate->off_nl = 0;
1245 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1246 break;
1247
1248 case DLT_SLIP_BSDOS:
1249 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1250 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1251 /* XXX end */
1252 cstate->off_linkpl.constant_part = 24;
1253 cstate->off_nl = 0;
1254 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1255 break;
1256
1257 case DLT_NULL:
1258 case DLT_LOOP:
1259 cstate->off_linktype.constant_part = 0;
1260 cstate->off_linkpl.constant_part = 4;
1261 cstate->off_nl = 0;
1262 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1263 break;
1264
1265 case DLT_ENC:
1266 cstate->off_linktype.constant_part = 0;
1267 cstate->off_linkpl.constant_part = 12;
1268 cstate->off_nl = 0;
1269 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1270 break;
1271
1272 case DLT_PPP:
1273 case DLT_PPP_PPPD:
1274 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1275 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1276 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1277 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1278 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1279 cstate->off_nl = 0;
1280 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1281 break;
1282
1283 case DLT_PPP_ETHER:
1284 /*
1285 * This does no include the Ethernet header, and
1286 * only covers session state.
1287 */
1288 cstate->off_linktype.constant_part = 6;
1289 cstate->off_linkpl.constant_part = 8;
1290 cstate->off_nl = 0;
1291 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1292 break;
1293
1294 case DLT_PPP_BSDOS:
1295 cstate->off_linktype.constant_part = 5;
1296 cstate->off_linkpl.constant_part = 24;
1297 cstate->off_nl = 0;
1298 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1299 break;
1300
1301 case DLT_FDDI:
1302 /*
1303 * FDDI doesn't really have a link-level type field.
1304 * We set "off_linktype" to the offset of the LLC header.
1305 *
1306 * To check for Ethernet types, we assume that SSAP = SNAP
1307 * is being used and pick out the encapsulated Ethernet type.
1308 * XXX - should we generate code to check for SNAP?
1309 */
1310 cstate->off_linktype.constant_part = 13;
1311 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1312 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1313 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1314 cstate->off_nl = 8; /* 802.2+SNAP */
1315 cstate->off_nl_nosnap = 3; /* 802.2 */
1316 break;
1317
1318 case DLT_IEEE802:
1319 /*
1320 * Token Ring doesn't really have a link-level type field.
1321 * We set "off_linktype" to the offset of the LLC header.
1322 *
1323 * To check for Ethernet types, we assume that SSAP = SNAP
1324 * is being used and pick out the encapsulated Ethernet type.
1325 * XXX - should we generate code to check for SNAP?
1326 *
1327 * XXX - the header is actually variable-length.
1328 * Some various Linux patched versions gave 38
1329 * as "off_linktype" and 40 as "off_nl"; however,
1330 * if a token ring packet has *no* routing
1331 * information, i.e. is not source-routed, the correct
1332 * values are 20 and 22, as they are in the vanilla code.
1333 *
1334 * A packet is source-routed iff the uppermost bit
1335 * of the first byte of the source address, at an
1336 * offset of 8, has the uppermost bit set. If the
1337 * packet is source-routed, the total number of bytes
1338 * of routing information is 2 plus bits 0x1F00 of
1339 * the 16-bit value at an offset of 14 (shifted right
1340 * 8 - figure out which byte that is).
1341 */
1342 cstate->off_linktype.constant_part = 14;
1343 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1344 cstate->off_nl = 8; /* 802.2+SNAP */
1345 cstate->off_nl_nosnap = 3; /* 802.2 */
1346 break;
1347
1348 case DLT_PRISM_HEADER:
1349 case DLT_IEEE802_11_RADIO_AVS:
1350 case DLT_IEEE802_11_RADIO:
1351 cstate->off_linkhdr.is_variable = 1;
1352 /* Fall through, 802.11 doesn't have a variable link
1353 * prefix but is otherwise the same. */
1354 /* FALLTHROUGH */
1355
1356 case DLT_IEEE802_11:
1357 /*
1358 * 802.11 doesn't really have a link-level type field.
1359 * We set "off_linktype.constant_part" to the offset of
1360 * the LLC header.
1361 *
1362 * To check for Ethernet types, we assume that SSAP = SNAP
1363 * is being used and pick out the encapsulated Ethernet type.
1364 * XXX - should we generate code to check for SNAP?
1365 *
1366 * We also handle variable-length radio headers here.
1367 * The Prism header is in theory variable-length, but in
1368 * practice it's always 144 bytes long. However, some
1369 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1370 * sometimes or always supply an AVS header, so we
1371 * have to check whether the radio header is a Prism
1372 * header or an AVS header, so, in practice, it's
1373 * variable-length.
1374 */
1375 cstate->off_linktype.constant_part = 24;
1376 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1377 cstate->off_linkpl.is_variable = 1;
1378 cstate->off_nl = 8; /* 802.2+SNAP */
1379 cstate->off_nl_nosnap = 3; /* 802.2 */
1380 break;
1381
1382 case DLT_PPI:
1383 /*
1384 * At the moment we treat PPI the same way that we treat
1385 * normal Radiotap encoded packets. The difference is in
1386 * the function that generates the code at the beginning
1387 * to compute the header length. Since this code generator
1388 * of PPI supports bare 802.11 encapsulation only (i.e.
1389 * the encapsulated DLT should be DLT_IEEE802_11) we
1390 * generate code to check for this too.
1391 */
1392 cstate->off_linktype.constant_part = 24;
1393 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1394 cstate->off_linkpl.is_variable = 1;
1395 cstate->off_linkhdr.is_variable = 1;
1396 cstate->off_nl = 8; /* 802.2+SNAP */
1397 cstate->off_nl_nosnap = 3; /* 802.2 */
1398 break;
1399
1400 case DLT_ATM_RFC1483:
1401 case DLT_ATM_CLIP: /* Linux ATM defines this */
1402 /*
1403 * assume routed, non-ISO PDUs
1404 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1405 *
1406 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1407 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1408 * latter would presumably be treated the way PPPoE
1409 * should be, so you can do "pppoe and udp port 2049"
1410 * or "pppoa and tcp port 80" and have it check for
1411 * PPPo{A,E} and a PPP protocol of IP and....
1412 */
1413 cstate->off_linktype.constant_part = 0;
1414 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1415 cstate->off_nl = 8; /* 802.2+SNAP */
1416 cstate->off_nl_nosnap = 3; /* 802.2 */
1417 break;
1418
1419 case DLT_SUNATM:
1420 /*
1421 * Full Frontal ATM; you get AALn PDUs with an ATM
1422 * pseudo-header.
1423 */
1424 cstate->is_atm = 1;
1425 cstate->off_vpi = SUNATM_VPI_POS;
1426 cstate->off_vci = SUNATM_VCI_POS;
1427 cstate->off_proto = PROTO_POS;
1428 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1429 cstate->off_linktype.constant_part = cstate->off_payload;
1430 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1431 cstate->off_nl = 8; /* 802.2+SNAP */
1432 cstate->off_nl_nosnap = 3; /* 802.2 */
1433 break;
1434
1435 case DLT_RAW:
1436 case DLT_IPV4:
1437 case DLT_IPV6:
1438 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1439 cstate->off_linkpl.constant_part = 0;
1440 cstate->off_nl = 0;
1441 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1442 break;
1443
1444 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1445 cstate->off_linktype.constant_part = 14;
1446 cstate->off_linkpl.constant_part = 16;
1447 cstate->off_nl = 0;
1448 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1449 break;
1450
1451 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1452 cstate->off_linktype.constant_part = 0;
1453 cstate->off_linkpl.constant_part = 20;
1454 cstate->off_nl = 0;
1455 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1456 break;
1457
1458 case DLT_LTALK:
1459 /*
1460 * LocalTalk does have a 1-byte type field in the LLAP header,
1461 * but really it just indicates whether there is a "short" or
1462 * "long" DDP packet following.
1463 */
1464 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1465 cstate->off_linkpl.constant_part = 0;
1466 cstate->off_nl = 0;
1467 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1468 break;
1469
1470 case DLT_IP_OVER_FC:
1471 /*
1472 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1473 * link-level type field. We set "off_linktype" to the
1474 * offset of the LLC header.
1475 *
1476 * To check for Ethernet types, we assume that SSAP = SNAP
1477 * is being used and pick out the encapsulated Ethernet type.
1478 * XXX - should we generate code to check for SNAP? RFC
1479 * 2625 says SNAP should be used.
1480 */
1481 cstate->off_linktype.constant_part = 16;
1482 cstate->off_linkpl.constant_part = 16;
1483 cstate->off_nl = 8; /* 802.2+SNAP */
1484 cstate->off_nl_nosnap = 3; /* 802.2 */
1485 break;
1486
1487 case DLT_FRELAY:
1488 /*
1489 * XXX - we should set this to handle SNAP-encapsulated
1490 * frames (NLPID of 0x80).
1491 */
1492 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1493 cstate->off_linkpl.constant_part = 0;
1494 cstate->off_nl = 0;
1495 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1496 break;
1497
1498 /*
1499 * the only BPF-interesting FRF.16 frames are non-control frames;
1500 * Frame Relay has a variable length link-layer
1501 * so lets start with offset 4 for now and increments later on (FIXME);
1502 */
1503 case DLT_MFR:
1504 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1505 cstate->off_linkpl.constant_part = 0;
1506 cstate->off_nl = 4;
1507 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1508 break;
1509
1510 case DLT_APPLE_IP_OVER_IEEE1394:
1511 cstate->off_linktype.constant_part = 16;
1512 cstate->off_linkpl.constant_part = 18;
1513 cstate->off_nl = 0;
1514 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1515 break;
1516
1517 case DLT_SYMANTEC_FIREWALL:
1518 cstate->off_linktype.constant_part = 6;
1519 cstate->off_linkpl.constant_part = 44;
1520 cstate->off_nl = 0; /* Ethernet II */
1521 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1522 break;
1523
1524 case DLT_PFLOG:
1525 cstate->off_linktype.constant_part = 0;
1526 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1527 cstate->off_linkpl.is_variable = 1;
1528 cstate->off_nl = 0;
1529 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1530 break;
1531
1532 case DLT_JUNIPER_MFR:
1533 case DLT_JUNIPER_MLFR:
1534 case DLT_JUNIPER_MLPPP:
1535 case DLT_JUNIPER_PPP:
1536 case DLT_JUNIPER_CHDLC:
1537 case DLT_JUNIPER_FRELAY:
1538 cstate->off_linktype.constant_part = 4;
1539 cstate->off_linkpl.constant_part = 4;
1540 cstate->off_nl = 0;
1541 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1542 break;
1543
1544 case DLT_JUNIPER_ATM1:
1545 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1546 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1547 cstate->off_nl = 0;
1548 cstate->off_nl_nosnap = 10;
1549 break;
1550
1551 case DLT_JUNIPER_ATM2:
1552 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1553 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1554 cstate->off_nl = 0;
1555 cstate->off_nl_nosnap = 10;
1556 break;
1557
1558 /* frames captured on a Juniper PPPoE service PIC
1559 * contain raw ethernet frames */
1560 case DLT_JUNIPER_PPPOE:
1561 case DLT_JUNIPER_ETHER:
1562 cstate->off_linkpl.constant_part = 14;
1563 cstate->off_linktype.constant_part = 16;
1564 cstate->off_nl = 18; /* Ethernet II */
1565 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1566 break;
1567
1568 case DLT_JUNIPER_PPPOE_ATM:
1569 cstate->off_linktype.constant_part = 4;
1570 cstate->off_linkpl.constant_part = 6;
1571 cstate->off_nl = 0;
1572 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1573 break;
1574
1575 case DLT_JUNIPER_GGSN:
1576 cstate->off_linktype.constant_part = 6;
1577 cstate->off_linkpl.constant_part = 12;
1578 cstate->off_nl = 0;
1579 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1580 break;
1581
1582 case DLT_JUNIPER_ES:
1583 cstate->off_linktype.constant_part = 6;
1584 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1585 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1586 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1587 break;
1588
1589 case DLT_JUNIPER_MONITOR:
1590 cstate->off_linktype.constant_part = 12;
1591 cstate->off_linkpl.constant_part = 12;
1592 cstate->off_nl = 0; /* raw IP/IP6 header */
1593 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1594 break;
1595
1596 case DLT_BACNET_MS_TP:
1597 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1598 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1599 cstate->off_nl = OFFSET_NOT_SET;
1600 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1601 break;
1602
1603 case DLT_JUNIPER_SERVICES:
1604 cstate->off_linktype.constant_part = 12;
1605 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1606 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1607 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1608 break;
1609
1610 case DLT_JUNIPER_VP:
1611 cstate->off_linktype.constant_part = 18;
1612 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1613 cstate->off_nl = OFFSET_NOT_SET;
1614 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1615 break;
1616
1617 case DLT_JUNIPER_ST:
1618 cstate->off_linktype.constant_part = 18;
1619 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1620 cstate->off_nl = OFFSET_NOT_SET;
1621 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1622 break;
1623
1624 case DLT_JUNIPER_ISM:
1625 cstate->off_linktype.constant_part = 8;
1626 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1627 cstate->off_nl = OFFSET_NOT_SET;
1628 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1629 break;
1630
1631 case DLT_JUNIPER_VS:
1632 case DLT_JUNIPER_SRX_E2E:
1633 case DLT_JUNIPER_FIBRECHANNEL:
1634 case DLT_JUNIPER_ATM_CEMIC:
1635 cstate->off_linktype.constant_part = 8;
1636 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637 cstate->off_nl = OFFSET_NOT_SET;
1638 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639 break;
1640
1641 case DLT_MTP2:
1642 cstate->off_li = 2;
1643 cstate->off_li_hsl = 4;
1644 cstate->off_sio = 3;
1645 cstate->off_opc = 4;
1646 cstate->off_dpc = 4;
1647 cstate->off_sls = 7;
1648 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650 cstate->off_nl = OFFSET_NOT_SET;
1651 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652 break;
1653
1654 case DLT_MTP2_WITH_PHDR:
1655 cstate->off_li = 6;
1656 cstate->off_li_hsl = 8;
1657 cstate->off_sio = 7;
1658 cstate->off_opc = 8;
1659 cstate->off_dpc = 8;
1660 cstate->off_sls = 11;
1661 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663 cstate->off_nl = OFFSET_NOT_SET;
1664 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665 break;
1666
1667 case DLT_ERF:
1668 cstate->off_li = 22;
1669 cstate->off_li_hsl = 24;
1670 cstate->off_sio = 23;
1671 cstate->off_opc = 24;
1672 cstate->off_dpc = 24;
1673 cstate->off_sls = 27;
1674 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1675 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1676 cstate->off_nl = OFFSET_NOT_SET;
1677 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1678 break;
1679
1680 case DLT_PFSYNC:
1681 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1682 cstate->off_linkpl.constant_part = 4;
1683 cstate->off_nl = 0;
1684 cstate->off_nl_nosnap = 0;
1685 break;
1686
1687 case DLT_AX25_KISS:
1688 /*
1689 * Currently, only raw "link[N:M]" filtering is supported.
1690 */
1691 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1692 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1693 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1694 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1695 break;
1696
1697 case DLT_IPNET:
1698 cstate->off_linktype.constant_part = 1;
1699 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1700 cstate->off_nl = 0;
1701 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1702 break;
1703
1704 case DLT_NETANALYZER:
1705 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1706 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1707 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1708 cstate->off_nl = 0; /* Ethernet II */
1709 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1710 break;
1711
1712 case DLT_NETANALYZER_TRANSPARENT:
1713 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1714 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1715 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1716 cstate->off_nl = 0; /* Ethernet II */
1717 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1718 break;
1719
1720 default:
1721 /*
1722 * For values in the range in which we've assigned new
1723 * DLT_ values, only raw "link[N:M]" filtering is supported.
1724 */
1725 if (cstate->linktype >= DLT_MATCHING_MIN &&
1726 cstate->linktype <= DLT_MATCHING_MAX) {
1727 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1728 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1729 cstate->off_nl = OFFSET_NOT_SET;
1730 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1731 } else {
1732 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1733 cstate->linktype, DLT_MATCHING_MIN, DLT_MATCHING_MAX);
1734 return (-1);
1735 }
1736 break;
1737 }
1738
1739 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1740 return (0);
1741 }
1742
1743 /*
1744 * Load a value relative to the specified absolute offset.
1745 */
1746 static struct slist *
1747 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1748 u_int offset, u_int size)
1749 {
1750 struct slist *s, *s2;
1751
1752 s = gen_abs_offset_varpart(cstate, abs_offset);
1753
1754 /*
1755 * If "s" is non-null, it has code to arrange that the X register
1756 * contains the variable part of the absolute offset, so we
1757 * generate a load relative to that, with an offset of
1758 * abs_offset->constant_part + offset.
1759 *
1760 * Otherwise, we can do an absolute load with an offset of
1761 * abs_offset->constant_part + offset.
1762 */
1763 if (s != NULL) {
1764 /*
1765 * "s" points to a list of statements that puts the
1766 * variable part of the absolute offset into the X register.
1767 * Do an indirect load, to use the X register as an offset.
1768 */
1769 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1770 s2->s.k = abs_offset->constant_part + offset;
1771 sappend(s, s2);
1772 } else {
1773 /*
1774 * There is no variable part of the absolute offset, so
1775 * just do an absolute load.
1776 */
1777 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1778 s->s.k = abs_offset->constant_part + offset;
1779 }
1780 return s;
1781 }
1782
1783 /*
1784 * Load a value relative to the beginning of the specified header.
1785 */
1786 static struct slist *
1787 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1788 u_int size)
1789 {
1790 struct slist *s, *s2;
1791
1792 /*
1793 * Squelch warnings from compilers that *don't* assume that
1794 * offrel always has a valid enum value and therefore don't
1795 * assume that we'll always go through one of the case arms.
1796 *
1797 * If we have a default case, compilers that *do* assume that
1798 * will then complain about the default case code being
1799 * unreachable.
1800 *
1801 * Damned if you do, damned if you don't.
1802 */
1803 s = NULL;
1804
1805 switch (offrel) {
1806
1807 case OR_PACKET:
1808 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1809 s->s.k = offset;
1810 break;
1811
1812 case OR_LINKHDR:
1813 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1814 break;
1815
1816 case OR_PREVLINKHDR:
1817 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1818 break;
1819
1820 case OR_LLC:
1821 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1822 break;
1823
1824 case OR_PREVMPLSHDR:
1825 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1826 break;
1827
1828 case OR_LINKPL:
1829 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1830 break;
1831
1832 case OR_LINKPL_NOSNAP:
1833 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1834 break;
1835
1836 case OR_LINKTYPE:
1837 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1838 break;
1839
1840 case OR_TRAN_IPV4:
1841 /*
1842 * Load the X register with the length of the IPv4 header
1843 * (plus the offset of the link-layer header, if it's
1844 * preceded by a variable-length header such as a radio
1845 * header), in bytes.
1846 */
1847 s = gen_loadx_iphdrlen(cstate);
1848
1849 /*
1850 * Load the item at {offset of the link-layer payload} +
1851 * {offset, relative to the start of the link-layer
1852 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1853 * {specified offset}.
1854 *
1855 * If the offset of the link-layer payload is variable,
1856 * the variable part of that offset is included in the
1857 * value in the X register, and we include the constant
1858 * part in the offset of the load.
1859 */
1860 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1861 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1862 sappend(s, s2);
1863 break;
1864
1865 case OR_TRAN_IPV6:
1866 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1867 break;
1868 }
1869 return s;
1870 }
1871
1872 /*
1873 * Generate code to load into the X register the sum of the length of
1874 * the IPv4 header and the variable part of the offset of the link-layer
1875 * payload.
1876 */
1877 static struct slist *
1878 gen_loadx_iphdrlen(compiler_state_t *cstate)
1879 {
1880 struct slist *s, *s2;
1881
1882 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1883 if (s != NULL) {
1884 /*
1885 * The offset of the link-layer payload has a variable
1886 * part. "s" points to a list of statements that put
1887 * the variable part of that offset into the X register.
1888 *
1889 * The 4*([k]&0xf) addressing mode can't be used, as we
1890 * don't have a constant offset, so we have to load the
1891 * value in question into the A register and add to it
1892 * the value from the X register.
1893 */
1894 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1895 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1896 sappend(s, s2);
1897 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1898 s2->s.k = 0xf;
1899 sappend(s, s2);
1900 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1901 s2->s.k = 2;
1902 sappend(s, s2);
1903
1904 /*
1905 * The A register now contains the length of the IP header.
1906 * We need to add to it the variable part of the offset of
1907 * the link-layer payload, which is still in the X
1908 * register, and move the result into the X register.
1909 */
1910 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1911 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1912 } else {
1913 /*
1914 * The offset of the link-layer payload is a constant,
1915 * so no code was generated to load the (non-existent)
1916 * variable part of that offset.
1917 *
1918 * This means we can use the 4*([k]&0xf) addressing
1919 * mode. Load the length of the IPv4 header, which
1920 * is at an offset of cstate->off_nl from the beginning of
1921 * the link-layer payload, and thus at an offset of
1922 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1923 * of the raw packet data, using that addressing mode.
1924 */
1925 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1926 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1927 }
1928 return s;
1929 }
1930
1931
1932 static struct block *
1933 gen_uncond(compiler_state_t *cstate, int rsense)
1934 {
1935 struct block *b;
1936 struct slist *s;
1937
1938 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1939 s->s.k = !rsense;
1940 b = new_block(cstate, JMP(BPF_JEQ));
1941 b->stmts = s;
1942
1943 return b;
1944 }
1945
1946 static inline struct block *
1947 gen_true(compiler_state_t *cstate)
1948 {
1949 return gen_uncond(cstate, 1);
1950 }
1951
1952 static inline struct block *
1953 gen_false(compiler_state_t *cstate)
1954 {
1955 return gen_uncond(cstate, 0);
1956 }
1957
1958 /*
1959 * Byte-swap a 32-bit number.
1960 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1961 * big-endian platforms.)
1962 */
1963 #define SWAPLONG(y) \
1964 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1965
1966 /*
1967 * Generate code to match a particular packet type.
1968 *
1969 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1970 * value, if <= ETHERMTU. We use that to determine whether to
1971 * match the type/length field or to check the type/length field for
1972 * a value <= ETHERMTU to see whether it's a type field and then do
1973 * the appropriate test.
1974 */
1975 static struct block *
1976 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1977 {
1978 struct block *b0, *b1;
1979
1980 switch (ll_proto) {
1981
1982 case LLCSAP_ISONS:
1983 case LLCSAP_IP:
1984 case LLCSAP_NETBEUI:
1985 /*
1986 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1987 * so we check the DSAP and SSAP.
1988 *
1989 * LLCSAP_IP checks for IP-over-802.2, rather
1990 * than IP-over-Ethernet or IP-over-SNAP.
1991 *
1992 * XXX - should we check both the DSAP and the
1993 * SSAP, like this, or should we check just the
1994 * DSAP, as we do for other types <= ETHERMTU
1995 * (i.e., other SAP values)?
1996 */
1997 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1998 gen_not(b0);
1999 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2000 gen_and(b0, b1);
2001 return b1;
2002
2003 case LLCSAP_IPX:
2004 /*
2005 * Check for;
2006 *
2007 * Ethernet_II frames, which are Ethernet
2008 * frames with a frame type of ETHERTYPE_IPX;
2009 *
2010 * Ethernet_802.3 frames, which are 802.3
2011 * frames (i.e., the type/length field is
2012 * a length field, <= ETHERMTU, rather than
2013 * a type field) with the first two bytes
2014 * after the Ethernet/802.3 header being
2015 * 0xFFFF;
2016 *
2017 * Ethernet_802.2 frames, which are 802.3
2018 * frames with an 802.2 LLC header and
2019 * with the IPX LSAP as the DSAP in the LLC
2020 * header;
2021 *
2022 * Ethernet_SNAP frames, which are 802.3
2023 * frames with an LLC header and a SNAP
2024 * header and with an OUI of 0x000000
2025 * (encapsulated Ethernet) and a protocol
2026 * ID of ETHERTYPE_IPX in the SNAP header.
2027 *
2028 * XXX - should we generate the same code both
2029 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2030 */
2031
2032 /*
2033 * This generates code to check both for the
2034 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2035 */
2036 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2037 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2038 gen_or(b0, b1);
2039
2040 /*
2041 * Now we add code to check for SNAP frames with
2042 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2043 */
2044 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2045 gen_or(b0, b1);
2046
2047 /*
2048 * Now we generate code to check for 802.3
2049 * frames in general.
2050 */
2051 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2052 gen_not(b0);
2053
2054 /*
2055 * Now add the check for 802.3 frames before the
2056 * check for Ethernet_802.2 and Ethernet_802.3,
2057 * as those checks should only be done on 802.3
2058 * frames, not on Ethernet frames.
2059 */
2060 gen_and(b0, b1);
2061
2062 /*
2063 * Now add the check for Ethernet_II frames, and
2064 * do that before checking for the other frame
2065 * types.
2066 */
2067 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2068 gen_or(b0, b1);
2069 return b1;
2070
2071 case ETHERTYPE_ATALK:
2072 case ETHERTYPE_AARP:
2073 /*
2074 * EtherTalk (AppleTalk protocols on Ethernet link
2075 * layer) may use 802.2 encapsulation.
2076 */
2077
2078 /*
2079 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2080 * we check for an Ethernet type field less than
2081 * 1500, which means it's an 802.3 length field.
2082 */
2083 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2084 gen_not(b0);
2085
2086 /*
2087 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2088 * SNAP packets with an organization code of
2089 * 0x080007 (Apple, for Appletalk) and a protocol
2090 * type of ETHERTYPE_ATALK (Appletalk).
2091 *
2092 * 802.2-encapsulated ETHERTYPE_AARP packets are
2093 * SNAP packets with an organization code of
2094 * 0x000000 (encapsulated Ethernet) and a protocol
2095 * type of ETHERTYPE_AARP (Appletalk ARP).
2096 */
2097 if (ll_proto == ETHERTYPE_ATALK)
2098 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2099 else /* ll_proto == ETHERTYPE_AARP */
2100 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2101 gen_and(b0, b1);
2102
2103 /*
2104 * Check for Ethernet encapsulation (Ethertalk
2105 * phase 1?); we just check for the Ethernet
2106 * protocol type.
2107 */
2108 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2109
2110 gen_or(b0, b1);
2111 return b1;
2112
2113 default:
2114 if (ll_proto <= ETHERMTU) {
2115 /*
2116 * This is an LLC SAP value, so the frames
2117 * that match would be 802.2 frames.
2118 * Check that the frame is an 802.2 frame
2119 * (i.e., that the length/type field is
2120 * a length field, <= ETHERMTU) and
2121 * then check the DSAP.
2122 */
2123 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2124 gen_not(b0);
2125 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2126 gen_and(b0, b1);
2127 return b1;
2128 } else {
2129 /*
2130 * This is an Ethernet type, so compare
2131 * the length/type field with it (if
2132 * the frame is an 802.2 frame, the length
2133 * field will be <= ETHERMTU, and, as
2134 * "ll_proto" is > ETHERMTU, this test
2135 * will fail and the frame won't match,
2136 * which is what we want).
2137 */
2138 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2139 }
2140 }
2141 }
2142
2143 static struct block *
2144 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2145 {
2146 /*
2147 * For DLT_NULL, the link-layer header is a 32-bit word
2148 * containing an AF_ value in *host* byte order, and for
2149 * DLT_ENC, the link-layer header begins with a 32-bit
2150 * word containing an AF_ value in host byte order.
2151 *
2152 * In addition, if we're reading a saved capture file,
2153 * the host byte order in the capture may not be the
2154 * same as the host byte order on this machine.
2155 *
2156 * For DLT_LOOP, the link-layer header is a 32-bit
2157 * word containing an AF_ value in *network* byte order.
2158 */
2159 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2160 /*
2161 * The AF_ value is in host byte order, but the BPF
2162 * interpreter will convert it to network byte order.
2163 *
2164 * If this is a save file, and it's from a machine
2165 * with the opposite byte order to ours, we byte-swap
2166 * the AF_ value.
2167 *
2168 * Then we run it through "htonl()", and generate
2169 * code to compare against the result.
2170 */
2171 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2172 ll_proto = SWAPLONG(ll_proto);
2173 ll_proto = htonl(ll_proto);
2174 }
2175 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2176 }
2177
2178 /*
2179 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2180 * or IPv6 then we have an error.
2181 */
2182 static struct block *
2183 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2184 {
2185 switch (ll_proto) {
2186
2187 case ETHERTYPE_IP:
2188 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2189 /*NOTREACHED*/
2190
2191 case ETHERTYPE_IPV6:
2192 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2193 /*NOTREACHED*/
2194
2195 default:
2196 break;
2197 }
2198
2199 return gen_false(cstate);
2200 }
2201
2202 /*
2203 * Generate code to match a particular packet type.
2204 *
2205 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2206 * value, if <= ETHERMTU. We use that to determine whether to
2207 * match the type field or to check the type field for the special
2208 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2209 */
2210 static struct block *
2211 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2212 {
2213 struct block *b0, *b1;
2214
2215 switch (ll_proto) {
2216
2217 case LLCSAP_ISONS:
2218 case LLCSAP_IP:
2219 case LLCSAP_NETBEUI:
2220 /*
2221 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2222 * so we check the DSAP and SSAP.
2223 *
2224 * LLCSAP_IP checks for IP-over-802.2, rather
2225 * than IP-over-Ethernet or IP-over-SNAP.
2226 *
2227 * XXX - should we check both the DSAP and the
2228 * SSAP, like this, or should we check just the
2229 * DSAP, as we do for other types <= ETHERMTU
2230 * (i.e., other SAP values)?
2231 */
2232 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2233 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2234 gen_and(b0, b1);
2235 return b1;
2236
2237 case LLCSAP_IPX:
2238 /*
2239 * Ethernet_II frames, which are Ethernet
2240 * frames with a frame type of ETHERTYPE_IPX;
2241 *
2242 * Ethernet_802.3 frames, which have a frame
2243 * type of LINUX_SLL_P_802_3;
2244 *
2245 * Ethernet_802.2 frames, which are 802.3
2246 * frames with an 802.2 LLC header (i.e, have
2247 * a frame type of LINUX_SLL_P_802_2) and
2248 * with the IPX LSAP as the DSAP in the LLC
2249 * header;
2250 *
2251 * Ethernet_SNAP frames, which are 802.3
2252 * frames with an LLC header and a SNAP
2253 * header and with an OUI of 0x000000
2254 * (encapsulated Ethernet) and a protocol
2255 * ID of ETHERTYPE_IPX in the SNAP header.
2256 *
2257 * First, do the checks on LINUX_SLL_P_802_2
2258 * frames; generate the check for either
2259 * Ethernet_802.2 or Ethernet_SNAP frames, and
2260 * then put a check for LINUX_SLL_P_802_2 frames
2261 * before it.
2262 */
2263 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2264 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2265 gen_or(b0, b1);
2266 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2267 gen_and(b0, b1);
2268
2269 /*
2270 * Now check for 802.3 frames and OR that with
2271 * the previous test.
2272 */
2273 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2274 gen_or(b0, b1);
2275
2276 /*
2277 * Now add the check for Ethernet_II frames, and
2278 * do that before checking for the other frame
2279 * types.
2280 */
2281 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2282 gen_or(b0, b1);
2283 return b1;
2284
2285 case ETHERTYPE_ATALK:
2286 case ETHERTYPE_AARP:
2287 /*
2288 * EtherTalk (AppleTalk protocols on Ethernet link
2289 * layer) may use 802.2 encapsulation.
2290 */
2291
2292 /*
2293 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2294 * we check for the 802.2 protocol type in the
2295 * "Ethernet type" field.
2296 */
2297 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2298
2299 /*
2300 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2301 * SNAP packets with an organization code of
2302 * 0x080007 (Apple, for Appletalk) and a protocol
2303 * type of ETHERTYPE_ATALK (Appletalk).
2304 *
2305 * 802.2-encapsulated ETHERTYPE_AARP packets are
2306 * SNAP packets with an organization code of
2307 * 0x000000 (encapsulated Ethernet) and a protocol
2308 * type of ETHERTYPE_AARP (Appletalk ARP).
2309 */
2310 if (ll_proto == ETHERTYPE_ATALK)
2311 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2312 else /* ll_proto == ETHERTYPE_AARP */
2313 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2314 gen_and(b0, b1);
2315
2316 /*
2317 * Check for Ethernet encapsulation (Ethertalk
2318 * phase 1?); we just check for the Ethernet
2319 * protocol type.
2320 */
2321 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2322
2323 gen_or(b0, b1);
2324 return b1;
2325
2326 default:
2327 if (ll_proto <= ETHERMTU) {
2328 /*
2329 * This is an LLC SAP value, so the frames
2330 * that match would be 802.2 frames.
2331 * Check for the 802.2 protocol type
2332 * in the "Ethernet type" field, and
2333 * then check the DSAP.
2334 */
2335 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2336 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2337 ll_proto);
2338 gen_and(b0, b1);
2339 return b1;
2340 } else {
2341 /*
2342 * This is an Ethernet type, so compare
2343 * the length/type field with it (if
2344 * the frame is an 802.2 frame, the length
2345 * field will be <= ETHERMTU, and, as
2346 * "ll_proto" is > ETHERMTU, this test
2347 * will fail and the frame won't match,
2348 * which is what we want).
2349 */
2350 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2351 }
2352 }
2353 }
2354
2355 /*
2356 * Load a value relative to the beginning of the link-layer header after the
2357 * pflog header.
2358 */
2359 static struct slist *
2360 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2361 {
2362 struct slist *s1, *s2;
2363
2364 /*
2365 * Generate code to load the length of the pflog header into
2366 * the register assigned to hold that length, if one has been
2367 * assigned. (If one hasn't been assigned, no code we've
2368 * generated uses that prefix, so we don't need to generate any
2369 * code to load it.)
2370 */
2371 if (cstate->off_linkpl.reg != -1) {
2372 /*
2373 * The length is in the first byte of the header.
2374 */
2375 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2376 s1->s.k = 0;
2377
2378 /*
2379 * Round it up to a multiple of 4.
2380 * Add 3, and clear the lower 2 bits.
2381 */
2382 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2383 s2->s.k = 3;
2384 sappend(s1, s2);
2385 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2386 s2->s.k = 0xfffffffc;
2387 sappend(s1, s2);
2388
2389 /*
2390 * Now allocate a register to hold that value and store
2391 * it.
2392 */
2393 s2 = new_stmt(cstate, BPF_ST);
2394 s2->s.k = cstate->off_linkpl.reg;
2395 sappend(s1, s2);
2396
2397 /*
2398 * Now move it into the X register.
2399 */
2400 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2401 sappend(s1, s2);
2402
2403 return (s1);
2404 } else
2405 return (NULL);
2406 }
2407
2408 static struct slist *
2409 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2410 {
2411 struct slist *s1, *s2;
2412 struct slist *sjeq_avs_cookie;
2413 struct slist *sjcommon;
2414
2415 /*
2416 * This code is not compatible with the optimizer, as
2417 * we are generating jmp instructions within a normal
2418 * slist of instructions
2419 */
2420 cstate->no_optimize = 1;
2421
2422 /*
2423 * Generate code to load the length of the radio header into
2424 * the register assigned to hold that length, if one has been
2425 * assigned. (If one hasn't been assigned, no code we've
2426 * generated uses that prefix, so we don't need to generate any
2427 * code to load it.)
2428 *
2429 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2430 * or always use the AVS header rather than the Prism header.
2431 * We load a 4-byte big-endian value at the beginning of the
2432 * raw packet data, and see whether, when masked with 0xFFFFF000,
2433 * it's equal to 0x80211000. If so, that indicates that it's
2434 * an AVS header (the masked-out bits are the version number).
2435 * Otherwise, it's a Prism header.
2436 *
2437 * XXX - the Prism header is also, in theory, variable-length,
2438 * but no known software generates headers that aren't 144
2439 * bytes long.
2440 */
2441 if (cstate->off_linkhdr.reg != -1) {
2442 /*
2443 * Load the cookie.
2444 */
2445 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2446 s1->s.k = 0;
2447
2448 /*
2449 * AND it with 0xFFFFF000.
2450 */
2451 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2452 s2->s.k = 0xFFFFF000;
2453 sappend(s1, s2);
2454
2455 /*
2456 * Compare with 0x80211000.
2457 */
2458 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2459 sjeq_avs_cookie->s.k = 0x80211000;
2460 sappend(s1, sjeq_avs_cookie);
2461
2462 /*
2463 * If it's AVS:
2464 *
2465 * The 4 bytes at an offset of 4 from the beginning of
2466 * the AVS header are the length of the AVS header.
2467 * That field is big-endian.
2468 */
2469 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2470 s2->s.k = 4;
2471 sappend(s1, s2);
2472 sjeq_avs_cookie->s.jt = s2;
2473
2474 /*
2475 * Now jump to the code to allocate a register
2476 * into which to save the header length and
2477 * store the length there. (The "jump always"
2478 * instruction needs to have the k field set;
2479 * it's added to the PC, so, as we're jumping
2480 * over a single instruction, it should be 1.)
2481 */
2482 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2483 sjcommon->s.k = 1;
2484 sappend(s1, sjcommon);
2485
2486 /*
2487 * Now for the code that handles the Prism header.
2488 * Just load the length of the Prism header (144)
2489 * into the A register. Have the test for an AVS
2490 * header branch here if we don't have an AVS header.
2491 */
2492 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2493 s2->s.k = 144;
2494 sappend(s1, s2);
2495 sjeq_avs_cookie->s.jf = s2;
2496
2497 /*
2498 * Now allocate a register to hold that value and store
2499 * it. The code for the AVS header will jump here after
2500 * loading the length of the AVS header.
2501 */
2502 s2 = new_stmt(cstate, BPF_ST);
2503 s2->s.k = cstate->off_linkhdr.reg;
2504 sappend(s1, s2);
2505 sjcommon->s.jf = s2;
2506
2507 /*
2508 * Now move it into the X register.
2509 */
2510 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2511 sappend(s1, s2);
2512
2513 return (s1);
2514 } else
2515 return (NULL);
2516 }
2517
2518 static struct slist *
2519 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2520 {
2521 struct slist *s1, *s2;
2522
2523 /*
2524 * Generate code to load the length of the AVS header into
2525 * the register assigned to hold that length, if one has been
2526 * assigned. (If one hasn't been assigned, no code we've
2527 * generated uses that prefix, so we don't need to generate any
2528 * code to load it.)
2529 */
2530 if (cstate->off_linkhdr.reg != -1) {
2531 /*
2532 * The 4 bytes at an offset of 4 from the beginning of
2533 * the AVS header are the length of the AVS header.
2534 * That field is big-endian.
2535 */
2536 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2537 s1->s.k = 4;
2538
2539 /*
2540 * Now allocate a register to hold that value and store
2541 * it.
2542 */
2543 s2 = new_stmt(cstate, BPF_ST);
2544 s2->s.k = cstate->off_linkhdr.reg;
2545 sappend(s1, s2);
2546
2547 /*
2548 * Now move it into the X register.
2549 */
2550 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2551 sappend(s1, s2);
2552
2553 return (s1);
2554 } else
2555 return (NULL);
2556 }
2557
2558 static struct slist *
2559 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2560 {
2561 struct slist *s1, *s2;
2562
2563 /*
2564 * Generate code to load the length of the radiotap header into
2565 * the register assigned to hold that length, if one has been
2566 * assigned. (If one hasn't been assigned, no code we've
2567 * generated uses that prefix, so we don't need to generate any
2568 * code to load it.)
2569 */
2570 if (cstate->off_linkhdr.reg != -1) {
2571 /*
2572 * The 2 bytes at offsets of 2 and 3 from the beginning
2573 * of the radiotap header are the length of the radiotap
2574 * header; unfortunately, it's little-endian, so we have
2575 * to load it a byte at a time and construct the value.
2576 */
2577
2578 /*
2579 * Load the high-order byte, at an offset of 3, shift it
2580 * left a byte, and put the result in the X register.
2581 */
2582 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2583 s1->s.k = 3;
2584 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2585 sappend(s1, s2);
2586 s2->s.k = 8;
2587 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2588 sappend(s1, s2);
2589
2590 /*
2591 * Load the next byte, at an offset of 2, and OR the
2592 * value from the X register into it.
2593 */
2594 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2595 sappend(s1, s2);
2596 s2->s.k = 2;
2597 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2598 sappend(s1, s2);
2599
2600 /*
2601 * Now allocate a register to hold that value and store
2602 * it.
2603 */
2604 s2 = new_stmt(cstate, BPF_ST);
2605 s2->s.k = cstate->off_linkhdr.reg;
2606 sappend(s1, s2);
2607
2608 /*
2609 * Now move it into the X register.
2610 */
2611 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2612 sappend(s1, s2);
2613
2614 return (s1);
2615 } else
2616 return (NULL);
2617 }
2618
2619 /*
2620 * At the moment we treat PPI as normal Radiotap encoded
2621 * packets. The difference is in the function that generates
2622 * the code at the beginning to compute the header length.
2623 * Since this code generator of PPI supports bare 802.11
2624 * encapsulation only (i.e. the encapsulated DLT should be
2625 * DLT_IEEE802_11) we generate code to check for this too;
2626 * that's done in finish_parse().
2627 */
2628 static struct slist *
2629 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2630 {
2631 struct slist *s1, *s2;
2632
2633 /*
2634 * Generate code to load the length of the radiotap header
2635 * into the register assigned to hold that length, if one has
2636 * been assigned.
2637 */
2638 if (cstate->off_linkhdr.reg != -1) {
2639 /*
2640 * The 2 bytes at offsets of 2 and 3 from the beginning
2641 * of the radiotap header are the length of the radiotap
2642 * header; unfortunately, it's little-endian, so we have
2643 * to load it a byte at a time and construct the value.
2644 */
2645
2646 /*
2647 * Load the high-order byte, at an offset of 3, shift it
2648 * left a byte, and put the result in the X register.
2649 */
2650 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2651 s1->s.k = 3;
2652 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2653 sappend(s1, s2);
2654 s2->s.k = 8;
2655 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2656 sappend(s1, s2);
2657
2658 /*
2659 * Load the next byte, at an offset of 2, and OR the
2660 * value from the X register into it.
2661 */
2662 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2663 sappend(s1, s2);
2664 s2->s.k = 2;
2665 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2666 sappend(s1, s2);
2667
2668 /*
2669 * Now allocate a register to hold that value and store
2670 * it.
2671 */
2672 s2 = new_stmt(cstate, BPF_ST);
2673 s2->s.k = cstate->off_linkhdr.reg;
2674 sappend(s1, s2);
2675
2676 /*
2677 * Now move it into the X register.
2678 */
2679 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2680 sappend(s1, s2);
2681
2682 return (s1);
2683 } else
2684 return (NULL);
2685 }
2686
2687 /*
2688 * Load a value relative to the beginning of the link-layer header after the 802.11
2689 * header, i.e. LLC_SNAP.
2690 * The link-layer header doesn't necessarily begin at the beginning
2691 * of the packet data; there might be a variable-length prefix containing
2692 * radio information.
2693 */
2694 static struct slist *
2695 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2696 {
2697 struct slist *s2;
2698 struct slist *sjset_data_frame_1;
2699 struct slist *sjset_data_frame_2;
2700 struct slist *sjset_qos;
2701 struct slist *sjset_radiotap_flags_present;
2702 struct slist *sjset_radiotap_ext_present;
2703 struct slist *sjset_radiotap_tsft_present;
2704 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2705 struct slist *s_roundup;
2706
2707 if (cstate->off_linkpl.reg == -1) {
2708 /*
2709 * No register has been assigned to the offset of
2710 * the link-layer payload, which means nobody needs
2711 * it; don't bother computing it - just return
2712 * what we already have.
2713 */
2714 return (s);
2715 }
2716
2717 /*
2718 * This code is not compatible with the optimizer, as
2719 * we are generating jmp instructions within a normal
2720 * slist of instructions
2721 */
2722 cstate->no_optimize = 1;
2723
2724 /*
2725 * If "s" is non-null, it has code to arrange that the X register
2726 * contains the length of the prefix preceding the link-layer
2727 * header.
2728 *
2729 * Otherwise, the length of the prefix preceding the link-layer
2730 * header is "off_outermostlinkhdr.constant_part".
2731 */
2732 if (s == NULL) {
2733 /*
2734 * There is no variable-length header preceding the
2735 * link-layer header.
2736 *
2737 * Load the length of the fixed-length prefix preceding
2738 * the link-layer header (if any) into the X register,
2739 * and store it in the cstate->off_linkpl.reg register.
2740 * That length is off_outermostlinkhdr.constant_part.
2741 */
2742 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2743 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2744 }
2745
2746 /*
2747 * The X register contains the offset of the beginning of the
2748 * link-layer header; add 24, which is the minimum length
2749 * of the MAC header for a data frame, to that, and store it
2750 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2751 * which is at the offset in the X register, with an indexed load.
2752 */
2753 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2754 sappend(s, s2);
2755 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2756 s2->s.k = 24;
2757 sappend(s, s2);
2758 s2 = new_stmt(cstate, BPF_ST);
2759 s2->s.k = cstate->off_linkpl.reg;
2760 sappend(s, s2);
2761
2762 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2763 s2->s.k = 0;
2764 sappend(s, s2);
2765
2766 /*
2767 * Check the Frame Control field to see if this is a data frame;
2768 * a data frame has the 0x08 bit (b3) in that field set and the
2769 * 0x04 bit (b2) clear.
2770 */
2771 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2772 sjset_data_frame_1->s.k = 0x08;
2773 sappend(s, sjset_data_frame_1);
2774
2775 /*
2776 * If b3 is set, test b2, otherwise go to the first statement of
2777 * the rest of the program.
2778 */
2779 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2780 sjset_data_frame_2->s.k = 0x04;
2781 sappend(s, sjset_data_frame_2);
2782 sjset_data_frame_1->s.jf = snext;
2783
2784 /*
2785 * If b2 is not set, this is a data frame; test the QoS bit.
2786 * Otherwise, go to the first statement of the rest of the
2787 * program.
2788 */
2789 sjset_data_frame_2->s.jt = snext;
2790 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2791 sjset_qos->s.k = 0x80; /* QoS bit */
2792 sappend(s, sjset_qos);
2793
2794 /*
2795 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2796 * field.
2797 * Otherwise, go to the first statement of the rest of the
2798 * program.
2799 */
2800 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2801 s2->s.k = cstate->off_linkpl.reg;
2802 sappend(s, s2);
2803 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2804 s2->s.k = 2;
2805 sappend(s, s2);
2806 s2 = new_stmt(cstate, BPF_ST);
2807 s2->s.k = cstate->off_linkpl.reg;
2808 sappend(s, s2);
2809
2810 /*
2811 * If we have a radiotap header, look at it to see whether
2812 * there's Atheros padding between the MAC-layer header
2813 * and the payload.
2814 *
2815 * Note: all of the fields in the radiotap header are
2816 * little-endian, so we byte-swap all of the values
2817 * we test against, as they will be loaded as big-endian
2818 * values.
2819 *
2820 * XXX - in the general case, we would have to scan through
2821 * *all* the presence bits, if there's more than one word of
2822 * presence bits. That would require a loop, meaning that
2823 * we wouldn't be able to run the filter in the kernel.
2824 *
2825 * We assume here that the Atheros adapters that insert the
2826 * annoying padding don't have multiple antennae and therefore
2827 * do not generate radiotap headers with multiple presence words.
2828 */
2829 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2830 /*
2831 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2832 * in the first presence flag word?
2833 */
2834 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2835 s2->s.k = 4;
2836 sappend(s, s2);
2837
2838 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2839 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2840 sappend(s, sjset_radiotap_flags_present);
2841
2842 /*
2843 * If not, skip all of this.
2844 */
2845 sjset_radiotap_flags_present->s.jf = snext;
2846
2847 /*
2848 * Otherwise, is the "extension" bit set in that word?
2849 */
2850 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2851 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2852 sappend(s, sjset_radiotap_ext_present);
2853 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2854
2855 /*
2856 * If so, skip all of this.
2857 */
2858 sjset_radiotap_ext_present->s.jt = snext;
2859
2860 /*
2861 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2862 */
2863 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2864 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2865 sappend(s, sjset_radiotap_tsft_present);
2866 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2867
2868 /*
2869 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2870 * at an offset of 16 from the beginning of the raw packet
2871 * data (8 bytes for the radiotap header and 8 bytes for
2872 * the TSFT field).
2873 *
2874 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2875 * is set.
2876 */
2877 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2878 s2->s.k = 16;
2879 sappend(s, s2);
2880 sjset_radiotap_tsft_present->s.jt = s2;
2881
2882 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2883 sjset_tsft_datapad->s.k = 0x20;
2884 sappend(s, sjset_tsft_datapad);
2885
2886 /*
2887 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2888 * at an offset of 8 from the beginning of the raw packet
2889 * data (8 bytes for the radiotap header).
2890 *
2891 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2892 * is set.
2893 */
2894 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2895 s2->s.k = 8;
2896 sappend(s, s2);
2897 sjset_radiotap_tsft_present->s.jf = s2;
2898
2899 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2900 sjset_notsft_datapad->s.k = 0x20;
2901 sappend(s, sjset_notsft_datapad);
2902
2903 /*
2904 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2905 * set, round the length of the 802.11 header to
2906 * a multiple of 4. Do that by adding 3 and then
2907 * dividing by and multiplying by 4, which we do by
2908 * ANDing with ~3.
2909 */
2910 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2911 s_roundup->s.k = cstate->off_linkpl.reg;
2912 sappend(s, s_roundup);
2913 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2914 s2->s.k = 3;
2915 sappend(s, s2);
2916 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2917 s2->s.k = (bpf_u_int32)~3;
2918 sappend(s, s2);
2919 s2 = new_stmt(cstate, BPF_ST);
2920 s2->s.k = cstate->off_linkpl.reg;
2921 sappend(s, s2);
2922
2923 sjset_tsft_datapad->s.jt = s_roundup;
2924 sjset_tsft_datapad->s.jf = snext;
2925 sjset_notsft_datapad->s.jt = s_roundup;
2926 sjset_notsft_datapad->s.jf = snext;
2927 } else
2928 sjset_qos->s.jf = snext;
2929
2930 return s;
2931 }
2932
2933 static void
2934 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2935 {
2936 struct slist *s;
2937
2938 /* There is an implicit dependency between the link
2939 * payload and link header since the payload computation
2940 * includes the variable part of the header. Therefore,
2941 * if nobody else has allocated a register for the link
2942 * header and we need it, do it now. */
2943 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2944 cstate->off_linkhdr.reg == -1)
2945 cstate->off_linkhdr.reg = alloc_reg(cstate);
2946
2947 /*
2948 * For link-layer types that have a variable-length header
2949 * preceding the link-layer header, generate code to load
2950 * the offset of the link-layer header into the register
2951 * assigned to that offset, if any.
2952 *
2953 * XXX - this, and the next switch statement, won't handle
2954 * encapsulation of 802.11 or 802.11+radio information in
2955 * some other protocol stack. That's significantly more
2956 * complicated.
2957 */
2958 switch (cstate->outermostlinktype) {
2959
2960 case DLT_PRISM_HEADER:
2961 s = gen_load_prism_llprefixlen(cstate);
2962 break;
2963
2964 case DLT_IEEE802_11_RADIO_AVS:
2965 s = gen_load_avs_llprefixlen(cstate);
2966 break;
2967
2968 case DLT_IEEE802_11_RADIO:
2969 s = gen_load_radiotap_llprefixlen(cstate);
2970 break;
2971
2972 case DLT_PPI:
2973 s = gen_load_ppi_llprefixlen(cstate);
2974 break;
2975
2976 default:
2977 s = NULL;
2978 break;
2979 }
2980
2981 /*
2982 * For link-layer types that have a variable-length link-layer
2983 * header, generate code to load the offset of the link-layer
2984 * payload into the register assigned to that offset, if any.
2985 */
2986 switch (cstate->outermostlinktype) {
2987
2988 case DLT_IEEE802_11:
2989 case DLT_PRISM_HEADER:
2990 case DLT_IEEE802_11_RADIO_AVS:
2991 case DLT_IEEE802_11_RADIO:
2992 case DLT_PPI:
2993 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2994 break;
2995
2996 case DLT_PFLOG:
2997 s = gen_load_pflog_llprefixlen(cstate);
2998 break;
2999 }
3000
3001 /*
3002 * If there is no initialization yet and we need variable
3003 * length offsets for VLAN, initialize them to zero
3004 */
3005 if (s == NULL && cstate->is_vlan_vloffset) {
3006 struct slist *s2;
3007
3008 if (cstate->off_linkpl.reg == -1)
3009 cstate->off_linkpl.reg = alloc_reg(cstate);
3010 if (cstate->off_linktype.reg == -1)
3011 cstate->off_linktype.reg = alloc_reg(cstate);
3012
3013 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3014 s->s.k = 0;
3015 s2 = new_stmt(cstate, BPF_ST);
3016 s2->s.k = cstate->off_linkpl.reg;
3017 sappend(s, s2);
3018 s2 = new_stmt(cstate, BPF_ST);
3019 s2->s.k = cstate->off_linktype.reg;
3020 sappend(s, s2);
3021 }
3022
3023 /*
3024 * If we have any offset-loading code, append all the
3025 * existing statements in the block to those statements,
3026 * and make the resulting list the list of statements
3027 * for the block.
3028 */
3029 if (s != NULL) {
3030 sappend(s, b->stmts);
3031 b->stmts = s;
3032 }
3033 }
3034
3035 static struct block *
3036 gen_ppi_dlt_check(compiler_state_t *cstate)
3037 {
3038 struct slist *s_load_dlt;
3039 struct block *b;
3040
3041 if (cstate->linktype == DLT_PPI)
3042 {
3043 /* Create the statements that check for the DLT
3044 */
3045 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3046 s_load_dlt->s.k = 4;
3047
3048 b = new_block(cstate, JMP(BPF_JEQ));
3049
3050 b->stmts = s_load_dlt;
3051 b->s.k = SWAPLONG(DLT_IEEE802_11);
3052 }
3053 else
3054 {
3055 b = NULL;
3056 }
3057
3058 return b;
3059 }
3060
3061 /*
3062 * Take an absolute offset, and:
3063 *
3064 * if it has no variable part, return NULL;
3065 *
3066 * if it has a variable part, generate code to load the register
3067 * containing that variable part into the X register, returning
3068 * a pointer to that code - if no register for that offset has
3069 * been allocated, allocate it first.
3070 *
3071 * (The code to set that register will be generated later, but will
3072 * be placed earlier in the code sequence.)
3073 */
3074 static struct slist *
3075 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3076 {
3077 struct slist *s;
3078
3079 if (off->is_variable) {
3080 if (off->reg == -1) {
3081 /*
3082 * We haven't yet assigned a register for the
3083 * variable part of the offset of the link-layer
3084 * header; allocate one.
3085 */
3086 off->reg = alloc_reg(cstate);
3087 }
3088
3089 /*
3090 * Load the register containing the variable part of the
3091 * offset of the link-layer header into the X register.
3092 */
3093 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3094 s->s.k = off->reg;
3095 return s;
3096 } else {
3097 /*
3098 * That offset isn't variable, there's no variable part,
3099 * so we don't need to generate any code.
3100 */
3101 return NULL;
3102 }
3103 }
3104
3105 /*
3106 * Map an Ethernet type to the equivalent PPP type.
3107 */
3108 static bpf_u_int32
3109 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3110 {
3111 switch (ll_proto) {
3112
3113 case ETHERTYPE_IP:
3114 ll_proto = PPP_IP;
3115 break;
3116
3117 case ETHERTYPE_IPV6:
3118 ll_proto = PPP_IPV6;
3119 break;
3120
3121 case ETHERTYPE_DN:
3122 ll_proto = PPP_DECNET;
3123 break;
3124
3125 case ETHERTYPE_ATALK:
3126 ll_proto = PPP_APPLE;
3127 break;
3128
3129 case ETHERTYPE_NS:
3130 ll_proto = PPP_NS;
3131 break;
3132
3133 case LLCSAP_ISONS:
3134 ll_proto = PPP_OSI;
3135 break;
3136
3137 case LLCSAP_8021D:
3138 /*
3139 * I'm assuming the "Bridging PDU"s that go
3140 * over PPP are Spanning Tree Protocol
3141 * Bridging PDUs.
3142 */
3143 ll_proto = PPP_BRPDU;
3144 break;
3145
3146 case LLCSAP_IPX:
3147 ll_proto = PPP_IPX;
3148 break;
3149 }
3150 return (ll_proto);
3151 }
3152
3153 /*
3154 * Generate any tests that, for encapsulation of a link-layer packet
3155 * inside another protocol stack, need to be done to check for those
3156 * link-layer packets (and that haven't already been done by a check
3157 * for that encapsulation).
3158 */
3159 static struct block *
3160 gen_prevlinkhdr_check(compiler_state_t *cstate)
3161 {
3162 struct block *b0;
3163
3164 if (cstate->is_geneve)
3165 return gen_geneve_ll_check(cstate);
3166
3167 switch (cstate->prevlinktype) {
3168
3169 case DLT_SUNATM:
3170 /*
3171 * This is LANE-encapsulated Ethernet; check that the LANE
3172 * packet doesn't begin with an LE Control marker, i.e.
3173 * that it's data, not a control message.
3174 *
3175 * (We've already generated a test for LANE.)
3176 */
3177 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3178 gen_not(b0);
3179 return b0;
3180
3181 default:
3182 /*
3183 * No such tests are necessary.
3184 */
3185 return NULL;
3186 }
3187 /*NOTREACHED*/
3188 }
3189
3190 /*
3191 * The three different values we should check for when checking for an
3192 * IPv6 packet with DLT_NULL.
3193 */
3194 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3195 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3196 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3197
3198 /*
3199 * Generate code to match a particular packet type by matching the
3200 * link-layer type field or fields in the 802.2 LLC header.
3201 *
3202 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3203 * value, if <= ETHERMTU.
3204 */
3205 static struct block *
3206 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3207 {
3208 struct block *b0, *b1, *b2;
3209 const char *description;
3210
3211 /* are we checking MPLS-encapsulated packets? */
3212 if (cstate->label_stack_depth > 0)
3213 return gen_mpls_linktype(cstate, ll_proto);
3214
3215 switch (cstate->linktype) {
3216
3217 case DLT_EN10MB:
3218 case DLT_NETANALYZER:
3219 case DLT_NETANALYZER_TRANSPARENT:
3220 /* Geneve has an EtherType regardless of whether there is an
3221 * L2 header. */
3222 if (!cstate->is_geneve)
3223 b0 = gen_prevlinkhdr_check(cstate);
3224 else
3225 b0 = NULL;
3226
3227 b1 = gen_ether_linktype(cstate, ll_proto);
3228 if (b0 != NULL)
3229 gen_and(b0, b1);
3230 return b1;
3231 /*NOTREACHED*/
3232
3233 case DLT_C_HDLC:
3234 case DLT_HDLC:
3235 switch (ll_proto) {
3236
3237 case LLCSAP_ISONS:
3238 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3239 /* fall through */
3240
3241 default:
3242 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3243 /*NOTREACHED*/
3244 }
3245
3246 case DLT_IEEE802_11:
3247 case DLT_PRISM_HEADER:
3248 case DLT_IEEE802_11_RADIO_AVS:
3249 case DLT_IEEE802_11_RADIO:
3250 case DLT_PPI:
3251 /*
3252 * Check that we have a data frame.
3253 */
3254 b0 = gen_check_802_11_data_frame(cstate);
3255
3256 /*
3257 * Now check for the specified link-layer type.
3258 */
3259 b1 = gen_llc_linktype(cstate, ll_proto);
3260 gen_and(b0, b1);
3261 return b1;
3262 /*NOTREACHED*/
3263
3264 case DLT_FDDI:
3265 /*
3266 * XXX - check for LLC frames.
3267 */
3268 return gen_llc_linktype(cstate, ll_proto);
3269 /*NOTREACHED*/
3270
3271 case DLT_IEEE802:
3272 /*
3273 * XXX - check for LLC PDUs, as per IEEE 802.5.
3274 */
3275 return gen_llc_linktype(cstate, ll_proto);
3276 /*NOTREACHED*/
3277
3278 case DLT_ATM_RFC1483:
3279 case DLT_ATM_CLIP:
3280 case DLT_IP_OVER_FC:
3281 return gen_llc_linktype(cstate, ll_proto);
3282 /*NOTREACHED*/
3283
3284 case DLT_SUNATM:
3285 /*
3286 * Check for an LLC-encapsulated version of this protocol;
3287 * if we were checking for LANE, linktype would no longer
3288 * be DLT_SUNATM.
3289 *
3290 * Check for LLC encapsulation and then check the protocol.
3291 */
3292 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3293 b1 = gen_llc_linktype(cstate, ll_proto);
3294 gen_and(b0, b1);
3295 return b1;
3296 /*NOTREACHED*/
3297
3298 case DLT_LINUX_SLL:
3299 return gen_linux_sll_linktype(cstate, ll_proto);
3300 /*NOTREACHED*/
3301
3302 case DLT_SLIP:
3303 case DLT_SLIP_BSDOS:
3304 case DLT_RAW:
3305 /*
3306 * These types don't provide any type field; packets
3307 * are always IPv4 or IPv6.
3308 *
3309 * XXX - for IPv4, check for a version number of 4, and,
3310 * for IPv6, check for a version number of 6?
3311 */
3312 switch (ll_proto) {
3313
3314 case ETHERTYPE_IP:
3315 /* Check for a version number of 4. */
3316 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3317
3318 case ETHERTYPE_IPV6:
3319 /* Check for a version number of 6. */
3320 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3321
3322 default:
3323 return gen_false(cstate); /* always false */
3324 }
3325 /*NOTREACHED*/
3326
3327 case DLT_IPV4:
3328 /*
3329 * Raw IPv4, so no type field.
3330 */
3331 if (ll_proto == ETHERTYPE_IP)
3332 return gen_true(cstate); /* always true */
3333
3334 /* Checking for something other than IPv4; always false */
3335 return gen_false(cstate);
3336 /*NOTREACHED*/
3337
3338 case DLT_IPV6:
3339 /*
3340 * Raw IPv6, so no type field.
3341 */
3342 if (ll_proto == ETHERTYPE_IPV6)
3343 return gen_true(cstate); /* always true */
3344
3345 /* Checking for something other than IPv6; always false */
3346 return gen_false(cstate);
3347 /*NOTREACHED*/
3348
3349 case DLT_PPP:
3350 case DLT_PPP_PPPD:
3351 case DLT_PPP_SERIAL:
3352 case DLT_PPP_ETHER:
3353 /*
3354 * We use Ethernet protocol types inside libpcap;
3355 * map them to the corresponding PPP protocol types.
3356 */
3357 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3358 ethertype_to_ppptype(ll_proto));
3359 /*NOTREACHED*/
3360
3361 case DLT_PPP_BSDOS:
3362 /*
3363 * We use Ethernet protocol types inside libpcap;
3364 * map them to the corresponding PPP protocol types.
3365 */
3366 switch (ll_proto) {
3367
3368 case ETHERTYPE_IP:
3369 /*
3370 * Also check for Van Jacobson-compressed IP.
3371 * XXX - do this for other forms of PPP?
3372 */
3373 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3374 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3375 gen_or(b0, b1);
3376 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3377 gen_or(b1, b0);
3378 return b0;
3379
3380 default:
3381 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3382 ethertype_to_ppptype(ll_proto));
3383 }
3384 /*NOTREACHED*/
3385
3386 case DLT_NULL:
3387 case DLT_LOOP:
3388 case DLT_ENC:
3389 switch (ll_proto) {
3390
3391 case ETHERTYPE_IP:
3392 return (gen_loopback_linktype(cstate, AF_INET));
3393
3394 case ETHERTYPE_IPV6:
3395 /*
3396 * AF_ values may, unfortunately, be platform-
3397 * dependent; AF_INET isn't, because everybody
3398 * used 4.2BSD's value, but AF_INET6 is, because
3399 * 4.2BSD didn't have a value for it (given that
3400 * IPv6 didn't exist back in the early 1980's),
3401 * and they all picked their own values.
3402 *
3403 * This means that, if we're reading from a
3404 * savefile, we need to check for all the
3405 * possible values.
3406 *
3407 * If we're doing a live capture, we only need
3408 * to check for this platform's value; however,
3409 * Npcap uses 24, which isn't Windows's AF_INET6
3410 * value. (Given the multiple different values,
3411 * programs that read pcap files shouldn't be
3412 * checking for their platform's AF_INET6 value
3413 * anyway, they should check for all of the
3414 * possible values. and they might as well do
3415 * that even for live captures.)
3416 */
3417 if (cstate->bpf_pcap->rfile != NULL) {
3418 /*
3419 * Savefile - check for all three
3420 * possible IPv6 values.
3421 */
3422 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3423 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3424 gen_or(b0, b1);
3425 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3426 gen_or(b0, b1);
3427 return (b1);
3428 } else {
3429 /*
3430 * Live capture, so we only need to
3431 * check for the value used on this
3432 * platform.
3433 */
3434 #ifdef _WIN32
3435 /*
3436 * Npcap doesn't use Windows's AF_INET6,
3437 * as that collides with AF_IPX on
3438 * some BSDs (both have the value 23).
3439 * Instead, it uses 24.
3440 */
3441 return (gen_loopback_linktype(cstate, 24));
3442 #else /* _WIN32 */
3443 #ifdef AF_INET6
3444 return (gen_loopback_linktype(cstate, AF_INET6));
3445 #else /* AF_INET6 */
3446 /*
3447 * I guess this platform doesn't support
3448 * IPv6, so we just reject all packets.
3449 */
3450 return gen_false(cstate);
3451 #endif /* AF_INET6 */
3452 #endif /* _WIN32 */
3453 }
3454
3455 default:
3456 /*
3457 * Not a type on which we support filtering.
3458 * XXX - support those that have AF_ values
3459 * #defined on this platform, at least?
3460 */
3461 return gen_false(cstate);
3462 }
3463
3464 case DLT_PFLOG:
3465 /*
3466 * af field is host byte order in contrast to the rest of
3467 * the packet.
3468 */
3469 if (ll_proto == ETHERTYPE_IP)
3470 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3471 BPF_B, AF_INET));
3472 else if (ll_proto == ETHERTYPE_IPV6)
3473 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3474 BPF_B, AF_INET6));
3475 else
3476 return gen_false(cstate);
3477 /*NOTREACHED*/
3478
3479 case DLT_ARCNET:
3480 case DLT_ARCNET_LINUX:
3481 /*
3482 * XXX should we check for first fragment if the protocol
3483 * uses PHDS?
3484 */
3485 switch (ll_proto) {
3486
3487 default:
3488 return gen_false(cstate);
3489
3490 case ETHERTYPE_IPV6:
3491 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3492 ARCTYPE_INET6));
3493
3494 case ETHERTYPE_IP:
3495 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3496 ARCTYPE_IP);
3497 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3498 ARCTYPE_IP_OLD);
3499 gen_or(b0, b1);
3500 return (b1);
3501
3502 case ETHERTYPE_ARP:
3503 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3504 ARCTYPE_ARP);
3505 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3506 ARCTYPE_ARP_OLD);
3507 gen_or(b0, b1);
3508 return (b1);
3509
3510 case ETHERTYPE_REVARP:
3511 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3512 ARCTYPE_REVARP));
3513
3514 case ETHERTYPE_ATALK:
3515 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3516 ARCTYPE_ATALK));
3517 }
3518 /*NOTREACHED*/
3519
3520 case DLT_LTALK:
3521 switch (ll_proto) {
3522 case ETHERTYPE_ATALK:
3523 return gen_true(cstate);
3524 default:
3525 return gen_false(cstate);
3526 }
3527 /*NOTREACHED*/
3528
3529 case DLT_FRELAY:
3530 /*
3531 * XXX - assumes a 2-byte Frame Relay header with
3532 * DLCI and flags. What if the address is longer?
3533 */
3534 switch (ll_proto) {
3535
3536 case ETHERTYPE_IP:
3537 /*
3538 * Check for the special NLPID for IP.
3539 */
3540 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3541
3542 case ETHERTYPE_IPV6:
3543 /*
3544 * Check for the special NLPID for IPv6.
3545 */
3546 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3547
3548 case LLCSAP_ISONS:
3549 /*
3550 * Check for several OSI protocols.
3551 *
3552 * Frame Relay packets typically have an OSI
3553 * NLPID at the beginning; we check for each
3554 * of them.
3555 *
3556 * What we check for is the NLPID and a frame
3557 * control field of UI, i.e. 0x03 followed
3558 * by the NLPID.
3559 */
3560 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3561 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3562 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3563 gen_or(b1, b2);
3564 gen_or(b0, b2);
3565 return b2;
3566
3567 default:
3568 return gen_false(cstate);
3569 }
3570 /*NOTREACHED*/
3571
3572 case DLT_MFR:
3573 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3574
3575 case DLT_JUNIPER_MFR:
3576 case DLT_JUNIPER_MLFR:
3577 case DLT_JUNIPER_MLPPP:
3578 case DLT_JUNIPER_ATM1:
3579 case DLT_JUNIPER_ATM2:
3580 case DLT_JUNIPER_PPPOE:
3581 case DLT_JUNIPER_PPPOE_ATM:
3582 case DLT_JUNIPER_GGSN:
3583 case DLT_JUNIPER_ES:
3584 case DLT_JUNIPER_MONITOR:
3585 case DLT_JUNIPER_SERVICES:
3586 case DLT_JUNIPER_ETHER:
3587 case DLT_JUNIPER_PPP:
3588 case DLT_JUNIPER_FRELAY:
3589 case DLT_JUNIPER_CHDLC:
3590 case DLT_JUNIPER_VP:
3591 case DLT_JUNIPER_ST:
3592 case DLT_JUNIPER_ISM:
3593 case DLT_JUNIPER_VS:
3594 case DLT_JUNIPER_SRX_E2E:
3595 case DLT_JUNIPER_FIBRECHANNEL:
3596 case DLT_JUNIPER_ATM_CEMIC:
3597
3598 /* just lets verify the magic number for now -
3599 * on ATM we may have up to 6 different encapsulations on the wire
3600 * and need a lot of heuristics to figure out that the payload
3601 * might be;
3602 *
3603 * FIXME encapsulation specific BPF_ filters
3604 */
3605 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3606
3607 case DLT_BACNET_MS_TP:
3608 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3609
3610 case DLT_IPNET:
3611 return gen_ipnet_linktype(cstate, ll_proto);
3612
3613 case DLT_LINUX_IRDA:
3614 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3615
3616 case DLT_DOCSIS:
3617 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3618
3619 case DLT_MTP2:
3620 case DLT_MTP2_WITH_PHDR:
3621 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3622
3623 case DLT_ERF:
3624 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3625
3626 case DLT_PFSYNC:
3627 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3628
3629 case DLT_LINUX_LAPD:
3630 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3631
3632 case DLT_USB_FREEBSD:
3633 case DLT_USB_LINUX:
3634 case DLT_USB_LINUX_MMAPPED:
3635 case DLT_USBPCAP:
3636 bpf_error(cstate, "USB link-layer type filtering not implemented");
3637
3638 case DLT_BLUETOOTH_HCI_H4:
3639 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3640 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3641
3642 case DLT_CAN20B:
3643 case DLT_CAN_SOCKETCAN:
3644 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3645
3646 case DLT_IEEE802_15_4:
3647 case DLT_IEEE802_15_4_LINUX:
3648 case DLT_IEEE802_15_4_NONASK_PHY:
3649 case DLT_IEEE802_15_4_NOFCS:
3650 case DLT_IEEE802_15_4_TAP:
3651 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3652
3653 case DLT_IEEE802_16_MAC_CPS_RADIO:
3654 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3655
3656 case DLT_SITA:
3657 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3658
3659 case DLT_RAIF1:
3660 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3661
3662 case DLT_IPMB_KONTRON:
3663 case DLT_IPMB_LINUX:
3664 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3665
3666 case DLT_AX25_KISS:
3667 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3668
3669 case DLT_NFLOG:
3670 /* Using the fixed-size NFLOG header it is possible to tell only
3671 * the address family of the packet, other meaningful data is
3672 * either missing or behind TLVs.
3673 */
3674 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3675
3676 default:
3677 /*
3678 * Does this link-layer header type have a field
3679 * indicating the type of the next protocol? If
3680 * so, off_linktype.constant_part will be the offset of that
3681 * field in the packet; if not, it will be OFFSET_NOT_SET.
3682 */
3683 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3684 /*
3685 * Yes; assume it's an Ethernet type. (If
3686 * it's not, it needs to be handled specially
3687 * above.)
3688 */
3689 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3690 /*NOTREACHED */
3691 } else {
3692 /*
3693 * No; report an error.
3694 */
3695 description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3696 bpf_error(cstate, "%s link-layer type filtering not implemented",
3697 description);
3698 /*NOTREACHED */
3699 }
3700 }
3701 }
3702
3703 /*
3704 * Check for an LLC SNAP packet with a given organization code and
3705 * protocol type; we check the entire contents of the 802.2 LLC and
3706 * snap headers, checking for DSAP and SSAP of SNAP and a control
3707 * field of 0x03 in the LLC header, and for the specified organization
3708 * code and protocol type in the SNAP header.
3709 */
3710 static struct block *
3711 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3712 {
3713 u_char snapblock[8];
3714
3715 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3716 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3717 snapblock[2] = 0x03; /* control = UI */
3718 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3719 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3720 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3721 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3722 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3723 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3724 }
3725
3726 /*
3727 * Generate code to match frames with an LLC header.
3728 */
3729 static struct block *
3730 gen_llc_internal(compiler_state_t *cstate)
3731 {
3732 struct block *b0, *b1;
3733
3734 switch (cstate->linktype) {
3735
3736 case DLT_EN10MB:
3737 /*
3738 * We check for an Ethernet type field less than
3739 * 1500, which means it's an 802.3 length field.
3740 */
3741 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3742 gen_not(b0);
3743
3744 /*
3745 * Now check for the purported DSAP and SSAP not being
3746 * 0xFF, to rule out NetWare-over-802.3.
3747 */
3748 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3749 gen_not(b1);
3750 gen_and(b0, b1);
3751 return b1;
3752
3753 case DLT_SUNATM:
3754 /*
3755 * We check for LLC traffic.
3756 */
3757 b0 = gen_atmtype_llc(cstate);
3758 return b0;
3759
3760 case DLT_IEEE802: /* Token Ring */
3761 /*
3762 * XXX - check for LLC frames.
3763 */
3764 return gen_true(cstate);
3765
3766 case DLT_FDDI:
3767 /*
3768 * XXX - check for LLC frames.
3769 */
3770 return gen_true(cstate);
3771
3772 case DLT_ATM_RFC1483:
3773 /*
3774 * For LLC encapsulation, these are defined to have an
3775 * 802.2 LLC header.
3776 *
3777 * For VC encapsulation, they don't, but there's no
3778 * way to check for that; the protocol used on the VC
3779 * is negotiated out of band.
3780 */
3781 return gen_true(cstate);
3782
3783 case DLT_IEEE802_11:
3784 case DLT_PRISM_HEADER:
3785 case DLT_IEEE802_11_RADIO:
3786 case DLT_IEEE802_11_RADIO_AVS:
3787 case DLT_PPI:
3788 /*
3789 * Check that we have a data frame.
3790 */
3791 b0 = gen_check_802_11_data_frame(cstate);
3792 return b0;
3793
3794 default:
3795 bpf_error(cstate, "'llc' not supported for %s",
3796 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3797 /*NOTREACHED*/
3798 }
3799 }
3800
3801 struct block *
3802 gen_llc(compiler_state_t *cstate)
3803 {
3804 /*
3805 * Catch errors reported by us and routines below us, and return NULL
3806 * on an error.
3807 */
3808 if (setjmp(cstate->top_ctx))
3809 return (NULL);
3810
3811 return gen_llc_internal(cstate);
3812 }
3813
3814 struct block *
3815 gen_llc_i(compiler_state_t *cstate)
3816 {
3817 struct block *b0, *b1;
3818 struct slist *s;
3819
3820 /*
3821 * Catch errors reported by us and routines below us, and return NULL
3822 * on an error.
3823 */
3824 if (setjmp(cstate->top_ctx))
3825 return (NULL);
3826
3827 /*
3828 * Check whether this is an LLC frame.
3829 */
3830 b0 = gen_llc_internal(cstate);
3831
3832 /*
3833 * Load the control byte and test the low-order bit; it must
3834 * be clear for I frames.
3835 */
3836 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3837 b1 = new_block(cstate, JMP(BPF_JSET));
3838 b1->s.k = 0x01;
3839 b1->stmts = s;
3840 gen_not(b1);
3841 gen_and(b0, b1);
3842 return b1;
3843 }
3844
3845 struct block *
3846 gen_llc_s(compiler_state_t *cstate)
3847 {
3848 struct block *b0, *b1;
3849
3850 /*
3851 * Catch errors reported by us and routines below us, and return NULL
3852 * on an error.
3853 */
3854 if (setjmp(cstate->top_ctx))
3855 return (NULL);
3856
3857 /*
3858 * Check whether this is an LLC frame.
3859 */
3860 b0 = gen_llc_internal(cstate);
3861
3862 /*
3863 * Now compare the low-order 2 bit of the control byte against
3864 * the appropriate value for S frames.
3865 */
3866 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3867 gen_and(b0, b1);
3868 return b1;
3869 }
3870
3871 struct block *
3872 gen_llc_u(compiler_state_t *cstate)
3873 {
3874 struct block *b0, *b1;
3875
3876 /*
3877 * Catch errors reported by us and routines below us, and return NULL
3878 * on an error.
3879 */
3880 if (setjmp(cstate->top_ctx))
3881 return (NULL);
3882
3883 /*
3884 * Check whether this is an LLC frame.
3885 */
3886 b0 = gen_llc_internal(cstate);
3887
3888 /*
3889 * Now compare the low-order 2 bit of the control byte against
3890 * the appropriate value for U frames.
3891 */
3892 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3893 gen_and(b0, b1);
3894 return b1;
3895 }
3896
3897 struct block *
3898 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3899 {
3900 struct block *b0, *b1;
3901
3902 /*
3903 * Catch errors reported by us and routines below us, and return NULL
3904 * on an error.
3905 */
3906 if (setjmp(cstate->top_ctx))
3907 return (NULL);
3908
3909 /*
3910 * Check whether this is an LLC frame.
3911 */
3912 b0 = gen_llc_internal(cstate);
3913
3914 /*
3915 * Now check for an S frame with the appropriate type.
3916 */
3917 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3918 gen_and(b0, b1);
3919 return b1;
3920 }
3921
3922 struct block *
3923 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3924 {
3925 struct block *b0, *b1;
3926
3927 /*
3928 * Catch errors reported by us and routines below us, and return NULL
3929 * on an error.
3930 */
3931 if (setjmp(cstate->top_ctx))
3932 return (NULL);
3933
3934 /*
3935 * Check whether this is an LLC frame.
3936 */
3937 b0 = gen_llc_internal(cstate);
3938
3939 /*
3940 * Now check for a U frame with the appropriate type.
3941 */
3942 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3943 gen_and(b0, b1);
3944 return b1;
3945 }
3946
3947 /*
3948 * Generate code to match a particular packet type, for link-layer types
3949 * using 802.2 LLC headers.
3950 *
3951 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3952 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3953 *
3954 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3955 * value, if <= ETHERMTU. We use that to determine whether to
3956 * match the DSAP or both DSAP and LSAP or to check the OUI and
3957 * protocol ID in a SNAP header.
3958 */
3959 static struct block *
3960 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3961 {
3962 /*
3963 * XXX - handle token-ring variable-length header.
3964 */
3965 switch (ll_proto) {
3966
3967 case LLCSAP_IP:
3968 case LLCSAP_ISONS:
3969 case LLCSAP_NETBEUI:
3970 /*
3971 * XXX - should we check both the DSAP and the
3972 * SSAP, like this, or should we check just the
3973 * DSAP, as we do for other SAP values?
3974 */
3975 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3976 ((ll_proto << 8) | ll_proto));
3977
3978 case LLCSAP_IPX:
3979 /*
3980 * XXX - are there ever SNAP frames for IPX on
3981 * non-Ethernet 802.x networks?
3982 */
3983 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3984
3985 case ETHERTYPE_ATALK:
3986 /*
3987 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3988 * SNAP packets with an organization code of
3989 * 0x080007 (Apple, for Appletalk) and a protocol
3990 * type of ETHERTYPE_ATALK (Appletalk).
3991 *
3992 * XXX - check for an organization code of
3993 * encapsulated Ethernet as well?
3994 */
3995 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3996
3997 default:
3998 /*
3999 * XXX - we don't have to check for IPX 802.3
4000 * here, but should we check for the IPX Ethertype?
4001 */
4002 if (ll_proto <= ETHERMTU) {
4003 /*
4004 * This is an LLC SAP value, so check
4005 * the DSAP.
4006 */
4007 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4008 } else {
4009 /*
4010 * This is an Ethernet type; we assume that it's
4011 * unlikely that it'll appear in the right place
4012 * at random, and therefore check only the
4013 * location that would hold the Ethernet type
4014 * in a SNAP frame with an organization code of
4015 * 0x000000 (encapsulated Ethernet).
4016 *
4017 * XXX - if we were to check for the SNAP DSAP and
4018 * LSAP, as per XXX, and were also to check for an
4019 * organization code of 0x000000 (encapsulated
4020 * Ethernet), we'd do
4021 *
4022 * return gen_snap(cstate, 0x000000, ll_proto);
4023 *
4024 * here; for now, we don't, as per the above.
4025 * I don't know whether it's worth the extra CPU
4026 * time to do the right check or not.
4027 */
4028 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4029 }
4030 }
4031 }
4032
4033 static struct block *
4034 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4035 int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4036 {
4037 struct block *b0, *b1;
4038 u_int offset;
4039
4040 switch (dir) {
4041
4042 case Q_SRC:
4043 offset = src_off;
4044 break;
4045
4046 case Q_DST:
4047 offset = dst_off;
4048 break;
4049
4050 case Q_AND:
4051 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4052 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4053 gen_and(b0, b1);
4054 return b1;
4055
4056 case Q_DEFAULT:
4057 case Q_OR:
4058 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4059 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4060 gen_or(b0, b1);
4061 return b1;
4062
4063 case Q_ADDR1:
4064 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4065 /*NOTREACHED*/
4066
4067 case Q_ADDR2:
4068 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4069 /*NOTREACHED*/
4070
4071 case Q_ADDR3:
4072 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4073 /*NOTREACHED*/
4074
4075 case Q_ADDR4:
4076 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4077 /*NOTREACHED*/
4078
4079 case Q_RA:
4080 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4081 /*NOTREACHED*/
4082
4083 case Q_TA:
4084 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4085 /*NOTREACHED*/
4086
4087 default:
4088 abort();
4089 /*NOTREACHED*/
4090 }
4091 b0 = gen_linktype(cstate, ll_proto);
4092 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4093 gen_and(b0, b1);
4094 return b1;
4095 }
4096
4097 #ifdef INET6
4098 static struct block *
4099 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4100 struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4101 u_int dst_off)
4102 {
4103 struct block *b0, *b1;
4104 u_int offset;
4105 uint32_t *a, *m;
4106
4107 switch (dir) {
4108
4109 case Q_SRC:
4110 offset = src_off;
4111 break;
4112
4113 case Q_DST:
4114 offset = dst_off;
4115 break;
4116
4117 case Q_AND:
4118 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4119 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4120 gen_and(b0, b1);
4121 return b1;
4122
4123 case Q_DEFAULT:
4124 case Q_OR:
4125 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4126 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4127 gen_or(b0, b1);
4128 return b1;
4129
4130 case Q_ADDR1:
4131 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4132 /*NOTREACHED*/
4133
4134 case Q_ADDR2:
4135 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4136 /*NOTREACHED*/
4137
4138 case Q_ADDR3:
4139 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4140 /*NOTREACHED*/
4141
4142 case Q_ADDR4:
4143 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4144 /*NOTREACHED*/
4145
4146 case Q_RA:
4147 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4148 /*NOTREACHED*/
4149
4150 case Q_TA:
4151 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4152 /*NOTREACHED*/
4153
4154 default:
4155 abort();
4156 /*NOTREACHED*/
4157 }
4158 /* this order is important */
4159 a = (uint32_t *)addr;
4160 m = (uint32_t *)mask;
4161 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4162 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4163 gen_and(b0, b1);
4164 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4165 gen_and(b0, b1);
4166 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4167 gen_and(b0, b1);
4168 b0 = gen_linktype(cstate, ll_proto);
4169 gen_and(b0, b1);
4170 return b1;
4171 }
4172 #endif
4173
4174 static struct block *
4175 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4176 {
4177 register struct block *b0, *b1;
4178
4179 switch (dir) {
4180 case Q_SRC:
4181 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4182
4183 case Q_DST:
4184 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4185
4186 case Q_AND:
4187 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4188 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4189 gen_and(b0, b1);
4190 return b1;
4191
4192 case Q_DEFAULT:
4193 case Q_OR:
4194 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4195 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4196 gen_or(b0, b1);
4197 return b1;
4198
4199 case Q_ADDR1:
4200 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4201 /*NOTREACHED*/
4202
4203 case Q_ADDR2:
4204 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4205 /*NOTREACHED*/
4206
4207 case Q_ADDR3:
4208 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4209 /*NOTREACHED*/
4210
4211 case Q_ADDR4:
4212 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4213 /*NOTREACHED*/
4214
4215 case Q_RA:
4216 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4217 /*NOTREACHED*/
4218
4219 case Q_TA:
4220 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4221 /*NOTREACHED*/
4222 }
4223 abort();
4224 /*NOTREACHED*/
4225 }
4226
4227 /*
4228 * Like gen_ehostop, but for DLT_FDDI
4229 */
4230 static struct block *
4231 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4232 {
4233 struct block *b0, *b1;
4234
4235 switch (dir) {
4236 case Q_SRC:
4237 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4238
4239 case Q_DST:
4240 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4241
4242 case Q_AND:
4243 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4244 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4245 gen_and(b0, b1);
4246 return b1;
4247
4248 case Q_DEFAULT:
4249 case Q_OR:
4250 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4251 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4252 gen_or(b0, b1);
4253 return b1;
4254
4255 case Q_ADDR1:
4256 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4257 /*NOTREACHED*/
4258
4259 case Q_ADDR2:
4260 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4261 /*NOTREACHED*/
4262
4263 case Q_ADDR3:
4264 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4265 /*NOTREACHED*/
4266
4267 case Q_ADDR4:
4268 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4269 /*NOTREACHED*/
4270
4271 case Q_RA:
4272 bpf_error(cstate, "'ra' is only supported on 802.11");
4273 /*NOTREACHED*/
4274
4275 case Q_TA:
4276 bpf_error(cstate, "'ta' is only supported on 802.11");
4277 /*NOTREACHED*/
4278 }
4279 abort();
4280 /*NOTREACHED*/
4281 }
4282
4283 /*
4284 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4285 */
4286 static struct block *
4287 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4288 {
4289 register struct block *b0, *b1;
4290
4291 switch (dir) {
4292 case Q_SRC:
4293 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4294
4295 case Q_DST:
4296 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4297
4298 case Q_AND:
4299 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4300 b1 = gen_thostop(cstate, eaddr, Q_DST);
4301 gen_and(b0, b1);
4302 return b1;
4303
4304 case Q_DEFAULT:
4305 case Q_OR:
4306 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4307 b1 = gen_thostop(cstate, eaddr, Q_DST);
4308 gen_or(b0, b1);
4309 return b1;
4310
4311 case Q_ADDR1:
4312 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4313 /*NOTREACHED*/
4314
4315 case Q_ADDR2:
4316 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4317 /*NOTREACHED*/
4318
4319 case Q_ADDR3:
4320 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4321 /*NOTREACHED*/
4322
4323 case Q_ADDR4:
4324 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4325 /*NOTREACHED*/
4326
4327 case Q_RA:
4328 bpf_error(cstate, "'ra' is only supported on 802.11");
4329 /*NOTREACHED*/
4330
4331 case Q_TA:
4332 bpf_error(cstate, "'ta' is only supported on 802.11");
4333 /*NOTREACHED*/
4334 }
4335 abort();
4336 /*NOTREACHED*/
4337 }
4338
4339 /*
4340 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4341 * various 802.11 + radio headers.
4342 */
4343 static struct block *
4344 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4345 {
4346 register struct block *b0, *b1, *b2;
4347 register struct slist *s;
4348
4349 #ifdef ENABLE_WLAN_FILTERING_PATCH
4350 /*
4351 * TODO GV 20070613
4352 * We need to disable the optimizer because the optimizer is buggy
4353 * and wipes out some LD instructions generated by the below
4354 * code to validate the Frame Control bits
4355 */
4356 cstate->no_optimize = 1;
4357 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4358
4359 switch (dir) {
4360 case Q_SRC:
4361 /*
4362 * Oh, yuk.
4363 *
4364 * For control frames, there is no SA.
4365 *
4366 * For management frames, SA is at an
4367 * offset of 10 from the beginning of
4368 * the packet.
4369 *
4370 * For data frames, SA is at an offset
4371 * of 10 from the beginning of the packet
4372 * if From DS is clear, at an offset of
4373 * 16 from the beginning of the packet
4374 * if From DS is set and To DS is clear,
4375 * and an offset of 24 from the beginning
4376 * of the packet if From DS is set and To DS
4377 * is set.
4378 */
4379
4380 /*
4381 * Generate the tests to be done for data frames
4382 * with From DS set.
4383 *
4384 * First, check for To DS set, i.e. check "link[1] & 0x01".
4385 */
4386 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4387 b1 = new_block(cstate, JMP(BPF_JSET));
4388 b1->s.k = 0x01; /* To DS */
4389 b1->stmts = s;
4390
4391 /*
4392 * If To DS is set, the SA is at 24.
4393 */
4394 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4395 gen_and(b1, b0);
4396
4397 /*
4398 * Now, check for To DS not set, i.e. check
4399 * "!(link[1] & 0x01)".
4400 */
4401 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4402 b2 = new_block(cstate, JMP(BPF_JSET));
4403 b2->s.k = 0x01; /* To DS */
4404 b2->stmts = s;
4405 gen_not(b2);
4406
4407 /*
4408 * If To DS is not set, the SA is at 16.
4409 */
4410 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4411 gen_and(b2, b1);
4412
4413 /*
4414 * Now OR together the last two checks. That gives
4415 * the complete set of checks for data frames with
4416 * From DS set.
4417 */
4418 gen_or(b1, b0);
4419
4420 /*
4421 * Now check for From DS being set, and AND that with
4422 * the ORed-together checks.
4423 */
4424 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4425 b1 = new_block(cstate, JMP(BPF_JSET));
4426 b1->s.k = 0x02; /* From DS */
4427 b1->stmts = s;
4428 gen_and(b1, b0);
4429
4430 /*
4431 * Now check for data frames with From DS not set.
4432 */
4433 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4434 b2 = new_block(cstate, JMP(BPF_JSET));
4435 b2->s.k = 0x02; /* From DS */
4436 b2->stmts = s;
4437 gen_not(b2);
4438
4439 /*
4440 * If From DS isn't set, the SA is at 10.
4441 */
4442 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4443 gen_and(b2, b1);
4444
4445 /*
4446 * Now OR together the checks for data frames with
4447 * From DS not set and for data frames with From DS
4448 * set; that gives the checks done for data frames.
4449 */
4450 gen_or(b1, b0);
4451
4452 /*
4453 * Now check for a data frame.
4454 * I.e, check "link[0] & 0x08".
4455 */
4456 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4457 b1 = new_block(cstate, JMP(BPF_JSET));
4458 b1->s.k = 0x08;
4459 b1->stmts = s;
4460
4461 /*
4462 * AND that with the checks done for data frames.
4463 */
4464 gen_and(b1, b0);
4465
4466 /*
4467 * If the high-order bit of the type value is 0, this
4468 * is a management frame.
4469 * I.e, check "!(link[0] & 0x08)".
4470 */
4471 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4472 b2 = new_block(cstate, JMP(BPF_JSET));
4473 b2->s.k = 0x08;
4474 b2->stmts = s;
4475 gen_not(b2);
4476
4477 /*
4478 * For management frames, the SA is at 10.
4479 */
4480 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4481 gen_and(b2, b1);
4482
4483 /*
4484 * OR that with the checks done for data frames.
4485 * That gives the checks done for management and
4486 * data frames.
4487 */
4488 gen_or(b1, b0);
4489
4490 /*
4491 * If the low-order bit of the type value is 1,
4492 * this is either a control frame or a frame
4493 * with a reserved type, and thus not a
4494 * frame with an SA.
4495 *
4496 * I.e., check "!(link[0] & 0x04)".
4497 */
4498 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4499 b1 = new_block(cstate, JMP(BPF_JSET));
4500 b1->s.k = 0x04;
4501 b1->stmts = s;
4502 gen_not(b1);
4503
4504 /*
4505 * AND that with the checks for data and management
4506 * frames.
4507 */
4508 gen_and(b1, b0);
4509 return b0;
4510
4511 case Q_DST:
4512 /*
4513 * Oh, yuk.
4514 *
4515 * For control frames, there is no DA.
4516 *
4517 * For management frames, DA is at an
4518 * offset of 4 from the beginning of
4519 * the packet.
4520 *
4521 * For data frames, DA is at an offset
4522 * of 4 from the beginning of the packet
4523 * if To DS is clear and at an offset of
4524 * 16 from the beginning of the packet
4525 * if To DS is set.
4526 */
4527
4528 /*
4529 * Generate the tests to be done for data frames.
4530 *
4531 * First, check for To DS set, i.e. "link[1] & 0x01".
4532 */
4533 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4534 b1 = new_block(cstate, JMP(BPF_JSET));
4535 b1->s.k = 0x01; /* To DS */
4536 b1->stmts = s;
4537
4538 /*
4539 * If To DS is set, the DA is at 16.
4540 */
4541 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4542 gen_and(b1, b0);
4543
4544 /*
4545 * Now, check for To DS not set, i.e. check
4546 * "!(link[1] & 0x01)".
4547 */
4548 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4549 b2 = new_block(cstate, JMP(BPF_JSET));
4550 b2->s.k = 0x01; /* To DS */
4551 b2->stmts = s;
4552 gen_not(b2);
4553
4554 /*
4555 * If To DS is not set, the DA is at 4.
4556 */
4557 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4558 gen_and(b2, b1);
4559
4560 /*
4561 * Now OR together the last two checks. That gives
4562 * the complete set of checks for data frames.
4563 */
4564 gen_or(b1, b0);
4565
4566 /*
4567 * Now check for a data frame.
4568 * I.e, check "link[0] & 0x08".
4569 */
4570 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4571 b1 = new_block(cstate, JMP(BPF_JSET));
4572 b1->s.k = 0x08;
4573 b1->stmts = s;
4574
4575 /*
4576 * AND that with the checks done for data frames.
4577 */
4578 gen_and(b1, b0);
4579
4580 /*
4581 * If the high-order bit of the type value is 0, this
4582 * is a management frame.
4583 * I.e, check "!(link[0] & 0x08)".
4584 */
4585 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4586 b2 = new_block(cstate, JMP(BPF_JSET));
4587 b2->s.k = 0x08;
4588 b2->stmts = s;
4589 gen_not(b2);
4590
4591 /*
4592 * For management frames, the DA is at 4.
4593 */
4594 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4595 gen_and(b2, b1);
4596
4597 /*
4598 * OR that with the checks done for data frames.
4599 * That gives the checks done for management and
4600 * data frames.
4601 */
4602 gen_or(b1, b0);
4603
4604 /*
4605 * If the low-order bit of the type value is 1,
4606 * this is either a control frame or a frame
4607 * with a reserved type, and thus not a
4608 * frame with an SA.
4609 *
4610 * I.e., check "!(link[0] & 0x04)".
4611 */
4612 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4613 b1 = new_block(cstate, JMP(BPF_JSET));
4614 b1->s.k = 0x04;
4615 b1->stmts = s;
4616 gen_not(b1);
4617
4618 /*
4619 * AND that with the checks for data and management
4620 * frames.
4621 */
4622 gen_and(b1, b0);
4623 return b0;
4624
4625 case Q_AND:
4626 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4627 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4628 gen_and(b0, b1);
4629 return b1;
4630
4631 case Q_DEFAULT:
4632 case Q_OR:
4633 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4634 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4635 gen_or(b0, b1);
4636 return b1;
4637
4638 /*
4639 * XXX - add BSSID keyword?
4640 */
4641 case Q_ADDR1:
4642 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4643
4644 case Q_ADDR2:
4645 /*
4646 * Not present in CTS or ACK control frames.
4647 */
4648 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4649 IEEE80211_FC0_TYPE_MASK);
4650 gen_not(b0);
4651 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4652 IEEE80211_FC0_SUBTYPE_MASK);
4653 gen_not(b1);
4654 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4655 IEEE80211_FC0_SUBTYPE_MASK);
4656 gen_not(b2);
4657 gen_and(b1, b2);
4658 gen_or(b0, b2);
4659 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4660 gen_and(b2, b1);
4661 return b1;
4662
4663 case Q_ADDR3:
4664 /*
4665 * Not present in control frames.
4666 */
4667 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4668 IEEE80211_FC0_TYPE_MASK);
4669 gen_not(b0);
4670 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4671 gen_and(b0, b1);
4672 return b1;
4673
4674 case Q_ADDR4:
4675 /*
4676 * Present only if the direction mask has both "From DS"
4677 * and "To DS" set. Neither control frames nor management
4678 * frames should have both of those set, so we don't
4679 * check the frame type.
4680 */
4681 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4682 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4683 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4684 gen_and(b0, b1);
4685 return b1;
4686
4687 case Q_RA:
4688 /*
4689 * Not present in management frames; addr1 in other
4690 * frames.
4691 */
4692
4693 /*
4694 * If the high-order bit of the type value is 0, this
4695 * is a management frame.
4696 * I.e, check "(link[0] & 0x08)".
4697 */
4698 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4699 b1 = new_block(cstate, JMP(BPF_JSET));
4700 b1->s.k = 0x08;
4701 b1->stmts = s;
4702
4703 /*
4704 * Check addr1.
4705 */
4706 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4707
4708 /*
4709 * AND that with the check of addr1.
4710 */
4711 gen_and(b1, b0);
4712 return (b0);
4713
4714 case Q_TA:
4715 /*
4716 * Not present in management frames; addr2, if present,
4717 * in other frames.
4718 */
4719
4720 /*
4721 * Not present in CTS or ACK control frames.
4722 */
4723 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4724 IEEE80211_FC0_TYPE_MASK);
4725 gen_not(b0);
4726 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4727 IEEE80211_FC0_SUBTYPE_MASK);
4728 gen_not(b1);
4729 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4730 IEEE80211_FC0_SUBTYPE_MASK);
4731 gen_not(b2);
4732 gen_and(b1, b2);
4733 gen_or(b0, b2);
4734
4735 /*
4736 * If the high-order bit of the type value is 0, this
4737 * is a management frame.
4738 * I.e, check "(link[0] & 0x08)".
4739 */
4740 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4741 b1 = new_block(cstate, JMP(BPF_JSET));
4742 b1->s.k = 0x08;
4743 b1->stmts = s;
4744
4745 /*
4746 * AND that with the check for frames other than
4747 * CTS and ACK frames.
4748 */
4749 gen_and(b1, b2);
4750
4751 /*
4752 * Check addr2.
4753 */
4754 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4755 gen_and(b2, b1);
4756 return b1;
4757 }
4758 abort();
4759 /*NOTREACHED*/
4760 }
4761
4762 /*
4763 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4764 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4765 * as the RFC states.)
4766 */
4767 static struct block *
4768 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4769 {
4770 register struct block *b0, *b1;
4771
4772 switch (dir) {
4773 case Q_SRC:
4774 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4775
4776 case Q_DST:
4777 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4778
4779 case Q_AND:
4780 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4781 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4782 gen_and(b0, b1);
4783 return b1;
4784
4785 case Q_DEFAULT:
4786 case Q_OR:
4787 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4788 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4789 gen_or(b0, b1);
4790 return b1;
4791
4792 case Q_ADDR1:
4793 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4794 /*NOTREACHED*/
4795
4796 case Q_ADDR2:
4797 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4798 /*NOTREACHED*/
4799
4800 case Q_ADDR3:
4801 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4802 /*NOTREACHED*/
4803
4804 case Q_ADDR4:
4805 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4806 /*NOTREACHED*/
4807
4808 case Q_RA:
4809 bpf_error(cstate, "'ra' is only supported on 802.11");
4810 /*NOTREACHED*/
4811
4812 case Q_TA:
4813 bpf_error(cstate, "'ta' is only supported on 802.11");
4814 /*NOTREACHED*/
4815 }
4816 abort();
4817 /*NOTREACHED*/
4818 }
4819
4820 /*
4821 * This is quite tricky because there may be pad bytes in front of the
4822 * DECNET header, and then there are two possible data packet formats that
4823 * carry both src and dst addresses, plus 5 packet types in a format that
4824 * carries only the src node, plus 2 types that use a different format and
4825 * also carry just the src node.
4826 *
4827 * Yuck.
4828 *
4829 * Instead of doing those all right, we just look for data packets with
4830 * 0 or 1 bytes of padding. If you want to look at other packets, that
4831 * will require a lot more hacking.
4832 *
4833 * To add support for filtering on DECNET "areas" (network numbers)
4834 * one would want to add a "mask" argument to this routine. That would
4835 * make the filter even more inefficient, although one could be clever
4836 * and not generate masking instructions if the mask is 0xFFFF.
4837 */
4838 static struct block *
4839 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4840 {
4841 struct block *b0, *b1, *b2, *tmp;
4842 u_int offset_lh; /* offset if long header is received */
4843 u_int offset_sh; /* offset if short header is received */
4844
4845 switch (dir) {
4846
4847 case Q_DST:
4848 offset_sh = 1; /* follows flags */
4849 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4850 break;
4851
4852 case Q_SRC:
4853 offset_sh = 3; /* follows flags, dstnode */
4854 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4855 break;
4856
4857 case Q_AND:
4858 /* Inefficient because we do our Calvinball dance twice */
4859 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4860 b1 = gen_dnhostop(cstate, addr, Q_DST);
4861 gen_and(b0, b1);
4862 return b1;
4863
4864 case Q_DEFAULT:
4865 case Q_OR:
4866 /* Inefficient because we do our Calvinball dance twice */
4867 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4868 b1 = gen_dnhostop(cstate, addr, Q_DST);
4869 gen_or(b0, b1);
4870 return b1;
4871
4872 case Q_ADDR1:
4873 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4874 /*NOTREACHED*/
4875
4876 case Q_ADDR2:
4877 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4878 /*NOTREACHED*/
4879
4880 case Q_ADDR3:
4881 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4882 /*NOTREACHED*/
4883
4884 case Q_ADDR4:
4885 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4886 /*NOTREACHED*/
4887
4888 case Q_RA:
4889 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4890 /*NOTREACHED*/
4891
4892 case Q_TA:
4893 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4894 /*NOTREACHED*/
4895
4896 default:
4897 abort();
4898 /*NOTREACHED*/
4899 }
4900 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4901 /* Check for pad = 1, long header case */
4902 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4903 (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4904 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4905 BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4906 gen_and(tmp, b1);
4907 /* Check for pad = 0, long header case */
4908 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4909 (bpf_u_int32)0x7);
4910 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4911 (bpf_u_int32)ntohs((u_short)addr));
4912 gen_and(tmp, b2);
4913 gen_or(b2, b1);
4914 /* Check for pad = 1, short header case */
4915 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4916 (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4917 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4918 (bpf_u_int32)ntohs((u_short)addr));
4919 gen_and(tmp, b2);
4920 gen_or(b2, b1);
4921 /* Check for pad = 0, short header case */
4922 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4923 (bpf_u_int32)0x7);
4924 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4925 (bpf_u_int32)ntohs((u_short)addr));
4926 gen_and(tmp, b2);
4927 gen_or(b2, b1);
4928
4929 /* Combine with test for cstate->linktype */
4930 gen_and(b0, b1);
4931 return b1;
4932 }
4933
4934 /*
4935 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4936 * test the bottom-of-stack bit, and then check the version number
4937 * field in the IP header.
4938 */
4939 static struct block *
4940 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4941 {
4942 struct block *b0, *b1;
4943
4944 switch (ll_proto) {
4945
4946 case ETHERTYPE_IP:
4947 /* match the bottom-of-stack bit */
4948 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4949 /* match the IPv4 version number */
4950 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4951 gen_and(b0, b1);
4952 return b1;
4953
4954 case ETHERTYPE_IPV6:
4955 /* match the bottom-of-stack bit */
4956 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4957 /* match the IPv4 version number */
4958 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4959 gen_and(b0, b1);
4960 return b1;
4961
4962 default:
4963 /* FIXME add other L3 proto IDs */
4964 bpf_error(cstate, "unsupported protocol over mpls");
4965 /*NOTREACHED*/
4966 }
4967 }
4968
4969 static struct block *
4970 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4971 int proto, int dir, int type)
4972 {
4973 struct block *b0, *b1;
4974 const char *typestr;
4975
4976 if (type == Q_NET)
4977 typestr = "net";
4978 else
4979 typestr = "host";
4980
4981 switch (proto) {
4982
4983 case Q_DEFAULT:
4984 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4985 /*
4986 * Only check for non-IPv4 addresses if we're not
4987 * checking MPLS-encapsulated packets.
4988 */
4989 if (cstate->label_stack_depth == 0) {
4990 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4991 gen_or(b0, b1);
4992 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4993 gen_or(b1, b0);
4994 }
4995 return b0;
4996
4997 case Q_LINK:
4998 bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4999
5000 case Q_IP:
5001 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
5002
5003 case Q_RARP:
5004 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5005
5006 case Q_ARP:
5007 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5008
5009 case Q_SCTP:
5010 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5011
5012 case Q_TCP:
5013 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5014
5015 case Q_UDP:
5016 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5017
5018 case Q_ICMP:
5019 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5020
5021 case Q_IGMP:
5022 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5023
5024 case Q_IGRP:
5025 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5026
5027 case Q_ATALK:
5028 bpf_error(cstate, "AppleTalk host filtering not implemented");
5029
5030 case Q_DECNET:
5031 return gen_dnhostop(cstate, addr, dir);
5032
5033 case Q_LAT:
5034 bpf_error(cstate, "LAT host filtering not implemented");
5035
5036 case Q_SCA:
5037 bpf_error(cstate, "SCA host filtering not implemented");
5038
5039 case Q_MOPRC:
5040 bpf_error(cstate, "MOPRC host filtering not implemented");
5041
5042 case Q_MOPDL:
5043 bpf_error(cstate, "MOPDL host filtering not implemented");
5044
5045 case Q_IPV6:
5046 bpf_error(cstate, "'ip6' modifier applied to ip host");
5047
5048 case Q_ICMPV6:
5049 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5050
5051 case Q_AH:
5052 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5053
5054 case Q_ESP:
5055 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5056
5057 case Q_PIM:
5058 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5059
5060 case Q_VRRP:
5061 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5062
5063 case Q_AARP:
5064 bpf_error(cstate, "AARP host filtering not implemented");
5065
5066 case Q_ISO:
5067 bpf_error(cstate, "ISO host filtering not implemented");
5068
5069 case Q_ESIS:
5070 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5071
5072 case Q_ISIS:
5073 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5074
5075 case Q_CLNP:
5076 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5077
5078 case Q_STP:
5079 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5080
5081 case Q_IPX:
5082 bpf_error(cstate, "IPX host filtering not implemented");
5083
5084 case Q_NETBEUI:
5085 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5086
5087 case Q_ISIS_L1:
5088 bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5089
5090 case Q_ISIS_L2:
5091 bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5092
5093 case Q_ISIS_IIH:
5094 bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5095
5096 case Q_ISIS_SNP:
5097 bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5098
5099 case Q_ISIS_CSNP:
5100 bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5101
5102 case Q_ISIS_PSNP:
5103 bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5104
5105 case Q_ISIS_LSP:
5106 bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5107
5108 case Q_RADIO:
5109 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5110
5111 case Q_CARP:
5112 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5113
5114 default:
5115 abort();
5116 }
5117 /*NOTREACHED*/
5118 }
5119
5120 #ifdef INET6
5121 static struct block *
5122 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5123 struct in6_addr *mask, int proto, int dir, int type)
5124 {
5125 const char *typestr;
5126
5127 if (type == Q_NET)
5128 typestr = "net";
5129 else
5130 typestr = "host";
5131
5132 switch (proto) {
5133
5134 case Q_DEFAULT:
5135 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5136
5137 case Q_LINK:
5138 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5139
5140 case Q_IP:
5141 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5142
5143 case Q_RARP:
5144 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5145
5146 case Q_ARP:
5147 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5148
5149 case Q_SCTP:
5150 bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5151
5152 case Q_TCP:
5153 bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5154
5155 case Q_UDP:
5156 bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5157
5158 case Q_ICMP:
5159 bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5160
5161 case Q_IGMP:
5162 bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5163
5164 case Q_IGRP:
5165 bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5166
5167 case Q_ATALK:
5168 bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5169
5170 case Q_DECNET:
5171 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5172
5173 case Q_LAT:
5174 bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5175
5176 case Q_SCA:
5177 bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5178
5179 case Q_MOPRC:
5180 bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5181
5182 case Q_MOPDL:
5183 bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5184
5185 case Q_IPV6:
5186 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5187
5188 case Q_ICMPV6:
5189 bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5190
5191 case Q_AH:
5192 bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5193
5194 case Q_ESP:
5195 bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5196
5197 case Q_PIM:
5198 bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5199
5200 case Q_VRRP:
5201 bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5202
5203 case Q_AARP:
5204 bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5205
5206 case Q_ISO:
5207 bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5208
5209 case Q_ESIS:
5210 bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5211
5212 case Q_ISIS:
5213 bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5214
5215 case Q_CLNP:
5216 bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5217
5218 case Q_STP:
5219 bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5220
5221 case Q_IPX:
5222 bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5223
5224 case Q_NETBEUI:
5225 bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5226
5227 case Q_ISIS_L1:
5228 bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5229
5230 case Q_ISIS_L2:
5231 bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5232
5233 case Q_ISIS_IIH:
5234 bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5235
5236 case Q_ISIS_SNP:
5237 bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5238
5239 case Q_ISIS_CSNP:
5240 bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5241
5242 case Q_ISIS_PSNP:
5243 bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5244
5245 case Q_ISIS_LSP:
5246 bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5247
5248 case Q_RADIO:
5249 bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5250
5251 case Q_CARP:
5252 bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5253
5254 default:
5255 abort();
5256 }
5257 /*NOTREACHED*/
5258 }
5259 #endif
5260
5261 #ifndef INET6
5262 static struct block *
5263 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5264 struct addrinfo *alist, int proto, int dir)
5265 {
5266 struct block *b0, *b1, *tmp;
5267 struct addrinfo *ai;
5268 struct sockaddr_in *sin;
5269
5270 if (dir != 0)
5271 bpf_error(cstate, "direction applied to 'gateway'");
5272
5273 switch (proto) {
5274 case Q_DEFAULT:
5275 case Q_IP:
5276 case Q_ARP:
5277 case Q_RARP:
5278 switch (cstate->linktype) {
5279 case DLT_EN10MB:
5280 case DLT_NETANALYZER:
5281 case DLT_NETANALYZER_TRANSPARENT:
5282 b1 = gen_prevlinkhdr_check(cstate);
5283 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5284 if (b1 != NULL)
5285 gen_and(b1, b0);
5286 break;
5287 case DLT_FDDI:
5288 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5289 break;
5290 case DLT_IEEE802:
5291 b0 = gen_thostop(cstate, eaddr, Q_OR);
5292 break;
5293 case DLT_IEEE802_11:
5294 case DLT_PRISM_HEADER:
5295 case DLT_IEEE802_11_RADIO_AVS:
5296 case DLT_IEEE802_11_RADIO:
5297 case DLT_PPI:
5298 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5299 break;
5300 case DLT_SUNATM:
5301 /*
5302 * This is LLC-multiplexed traffic; if it were
5303 * LANE, cstate->linktype would have been set to
5304 * DLT_EN10MB.
5305 */
5306 bpf_error(cstate,
5307 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5308 break;
5309 case DLT_IP_OVER_FC:
5310 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5311 break;
5312 default:
5313 bpf_error(cstate,
5314 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5315 }
5316 b1 = NULL;
5317 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5318 /*
5319 * Does it have an address?
5320 */
5321 if (ai->ai_addr != NULL) {
5322 /*
5323 * Yes. Is it an IPv4 address?
5324 */
5325 if (ai->ai_addr->sa_family == AF_INET) {
5326 /*
5327 * Generate an entry for it.
5328 */
5329 sin = (struct sockaddr_in *)ai->ai_addr;
5330 tmp = gen_host(cstate,
5331 ntohl(sin->sin_addr.s_addr),
5332 0xffffffff, proto, Q_OR, Q_HOST);
5333 /*
5334 * Is it the *first* IPv4 address?
5335 */
5336 if (b1 == NULL) {
5337 /*
5338 * Yes, so start with it.
5339 */
5340 b1 = tmp;
5341 } else {
5342 /*
5343 * No, so OR it into the
5344 * existing set of
5345 * addresses.
5346 */
5347 gen_or(b1, tmp);
5348 b1 = tmp;
5349 }
5350 }
5351 }
5352 }
5353 if (b1 == NULL) {
5354 /*
5355 * No IPv4 addresses found.
5356 */
5357 return (NULL);
5358 }
5359 gen_not(b1);
5360 gen_and(b0, b1);
5361 return b1;
5362 }
5363 bpf_error(cstate, "illegal modifier of 'gateway'");
5364 /*NOTREACHED*/
5365 }
5366 #endif
5367
5368 static struct block *
5369 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5370 {
5371 struct block *b0;
5372 struct block *b1;
5373
5374 switch (proto) {
5375
5376 case Q_SCTP:
5377 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5378 break;
5379
5380 case Q_TCP:
5381 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5382 break;
5383
5384 case Q_UDP:
5385 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5386 break;
5387
5388 case Q_ICMP:
5389 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5390 break;
5391
5392 #ifndef IPPROTO_IGMP
5393 #define IPPROTO_IGMP 2
5394 #endif
5395
5396 case Q_IGMP:
5397 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5398 break;
5399
5400 #ifndef IPPROTO_IGRP
5401 #define IPPROTO_IGRP 9
5402 #endif
5403 case Q_IGRP:
5404 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5405 break;
5406
5407 #ifndef IPPROTO_PIM
5408 #define IPPROTO_PIM 103
5409 #endif
5410
5411 case Q_PIM:
5412 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5413 break;
5414
5415 #ifndef IPPROTO_VRRP
5416 #define IPPROTO_VRRP 112
5417 #endif
5418
5419 case Q_VRRP:
5420 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5421 break;
5422
5423 #ifndef IPPROTO_CARP
5424 #define IPPROTO_CARP 112
5425 #endif
5426
5427 case Q_CARP:
5428 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5429 break;
5430
5431 case Q_IP:
5432 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5433 break;
5434
5435 case Q_ARP:
5436 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5437 break;
5438
5439 case Q_RARP:
5440 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5441 break;
5442
5443 case Q_LINK:
5444 bpf_error(cstate, "link layer applied in wrong context");
5445
5446 case Q_ATALK:
5447 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5448 break;
5449
5450 case Q_AARP:
5451 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5452 break;
5453
5454 case Q_DECNET:
5455 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5456 break;
5457
5458 case Q_SCA:
5459 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5460 break;
5461
5462 case Q_LAT:
5463 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5464 break;
5465
5466 case Q_MOPDL:
5467 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5468 break;
5469
5470 case Q_MOPRC:
5471 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5472 break;
5473
5474 case Q_IPV6:
5475 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5476 break;
5477
5478 #ifndef IPPROTO_ICMPV6
5479 #define IPPROTO_ICMPV6 58
5480 #endif
5481 case Q_ICMPV6:
5482 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5483 break;
5484
5485 #ifndef IPPROTO_AH
5486 #define IPPROTO_AH 51
5487 #endif
5488 case Q_AH:
5489 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5490 break;
5491
5492 #ifndef IPPROTO_ESP
5493 #define IPPROTO_ESP 50
5494 #endif
5495 case Q_ESP:
5496 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5497 break;
5498
5499 case Q_ISO:
5500 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5501 break;
5502
5503 case Q_ESIS:
5504 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5505 break;
5506
5507 case Q_ISIS:
5508 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5509 break;
5510
5511 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5512 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5513 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5514 gen_or(b0, b1);
5515 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5516 gen_or(b0, b1);
5517 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5518 gen_or(b0, b1);
5519 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5520 gen_or(b0, b1);
5521 break;
5522
5523 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5524 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5525 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5526 gen_or(b0, b1);
5527 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5528 gen_or(b0, b1);
5529 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5530 gen_or(b0, b1);
5531 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5532 gen_or(b0, b1);
5533 break;
5534
5535 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5536 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5537 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5538 gen_or(b0, b1);
5539 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5540 gen_or(b0, b1);
5541 break;
5542
5543 case Q_ISIS_LSP:
5544 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5545 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5546 gen_or(b0, b1);
5547 break;
5548
5549 case Q_ISIS_SNP:
5550 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5551 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5552 gen_or(b0, b1);
5553 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5554 gen_or(b0, b1);
5555 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5556 gen_or(b0, b1);
5557 break;
5558
5559 case Q_ISIS_CSNP:
5560 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5561 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5562 gen_or(b0, b1);
5563 break;
5564
5565 case Q_ISIS_PSNP:
5566 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5567 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5568 gen_or(b0, b1);
5569 break;
5570
5571 case Q_CLNP:
5572 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5573 break;
5574
5575 case Q_STP:
5576 b1 = gen_linktype(cstate, LLCSAP_8021D);
5577 break;
5578
5579 case Q_IPX:
5580 b1 = gen_linktype(cstate, LLCSAP_IPX);
5581 break;
5582
5583 case Q_NETBEUI:
5584 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5585 break;
5586
5587 case Q_RADIO:
5588 bpf_error(cstate, "'radio' is not a valid protocol type");
5589
5590 default:
5591 abort();
5592 }
5593 return b1;
5594 }
5595
5596 struct block *
5597 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5598 {
5599 /*
5600 * Catch errors reported by us and routines below us, and return NULL
5601 * on an error.
5602 */
5603 if (setjmp(cstate->top_ctx))
5604 return (NULL);
5605
5606 return gen_proto_abbrev_internal(cstate, proto);
5607 }
5608
5609 static struct block *
5610 gen_ipfrag(compiler_state_t *cstate)
5611 {
5612 struct slist *s;
5613 struct block *b;
5614
5615 /* not IPv4 frag other than the first frag */
5616 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5617 b = new_block(cstate, JMP(BPF_JSET));
5618 b->s.k = 0x1fff;
5619 b->stmts = s;
5620 gen_not(b);
5621
5622 return b;
5623 }
5624
5625 /*
5626 * Generate a comparison to a port value in the transport-layer header
5627 * at the specified offset from the beginning of that header.
5628 *
5629 * XXX - this handles a variable-length prefix preceding the link-layer
5630 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5631 * variable-length link-layer headers (such as Token Ring or 802.11
5632 * headers).
5633 */
5634 static struct block *
5635 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5636 {
5637 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5638 }
5639
5640 static struct block *
5641 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5642 {
5643 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5644 }
5645
5646 static struct block *
5647 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5648 {
5649 struct block *b0, *b1, *tmp;
5650
5651 /* ip proto 'proto' and not a fragment other than the first fragment */
5652 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5653 b0 = gen_ipfrag(cstate);
5654 gen_and(tmp, b0);
5655
5656 switch (dir) {
5657 case Q_SRC:
5658 b1 = gen_portatom(cstate, 0, port);
5659 break;
5660
5661 case Q_DST:
5662 b1 = gen_portatom(cstate, 2, port);
5663 break;
5664
5665 case Q_AND:
5666 tmp = gen_portatom(cstate, 0, port);
5667 b1 = gen_portatom(cstate, 2, port);
5668 gen_and(tmp, b1);
5669 break;
5670
5671 case Q_DEFAULT:
5672 case Q_OR:
5673 tmp = gen_portatom(cstate, 0, port);
5674 b1 = gen_portatom(cstate, 2, port);
5675 gen_or(tmp, b1);
5676 break;
5677
5678 case Q_ADDR1:
5679 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5680 /*NOTREACHED*/
5681
5682 case Q_ADDR2:
5683 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5684 /*NOTREACHED*/
5685
5686 case Q_ADDR3:
5687 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5688 /*NOTREACHED*/
5689
5690 case Q_ADDR4:
5691 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5692 /*NOTREACHED*/
5693
5694 case Q_RA:
5695 bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5696 /*NOTREACHED*/
5697
5698 case Q_TA:
5699 bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5700 /*NOTREACHED*/
5701
5702 default:
5703 abort();
5704 /*NOTREACHED*/
5705 }
5706 gen_and(b0, b1);
5707
5708 return b1;
5709 }
5710
5711 static struct block *
5712 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5713 {
5714 struct block *b0, *b1, *tmp;
5715
5716 /*
5717 * ether proto ip
5718 *
5719 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5720 * not LLC encapsulation with LLCSAP_IP.
5721 *
5722 * For IEEE 802 networks - which includes 802.5 token ring
5723 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5724 * says that SNAP encapsulation is used, not LLC encapsulation
5725 * with LLCSAP_IP.
5726 *
5727 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5728 * RFC 2225 say that SNAP encapsulation is used, not LLC
5729 * encapsulation with LLCSAP_IP.
5730 *
5731 * So we always check for ETHERTYPE_IP.
5732 */
5733 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5734
5735 switch (ip_proto) {
5736 case IPPROTO_UDP:
5737 case IPPROTO_TCP:
5738 case IPPROTO_SCTP:
5739 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5740 break;
5741
5742 case PROTO_UNDEF:
5743 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5744 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5745 gen_or(tmp, b1);
5746 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5747 gen_or(tmp, b1);
5748 break;
5749
5750 default:
5751 abort();
5752 }
5753 gen_and(b0, b1);
5754 return b1;
5755 }
5756
5757 struct block *
5758 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5759 {
5760 struct block *b0, *b1, *tmp;
5761
5762 /* ip6 proto 'proto' */
5763 /* XXX - catch the first fragment of a fragmented packet? */
5764 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5765
5766 switch (dir) {
5767 case Q_SRC:
5768 b1 = gen_portatom6(cstate, 0, port);
5769 break;
5770
5771 case Q_DST:
5772 b1 = gen_portatom6(cstate, 2, port);
5773 break;
5774
5775 case Q_AND:
5776 tmp = gen_portatom6(cstate, 0, port);
5777 b1 = gen_portatom6(cstate, 2, port);
5778 gen_and(tmp, b1);
5779 break;
5780
5781 case Q_DEFAULT:
5782 case Q_OR:
5783 tmp = gen_portatom6(cstate, 0, port);
5784 b1 = gen_portatom6(cstate, 2, port);
5785 gen_or(tmp, b1);
5786 break;
5787
5788 default:
5789 abort();
5790 }
5791 gen_and(b0, b1);
5792
5793 return b1;
5794 }
5795
5796 static struct block *
5797 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5798 {
5799 struct block *b0, *b1, *tmp;
5800
5801 /* link proto ip6 */
5802 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5803
5804 switch (ip_proto) {
5805 case IPPROTO_UDP:
5806 case IPPROTO_TCP:
5807 case IPPROTO_SCTP:
5808 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5809 break;
5810
5811 case PROTO_UNDEF:
5812 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5813 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5814 gen_or(tmp, b1);
5815 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5816 gen_or(tmp, b1);
5817 break;
5818
5819 default:
5820 abort();
5821 }
5822 gen_and(b0, b1);
5823 return b1;
5824 }
5825
5826 /* gen_portrange code */
5827 static struct block *
5828 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5829 bpf_u_int32 v2)
5830 {
5831 struct block *b1, *b2;
5832
5833 if (v1 > v2) {
5834 /*
5835 * Reverse the order of the ports, so v1 is the lower one.
5836 */
5837 bpf_u_int32 vtemp;
5838
5839 vtemp = v1;
5840 v1 = v2;
5841 v2 = vtemp;
5842 }
5843
5844 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5845 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5846
5847 gen_and(b1, b2);
5848
5849 return b2;
5850 }
5851
5852 static struct block *
5853 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5854 bpf_u_int32 proto, int dir)
5855 {
5856 struct block *b0, *b1, *tmp;
5857
5858 /* ip proto 'proto' and not a fragment other than the first fragment */
5859 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5860 b0 = gen_ipfrag(cstate);
5861 gen_and(tmp, b0);
5862
5863 switch (dir) {
5864 case Q_SRC:
5865 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5866 break;
5867
5868 case Q_DST:
5869 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5870 break;
5871
5872 case Q_AND:
5873 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5874 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5875 gen_and(tmp, b1);
5876 break;
5877
5878 case Q_DEFAULT:
5879 case Q_OR:
5880 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5881 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5882 gen_or(tmp, b1);
5883 break;
5884
5885 case Q_ADDR1:
5886 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5887 /*NOTREACHED*/
5888
5889 case Q_ADDR2:
5890 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5891 /*NOTREACHED*/
5892
5893 case Q_ADDR3:
5894 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5895 /*NOTREACHED*/
5896
5897 case Q_ADDR4:
5898 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5899 /*NOTREACHED*/
5900
5901 case Q_RA:
5902 bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5903 /*NOTREACHED*/
5904
5905 case Q_TA:
5906 bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5907 /*NOTREACHED*/
5908
5909 default:
5910 abort();
5911 /*NOTREACHED*/
5912 }
5913 gen_and(b0, b1);
5914
5915 return b1;
5916 }
5917
5918 static struct block *
5919 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5920 int dir)
5921 {
5922 struct block *b0, *b1, *tmp;
5923
5924 /* link proto ip */
5925 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5926
5927 switch (ip_proto) {
5928 case IPPROTO_UDP:
5929 case IPPROTO_TCP:
5930 case IPPROTO_SCTP:
5931 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5932 dir);
5933 break;
5934
5935 case PROTO_UNDEF:
5936 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5937 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5938 gen_or(tmp, b1);
5939 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5940 gen_or(tmp, b1);
5941 break;
5942
5943 default:
5944 abort();
5945 }
5946 gen_and(b0, b1);
5947 return b1;
5948 }
5949
5950 static struct block *
5951 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5952 bpf_u_int32 v2)
5953 {
5954 struct block *b1, *b2;
5955
5956 if (v1 > v2) {
5957 /*
5958 * Reverse the order of the ports, so v1 is the lower one.
5959 */
5960 bpf_u_int32 vtemp;
5961
5962 vtemp = v1;
5963 v1 = v2;
5964 v2 = vtemp;
5965 }
5966
5967 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5968 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5969
5970 gen_and(b1, b2);
5971
5972 return b2;
5973 }
5974
5975 static struct block *
5976 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5977 bpf_u_int32 proto, int dir)
5978 {
5979 struct block *b0, *b1, *tmp;
5980
5981 /* ip6 proto 'proto' */
5982 /* XXX - catch the first fragment of a fragmented packet? */
5983 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5984
5985 switch (dir) {
5986 case Q_SRC:
5987 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5988 break;
5989
5990 case Q_DST:
5991 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5992 break;
5993
5994 case Q_AND:
5995 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
5996 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
5997 gen_and(tmp, b1);
5998 break;
5999
6000 case Q_DEFAULT:
6001 case Q_OR:
6002 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6003 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6004 gen_or(tmp, b1);
6005 break;
6006
6007 default:
6008 abort();
6009 }
6010 gen_and(b0, b1);
6011
6012 return b1;
6013 }
6014
6015 static struct block *
6016 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6017 int dir)
6018 {
6019 struct block *b0, *b1, *tmp;
6020
6021 /* link proto ip6 */
6022 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6023
6024 switch (ip_proto) {
6025 case IPPROTO_UDP:
6026 case IPPROTO_TCP:
6027 case IPPROTO_SCTP:
6028 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6029 dir);
6030 break;
6031
6032 case PROTO_UNDEF:
6033 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6034 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6035 gen_or(tmp, b1);
6036 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6037 gen_or(tmp, b1);
6038 break;
6039
6040 default:
6041 abort();
6042 }
6043 gen_and(b0, b1);
6044 return b1;
6045 }
6046
6047 static int
6048 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6049 {
6050 register int v;
6051
6052 switch (proto) {
6053
6054 case Q_DEFAULT:
6055 case Q_IP:
6056 case Q_IPV6:
6057 v = pcap_nametoproto(name);
6058 if (v == PROTO_UNDEF)
6059 bpf_error(cstate, "unknown ip proto '%s'", name);
6060 break;
6061
6062 case Q_LINK:
6063 /* XXX should look up h/w protocol type based on cstate->linktype */
6064 v = pcap_nametoeproto(name);
6065 if (v == PROTO_UNDEF) {
6066 v = pcap_nametollc(name);
6067 if (v == PROTO_UNDEF)
6068 bpf_error(cstate, "unknown ether proto '%s'", name);
6069 }
6070 break;
6071
6072 case Q_ISO:
6073 if (strcmp(name, "esis") == 0)
6074 v = ISO9542_ESIS;
6075 else if (strcmp(name, "isis") == 0)
6076 v = ISO10589_ISIS;
6077 else if (strcmp(name, "clnp") == 0)
6078 v = ISO8473_CLNP;
6079 else
6080 bpf_error(cstate, "unknown osi proto '%s'", name);
6081 break;
6082
6083 default:
6084 v = PROTO_UNDEF;
6085 break;
6086 }
6087 return v;
6088 }
6089
6090 #if !defined(NO_PROTOCHAIN)
6091 static struct block *
6092 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6093 {
6094 struct block *b0, *b;
6095 struct slist *s[100];
6096 int fix2, fix3, fix4, fix5;
6097 int ahcheck, again, end;
6098 int i, max;
6099 int reg2 = alloc_reg(cstate);
6100
6101 memset(s, 0, sizeof(s));
6102 fix3 = fix4 = fix5 = 0;
6103
6104 switch (proto) {
6105 case Q_IP:
6106 case Q_IPV6:
6107 break;
6108 case Q_DEFAULT:
6109 b0 = gen_protochain(cstate, v, Q_IP);
6110 b = gen_protochain(cstate, v, Q_IPV6);
6111 gen_or(b0, b);
6112 return b;
6113 default:
6114 bpf_error(cstate, "bad protocol applied for 'protochain'");
6115 /*NOTREACHED*/
6116 }
6117
6118 /*
6119 * We don't handle variable-length prefixes before the link-layer
6120 * header, or variable-length link-layer headers, here yet.
6121 * We might want to add BPF instructions to do the protochain
6122 * work, to simplify that and, on platforms that have a BPF
6123 * interpreter with the new instructions, let the filtering
6124 * be done in the kernel. (We already require a modified BPF
6125 * engine to do the protochain stuff, to support backward
6126 * branches, and backward branch support is unlikely to appear
6127 * in kernel BPF engines.)
6128 */
6129 if (cstate->off_linkpl.is_variable)
6130 bpf_error(cstate, "'protochain' not supported with variable length headers");
6131
6132 /*
6133 * To quote a comment in optimize.c:
6134 *
6135 * "These data structures are used in a Cocke and Shwarz style
6136 * value numbering scheme. Since the flowgraph is acyclic,
6137 * exit values can be propagated from a node's predecessors
6138 * provided it is uniquely defined."
6139 *
6140 * "Acyclic" means "no backward branches", which means "no
6141 * loops", so we have to turn the optimizer off.
6142 */
6143 cstate->no_optimize = 1;
6144
6145 /*
6146 * s[0] is a dummy entry to protect other BPF insn from damage
6147 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6148 * hard to find interdependency made by jump table fixup.
6149 */
6150 i = 0;
6151 s[i] = new_stmt(cstate, 0); /*dummy*/
6152 i++;
6153
6154 switch (proto) {
6155 case Q_IP:
6156 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6157
6158 /* A = ip->ip_p */
6159 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6160 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6161 i++;
6162 /* X = ip->ip_hl << 2 */
6163 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6164 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6165 i++;
6166 break;
6167
6168 case Q_IPV6:
6169 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6170
6171 /* A = ip6->ip_nxt */
6172 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6173 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6174 i++;
6175 /* X = sizeof(struct ip6_hdr) */
6176 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6177 s[i]->s.k = 40;
6178 i++;
6179 break;
6180
6181 default:
6182 bpf_error(cstate, "unsupported proto to gen_protochain");
6183 /*NOTREACHED*/
6184 }
6185
6186 /* again: if (A == v) goto end; else fall through; */
6187 again = i;
6188 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6189 s[i]->s.k = v;
6190 s[i]->s.jt = NULL; /*later*/
6191 s[i]->s.jf = NULL; /*update in next stmt*/
6192 fix5 = i;
6193 i++;
6194
6195 #ifndef IPPROTO_NONE
6196 #define IPPROTO_NONE 59
6197 #endif
6198 /* if (A == IPPROTO_NONE) goto end */
6199 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6200 s[i]->s.jt = NULL; /*later*/
6201 s[i]->s.jf = NULL; /*update in next stmt*/
6202 s[i]->s.k = IPPROTO_NONE;
6203 s[fix5]->s.jf = s[i];
6204 fix2 = i;
6205 i++;
6206
6207 if (proto == Q_IPV6) {
6208 int v6start, v6end, v6advance, j;
6209
6210 v6start = i;
6211 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6212 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6213 s[i]->s.jt = NULL; /*later*/
6214 s[i]->s.jf = NULL; /*update in next stmt*/
6215 s[i]->s.k = IPPROTO_HOPOPTS;
6216 s[fix2]->s.jf = s[i];
6217 i++;
6218 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6219 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6220 s[i]->s.jt = NULL; /*later*/
6221 s[i]->s.jf = NULL; /*update in next stmt*/
6222 s[i]->s.k = IPPROTO_DSTOPTS;
6223 i++;
6224 /* if (A == IPPROTO_ROUTING) goto v6advance */
6225 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6226 s[i]->s.jt = NULL; /*later*/
6227 s[i]->s.jf = NULL; /*update in next stmt*/
6228 s[i]->s.k = IPPROTO_ROUTING;
6229 i++;
6230 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6231 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6232 s[i]->s.jt = NULL; /*later*/
6233 s[i]->s.jf = NULL; /*later*/
6234 s[i]->s.k = IPPROTO_FRAGMENT;
6235 fix3 = i;
6236 v6end = i;
6237 i++;
6238
6239 /* v6advance: */
6240 v6advance = i;
6241
6242 /*
6243 * in short,
6244 * A = P[X + packet head];
6245 * X = X + (P[X + packet head + 1] + 1) * 8;
6246 */
6247 /* A = P[X + packet head] */
6248 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6249 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6250 i++;
6251 /* MEM[reg2] = A */
6252 s[i] = new_stmt(cstate, BPF_ST);
6253 s[i]->s.k = reg2;
6254 i++;
6255 /* A = P[X + packet head + 1]; */
6256 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6257 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6258 i++;
6259 /* A += 1 */
6260 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6261 s[i]->s.k = 1;
6262 i++;
6263 /* A *= 8 */
6264 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6265 s[i]->s.k = 8;
6266 i++;
6267 /* A += X */
6268 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6269 s[i]->s.k = 0;
6270 i++;
6271 /* X = A; */
6272 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6273 i++;
6274 /* A = MEM[reg2] */
6275 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6276 s[i]->s.k = reg2;
6277 i++;
6278
6279 /* goto again; (must use BPF_JA for backward jump) */
6280 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6281 s[i]->s.k = again - i - 1;
6282 s[i - 1]->s.jf = s[i];
6283 i++;
6284
6285 /* fixup */
6286 for (j = v6start; j <= v6end; j++)
6287 s[j]->s.jt = s[v6advance];
6288 } else {
6289 /* nop */
6290 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6291 s[i]->s.k = 0;
6292 s[fix2]->s.jf = s[i];
6293 i++;
6294 }
6295
6296 /* ahcheck: */
6297 ahcheck = i;
6298 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6299 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6300 s[i]->s.jt = NULL; /*later*/
6301 s[i]->s.jf = NULL; /*later*/
6302 s[i]->s.k = IPPROTO_AH;
6303 if (fix3)
6304 s[fix3]->s.jf = s[ahcheck];
6305 fix4 = i;
6306 i++;
6307
6308 /*
6309 * in short,
6310 * A = P[X];
6311 * X = X + (P[X + 1] + 2) * 4;
6312 */
6313 /* A = X */
6314 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6315 i++;
6316 /* A = P[X + packet head]; */
6317 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6318 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6319 i++;
6320 /* MEM[reg2] = A */
6321 s[i] = new_stmt(cstate, BPF_ST);
6322 s[i]->s.k = reg2;
6323 i++;
6324 /* A = X */
6325 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6326 i++;
6327 /* A += 1 */
6328 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6329 s[i]->s.k = 1;
6330 i++;
6331 /* X = A */
6332 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6333 i++;
6334 /* A = P[X + packet head] */
6335 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6336 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6337 i++;
6338 /* A += 2 */
6339 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6340 s[i]->s.k = 2;
6341 i++;
6342 /* A *= 4 */
6343 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6344 s[i]->s.k = 4;
6345 i++;
6346 /* X = A; */
6347 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6348 i++;
6349 /* A = MEM[reg2] */
6350 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6351 s[i]->s.k = reg2;
6352 i++;
6353
6354 /* goto again; (must use BPF_JA for backward jump) */
6355 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6356 s[i]->s.k = again - i - 1;
6357 i++;
6358
6359 /* end: nop */
6360 end = i;
6361 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6362 s[i]->s.k = 0;
6363 s[fix2]->s.jt = s[end];
6364 s[fix4]->s.jf = s[end];
6365 s[fix5]->s.jt = s[end];
6366 i++;
6367
6368 /*
6369 * make slist chain
6370 */
6371 max = i;
6372 for (i = 0; i < max - 1; i++)
6373 s[i]->next = s[i + 1];
6374 s[max - 1]->next = NULL;
6375
6376 /*
6377 * emit final check
6378 */
6379 b = new_block(cstate, JMP(BPF_JEQ));
6380 b->stmts = s[1]; /*remember, s[0] is dummy*/
6381 b->s.k = v;
6382
6383 free_reg(cstate, reg2);
6384
6385 gen_and(b0, b);
6386 return b;
6387 }
6388 #endif /* !defined(NO_PROTOCHAIN) */
6389
6390 static struct block *
6391 gen_check_802_11_data_frame(compiler_state_t *cstate)
6392 {
6393 struct slist *s;
6394 struct block *b0, *b1;
6395
6396 /*
6397 * A data frame has the 0x08 bit (b3) in the frame control field set
6398 * and the 0x04 bit (b2) clear.
6399 */
6400 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6401 b0 = new_block(cstate, JMP(BPF_JSET));
6402 b0->s.k = 0x08;
6403 b0->stmts = s;
6404
6405 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6406 b1 = new_block(cstate, JMP(BPF_JSET));
6407 b1->s.k = 0x04;
6408 b1->stmts = s;
6409 gen_not(b1);
6410
6411 gen_and(b1, b0);
6412
6413 return b0;
6414 }
6415
6416 /*
6417 * Generate code that checks whether the packet is a packet for protocol
6418 * <proto> and whether the type field in that protocol's header has
6419 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6420 * IP packet and checks the protocol number in the IP header against <v>.
6421 *
6422 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6423 * against Q_IP and Q_IPV6.
6424 */
6425 static struct block *
6426 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6427 {
6428 struct block *b0, *b1;
6429 struct block *b2;
6430
6431 if (dir != Q_DEFAULT)
6432 bpf_error(cstate, "direction applied to 'proto'");
6433
6434 switch (proto) {
6435 case Q_DEFAULT:
6436 b0 = gen_proto(cstate, v, Q_IP, dir);
6437 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6438 gen_or(b0, b1);
6439 return b1;
6440
6441 case Q_LINK:
6442 return gen_linktype(cstate, v);
6443
6444 case Q_IP:
6445 /*
6446 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6447 * not LLC encapsulation with LLCSAP_IP.
6448 *
6449 * For IEEE 802 networks - which includes 802.5 token ring
6450 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6451 * says that SNAP encapsulation is used, not LLC encapsulation
6452 * with LLCSAP_IP.
6453 *
6454 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6455 * RFC 2225 say that SNAP encapsulation is used, not LLC
6456 * encapsulation with LLCSAP_IP.
6457 *
6458 * So we always check for ETHERTYPE_IP.
6459 */
6460 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6461 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6462 gen_and(b0, b1);
6463 return b1;
6464
6465 case Q_ARP:
6466 bpf_error(cstate, "arp does not encapsulate another protocol");
6467 /*NOTREACHED*/
6468
6469 case Q_RARP:
6470 bpf_error(cstate, "rarp does not encapsulate another protocol");
6471 /*NOTREACHED*/
6472
6473 case Q_SCTP:
6474 bpf_error(cstate, "'sctp proto' is bogus");
6475 /*NOTREACHED*/
6476
6477 case Q_TCP:
6478 bpf_error(cstate, "'tcp proto' is bogus");
6479 /*NOTREACHED*/
6480
6481 case Q_UDP:
6482 bpf_error(cstate, "'udp proto' is bogus");
6483 /*NOTREACHED*/
6484
6485 case Q_ICMP:
6486 bpf_error(cstate, "'icmp proto' is bogus");
6487 /*NOTREACHED*/
6488
6489 case Q_IGMP:
6490 bpf_error(cstate, "'igmp proto' is bogus");
6491 /*NOTREACHED*/
6492
6493 case Q_IGRP:
6494 bpf_error(cstate, "'igrp proto' is bogus");
6495 /*NOTREACHED*/
6496
6497 case Q_ATALK:
6498 bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6499 /*NOTREACHED*/
6500
6501 case Q_DECNET:
6502 bpf_error(cstate, "DECNET encapsulation is not specifiable");
6503 /*NOTREACHED*/
6504
6505 case Q_LAT:
6506 bpf_error(cstate, "LAT does not encapsulate another protocol");
6507 /*NOTREACHED*/
6508
6509 case Q_SCA:
6510 bpf_error(cstate, "SCA does not encapsulate another protocol");
6511 /*NOTREACHED*/
6512
6513 case Q_MOPRC:
6514 bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6515 /*NOTREACHED*/
6516
6517 case Q_MOPDL:
6518 bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6519 /*NOTREACHED*/
6520
6521 case Q_IPV6:
6522 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6523 /*
6524 * Also check for a fragment header before the final
6525 * header.
6526 */
6527 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6528 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6529 gen_and(b2, b1);
6530 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6531 gen_or(b2, b1);
6532 gen_and(b0, b1);
6533 return b1;
6534
6535 case Q_ICMPV6:
6536 bpf_error(cstate, "'icmp6 proto' is bogus");
6537 /*NOTREACHED*/
6538
6539 case Q_AH:
6540 bpf_error(cstate, "'ah proto' is bogus");
6541 /*NOTREACHED*/
6542
6543 case Q_ESP:
6544 bpf_error(cstate, "'esp proto' is bogus");
6545 /*NOTREACHED*/
6546
6547 case Q_PIM:
6548 bpf_error(cstate, "'pim proto' is bogus");
6549 /*NOTREACHED*/
6550
6551 case Q_VRRP:
6552 bpf_error(cstate, "'vrrp proto' is bogus");
6553 /*NOTREACHED*/
6554
6555 case Q_AARP:
6556 bpf_error(cstate, "'aarp proto' is bogus");
6557 /*NOTREACHED*/
6558
6559 case Q_ISO:
6560 switch (cstate->linktype) {
6561
6562 case DLT_FRELAY:
6563 /*
6564 * Frame Relay packets typically have an OSI
6565 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6566 * generates code to check for all the OSI
6567 * NLPIDs, so calling it and then adding a check
6568 * for the particular NLPID for which we're
6569 * looking is bogus, as we can just check for
6570 * the NLPID.
6571 *
6572 * What we check for is the NLPID and a frame
6573 * control field value of UI, i.e. 0x03 followed
6574 * by the NLPID.
6575 *
6576 * XXX - assumes a 2-byte Frame Relay header with
6577 * DLCI and flags. What if the address is longer?
6578 *
6579 * XXX - what about SNAP-encapsulated frames?
6580 */
6581 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6582 /*NOTREACHED*/
6583
6584 case DLT_C_HDLC:
6585 case DLT_HDLC:
6586 /*
6587 * Cisco uses an Ethertype lookalike - for OSI,
6588 * it's 0xfefe.
6589 */
6590 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6591 /* OSI in C-HDLC is stuffed with a fudge byte */
6592 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6593 gen_and(b0, b1);
6594 return b1;
6595
6596 default:
6597 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6598 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6599 gen_and(b0, b1);
6600 return b1;
6601 }
6602
6603 case Q_ESIS:
6604 bpf_error(cstate, "'esis proto' is bogus");
6605 /*NOTREACHED*/
6606
6607 case Q_ISIS:
6608 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6609 /*
6610 * 4 is the offset of the PDU type relative to the IS-IS
6611 * header.
6612 */
6613 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6614 gen_and(b0, b1);
6615 return b1;
6616
6617 case Q_CLNP:
6618 bpf_error(cstate, "'clnp proto' is not supported");
6619 /*NOTREACHED*/
6620
6621 case Q_STP:
6622 bpf_error(cstate, "'stp proto' is bogus");
6623 /*NOTREACHED*/
6624
6625 case Q_IPX:
6626 bpf_error(cstate, "'ipx proto' is bogus");
6627 /*NOTREACHED*/
6628
6629 case Q_NETBEUI:
6630 bpf_error(cstate, "'netbeui proto' is bogus");
6631 /*NOTREACHED*/
6632
6633 case Q_ISIS_L1:
6634 bpf_error(cstate, "'l1 proto' is bogus");
6635 /*NOTREACHED*/
6636
6637 case Q_ISIS_L2:
6638 bpf_error(cstate, "'l2 proto' is bogus");
6639 /*NOTREACHED*/
6640
6641 case Q_ISIS_IIH:
6642 bpf_error(cstate, "'iih proto' is bogus");
6643 /*NOTREACHED*/
6644
6645 case Q_ISIS_SNP:
6646 bpf_error(cstate, "'snp proto' is bogus");
6647 /*NOTREACHED*/
6648
6649 case Q_ISIS_CSNP:
6650 bpf_error(cstate, "'csnp proto' is bogus");
6651 /*NOTREACHED*/
6652
6653 case Q_ISIS_PSNP:
6654 bpf_error(cstate, "'psnp proto' is bogus");
6655 /*NOTREACHED*/
6656
6657 case Q_ISIS_LSP:
6658 bpf_error(cstate, "'lsp proto' is bogus");
6659 /*NOTREACHED*/
6660
6661 case Q_RADIO:
6662 bpf_error(cstate, "'radio proto' is bogus");
6663 /*NOTREACHED*/
6664
6665 case Q_CARP:
6666 bpf_error(cstate, "'carp proto' is bogus");
6667 /*NOTREACHED*/
6668
6669 default:
6670 abort();
6671 /*NOTREACHED*/
6672 }
6673 /*NOTREACHED*/
6674 }
6675
6676 struct block *
6677 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6678 {
6679 int proto = q.proto;
6680 int dir = q.dir;
6681 int tproto;
6682 u_char *eaddr;
6683 bpf_u_int32 mask, addr;
6684 struct addrinfo *res, *res0;
6685 struct sockaddr_in *sin4;
6686 #ifdef INET6
6687 int tproto6;
6688 struct sockaddr_in6 *sin6;
6689 struct in6_addr mask128;
6690 #endif /*INET6*/
6691 struct block *b, *tmp;
6692 int port, real_proto;
6693 int port1, port2;
6694
6695 /*
6696 * Catch errors reported by us and routines below us, and return NULL
6697 * on an error.
6698 */
6699 if (setjmp(cstate->top_ctx))
6700 return (NULL);
6701
6702 switch (q.addr) {
6703
6704 case Q_NET:
6705 addr = pcap_nametonetaddr(name);
6706 if (addr == 0)
6707 bpf_error(cstate, "unknown network '%s'", name);
6708 /* Left justify network addr and calculate its network mask */
6709 mask = 0xffffffff;
6710 while (addr && (addr & 0xff000000) == 0) {
6711 addr <<= 8;
6712 mask <<= 8;
6713 }
6714 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6715
6716 case Q_DEFAULT:
6717 case Q_HOST:
6718 if (proto == Q_LINK) {
6719 switch (cstate->linktype) {
6720
6721 case DLT_EN10MB:
6722 case DLT_NETANALYZER:
6723 case DLT_NETANALYZER_TRANSPARENT:
6724 eaddr = pcap_ether_hostton(name);
6725 if (eaddr == NULL)
6726 bpf_error(cstate,
6727 "unknown ether host '%s'", name);
6728 tmp = gen_prevlinkhdr_check(cstate);
6729 b = gen_ehostop(cstate, eaddr, dir);
6730 if (tmp != NULL)
6731 gen_and(tmp, b);
6732 free(eaddr);
6733 return b;
6734
6735 case DLT_FDDI:
6736 eaddr = pcap_ether_hostton(name);
6737 if (eaddr == NULL)
6738 bpf_error(cstate,
6739 "unknown FDDI host '%s'", name);
6740 b = gen_fhostop(cstate, eaddr, dir);
6741 free(eaddr);
6742 return b;
6743
6744 case DLT_IEEE802:
6745 eaddr = pcap_ether_hostton(name);
6746 if (eaddr == NULL)
6747 bpf_error(cstate,
6748 "unknown token ring host '%s'", name);
6749 b = gen_thostop(cstate, eaddr, dir);
6750 free(eaddr);
6751 return b;
6752
6753 case DLT_IEEE802_11:
6754 case DLT_PRISM_HEADER:
6755 case DLT_IEEE802_11_RADIO_AVS:
6756 case DLT_IEEE802_11_RADIO:
6757 case DLT_PPI:
6758 eaddr = pcap_ether_hostton(name);
6759 if (eaddr == NULL)
6760 bpf_error(cstate,
6761 "unknown 802.11 host '%s'", name);
6762 b = gen_wlanhostop(cstate, eaddr, dir);
6763 free(eaddr);
6764 return b;
6765
6766 case DLT_IP_OVER_FC:
6767 eaddr = pcap_ether_hostton(name);
6768 if (eaddr == NULL)
6769 bpf_error(cstate,
6770 "unknown Fibre Channel host '%s'", name);
6771 b = gen_ipfchostop(cstate, eaddr, dir);
6772 free(eaddr);
6773 return b;
6774 }
6775
6776 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6777 } else if (proto == Q_DECNET) {
6778 unsigned short dn_addr;
6779
6780 if (!__pcap_nametodnaddr(name, &dn_addr)) {
6781 #ifdef DECNETLIB
6782 bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6783 #else
6784 bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6785 name);
6786 #endif
6787 }
6788 /*
6789 * I don't think DECNET hosts can be multihomed, so
6790 * there is no need to build up a list of addresses
6791 */
6792 return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6793 } else {
6794 #ifdef INET6
6795 memset(&mask128, 0xff, sizeof(mask128));
6796 #endif
6797 res0 = res = pcap_nametoaddrinfo(name);
6798 if (res == NULL)
6799 bpf_error(cstate, "unknown host '%s'", name);
6800 cstate->ai = res;
6801 b = tmp = NULL;
6802 tproto = proto;
6803 #ifdef INET6
6804 tproto6 = proto;
6805 #endif
6806 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6807 tproto == Q_DEFAULT) {
6808 tproto = Q_IP;
6809 #ifdef INET6
6810 tproto6 = Q_IPV6;
6811 #endif
6812 }
6813 for (res = res0; res; res = res->ai_next) {
6814 switch (res->ai_family) {
6815 case AF_INET:
6816 #ifdef INET6
6817 if (tproto == Q_IPV6)
6818 continue;
6819 #endif
6820
6821 sin4 = (struct sockaddr_in *)
6822 res->ai_addr;
6823 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6824 0xffffffff, tproto, dir, q.addr);
6825 break;
6826 #ifdef INET6
6827 case AF_INET6:
6828 if (tproto6 == Q_IP)
6829 continue;
6830
6831 sin6 = (struct sockaddr_in6 *)
6832 res->ai_addr;
6833 tmp = gen_host6(cstate, &sin6->sin6_addr,
6834 &mask128, tproto6, dir, q.addr);
6835 break;
6836 #endif
6837 default:
6838 continue;
6839 }
6840 if (b)
6841 gen_or(b, tmp);
6842 b = tmp;
6843 }
6844 cstate->ai = NULL;
6845 freeaddrinfo(res0);
6846 if (b == NULL) {
6847 bpf_error(cstate, "unknown host '%s'%s", name,
6848 (proto == Q_DEFAULT)
6849 ? ""
6850 : " for specified address family");
6851 }
6852 return b;
6853 }
6854
6855 case Q_PORT:
6856 if (proto != Q_DEFAULT &&
6857 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6858 bpf_error(cstate, "illegal qualifier of 'port'");
6859 if (pcap_nametoport(name, &port, &real_proto) == 0)
6860 bpf_error(cstate, "unknown port '%s'", name);
6861 if (proto == Q_UDP) {
6862 if (real_proto == IPPROTO_TCP)
6863 bpf_error(cstate, "port '%s' is tcp", name);
6864 else if (real_proto == IPPROTO_SCTP)
6865 bpf_error(cstate, "port '%s' is sctp", name);
6866 else
6867 /* override PROTO_UNDEF */
6868 real_proto = IPPROTO_UDP;
6869 }
6870 if (proto == Q_TCP) {
6871 if (real_proto == IPPROTO_UDP)
6872 bpf_error(cstate, "port '%s' is udp", name);
6873
6874 else if (real_proto == IPPROTO_SCTP)
6875 bpf_error(cstate, "port '%s' is sctp", name);
6876 else
6877 /* override PROTO_UNDEF */
6878 real_proto = IPPROTO_TCP;
6879 }
6880 if (proto == Q_SCTP) {
6881 if (real_proto == IPPROTO_UDP)
6882 bpf_error(cstate, "port '%s' is udp", name);
6883
6884 else if (real_proto == IPPROTO_TCP)
6885 bpf_error(cstate, "port '%s' is tcp", name);
6886 else
6887 /* override PROTO_UNDEF */
6888 real_proto = IPPROTO_SCTP;
6889 }
6890 if (port < 0)
6891 bpf_error(cstate, "illegal port number %d < 0", port);
6892 if (port > 65535)
6893 bpf_error(cstate, "illegal port number %d > 65535", port);
6894 b = gen_port(cstate, port, real_proto, dir);
6895 gen_or(gen_port6(cstate, port, real_proto, dir), b);
6896 return b;
6897
6898 case Q_PORTRANGE:
6899 if (proto != Q_DEFAULT &&
6900 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6901 bpf_error(cstate, "illegal qualifier of 'portrange'");
6902 if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6903 bpf_error(cstate, "unknown port in range '%s'", name);
6904 if (proto == Q_UDP) {
6905 if (real_proto == IPPROTO_TCP)
6906 bpf_error(cstate, "port in range '%s' is tcp", name);
6907 else if (real_proto == IPPROTO_SCTP)
6908 bpf_error(cstate, "port in range '%s' is sctp", name);
6909 else
6910 /* override PROTO_UNDEF */
6911 real_proto = IPPROTO_UDP;
6912 }
6913 if (proto == Q_TCP) {
6914 if (real_proto == IPPROTO_UDP)
6915 bpf_error(cstate, "port in range '%s' is udp", name);
6916 else if (real_proto == IPPROTO_SCTP)
6917 bpf_error(cstate, "port in range '%s' is sctp", name);
6918 else
6919 /* override PROTO_UNDEF */
6920 real_proto = IPPROTO_TCP;
6921 }
6922 if (proto == Q_SCTP) {
6923 if (real_proto == IPPROTO_UDP)
6924 bpf_error(cstate, "port in range '%s' is udp", name);
6925 else if (real_proto == IPPROTO_TCP)
6926 bpf_error(cstate, "port in range '%s' is tcp", name);
6927 else
6928 /* override PROTO_UNDEF */
6929 real_proto = IPPROTO_SCTP;
6930 }
6931 if (port1 < 0)
6932 bpf_error(cstate, "illegal port number %d < 0", port1);
6933 if (port1 > 65535)
6934 bpf_error(cstate, "illegal port number %d > 65535", port1);
6935 if (port2 < 0)
6936 bpf_error(cstate, "illegal port number %d < 0", port2);
6937 if (port2 > 65535)
6938 bpf_error(cstate, "illegal port number %d > 65535", port2);
6939
6940 b = gen_portrange(cstate, port1, port2, real_proto, dir);
6941 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6942 return b;
6943
6944 case Q_GATEWAY:
6945 #ifndef INET6
6946 eaddr = pcap_ether_hostton(name);
6947 if (eaddr == NULL)
6948 bpf_error(cstate, "unknown ether host: %s", name);
6949
6950 res = pcap_nametoaddrinfo(name);
6951 cstate->ai = res;
6952 if (res == NULL)
6953 bpf_error(cstate, "unknown host '%s'", name);
6954 b = gen_gateway(cstate, eaddr, res, proto, dir);
6955 cstate->ai = NULL;
6956 freeaddrinfo(res);
6957 if (b == NULL)
6958 bpf_error(cstate, "unknown host '%s'", name);
6959 return b;
6960 #else
6961 bpf_error(cstate, "'gateway' not supported in this configuration");
6962 #endif /*INET6*/
6963
6964 case Q_PROTO:
6965 real_proto = lookup_proto(cstate, name, proto);
6966 if (real_proto >= 0)
6967 return gen_proto(cstate, real_proto, proto, dir);
6968 else
6969 bpf_error(cstate, "unknown protocol: %s", name);
6970
6971 #if !defined(NO_PROTOCHAIN)
6972 case Q_PROTOCHAIN:
6973 real_proto = lookup_proto(cstate, name, proto);
6974 if (real_proto >= 0)
6975 return gen_protochain(cstate, real_proto, proto);
6976 else
6977 bpf_error(cstate, "unknown protocol: %s", name);
6978 #endif /* !defined(NO_PROTOCHAIN) */
6979
6980 case Q_UNDEF:
6981 syntax(cstate);
6982 /*NOTREACHED*/
6983 }
6984 abort();
6985 /*NOTREACHED*/
6986 }
6987
6988 struct block *
6989 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6990 bpf_u_int32 masklen, struct qual q)
6991 {
6992 register int nlen, mlen;
6993 bpf_u_int32 n, m;
6994
6995 /*
6996 * Catch errors reported by us and routines below us, and return NULL
6997 * on an error.
6998 */
6999 if (setjmp(cstate->top_ctx))
7000 return (NULL);
7001
7002 nlen = __pcap_atoin(s1, &n);
7003 if (nlen < 0)
7004 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7005 /* Promote short ipaddr */
7006 n <<= 32 - nlen;
7007
7008 if (s2 != NULL) {
7009 mlen = __pcap_atoin(s2, &m);
7010 if (mlen < 0)
7011 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7012 /* Promote short ipaddr */
7013 m <<= 32 - mlen;
7014 if ((n & ~m) != 0)
7015 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7016 s1, s2);
7017 } else {
7018 /* Convert mask len to mask */
7019 if (masklen > 32)
7020 bpf_error(cstate, "mask length must be <= 32");
7021 if (masklen == 0) {
7022 /*
7023 * X << 32 is not guaranteed by C to be 0; it's
7024 * undefined.
7025 */
7026 m = 0;
7027 } else
7028 m = 0xffffffff << (32 - masklen);
7029 if ((n & ~m) != 0)
7030 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7031 s1, masklen);
7032 }
7033
7034 switch (q.addr) {
7035
7036 case Q_NET:
7037 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7038
7039 default:
7040 bpf_error(cstate, "Mask syntax for networks only");
7041 /*NOTREACHED*/
7042 }
7043 /*NOTREACHED*/
7044 }
7045
7046 struct block *
7047 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7048 {
7049 bpf_u_int32 mask;
7050 int proto;
7051 int dir;
7052 register int vlen;
7053
7054 /*
7055 * Catch errors reported by us and routines below us, and return NULL
7056 * on an error.
7057 */
7058 if (setjmp(cstate->top_ctx))
7059 return (NULL);
7060
7061 proto = q.proto;
7062 dir = q.dir;
7063 if (s == NULL)
7064 vlen = 32;
7065 else if (q.proto == Q_DECNET) {
7066 vlen = __pcap_atodn(s, &v);
7067 if (vlen == 0)
7068 bpf_error(cstate, "malformed decnet address '%s'", s);
7069 } else {
7070 vlen = __pcap_atoin(s, &v);
7071 if (vlen < 0)
7072 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7073 }
7074
7075 switch (q.addr) {
7076
7077 case Q_DEFAULT:
7078 case Q_HOST:
7079 case Q_NET:
7080 if (proto == Q_DECNET)
7081 return gen_host(cstate, v, 0, proto, dir, q.addr);
7082 else if (proto == Q_LINK) {
7083 bpf_error(cstate, "illegal link layer address");
7084 } else {
7085 mask = 0xffffffff;
7086 if (s == NULL && q.addr == Q_NET) {
7087 /* Promote short net number */
7088 while (v && (v & 0xff000000) == 0) {
7089 v <<= 8;
7090 mask <<= 8;
7091 }
7092 } else {
7093 /* Promote short ipaddr */
7094 v <<= 32 - vlen;
7095 mask <<= 32 - vlen ;
7096 }
7097 return gen_host(cstate, v, mask, proto, dir, q.addr);
7098 }
7099
7100 case Q_PORT:
7101 if (proto == Q_UDP)
7102 proto = IPPROTO_UDP;
7103 else if (proto == Q_TCP)
7104 proto = IPPROTO_TCP;
7105 else if (proto == Q_SCTP)
7106 proto = IPPROTO_SCTP;
7107 else if (proto == Q_DEFAULT)
7108 proto = PROTO_UNDEF;
7109 else
7110 bpf_error(cstate, "illegal qualifier of 'port'");
7111
7112 if (v > 65535)
7113 bpf_error(cstate, "illegal port number %u > 65535", v);
7114
7115 {
7116 struct block *b;
7117 b = gen_port(cstate, v, proto, dir);
7118 gen_or(gen_port6(cstate, v, proto, dir), b);
7119 return b;
7120 }
7121
7122 case Q_PORTRANGE:
7123 if (proto == Q_UDP)
7124 proto = IPPROTO_UDP;
7125 else if (proto == Q_TCP)
7126 proto = IPPROTO_TCP;
7127 else if (proto == Q_SCTP)
7128 proto = IPPROTO_SCTP;
7129 else if (proto == Q_DEFAULT)
7130 proto = PROTO_UNDEF;
7131 else
7132 bpf_error(cstate, "illegal qualifier of 'portrange'");
7133
7134 if (v > 65535)
7135 bpf_error(cstate, "illegal port number %u > 65535", v);
7136
7137 {
7138 struct block *b;
7139 b = gen_portrange(cstate, v, v, proto, dir);
7140 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7141 return b;
7142 }
7143
7144 case Q_GATEWAY:
7145 bpf_error(cstate, "'gateway' requires a name");
7146 /*NOTREACHED*/
7147
7148 case Q_PROTO:
7149 return gen_proto(cstate, v, proto, dir);
7150
7151 #if !defined(NO_PROTOCHAIN)
7152 case Q_PROTOCHAIN:
7153 return gen_protochain(cstate, v, proto);
7154 #endif
7155
7156 case Q_UNDEF:
7157 syntax(cstate);
7158 /*NOTREACHED*/
7159
7160 default:
7161 abort();
7162 /*NOTREACHED*/
7163 }
7164 /*NOTREACHED*/
7165 }
7166
7167 #ifdef INET6
7168 struct block *
7169 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7170 bpf_u_int32 masklen, struct qual q)
7171 {
7172 struct addrinfo *res;
7173 struct in6_addr *addr;
7174 struct in6_addr mask;
7175 struct block *b;
7176 uint32_t *a, *m;
7177
7178 /*
7179 * Catch errors reported by us and routines below us, and return NULL
7180 * on an error.
7181 */
7182 if (setjmp(cstate->top_ctx))
7183 return (NULL);
7184
7185 if (s2)
7186 bpf_error(cstate, "no mask %s supported", s2);
7187
7188 res = pcap_nametoaddrinfo(s1);
7189 if (!res)
7190 bpf_error(cstate, "invalid ip6 address %s", s1);
7191 cstate->ai = res;
7192 if (res->ai_next)
7193 bpf_error(cstate, "%s resolved to multiple address", s1);
7194 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7195
7196 if (masklen > sizeof(mask.s6_addr) * 8)
7197 bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask.s6_addr) * 8));
7198 memset(&mask, 0, sizeof(mask));
7199 memset(&mask.s6_addr, 0xff, masklen / 8);
7200 if (masklen % 8) {
7201 mask.s6_addr[masklen / 8] =
7202 (0xff << (8 - masklen % 8)) & 0xff;
7203 }
7204
7205 a = (uint32_t *)addr;
7206 m = (uint32_t *)&mask;
7207 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7208 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7209 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7210 }
7211
7212 switch (q.addr) {
7213
7214 case Q_DEFAULT:
7215 case Q_HOST:
7216 if (masklen != 128)
7217 bpf_error(cstate, "Mask syntax for networks only");
7218 /* FALLTHROUGH */
7219
7220 case Q_NET:
7221 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7222 cstate->ai = NULL;
7223 freeaddrinfo(res);
7224 return b;
7225
7226 default:
7227 bpf_error(cstate, "invalid qualifier against IPv6 address");
7228 /*NOTREACHED*/
7229 }
7230 }
7231 #endif /*INET6*/
7232
7233 struct block *
7234 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7235 {
7236 struct block *b, *tmp;
7237
7238 /*
7239 * Catch errors reported by us and routines below us, and return NULL
7240 * on an error.
7241 */
7242 if (setjmp(cstate->top_ctx))
7243 return (NULL);
7244
7245 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7246 cstate->e = pcap_ether_aton(s);
7247 if (cstate->e == NULL)
7248 bpf_error(cstate, "malloc");
7249 switch (cstate->linktype) {
7250 case DLT_EN10MB:
7251 case DLT_NETANALYZER:
7252 case DLT_NETANALYZER_TRANSPARENT:
7253 tmp = gen_prevlinkhdr_check(cstate);
7254 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7255 if (tmp != NULL)
7256 gen_and(tmp, b);
7257 break;
7258 case DLT_FDDI:
7259 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7260 break;
7261 case DLT_IEEE802:
7262 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7263 break;
7264 case DLT_IEEE802_11:
7265 case DLT_PRISM_HEADER:
7266 case DLT_IEEE802_11_RADIO_AVS:
7267 case DLT_IEEE802_11_RADIO:
7268 case DLT_PPI:
7269 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7270 break;
7271 case DLT_IP_OVER_FC:
7272 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7273 break;
7274 default:
7275 free(cstate->e);
7276 cstate->e = NULL;
7277 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7278 /*NOTREACHED*/
7279 }
7280 free(cstate->e);
7281 cstate->e = NULL;
7282 return (b);
7283 }
7284 bpf_error(cstate, "ethernet address used in non-ether expression");
7285 /*NOTREACHED*/
7286 }
7287
7288 void
7289 sappend(struct slist *s0, struct slist *s1)
7290 {
7291 /*
7292 * This is definitely not the best way to do this, but the
7293 * lists will rarely get long.
7294 */
7295 while (s0->next)
7296 s0 = s0->next;
7297 s0->next = s1;
7298 }
7299
7300 static struct slist *
7301 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7302 {
7303 struct slist *s;
7304
7305 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7306 s->s.k = a->regno;
7307 return s;
7308 }
7309
7310 static struct slist *
7311 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7312 {
7313 struct slist *s;
7314
7315 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7316 s->s.k = a->regno;
7317 return s;
7318 }
7319
7320 /*
7321 * Modify "index" to use the value stored into its register as an
7322 * offset relative to the beginning of the header for the protocol
7323 * "proto", and allocate a register and put an item "size" bytes long
7324 * (1, 2, or 4) at that offset into that register, making it the register
7325 * for "index".
7326 */
7327 static struct arth *
7328 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7329 bpf_u_int32 size)
7330 {
7331 int size_code;
7332 struct slist *s, *tmp;
7333 struct block *b;
7334 int regno = alloc_reg(cstate);
7335
7336 free_reg(cstate, inst->regno);
7337 switch (size) {
7338
7339 default:
7340 bpf_error(cstate, "data size must be 1, 2, or 4");
7341 /*NOTREACHED*/
7342
7343 case 1:
7344 size_code = BPF_B;
7345 break;
7346
7347 case 2:
7348 size_code = BPF_H;
7349 break;
7350
7351 case 4:
7352 size_code = BPF_W;
7353 break;
7354 }
7355 switch (proto) {
7356 default:
7357 bpf_error(cstate, "unsupported index operation");
7358
7359 case Q_RADIO:
7360 /*
7361 * The offset is relative to the beginning of the packet
7362 * data, if we have a radio header. (If we don't, this
7363 * is an error.)
7364 */
7365 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7366 cstate->linktype != DLT_IEEE802_11_RADIO &&
7367 cstate->linktype != DLT_PRISM_HEADER)
7368 bpf_error(cstate, "radio information not present in capture");
7369
7370 /*
7371 * Load into the X register the offset computed into the
7372 * register specified by "index".
7373 */
7374 s = xfer_to_x(cstate, inst);
7375
7376 /*
7377 * Load the item at that offset.
7378 */
7379 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7380 sappend(s, tmp);
7381 sappend(inst->s, s);
7382 break;
7383
7384 case Q_LINK:
7385 /*
7386 * The offset is relative to the beginning of
7387 * the link-layer header.
7388 *
7389 * XXX - what about ATM LANE? Should the index be
7390 * relative to the beginning of the AAL5 frame, so
7391 * that 0 refers to the beginning of the LE Control
7392 * field, or relative to the beginning of the LAN
7393 * frame, so that 0 refers, for Ethernet LANE, to
7394 * the beginning of the destination address?
7395 */
7396 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7397
7398 /*
7399 * If "s" is non-null, it has code to arrange that the
7400 * X register contains the length of the prefix preceding
7401 * the link-layer header. Add to it the offset computed
7402 * into the register specified by "index", and move that
7403 * into the X register. Otherwise, just load into the X
7404 * register the offset computed into the register specified
7405 * by "index".
7406 */
7407 if (s != NULL) {
7408 sappend(s, xfer_to_a(cstate, inst));
7409 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7410 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7411 } else
7412 s = xfer_to_x(cstate, inst);
7413
7414 /*
7415 * Load the item at the sum of the offset we've put in the
7416 * X register and the offset of the start of the link
7417 * layer header (which is 0 if the radio header is
7418 * variable-length; that header length is what we put
7419 * into the X register and then added to the index).
7420 */
7421 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7422 tmp->s.k = cstate->off_linkhdr.constant_part;
7423 sappend(s, tmp);
7424 sappend(inst->s, s);
7425 break;
7426
7427 case Q_IP:
7428 case Q_ARP:
7429 case Q_RARP:
7430 case Q_ATALK:
7431 case Q_DECNET:
7432 case Q_SCA:
7433 case Q_LAT:
7434 case Q_MOPRC:
7435 case Q_MOPDL:
7436 case Q_IPV6:
7437 /*
7438 * The offset is relative to the beginning of
7439 * the network-layer header.
7440 * XXX - are there any cases where we want
7441 * cstate->off_nl_nosnap?
7442 */
7443 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7444
7445 /*
7446 * If "s" is non-null, it has code to arrange that the
7447 * X register contains the variable part of the offset
7448 * of the link-layer payload. Add to it the offset
7449 * computed into the register specified by "index",
7450 * and move that into the X register. Otherwise, just
7451 * load into the X register the offset computed into
7452 * the register specified by "index".
7453 */
7454 if (s != NULL) {
7455 sappend(s, xfer_to_a(cstate, inst));
7456 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7457 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7458 } else
7459 s = xfer_to_x(cstate, inst);
7460
7461 /*
7462 * Load the item at the sum of the offset we've put in the
7463 * X register, the offset of the start of the network
7464 * layer header from the beginning of the link-layer
7465 * payload, and the constant part of the offset of the
7466 * start of the link-layer payload.
7467 */
7468 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7469 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7470 sappend(s, tmp);
7471 sappend(inst->s, s);
7472
7473 /*
7474 * Do the computation only if the packet contains
7475 * the protocol in question.
7476 */
7477 b = gen_proto_abbrev_internal(cstate, proto);
7478 if (inst->b)
7479 gen_and(inst->b, b);
7480 inst->b = b;
7481 break;
7482
7483 case Q_SCTP:
7484 case Q_TCP:
7485 case Q_UDP:
7486 case Q_ICMP:
7487 case Q_IGMP:
7488 case Q_IGRP:
7489 case Q_PIM:
7490 case Q_VRRP:
7491 case Q_CARP:
7492 /*
7493 * The offset is relative to the beginning of
7494 * the transport-layer header.
7495 *
7496 * Load the X register with the length of the IPv4 header
7497 * (plus the offset of the link-layer header, if it's
7498 * a variable-length header), in bytes.
7499 *
7500 * XXX - are there any cases where we want
7501 * cstate->off_nl_nosnap?
7502 * XXX - we should, if we're built with
7503 * IPv6 support, generate code to load either
7504 * IPv4, IPv6, or both, as appropriate.
7505 */
7506 s = gen_loadx_iphdrlen(cstate);
7507
7508 /*
7509 * The X register now contains the sum of the variable
7510 * part of the offset of the link-layer payload and the
7511 * length of the network-layer header.
7512 *
7513 * Load into the A register the offset relative to
7514 * the beginning of the transport layer header,
7515 * add the X register to that, move that to the
7516 * X register, and load with an offset from the
7517 * X register equal to the sum of the constant part of
7518 * the offset of the link-layer payload and the offset,
7519 * relative to the beginning of the link-layer payload,
7520 * of the network-layer header.
7521 */
7522 sappend(s, xfer_to_a(cstate, inst));
7523 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7524 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7525 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7526 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7527 sappend(inst->s, s);
7528
7529 /*
7530 * Do the computation only if the packet contains
7531 * the protocol in question - which is true only
7532 * if this is an IP datagram and is the first or
7533 * only fragment of that datagram.
7534 */
7535 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7536 if (inst->b)
7537 gen_and(inst->b, b);
7538 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7539 inst->b = b;
7540 break;
7541 case Q_ICMPV6:
7542 /*
7543 * Do the computation only if the packet contains
7544 * the protocol in question.
7545 */
7546 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7547 if (inst->b) {
7548 gen_and(inst->b, b);
7549 }
7550 inst->b = b;
7551
7552 /*
7553 * Check if we have an icmp6 next header
7554 */
7555 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7556 if (inst->b) {
7557 gen_and(inst->b, b);
7558 }
7559 inst->b = b;
7560
7561
7562 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7563 /*
7564 * If "s" is non-null, it has code to arrange that the
7565 * X register contains the variable part of the offset
7566 * of the link-layer payload. Add to it the offset
7567 * computed into the register specified by "index",
7568 * and move that into the X register. Otherwise, just
7569 * load into the X register the offset computed into
7570 * the register specified by "index".
7571 */
7572 if (s != NULL) {
7573 sappend(s, xfer_to_a(cstate, inst));
7574 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7575 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7576 } else {
7577 s = xfer_to_x(cstate, inst);
7578 }
7579
7580 /*
7581 * Load the item at the sum of the offset we've put in the
7582 * X register, the offset of the start of the network
7583 * layer header from the beginning of the link-layer
7584 * payload, and the constant part of the offset of the
7585 * start of the link-layer payload.
7586 */
7587 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7588 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7589
7590 sappend(s, tmp);
7591 sappend(inst->s, s);
7592
7593 break;
7594 }
7595 inst->regno = regno;
7596 s = new_stmt(cstate, BPF_ST);
7597 s->s.k = regno;
7598 sappend(inst->s, s);
7599
7600 return inst;
7601 }
7602
7603 struct arth *
7604 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7605 bpf_u_int32 size)
7606 {
7607 /*
7608 * Catch errors reported by us and routines below us, and return NULL
7609 * on an error.
7610 */
7611 if (setjmp(cstate->top_ctx))
7612 return (NULL);
7613
7614 return gen_load_internal(cstate, proto, inst, size);
7615 }
7616
7617 static struct block *
7618 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7619 struct arth *a1, int reversed)
7620 {
7621 struct slist *s0, *s1, *s2;
7622 struct block *b, *tmp;
7623
7624 s0 = xfer_to_x(cstate, a1);
7625 s1 = xfer_to_a(cstate, a0);
7626 if (code == BPF_JEQ) {
7627 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7628 b = new_block(cstate, JMP(code));
7629 sappend(s1, s2);
7630 }
7631 else
7632 b = new_block(cstate, BPF_JMP|code|BPF_X);
7633 if (reversed)
7634 gen_not(b);
7635
7636 sappend(s0, s1);
7637 sappend(a1->s, s0);
7638 sappend(a0->s, a1->s);
7639
7640 b->stmts = a0->s;
7641
7642 free_reg(cstate, a0->regno);
7643 free_reg(cstate, a1->regno);
7644
7645 /* 'and' together protocol checks */
7646 if (a0->b) {
7647 if (a1->b) {
7648 gen_and(a0->b, tmp = a1->b);
7649 }
7650 else
7651 tmp = a0->b;
7652 } else
7653 tmp = a1->b;
7654
7655 if (tmp)
7656 gen_and(tmp, b);
7657
7658 return b;
7659 }
7660
7661 struct block *
7662 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7663 struct arth *a1, int reversed)
7664 {
7665 /*
7666 * Catch errors reported by us and routines below us, and return NULL
7667 * on an error.
7668 */
7669 if (setjmp(cstate->top_ctx))
7670 return (NULL);
7671
7672 return gen_relation_internal(cstate, code, a0, a1, reversed);
7673 }
7674
7675 struct arth *
7676 gen_loadlen(compiler_state_t *cstate)
7677 {
7678 int regno;
7679 struct arth *a;
7680 struct slist *s;
7681
7682 /*
7683 * Catch errors reported by us and routines below us, and return NULL
7684 * on an error.
7685 */
7686 if (setjmp(cstate->top_ctx))
7687 return (NULL);
7688
7689 regno = alloc_reg(cstate);
7690 a = (struct arth *)newchunk(cstate, sizeof(*a));
7691 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7692 s->next = new_stmt(cstate, BPF_ST);
7693 s->next->s.k = regno;
7694 a->s = s;
7695 a->regno = regno;
7696
7697 return a;
7698 }
7699
7700 static struct arth *
7701 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7702 {
7703 struct arth *a;
7704 struct slist *s;
7705 int reg;
7706
7707 a = (struct arth *)newchunk(cstate, sizeof(*a));
7708
7709 reg = alloc_reg(cstate);
7710
7711 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7712 s->s.k = val;
7713 s->next = new_stmt(cstate, BPF_ST);
7714 s->next->s.k = reg;
7715 a->s = s;
7716 a->regno = reg;
7717
7718 return a;
7719 }
7720
7721 struct arth *
7722 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
7723 {
7724 /*
7725 * Catch errors reported by us and routines below us, and return NULL
7726 * on an error.
7727 */
7728 if (setjmp(cstate->top_ctx))
7729 return (NULL);
7730
7731 return gen_loadi_internal(cstate, val);
7732 }
7733
7734 /*
7735 * The a_arg dance is to avoid annoying whining by compilers that
7736 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7737 * It's not *used* after setjmp returns.
7738 */
7739 struct arth *
7740 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7741 {
7742 struct arth *a = a_arg;
7743 struct slist *s;
7744
7745 /*
7746 * Catch errors reported by us and routines below us, and return NULL
7747 * on an error.
7748 */
7749 if (setjmp(cstate->top_ctx))
7750 return (NULL);
7751
7752 s = xfer_to_a(cstate, a);
7753 sappend(a->s, s);
7754 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7755 s->s.k = 0;
7756 sappend(a->s, s);
7757 s = new_stmt(cstate, BPF_ST);
7758 s->s.k = a->regno;
7759 sappend(a->s, s);
7760
7761 return a;
7762 }
7763
7764 /*
7765 * The a0_arg dance is to avoid annoying whining by compilers that
7766 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7767 * It's not *used* after setjmp returns.
7768 */
7769 struct arth *
7770 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7771 struct arth *a1)
7772 {
7773 struct arth *a0 = a0_arg;
7774 struct slist *s0, *s1, *s2;
7775
7776 /*
7777 * Catch errors reported by us and routines below us, and return NULL
7778 * on an error.
7779 */
7780 if (setjmp(cstate->top_ctx))
7781 return (NULL);
7782
7783 /*
7784 * Disallow division by, or modulus by, zero; we do this here
7785 * so that it gets done even if the optimizer is disabled.
7786 *
7787 * Also disallow shifts by a value greater than 31; we do this
7788 * here, for the same reason.
7789 */
7790 if (code == BPF_DIV) {
7791 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7792 bpf_error(cstate, "division by zero");
7793 } else if (code == BPF_MOD) {
7794 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7795 bpf_error(cstate, "modulus by zero");
7796 } else if (code == BPF_LSH || code == BPF_RSH) {
7797 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
7798 bpf_error(cstate, "shift by more than 31 bits");
7799 }
7800 s0 = xfer_to_x(cstate, a1);
7801 s1 = xfer_to_a(cstate, a0);
7802 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7803
7804 sappend(s1, s2);
7805 sappend(s0, s1);
7806 sappend(a1->s, s0);
7807 sappend(a0->s, a1->s);
7808
7809 free_reg(cstate, a0->regno);
7810 free_reg(cstate, a1->regno);
7811
7812 s0 = new_stmt(cstate, BPF_ST);
7813 a0->regno = s0->s.k = alloc_reg(cstate);
7814 sappend(a0->s, s0);
7815
7816 return a0;
7817 }
7818
7819 /*
7820 * Initialize the table of used registers and the current register.
7821 */
7822 static void
7823 init_regs(compiler_state_t *cstate)
7824 {
7825 cstate->curreg = 0;
7826 memset(cstate->regused, 0, sizeof cstate->regused);
7827 }
7828
7829 /*
7830 * Return the next free register.
7831 */
7832 static int
7833 alloc_reg(compiler_state_t *cstate)
7834 {
7835 int n = BPF_MEMWORDS;
7836
7837 while (--n >= 0) {
7838 if (cstate->regused[cstate->curreg])
7839 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7840 else {
7841 cstate->regused[cstate->curreg] = 1;
7842 return cstate->curreg;
7843 }
7844 }
7845 bpf_error(cstate, "too many registers needed to evaluate expression");
7846 /*NOTREACHED*/
7847 }
7848
7849 /*
7850 * Return a register to the table so it can
7851 * be used later.
7852 */
7853 static void
7854 free_reg(compiler_state_t *cstate, int n)
7855 {
7856 cstate->regused[n] = 0;
7857 }
7858
7859 static struct block *
7860 gen_len(compiler_state_t *cstate, int jmp, int n)
7861 {
7862 struct slist *s;
7863 struct block *b;
7864
7865 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7866 b = new_block(cstate, JMP(jmp));
7867 b->stmts = s;
7868 b->s.k = n;
7869
7870 return b;
7871 }
7872
7873 struct block *
7874 gen_greater(compiler_state_t *cstate, int n)
7875 {
7876 /*
7877 * Catch errors reported by us and routines below us, and return NULL
7878 * on an error.
7879 */
7880 if (setjmp(cstate->top_ctx))
7881 return (NULL);
7882
7883 return gen_len(cstate, BPF_JGE, n);
7884 }
7885
7886 /*
7887 * Actually, this is less than or equal.
7888 */
7889 struct block *
7890 gen_less(compiler_state_t *cstate, int n)
7891 {
7892 struct block *b;
7893
7894 /*
7895 * Catch errors reported by us and routines below us, and return NULL
7896 * on an error.
7897 */
7898 if (setjmp(cstate->top_ctx))
7899 return (NULL);
7900
7901 b = gen_len(cstate, BPF_JGT, n);
7902 gen_not(b);
7903
7904 return b;
7905 }
7906
7907 /*
7908 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7909 * the beginning of the link-layer header.
7910 * XXX - that means you can't test values in the radiotap header, but
7911 * as that header is difficult if not impossible to parse generally
7912 * without a loop, that might not be a severe problem. A new keyword
7913 * "radio" could be added for that, although what you'd really want
7914 * would be a way of testing particular radio header values, which
7915 * would generate code appropriate to the radio header in question.
7916 */
7917 struct block *
7918 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
7919 {
7920 struct block *b;
7921 struct slist *s;
7922
7923 /*
7924 * Catch errors reported by us and routines below us, and return NULL
7925 * on an error.
7926 */
7927 if (setjmp(cstate->top_ctx))
7928 return (NULL);
7929
7930 switch (op) {
7931 default:
7932 abort();
7933
7934 case '=':
7935 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7936
7937 case '<':
7938 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7939 return b;
7940
7941 case '>':
7942 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
7943 return b;
7944
7945 case '|':
7946 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7947 break;
7948
7949 case '&':
7950 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7951 break;
7952 }
7953 s->s.k = val;
7954 b = new_block(cstate, JMP(BPF_JEQ));
7955 b->stmts = s;
7956 gen_not(b);
7957
7958 return b;
7959 }
7960
7961 static const u_char abroadcast[] = { 0x0 };
7962
7963 struct block *
7964 gen_broadcast(compiler_state_t *cstate, int proto)
7965 {
7966 bpf_u_int32 hostmask;
7967 struct block *b0, *b1, *b2;
7968 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7969
7970 /*
7971 * Catch errors reported by us and routines below us, and return NULL
7972 * on an error.
7973 */
7974 if (setjmp(cstate->top_ctx))
7975 return (NULL);
7976
7977 switch (proto) {
7978
7979 case Q_DEFAULT:
7980 case Q_LINK:
7981 switch (cstate->linktype) {
7982 case DLT_ARCNET:
7983 case DLT_ARCNET_LINUX:
7984 return gen_ahostop(cstate, abroadcast, Q_DST);
7985 case DLT_EN10MB:
7986 case DLT_NETANALYZER:
7987 case DLT_NETANALYZER_TRANSPARENT:
7988 b1 = gen_prevlinkhdr_check(cstate);
7989 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7990 if (b1 != NULL)
7991 gen_and(b1, b0);
7992 return b0;
7993 case DLT_FDDI:
7994 return gen_fhostop(cstate, ebroadcast, Q_DST);
7995 case DLT_IEEE802:
7996 return gen_thostop(cstate, ebroadcast, Q_DST);
7997 case DLT_IEEE802_11:
7998 case DLT_PRISM_HEADER:
7999 case DLT_IEEE802_11_RADIO_AVS:
8000 case DLT_IEEE802_11_RADIO:
8001 case DLT_PPI:
8002 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8003 case DLT_IP_OVER_FC:
8004 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8005 default:
8006 bpf_error(cstate, "not a broadcast link");
8007 }
8008 /*NOTREACHED*/
8009
8010 case Q_IP:
8011 /*
8012 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8013 * as an indication that we don't know the netmask, and fail
8014 * in that case.
8015 */
8016 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8017 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8018 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8019 hostmask = ~cstate->netmask;
8020 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8021 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8022 ~0 & hostmask, hostmask);
8023 gen_or(b1, b2);
8024 gen_and(b0, b2);
8025 return b2;
8026 }
8027 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8028 /*NOTREACHED*/
8029 }
8030
8031 /*
8032 * Generate code to test the low-order bit of a MAC address (that's
8033 * the bottom bit of the *first* byte).
8034 */
8035 static struct block *
8036 gen_mac_multicast(compiler_state_t *cstate, int offset)
8037 {
8038 register struct block *b0;
8039 register struct slist *s;
8040
8041 /* link[offset] & 1 != 0 */
8042 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8043 b0 = new_block(cstate, JMP(BPF_JSET));
8044 b0->s.k = 1;
8045 b0->stmts = s;
8046 return b0;
8047 }
8048
8049 struct block *
8050 gen_multicast(compiler_state_t *cstate, int proto)
8051 {
8052 register struct block *b0, *b1, *b2;
8053 register struct slist *s;
8054
8055 /*
8056 * Catch errors reported by us and routines below us, and return NULL
8057 * on an error.
8058 */
8059 if (setjmp(cstate->top_ctx))
8060 return (NULL);
8061
8062 switch (proto) {
8063
8064 case Q_DEFAULT:
8065 case Q_LINK:
8066 switch (cstate->linktype) {
8067 case DLT_ARCNET:
8068 case DLT_ARCNET_LINUX:
8069 /* all ARCnet multicasts use the same address */
8070 return gen_ahostop(cstate, abroadcast, Q_DST);
8071 case DLT_EN10MB:
8072 case DLT_NETANALYZER:
8073 case DLT_NETANALYZER_TRANSPARENT:
8074 b1 = gen_prevlinkhdr_check(cstate);
8075 /* ether[0] & 1 != 0 */
8076 b0 = gen_mac_multicast(cstate, 0);
8077 if (b1 != NULL)
8078 gen_and(b1, b0);
8079 return b0;
8080 case DLT_FDDI:
8081 /*
8082 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8083 *
8084 * XXX - was that referring to bit-order issues?
8085 */
8086 /* fddi[1] & 1 != 0 */
8087 return gen_mac_multicast(cstate, 1);
8088 case DLT_IEEE802:
8089 /* tr[2] & 1 != 0 */
8090 return gen_mac_multicast(cstate, 2);
8091 case DLT_IEEE802_11:
8092 case DLT_PRISM_HEADER:
8093 case DLT_IEEE802_11_RADIO_AVS:
8094 case DLT_IEEE802_11_RADIO:
8095 case DLT_PPI:
8096 /*
8097 * Oh, yuk.
8098 *
8099 * For control frames, there is no DA.
8100 *
8101 * For management frames, DA is at an
8102 * offset of 4 from the beginning of
8103 * the packet.
8104 *
8105 * For data frames, DA is at an offset
8106 * of 4 from the beginning of the packet
8107 * if To DS is clear and at an offset of
8108 * 16 from the beginning of the packet
8109 * if To DS is set.
8110 */
8111
8112 /*
8113 * Generate the tests to be done for data frames.
8114 *
8115 * First, check for To DS set, i.e. "link[1] & 0x01".
8116 */
8117 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8118 b1 = new_block(cstate, JMP(BPF_JSET));
8119 b1->s.k = 0x01; /* To DS */
8120 b1->stmts = s;
8121
8122 /*
8123 * If To DS is set, the DA is at 16.
8124 */
8125 b0 = gen_mac_multicast(cstate, 16);
8126 gen_and(b1, b0);
8127
8128 /*
8129 * Now, check for To DS not set, i.e. check
8130 * "!(link[1] & 0x01)".
8131 */
8132 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8133 b2 = new_block(cstate, JMP(BPF_JSET));
8134 b2->s.k = 0x01; /* To DS */
8135 b2->stmts = s;
8136 gen_not(b2);
8137
8138 /*
8139 * If To DS is not set, the DA is at 4.
8140 */
8141 b1 = gen_mac_multicast(cstate, 4);
8142 gen_and(b2, b1);
8143
8144 /*
8145 * Now OR together the last two checks. That gives
8146 * the complete set of checks for data frames.
8147 */
8148 gen_or(b1, b0);
8149
8150 /*
8151 * Now check for a data frame.
8152 * I.e, check "link[0] & 0x08".
8153 */
8154 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8155 b1 = new_block(cstate, JMP(BPF_JSET));
8156 b1->s.k = 0x08;
8157 b1->stmts = s;
8158
8159 /*
8160 * AND that with the checks done for data frames.
8161 */
8162 gen_and(b1, b0);
8163
8164 /*
8165 * If the high-order bit of the type value is 0, this
8166 * is a management frame.
8167 * I.e, check "!(link[0] & 0x08)".
8168 */
8169 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8170 b2 = new_block(cstate, JMP(BPF_JSET));
8171 b2->s.k = 0x08;
8172 b2->stmts = s;
8173 gen_not(b2);
8174
8175 /*
8176 * For management frames, the DA is at 4.
8177 */
8178 b1 = gen_mac_multicast(cstate, 4);
8179 gen_and(b2, b1);
8180
8181 /*
8182 * OR that with the checks done for data frames.
8183 * That gives the checks done for management and
8184 * data frames.
8185 */
8186 gen_or(b1, b0);
8187
8188 /*
8189 * If the low-order bit of the type value is 1,
8190 * this is either a control frame or a frame
8191 * with a reserved type, and thus not a
8192 * frame with an SA.
8193 *
8194 * I.e., check "!(link[0] & 0x04)".
8195 */
8196 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8197 b1 = new_block(cstate, JMP(BPF_JSET));
8198 b1->s.k = 0x04;
8199 b1->stmts = s;
8200 gen_not(b1);
8201
8202 /*
8203 * AND that with the checks for data and management
8204 * frames.
8205 */
8206 gen_and(b1, b0);
8207 return b0;
8208 case DLT_IP_OVER_FC:
8209 b0 = gen_mac_multicast(cstate, 2);
8210 return b0;
8211 default:
8212 break;
8213 }
8214 /* Link not known to support multicasts */
8215 break;
8216
8217 case Q_IP:
8218 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8219 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8220 gen_and(b0, b1);
8221 return b1;
8222
8223 case Q_IPV6:
8224 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8225 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8226 gen_and(b0, b1);
8227 return b1;
8228 }
8229 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8230 /*NOTREACHED*/
8231 }
8232
8233 struct block *
8234 gen_ifindex(compiler_state_t *cstate, int ifindex)
8235 {
8236 register struct block *b0;
8237
8238 /*
8239 * Catch errors reported by us and routines below us, and return NULL
8240 * on an error.
8241 */
8242 if (setjmp(cstate->top_ctx))
8243 return (NULL);
8244
8245 /*
8246 * Only some data link types support ifindex qualifiers.
8247 */
8248 switch (cstate->linktype) {
8249 case DLT_LINUX_SLL2:
8250 /* match packets on this interface */
8251 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8252 break;
8253 default:
8254 #if defined(linux)
8255 /*
8256 * This is Linux; we require PF_PACKET support.
8257 * If this is a *live* capture, we can look at
8258 * special meta-data in the filter expression;
8259 * if it's a savefile, we can't.
8260 */
8261 if (cstate->bpf_pcap->rfile != NULL) {
8262 /* We have a FILE *, so this is a savefile */
8263 bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8264 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8265 b0 = NULL;
8266 /*NOTREACHED*/
8267 }
8268 /* match ifindex */
8269 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8270 ifindex);
8271 #else /* defined(linux) */
8272 bpf_error(cstate, "ifindex not supported on %s",
8273 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8274 /*NOTREACHED*/
8275 #endif /* defined(linux) */
8276 }
8277 return (b0);
8278 }
8279
8280 /*
8281 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8282 * Outbound traffic is sent by this machine, while inbound traffic is
8283 * sent by a remote machine (and may include packets destined for a
8284 * unicast or multicast link-layer address we are not subscribing to).
8285 * These are the same definitions implemented by pcap_setdirection().
8286 * Capturing only unicast traffic destined for this host is probably
8287 * better accomplished using a higher-layer filter.
8288 */
8289 struct block *
8290 gen_inbound(compiler_state_t *cstate, int dir)
8291 {
8292 register struct block *b0;
8293
8294 /*
8295 * Catch errors reported by us and routines below us, and return NULL
8296 * on an error.
8297 */
8298 if (setjmp(cstate->top_ctx))
8299 return (NULL);
8300
8301 /*
8302 * Only some data link types support inbound/outbound qualifiers.
8303 */
8304 switch (cstate->linktype) {
8305 case DLT_SLIP:
8306 b0 = gen_relation_internal(cstate, BPF_JEQ,
8307 gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8308 gen_loadi_internal(cstate, 0),
8309 dir);
8310 break;
8311
8312 case DLT_IPNET:
8313 if (dir) {
8314 /* match outgoing packets */
8315 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8316 } else {
8317 /* match incoming packets */
8318 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8319 }
8320 break;
8321
8322 case DLT_LINUX_SLL:
8323 /* match outgoing packets */
8324 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8325 if (!dir) {
8326 /* to filter on inbound traffic, invert the match */
8327 gen_not(b0);
8328 }
8329 break;
8330
8331 case DLT_LINUX_SLL2:
8332 /* match outgoing packets */
8333 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8334 if (!dir) {
8335 /* to filter on inbound traffic, invert the match */
8336 gen_not(b0);
8337 }
8338 break;
8339
8340 case DLT_PFLOG:
8341 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8342 ((dir == 0) ? PF_IN : PF_OUT));
8343 break;
8344
8345 case DLT_PPP_PPPD:
8346 if (dir) {
8347 /* match outgoing packets */
8348 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8349 } else {
8350 /* match incoming packets */
8351 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8352 }
8353 break;
8354
8355 case DLT_JUNIPER_MFR:
8356 case DLT_JUNIPER_MLFR:
8357 case DLT_JUNIPER_MLPPP:
8358 case DLT_JUNIPER_ATM1:
8359 case DLT_JUNIPER_ATM2:
8360 case DLT_JUNIPER_PPPOE:
8361 case DLT_JUNIPER_PPPOE_ATM:
8362 case DLT_JUNIPER_GGSN:
8363 case DLT_JUNIPER_ES:
8364 case DLT_JUNIPER_MONITOR:
8365 case DLT_JUNIPER_SERVICES:
8366 case DLT_JUNIPER_ETHER:
8367 case DLT_JUNIPER_PPP:
8368 case DLT_JUNIPER_FRELAY:
8369 case DLT_JUNIPER_CHDLC:
8370 case DLT_JUNIPER_VP:
8371 case DLT_JUNIPER_ST:
8372 case DLT_JUNIPER_ISM:
8373 case DLT_JUNIPER_VS:
8374 case DLT_JUNIPER_SRX_E2E:
8375 case DLT_JUNIPER_FIBRECHANNEL:
8376 case DLT_JUNIPER_ATM_CEMIC:
8377
8378 /* juniper flags (including direction) are stored
8379 * the byte after the 3-byte magic number */
8380 if (dir) {
8381 /* match outgoing packets */
8382 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8383 } else {
8384 /* match incoming packets */
8385 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8386 }
8387 break;
8388
8389 default:
8390 /*
8391 * If we have packet meta-data indicating a direction,
8392 * and that metadata can be checked by BPF code, check
8393 * it. Otherwise, give up, as this link-layer type has
8394 * nothing in the packet data.
8395 *
8396 * Currently, the only platform where a BPF filter can
8397 * check that metadata is Linux with the in-kernel
8398 * BPF interpreter. If other packet capture mechanisms
8399 * and BPF filters also supported this, it would be
8400 * nice. It would be even better if they made that
8401 * metadata available so that we could provide it
8402 * with newer capture APIs, allowing it to be saved
8403 * in pcapng files.
8404 */
8405 #if defined(linux)
8406 /*
8407 * This is Linux; we require PF_PACKET support.
8408 * If this is a *live* capture, we can look at
8409 * special meta-data in the filter expression;
8410 * if it's a savefile, we can't.
8411 */
8412 if (cstate->bpf_pcap->rfile != NULL) {
8413 /* We have a FILE *, so this is a savefile */
8414 bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8415 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8416 /*NOTREACHED*/
8417 }
8418 /* match outgoing packets */
8419 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8420 PACKET_OUTGOING);
8421 if (!dir) {
8422 /* to filter on inbound traffic, invert the match */
8423 gen_not(b0);
8424 }
8425 #else /* defined(linux) */
8426 bpf_error(cstate, "inbound/outbound not supported on %s",
8427 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8428 /*NOTREACHED*/
8429 #endif /* defined(linux) */
8430 }
8431 return (b0);
8432 }
8433
8434 /* PF firewall log matched interface */
8435 struct block *
8436 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8437 {
8438 struct block *b0;
8439 u_int len, off;
8440
8441 /*
8442 * Catch errors reported by us and routines below us, and return NULL
8443 * on an error.
8444 */
8445 if (setjmp(cstate->top_ctx))
8446 return (NULL);
8447
8448 if (cstate->linktype != DLT_PFLOG) {
8449 bpf_error(cstate, "ifname supported only on PF linktype");
8450 /*NOTREACHED*/
8451 }
8452 len = sizeof(((struct pfloghdr *)0)->ifname);
8453 off = offsetof(struct pfloghdr, ifname);
8454 if (strlen(ifname) >= len) {
8455 bpf_error(cstate, "ifname interface names can only be %d characters",
8456 len-1);
8457 /*NOTREACHED*/
8458 }
8459 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8460 (const u_char *)ifname);
8461 return (b0);
8462 }
8463
8464 /* PF firewall log ruleset name */
8465 struct block *
8466 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8467 {
8468 struct block *b0;
8469
8470 /*
8471 * Catch errors reported by us and routines below us, and return NULL
8472 * on an error.
8473 */
8474 if (setjmp(cstate->top_ctx))
8475 return (NULL);
8476
8477 if (cstate->linktype != DLT_PFLOG) {
8478 bpf_error(cstate, "ruleset supported only on PF linktype");
8479 /*NOTREACHED*/
8480 }
8481
8482 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8483 bpf_error(cstate, "ruleset names can only be %ld characters",
8484 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8485 /*NOTREACHED*/
8486 }
8487
8488 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8489 (u_int)strlen(ruleset), (const u_char *)ruleset);
8490 return (b0);
8491 }
8492
8493 /* PF firewall log rule number */
8494 struct block *
8495 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8496 {
8497 struct block *b0;
8498
8499 /*
8500 * Catch errors reported by us and routines below us, and return NULL
8501 * on an error.
8502 */
8503 if (setjmp(cstate->top_ctx))
8504 return (NULL);
8505
8506 if (cstate->linktype != DLT_PFLOG) {
8507 bpf_error(cstate, "rnr supported only on PF linktype");
8508 /*NOTREACHED*/
8509 }
8510
8511 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8512 (bpf_u_int32)rnr);
8513 return (b0);
8514 }
8515
8516 /* PF firewall log sub-rule number */
8517 struct block *
8518 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8519 {
8520 struct block *b0;
8521
8522 /*
8523 * Catch errors reported by us and routines below us, and return NULL
8524 * on an error.
8525 */
8526 if (setjmp(cstate->top_ctx))
8527 return (NULL);
8528
8529 if (cstate->linktype != DLT_PFLOG) {
8530 bpf_error(cstate, "srnr supported only on PF linktype");
8531 /*NOTREACHED*/
8532 }
8533
8534 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8535 (bpf_u_int32)srnr);
8536 return (b0);
8537 }
8538
8539 /* PF firewall log reason code */
8540 struct block *
8541 gen_pf_reason(compiler_state_t *cstate, int reason)
8542 {
8543 struct block *b0;
8544
8545 /*
8546 * Catch errors reported by us and routines below us, and return NULL
8547 * on an error.
8548 */
8549 if (setjmp(cstate->top_ctx))
8550 return (NULL);
8551
8552 if (cstate->linktype != DLT_PFLOG) {
8553 bpf_error(cstate, "reason supported only on PF linktype");
8554 /*NOTREACHED*/
8555 }
8556
8557 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8558 (bpf_u_int32)reason);
8559 return (b0);
8560 }
8561
8562 /* PF firewall log action */
8563 struct block *
8564 gen_pf_action(compiler_state_t *cstate, int action)
8565 {
8566 struct block *b0;
8567
8568 /*
8569 * Catch errors reported by us and routines below us, and return NULL
8570 * on an error.
8571 */
8572 if (setjmp(cstate->top_ctx))
8573 return (NULL);
8574
8575 if (cstate->linktype != DLT_PFLOG) {
8576 bpf_error(cstate, "action supported only on PF linktype");
8577 /*NOTREACHED*/
8578 }
8579
8580 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8581 (bpf_u_int32)action);
8582 return (b0);
8583 }
8584
8585 /* IEEE 802.11 wireless header */
8586 struct block *
8587 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8588 {
8589 struct block *b0;
8590
8591 /*
8592 * Catch errors reported by us and routines below us, and return NULL
8593 * on an error.
8594 */
8595 if (setjmp(cstate->top_ctx))
8596 return (NULL);
8597
8598 switch (cstate->linktype) {
8599
8600 case DLT_IEEE802_11:
8601 case DLT_PRISM_HEADER:
8602 case DLT_IEEE802_11_RADIO_AVS:
8603 case DLT_IEEE802_11_RADIO:
8604 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8605 break;
8606
8607 default:
8608 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8609 /*NOTREACHED*/
8610 }
8611
8612 return (b0);
8613 }
8614
8615 struct block *
8616 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8617 {
8618 struct block *b0;
8619
8620 /*
8621 * Catch errors reported by us and routines below us, and return NULL
8622 * on an error.
8623 */
8624 if (setjmp(cstate->top_ctx))
8625 return (NULL);
8626
8627 switch (cstate->linktype) {
8628
8629 case DLT_IEEE802_11:
8630 case DLT_PRISM_HEADER:
8631 case DLT_IEEE802_11_RADIO_AVS:
8632 case DLT_IEEE802_11_RADIO:
8633 break;
8634
8635 default:
8636 bpf_error(cstate, "frame direction supported only with 802.11 headers");
8637 /*NOTREACHED*/
8638 }
8639
8640 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8641 IEEE80211_FC1_DIR_MASK);
8642
8643 return (b0);
8644 }
8645
8646 struct block *
8647 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8648 {
8649 struct block *b;
8650
8651 /*
8652 * Catch errors reported by us and routines below us, and return NULL
8653 * on an error.
8654 */
8655 if (setjmp(cstate->top_ctx))
8656 return (NULL);
8657
8658 switch (cstate->linktype) {
8659
8660 case DLT_ARCNET:
8661 case DLT_ARCNET_LINUX:
8662 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8663 q.proto == Q_LINK) {
8664 cstate->e = pcap_ether_aton(s);
8665 if (cstate->e == NULL)
8666 bpf_error(cstate, "malloc");
8667 b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8668 free(cstate->e);
8669 cstate->e = NULL;
8670 return (b);
8671 } else
8672 bpf_error(cstate, "ARCnet address used in non-arc expression");
8673 /*NOTREACHED*/
8674
8675 default:
8676 bpf_error(cstate, "aid supported only on ARCnet");
8677 /*NOTREACHED*/
8678 }
8679 }
8680
8681 static struct block *
8682 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8683 {
8684 register struct block *b0, *b1;
8685
8686 switch (dir) {
8687 /* src comes first, different from Ethernet */
8688 case Q_SRC:
8689 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8690
8691 case Q_DST:
8692 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8693
8694 case Q_AND:
8695 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8696 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8697 gen_and(b0, b1);
8698 return b1;
8699
8700 case Q_DEFAULT:
8701 case Q_OR:
8702 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8703 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8704 gen_or(b0, b1);
8705 return b1;
8706
8707 case Q_ADDR1:
8708 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8709 /*NOTREACHED*/
8710
8711 case Q_ADDR2:
8712 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8713 /*NOTREACHED*/
8714
8715 case Q_ADDR3:
8716 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8717 /*NOTREACHED*/
8718
8719 case Q_ADDR4:
8720 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8721 /*NOTREACHED*/
8722
8723 case Q_RA:
8724 bpf_error(cstate, "'ra' is only supported on 802.11");
8725 /*NOTREACHED*/
8726
8727 case Q_TA:
8728 bpf_error(cstate, "'ta' is only supported on 802.11");
8729 /*NOTREACHED*/
8730 }
8731 abort();
8732 /*NOTREACHED*/
8733 }
8734
8735 static struct block *
8736 gen_vlan_tpid_test(compiler_state_t *cstate)
8737 {
8738 struct block *b0, *b1;
8739
8740 /* check for VLAN, including 802.1ad and QinQ */
8741 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8742 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8743 gen_or(b0,b1);
8744 b0 = b1;
8745 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8746 gen_or(b0,b1);
8747
8748 return b1;
8749 }
8750
8751 static struct block *
8752 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8753 {
8754 if (vlan_num > 0x0fff) {
8755 bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8756 vlan_num, 0x0fff);
8757 }
8758 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
8759 }
8760
8761 static struct block *
8762 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8763 int has_vlan_tag)
8764 {
8765 struct block *b0, *b1;
8766
8767 b0 = gen_vlan_tpid_test(cstate);
8768
8769 if (has_vlan_tag) {
8770 b1 = gen_vlan_vid_test(cstate, vlan_num);
8771 gen_and(b0, b1);
8772 b0 = b1;
8773 }
8774
8775 /*
8776 * Both payload and link header type follow the VLAN tags so that
8777 * both need to be updated.
8778 */
8779 cstate->off_linkpl.constant_part += 4;
8780 cstate->off_linktype.constant_part += 4;
8781
8782 return b0;
8783 }
8784
8785 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8786 /* add v to variable part of off */
8787 static void
8788 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
8789 bpf_u_int32 v, struct slist *s)
8790 {
8791 struct slist *s2;
8792
8793 if (!off->is_variable)
8794 off->is_variable = 1;
8795 if (off->reg == -1)
8796 off->reg = alloc_reg(cstate);
8797
8798 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8799 s2->s.k = off->reg;
8800 sappend(s, s2);
8801 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8802 s2->s.k = v;
8803 sappend(s, s2);
8804 s2 = new_stmt(cstate, BPF_ST);
8805 s2->s.k = off->reg;
8806 sappend(s, s2);
8807 }
8808
8809 /*
8810 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8811 * and link type offsets first
8812 */
8813 static void
8814 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8815 {
8816 struct slist s;
8817
8818 /* offset determined at run time, shift variable part */
8819 s.next = NULL;
8820 cstate->is_vlan_vloffset = 1;
8821 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8822 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8823
8824 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8825 sappend(s.next, b_tpid->head->stmts);
8826 b_tpid->head->stmts = s.next;
8827 }
8828
8829 /*
8830 * patch block b_vid (VLAN id test) to load VID value either from packet
8831 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8832 */
8833 static void
8834 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8835 {
8836 struct slist *s, *s2, *sjeq;
8837 unsigned cnt;
8838
8839 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8840 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8841
8842 /* true -> next instructions, false -> beginning of b_vid */
8843 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8844 sjeq->s.k = 1;
8845 sjeq->s.jf = b_vid->stmts;
8846 sappend(s, sjeq);
8847
8848 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8849 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8850 sappend(s, s2);
8851 sjeq->s.jt = s2;
8852
8853 /* Jump to the test in b_vid. We need to jump one instruction before
8854 * the end of the b_vid block so that we only skip loading the TCI
8855 * from packet data and not the 'and' instruction extractging VID.
8856 */
8857 cnt = 0;
8858 for (s2 = b_vid->stmts; s2; s2 = s2->next)
8859 cnt++;
8860 s2 = new_stmt(cstate, JMP(BPF_JA));
8861 s2->s.k = cnt - 1;
8862 sappend(s, s2);
8863
8864 /* insert our statements at the beginning of b_vid */
8865 sappend(s, b_vid->stmts);
8866 b_vid->stmts = s;
8867 }
8868
8869 /*
8870 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8871 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8872 * tag can be either in metadata or in packet data; therefore if the
8873 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8874 * header for VLAN tag. As the decision is done at run time, we need
8875 * update variable part of the offsets
8876 */
8877 static struct block *
8878 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8879 int has_vlan_tag)
8880 {
8881 struct block *b0, *b_tpid, *b_vid = NULL;
8882 struct slist *s;
8883
8884 /* generate new filter code based on extracting packet
8885 * metadata */
8886 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8887 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8888
8889 b0 = new_block(cstate, JMP(BPF_JEQ));
8890 b0->stmts = s;
8891 b0->s.k = 1;
8892
8893 /*
8894 * This is tricky. We need to insert the statements updating variable
8895 * parts of offsets before the traditional TPID and VID tests so
8896 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8897 * we do not want this update to affect those checks. That's why we
8898 * generate both test blocks first and insert the statements updating
8899 * variable parts of both offsets after that. This wouldn't work if
8900 * there already were variable length link header when entering this
8901 * function but gen_vlan_bpf_extensions() isn't called in that case.
8902 */
8903 b_tpid = gen_vlan_tpid_test(cstate);
8904 if (has_vlan_tag)
8905 b_vid = gen_vlan_vid_test(cstate, vlan_num);
8906
8907 gen_vlan_patch_tpid_test(cstate, b_tpid);
8908 gen_or(b0, b_tpid);
8909 b0 = b_tpid;
8910
8911 if (has_vlan_tag) {
8912 gen_vlan_patch_vid_test(cstate, b_vid);
8913 gen_and(b0, b_vid);
8914 b0 = b_vid;
8915 }
8916
8917 return b0;
8918 }
8919 #endif
8920
8921 /*
8922 * support IEEE 802.1Q VLAN trunk over ethernet
8923 */
8924 struct block *
8925 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8926 {
8927 struct block *b0;
8928
8929 /*
8930 * Catch errors reported by us and routines below us, and return NULL
8931 * on an error.
8932 */
8933 if (setjmp(cstate->top_ctx))
8934 return (NULL);
8935
8936 /* can't check for VLAN-encapsulated packets inside MPLS */
8937 if (cstate->label_stack_depth > 0)
8938 bpf_error(cstate, "no VLAN match after MPLS");
8939
8940 /*
8941 * Check for a VLAN packet, and then change the offsets to point
8942 * to the type and data fields within the VLAN packet. Just
8943 * increment the offsets, so that we can support a hierarchy, e.g.
8944 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8945 * VLAN 100.
8946 *
8947 * XXX - this is a bit of a kludge. If we were to split the
8948 * compiler into a parser that parses an expression and
8949 * generates an expression tree, and a code generator that
8950 * takes an expression tree (which could come from our
8951 * parser or from some other parser) and generates BPF code,
8952 * we could perhaps make the offsets parameters of routines
8953 * and, in the handler for an "AND" node, pass to subnodes
8954 * other than the VLAN node the adjusted offsets.
8955 *
8956 * This would mean that "vlan" would, instead of changing the
8957 * behavior of *all* tests after it, change only the behavior
8958 * of tests ANDed with it. That would change the documented
8959 * semantics of "vlan", which might break some expressions.
8960 * However, it would mean that "(vlan and ip) or ip" would check
8961 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8962 * checking only for VLAN-encapsulated IP, so that could still
8963 * be considered worth doing; it wouldn't break expressions
8964 * that are of the form "vlan and ..." or "vlan N and ...",
8965 * which I suspect are the most common expressions involving
8966 * "vlan". "vlan or ..." doesn't necessarily do what the user
8967 * would really want, now, as all the "or ..." tests would
8968 * be done assuming a VLAN, even though the "or" could be viewed
8969 * as meaning "or, if this isn't a VLAN packet...".
8970 */
8971 switch (cstate->linktype) {
8972
8973 case DLT_EN10MB:
8974 case DLT_NETANALYZER:
8975 case DLT_NETANALYZER_TRANSPARENT:
8976 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8977 /* Verify that this is the outer part of the packet and
8978 * not encapsulated somehow. */
8979 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8980 cstate->off_linkhdr.constant_part ==
8981 cstate->off_outermostlinkhdr.constant_part) {
8982 /*
8983 * Do we need special VLAN handling?
8984 */
8985 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8986 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8987 has_vlan_tag);
8988 else
8989 b0 = gen_vlan_no_bpf_extensions(cstate,
8990 vlan_num, has_vlan_tag);
8991 } else
8992 #endif
8993 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8994 has_vlan_tag);
8995 break;
8996
8997 case DLT_IEEE802_11:
8998 case DLT_PRISM_HEADER:
8999 case DLT_IEEE802_11_RADIO_AVS:
9000 case DLT_IEEE802_11_RADIO:
9001 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9002 break;
9003
9004 default:
9005 bpf_error(cstate, "no VLAN support for %s",
9006 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9007 /*NOTREACHED*/
9008 }
9009
9010 cstate->vlan_stack_depth++;
9011
9012 return (b0);
9013 }
9014
9015 /*
9016 * support for MPLS
9017 *
9018 * The label_num_arg dance is to avoid annoying whining by compilers that
9019 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9020 * It's not *used* after setjmp returns.
9021 */
9022 struct block *
9023 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9024 int has_label_num)
9025 {
9026 volatile bpf_u_int32 label_num = label_num_arg;
9027 struct block *b0, *b1;
9028
9029 /*
9030 * Catch errors reported by us and routines below us, and return NULL
9031 * on an error.
9032 */
9033 if (setjmp(cstate->top_ctx))
9034 return (NULL);
9035
9036 if (cstate->label_stack_depth > 0) {
9037 /* just match the bottom-of-stack bit clear */
9038 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9039 } else {
9040 /*
9041 * We're not in an MPLS stack yet, so check the link-layer
9042 * type against MPLS.
9043 */
9044 switch (cstate->linktype) {
9045
9046 case DLT_C_HDLC: /* fall through */
9047 case DLT_HDLC:
9048 case DLT_EN10MB:
9049 case DLT_NETANALYZER:
9050 case DLT_NETANALYZER_TRANSPARENT:
9051 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9052 break;
9053
9054 case DLT_PPP:
9055 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9056 break;
9057
9058 /* FIXME add other DLT_s ...
9059 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9060 * leave it for now */
9061
9062 default:
9063 bpf_error(cstate, "no MPLS support for %s",
9064 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9065 /*NOTREACHED*/
9066 }
9067 }
9068
9069 /* If a specific MPLS label is requested, check it */
9070 if (has_label_num) {
9071 if (label_num > 0xFFFFF) {
9072 bpf_error(cstate, "MPLS label %u greater than maximum %u",
9073 label_num, 0xFFFFF);
9074 }
9075 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9076 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9077 0xfffff000); /* only compare the first 20 bits */
9078 gen_and(b0, b1);
9079 b0 = b1;
9080 }
9081
9082 /*
9083 * Change the offsets to point to the type and data fields within
9084 * the MPLS packet. Just increment the offsets, so that we
9085 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9086 * capture packets with an outer label of 100000 and an inner
9087 * label of 1024.
9088 *
9089 * Increment the MPLS stack depth as well; this indicates that
9090 * we're checking MPLS-encapsulated headers, to make sure higher
9091 * level code generators don't try to match against IP-related
9092 * protocols such as Q_ARP, Q_RARP etc.
9093 *
9094 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9095 */
9096 cstate->off_nl_nosnap += 4;
9097 cstate->off_nl += 4;
9098 cstate->label_stack_depth++;
9099 return (b0);
9100 }
9101
9102 /*
9103 * Support PPPOE discovery and session.
9104 */
9105 struct block *
9106 gen_pppoed(compiler_state_t *cstate)
9107 {
9108 /*
9109 * Catch errors reported by us and routines below us, and return NULL
9110 * on an error.
9111 */
9112 if (setjmp(cstate->top_ctx))
9113 return (NULL);
9114
9115 /* check for PPPoE discovery */
9116 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9117 }
9118
9119 struct block *
9120 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9121 {
9122 struct block *b0, *b1;
9123
9124 /*
9125 * Catch errors reported by us and routines below us, and return NULL
9126 * on an error.
9127 */
9128 if (setjmp(cstate->top_ctx))
9129 return (NULL);
9130
9131 /*
9132 * Test against the PPPoE session link-layer type.
9133 */
9134 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9135
9136 /* If a specific session is requested, check PPPoE session id */
9137 if (has_sess_num) {
9138 if (sess_num > 0x0000ffff) {
9139 bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9140 sess_num, 0x0000ffff);
9141 }
9142 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9143 gen_and(b0, b1);
9144 b0 = b1;
9145 }
9146
9147 /*
9148 * Change the offsets to point to the type and data fields within
9149 * the PPP packet, and note that this is PPPoE rather than
9150 * raw PPP.
9151 *
9152 * XXX - this is a bit of a kludge. See the comments in
9153 * gen_vlan().
9154 *
9155 * The "network-layer" protocol is PPPoE, which has a 6-byte
9156 * PPPoE header, followed by a PPP packet.
9157 *
9158 * There is no HDLC encapsulation for the PPP packet (it's
9159 * encapsulated in PPPoES instead), so the link-layer type
9160 * starts at the first byte of the PPP packet. For PPPoE,
9161 * that offset is relative to the beginning of the total
9162 * link-layer payload, including any 802.2 LLC header, so
9163 * it's 6 bytes past cstate->off_nl.
9164 */
9165 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9166 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9167 cstate->off_linkpl.reg);
9168
9169 cstate->off_linktype = cstate->off_linkhdr;
9170 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9171
9172 cstate->off_nl = 0;
9173 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9174
9175 return b0;
9176 }
9177
9178 /* Check that this is Geneve and the VNI is correct if
9179 * specified. Parameterized to handle both IPv4 and IPv6. */
9180 static struct block *
9181 gen_geneve_check(compiler_state_t *cstate,
9182 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9183 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9184 {
9185 struct block *b0, *b1;
9186
9187 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9188
9189 /* Check that we are operating on version 0. Otherwise, we
9190 * can't decode the rest of the fields. The version is 2 bits
9191 * in the first byte of the Geneve header. */
9192 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9193 gen_and(b0, b1);
9194 b0 = b1;
9195
9196 if (has_vni) {
9197 if (vni > 0xffffff) {
9198 bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9199 vni, 0xffffff);
9200 }
9201 vni <<= 8; /* VNI is in the upper 3 bytes */
9202 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9203 gen_and(b0, b1);
9204 b0 = b1;
9205 }
9206
9207 return b0;
9208 }
9209
9210 /* The IPv4 and IPv6 Geneve checks need to do two things:
9211 * - Verify that this actually is Geneve with the right VNI.
9212 * - Place the IP header length (plus variable link prefix if
9213 * needed) into register A to be used later to compute
9214 * the inner packet offsets. */
9215 static struct block *
9216 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9217 {
9218 struct block *b0, *b1;
9219 struct slist *s, *s1;
9220
9221 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9222
9223 /* Load the IP header length into A. */
9224 s = gen_loadx_iphdrlen(cstate);
9225
9226 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9227 sappend(s, s1);
9228
9229 /* Forcibly append these statements to the true condition
9230 * of the protocol check by creating a new block that is
9231 * always true and ANDing them. */
9232 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9233 b1->stmts = s;
9234 b1->s.k = 0;
9235
9236 gen_and(b0, b1);
9237
9238 return b1;
9239 }
9240
9241 static struct block *
9242 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9243 {
9244 struct block *b0, *b1;
9245 struct slist *s, *s1;
9246
9247 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9248
9249 /* Load the IP header length. We need to account for a
9250 * variable length link prefix if there is one. */
9251 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9252 if (s) {
9253 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9254 s1->s.k = 40;
9255 sappend(s, s1);
9256
9257 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9258 s1->s.k = 0;
9259 sappend(s, s1);
9260 } else {
9261 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9262 s->s.k = 40;
9263 }
9264
9265 /* Forcibly append these statements to the true condition
9266 * of the protocol check by creating a new block that is
9267 * always true and ANDing them. */
9268 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9269 sappend(s, s1);
9270
9271 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9272 b1->stmts = s;
9273 b1->s.k = 0;
9274
9275 gen_and(b0, b1);
9276
9277 return b1;
9278 }
9279
9280 /* We need to store three values based on the Geneve header::
9281 * - The offset of the linktype.
9282 * - The offset of the end of the Geneve header.
9283 * - The offset of the end of the encapsulated MAC header. */
9284 static struct slist *
9285 gen_geneve_offsets(compiler_state_t *cstate)
9286 {
9287 struct slist *s, *s1, *s_proto;
9288
9289 /* First we need to calculate the offset of the Geneve header
9290 * itself. This is composed of the IP header previously calculated
9291 * (include any variable link prefix) and stored in A plus the
9292 * fixed sized headers (fixed link prefix, MAC length, and UDP
9293 * header). */
9294 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9295 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9296
9297 /* Stash this in X since we'll need it later. */
9298 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9299 sappend(s, s1);
9300
9301 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9302 * store it. */
9303 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9304 s1->s.k = 2;
9305 sappend(s, s1);
9306
9307 cstate->off_linktype.reg = alloc_reg(cstate);
9308 cstate->off_linktype.is_variable = 1;
9309 cstate->off_linktype.constant_part = 0;
9310
9311 s1 = new_stmt(cstate, BPF_ST);
9312 s1->s.k = cstate->off_linktype.reg;
9313 sappend(s, s1);
9314
9315 /* Load the Geneve option length and mask and shift to get the
9316 * number of bytes. It is stored in the first byte of the Geneve
9317 * header. */
9318 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9319 s1->s.k = 0;
9320 sappend(s, s1);
9321
9322 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9323 s1->s.k = 0x3f;
9324 sappend(s, s1);
9325
9326 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9327 s1->s.k = 4;
9328 sappend(s, s1);
9329
9330 /* Add in the rest of the Geneve base header. */
9331 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9332 s1->s.k = 8;
9333 sappend(s, s1);
9334
9335 /* Add the Geneve header length to its offset and store. */
9336 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9337 s1->s.k = 0;
9338 sappend(s, s1);
9339
9340 /* Set the encapsulated type as Ethernet. Even though we may
9341 * not actually have Ethernet inside there are two reasons this
9342 * is useful:
9343 * - The linktype field is always in EtherType format regardless
9344 * of whether it is in Geneve or an inner Ethernet frame.
9345 * - The only link layer that we have specific support for is
9346 * Ethernet. We will confirm that the packet actually is
9347 * Ethernet at runtime before executing these checks. */
9348 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9349
9350 s1 = new_stmt(cstate, BPF_ST);
9351 s1->s.k = cstate->off_linkhdr.reg;
9352 sappend(s, s1);
9353
9354 /* Calculate whether we have an Ethernet header or just raw IP/
9355 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9356 * and linktype by 14 bytes so that the network header can be found
9357 * seamlessly. Otherwise, keep what we've calculated already. */
9358
9359 /* We have a bare jmp so we can't use the optimizer. */
9360 cstate->no_optimize = 1;
9361
9362 /* Load the EtherType in the Geneve header, 2 bytes in. */
9363 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9364 s1->s.k = 2;
9365 sappend(s, s1);
9366
9367 /* Load X with the end of the Geneve header. */
9368 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9369 s1->s.k = cstate->off_linkhdr.reg;
9370 sappend(s, s1);
9371
9372 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9373 * end of this check, we should have the total length in X. In
9374 * the non-Ethernet case, it's already there. */
9375 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9376 s_proto->s.k = ETHERTYPE_TEB;
9377 sappend(s, s_proto);
9378
9379 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9380 sappend(s, s1);
9381 s_proto->s.jt = s1;
9382
9383 /* Since this is Ethernet, use the EtherType of the payload
9384 * directly as the linktype. Overwrite what we already have. */
9385 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9386 s1->s.k = 12;
9387 sappend(s, s1);
9388
9389 s1 = new_stmt(cstate, BPF_ST);
9390 s1->s.k = cstate->off_linktype.reg;
9391 sappend(s, s1);
9392
9393 /* Advance two bytes further to get the end of the Ethernet
9394 * header. */
9395 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9396 s1->s.k = 2;
9397 sappend(s, s1);
9398
9399 /* Move the result to X. */
9400 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9401 sappend(s, s1);
9402
9403 /* Store the final result of our linkpl calculation. */
9404 cstate->off_linkpl.reg = alloc_reg(cstate);
9405 cstate->off_linkpl.is_variable = 1;
9406 cstate->off_linkpl.constant_part = 0;
9407
9408 s1 = new_stmt(cstate, BPF_STX);
9409 s1->s.k = cstate->off_linkpl.reg;
9410 sappend(s, s1);
9411 s_proto->s.jf = s1;
9412
9413 cstate->off_nl = 0;
9414
9415 return s;
9416 }
9417
9418 /* Check to see if this is a Geneve packet. */
9419 struct block *
9420 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9421 {
9422 struct block *b0, *b1;
9423 struct slist *s;
9424
9425 /*
9426 * Catch errors reported by us and routines below us, and return NULL
9427 * on an error.
9428 */
9429 if (setjmp(cstate->top_ctx))
9430 return (NULL);
9431
9432 b0 = gen_geneve4(cstate, vni, has_vni);
9433 b1 = gen_geneve6(cstate, vni, has_vni);
9434
9435 gen_or(b0, b1);
9436 b0 = b1;
9437
9438 /* Later filters should act on the payload of the Geneve frame,
9439 * update all of the header pointers. Attach this code so that
9440 * it gets executed in the event that the Geneve filter matches. */
9441 s = gen_geneve_offsets(cstate);
9442
9443 b1 = gen_true(cstate);
9444 sappend(s, b1->stmts);
9445 b1->stmts = s;
9446
9447 gen_and(b0, b1);
9448
9449 cstate->is_geneve = 1;
9450
9451 return b1;
9452 }
9453
9454 /* Check that the encapsulated frame has a link layer header
9455 * for Ethernet filters. */
9456 static struct block *
9457 gen_geneve_ll_check(compiler_state_t *cstate)
9458 {
9459 struct block *b0;
9460 struct slist *s, *s1;
9461
9462 /* The easiest way to see if there is a link layer present
9463 * is to check if the link layer header and payload are not
9464 * the same. */
9465
9466 /* Geneve always generates pure variable offsets so we can
9467 * compare only the registers. */
9468 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9469 s->s.k = cstate->off_linkhdr.reg;
9470
9471 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9472 s1->s.k = cstate->off_linkpl.reg;
9473 sappend(s, s1);
9474
9475 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9476 b0->stmts = s;
9477 b0->s.k = 0;
9478 gen_not(b0);
9479
9480 return b0;
9481 }
9482
9483 static struct block *
9484 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9485 bpf_u_int32 jvalue, int jtype, int reverse)
9486 {
9487 struct block *b0;
9488
9489 switch (atmfield) {
9490
9491 case A_VPI:
9492 if (!cstate->is_atm)
9493 bpf_error(cstate, "'vpi' supported only on raw ATM");
9494 if (cstate->off_vpi == OFFSET_NOT_SET)
9495 abort();
9496 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9497 0xffffffffU, jtype, reverse, jvalue);
9498 break;
9499
9500 case A_VCI:
9501 if (!cstate->is_atm)
9502 bpf_error(cstate, "'vci' supported only on raw ATM");
9503 if (cstate->off_vci == OFFSET_NOT_SET)
9504 abort();
9505 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9506 0xffffffffU, jtype, reverse, jvalue);
9507 break;
9508
9509 case A_PROTOTYPE:
9510 if (cstate->off_proto == OFFSET_NOT_SET)
9511 abort(); /* XXX - this isn't on FreeBSD */
9512 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9513 0x0fU, jtype, reverse, jvalue);
9514 break;
9515
9516 case A_MSGTYPE:
9517 if (cstate->off_payload == OFFSET_NOT_SET)
9518 abort();
9519 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9520 0xffffffffU, jtype, reverse, jvalue);
9521 break;
9522
9523 case A_CALLREFTYPE:
9524 if (!cstate->is_atm)
9525 bpf_error(cstate, "'callref' supported only on raw ATM");
9526 if (cstate->off_proto == OFFSET_NOT_SET)
9527 abort();
9528 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9529 0xffffffffU, jtype, reverse, jvalue);
9530 break;
9531
9532 default:
9533 abort();
9534 }
9535 return b0;
9536 }
9537
9538 static struct block *
9539 gen_atmtype_metac(compiler_state_t *cstate)
9540 {
9541 struct block *b0, *b1;
9542
9543 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9544 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9545 gen_and(b0, b1);
9546 return b1;
9547 }
9548
9549 static struct block *
9550 gen_atmtype_sc(compiler_state_t *cstate)
9551 {
9552 struct block *b0, *b1;
9553
9554 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9555 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9556 gen_and(b0, b1);
9557 return b1;
9558 }
9559
9560 static struct block *
9561 gen_atmtype_llc(compiler_state_t *cstate)
9562 {
9563 struct block *b0;
9564
9565 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9566 cstate->linktype = cstate->prevlinktype;
9567 return b0;
9568 }
9569
9570 struct block *
9571 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9572 bpf_u_int32 jvalue, int jtype, int reverse)
9573 {
9574 /*
9575 * Catch errors reported by us and routines below us, and return NULL
9576 * on an error.
9577 */
9578 if (setjmp(cstate->top_ctx))
9579 return (NULL);
9580
9581 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9582 reverse);
9583 }
9584
9585 struct block *
9586 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9587 {
9588 struct block *b0, *b1;
9589
9590 /*
9591 * Catch errors reported by us and routines below us, and return NULL
9592 * on an error.
9593 */
9594 if (setjmp(cstate->top_ctx))
9595 return (NULL);
9596
9597 switch (type) {
9598
9599 case A_METAC:
9600 /* Get all packets in Meta signalling Circuit */
9601 if (!cstate->is_atm)
9602 bpf_error(cstate, "'metac' supported only on raw ATM");
9603 b1 = gen_atmtype_metac(cstate);
9604 break;
9605
9606 case A_BCC:
9607 /* Get all packets in Broadcast Circuit*/
9608 if (!cstate->is_atm)
9609 bpf_error(cstate, "'bcc' supported only on raw ATM");
9610 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9611 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9612 gen_and(b0, b1);
9613 break;
9614
9615 case A_OAMF4SC:
9616 /* Get all cells in Segment OAM F4 circuit*/
9617 if (!cstate->is_atm)
9618 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9619 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9620 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9621 gen_and(b0, b1);
9622 break;
9623
9624 case A_OAMF4EC:
9625 /* Get all cells in End-to-End OAM F4 Circuit*/
9626 if (!cstate->is_atm)
9627 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9628 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9629 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9630 gen_and(b0, b1);
9631 break;
9632
9633 case A_SC:
9634 /* Get all packets in connection Signalling Circuit */
9635 if (!cstate->is_atm)
9636 bpf_error(cstate, "'sc' supported only on raw ATM");
9637 b1 = gen_atmtype_sc(cstate);
9638 break;
9639
9640 case A_ILMIC:
9641 /* Get all packets in ILMI Circuit */
9642 if (!cstate->is_atm)
9643 bpf_error(cstate, "'ilmic' supported only on raw ATM");
9644 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9645 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9646 gen_and(b0, b1);
9647 break;
9648
9649 case A_LANE:
9650 /* Get all LANE packets */
9651 if (!cstate->is_atm)
9652 bpf_error(cstate, "'lane' supported only on raw ATM");
9653 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9654
9655 /*
9656 * Arrange that all subsequent tests assume LANE
9657 * rather than LLC-encapsulated packets, and set
9658 * the offsets appropriately for LANE-encapsulated
9659 * Ethernet.
9660 *
9661 * We assume LANE means Ethernet, not Token Ring.
9662 */
9663 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9664 cstate->off_payload + 2, /* Ethernet header */
9665 -1);
9666 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9667 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9668 cstate->off_nl = 0; /* Ethernet II */
9669 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9670 break;
9671
9672 case A_LLC:
9673 /* Get all LLC-encapsulated packets */
9674 if (!cstate->is_atm)
9675 bpf_error(cstate, "'llc' supported only on raw ATM");
9676 b1 = gen_atmtype_llc(cstate);
9677 break;
9678
9679 default:
9680 abort();
9681 }
9682 return b1;
9683 }
9684
9685 /*
9686 * Filtering for MTP2 messages based on li value
9687 * FISU, length is null
9688 * LSSU, length is 1 or 2
9689 * MSU, length is 3 or more
9690 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9691 */
9692 struct block *
9693 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9694 {
9695 struct block *b0, *b1;
9696
9697 /*
9698 * Catch errors reported by us and routines below us, and return NULL
9699 * on an error.
9700 */
9701 if (setjmp(cstate->top_ctx))
9702 return (NULL);
9703
9704 switch (type) {
9705
9706 case M_FISU:
9707 if ( (cstate->linktype != DLT_MTP2) &&
9708 (cstate->linktype != DLT_ERF) &&
9709 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9710 bpf_error(cstate, "'fisu' supported only on MTP2");
9711 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9712 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9713 0x3fU, BPF_JEQ, 0, 0U);
9714 break;
9715
9716 case M_LSSU:
9717 if ( (cstate->linktype != DLT_MTP2) &&
9718 (cstate->linktype != DLT_ERF) &&
9719 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9720 bpf_error(cstate, "'lssu' supported only on MTP2");
9721 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9722 0x3fU, BPF_JGT, 1, 2U);
9723 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9724 0x3fU, BPF_JGT, 0, 0U);
9725 gen_and(b1, b0);
9726 break;
9727
9728 case M_MSU:
9729 if ( (cstate->linktype != DLT_MTP2) &&
9730 (cstate->linktype != DLT_ERF) &&
9731 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9732 bpf_error(cstate, "'msu' supported only on MTP2");
9733 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9734 0x3fU, BPF_JGT, 0, 2U);
9735 break;
9736
9737 case MH_FISU:
9738 if ( (cstate->linktype != DLT_MTP2) &&
9739 (cstate->linktype != DLT_ERF) &&
9740 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9741 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9742 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9743 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9744 0xff80U, BPF_JEQ, 0, 0U);
9745 break;
9746
9747 case MH_LSSU:
9748 if ( (cstate->linktype != DLT_MTP2) &&
9749 (cstate->linktype != DLT_ERF) &&
9750 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9751 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9752 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9753 0xff80U, BPF_JGT, 1, 0x0100U);
9754 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9755 0xff80U, BPF_JGT, 0, 0U);
9756 gen_and(b1, b0);
9757 break;
9758
9759 case MH_MSU:
9760 if ( (cstate->linktype != DLT_MTP2) &&
9761 (cstate->linktype != DLT_ERF) &&
9762 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9763 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9764 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
9765 0xff80U, BPF_JGT, 0, 0x0100U);
9766 break;
9767
9768 default:
9769 abort();
9770 }
9771 return b0;
9772 }
9773
9774 /*
9775 * The jvalue_arg dance is to avoid annoying whining by compilers that
9776 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9777 * It's not *used* after setjmp returns.
9778 */
9779 struct block *
9780 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9781 bpf_u_int32 jvalue_arg, int jtype, int reverse)
9782 {
9783 volatile bpf_u_int32 jvalue = jvalue_arg;
9784 struct block *b0;
9785 bpf_u_int32 val1 , val2 , val3;
9786 u_int newoff_sio;
9787 u_int newoff_opc;
9788 u_int newoff_dpc;
9789 u_int newoff_sls;
9790
9791 /*
9792 * Catch errors reported by us and routines below us, and return NULL
9793 * on an error.
9794 */
9795 if (setjmp(cstate->top_ctx))
9796 return (NULL);
9797
9798 newoff_sio = cstate->off_sio;
9799 newoff_opc = cstate->off_opc;
9800 newoff_dpc = cstate->off_dpc;
9801 newoff_sls = cstate->off_sls;
9802 switch (mtp3field) {
9803
9804 case MH_SIO:
9805 newoff_sio += 3; /* offset for MTP2_HSL */
9806 /* FALLTHROUGH */
9807
9808 case M_SIO:
9809 if (cstate->off_sio == OFFSET_NOT_SET)
9810 bpf_error(cstate, "'sio' supported only on SS7");
9811 /* sio coded on 1 byte so max value 255 */
9812 if(jvalue > 255)
9813 bpf_error(cstate, "sio value %u too big; max value = 255",
9814 jvalue);
9815 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
9816 jtype, reverse, jvalue);
9817 break;
9818
9819 case MH_OPC:
9820 newoff_opc += 3;
9821
9822 /* FALLTHROUGH */
9823 case M_OPC:
9824 if (cstate->off_opc == OFFSET_NOT_SET)
9825 bpf_error(cstate, "'opc' supported only on SS7");
9826 /* opc coded on 14 bits so max value 16383 */
9827 if (jvalue > 16383)
9828 bpf_error(cstate, "opc value %u too big; max value = 16383",
9829 jvalue);
9830 /* the following instructions are made to convert jvalue
9831 * to the form used to write opc in an ss7 message*/
9832 val1 = jvalue & 0x00003c00;
9833 val1 = val1 >>10;
9834 val2 = jvalue & 0x000003fc;
9835 val2 = val2 <<6;
9836 val3 = jvalue & 0x00000003;
9837 val3 = val3 <<22;
9838 jvalue = val1 + val2 + val3;
9839 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
9840 jtype, reverse, jvalue);
9841 break;
9842
9843 case MH_DPC:
9844 newoff_dpc += 3;
9845 /* FALLTHROUGH */
9846
9847 case M_DPC:
9848 if (cstate->off_dpc == OFFSET_NOT_SET)
9849 bpf_error(cstate, "'dpc' supported only on SS7");
9850 /* dpc coded on 14 bits so max value 16383 */
9851 if (jvalue > 16383)
9852 bpf_error(cstate, "dpc value %u too big; max value = 16383",
9853 jvalue);
9854 /* the following instructions are made to convert jvalue
9855 * to the forme used to write dpc in an ss7 message*/
9856 val1 = jvalue & 0x000000ff;
9857 val1 = val1 << 24;
9858 val2 = jvalue & 0x00003f00;
9859 val2 = val2 << 8;
9860 jvalue = val1 + val2;
9861 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
9862 jtype, reverse, jvalue);
9863 break;
9864
9865 case MH_SLS:
9866 newoff_sls += 3;
9867 /* FALLTHROUGH */
9868
9869 case M_SLS:
9870 if (cstate->off_sls == OFFSET_NOT_SET)
9871 bpf_error(cstate, "'sls' supported only on SS7");
9872 /* sls coded on 4 bits so max value 15 */
9873 if (jvalue > 15)
9874 bpf_error(cstate, "sls value %u too big; max value = 15",
9875 jvalue);
9876 /* the following instruction is made to convert jvalue
9877 * to the forme used to write sls in an ss7 message*/
9878 jvalue = jvalue << 4;
9879 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
9880 jtype, reverse, jvalue);
9881 break;
9882
9883 default:
9884 abort();
9885 }
9886 return b0;
9887 }
9888
9889 static struct block *
9890 gen_msg_abbrev(compiler_state_t *cstate, int type)
9891 {
9892 struct block *b1;
9893
9894 /*
9895 * Q.2931 signalling protocol messages for handling virtual circuits
9896 * establishment and teardown
9897 */
9898 switch (type) {
9899
9900 case A_SETUP:
9901 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9902 break;
9903
9904 case A_CALLPROCEED:
9905 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9906 break;
9907
9908 case A_CONNECT:
9909 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9910 break;
9911
9912 case A_CONNECTACK:
9913 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9914 break;
9915
9916 case A_RELEASE:
9917 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9918 break;
9919
9920 case A_RELEASE_DONE:
9921 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9922 break;
9923
9924 default:
9925 abort();
9926 }
9927 return b1;
9928 }
9929
9930 struct block *
9931 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9932 {
9933 struct block *b0, *b1;
9934
9935 /*
9936 * Catch errors reported by us and routines below us, and return NULL
9937 * on an error.
9938 */
9939 if (setjmp(cstate->top_ctx))
9940 return (NULL);
9941
9942 switch (type) {
9943
9944 case A_OAM:
9945 if (!cstate->is_atm)
9946 bpf_error(cstate, "'oam' supported only on raw ATM");
9947 /* OAM F4 type */
9948 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9949 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9950 gen_or(b0, b1);
9951 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9952 gen_and(b0, b1);
9953 break;
9954
9955 case A_OAMF4:
9956 if (!cstate->is_atm)
9957 bpf_error(cstate, "'oamf4' supported only on raw ATM");
9958 /* OAM F4 type */
9959 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9960 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9961 gen_or(b0, b1);
9962 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9963 gen_and(b0, b1);
9964 break;
9965
9966 case A_CONNECTMSG:
9967 /*
9968 * Get Q.2931 signalling messages for switched
9969 * virtual connection
9970 */
9971 if (!cstate->is_atm)
9972 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9973 b0 = gen_msg_abbrev(cstate, A_SETUP);
9974 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9975 gen_or(b0, b1);
9976 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9977 gen_or(b0, b1);
9978 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9979 gen_or(b0, b1);
9980 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9981 gen_or(b0, b1);
9982 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9983 gen_or(b0, b1);
9984 b0 = gen_atmtype_sc(cstate);
9985 gen_and(b0, b1);
9986 break;
9987
9988 case A_METACONNECT:
9989 if (!cstate->is_atm)
9990 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9991 b0 = gen_msg_abbrev(cstate, A_SETUP);
9992 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9993 gen_or(b0, b1);
9994 b0 = gen_msg_abbrev(cstate, A_CONNECT);
9995 gen_or(b0, b1);
9996 b0 = gen_msg_abbrev(cstate, A_RELEASE);
9997 gen_or(b0, b1);
9998 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9999 gen_or(b0, b1);
10000 b0 = gen_atmtype_metac(cstate);
10001 gen_and(b0, b1);
10002 break;
10003
10004 default:
10005 abort();
10006 }
10007 return b1;
10008 }