]> The Tcpdump Group git mirrors - libpcap/blob - gencode.c
Merge pull request #1209 from the-tcpdump-group/nuke-msdos
[libpcap] / gencode.c
1 /*
2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #ifdef _WIN32
27 #include <ws2tcpip.h>
28 #else
29 #include <sys/socket.h>
30
31 #ifdef __NetBSD__
32 #include <sys/param.h>
33 #endif
34
35 #include <netinet/in.h>
36 #include <arpa/inet.h>
37 #endif /* _WIN32 */
38
39 #include <stdlib.h>
40 #include <string.h>
41 #include <memory.h>
42 #include <setjmp.h>
43 #include <stdarg.h>
44 #include <stdio.h>
45
46 #include "pcap-int.h"
47
48 #include "extract.h"
49
50 #include "ethertype.h"
51 #include "nlpid.h"
52 #include "llc.h"
53 #include "gencode.h"
54 #include "ieee80211.h"
55 #include "atmuni31.h"
56 #include "sunatmpos.h"
57 #include "pflog.h"
58 #include "ppp.h"
59 #include "pcap/sll.h"
60 #include "pcap/ipnet.h"
61 #include "arcnet.h"
62 #include "diag-control.h"
63
64 #include "scanner.h"
65
66 #if defined(linux)
67 #include <linux/types.h>
68 #include <linux/if_packet.h>
69 #include <linux/filter.h>
70 #endif
71
72 #ifndef offsetof
73 #define offsetof(s, e) ((size_t)&((s *)0)->e)
74 #endif
75
76 #ifdef _WIN32
77 #ifdef INET6
78 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
79 /* IPv6 address */
80 struct in6_addr
81 {
82 union
83 {
84 uint8_t u6_addr8[16];
85 uint16_t u6_addr16[8];
86 uint32_t u6_addr32[4];
87 } in6_u;
88 #define s6_addr in6_u.u6_addr8
89 #define s6_addr16 in6_u.u6_addr16
90 #define s6_addr32 in6_u.u6_addr32
91 #define s6_addr64 in6_u.u6_addr64
92 };
93
94 typedef unsigned short sa_family_t;
95
96 #define __SOCKADDR_COMMON(sa_prefix) \
97 sa_family_t sa_prefix##family
98
99 /* Ditto, for IPv6. */
100 struct sockaddr_in6
101 {
102 __SOCKADDR_COMMON (sin6_);
103 uint16_t sin6_port; /* Transport layer port # */
104 uint32_t sin6_flowinfo; /* IPv6 flow information */
105 struct in6_addr sin6_addr; /* IPv6 address */
106 };
107
108 #ifndef EAI_ADDRFAMILY
109 struct addrinfo {
110 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
111 int ai_family; /* PF_xxx */
112 int ai_socktype; /* SOCK_xxx */
113 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
114 size_t ai_addrlen; /* length of ai_addr */
115 char *ai_canonname; /* canonical name for hostname */
116 struct sockaddr *ai_addr; /* binary address */
117 struct addrinfo *ai_next; /* next structure in linked list */
118 };
119 #endif /* EAI_ADDRFAMILY */
120 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
121 #endif /* INET6 */
122 #else /* _WIN32 */
123 #include <netdb.h> /* for "struct addrinfo" */
124 #endif /* _WIN32 */
125 #include <pcap/namedb.h>
126
127 #include "nametoaddr.h"
128
129 #define ETHERMTU 1500
130
131 #ifndef IPPROTO_HOPOPTS
132 #define IPPROTO_HOPOPTS 0
133 #endif
134 #ifndef IPPROTO_ROUTING
135 #define IPPROTO_ROUTING 43
136 #endif
137 #ifndef IPPROTO_FRAGMENT
138 #define IPPROTO_FRAGMENT 44
139 #endif
140 #ifndef IPPROTO_DSTOPTS
141 #define IPPROTO_DSTOPTS 60
142 #endif
143 #ifndef IPPROTO_SCTP
144 #define IPPROTO_SCTP 132
145 #endif
146
147 #define GENEVE_PORT 6081
148
149 #ifdef HAVE_OS_PROTO_H
150 #include "os-proto.h"
151 #endif
152
153 #define JMP(c) ((c)|BPF_JMP|BPF_K)
154
155 /*
156 * "Push" the current value of the link-layer header type and link-layer
157 * header offset onto a "stack", and set a new value. (It's not a
158 * full-blown stack; we keep only the top two items.)
159 */
160 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
161 { \
162 (cs)->prevlinktype = (cs)->linktype; \
163 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
164 (cs)->linktype = (new_linktype); \
165 (cs)->off_linkhdr.is_variable = (new_is_variable); \
166 (cs)->off_linkhdr.constant_part = (new_constant_part); \
167 (cs)->off_linkhdr.reg = (new_reg); \
168 (cs)->is_geneve = 0; \
169 }
170
171 /*
172 * Offset "not set" value.
173 */
174 #define OFFSET_NOT_SET 0xffffffffU
175
176 /*
177 * Absolute offsets, which are offsets from the beginning of the raw
178 * packet data, are, in the general case, the sum of a variable value
179 * and a constant value; the variable value may be absent, in which
180 * case the offset is only the constant value, and the constant value
181 * may be zero, in which case the offset is only the variable value.
182 *
183 * bpf_abs_offset is a structure containing all that information:
184 *
185 * is_variable is 1 if there's a variable part.
186 *
187 * constant_part is the constant part of the value, possibly zero;
188 *
189 * if is_variable is 1, reg is the register number for a register
190 * containing the variable value if the register has been assigned,
191 * and -1 otherwise.
192 */
193 typedef struct {
194 int is_variable;
195 u_int constant_part;
196 int reg;
197 } bpf_abs_offset;
198
199 /*
200 * Value passed to gen_load_a() to indicate what the offset argument
201 * is relative to the beginning of.
202 */
203 enum e_offrel {
204 OR_PACKET, /* full packet data */
205 OR_LINKHDR, /* link-layer header */
206 OR_PREVLINKHDR, /* previous link-layer header */
207 OR_LLC, /* 802.2 LLC header */
208 OR_PREVMPLSHDR, /* previous MPLS header */
209 OR_LINKTYPE, /* link-layer type */
210 OR_LINKPL, /* link-layer payload */
211 OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */
212 OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */
213 OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */
214 };
215
216 /*
217 * We divvy out chunks of memory rather than call malloc each time so
218 * we don't have to worry about leaking memory. It's probably
219 * not a big deal if all this memory was wasted but if this ever
220 * goes into a library that would probably not be a good idea.
221 *
222 * XXX - this *is* in a library....
223 */
224 #define NCHUNKS 16
225 #define CHUNK0SIZE 1024
226 struct chunk {
227 size_t n_left;
228 void *m;
229 };
230
231 /*
232 * A chunk can store any of:
233 * - a string (guaranteed alignment 1 but present for completeness)
234 * - a block
235 * - an slist
236 * - an arth
237 * For this simple allocator every allocated chunk gets rounded up to the
238 * alignment needed for any chunk.
239 */
240 struct chunk_align {
241 char dummy;
242 union {
243 char c;
244 struct block b;
245 struct slist s;
246 struct arth a;
247 } u;
248 };
249 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
250
251 /* Code generator state */
252
253 struct _compiler_state {
254 jmp_buf top_ctx;
255 pcap_t *bpf_pcap;
256 int error_set;
257
258 struct icode ic;
259
260 int snaplen;
261
262 int linktype;
263 int prevlinktype;
264 int outermostlinktype;
265
266 bpf_u_int32 netmask;
267 int no_optimize;
268
269 /* Hack for handling VLAN and MPLS stacks. */
270 u_int label_stack_depth;
271 u_int vlan_stack_depth;
272
273 /* XXX */
274 u_int pcap_fddipad;
275
276 /*
277 * As errors are handled by a longjmp, anything allocated must
278 * be freed in the longjmp handler, so it must be reachable
279 * from that handler.
280 *
281 * One thing that's allocated is the result of pcap_nametoaddrinfo();
282 * it must be freed with freeaddrinfo(). This variable points to
283 * any addrinfo structure that would need to be freed.
284 */
285 struct addrinfo *ai;
286
287 /*
288 * Another thing that's allocated is the result of pcap_ether_aton();
289 * it must be freed with free(). This variable points to any
290 * address that would need to be freed.
291 */
292 u_char *e;
293
294 /*
295 * Various code constructs need to know the layout of the packet.
296 * These values give the necessary offsets from the beginning
297 * of the packet data.
298 */
299
300 /*
301 * Absolute offset of the beginning of the link-layer header.
302 */
303 bpf_abs_offset off_linkhdr;
304
305 /*
306 * If we're checking a link-layer header for a packet encapsulated
307 * in another protocol layer, this is the equivalent information
308 * for the previous layers' link-layer header from the beginning
309 * of the raw packet data.
310 */
311 bpf_abs_offset off_prevlinkhdr;
312
313 /*
314 * This is the equivalent information for the outermost layers'
315 * link-layer header.
316 */
317 bpf_abs_offset off_outermostlinkhdr;
318
319 /*
320 * Absolute offset of the beginning of the link-layer payload.
321 */
322 bpf_abs_offset off_linkpl;
323
324 /*
325 * "off_linktype" is the offset to information in the link-layer
326 * header giving the packet type. This is an absolute offset
327 * from the beginning of the packet.
328 *
329 * For Ethernet, it's the offset of the Ethernet type field; this
330 * means that it must have a value that skips VLAN tags.
331 *
332 * For link-layer types that always use 802.2 headers, it's the
333 * offset of the LLC header; this means that it must have a value
334 * that skips VLAN tags.
335 *
336 * For PPP, it's the offset of the PPP type field.
337 *
338 * For Cisco HDLC, it's the offset of the CHDLC type field.
339 *
340 * For BSD loopback, it's the offset of the AF_ value.
341 *
342 * For Linux cooked sockets, it's the offset of the type field.
343 *
344 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
345 * encapsulation, in which case, IP is assumed.
346 */
347 bpf_abs_offset off_linktype;
348
349 /*
350 * TRUE if the link layer includes an ATM pseudo-header.
351 */
352 int is_atm;
353
354 /*
355 * TRUE if "geneve" appeared in the filter; it causes us to
356 * generate code that checks for a Geneve header and assume
357 * that later filters apply to the encapsulated payload.
358 */
359 int is_geneve;
360
361 /*
362 * TRUE if we need variable length part of VLAN offset
363 */
364 int is_vlan_vloffset;
365
366 /*
367 * These are offsets for the ATM pseudo-header.
368 */
369 u_int off_vpi;
370 u_int off_vci;
371 u_int off_proto;
372
373 /*
374 * These are offsets for the MTP2 fields.
375 */
376 u_int off_li;
377 u_int off_li_hsl;
378
379 /*
380 * These are offsets for the MTP3 fields.
381 */
382 u_int off_sio;
383 u_int off_opc;
384 u_int off_dpc;
385 u_int off_sls;
386
387 /*
388 * This is the offset of the first byte after the ATM pseudo_header,
389 * or -1 if there is no ATM pseudo-header.
390 */
391 u_int off_payload;
392
393 /*
394 * These are offsets to the beginning of the network-layer header.
395 * They are relative to the beginning of the link-layer payload
396 * (i.e., they don't include off_linkhdr.constant_part or
397 * off_linkpl.constant_part).
398 *
399 * If the link layer never uses 802.2 LLC:
400 *
401 * "off_nl" and "off_nl_nosnap" are the same.
402 *
403 * If the link layer always uses 802.2 LLC:
404 *
405 * "off_nl" is the offset if there's a SNAP header following
406 * the 802.2 header;
407 *
408 * "off_nl_nosnap" is the offset if there's no SNAP header.
409 *
410 * If the link layer is Ethernet:
411 *
412 * "off_nl" is the offset if the packet is an Ethernet II packet
413 * (we assume no 802.3+802.2+SNAP);
414 *
415 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
416 * with an 802.2 header following it.
417 */
418 u_int off_nl;
419 u_int off_nl_nosnap;
420
421 /*
422 * Here we handle simple allocation of the scratch registers.
423 * If too many registers are alloc'd, the allocator punts.
424 */
425 int regused[BPF_MEMWORDS];
426 int curreg;
427
428 /*
429 * Memory chunks.
430 */
431 struct chunk chunks[NCHUNKS];
432 int cur_chunk;
433 };
434
435 /*
436 * For use by routines outside this file.
437 */
438 /* VARARGS */
439 void
440 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
441 {
442 va_list ap;
443
444 /*
445 * If we've already set an error, don't override it.
446 * The lexical analyzer reports some errors by setting
447 * the error and then returning a LEX_ERROR token, which
448 * is not recognized by any grammar rule, and thus forces
449 * the parse to stop. We don't want the error reported
450 * by the lexical analyzer to be overwritten by the syntax
451 * error.
452 */
453 if (!cstate->error_set) {
454 va_start(ap, fmt);
455 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
456 fmt, ap);
457 va_end(ap);
458 cstate->error_set = 1;
459 }
460 }
461
462 /*
463 * For use *ONLY* in routines in this file.
464 */
465 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
466 PCAP_PRINTFLIKE(2, 3);
467
468 /* VARARGS */
469 static void PCAP_NORETURN
470 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
471 {
472 va_list ap;
473
474 va_start(ap, fmt);
475 (void)vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
476 fmt, ap);
477 va_end(ap);
478 longjmp(cstate->top_ctx, 1);
479 /*NOTREACHED*/
480 #ifdef _AIX
481 PCAP_UNREACHABLE
482 #endif /* _AIX */
483 }
484
485 static int init_linktype(compiler_state_t *, pcap_t *);
486
487 static void init_regs(compiler_state_t *);
488 static int alloc_reg(compiler_state_t *);
489 static void free_reg(compiler_state_t *, int);
490
491 static void initchunks(compiler_state_t *cstate);
492 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
493 static void *newchunk(compiler_state_t *cstate, size_t);
494 static void freechunks(compiler_state_t *cstate);
495 static inline struct block *new_block(compiler_state_t *cstate, int);
496 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
497 static struct block *gen_retblk(compiler_state_t *cstate, int);
498 static inline void syntax(compiler_state_t *cstate);
499
500 static void backpatch(struct block *, struct block *);
501 static void merge(struct block *, struct block *);
502 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
503 u_int, bpf_u_int32);
504 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
505 u_int, bpf_u_int32);
506 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
507 u_int, bpf_u_int32);
508 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
509 u_int, bpf_u_int32);
510 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
511 u_int, bpf_u_int32);
512 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
513 u_int, bpf_u_int32, bpf_u_int32);
514 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
515 u_int, const u_char *);
516 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, u_int,
517 u_int, bpf_u_int32, int, int, bpf_u_int32);
518 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
519 u_int, u_int);
520 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
521 u_int);
522 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
523 static struct block *gen_uncond(compiler_state_t *, int);
524 static inline struct block *gen_true(compiler_state_t *);
525 static inline struct block *gen_false(compiler_state_t *);
526 static struct block *gen_ether_linktype(compiler_state_t *, bpf_u_int32);
527 static struct block *gen_ipnet_linktype(compiler_state_t *, bpf_u_int32);
528 static struct block *gen_linux_sll_linktype(compiler_state_t *, bpf_u_int32);
529 static struct slist *gen_load_pflog_llprefixlen(compiler_state_t *);
530 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
531 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
532 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
533 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
534 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
535 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
536 bpf_abs_offset *);
537 static bpf_u_int32 ethertype_to_ppptype(bpf_u_int32);
538 static struct block *gen_linktype(compiler_state_t *, bpf_u_int32);
539 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
540 static struct block *gen_llc_linktype(compiler_state_t *, bpf_u_int32);
541 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
542 int, bpf_u_int32, u_int, u_int);
543 #ifdef INET6
544 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
545 struct in6_addr *, int, bpf_u_int32, u_int, u_int);
546 #endif
547 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
548 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
549 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
550 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
551 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
552 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
553 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
554 static struct block *gen_mpls_linktype(compiler_state_t *, bpf_u_int32);
555 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
556 int, int, int);
557 #ifdef INET6
558 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
559 struct in6_addr *, int, int, int);
560 #endif
561 #ifndef INET6
562 static struct block *gen_gateway(compiler_state_t *, const u_char *,
563 struct addrinfo *, int, int);
564 #endif
565 static struct block *gen_ipfrag(compiler_state_t *);
566 static struct block *gen_portatom(compiler_state_t *, int, bpf_u_int32);
567 static struct block *gen_portrangeatom(compiler_state_t *, u_int, bpf_u_int32,
568 bpf_u_int32);
569 static struct block *gen_portatom6(compiler_state_t *, int, bpf_u_int32);
570 static struct block *gen_portrangeatom6(compiler_state_t *, u_int, bpf_u_int32,
571 bpf_u_int32);
572 static struct block *gen_portop(compiler_state_t *, u_int, u_int, int);
573 static struct block *gen_port(compiler_state_t *, u_int, int, int);
574 static struct block *gen_portrangeop(compiler_state_t *, u_int, u_int,
575 bpf_u_int32, int);
576 static struct block *gen_portrange(compiler_state_t *, u_int, u_int, int, int);
577 struct block *gen_portop6(compiler_state_t *, u_int, u_int, int);
578 static struct block *gen_port6(compiler_state_t *, u_int, int, int);
579 static struct block *gen_portrangeop6(compiler_state_t *, u_int, u_int,
580 bpf_u_int32, int);
581 static struct block *gen_portrange6(compiler_state_t *, u_int, u_int, int, int);
582 static int lookup_proto(compiler_state_t *, const char *, int);
583 #if !defined(NO_PROTOCHAIN)
584 static struct block *gen_protochain(compiler_state_t *, bpf_u_int32, int);
585 #endif /* !defined(NO_PROTOCHAIN) */
586 static struct block *gen_proto(compiler_state_t *, bpf_u_int32, int, int);
587 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
588 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
589 static struct block *gen_mac_multicast(compiler_state_t *, int);
590 static struct block *gen_len(compiler_state_t *, int, int);
591 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
592 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
593
594 static struct block *gen_ppi_dlt_check(compiler_state_t *);
595 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
596 bpf_u_int32, int, int);
597 static struct block *gen_atmtype_llc(compiler_state_t *);
598 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
599
600 static void
601 initchunks(compiler_state_t *cstate)
602 {
603 int i;
604
605 for (i = 0; i < NCHUNKS; i++) {
606 cstate->chunks[i].n_left = 0;
607 cstate->chunks[i].m = NULL;
608 }
609 cstate->cur_chunk = 0;
610 }
611
612 static void *
613 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
614 {
615 struct chunk *cp;
616 int k;
617 size_t size;
618
619 /* Round up to chunk alignment. */
620 n = (n + CHUNK_ALIGN - 1) & ~(CHUNK_ALIGN - 1);
621
622 cp = &cstate->chunks[cstate->cur_chunk];
623 if (n > cp->n_left) {
624 ++cp;
625 k = ++cstate->cur_chunk;
626 if (k >= NCHUNKS) {
627 bpf_set_error(cstate, "out of memory");
628 return (NULL);
629 }
630 size = CHUNK0SIZE << k;
631 cp->m = (void *)malloc(size);
632 if (cp->m == NULL) {
633 bpf_set_error(cstate, "out of memory");
634 return (NULL);
635 }
636 memset((char *)cp->m, 0, size);
637 cp->n_left = size;
638 if (n > size) {
639 bpf_set_error(cstate, "out of memory");
640 return (NULL);
641 }
642 }
643 cp->n_left -= n;
644 return (void *)((char *)cp->m + cp->n_left);
645 }
646
647 static void *
648 newchunk(compiler_state_t *cstate, size_t n)
649 {
650 void *p;
651
652 p = newchunk_nolongjmp(cstate, n);
653 if (p == NULL) {
654 longjmp(cstate->top_ctx, 1);
655 /*NOTREACHED*/
656 }
657 return (p);
658 }
659
660 static void
661 freechunks(compiler_state_t *cstate)
662 {
663 int i;
664
665 for (i = 0; i < NCHUNKS; ++i)
666 if (cstate->chunks[i].m != NULL)
667 free(cstate->chunks[i].m);
668 }
669
670 /*
671 * A strdup whose allocations are freed after code generation is over.
672 * This is used by the lexical analyzer, so it can't longjmp; it just
673 * returns NULL on an allocation error, and the callers must check
674 * for it.
675 */
676 char *
677 sdup(compiler_state_t *cstate, const char *s)
678 {
679 size_t n = strlen(s) + 1;
680 char *cp = newchunk_nolongjmp(cstate, n);
681
682 if (cp == NULL)
683 return (NULL);
684 pcap_strlcpy(cp, s, n);
685 return (cp);
686 }
687
688 static inline struct block *
689 new_block(compiler_state_t *cstate, int code)
690 {
691 struct block *p;
692
693 p = (struct block *)newchunk(cstate, sizeof(*p));
694 p->s.code = code;
695 p->head = p;
696
697 return p;
698 }
699
700 static inline struct slist *
701 new_stmt(compiler_state_t *cstate, int code)
702 {
703 struct slist *p;
704
705 p = (struct slist *)newchunk(cstate, sizeof(*p));
706 p->s.code = code;
707
708 return p;
709 }
710
711 static struct block *
712 gen_retblk(compiler_state_t *cstate, int v)
713 {
714 struct block *b = new_block(cstate, BPF_RET|BPF_K);
715
716 b->s.k = v;
717 return b;
718 }
719
720 static inline PCAP_NORETURN_DEF void
721 syntax(compiler_state_t *cstate)
722 {
723 bpf_error(cstate, "syntax error in filter expression");
724 }
725
726 int
727 pcap_compile(pcap_t *p, struct bpf_program *program,
728 const char *buf, int optimize, bpf_u_int32 mask)
729 {
730 #ifdef _WIN32
731 static int done = 0;
732 #endif
733 compiler_state_t cstate;
734 const char * volatile xbuf = buf;
735 yyscan_t scanner = NULL;
736 volatile YY_BUFFER_STATE in_buffer = NULL;
737 u_int len;
738 int rc;
739
740 /*
741 * If this pcap_t hasn't been activated, it doesn't have a
742 * link-layer type, so we can't use it.
743 */
744 if (!p->activated) {
745 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
746 "not-yet-activated pcap_t passed to pcap_compile");
747 return (PCAP_ERROR);
748 }
749
750 #ifdef _WIN32
751 if (!done) {
752 pcap_wsockinit();
753 done = 1;
754 }
755 #endif
756
757 #ifdef ENABLE_REMOTE
758 /*
759 * If the device on which we're capturing need to be notified
760 * that a new filter is being compiled, do so.
761 *
762 * This allows them to save a copy of it, in case, for example,
763 * they're implementing a form of remote packet capture, and
764 * want the remote machine to filter out the packets in which
765 * it's sending the packets it's captured.
766 *
767 * XXX - the fact that we happen to be compiling a filter
768 * doesn't necessarily mean we'll be installing it as the
769 * filter for this pcap_t; we might be running it from userland
770 * on captured packets to do packet classification. We really
771 * need a better way of handling this, but this is all that
772 * the WinPcap remote capture code did.
773 */
774 if (p->save_current_filter_op != NULL)
775 (p->save_current_filter_op)(p, buf);
776 #endif
777
778 initchunks(&cstate);
779 cstate.no_optimize = 0;
780 #ifdef INET6
781 cstate.ai = NULL;
782 #endif
783 cstate.e = NULL;
784 cstate.ic.root = NULL;
785 cstate.ic.cur_mark = 0;
786 cstate.bpf_pcap = p;
787 cstate.error_set = 0;
788 init_regs(&cstate);
789
790 cstate.netmask = mask;
791
792 cstate.snaplen = pcap_snapshot(p);
793 if (cstate.snaplen == 0) {
794 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
795 "snaplen of 0 rejects all packets");
796 rc = PCAP_ERROR;
797 goto quit;
798 }
799
800 if (pcap_lex_init(&scanner) != 0) {
801 pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
802 errno, "can't initialize scanner");
803 rc = PCAP_ERROR;
804 goto quit;
805 }
806 in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
807
808 /*
809 * Associate the compiler state with the lexical analyzer
810 * state.
811 */
812 pcap_set_extra(&cstate, scanner);
813
814 if (init_linktype(&cstate, p) == -1) {
815 rc = PCAP_ERROR;
816 goto quit;
817 }
818 if (pcap_parse(scanner, &cstate) != 0) {
819 #ifdef INET6
820 if (cstate.ai != NULL)
821 freeaddrinfo(cstate.ai);
822 #endif
823 if (cstate.e != NULL)
824 free(cstate.e);
825 rc = PCAP_ERROR;
826 goto quit;
827 }
828
829 if (cstate.ic.root == NULL) {
830 /*
831 * Catch errors reported by gen_retblk().
832 */
833 if (setjmp(cstate.top_ctx)) {
834 rc = PCAP_ERROR;
835 goto quit;
836 }
837 cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
838 }
839
840 if (optimize && !cstate.no_optimize) {
841 if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
842 /* Failure */
843 rc = PCAP_ERROR;
844 goto quit;
845 }
846 if (cstate.ic.root == NULL ||
847 (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
848 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
849 "expression rejects all packets");
850 rc = PCAP_ERROR;
851 goto quit;
852 }
853 }
854 program->bf_insns = icode_to_fcode(&cstate.ic,
855 cstate.ic.root, &len, p->errbuf);
856 if (program->bf_insns == NULL) {
857 /* Failure */
858 rc = PCAP_ERROR;
859 goto quit;
860 }
861 program->bf_len = len;
862
863 rc = 0; /* We're all okay */
864
865 quit:
866 /*
867 * Clean up everything for the lexical analyzer.
868 */
869 if (in_buffer != NULL)
870 pcap__delete_buffer(in_buffer, scanner);
871 if (scanner != NULL)
872 pcap_lex_destroy(scanner);
873
874 /*
875 * Clean up our own allocated memory.
876 */
877 freechunks(&cstate);
878
879 return (rc);
880 }
881
882 /*
883 * entry point for using the compiler with no pcap open
884 * pass in all the stuff that is needed explicitly instead.
885 */
886 int
887 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
888 struct bpf_program *program,
889 const char *buf, int optimize, bpf_u_int32 mask)
890 {
891 pcap_t *p;
892 int ret;
893
894 p = pcap_open_dead(linktype_arg, snaplen_arg);
895 if (p == NULL)
896 return (PCAP_ERROR);
897 ret = pcap_compile(p, program, buf, optimize, mask);
898 pcap_close(p);
899 return (ret);
900 }
901
902 /*
903 * Clean up a "struct bpf_program" by freeing all the memory allocated
904 * in it.
905 */
906 void
907 pcap_freecode(struct bpf_program *program)
908 {
909 program->bf_len = 0;
910 if (program->bf_insns != NULL) {
911 free((char *)program->bf_insns);
912 program->bf_insns = NULL;
913 }
914 }
915
916 /*
917 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
918 * which of the jt and jf fields has been resolved and which is a pointer
919 * back to another unresolved block (or nil). At least one of the fields
920 * in each block is already resolved.
921 */
922 static void
923 backpatch(struct block *list, struct block *target)
924 {
925 struct block *next;
926
927 while (list) {
928 if (!list->sense) {
929 next = JT(list);
930 JT(list) = target;
931 } else {
932 next = JF(list);
933 JF(list) = target;
934 }
935 list = next;
936 }
937 }
938
939 /*
940 * Merge the lists in b0 and b1, using the 'sense' field to indicate
941 * which of jt and jf is the link.
942 */
943 static void
944 merge(struct block *b0, struct block *b1)
945 {
946 register struct block **p = &b0;
947
948 /* Find end of list. */
949 while (*p)
950 p = !((*p)->sense) ? &JT(*p) : &JF(*p);
951
952 /* Concatenate the lists. */
953 *p = b1;
954 }
955
956 int
957 finish_parse(compiler_state_t *cstate, struct block *p)
958 {
959 struct block *ppi_dlt_check;
960
961 /*
962 * Catch errors reported by us and routines below us, and return -1
963 * on an error.
964 */
965 if (setjmp(cstate->top_ctx))
966 return (-1);
967
968 /*
969 * Insert before the statements of the first (root) block any
970 * statements needed to load the lengths of any variable-length
971 * headers into registers.
972 *
973 * XXX - a fancier strategy would be to insert those before the
974 * statements of all blocks that use those lengths and that
975 * have no predecessors that use them, so that we only compute
976 * the lengths if we need them. There might be even better
977 * approaches than that.
978 *
979 * However, those strategies would be more complicated, and
980 * as we don't generate code to compute a length if the
981 * program has no tests that use the length, and as most
982 * tests will probably use those lengths, we would just
983 * postpone computing the lengths so that it's not done
984 * for tests that fail early, and it's not clear that's
985 * worth the effort.
986 */
987 insert_compute_vloffsets(cstate, p->head);
988
989 /*
990 * For DLT_PPI captures, generate a check of the per-packet
991 * DLT value to make sure it's DLT_IEEE802_11.
992 *
993 * XXX - TurboCap cards use DLT_PPI for Ethernet.
994 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
995 * with appropriate Ethernet information and use that rather
996 * than using something such as DLT_PPI where you don't know
997 * the link-layer header type until runtime, which, in the
998 * general case, would force us to generate both Ethernet *and*
999 * 802.11 code (*and* anything else for which PPI is used)
1000 * and choose between them early in the BPF program?
1001 */
1002 ppi_dlt_check = gen_ppi_dlt_check(cstate);
1003 if (ppi_dlt_check != NULL)
1004 gen_and(ppi_dlt_check, p);
1005
1006 backpatch(p, gen_retblk(cstate, cstate->snaplen));
1007 p->sense = !p->sense;
1008 backpatch(p, gen_retblk(cstate, 0));
1009 cstate->ic.root = p->head;
1010 return (0);
1011 }
1012
1013 void
1014 gen_and(struct block *b0, struct block *b1)
1015 {
1016 backpatch(b0, b1->head);
1017 b0->sense = !b0->sense;
1018 b1->sense = !b1->sense;
1019 merge(b1, b0);
1020 b1->sense = !b1->sense;
1021 b1->head = b0->head;
1022 }
1023
1024 void
1025 gen_or(struct block *b0, struct block *b1)
1026 {
1027 b0->sense = !b0->sense;
1028 backpatch(b0, b1->head);
1029 b0->sense = !b0->sense;
1030 merge(b1, b0);
1031 b1->head = b0->head;
1032 }
1033
1034 void
1035 gen_not(struct block *b)
1036 {
1037 b->sense = !b->sense;
1038 }
1039
1040 static struct block *
1041 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1042 u_int size, bpf_u_int32 v)
1043 {
1044 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1045 }
1046
1047 static struct block *
1048 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1049 u_int size, bpf_u_int32 v)
1050 {
1051 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1052 }
1053
1054 static struct block *
1055 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1056 u_int size, bpf_u_int32 v)
1057 {
1058 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1059 }
1060
1061 static struct block *
1062 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1063 u_int size, bpf_u_int32 v)
1064 {
1065 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1066 }
1067
1068 static struct block *
1069 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1070 u_int size, bpf_u_int32 v)
1071 {
1072 return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1073 }
1074
1075 static struct block *
1076 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1077 u_int size, bpf_u_int32 v, bpf_u_int32 mask)
1078 {
1079 return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1080 }
1081
1082 static struct block *
1083 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1084 u_int size, const u_char *v)
1085 {
1086 register struct block *b, *tmp;
1087
1088 b = NULL;
1089 while (size >= 4) {
1090 register const u_char *p = &v[size - 4];
1091
1092 tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1093 EXTRACT_BE_U_4(p));
1094 if (b != NULL)
1095 gen_and(b, tmp);
1096 b = tmp;
1097 size -= 4;
1098 }
1099 while (size >= 2) {
1100 register const u_char *p = &v[size - 2];
1101
1102 tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1103 EXTRACT_BE_U_2(p));
1104 if (b != NULL)
1105 gen_and(b, tmp);
1106 b = tmp;
1107 size -= 2;
1108 }
1109 if (size > 0) {
1110 tmp = gen_cmp(cstate, offrel, offset, BPF_B, v[0]);
1111 if (b != NULL)
1112 gen_and(b, tmp);
1113 b = tmp;
1114 }
1115 return b;
1116 }
1117
1118 /*
1119 * AND the field of size "size" at offset "offset" relative to the header
1120 * specified by "offrel" with "mask", and compare it with the value "v"
1121 * with the test specified by "jtype"; if "reverse" is true, the test
1122 * should test the opposite of "jtype".
1123 */
1124 static struct block *
1125 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1126 u_int size, bpf_u_int32 mask, int jtype, int reverse,
1127 bpf_u_int32 v)
1128 {
1129 struct slist *s, *s2;
1130 struct block *b;
1131
1132 s = gen_load_a(cstate, offrel, offset, size);
1133
1134 if (mask != 0xffffffff) {
1135 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1136 s2->s.k = mask;
1137 sappend(s, s2);
1138 }
1139
1140 b = new_block(cstate, JMP(jtype));
1141 b->stmts = s;
1142 b->s.k = v;
1143 if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1144 gen_not(b);
1145 return b;
1146 }
1147
1148 static int
1149 init_linktype(compiler_state_t *cstate, pcap_t *p)
1150 {
1151 cstate->pcap_fddipad = p->fddipad;
1152
1153 /*
1154 * We start out with only one link-layer header.
1155 */
1156 cstate->outermostlinktype = pcap_datalink(p);
1157 cstate->off_outermostlinkhdr.constant_part = 0;
1158 cstate->off_outermostlinkhdr.is_variable = 0;
1159 cstate->off_outermostlinkhdr.reg = -1;
1160
1161 cstate->prevlinktype = cstate->outermostlinktype;
1162 cstate->off_prevlinkhdr.constant_part = 0;
1163 cstate->off_prevlinkhdr.is_variable = 0;
1164 cstate->off_prevlinkhdr.reg = -1;
1165
1166 cstate->linktype = cstate->outermostlinktype;
1167 cstate->off_linkhdr.constant_part = 0;
1168 cstate->off_linkhdr.is_variable = 0;
1169 cstate->off_linkhdr.reg = -1;
1170
1171 /*
1172 * XXX
1173 */
1174 cstate->off_linkpl.constant_part = 0;
1175 cstate->off_linkpl.is_variable = 0;
1176 cstate->off_linkpl.reg = -1;
1177
1178 cstate->off_linktype.constant_part = 0;
1179 cstate->off_linktype.is_variable = 0;
1180 cstate->off_linktype.reg = -1;
1181
1182 /*
1183 * Assume it's not raw ATM with a pseudo-header, for now.
1184 */
1185 cstate->is_atm = 0;
1186 cstate->off_vpi = OFFSET_NOT_SET;
1187 cstate->off_vci = OFFSET_NOT_SET;
1188 cstate->off_proto = OFFSET_NOT_SET;
1189 cstate->off_payload = OFFSET_NOT_SET;
1190
1191 /*
1192 * And not Geneve.
1193 */
1194 cstate->is_geneve = 0;
1195
1196 /*
1197 * No variable length VLAN offset by default
1198 */
1199 cstate->is_vlan_vloffset = 0;
1200
1201 /*
1202 * And assume we're not doing SS7.
1203 */
1204 cstate->off_li = OFFSET_NOT_SET;
1205 cstate->off_li_hsl = OFFSET_NOT_SET;
1206 cstate->off_sio = OFFSET_NOT_SET;
1207 cstate->off_opc = OFFSET_NOT_SET;
1208 cstate->off_dpc = OFFSET_NOT_SET;
1209 cstate->off_sls = OFFSET_NOT_SET;
1210
1211 cstate->label_stack_depth = 0;
1212 cstate->vlan_stack_depth = 0;
1213
1214 switch (cstate->linktype) {
1215
1216 case DLT_ARCNET:
1217 cstate->off_linktype.constant_part = 2;
1218 cstate->off_linkpl.constant_part = 6;
1219 cstate->off_nl = 0; /* XXX in reality, variable! */
1220 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1221 break;
1222
1223 case DLT_ARCNET_LINUX:
1224 cstate->off_linktype.constant_part = 4;
1225 cstate->off_linkpl.constant_part = 8;
1226 cstate->off_nl = 0; /* XXX in reality, variable! */
1227 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1228 break;
1229
1230 case DLT_EN10MB:
1231 cstate->off_linktype.constant_part = 12;
1232 cstate->off_linkpl.constant_part = 14; /* Ethernet header length */
1233 cstate->off_nl = 0; /* Ethernet II */
1234 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1235 break;
1236
1237 case DLT_SLIP:
1238 /*
1239 * SLIP doesn't have a link level type. The 16 byte
1240 * header is hacked into our SLIP driver.
1241 */
1242 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1243 cstate->off_linkpl.constant_part = 16;
1244 cstate->off_nl = 0;
1245 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1246 break;
1247
1248 case DLT_SLIP_BSDOS:
1249 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1250 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1251 /* XXX end */
1252 cstate->off_linkpl.constant_part = 24;
1253 cstate->off_nl = 0;
1254 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1255 break;
1256
1257 case DLT_NULL:
1258 case DLT_LOOP:
1259 cstate->off_linktype.constant_part = 0;
1260 cstate->off_linkpl.constant_part = 4;
1261 cstate->off_nl = 0;
1262 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1263 break;
1264
1265 case DLT_ENC:
1266 cstate->off_linktype.constant_part = 0;
1267 cstate->off_linkpl.constant_part = 12;
1268 cstate->off_nl = 0;
1269 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1270 break;
1271
1272 case DLT_PPP:
1273 case DLT_PPP_PPPD:
1274 case DLT_C_HDLC: /* BSD/OS Cisco HDLC */
1275 case DLT_HDLC: /* NetBSD (Cisco) HDLC */
1276 case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */
1277 cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */
1278 cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */
1279 cstate->off_nl = 0;
1280 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1281 break;
1282
1283 case DLT_PPP_ETHER:
1284 /*
1285 * This does no include the Ethernet header, and
1286 * only covers session state.
1287 */
1288 cstate->off_linktype.constant_part = 6;
1289 cstate->off_linkpl.constant_part = 8;
1290 cstate->off_nl = 0;
1291 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1292 break;
1293
1294 case DLT_PPP_BSDOS:
1295 cstate->off_linktype.constant_part = 5;
1296 cstate->off_linkpl.constant_part = 24;
1297 cstate->off_nl = 0;
1298 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1299 break;
1300
1301 case DLT_FDDI:
1302 /*
1303 * FDDI doesn't really have a link-level type field.
1304 * We set "off_linktype" to the offset of the LLC header.
1305 *
1306 * To check for Ethernet types, we assume that SSAP = SNAP
1307 * is being used and pick out the encapsulated Ethernet type.
1308 * XXX - should we generate code to check for SNAP?
1309 */
1310 cstate->off_linktype.constant_part = 13;
1311 cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1312 cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */
1313 cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1314 cstate->off_nl = 8; /* 802.2+SNAP */
1315 cstate->off_nl_nosnap = 3; /* 802.2 */
1316 break;
1317
1318 case DLT_IEEE802:
1319 /*
1320 * Token Ring doesn't really have a link-level type field.
1321 * We set "off_linktype" to the offset of the LLC header.
1322 *
1323 * To check for Ethernet types, we assume that SSAP = SNAP
1324 * is being used and pick out the encapsulated Ethernet type.
1325 * XXX - should we generate code to check for SNAP?
1326 *
1327 * XXX - the header is actually variable-length.
1328 * Some various Linux patched versions gave 38
1329 * as "off_linktype" and 40 as "off_nl"; however,
1330 * if a token ring packet has *no* routing
1331 * information, i.e. is not source-routed, the correct
1332 * values are 20 and 22, as they are in the vanilla code.
1333 *
1334 * A packet is source-routed iff the uppermost bit
1335 * of the first byte of the source address, at an
1336 * offset of 8, has the uppermost bit set. If the
1337 * packet is source-routed, the total number of bytes
1338 * of routing information is 2 plus bits 0x1F00 of
1339 * the 16-bit value at an offset of 14 (shifted right
1340 * 8 - figure out which byte that is).
1341 */
1342 cstate->off_linktype.constant_part = 14;
1343 cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */
1344 cstate->off_nl = 8; /* 802.2+SNAP */
1345 cstate->off_nl_nosnap = 3; /* 802.2 */
1346 break;
1347
1348 case DLT_PRISM_HEADER:
1349 case DLT_IEEE802_11_RADIO_AVS:
1350 case DLT_IEEE802_11_RADIO:
1351 cstate->off_linkhdr.is_variable = 1;
1352 /* Fall through, 802.11 doesn't have a variable link
1353 * prefix but is otherwise the same. */
1354 /* FALLTHROUGH */
1355
1356 case DLT_IEEE802_11:
1357 /*
1358 * 802.11 doesn't really have a link-level type field.
1359 * We set "off_linktype.constant_part" to the offset of
1360 * the LLC header.
1361 *
1362 * To check for Ethernet types, we assume that SSAP = SNAP
1363 * is being used and pick out the encapsulated Ethernet type.
1364 * XXX - should we generate code to check for SNAP?
1365 *
1366 * We also handle variable-length radio headers here.
1367 * The Prism header is in theory variable-length, but in
1368 * practice it's always 144 bytes long. However, some
1369 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1370 * sometimes or always supply an AVS header, so we
1371 * have to check whether the radio header is a Prism
1372 * header or an AVS header, so, in practice, it's
1373 * variable-length.
1374 */
1375 cstate->off_linktype.constant_part = 24;
1376 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1377 cstate->off_linkpl.is_variable = 1;
1378 cstate->off_nl = 8; /* 802.2+SNAP */
1379 cstate->off_nl_nosnap = 3; /* 802.2 */
1380 break;
1381
1382 case DLT_PPI:
1383 /*
1384 * At the moment we treat PPI the same way that we treat
1385 * normal Radiotap encoded packets. The difference is in
1386 * the function that generates the code at the beginning
1387 * to compute the header length. Since this code generator
1388 * of PPI supports bare 802.11 encapsulation only (i.e.
1389 * the encapsulated DLT should be DLT_IEEE802_11) we
1390 * generate code to check for this too.
1391 */
1392 cstate->off_linktype.constant_part = 24;
1393 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1394 cstate->off_linkpl.is_variable = 1;
1395 cstate->off_linkhdr.is_variable = 1;
1396 cstate->off_nl = 8; /* 802.2+SNAP */
1397 cstate->off_nl_nosnap = 3; /* 802.2 */
1398 break;
1399
1400 case DLT_ATM_RFC1483:
1401 case DLT_ATM_CLIP: /* Linux ATM defines this */
1402 /*
1403 * assume routed, non-ISO PDUs
1404 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1405 *
1406 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1407 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1408 * latter would presumably be treated the way PPPoE
1409 * should be, so you can do "pppoe and udp port 2049"
1410 * or "pppoa and tcp port 80" and have it check for
1411 * PPPo{A,E} and a PPP protocol of IP and....
1412 */
1413 cstate->off_linktype.constant_part = 0;
1414 cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */
1415 cstate->off_nl = 8; /* 802.2+SNAP */
1416 cstate->off_nl_nosnap = 3; /* 802.2 */
1417 break;
1418
1419 case DLT_SUNATM:
1420 /*
1421 * Full Frontal ATM; you get AALn PDUs with an ATM
1422 * pseudo-header.
1423 */
1424 cstate->is_atm = 1;
1425 cstate->off_vpi = SUNATM_VPI_POS;
1426 cstate->off_vci = SUNATM_VCI_POS;
1427 cstate->off_proto = PROTO_POS;
1428 cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1429 cstate->off_linktype.constant_part = cstate->off_payload;
1430 cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */
1431 cstate->off_nl = 8; /* 802.2+SNAP */
1432 cstate->off_nl_nosnap = 3; /* 802.2 */
1433 break;
1434
1435 case DLT_RAW:
1436 case DLT_IPV4:
1437 case DLT_IPV6:
1438 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1439 cstate->off_linkpl.constant_part = 0;
1440 cstate->off_nl = 0;
1441 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1442 break;
1443
1444 case DLT_LINUX_SLL: /* fake header for Linux cooked socket v1 */
1445 cstate->off_linktype.constant_part = 14;
1446 cstate->off_linkpl.constant_part = 16;
1447 cstate->off_nl = 0;
1448 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1449 break;
1450
1451 case DLT_LINUX_SLL2: /* fake header for Linux cooked socket v2 */
1452 cstate->off_linktype.constant_part = 0;
1453 cstate->off_linkpl.constant_part = 20;
1454 cstate->off_nl = 0;
1455 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1456 break;
1457
1458 case DLT_LTALK:
1459 /*
1460 * LocalTalk does have a 1-byte type field in the LLAP header,
1461 * but really it just indicates whether there is a "short" or
1462 * "long" DDP packet following.
1463 */
1464 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1465 cstate->off_linkpl.constant_part = 0;
1466 cstate->off_nl = 0;
1467 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1468 break;
1469
1470 case DLT_IP_OVER_FC:
1471 /*
1472 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1473 * link-level type field. We set "off_linktype" to the
1474 * offset of the LLC header.
1475 *
1476 * To check for Ethernet types, we assume that SSAP = SNAP
1477 * is being used and pick out the encapsulated Ethernet type.
1478 * XXX - should we generate code to check for SNAP? RFC
1479 * 2625 says SNAP should be used.
1480 */
1481 cstate->off_linktype.constant_part = 16;
1482 cstate->off_linkpl.constant_part = 16;
1483 cstate->off_nl = 8; /* 802.2+SNAP */
1484 cstate->off_nl_nosnap = 3; /* 802.2 */
1485 break;
1486
1487 case DLT_FRELAY:
1488 /*
1489 * XXX - we should set this to handle SNAP-encapsulated
1490 * frames (NLPID of 0x80).
1491 */
1492 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1493 cstate->off_linkpl.constant_part = 0;
1494 cstate->off_nl = 0;
1495 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1496 break;
1497
1498 /*
1499 * the only BPF-interesting FRF.16 frames are non-control frames;
1500 * Frame Relay has a variable length link-layer
1501 * so lets start with offset 4 for now and increments later on (FIXME);
1502 */
1503 case DLT_MFR:
1504 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1505 cstate->off_linkpl.constant_part = 0;
1506 cstate->off_nl = 4;
1507 cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */
1508 break;
1509
1510 case DLT_APPLE_IP_OVER_IEEE1394:
1511 cstate->off_linktype.constant_part = 16;
1512 cstate->off_linkpl.constant_part = 18;
1513 cstate->off_nl = 0;
1514 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1515 break;
1516
1517 case DLT_SYMANTEC_FIREWALL:
1518 cstate->off_linktype.constant_part = 6;
1519 cstate->off_linkpl.constant_part = 44;
1520 cstate->off_nl = 0; /* Ethernet II */
1521 cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */
1522 break;
1523
1524 case DLT_PFLOG:
1525 cstate->off_linktype.constant_part = 0;
1526 cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */
1527 cstate->off_linkpl.is_variable = 1;
1528 cstate->off_nl = 0;
1529 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
1530 break;
1531
1532 case DLT_JUNIPER_MFR:
1533 case DLT_JUNIPER_MLFR:
1534 case DLT_JUNIPER_MLPPP:
1535 case DLT_JUNIPER_PPP:
1536 case DLT_JUNIPER_CHDLC:
1537 case DLT_JUNIPER_FRELAY:
1538 cstate->off_linktype.constant_part = 4;
1539 cstate->off_linkpl.constant_part = 4;
1540 cstate->off_nl = 0;
1541 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1542 break;
1543
1544 case DLT_JUNIPER_ATM1:
1545 cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */
1546 cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */
1547 cstate->off_nl = 0;
1548 cstate->off_nl_nosnap = 10;
1549 break;
1550
1551 case DLT_JUNIPER_ATM2:
1552 cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */
1553 cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */
1554 cstate->off_nl = 0;
1555 cstate->off_nl_nosnap = 10;
1556 break;
1557
1558 /* frames captured on a Juniper PPPoE service PIC
1559 * contain raw ethernet frames */
1560 case DLT_JUNIPER_PPPOE:
1561 case DLT_JUNIPER_ETHER:
1562 cstate->off_linkpl.constant_part = 14;
1563 cstate->off_linktype.constant_part = 16;
1564 cstate->off_nl = 18; /* Ethernet II */
1565 cstate->off_nl_nosnap = 21; /* 802.3+802.2 */
1566 break;
1567
1568 case DLT_JUNIPER_PPPOE_ATM:
1569 cstate->off_linktype.constant_part = 4;
1570 cstate->off_linkpl.constant_part = 6;
1571 cstate->off_nl = 0;
1572 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1573 break;
1574
1575 case DLT_JUNIPER_GGSN:
1576 cstate->off_linktype.constant_part = 6;
1577 cstate->off_linkpl.constant_part = 12;
1578 cstate->off_nl = 0;
1579 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1580 break;
1581
1582 case DLT_JUNIPER_ES:
1583 cstate->off_linktype.constant_part = 6;
1584 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1585 cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */
1586 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1587 break;
1588
1589 case DLT_JUNIPER_MONITOR:
1590 cstate->off_linktype.constant_part = 12;
1591 cstate->off_linkpl.constant_part = 12;
1592 cstate->off_nl = 0; /* raw IP/IP6 header */
1593 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1594 break;
1595
1596 case DLT_BACNET_MS_TP:
1597 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1598 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1599 cstate->off_nl = OFFSET_NOT_SET;
1600 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1601 break;
1602
1603 case DLT_JUNIPER_SERVICES:
1604 cstate->off_linktype.constant_part = 12;
1605 cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1606 cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */
1607 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1608 break;
1609
1610 case DLT_JUNIPER_VP:
1611 cstate->off_linktype.constant_part = 18;
1612 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1613 cstate->off_nl = OFFSET_NOT_SET;
1614 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1615 break;
1616
1617 case DLT_JUNIPER_ST:
1618 cstate->off_linktype.constant_part = 18;
1619 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1620 cstate->off_nl = OFFSET_NOT_SET;
1621 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1622 break;
1623
1624 case DLT_JUNIPER_ISM:
1625 cstate->off_linktype.constant_part = 8;
1626 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1627 cstate->off_nl = OFFSET_NOT_SET;
1628 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1629 break;
1630
1631 case DLT_JUNIPER_VS:
1632 case DLT_JUNIPER_SRX_E2E:
1633 case DLT_JUNIPER_FIBRECHANNEL:
1634 case DLT_JUNIPER_ATM_CEMIC:
1635 cstate->off_linktype.constant_part = 8;
1636 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1637 cstate->off_nl = OFFSET_NOT_SET;
1638 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1639 break;
1640
1641 case DLT_MTP2:
1642 cstate->off_li = 2;
1643 cstate->off_li_hsl = 4;
1644 cstate->off_sio = 3;
1645 cstate->off_opc = 4;
1646 cstate->off_dpc = 4;
1647 cstate->off_sls = 7;
1648 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1649 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1650 cstate->off_nl = OFFSET_NOT_SET;
1651 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1652 break;
1653
1654 case DLT_MTP2_WITH_PHDR:
1655 cstate->off_li = 6;
1656 cstate->off_li_hsl = 8;
1657 cstate->off_sio = 7;
1658 cstate->off_opc = 8;
1659 cstate->off_dpc = 8;
1660 cstate->off_sls = 11;
1661 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1662 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1663 cstate->off_nl = OFFSET_NOT_SET;
1664 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1665 break;
1666
1667 case DLT_ERF:
1668 cstate->off_li = 22;
1669 cstate->off_li_hsl = 24;
1670 cstate->off_sio = 23;
1671 cstate->off_opc = 24;
1672 cstate->off_dpc = 24;
1673 cstate->off_sls = 27;
1674 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1675 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1676 cstate->off_nl = OFFSET_NOT_SET;
1677 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1678 break;
1679
1680 case DLT_PFSYNC:
1681 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1682 cstate->off_linkpl.constant_part = 4;
1683 cstate->off_nl = 0;
1684 cstate->off_nl_nosnap = 0;
1685 break;
1686
1687 case DLT_AX25_KISS:
1688 /*
1689 * Currently, only raw "link[N:M]" filtering is supported.
1690 */
1691 cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */
1692 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1693 cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */
1694 cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */
1695 break;
1696
1697 case DLT_IPNET:
1698 cstate->off_linktype.constant_part = 1;
1699 cstate->off_linkpl.constant_part = 24; /* ipnet header length */
1700 cstate->off_nl = 0;
1701 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1702 break;
1703
1704 case DLT_NETANALYZER:
1705 cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */
1706 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1707 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */
1708 cstate->off_nl = 0; /* Ethernet II */
1709 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1710 break;
1711
1712 case DLT_NETANALYZER_TRANSPARENT:
1713 cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1714 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1715 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */
1716 cstate->off_nl = 0; /* Ethernet II */
1717 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
1718 break;
1719
1720 default:
1721 /*
1722 * For values in the range in which we've assigned new
1723 * DLT_ values, only raw "link[N:M]" filtering is supported.
1724 */
1725 if (cstate->linktype >= DLT_MATCHING_MIN &&
1726 cstate->linktype <= DLT_MATCHING_MAX) {
1727 cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1728 cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1729 cstate->off_nl = OFFSET_NOT_SET;
1730 cstate->off_nl_nosnap = OFFSET_NOT_SET;
1731 } else {
1732 bpf_set_error(cstate, "unknown data link type %d (min %d, max %d)",
1733 cstate->linktype, DLT_MATCHING_MIN, DLT_MATCHING_MAX);
1734 return (-1);
1735 }
1736 break;
1737 }
1738
1739 cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1740 return (0);
1741 }
1742
1743 /*
1744 * Load a value relative to the specified absolute offset.
1745 */
1746 static struct slist *
1747 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1748 u_int offset, u_int size)
1749 {
1750 struct slist *s, *s2;
1751
1752 s = gen_abs_offset_varpart(cstate, abs_offset);
1753
1754 /*
1755 * If "s" is non-null, it has code to arrange that the X register
1756 * contains the variable part of the absolute offset, so we
1757 * generate a load relative to that, with an offset of
1758 * abs_offset->constant_part + offset.
1759 *
1760 * Otherwise, we can do an absolute load with an offset of
1761 * abs_offset->constant_part + offset.
1762 */
1763 if (s != NULL) {
1764 /*
1765 * "s" points to a list of statements that puts the
1766 * variable part of the absolute offset into the X register.
1767 * Do an indirect load, to use the X register as an offset.
1768 */
1769 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1770 s2->s.k = abs_offset->constant_part + offset;
1771 sappend(s, s2);
1772 } else {
1773 /*
1774 * There is no variable part of the absolute offset, so
1775 * just do an absolute load.
1776 */
1777 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1778 s->s.k = abs_offset->constant_part + offset;
1779 }
1780 return s;
1781 }
1782
1783 /*
1784 * Load a value relative to the beginning of the specified header.
1785 */
1786 static struct slist *
1787 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1788 u_int size)
1789 {
1790 struct slist *s, *s2;
1791
1792 /*
1793 * Squelch warnings from compilers that *don't* assume that
1794 * offrel always has a valid enum value and therefore don't
1795 * assume that we'll always go through one of the case arms.
1796 *
1797 * If we have a default case, compilers that *do* assume that
1798 * will then complain about the default case code being
1799 * unreachable.
1800 *
1801 * Damned if you do, damned if you don't.
1802 */
1803 s = NULL;
1804
1805 switch (offrel) {
1806
1807 case OR_PACKET:
1808 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1809 s->s.k = offset;
1810 break;
1811
1812 case OR_LINKHDR:
1813 s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1814 break;
1815
1816 case OR_PREVLINKHDR:
1817 s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1818 break;
1819
1820 case OR_LLC:
1821 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1822 break;
1823
1824 case OR_PREVMPLSHDR:
1825 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1826 break;
1827
1828 case OR_LINKPL:
1829 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1830 break;
1831
1832 case OR_LINKPL_NOSNAP:
1833 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1834 break;
1835
1836 case OR_LINKTYPE:
1837 s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1838 break;
1839
1840 case OR_TRAN_IPV4:
1841 /*
1842 * Load the X register with the length of the IPv4 header
1843 * (plus the offset of the link-layer header, if it's
1844 * preceded by a variable-length header such as a radio
1845 * header), in bytes.
1846 */
1847 s = gen_loadx_iphdrlen(cstate);
1848
1849 /*
1850 * Load the item at {offset of the link-layer payload} +
1851 * {offset, relative to the start of the link-layer
1852 * payload, of the IPv4 header} + {length of the IPv4 header} +
1853 * {specified offset}.
1854 *
1855 * If the offset of the link-layer payload is variable,
1856 * the variable part of that offset is included in the
1857 * value in the X register, and we include the constant
1858 * part in the offset of the load.
1859 */
1860 s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1861 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1862 sappend(s, s2);
1863 break;
1864
1865 case OR_TRAN_IPV6:
1866 s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1867 break;
1868 }
1869 return s;
1870 }
1871
1872 /*
1873 * Generate code to load into the X register the sum of the length of
1874 * the IPv4 header and the variable part of the offset of the link-layer
1875 * payload.
1876 */
1877 static struct slist *
1878 gen_loadx_iphdrlen(compiler_state_t *cstate)
1879 {
1880 struct slist *s, *s2;
1881
1882 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1883 if (s != NULL) {
1884 /*
1885 * The offset of the link-layer payload has a variable
1886 * part. "s" points to a list of statements that put
1887 * the variable part of that offset into the X register.
1888 *
1889 * The 4*([k]&0xf) addressing mode can't be used, as we
1890 * don't have a constant offset, so we have to load the
1891 * value in question into the A register and add to it
1892 * the value from the X register.
1893 */
1894 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1895 s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1896 sappend(s, s2);
1897 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1898 s2->s.k = 0xf;
1899 sappend(s, s2);
1900 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1901 s2->s.k = 2;
1902 sappend(s, s2);
1903
1904 /*
1905 * The A register now contains the length of the IP header.
1906 * We need to add to it the variable part of the offset of
1907 * the link-layer payload, which is still in the X
1908 * register, and move the result into the X register.
1909 */
1910 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1911 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1912 } else {
1913 /*
1914 * The offset of the link-layer payload is a constant,
1915 * so no code was generated to load the (nonexistent)
1916 * variable part of that offset.
1917 *
1918 * This means we can use the 4*([k]&0xf) addressing
1919 * mode. Load the length of the IPv4 header, which
1920 * is at an offset of cstate->off_nl from the beginning of
1921 * the link-layer payload, and thus at an offset of
1922 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1923 * of the raw packet data, using that addressing mode.
1924 */
1925 s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1926 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1927 }
1928 return s;
1929 }
1930
1931
1932 static struct block *
1933 gen_uncond(compiler_state_t *cstate, int rsense)
1934 {
1935 struct block *b;
1936 struct slist *s;
1937
1938 s = new_stmt(cstate, BPF_LD|BPF_IMM);
1939 s->s.k = !rsense;
1940 b = new_block(cstate, JMP(BPF_JEQ));
1941 b->stmts = s;
1942
1943 return b;
1944 }
1945
1946 static inline struct block *
1947 gen_true(compiler_state_t *cstate)
1948 {
1949 return gen_uncond(cstate, 1);
1950 }
1951
1952 static inline struct block *
1953 gen_false(compiler_state_t *cstate)
1954 {
1955 return gen_uncond(cstate, 0);
1956 }
1957
1958 /*
1959 * Byte-swap a 32-bit number.
1960 * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1961 * big-endian platforms.)
1962 */
1963 #define SWAPLONG(y) \
1964 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1965
1966 /*
1967 * Generate code to match a particular packet type.
1968 *
1969 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1970 * value, if <= ETHERMTU. We use that to determine whether to
1971 * match the type/length field or to check the type/length field for
1972 * a value <= ETHERMTU to see whether it's a type field and then do
1973 * the appropriate test.
1974 */
1975 static struct block *
1976 gen_ether_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
1977 {
1978 struct block *b0, *b1;
1979
1980 switch (ll_proto) {
1981
1982 case LLCSAP_ISONS:
1983 case LLCSAP_IP:
1984 case LLCSAP_NETBEUI:
1985 /*
1986 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1987 * so we check the DSAP and SSAP.
1988 *
1989 * LLCSAP_IP checks for IP-over-802.2, rather
1990 * than IP-over-Ethernet or IP-over-SNAP.
1991 *
1992 * XXX - should we check both the DSAP and the
1993 * SSAP, like this, or should we check just the
1994 * DSAP, as we do for other types <= ETHERMTU
1995 * (i.e., other SAP values)?
1996 */
1997 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1998 gen_not(b0);
1999 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2000 gen_and(b0, b1);
2001 return b1;
2002
2003 case LLCSAP_IPX:
2004 /*
2005 * Check for;
2006 *
2007 * Ethernet_II frames, which are Ethernet
2008 * frames with a frame type of ETHERTYPE_IPX;
2009 *
2010 * Ethernet_802.3 frames, which are 802.3
2011 * frames (i.e., the type/length field is
2012 * a length field, <= ETHERMTU, rather than
2013 * a type field) with the first two bytes
2014 * after the Ethernet/802.3 header being
2015 * 0xFFFF;
2016 *
2017 * Ethernet_802.2 frames, which are 802.3
2018 * frames with an 802.2 LLC header and
2019 * with the IPX LSAP as the DSAP in the LLC
2020 * header;
2021 *
2022 * Ethernet_SNAP frames, which are 802.3
2023 * frames with an LLC header and a SNAP
2024 * header and with an OUI of 0x000000
2025 * (encapsulated Ethernet) and a protocol
2026 * ID of ETHERTYPE_IPX in the SNAP header.
2027 *
2028 * XXX - should we generate the same code both
2029 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2030 */
2031
2032 /*
2033 * This generates code to check both for the
2034 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2035 */
2036 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2037 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
2038 gen_or(b0, b1);
2039
2040 /*
2041 * Now we add code to check for SNAP frames with
2042 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2043 */
2044 b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2045 gen_or(b0, b1);
2046
2047 /*
2048 * Now we generate code to check for 802.3
2049 * frames in general.
2050 */
2051 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2052 gen_not(b0);
2053
2054 /*
2055 * Now add the check for 802.3 frames before the
2056 * check for Ethernet_802.2 and Ethernet_802.3,
2057 * as those checks should only be done on 802.3
2058 * frames, not on Ethernet frames.
2059 */
2060 gen_and(b0, b1);
2061
2062 /*
2063 * Now add the check for Ethernet_II frames, and
2064 * do that before checking for the other frame
2065 * types.
2066 */
2067 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2068 gen_or(b0, b1);
2069 return b1;
2070
2071 case ETHERTYPE_ATALK:
2072 case ETHERTYPE_AARP:
2073 /*
2074 * EtherTalk (AppleTalk protocols on Ethernet link
2075 * layer) may use 802.2 encapsulation.
2076 */
2077
2078 /*
2079 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2080 * we check for an Ethernet type field less than
2081 * 1500, which means it's an 802.3 length field.
2082 */
2083 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2084 gen_not(b0);
2085
2086 /*
2087 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2088 * SNAP packets with an organization code of
2089 * 0x080007 (Apple, for Appletalk) and a protocol
2090 * type of ETHERTYPE_ATALK (Appletalk).
2091 *
2092 * 802.2-encapsulated ETHERTYPE_AARP packets are
2093 * SNAP packets with an organization code of
2094 * 0x000000 (encapsulated Ethernet) and a protocol
2095 * type of ETHERTYPE_AARP (Appletalk ARP).
2096 */
2097 if (ll_proto == ETHERTYPE_ATALK)
2098 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2099 else /* ll_proto == ETHERTYPE_AARP */
2100 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2101 gen_and(b0, b1);
2102
2103 /*
2104 * Check for Ethernet encapsulation (Ethertalk
2105 * phase 1?); we just check for the Ethernet
2106 * protocol type.
2107 */
2108 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2109
2110 gen_or(b0, b1);
2111 return b1;
2112
2113 default:
2114 if (ll_proto <= ETHERMTU) {
2115 /*
2116 * This is an LLC SAP value, so the frames
2117 * that match would be 802.2 frames.
2118 * Check that the frame is an 802.2 frame
2119 * (i.e., that the length/type field is
2120 * a length field, <= ETHERMTU) and
2121 * then check the DSAP.
2122 */
2123 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2124 gen_not(b0);
2125 b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, ll_proto);
2126 gen_and(b0, b1);
2127 return b1;
2128 } else {
2129 /*
2130 * This is an Ethernet type, so compare
2131 * the length/type field with it (if
2132 * the frame is an 802.2 frame, the length
2133 * field will be <= ETHERMTU, and, as
2134 * "ll_proto" is > ETHERMTU, this test
2135 * will fail and the frame won't match,
2136 * which is what we want).
2137 */
2138 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2139 }
2140 }
2141 }
2142
2143 static struct block *
2144 gen_loopback_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2145 {
2146 /*
2147 * For DLT_NULL, the link-layer header is a 32-bit word
2148 * containing an AF_ value in *host* byte order, and for
2149 * DLT_ENC, the link-layer header begins with a 32-bit
2150 * word containing an AF_ value in host byte order.
2151 *
2152 * In addition, if we're reading a saved capture file,
2153 * the host byte order in the capture may not be the
2154 * same as the host byte order on this machine.
2155 *
2156 * For DLT_LOOP, the link-layer header is a 32-bit
2157 * word containing an AF_ value in *network* byte order.
2158 */
2159 if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2160 /*
2161 * The AF_ value is in host byte order, but the BPF
2162 * interpreter will convert it to network byte order.
2163 *
2164 * If this is a save file, and it's from a machine
2165 * with the opposite byte order to ours, we byte-swap
2166 * the AF_ value.
2167 *
2168 * Then we run it through "htonl()", and generate
2169 * code to compare against the result.
2170 */
2171 if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2172 ll_proto = SWAPLONG(ll_proto);
2173 ll_proto = htonl(ll_proto);
2174 }
2175 return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, ll_proto));
2176 }
2177
2178 /*
2179 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2180 * or IPv6 then we have an error.
2181 */
2182 static struct block *
2183 gen_ipnet_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2184 {
2185 switch (ll_proto) {
2186
2187 case ETHERTYPE_IP:
2188 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET);
2189 /*NOTREACHED*/
2190
2191 case ETHERTYPE_IPV6:
2192 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, IPH_AF_INET6);
2193 /*NOTREACHED*/
2194
2195 default:
2196 break;
2197 }
2198
2199 return gen_false(cstate);
2200 }
2201
2202 /*
2203 * Generate code to match a particular packet type.
2204 *
2205 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2206 * value, if <= ETHERMTU. We use that to determine whether to
2207 * match the type field or to check the type field for the special
2208 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2209 */
2210 static struct block *
2211 gen_linux_sll_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
2212 {
2213 struct block *b0, *b1;
2214
2215 switch (ll_proto) {
2216
2217 case LLCSAP_ISONS:
2218 case LLCSAP_IP:
2219 case LLCSAP_NETBEUI:
2220 /*
2221 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2222 * so we check the DSAP and SSAP.
2223 *
2224 * LLCSAP_IP checks for IP-over-802.2, rather
2225 * than IP-over-Ethernet or IP-over-SNAP.
2226 *
2227 * XXX - should we check both the DSAP and the
2228 * SSAP, like this, or should we check just the
2229 * DSAP, as we do for other types <= ETHERMTU
2230 * (i.e., other SAP values)?
2231 */
2232 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2233 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (ll_proto << 8) | ll_proto);
2234 gen_and(b0, b1);
2235 return b1;
2236
2237 case LLCSAP_IPX:
2238 /*
2239 * Ethernet_II frames, which are Ethernet
2240 * frames with a frame type of ETHERTYPE_IPX;
2241 *
2242 * Ethernet_802.3 frames, which have a frame
2243 * type of LINUX_SLL_P_802_3;
2244 *
2245 * Ethernet_802.2 frames, which are 802.3
2246 * frames with an 802.2 LLC header (i.e, have
2247 * a frame type of LINUX_SLL_P_802_2) and
2248 * with the IPX LSAP as the DSAP in the LLC
2249 * header;
2250 *
2251 * Ethernet_SNAP frames, which are 802.3
2252 * frames with an LLC header and a SNAP
2253 * header and with an OUI of 0x000000
2254 * (encapsulated Ethernet) and a protocol
2255 * ID of ETHERTYPE_IPX in the SNAP header.
2256 *
2257 * First, do the checks on LINUX_SLL_P_802_2
2258 * frames; generate the check for either
2259 * Ethernet_802.2 or Ethernet_SNAP frames, and
2260 * then put a check for LINUX_SLL_P_802_2 frames
2261 * before it.
2262 */
2263 b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
2264 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2265 gen_or(b0, b1);
2266 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2267 gen_and(b0, b1);
2268
2269 /*
2270 * Now check for 802.3 frames and OR that with
2271 * the previous test.
2272 */
2273 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2274 gen_or(b0, b1);
2275
2276 /*
2277 * Now add the check for Ethernet_II frames, and
2278 * do that before checking for the other frame
2279 * types.
2280 */
2281 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ETHERTYPE_IPX);
2282 gen_or(b0, b1);
2283 return b1;
2284
2285 case ETHERTYPE_ATALK:
2286 case ETHERTYPE_AARP:
2287 /*
2288 * EtherTalk (AppleTalk protocols on Ethernet link
2289 * layer) may use 802.2 encapsulation.
2290 */
2291
2292 /*
2293 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2294 * we check for the 802.2 protocol type in the
2295 * "Ethernet type" field.
2296 */
2297 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2298
2299 /*
2300 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2301 * SNAP packets with an organization code of
2302 * 0x080007 (Apple, for Appletalk) and a protocol
2303 * type of ETHERTYPE_ATALK (Appletalk).
2304 *
2305 * 802.2-encapsulated ETHERTYPE_AARP packets are
2306 * SNAP packets with an organization code of
2307 * 0x000000 (encapsulated Ethernet) and a protocol
2308 * type of ETHERTYPE_AARP (Appletalk ARP).
2309 */
2310 if (ll_proto == ETHERTYPE_ATALK)
2311 b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2312 else /* ll_proto == ETHERTYPE_AARP */
2313 b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2314 gen_and(b0, b1);
2315
2316 /*
2317 * Check for Ethernet encapsulation (Ethertalk
2318 * phase 1?); we just check for the Ethernet
2319 * protocol type.
2320 */
2321 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2322
2323 gen_or(b0, b1);
2324 return b1;
2325
2326 default:
2327 if (ll_proto <= ETHERMTU) {
2328 /*
2329 * This is an LLC SAP value, so the frames
2330 * that match would be 802.2 frames.
2331 * Check for the 802.2 protocol type
2332 * in the "Ethernet type" field, and
2333 * then check the DSAP.
2334 */
2335 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2336 b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2337 ll_proto);
2338 gen_and(b0, b1);
2339 return b1;
2340 } else {
2341 /*
2342 * This is an Ethernet type, so compare
2343 * the length/type field with it (if
2344 * the frame is an 802.2 frame, the length
2345 * field will be <= ETHERMTU, and, as
2346 * "ll_proto" is > ETHERMTU, this test
2347 * will fail and the frame won't match,
2348 * which is what we want).
2349 */
2350 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
2351 }
2352 }
2353 }
2354
2355 /*
2356 * Load a value relative to the beginning of the link-layer header after the
2357 * pflog header.
2358 */
2359 static struct slist *
2360 gen_load_pflog_llprefixlen(compiler_state_t *cstate)
2361 {
2362 struct slist *s1, *s2;
2363
2364 /*
2365 * Generate code to load the length of the pflog header into
2366 * the register assigned to hold that length, if one has been
2367 * assigned. (If one hasn't been assigned, no code we've
2368 * generated uses that prefix, so we don't need to generate any
2369 * code to load it.)
2370 */
2371 if (cstate->off_linkpl.reg != -1) {
2372 /*
2373 * The length is in the first byte of the header.
2374 */
2375 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2376 s1->s.k = 0;
2377
2378 /*
2379 * Round it up to a multiple of 4.
2380 * Add 3, and clear the lower 2 bits.
2381 */
2382 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2383 s2->s.k = 3;
2384 sappend(s1, s2);
2385 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2386 s2->s.k = 0xfffffffc;
2387 sappend(s1, s2);
2388
2389 /*
2390 * Now allocate a register to hold that value and store
2391 * it.
2392 */
2393 s2 = new_stmt(cstate, BPF_ST);
2394 s2->s.k = cstate->off_linkpl.reg;
2395 sappend(s1, s2);
2396
2397 /*
2398 * Now move it into the X register.
2399 */
2400 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2401 sappend(s1, s2);
2402
2403 return (s1);
2404 } else
2405 return (NULL);
2406 }
2407
2408 static struct slist *
2409 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2410 {
2411 struct slist *s1, *s2;
2412 struct slist *sjeq_avs_cookie;
2413 struct slist *sjcommon;
2414
2415 /*
2416 * This code is not compatible with the optimizer, as
2417 * we are generating jmp instructions within a normal
2418 * slist of instructions
2419 */
2420 cstate->no_optimize = 1;
2421
2422 /*
2423 * Generate code to load the length of the radio header into
2424 * the register assigned to hold that length, if one has been
2425 * assigned. (If one hasn't been assigned, no code we've
2426 * generated uses that prefix, so we don't need to generate any
2427 * code to load it.)
2428 *
2429 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2430 * or always use the AVS header rather than the Prism header.
2431 * We load a 4-byte big-endian value at the beginning of the
2432 * raw packet data, and see whether, when masked with 0xFFFFF000,
2433 * it's equal to 0x80211000. If so, that indicates that it's
2434 * an AVS header (the masked-out bits are the version number).
2435 * Otherwise, it's a Prism header.
2436 *
2437 * XXX - the Prism header is also, in theory, variable-length,
2438 * but no known software generates headers that aren't 144
2439 * bytes long.
2440 */
2441 if (cstate->off_linkhdr.reg != -1) {
2442 /*
2443 * Load the cookie.
2444 */
2445 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2446 s1->s.k = 0;
2447
2448 /*
2449 * AND it with 0xFFFFF000.
2450 */
2451 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2452 s2->s.k = 0xFFFFF000;
2453 sappend(s1, s2);
2454
2455 /*
2456 * Compare with 0x80211000.
2457 */
2458 sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2459 sjeq_avs_cookie->s.k = 0x80211000;
2460 sappend(s1, sjeq_avs_cookie);
2461
2462 /*
2463 * If it's AVS:
2464 *
2465 * The 4 bytes at an offset of 4 from the beginning of
2466 * the AVS header are the length of the AVS header.
2467 * That field is big-endian.
2468 */
2469 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2470 s2->s.k = 4;
2471 sappend(s1, s2);
2472 sjeq_avs_cookie->s.jt = s2;
2473
2474 /*
2475 * Now jump to the code to allocate a register
2476 * into which to save the header length and
2477 * store the length there. (The "jump always"
2478 * instruction needs to have the k field set;
2479 * it's added to the PC, so, as we're jumping
2480 * over a single instruction, it should be 1.)
2481 */
2482 sjcommon = new_stmt(cstate, JMP(BPF_JA));
2483 sjcommon->s.k = 1;
2484 sappend(s1, sjcommon);
2485
2486 /*
2487 * Now for the code that handles the Prism header.
2488 * Just load the length of the Prism header (144)
2489 * into the A register. Have the test for an AVS
2490 * header branch here if we don't have an AVS header.
2491 */
2492 s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2493 s2->s.k = 144;
2494 sappend(s1, s2);
2495 sjeq_avs_cookie->s.jf = s2;
2496
2497 /*
2498 * Now allocate a register to hold that value and store
2499 * it. The code for the AVS header will jump here after
2500 * loading the length of the AVS header.
2501 */
2502 s2 = new_stmt(cstate, BPF_ST);
2503 s2->s.k = cstate->off_linkhdr.reg;
2504 sappend(s1, s2);
2505 sjcommon->s.jf = s2;
2506
2507 /*
2508 * Now move it into the X register.
2509 */
2510 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2511 sappend(s1, s2);
2512
2513 return (s1);
2514 } else
2515 return (NULL);
2516 }
2517
2518 static struct slist *
2519 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2520 {
2521 struct slist *s1, *s2;
2522
2523 /*
2524 * Generate code to load the length of the AVS header into
2525 * the register assigned to hold that length, if one has been
2526 * assigned. (If one hasn't been assigned, no code we've
2527 * generated uses that prefix, so we don't need to generate any
2528 * code to load it.)
2529 */
2530 if (cstate->off_linkhdr.reg != -1) {
2531 /*
2532 * The 4 bytes at an offset of 4 from the beginning of
2533 * the AVS header are the length of the AVS header.
2534 * That field is big-endian.
2535 */
2536 s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2537 s1->s.k = 4;
2538
2539 /*
2540 * Now allocate a register to hold that value and store
2541 * it.
2542 */
2543 s2 = new_stmt(cstate, BPF_ST);
2544 s2->s.k = cstate->off_linkhdr.reg;
2545 sappend(s1, s2);
2546
2547 /*
2548 * Now move it into the X register.
2549 */
2550 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2551 sappend(s1, s2);
2552
2553 return (s1);
2554 } else
2555 return (NULL);
2556 }
2557
2558 static struct slist *
2559 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2560 {
2561 struct slist *s1, *s2;
2562
2563 /*
2564 * Generate code to load the length of the radiotap header into
2565 * the register assigned to hold that length, if one has been
2566 * assigned. (If one hasn't been assigned, no code we've
2567 * generated uses that prefix, so we don't need to generate any
2568 * code to load it.)
2569 */
2570 if (cstate->off_linkhdr.reg != -1) {
2571 /*
2572 * The 2 bytes at offsets of 2 and 3 from the beginning
2573 * of the radiotap header are the length of the radiotap
2574 * header; unfortunately, it's little-endian, so we have
2575 * to load it a byte at a time and construct the value.
2576 */
2577
2578 /*
2579 * Load the high-order byte, at an offset of 3, shift it
2580 * left a byte, and put the result in the X register.
2581 */
2582 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2583 s1->s.k = 3;
2584 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2585 sappend(s1, s2);
2586 s2->s.k = 8;
2587 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2588 sappend(s1, s2);
2589
2590 /*
2591 * Load the next byte, at an offset of 2, and OR the
2592 * value from the X register into it.
2593 */
2594 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2595 sappend(s1, s2);
2596 s2->s.k = 2;
2597 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2598 sappend(s1, s2);
2599
2600 /*
2601 * Now allocate a register to hold that value and store
2602 * it.
2603 */
2604 s2 = new_stmt(cstate, BPF_ST);
2605 s2->s.k = cstate->off_linkhdr.reg;
2606 sappend(s1, s2);
2607
2608 /*
2609 * Now move it into the X register.
2610 */
2611 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2612 sappend(s1, s2);
2613
2614 return (s1);
2615 } else
2616 return (NULL);
2617 }
2618
2619 /*
2620 * At the moment we treat PPI as normal Radiotap encoded
2621 * packets. The difference is in the function that generates
2622 * the code at the beginning to compute the header length.
2623 * Since this code generator of PPI supports bare 802.11
2624 * encapsulation only (i.e. the encapsulated DLT should be
2625 * DLT_IEEE802_11) we generate code to check for this too;
2626 * that's done in finish_parse().
2627 */
2628 static struct slist *
2629 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2630 {
2631 struct slist *s1, *s2;
2632
2633 /*
2634 * Generate code to load the length of the radiotap header
2635 * into the register assigned to hold that length, if one has
2636 * been assigned.
2637 */
2638 if (cstate->off_linkhdr.reg != -1) {
2639 /*
2640 * The 2 bytes at offsets of 2 and 3 from the beginning
2641 * of the radiotap header are the length of the radiotap
2642 * header; unfortunately, it's little-endian, so we have
2643 * to load it a byte at a time and construct the value.
2644 */
2645
2646 /*
2647 * Load the high-order byte, at an offset of 3, shift it
2648 * left a byte, and put the result in the X register.
2649 */
2650 s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2651 s1->s.k = 3;
2652 s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2653 sappend(s1, s2);
2654 s2->s.k = 8;
2655 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2656 sappend(s1, s2);
2657
2658 /*
2659 * Load the next byte, at an offset of 2, and OR the
2660 * value from the X register into it.
2661 */
2662 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2663 sappend(s1, s2);
2664 s2->s.k = 2;
2665 s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2666 sappend(s1, s2);
2667
2668 /*
2669 * Now allocate a register to hold that value and store
2670 * it.
2671 */
2672 s2 = new_stmt(cstate, BPF_ST);
2673 s2->s.k = cstate->off_linkhdr.reg;
2674 sappend(s1, s2);
2675
2676 /*
2677 * Now move it into the X register.
2678 */
2679 s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2680 sappend(s1, s2);
2681
2682 return (s1);
2683 } else
2684 return (NULL);
2685 }
2686
2687 /*
2688 * Load a value relative to the beginning of the link-layer header after the 802.11
2689 * header, i.e. LLC_SNAP.
2690 * The link-layer header doesn't necessarily begin at the beginning
2691 * of the packet data; there might be a variable-length prefix containing
2692 * radio information.
2693 */
2694 static struct slist *
2695 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2696 {
2697 struct slist *s2;
2698 struct slist *sjset_data_frame_1;
2699 struct slist *sjset_data_frame_2;
2700 struct slist *sjset_qos;
2701 struct slist *sjset_radiotap_flags_present;
2702 struct slist *sjset_radiotap_ext_present;
2703 struct slist *sjset_radiotap_tsft_present;
2704 struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2705 struct slist *s_roundup;
2706
2707 if (cstate->off_linkpl.reg == -1) {
2708 /*
2709 * No register has been assigned to the offset of
2710 * the link-layer payload, which means nobody needs
2711 * it; don't bother computing it - just return
2712 * what we already have.
2713 */
2714 return (s);
2715 }
2716
2717 /*
2718 * This code is not compatible with the optimizer, as
2719 * we are generating jmp instructions within a normal
2720 * slist of instructions
2721 */
2722 cstate->no_optimize = 1;
2723
2724 /*
2725 * If "s" is non-null, it has code to arrange that the X register
2726 * contains the length of the prefix preceding the link-layer
2727 * header.
2728 *
2729 * Otherwise, the length of the prefix preceding the link-layer
2730 * header is "off_outermostlinkhdr.constant_part".
2731 */
2732 if (s == NULL) {
2733 /*
2734 * There is no variable-length header preceding the
2735 * link-layer header.
2736 *
2737 * Load the length of the fixed-length prefix preceding
2738 * the link-layer header (if any) into the X register,
2739 * and store it in the cstate->off_linkpl.reg register.
2740 * That length is off_outermostlinkhdr.constant_part.
2741 */
2742 s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2743 s->s.k = cstate->off_outermostlinkhdr.constant_part;
2744 }
2745
2746 /*
2747 * The X register contains the offset of the beginning of the
2748 * link-layer header; add 24, which is the minimum length
2749 * of the MAC header for a data frame, to that, and store it
2750 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2751 * which is at the offset in the X register, with an indexed load.
2752 */
2753 s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2754 sappend(s, s2);
2755 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2756 s2->s.k = 24;
2757 sappend(s, s2);
2758 s2 = new_stmt(cstate, BPF_ST);
2759 s2->s.k = cstate->off_linkpl.reg;
2760 sappend(s, s2);
2761
2762 s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2763 s2->s.k = 0;
2764 sappend(s, s2);
2765
2766 /*
2767 * Check the Frame Control field to see if this is a data frame;
2768 * a data frame has the 0x08 bit (b3) in that field set and the
2769 * 0x04 bit (b2) clear.
2770 */
2771 sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2772 sjset_data_frame_1->s.k = 0x08;
2773 sappend(s, sjset_data_frame_1);
2774
2775 /*
2776 * If b3 is set, test b2, otherwise go to the first statement of
2777 * the rest of the program.
2778 */
2779 sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2780 sjset_data_frame_2->s.k = 0x04;
2781 sappend(s, sjset_data_frame_2);
2782 sjset_data_frame_1->s.jf = snext;
2783
2784 /*
2785 * If b2 is not set, this is a data frame; test the QoS bit.
2786 * Otherwise, go to the first statement of the rest of the
2787 * program.
2788 */
2789 sjset_data_frame_2->s.jt = snext;
2790 sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2791 sjset_qos->s.k = 0x80; /* QoS bit */
2792 sappend(s, sjset_qos);
2793
2794 /*
2795 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2796 * field.
2797 * Otherwise, go to the first statement of the rest of the
2798 * program.
2799 */
2800 sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2801 s2->s.k = cstate->off_linkpl.reg;
2802 sappend(s, s2);
2803 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2804 s2->s.k = 2;
2805 sappend(s, s2);
2806 s2 = new_stmt(cstate, BPF_ST);
2807 s2->s.k = cstate->off_linkpl.reg;
2808 sappend(s, s2);
2809
2810 /*
2811 * If we have a radiotap header, look at it to see whether
2812 * there's Atheros padding between the MAC-layer header
2813 * and the payload.
2814 *
2815 * Note: all of the fields in the radiotap header are
2816 * little-endian, so we byte-swap all of the values
2817 * we test against, as they will be loaded as big-endian
2818 * values.
2819 *
2820 * XXX - in the general case, we would have to scan through
2821 * *all* the presence bits, if there's more than one word of
2822 * presence bits. That would require a loop, meaning that
2823 * we wouldn't be able to run the filter in the kernel.
2824 *
2825 * We assume here that the Atheros adapters that insert the
2826 * annoying padding don't have multiple antennae and therefore
2827 * do not generate radiotap headers with multiple presence words.
2828 */
2829 if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2830 /*
2831 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2832 * in the first presence flag word?
2833 */
2834 sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2835 s2->s.k = 4;
2836 sappend(s, s2);
2837
2838 sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2839 sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2840 sappend(s, sjset_radiotap_flags_present);
2841
2842 /*
2843 * If not, skip all of this.
2844 */
2845 sjset_radiotap_flags_present->s.jf = snext;
2846
2847 /*
2848 * Otherwise, is the "extension" bit set in that word?
2849 */
2850 sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2851 sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2852 sappend(s, sjset_radiotap_ext_present);
2853 sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2854
2855 /*
2856 * If so, skip all of this.
2857 */
2858 sjset_radiotap_ext_present->s.jt = snext;
2859
2860 /*
2861 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2862 */
2863 sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2864 sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2865 sappend(s, sjset_radiotap_tsft_present);
2866 sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2867
2868 /*
2869 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2870 * at an offset of 16 from the beginning of the raw packet
2871 * data (8 bytes for the radiotap header and 8 bytes for
2872 * the TSFT field).
2873 *
2874 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2875 * is set.
2876 */
2877 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2878 s2->s.k = 16;
2879 sappend(s, s2);
2880 sjset_radiotap_tsft_present->s.jt = s2;
2881
2882 sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2883 sjset_tsft_datapad->s.k = 0x20;
2884 sappend(s, sjset_tsft_datapad);
2885
2886 /*
2887 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2888 * at an offset of 8 from the beginning of the raw packet
2889 * data (8 bytes for the radiotap header).
2890 *
2891 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2892 * is set.
2893 */
2894 s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2895 s2->s.k = 8;
2896 sappend(s, s2);
2897 sjset_radiotap_tsft_present->s.jf = s2;
2898
2899 sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2900 sjset_notsft_datapad->s.k = 0x20;
2901 sappend(s, sjset_notsft_datapad);
2902
2903 /*
2904 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2905 * set, round the length of the 802.11 header to
2906 * a multiple of 4. Do that by adding 3 and then
2907 * dividing by and multiplying by 4, which we do by
2908 * ANDing with ~3.
2909 */
2910 s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2911 s_roundup->s.k = cstate->off_linkpl.reg;
2912 sappend(s, s_roundup);
2913 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2914 s2->s.k = 3;
2915 sappend(s, s2);
2916 s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2917 s2->s.k = (bpf_u_int32)~3;
2918 sappend(s, s2);
2919 s2 = new_stmt(cstate, BPF_ST);
2920 s2->s.k = cstate->off_linkpl.reg;
2921 sappend(s, s2);
2922
2923 sjset_tsft_datapad->s.jt = s_roundup;
2924 sjset_tsft_datapad->s.jf = snext;
2925 sjset_notsft_datapad->s.jt = s_roundup;
2926 sjset_notsft_datapad->s.jf = snext;
2927 } else
2928 sjset_qos->s.jf = snext;
2929
2930 return s;
2931 }
2932
2933 static void
2934 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2935 {
2936 struct slist *s;
2937
2938 /* There is an implicit dependency between the link
2939 * payload and link header since the payload computation
2940 * includes the variable part of the header. Therefore,
2941 * if nobody else has allocated a register for the link
2942 * header and we need it, do it now. */
2943 if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2944 cstate->off_linkhdr.reg == -1)
2945 cstate->off_linkhdr.reg = alloc_reg(cstate);
2946
2947 /*
2948 * For link-layer types that have a variable-length header
2949 * preceding the link-layer header, generate code to load
2950 * the offset of the link-layer header into the register
2951 * assigned to that offset, if any.
2952 *
2953 * XXX - this, and the next switch statement, won't handle
2954 * encapsulation of 802.11 or 802.11+radio information in
2955 * some other protocol stack. That's significantly more
2956 * complicated.
2957 */
2958 switch (cstate->outermostlinktype) {
2959
2960 case DLT_PRISM_HEADER:
2961 s = gen_load_prism_llprefixlen(cstate);
2962 break;
2963
2964 case DLT_IEEE802_11_RADIO_AVS:
2965 s = gen_load_avs_llprefixlen(cstate);
2966 break;
2967
2968 case DLT_IEEE802_11_RADIO:
2969 s = gen_load_radiotap_llprefixlen(cstate);
2970 break;
2971
2972 case DLT_PPI:
2973 s = gen_load_ppi_llprefixlen(cstate);
2974 break;
2975
2976 default:
2977 s = NULL;
2978 break;
2979 }
2980
2981 /*
2982 * For link-layer types that have a variable-length link-layer
2983 * header, generate code to load the offset of the link-layer
2984 * payload into the register assigned to that offset, if any.
2985 */
2986 switch (cstate->outermostlinktype) {
2987
2988 case DLT_IEEE802_11:
2989 case DLT_PRISM_HEADER:
2990 case DLT_IEEE802_11_RADIO_AVS:
2991 case DLT_IEEE802_11_RADIO:
2992 case DLT_PPI:
2993 s = gen_load_802_11_header_len(cstate, s, b->stmts);
2994 break;
2995
2996 case DLT_PFLOG:
2997 s = gen_load_pflog_llprefixlen(cstate);
2998 break;
2999 }
3000
3001 /*
3002 * If there is no initialization yet and we need variable
3003 * length offsets for VLAN, initialize them to zero
3004 */
3005 if (s == NULL && cstate->is_vlan_vloffset) {
3006 struct slist *s2;
3007
3008 if (cstate->off_linkpl.reg == -1)
3009 cstate->off_linkpl.reg = alloc_reg(cstate);
3010 if (cstate->off_linktype.reg == -1)
3011 cstate->off_linktype.reg = alloc_reg(cstate);
3012
3013 s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
3014 s->s.k = 0;
3015 s2 = new_stmt(cstate, BPF_ST);
3016 s2->s.k = cstate->off_linkpl.reg;
3017 sappend(s, s2);
3018 s2 = new_stmt(cstate, BPF_ST);
3019 s2->s.k = cstate->off_linktype.reg;
3020 sappend(s, s2);
3021 }
3022
3023 /*
3024 * If we have any offset-loading code, append all the
3025 * existing statements in the block to those statements,
3026 * and make the resulting list the list of statements
3027 * for the block.
3028 */
3029 if (s != NULL) {
3030 sappend(s, b->stmts);
3031 b->stmts = s;
3032 }
3033 }
3034
3035 static struct block *
3036 gen_ppi_dlt_check(compiler_state_t *cstate)
3037 {
3038 struct slist *s_load_dlt;
3039 struct block *b;
3040
3041 if (cstate->linktype == DLT_PPI)
3042 {
3043 /* Create the statements that check for the DLT
3044 */
3045 s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
3046 s_load_dlt->s.k = 4;
3047
3048 b = new_block(cstate, JMP(BPF_JEQ));
3049
3050 b->stmts = s_load_dlt;
3051 b->s.k = SWAPLONG(DLT_IEEE802_11);
3052 }
3053 else
3054 {
3055 b = NULL;
3056 }
3057
3058 return b;
3059 }
3060
3061 /*
3062 * Take an absolute offset, and:
3063 *
3064 * if it has no variable part, return NULL;
3065 *
3066 * if it has a variable part, generate code to load the register
3067 * containing that variable part into the X register, returning
3068 * a pointer to that code - if no register for that offset has
3069 * been allocated, allocate it first.
3070 *
3071 * (The code to set that register will be generated later, but will
3072 * be placed earlier in the code sequence.)
3073 */
3074 static struct slist *
3075 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3076 {
3077 struct slist *s;
3078
3079 if (off->is_variable) {
3080 if (off->reg == -1) {
3081 /*
3082 * We haven't yet assigned a register for the
3083 * variable part of the offset of the link-layer
3084 * header; allocate one.
3085 */
3086 off->reg = alloc_reg(cstate);
3087 }
3088
3089 /*
3090 * Load the register containing the variable part of the
3091 * offset of the link-layer header into the X register.
3092 */
3093 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3094 s->s.k = off->reg;
3095 return s;
3096 } else {
3097 /*
3098 * That offset isn't variable, there's no variable part,
3099 * so we don't need to generate any code.
3100 */
3101 return NULL;
3102 }
3103 }
3104
3105 /*
3106 * Map an Ethernet type to the equivalent PPP type.
3107 */
3108 static bpf_u_int32
3109 ethertype_to_ppptype(bpf_u_int32 ll_proto)
3110 {
3111 switch (ll_proto) {
3112
3113 case ETHERTYPE_IP:
3114 ll_proto = PPP_IP;
3115 break;
3116
3117 case ETHERTYPE_IPV6:
3118 ll_proto = PPP_IPV6;
3119 break;
3120
3121 case ETHERTYPE_DN:
3122 ll_proto = PPP_DECNET;
3123 break;
3124
3125 case ETHERTYPE_ATALK:
3126 ll_proto = PPP_APPLE;
3127 break;
3128
3129 case ETHERTYPE_NS:
3130 ll_proto = PPP_NS;
3131 break;
3132
3133 case LLCSAP_ISONS:
3134 ll_proto = PPP_OSI;
3135 break;
3136
3137 case LLCSAP_8021D:
3138 /*
3139 * I'm assuming the "Bridging PDU"s that go
3140 * over PPP are Spanning Tree Protocol
3141 * Bridging PDUs.
3142 */
3143 ll_proto = PPP_BRPDU;
3144 break;
3145
3146 case LLCSAP_IPX:
3147 ll_proto = PPP_IPX;
3148 break;
3149 }
3150 return (ll_proto);
3151 }
3152
3153 /*
3154 * Generate any tests that, for encapsulation of a link-layer packet
3155 * inside another protocol stack, need to be done to check for those
3156 * link-layer packets (and that haven't already been done by a check
3157 * for that encapsulation).
3158 */
3159 static struct block *
3160 gen_prevlinkhdr_check(compiler_state_t *cstate)
3161 {
3162 struct block *b0;
3163
3164 if (cstate->is_geneve)
3165 return gen_geneve_ll_check(cstate);
3166
3167 switch (cstate->prevlinktype) {
3168
3169 case DLT_SUNATM:
3170 /*
3171 * This is LANE-encapsulated Ethernet; check that the LANE
3172 * packet doesn't begin with an LE Control marker, i.e.
3173 * that it's data, not a control message.
3174 *
3175 * (We've already generated a test for LANE.)
3176 */
3177 b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3178 gen_not(b0);
3179 return b0;
3180
3181 default:
3182 /*
3183 * No such tests are necessary.
3184 */
3185 return NULL;
3186 }
3187 /*NOTREACHED*/
3188 }
3189
3190 /*
3191 * The three different values we should check for when checking for an
3192 * IPv6 packet with DLT_NULL.
3193 */
3194 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3195 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3196 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3197
3198 /*
3199 * Generate code to match a particular packet type by matching the
3200 * link-layer type field or fields in the 802.2 LLC header.
3201 *
3202 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3203 * value, if <= ETHERMTU.
3204 */
3205 static struct block *
3206 gen_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3207 {
3208 struct block *b0, *b1, *b2;
3209 const char *description;
3210
3211 /* are we checking MPLS-encapsulated packets? */
3212 if (cstate->label_stack_depth > 0)
3213 return gen_mpls_linktype(cstate, ll_proto);
3214
3215 switch (cstate->linktype) {
3216
3217 case DLT_EN10MB:
3218 case DLT_NETANALYZER:
3219 case DLT_NETANALYZER_TRANSPARENT:
3220 /* Geneve has an EtherType regardless of whether there is an
3221 * L2 header. */
3222 if (!cstate->is_geneve)
3223 b0 = gen_prevlinkhdr_check(cstate);
3224 else
3225 b0 = NULL;
3226
3227 b1 = gen_ether_linktype(cstate, ll_proto);
3228 if (b0 != NULL)
3229 gen_and(b0, b1);
3230 return b1;
3231 /*NOTREACHED*/
3232
3233 case DLT_C_HDLC:
3234 case DLT_HDLC:
3235 switch (ll_proto) {
3236
3237 case LLCSAP_ISONS:
3238 ll_proto = (ll_proto << 8 | LLCSAP_ISONS);
3239 /* fall through */
3240
3241 default:
3242 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3243 /*NOTREACHED*/
3244 }
3245
3246 case DLT_IEEE802_11:
3247 case DLT_PRISM_HEADER:
3248 case DLT_IEEE802_11_RADIO_AVS:
3249 case DLT_IEEE802_11_RADIO:
3250 case DLT_PPI:
3251 /*
3252 * Check that we have a data frame.
3253 */
3254 b0 = gen_check_802_11_data_frame(cstate);
3255
3256 /*
3257 * Now check for the specified link-layer type.
3258 */
3259 b1 = gen_llc_linktype(cstate, ll_proto);
3260 gen_and(b0, b1);
3261 return b1;
3262 /*NOTREACHED*/
3263
3264 case DLT_FDDI:
3265 /*
3266 * XXX - check for LLC frames.
3267 */
3268 return gen_llc_linktype(cstate, ll_proto);
3269 /*NOTREACHED*/
3270
3271 case DLT_IEEE802:
3272 /*
3273 * XXX - check for LLC PDUs, as per IEEE 802.5.
3274 */
3275 return gen_llc_linktype(cstate, ll_proto);
3276 /*NOTREACHED*/
3277
3278 case DLT_ATM_RFC1483:
3279 case DLT_ATM_CLIP:
3280 case DLT_IP_OVER_FC:
3281 return gen_llc_linktype(cstate, ll_proto);
3282 /*NOTREACHED*/
3283
3284 case DLT_SUNATM:
3285 /*
3286 * Check for an LLC-encapsulated version of this protocol;
3287 * if we were checking for LANE, linktype would no longer
3288 * be DLT_SUNATM.
3289 *
3290 * Check for LLC encapsulation and then check the protocol.
3291 */
3292 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3293 b1 = gen_llc_linktype(cstate, ll_proto);
3294 gen_and(b0, b1);
3295 return b1;
3296 /*NOTREACHED*/
3297
3298 case DLT_LINUX_SLL:
3299 return gen_linux_sll_linktype(cstate, ll_proto);
3300 /*NOTREACHED*/
3301
3302 case DLT_SLIP:
3303 case DLT_SLIP_BSDOS:
3304 case DLT_RAW:
3305 /*
3306 * These types don't provide any type field; packets
3307 * are always IPv4 or IPv6.
3308 *
3309 * XXX - for IPv4, check for a version number of 4, and,
3310 * for IPv6, check for a version number of 6?
3311 */
3312 switch (ll_proto) {
3313
3314 case ETHERTYPE_IP:
3315 /* Check for a version number of 4. */
3316 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3317
3318 case ETHERTYPE_IPV6:
3319 /* Check for a version number of 6. */
3320 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3321
3322 default:
3323 return gen_false(cstate); /* always false */
3324 }
3325 /*NOTREACHED*/
3326
3327 case DLT_IPV4:
3328 /*
3329 * Raw IPv4, so no type field.
3330 */
3331 if (ll_proto == ETHERTYPE_IP)
3332 return gen_true(cstate); /* always true */
3333
3334 /* Checking for something other than IPv4; always false */
3335 return gen_false(cstate);
3336 /*NOTREACHED*/
3337
3338 case DLT_IPV6:
3339 /*
3340 * Raw IPv6, so no type field.
3341 */
3342 if (ll_proto == ETHERTYPE_IPV6)
3343 return gen_true(cstate); /* always true */
3344
3345 /* Checking for something other than IPv6; always false */
3346 return gen_false(cstate);
3347 /*NOTREACHED*/
3348
3349 case DLT_PPP:
3350 case DLT_PPP_PPPD:
3351 case DLT_PPP_SERIAL:
3352 case DLT_PPP_ETHER:
3353 /*
3354 * We use Ethernet protocol types inside libpcap;
3355 * map them to the corresponding PPP protocol types.
3356 */
3357 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3358 ethertype_to_ppptype(ll_proto));
3359 /*NOTREACHED*/
3360
3361 case DLT_PPP_BSDOS:
3362 /*
3363 * We use Ethernet protocol types inside libpcap;
3364 * map them to the corresponding PPP protocol types.
3365 */
3366 switch (ll_proto) {
3367
3368 case ETHERTYPE_IP:
3369 /*
3370 * Also check for Van Jacobson-compressed IP.
3371 * XXX - do this for other forms of PPP?
3372 */
3373 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3374 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3375 gen_or(b0, b1);
3376 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3377 gen_or(b1, b0);
3378 return b0;
3379
3380 default:
3381 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3382 ethertype_to_ppptype(ll_proto));
3383 }
3384 /*NOTREACHED*/
3385
3386 case DLT_NULL:
3387 case DLT_LOOP:
3388 case DLT_ENC:
3389 switch (ll_proto) {
3390
3391 case ETHERTYPE_IP:
3392 return (gen_loopback_linktype(cstate, AF_INET));
3393
3394 case ETHERTYPE_IPV6:
3395 /*
3396 * AF_ values may, unfortunately, be platform-
3397 * dependent; AF_INET isn't, because everybody
3398 * used 4.2BSD's value, but AF_INET6 is, because
3399 * 4.2BSD didn't have a value for it (given that
3400 * IPv6 didn't exist back in the early 1980's),
3401 * and they all picked their own values.
3402 *
3403 * This means that, if we're reading from a
3404 * savefile, we need to check for all the
3405 * possible values.
3406 *
3407 * If we're doing a live capture, we only need
3408 * to check for this platform's value; however,
3409 * Npcap uses 24, which isn't Windows's AF_INET6
3410 * value. (Given the multiple different values,
3411 * programs that read pcap files shouldn't be
3412 * checking for their platform's AF_INET6 value
3413 * anyway, they should check for all of the
3414 * possible values. and they might as well do
3415 * that even for live captures.)
3416 */
3417 if (cstate->bpf_pcap->rfile != NULL) {
3418 /*
3419 * Savefile - check for all three
3420 * possible IPv6 values.
3421 */
3422 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3423 b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3424 gen_or(b0, b1);
3425 b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3426 gen_or(b0, b1);
3427 return (b1);
3428 } else {
3429 /*
3430 * Live capture, so we only need to
3431 * check for the value used on this
3432 * platform.
3433 */
3434 #ifdef _WIN32
3435 /*
3436 * Npcap doesn't use Windows's AF_INET6,
3437 * as that collides with AF_IPX on
3438 * some BSDs (both have the value 23).
3439 * Instead, it uses 24.
3440 */
3441 return (gen_loopback_linktype(cstate, 24));
3442 #else /* _WIN32 */
3443 #ifdef AF_INET6
3444 return (gen_loopback_linktype(cstate, AF_INET6));
3445 #else /* AF_INET6 */
3446 /*
3447 * I guess this platform doesn't support
3448 * IPv6, so we just reject all packets.
3449 */
3450 return gen_false(cstate);
3451 #endif /* AF_INET6 */
3452 #endif /* _WIN32 */
3453 }
3454
3455 default:
3456 /*
3457 * Not a type on which we support filtering.
3458 * XXX - support those that have AF_ values
3459 * #defined on this platform, at least?
3460 */
3461 return gen_false(cstate);
3462 }
3463
3464 case DLT_PFLOG:
3465 /*
3466 * af field is host byte order in contrast to the rest of
3467 * the packet.
3468 */
3469 if (ll_proto == ETHERTYPE_IP)
3470 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3471 BPF_B, AF_INET));
3472 else if (ll_proto == ETHERTYPE_IPV6)
3473 return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3474 BPF_B, AF_INET6));
3475 else
3476 return gen_false(cstate);
3477 /*NOTREACHED*/
3478
3479 case DLT_ARCNET:
3480 case DLT_ARCNET_LINUX:
3481 /*
3482 * XXX should we check for first fragment if the protocol
3483 * uses PHDS?
3484 */
3485 switch (ll_proto) {
3486
3487 default:
3488 return gen_false(cstate);
3489
3490 case ETHERTYPE_IPV6:
3491 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3492 ARCTYPE_INET6));
3493
3494 case ETHERTYPE_IP:
3495 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3496 ARCTYPE_IP);
3497 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3498 ARCTYPE_IP_OLD);
3499 gen_or(b0, b1);
3500 return (b1);
3501
3502 case ETHERTYPE_ARP:
3503 b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3504 ARCTYPE_ARP);
3505 b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3506 ARCTYPE_ARP_OLD);
3507 gen_or(b0, b1);
3508 return (b1);
3509
3510 case ETHERTYPE_REVARP:
3511 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3512 ARCTYPE_REVARP));
3513
3514 case ETHERTYPE_ATALK:
3515 return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3516 ARCTYPE_ATALK));
3517 }
3518 /*NOTREACHED*/
3519
3520 case DLT_LTALK:
3521 switch (ll_proto) {
3522 case ETHERTYPE_ATALK:
3523 return gen_true(cstate);
3524 default:
3525 return gen_false(cstate);
3526 }
3527 /*NOTREACHED*/
3528
3529 case DLT_FRELAY:
3530 /*
3531 * XXX - assumes a 2-byte Frame Relay header with
3532 * DLCI and flags. What if the address is longer?
3533 */
3534 switch (ll_proto) {
3535
3536 case ETHERTYPE_IP:
3537 /*
3538 * Check for the special NLPID for IP.
3539 */
3540 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3541
3542 case ETHERTYPE_IPV6:
3543 /*
3544 * Check for the special NLPID for IPv6.
3545 */
3546 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3547
3548 case LLCSAP_ISONS:
3549 /*
3550 * Check for several OSI protocols.
3551 *
3552 * Frame Relay packets typically have an OSI
3553 * NLPID at the beginning; we check for each
3554 * of them.
3555 *
3556 * What we check for is the NLPID and a frame
3557 * control field of UI, i.e. 0x03 followed
3558 * by the NLPID.
3559 */
3560 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3561 b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3562 b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3563 gen_or(b1, b2);
3564 gen_or(b0, b2);
3565 return b2;
3566
3567 default:
3568 return gen_false(cstate);
3569 }
3570 /*NOTREACHED*/
3571
3572 case DLT_MFR:
3573 bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3574
3575 case DLT_JUNIPER_MFR:
3576 case DLT_JUNIPER_MLFR:
3577 case DLT_JUNIPER_MLPPP:
3578 case DLT_JUNIPER_ATM1:
3579 case DLT_JUNIPER_ATM2:
3580 case DLT_JUNIPER_PPPOE:
3581 case DLT_JUNIPER_PPPOE_ATM:
3582 case DLT_JUNIPER_GGSN:
3583 case DLT_JUNIPER_ES:
3584 case DLT_JUNIPER_MONITOR:
3585 case DLT_JUNIPER_SERVICES:
3586 case DLT_JUNIPER_ETHER:
3587 case DLT_JUNIPER_PPP:
3588 case DLT_JUNIPER_FRELAY:
3589 case DLT_JUNIPER_CHDLC:
3590 case DLT_JUNIPER_VP:
3591 case DLT_JUNIPER_ST:
3592 case DLT_JUNIPER_ISM:
3593 case DLT_JUNIPER_VS:
3594 case DLT_JUNIPER_SRX_E2E:
3595 case DLT_JUNIPER_FIBRECHANNEL:
3596 case DLT_JUNIPER_ATM_CEMIC:
3597
3598 /* just lets verify the magic number for now -
3599 * on ATM we may have up to 6 different encapsulations on the wire
3600 * and need a lot of heuristics to figure out that the payload
3601 * might be;
3602 *
3603 * FIXME encapsulation specific BPF_ filters
3604 */
3605 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3606
3607 case DLT_BACNET_MS_TP:
3608 return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3609
3610 case DLT_IPNET:
3611 return gen_ipnet_linktype(cstate, ll_proto);
3612
3613 case DLT_LINUX_IRDA:
3614 bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3615
3616 case DLT_DOCSIS:
3617 bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3618
3619 case DLT_MTP2:
3620 case DLT_MTP2_WITH_PHDR:
3621 bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3622
3623 case DLT_ERF:
3624 bpf_error(cstate, "ERF link-layer type filtering not implemented");
3625
3626 case DLT_PFSYNC:
3627 bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3628
3629 case DLT_LINUX_LAPD:
3630 bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3631
3632 case DLT_USB_FREEBSD:
3633 case DLT_USB_LINUX:
3634 case DLT_USB_LINUX_MMAPPED:
3635 case DLT_USBPCAP:
3636 bpf_error(cstate, "USB link-layer type filtering not implemented");
3637
3638 case DLT_BLUETOOTH_HCI_H4:
3639 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3640 bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3641
3642 case DLT_CAN20B:
3643 case DLT_CAN_SOCKETCAN:
3644 bpf_error(cstate, "CAN link-layer type filtering not implemented");
3645
3646 case DLT_IEEE802_15_4:
3647 case DLT_IEEE802_15_4_LINUX:
3648 case DLT_IEEE802_15_4_NONASK_PHY:
3649 case DLT_IEEE802_15_4_NOFCS:
3650 case DLT_IEEE802_15_4_TAP:
3651 bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3652
3653 case DLT_IEEE802_16_MAC_CPS_RADIO:
3654 bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3655
3656 case DLT_SITA:
3657 bpf_error(cstate, "SITA link-layer type filtering not implemented");
3658
3659 case DLT_RAIF1:
3660 bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3661
3662 case DLT_IPMB_KONTRON:
3663 case DLT_IPMB_LINUX:
3664 bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3665
3666 case DLT_AX25_KISS:
3667 bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3668
3669 case DLT_NFLOG:
3670 /* Using the fixed-size NFLOG header it is possible to tell only
3671 * the address family of the packet, other meaningful data is
3672 * either missing or behind TLVs.
3673 */
3674 bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3675
3676 default:
3677 /*
3678 * Does this link-layer header type have a field
3679 * indicating the type of the next protocol? If
3680 * so, off_linktype.constant_part will be the offset of that
3681 * field in the packet; if not, it will be OFFSET_NOT_SET.
3682 */
3683 if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3684 /*
3685 * Yes; assume it's an Ethernet type. (If
3686 * it's not, it needs to be handled specially
3687 * above.)
3688 */
3689 return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, ll_proto);
3690 /*NOTREACHED */
3691 } else {
3692 /*
3693 * No; report an error.
3694 */
3695 description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3696 bpf_error(cstate, "%s link-layer type filtering not implemented",
3697 description);
3698 /*NOTREACHED */
3699 }
3700 }
3701 }
3702
3703 /*
3704 * Check for an LLC SNAP packet with a given organization code and
3705 * protocol type; we check the entire contents of the 802.2 LLC and
3706 * snap headers, checking for DSAP and SSAP of SNAP and a control
3707 * field of 0x03 in the LLC header, and for the specified organization
3708 * code and protocol type in the SNAP header.
3709 */
3710 static struct block *
3711 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3712 {
3713 u_char snapblock[8];
3714
3715 snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
3716 snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
3717 snapblock[2] = 0x03; /* control = UI */
3718 snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */
3719 snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */
3720 snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */
3721 snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */
3722 snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */
3723 return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3724 }
3725
3726 /*
3727 * Generate code to match frames with an LLC header.
3728 */
3729 static struct block *
3730 gen_llc_internal(compiler_state_t *cstate)
3731 {
3732 struct block *b0, *b1;
3733
3734 switch (cstate->linktype) {
3735
3736 case DLT_EN10MB:
3737 /*
3738 * We check for an Ethernet type field less than
3739 * 1500, which means it's an 802.3 length field.
3740 */
3741 b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3742 gen_not(b0);
3743
3744 /*
3745 * Now check for the purported DSAP and SSAP not being
3746 * 0xFF, to rule out NetWare-over-802.3.
3747 */
3748 b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, 0xFFFF);
3749 gen_not(b1);
3750 gen_and(b0, b1);
3751 return b1;
3752
3753 case DLT_SUNATM:
3754 /*
3755 * We check for LLC traffic.
3756 */
3757 b0 = gen_atmtype_llc(cstate);
3758 return b0;
3759
3760 case DLT_IEEE802: /* Token Ring */
3761 /*
3762 * XXX - check for LLC frames.
3763 */
3764 return gen_true(cstate);
3765
3766 case DLT_FDDI:
3767 /*
3768 * XXX - check for LLC frames.
3769 */
3770 return gen_true(cstate);
3771
3772 case DLT_ATM_RFC1483:
3773 /*
3774 * For LLC encapsulation, these are defined to have an
3775 * 802.2 LLC header.
3776 *
3777 * For VC encapsulation, they don't, but there's no
3778 * way to check for that; the protocol used on the VC
3779 * is negotiated out of band.
3780 */
3781 return gen_true(cstate);
3782
3783 case DLT_IEEE802_11:
3784 case DLT_PRISM_HEADER:
3785 case DLT_IEEE802_11_RADIO:
3786 case DLT_IEEE802_11_RADIO_AVS:
3787 case DLT_PPI:
3788 /*
3789 * Check that we have a data frame.
3790 */
3791 b0 = gen_check_802_11_data_frame(cstate);
3792 return b0;
3793
3794 default:
3795 bpf_error(cstate, "'llc' not supported for %s",
3796 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3797 /*NOTREACHED*/
3798 }
3799 }
3800
3801 struct block *
3802 gen_llc(compiler_state_t *cstate)
3803 {
3804 /*
3805 * Catch errors reported by us and routines below us, and return NULL
3806 * on an error.
3807 */
3808 if (setjmp(cstate->top_ctx))
3809 return (NULL);
3810
3811 return gen_llc_internal(cstate);
3812 }
3813
3814 struct block *
3815 gen_llc_i(compiler_state_t *cstate)
3816 {
3817 struct block *b0, *b1;
3818 struct slist *s;
3819
3820 /*
3821 * Catch errors reported by us and routines below us, and return NULL
3822 * on an error.
3823 */
3824 if (setjmp(cstate->top_ctx))
3825 return (NULL);
3826
3827 /*
3828 * Check whether this is an LLC frame.
3829 */
3830 b0 = gen_llc_internal(cstate);
3831
3832 /*
3833 * Load the control byte and test the low-order bit; it must
3834 * be clear for I frames.
3835 */
3836 s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3837 b1 = new_block(cstate, JMP(BPF_JSET));
3838 b1->s.k = 0x01;
3839 b1->stmts = s;
3840 gen_not(b1);
3841 gen_and(b0, b1);
3842 return b1;
3843 }
3844
3845 struct block *
3846 gen_llc_s(compiler_state_t *cstate)
3847 {
3848 struct block *b0, *b1;
3849
3850 /*
3851 * Catch errors reported by us and routines below us, and return NULL
3852 * on an error.
3853 */
3854 if (setjmp(cstate->top_ctx))
3855 return (NULL);
3856
3857 /*
3858 * Check whether this is an LLC frame.
3859 */
3860 b0 = gen_llc_internal(cstate);
3861
3862 /*
3863 * Now compare the low-order 2 bit of the control byte against
3864 * the appropriate value for S frames.
3865 */
3866 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3867 gen_and(b0, b1);
3868 return b1;
3869 }
3870
3871 struct block *
3872 gen_llc_u(compiler_state_t *cstate)
3873 {
3874 struct block *b0, *b1;
3875
3876 /*
3877 * Catch errors reported by us and routines below us, and return NULL
3878 * on an error.
3879 */
3880 if (setjmp(cstate->top_ctx))
3881 return (NULL);
3882
3883 /*
3884 * Check whether this is an LLC frame.
3885 */
3886 b0 = gen_llc_internal(cstate);
3887
3888 /*
3889 * Now compare the low-order 2 bit of the control byte against
3890 * the appropriate value for U frames.
3891 */
3892 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3893 gen_and(b0, b1);
3894 return b1;
3895 }
3896
3897 struct block *
3898 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3899 {
3900 struct block *b0, *b1;
3901
3902 /*
3903 * Catch errors reported by us and routines below us, and return NULL
3904 * on an error.
3905 */
3906 if (setjmp(cstate->top_ctx))
3907 return (NULL);
3908
3909 /*
3910 * Check whether this is an LLC frame.
3911 */
3912 b0 = gen_llc_internal(cstate);
3913
3914 /*
3915 * Now check for an S frame with the appropriate type.
3916 */
3917 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3918 gen_and(b0, b1);
3919 return b1;
3920 }
3921
3922 struct block *
3923 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3924 {
3925 struct block *b0, *b1;
3926
3927 /*
3928 * Catch errors reported by us and routines below us, and return NULL
3929 * on an error.
3930 */
3931 if (setjmp(cstate->top_ctx))
3932 return (NULL);
3933
3934 /*
3935 * Check whether this is an LLC frame.
3936 */
3937 b0 = gen_llc_internal(cstate);
3938
3939 /*
3940 * Now check for a U frame with the appropriate type.
3941 */
3942 b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3943 gen_and(b0, b1);
3944 return b1;
3945 }
3946
3947 /*
3948 * Generate code to match a particular packet type, for link-layer types
3949 * using 802.2 LLC headers.
3950 *
3951 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3952 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3953 *
3954 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3955 * value, if <= ETHERMTU. We use that to determine whether to
3956 * match the DSAP or both DSAP and LSAP or to check the OUI and
3957 * protocol ID in a SNAP header.
3958 */
3959 static struct block *
3960 gen_llc_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
3961 {
3962 /*
3963 * XXX - handle token-ring variable-length header.
3964 */
3965 switch (ll_proto) {
3966
3967 case LLCSAP_IP:
3968 case LLCSAP_ISONS:
3969 case LLCSAP_NETBEUI:
3970 /*
3971 * XXX - should we check both the DSAP and the
3972 * SSAP, like this, or should we check just the
3973 * DSAP, as we do for other SAP values?
3974 */
3975 return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3976 ((ll_proto << 8) | ll_proto));
3977
3978 case LLCSAP_IPX:
3979 /*
3980 * XXX - are there ever SNAP frames for IPX on
3981 * non-Ethernet 802.x networks?
3982 */
3983 return gen_cmp(cstate, OR_LLC, 0, BPF_B, LLCSAP_IPX);
3984
3985 case ETHERTYPE_ATALK:
3986 /*
3987 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3988 * SNAP packets with an organization code of
3989 * 0x080007 (Apple, for Appletalk) and a protocol
3990 * type of ETHERTYPE_ATALK (Appletalk).
3991 *
3992 * XXX - check for an organization code of
3993 * encapsulated Ethernet as well?
3994 */
3995 return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3996
3997 default:
3998 /*
3999 * XXX - we don't have to check for IPX 802.3
4000 * here, but should we check for the IPX Ethertype?
4001 */
4002 if (ll_proto <= ETHERMTU) {
4003 /*
4004 * This is an LLC SAP value, so check
4005 * the DSAP.
4006 */
4007 return gen_cmp(cstate, OR_LLC, 0, BPF_B, ll_proto);
4008 } else {
4009 /*
4010 * This is an Ethernet type; we assume that it's
4011 * unlikely that it'll appear in the right place
4012 * at random, and therefore check only the
4013 * location that would hold the Ethernet type
4014 * in a SNAP frame with an organization code of
4015 * 0x000000 (encapsulated Ethernet).
4016 *
4017 * XXX - if we were to check for the SNAP DSAP and
4018 * LSAP, as per XXX, and were also to check for an
4019 * organization code of 0x000000 (encapsulated
4020 * Ethernet), we'd do
4021 *
4022 * return gen_snap(cstate, 0x000000, ll_proto);
4023 *
4024 * here; for now, we don't, as per the above.
4025 * I don't know whether it's worth the extra CPU
4026 * time to do the right check or not.
4027 */
4028 return gen_cmp(cstate, OR_LLC, 6, BPF_H, ll_proto);
4029 }
4030 }
4031 }
4032
4033 static struct block *
4034 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4035 int dir, bpf_u_int32 ll_proto, u_int src_off, u_int dst_off)
4036 {
4037 struct block *b0, *b1;
4038 u_int offset;
4039
4040 switch (dir) {
4041
4042 case Q_SRC:
4043 offset = src_off;
4044 break;
4045
4046 case Q_DST:
4047 offset = dst_off;
4048 break;
4049
4050 case Q_AND:
4051 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4052 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4053 gen_and(b0, b1);
4054 return b1;
4055
4056 case Q_DEFAULT:
4057 case Q_OR:
4058 b0 = gen_hostop(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4059 b1 = gen_hostop(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4060 gen_or(b0, b1);
4061 return b1;
4062
4063 case Q_ADDR1:
4064 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4065 /*NOTREACHED*/
4066
4067 case Q_ADDR2:
4068 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4069 /*NOTREACHED*/
4070
4071 case Q_ADDR3:
4072 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4073 /*NOTREACHED*/
4074
4075 case Q_ADDR4:
4076 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4077 /*NOTREACHED*/
4078
4079 case Q_RA:
4080 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4081 /*NOTREACHED*/
4082
4083 case Q_TA:
4084 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4085 /*NOTREACHED*/
4086
4087 default:
4088 abort();
4089 /*NOTREACHED*/
4090 }
4091 b0 = gen_linktype(cstate, ll_proto);
4092 b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, addr, mask);
4093 gen_and(b0, b1);
4094 return b1;
4095 }
4096
4097 #ifdef INET6
4098 static struct block *
4099 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4100 struct in6_addr *mask, int dir, bpf_u_int32 ll_proto, u_int src_off,
4101 u_int dst_off)
4102 {
4103 struct block *b0, *b1;
4104 u_int offset;
4105 /*
4106 * Code below needs to access four separate 32-bit parts of the 128-bit
4107 * IPv6 address and mask. In some OSes this is as simple as using the
4108 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4109 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4110 * far as libpcap sees it. Hence copy the data before use to avoid
4111 * potential unaligned memory access and the associated compiler
4112 * warnings (whether genuine or not).
4113 */
4114 bpf_u_int32 a[4], m[4];
4115
4116 switch (dir) {
4117
4118 case Q_SRC:
4119 offset = src_off;
4120 break;
4121
4122 case Q_DST:
4123 offset = dst_off;
4124 break;
4125
4126 case Q_AND:
4127 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4128 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4129 gen_and(b0, b1);
4130 return b1;
4131
4132 case Q_DEFAULT:
4133 case Q_OR:
4134 b0 = gen_hostop6(cstate, addr, mask, Q_SRC, ll_proto, src_off, dst_off);
4135 b1 = gen_hostop6(cstate, addr, mask, Q_DST, ll_proto, src_off, dst_off);
4136 gen_or(b0, b1);
4137 return b1;
4138
4139 case Q_ADDR1:
4140 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4141 /*NOTREACHED*/
4142
4143 case Q_ADDR2:
4144 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4145 /*NOTREACHED*/
4146
4147 case Q_ADDR3:
4148 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4149 /*NOTREACHED*/
4150
4151 case Q_ADDR4:
4152 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4153 /*NOTREACHED*/
4154
4155 case Q_RA:
4156 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4157 /*NOTREACHED*/
4158
4159 case Q_TA:
4160 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4161 /*NOTREACHED*/
4162
4163 default:
4164 abort();
4165 /*NOTREACHED*/
4166 }
4167 /* this order is important */
4168 memcpy(a, addr, sizeof(a));
4169 memcpy(m, mask, sizeof(m));
4170 b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4171 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4172 gen_and(b0, b1);
4173 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4174 gen_and(b0, b1);
4175 b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4176 gen_and(b0, b1);
4177 b0 = gen_linktype(cstate, ll_proto);
4178 gen_and(b0, b1);
4179 return b1;
4180 }
4181 #endif
4182
4183 static struct block *
4184 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4185 {
4186 register struct block *b0, *b1;
4187
4188 switch (dir) {
4189 case Q_SRC:
4190 return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4191
4192 case Q_DST:
4193 return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4194
4195 case Q_AND:
4196 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4197 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4198 gen_and(b0, b1);
4199 return b1;
4200
4201 case Q_DEFAULT:
4202 case Q_OR:
4203 b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4204 b1 = gen_ehostop(cstate, eaddr, Q_DST);
4205 gen_or(b0, b1);
4206 return b1;
4207
4208 case Q_ADDR1:
4209 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4210 /*NOTREACHED*/
4211
4212 case Q_ADDR2:
4213 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4214 /*NOTREACHED*/
4215
4216 case Q_ADDR3:
4217 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4218 /*NOTREACHED*/
4219
4220 case Q_ADDR4:
4221 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4222 /*NOTREACHED*/
4223
4224 case Q_RA:
4225 bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4226 /*NOTREACHED*/
4227
4228 case Q_TA:
4229 bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4230 /*NOTREACHED*/
4231 }
4232 abort();
4233 /*NOTREACHED*/
4234 }
4235
4236 /*
4237 * Like gen_ehostop, but for DLT_FDDI
4238 */
4239 static struct block *
4240 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4241 {
4242 struct block *b0, *b1;
4243
4244 switch (dir) {
4245 case Q_SRC:
4246 return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4247
4248 case Q_DST:
4249 return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4250
4251 case Q_AND:
4252 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4253 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4254 gen_and(b0, b1);
4255 return b1;
4256
4257 case Q_DEFAULT:
4258 case Q_OR:
4259 b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4260 b1 = gen_fhostop(cstate, eaddr, Q_DST);
4261 gen_or(b0, b1);
4262 return b1;
4263
4264 case Q_ADDR1:
4265 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4266 /*NOTREACHED*/
4267
4268 case Q_ADDR2:
4269 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4270 /*NOTREACHED*/
4271
4272 case Q_ADDR3:
4273 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4274 /*NOTREACHED*/
4275
4276 case Q_ADDR4:
4277 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4278 /*NOTREACHED*/
4279
4280 case Q_RA:
4281 bpf_error(cstate, "'ra' is only supported on 802.11");
4282 /*NOTREACHED*/
4283
4284 case Q_TA:
4285 bpf_error(cstate, "'ta' is only supported on 802.11");
4286 /*NOTREACHED*/
4287 }
4288 abort();
4289 /*NOTREACHED*/
4290 }
4291
4292 /*
4293 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4294 */
4295 static struct block *
4296 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4297 {
4298 register struct block *b0, *b1;
4299
4300 switch (dir) {
4301 case Q_SRC:
4302 return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4303
4304 case Q_DST:
4305 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4306
4307 case Q_AND:
4308 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4309 b1 = gen_thostop(cstate, eaddr, Q_DST);
4310 gen_and(b0, b1);
4311 return b1;
4312
4313 case Q_DEFAULT:
4314 case Q_OR:
4315 b0 = gen_thostop(cstate, eaddr, Q_SRC);
4316 b1 = gen_thostop(cstate, eaddr, Q_DST);
4317 gen_or(b0, b1);
4318 return b1;
4319
4320 case Q_ADDR1:
4321 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4322 /*NOTREACHED*/
4323
4324 case Q_ADDR2:
4325 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4326 /*NOTREACHED*/
4327
4328 case Q_ADDR3:
4329 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4330 /*NOTREACHED*/
4331
4332 case Q_ADDR4:
4333 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4334 /*NOTREACHED*/
4335
4336 case Q_RA:
4337 bpf_error(cstate, "'ra' is only supported on 802.11");
4338 /*NOTREACHED*/
4339
4340 case Q_TA:
4341 bpf_error(cstate, "'ta' is only supported on 802.11");
4342 /*NOTREACHED*/
4343 }
4344 abort();
4345 /*NOTREACHED*/
4346 }
4347
4348 /*
4349 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4350 * various 802.11 + radio headers.
4351 */
4352 static struct block *
4353 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4354 {
4355 register struct block *b0, *b1, *b2;
4356 register struct slist *s;
4357
4358 #ifdef ENABLE_WLAN_FILTERING_PATCH
4359 /*
4360 * TODO GV 20070613
4361 * We need to disable the optimizer because the optimizer is buggy
4362 * and wipes out some LD instructions generated by the below
4363 * code to validate the Frame Control bits
4364 */
4365 cstate->no_optimize = 1;
4366 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4367
4368 switch (dir) {
4369 case Q_SRC:
4370 /*
4371 * Oh, yuk.
4372 *
4373 * For control frames, there is no SA.
4374 *
4375 * For management frames, SA is at an
4376 * offset of 10 from the beginning of
4377 * the packet.
4378 *
4379 * For data frames, SA is at an offset
4380 * of 10 from the beginning of the packet
4381 * if From DS is clear, at an offset of
4382 * 16 from the beginning of the packet
4383 * if From DS is set and To DS is clear,
4384 * and an offset of 24 from the beginning
4385 * of the packet if From DS is set and To DS
4386 * is set.
4387 */
4388
4389 /*
4390 * Generate the tests to be done for data frames
4391 * with From DS set.
4392 *
4393 * First, check for To DS set, i.e. check "link[1] & 0x01".
4394 */
4395 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4396 b1 = new_block(cstate, JMP(BPF_JSET));
4397 b1->s.k = 0x01; /* To DS */
4398 b1->stmts = s;
4399
4400 /*
4401 * If To DS is set, the SA is at 24.
4402 */
4403 b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4404 gen_and(b1, b0);
4405
4406 /*
4407 * Now, check for To DS not set, i.e. check
4408 * "!(link[1] & 0x01)".
4409 */
4410 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4411 b2 = new_block(cstate, JMP(BPF_JSET));
4412 b2->s.k = 0x01; /* To DS */
4413 b2->stmts = s;
4414 gen_not(b2);
4415
4416 /*
4417 * If To DS is not set, the SA is at 16.
4418 */
4419 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4420 gen_and(b2, b1);
4421
4422 /*
4423 * Now OR together the last two checks. That gives
4424 * the complete set of checks for data frames with
4425 * From DS set.
4426 */
4427 gen_or(b1, b0);
4428
4429 /*
4430 * Now check for From DS being set, and AND that with
4431 * the ORed-together checks.
4432 */
4433 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4434 b1 = new_block(cstate, JMP(BPF_JSET));
4435 b1->s.k = 0x02; /* From DS */
4436 b1->stmts = s;
4437 gen_and(b1, b0);
4438
4439 /*
4440 * Now check for data frames with From DS not set.
4441 */
4442 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4443 b2 = new_block(cstate, JMP(BPF_JSET));
4444 b2->s.k = 0x02; /* From DS */
4445 b2->stmts = s;
4446 gen_not(b2);
4447
4448 /*
4449 * If From DS isn't set, the SA is at 10.
4450 */
4451 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4452 gen_and(b2, b1);
4453
4454 /*
4455 * Now OR together the checks for data frames with
4456 * From DS not set and for data frames with From DS
4457 * set; that gives the checks done for data frames.
4458 */
4459 gen_or(b1, b0);
4460
4461 /*
4462 * Now check for a data frame.
4463 * I.e, check "link[0] & 0x08".
4464 */
4465 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4466 b1 = new_block(cstate, JMP(BPF_JSET));
4467 b1->s.k = 0x08;
4468 b1->stmts = s;
4469
4470 /*
4471 * AND that with the checks done for data frames.
4472 */
4473 gen_and(b1, b0);
4474
4475 /*
4476 * If the high-order bit of the type value is 0, this
4477 * is a management frame.
4478 * I.e, check "!(link[0] & 0x08)".
4479 */
4480 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4481 b2 = new_block(cstate, JMP(BPF_JSET));
4482 b2->s.k = 0x08;
4483 b2->stmts = s;
4484 gen_not(b2);
4485
4486 /*
4487 * For management frames, the SA is at 10.
4488 */
4489 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4490 gen_and(b2, b1);
4491
4492 /*
4493 * OR that with the checks done for data frames.
4494 * That gives the checks done for management and
4495 * data frames.
4496 */
4497 gen_or(b1, b0);
4498
4499 /*
4500 * If the low-order bit of the type value is 1,
4501 * this is either a control frame or a frame
4502 * with a reserved type, and thus not a
4503 * frame with an SA.
4504 *
4505 * I.e., check "!(link[0] & 0x04)".
4506 */
4507 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4508 b1 = new_block(cstate, JMP(BPF_JSET));
4509 b1->s.k = 0x04;
4510 b1->stmts = s;
4511 gen_not(b1);
4512
4513 /*
4514 * AND that with the checks for data and management
4515 * frames.
4516 */
4517 gen_and(b1, b0);
4518 return b0;
4519
4520 case Q_DST:
4521 /*
4522 * Oh, yuk.
4523 *
4524 * For control frames, there is no DA.
4525 *
4526 * For management frames, DA is at an
4527 * offset of 4 from the beginning of
4528 * the packet.
4529 *
4530 * For data frames, DA is at an offset
4531 * of 4 from the beginning of the packet
4532 * if To DS is clear and at an offset of
4533 * 16 from the beginning of the packet
4534 * if To DS is set.
4535 */
4536
4537 /*
4538 * Generate the tests to be done for data frames.
4539 *
4540 * First, check for To DS set, i.e. "link[1] & 0x01".
4541 */
4542 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4543 b1 = new_block(cstate, JMP(BPF_JSET));
4544 b1->s.k = 0x01; /* To DS */
4545 b1->stmts = s;
4546
4547 /*
4548 * If To DS is set, the DA is at 16.
4549 */
4550 b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4551 gen_and(b1, b0);
4552
4553 /*
4554 * Now, check for To DS not set, i.e. check
4555 * "!(link[1] & 0x01)".
4556 */
4557 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4558 b2 = new_block(cstate, JMP(BPF_JSET));
4559 b2->s.k = 0x01; /* To DS */
4560 b2->stmts = s;
4561 gen_not(b2);
4562
4563 /*
4564 * If To DS is not set, the DA is at 4.
4565 */
4566 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4567 gen_and(b2, b1);
4568
4569 /*
4570 * Now OR together the last two checks. That gives
4571 * the complete set of checks for data frames.
4572 */
4573 gen_or(b1, b0);
4574
4575 /*
4576 * Now check for a data frame.
4577 * I.e, check "link[0] & 0x08".
4578 */
4579 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4580 b1 = new_block(cstate, JMP(BPF_JSET));
4581 b1->s.k = 0x08;
4582 b1->stmts = s;
4583
4584 /*
4585 * AND that with the checks done for data frames.
4586 */
4587 gen_and(b1, b0);
4588
4589 /*
4590 * If the high-order bit of the type value is 0, this
4591 * is a management frame.
4592 * I.e, check "!(link[0] & 0x08)".
4593 */
4594 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4595 b2 = new_block(cstate, JMP(BPF_JSET));
4596 b2->s.k = 0x08;
4597 b2->stmts = s;
4598 gen_not(b2);
4599
4600 /*
4601 * For management frames, the DA is at 4.
4602 */
4603 b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4604 gen_and(b2, b1);
4605
4606 /*
4607 * OR that with the checks done for data frames.
4608 * That gives the checks done for management and
4609 * data frames.
4610 */
4611 gen_or(b1, b0);
4612
4613 /*
4614 * If the low-order bit of the type value is 1,
4615 * this is either a control frame or a frame
4616 * with a reserved type, and thus not a
4617 * frame with an SA.
4618 *
4619 * I.e., check "!(link[0] & 0x04)".
4620 */
4621 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4622 b1 = new_block(cstate, JMP(BPF_JSET));
4623 b1->s.k = 0x04;
4624 b1->stmts = s;
4625 gen_not(b1);
4626
4627 /*
4628 * AND that with the checks for data and management
4629 * frames.
4630 */
4631 gen_and(b1, b0);
4632 return b0;
4633
4634 case Q_AND:
4635 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4636 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4637 gen_and(b0, b1);
4638 return b1;
4639
4640 case Q_DEFAULT:
4641 case Q_OR:
4642 b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4643 b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4644 gen_or(b0, b1);
4645 return b1;
4646
4647 /*
4648 * XXX - add BSSID keyword?
4649 */
4650 case Q_ADDR1:
4651 return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4652
4653 case Q_ADDR2:
4654 /*
4655 * Not present in CTS or ACK control frames.
4656 */
4657 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4658 IEEE80211_FC0_TYPE_MASK);
4659 gen_not(b0);
4660 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4661 IEEE80211_FC0_SUBTYPE_MASK);
4662 gen_not(b1);
4663 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4664 IEEE80211_FC0_SUBTYPE_MASK);
4665 gen_not(b2);
4666 gen_and(b1, b2);
4667 gen_or(b0, b2);
4668 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4669 gen_and(b2, b1);
4670 return b1;
4671
4672 case Q_ADDR3:
4673 /*
4674 * Not present in control frames.
4675 */
4676 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4677 IEEE80211_FC0_TYPE_MASK);
4678 gen_not(b0);
4679 b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4680 gen_and(b0, b1);
4681 return b1;
4682
4683 case Q_ADDR4:
4684 /*
4685 * Present only if the direction mask has both "From DS"
4686 * and "To DS" set. Neither control frames nor management
4687 * frames should have both of those set, so we don't
4688 * check the frame type.
4689 */
4690 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4691 IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4692 b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4693 gen_and(b0, b1);
4694 return b1;
4695
4696 case Q_RA:
4697 /*
4698 * Not present in management frames; addr1 in other
4699 * frames.
4700 */
4701
4702 /*
4703 * If the high-order bit of the type value is 0, this
4704 * is a management frame.
4705 * I.e, check "(link[0] & 0x08)".
4706 */
4707 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4708 b1 = new_block(cstate, JMP(BPF_JSET));
4709 b1->s.k = 0x08;
4710 b1->stmts = s;
4711
4712 /*
4713 * Check addr1.
4714 */
4715 b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4716
4717 /*
4718 * AND that with the check of addr1.
4719 */
4720 gen_and(b1, b0);
4721 return (b0);
4722
4723 case Q_TA:
4724 /*
4725 * Not present in management frames; addr2, if present,
4726 * in other frames.
4727 */
4728
4729 /*
4730 * Not present in CTS or ACK control frames.
4731 */
4732 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4733 IEEE80211_FC0_TYPE_MASK);
4734 gen_not(b0);
4735 b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4736 IEEE80211_FC0_SUBTYPE_MASK);
4737 gen_not(b1);
4738 b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4739 IEEE80211_FC0_SUBTYPE_MASK);
4740 gen_not(b2);
4741 gen_and(b1, b2);
4742 gen_or(b0, b2);
4743
4744 /*
4745 * If the high-order bit of the type value is 0, this
4746 * is a management frame.
4747 * I.e, check "(link[0] & 0x08)".
4748 */
4749 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4750 b1 = new_block(cstate, JMP(BPF_JSET));
4751 b1->s.k = 0x08;
4752 b1->stmts = s;
4753
4754 /*
4755 * AND that with the check for frames other than
4756 * CTS and ACK frames.
4757 */
4758 gen_and(b1, b2);
4759
4760 /*
4761 * Check addr2.
4762 */
4763 b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4764 gen_and(b2, b1);
4765 return b1;
4766 }
4767 abort();
4768 /*NOTREACHED*/
4769 }
4770
4771 /*
4772 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4773 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4774 * as the RFC states.)
4775 */
4776 static struct block *
4777 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4778 {
4779 register struct block *b0, *b1;
4780
4781 switch (dir) {
4782 case Q_SRC:
4783 return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4784
4785 case Q_DST:
4786 return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4787
4788 case Q_AND:
4789 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4790 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4791 gen_and(b0, b1);
4792 return b1;
4793
4794 case Q_DEFAULT:
4795 case Q_OR:
4796 b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4797 b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4798 gen_or(b0, b1);
4799 return b1;
4800
4801 case Q_ADDR1:
4802 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4803 /*NOTREACHED*/
4804
4805 case Q_ADDR2:
4806 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4807 /*NOTREACHED*/
4808
4809 case Q_ADDR3:
4810 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4811 /*NOTREACHED*/
4812
4813 case Q_ADDR4:
4814 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4815 /*NOTREACHED*/
4816
4817 case Q_RA:
4818 bpf_error(cstate, "'ra' is only supported on 802.11");
4819 /*NOTREACHED*/
4820
4821 case Q_TA:
4822 bpf_error(cstate, "'ta' is only supported on 802.11");
4823 /*NOTREACHED*/
4824 }
4825 abort();
4826 /*NOTREACHED*/
4827 }
4828
4829 /*
4830 * This is quite tricky because there may be pad bytes in front of the
4831 * DECNET header, and then there are two possible data packet formats that
4832 * carry both src and dst addresses, plus 5 packet types in a format that
4833 * carries only the src node, plus 2 types that use a different format and
4834 * also carry just the src node.
4835 *
4836 * Yuck.
4837 *
4838 * Instead of doing those all right, we just look for data packets with
4839 * 0 or 1 bytes of padding. If you want to look at other packets, that
4840 * will require a lot more hacking.
4841 *
4842 * To add support for filtering on DECNET "areas" (network numbers)
4843 * one would want to add a "mask" argument to this routine. That would
4844 * make the filter even more inefficient, although one could be clever
4845 * and not generate masking instructions if the mask is 0xFFFF.
4846 */
4847 static struct block *
4848 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4849 {
4850 struct block *b0, *b1, *b2, *tmp;
4851 u_int offset_lh; /* offset if long header is received */
4852 u_int offset_sh; /* offset if short header is received */
4853
4854 switch (dir) {
4855
4856 case Q_DST:
4857 offset_sh = 1; /* follows flags */
4858 offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
4859 break;
4860
4861 case Q_SRC:
4862 offset_sh = 3; /* follows flags, dstnode */
4863 offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4864 break;
4865
4866 case Q_AND:
4867 /* Inefficient because we do our Calvinball dance twice */
4868 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4869 b1 = gen_dnhostop(cstate, addr, Q_DST);
4870 gen_and(b0, b1);
4871 return b1;
4872
4873 case Q_DEFAULT:
4874 case Q_OR:
4875 /* Inefficient because we do our Calvinball dance twice */
4876 b0 = gen_dnhostop(cstate, addr, Q_SRC);
4877 b1 = gen_dnhostop(cstate, addr, Q_DST);
4878 gen_or(b0, b1);
4879 return b1;
4880
4881 case Q_ADDR1:
4882 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4883 /*NOTREACHED*/
4884
4885 case Q_ADDR2:
4886 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4887 /*NOTREACHED*/
4888
4889 case Q_ADDR3:
4890 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4891 /*NOTREACHED*/
4892
4893 case Q_ADDR4:
4894 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4895 /*NOTREACHED*/
4896
4897 case Q_RA:
4898 bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4899 /*NOTREACHED*/
4900
4901 case Q_TA:
4902 bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4903 /*NOTREACHED*/
4904
4905 default:
4906 abort();
4907 /*NOTREACHED*/
4908 }
4909 b0 = gen_linktype(cstate, ETHERTYPE_DN);
4910 /* Check for pad = 1, long header case */
4911 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4912 (bpf_u_int32)ntohs(0x0681), (bpf_u_int32)ntohs(0x07FF));
4913 b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4914 BPF_H, (bpf_u_int32)ntohs((u_short)addr));
4915 gen_and(tmp, b1);
4916 /* Check for pad = 0, long header case */
4917 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x06,
4918 (bpf_u_int32)0x7);
4919 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H,
4920 (bpf_u_int32)ntohs((u_short)addr));
4921 gen_and(tmp, b2);
4922 gen_or(b2, b1);
4923 /* Check for pad = 1, short header case */
4924 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4925 (bpf_u_int32)ntohs(0x0281), (bpf_u_int32)ntohs(0x07FF));
4926 b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H,
4927 (bpf_u_int32)ntohs((u_short)addr));
4928 gen_and(tmp, b2);
4929 gen_or(b2, b1);
4930 /* Check for pad = 0, short header case */
4931 tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_u_int32)0x02,
4932 (bpf_u_int32)0x7);
4933 b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H,
4934 (bpf_u_int32)ntohs((u_short)addr));
4935 gen_and(tmp, b2);
4936 gen_or(b2, b1);
4937
4938 /* Combine with test for cstate->linktype */
4939 gen_and(b0, b1);
4940 return b1;
4941 }
4942
4943 /*
4944 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4945 * test the bottom-of-stack bit, and then check the version number
4946 * field in the IP header.
4947 */
4948 static struct block *
4949 gen_mpls_linktype(compiler_state_t *cstate, bpf_u_int32 ll_proto)
4950 {
4951 struct block *b0, *b1;
4952
4953 switch (ll_proto) {
4954
4955 case ETHERTYPE_IP:
4956 /* match the bottom-of-stack bit */
4957 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4958 /* match the IPv4 version number */
4959 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4960 gen_and(b0, b1);
4961 return b1;
4962
4963 case ETHERTYPE_IPV6:
4964 /* match the bottom-of-stack bit */
4965 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4966 /* match the IPv4 version number */
4967 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4968 gen_and(b0, b1);
4969 return b1;
4970
4971 default:
4972 /* FIXME add other L3 proto IDs */
4973 bpf_error(cstate, "unsupported protocol over mpls");
4974 /*NOTREACHED*/
4975 }
4976 }
4977
4978 static struct block *
4979 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4980 int proto, int dir, int type)
4981 {
4982 struct block *b0, *b1;
4983 const char *typestr;
4984
4985 if (type == Q_NET)
4986 typestr = "net";
4987 else
4988 typestr = "host";
4989
4990 switch (proto) {
4991
4992 case Q_DEFAULT:
4993 b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4994 /*
4995 * Only check for non-IPv4 addresses if we're not
4996 * checking MPLS-encapsulated packets.
4997 */
4998 if (cstate->label_stack_depth == 0) {
4999 b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
5000 gen_or(b0, b1);
5001 b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
5002 gen_or(b1, b0);
5003 }
5004 return b0;
5005
5006 case Q_LINK:
5007 bpf_error(cstate, "link-layer modifier applied to %s", typestr);
5008
5009 case Q_IP:
5010 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
5011
5012 case Q_RARP:
5013 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
5014
5015 case Q_ARP:
5016 return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
5017
5018 case Q_SCTP:
5019 bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
5020
5021 case Q_TCP:
5022 bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
5023
5024 case Q_UDP:
5025 bpf_error(cstate, "'udp' modifier applied to %s", typestr);
5026
5027 case Q_ICMP:
5028 bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
5029
5030 case Q_IGMP:
5031 bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
5032
5033 case Q_IGRP:
5034 bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
5035
5036 case Q_ATALK:
5037 bpf_error(cstate, "AppleTalk host filtering not implemented");
5038
5039 case Q_DECNET:
5040 return gen_dnhostop(cstate, addr, dir);
5041
5042 case Q_LAT:
5043 bpf_error(cstate, "LAT host filtering not implemented");
5044
5045 case Q_SCA:
5046 bpf_error(cstate, "SCA host filtering not implemented");
5047
5048 case Q_MOPRC:
5049 bpf_error(cstate, "MOPRC host filtering not implemented");
5050
5051 case Q_MOPDL:
5052 bpf_error(cstate, "MOPDL host filtering not implemented");
5053
5054 case Q_IPV6:
5055 bpf_error(cstate, "'ip6' modifier applied to ip host");
5056
5057 case Q_ICMPV6:
5058 bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
5059
5060 case Q_AH:
5061 bpf_error(cstate, "'ah' modifier applied to %s", typestr);
5062
5063 case Q_ESP:
5064 bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5065
5066 case Q_PIM:
5067 bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5068
5069 case Q_VRRP:
5070 bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5071
5072 case Q_AARP:
5073 bpf_error(cstate, "AARP host filtering not implemented");
5074
5075 case Q_ISO:
5076 bpf_error(cstate, "ISO host filtering not implemented");
5077
5078 case Q_ESIS:
5079 bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5080
5081 case Q_ISIS:
5082 bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5083
5084 case Q_CLNP:
5085 bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5086
5087 case Q_STP:
5088 bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5089
5090 case Q_IPX:
5091 bpf_error(cstate, "IPX host filtering not implemented");
5092
5093 case Q_NETBEUI:
5094 bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5095
5096 case Q_ISIS_L1:
5097 bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5098
5099 case Q_ISIS_L2:
5100 bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5101
5102 case Q_ISIS_IIH:
5103 bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5104
5105 case Q_ISIS_SNP:
5106 bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5107
5108 case Q_ISIS_CSNP:
5109 bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5110
5111 case Q_ISIS_PSNP:
5112 bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5113
5114 case Q_ISIS_LSP:
5115 bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5116
5117 case Q_RADIO:
5118 bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5119
5120 case Q_CARP:
5121 bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5122
5123 default:
5124 abort();
5125 }
5126 /*NOTREACHED*/
5127 }
5128
5129 #ifdef INET6
5130 static struct block *
5131 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5132 struct in6_addr *mask, int proto, int dir, int type)
5133 {
5134 const char *typestr;
5135
5136 if (type == Q_NET)
5137 typestr = "net";
5138 else
5139 typestr = "host";
5140
5141 switch (proto) {
5142
5143 case Q_DEFAULT:
5144 return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5145
5146 case Q_LINK:
5147 bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5148
5149 case Q_IP:
5150 bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5151
5152 case Q_RARP:
5153 bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5154
5155 case Q_ARP:
5156 bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5157
5158 case Q_SCTP:
5159 bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5160
5161 case Q_TCP:
5162 bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5163
5164 case Q_UDP:
5165 bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5166
5167 case Q_ICMP:
5168 bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5169
5170 case Q_IGMP:
5171 bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5172
5173 case Q_IGRP:
5174 bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5175
5176 case Q_ATALK:
5177 bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5178
5179 case Q_DECNET:
5180 bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5181
5182 case Q_LAT:
5183 bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5184
5185 case Q_SCA:
5186 bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5187
5188 case Q_MOPRC:
5189 bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5190
5191 case Q_MOPDL:
5192 bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5193
5194 case Q_IPV6:
5195 return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5196
5197 case Q_ICMPV6:
5198 bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5199
5200 case Q_AH:
5201 bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5202
5203 case Q_ESP:
5204 bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5205
5206 case Q_PIM:
5207 bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5208
5209 case Q_VRRP:
5210 bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5211
5212 case Q_AARP:
5213 bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5214
5215 case Q_ISO:
5216 bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5217
5218 case Q_ESIS:
5219 bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5220
5221 case Q_ISIS:
5222 bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5223
5224 case Q_CLNP:
5225 bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5226
5227 case Q_STP:
5228 bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5229
5230 case Q_IPX:
5231 bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5232
5233 case Q_NETBEUI:
5234 bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5235
5236 case Q_ISIS_L1:
5237 bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5238
5239 case Q_ISIS_L2:
5240 bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5241
5242 case Q_ISIS_IIH:
5243 bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5244
5245 case Q_ISIS_SNP:
5246 bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5247
5248 case Q_ISIS_CSNP:
5249 bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5250
5251 case Q_ISIS_PSNP:
5252 bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5253
5254 case Q_ISIS_LSP:
5255 bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5256
5257 case Q_RADIO:
5258 bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5259
5260 case Q_CARP:
5261 bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5262
5263 default:
5264 abort();
5265 }
5266 /*NOTREACHED*/
5267 }
5268 #endif
5269
5270 #ifndef INET6
5271 static struct block *
5272 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5273 struct addrinfo *alist, int proto, int dir)
5274 {
5275 struct block *b0, *b1, *tmp;
5276 struct addrinfo *ai;
5277 struct sockaddr_in *sin;
5278
5279 if (dir != 0)
5280 bpf_error(cstate, "direction applied to 'gateway'");
5281
5282 switch (proto) {
5283 case Q_DEFAULT:
5284 case Q_IP:
5285 case Q_ARP:
5286 case Q_RARP:
5287 switch (cstate->linktype) {
5288 case DLT_EN10MB:
5289 case DLT_NETANALYZER:
5290 case DLT_NETANALYZER_TRANSPARENT:
5291 b1 = gen_prevlinkhdr_check(cstate);
5292 b0 = gen_ehostop(cstate, eaddr, Q_OR);
5293 if (b1 != NULL)
5294 gen_and(b1, b0);
5295 break;
5296 case DLT_FDDI:
5297 b0 = gen_fhostop(cstate, eaddr, Q_OR);
5298 break;
5299 case DLT_IEEE802:
5300 b0 = gen_thostop(cstate, eaddr, Q_OR);
5301 break;
5302 case DLT_IEEE802_11:
5303 case DLT_PRISM_HEADER:
5304 case DLT_IEEE802_11_RADIO_AVS:
5305 case DLT_IEEE802_11_RADIO:
5306 case DLT_PPI:
5307 b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5308 break;
5309 case DLT_SUNATM:
5310 /*
5311 * This is LLC-multiplexed traffic; if it were
5312 * LANE, cstate->linktype would have been set to
5313 * DLT_EN10MB.
5314 */
5315 bpf_error(cstate,
5316 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5317 break;
5318 case DLT_IP_OVER_FC:
5319 b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5320 break;
5321 default:
5322 bpf_error(cstate,
5323 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5324 }
5325 b1 = NULL;
5326 for (ai = alist; ai != NULL; ai = ai->ai_next) {
5327 /*
5328 * Does it have an address?
5329 */
5330 if (ai->ai_addr != NULL) {
5331 /*
5332 * Yes. Is it an IPv4 address?
5333 */
5334 if (ai->ai_addr->sa_family == AF_INET) {
5335 /*
5336 * Generate an entry for it.
5337 */
5338 sin = (struct sockaddr_in *)ai->ai_addr;
5339 tmp = gen_host(cstate,
5340 ntohl(sin->sin_addr.s_addr),
5341 0xffffffff, proto, Q_OR, Q_HOST);
5342 /*
5343 * Is it the *first* IPv4 address?
5344 */
5345 if (b1 == NULL) {
5346 /*
5347 * Yes, so start with it.
5348 */
5349 b1 = tmp;
5350 } else {
5351 /*
5352 * No, so OR it into the
5353 * existing set of
5354 * addresses.
5355 */
5356 gen_or(b1, tmp);
5357 b1 = tmp;
5358 }
5359 }
5360 }
5361 }
5362 if (b1 == NULL) {
5363 /*
5364 * No IPv4 addresses found.
5365 */
5366 return (NULL);
5367 }
5368 gen_not(b1);
5369 gen_and(b0, b1);
5370 return b1;
5371 }
5372 bpf_error(cstate, "illegal modifier of 'gateway'");
5373 /*NOTREACHED*/
5374 }
5375 #endif
5376
5377 static struct block *
5378 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5379 {
5380 struct block *b0;
5381 struct block *b1;
5382
5383 switch (proto) {
5384
5385 case Q_SCTP:
5386 b1 = gen_proto(cstate, IPPROTO_SCTP, Q_DEFAULT, Q_DEFAULT);
5387 break;
5388
5389 case Q_TCP:
5390 b1 = gen_proto(cstate, IPPROTO_TCP, Q_DEFAULT, Q_DEFAULT);
5391 break;
5392
5393 case Q_UDP:
5394 b1 = gen_proto(cstate, IPPROTO_UDP, Q_DEFAULT, Q_DEFAULT);
5395 break;
5396
5397 case Q_ICMP:
5398 b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5399 break;
5400
5401 #ifndef IPPROTO_IGMP
5402 #define IPPROTO_IGMP 2
5403 #endif
5404
5405 case Q_IGMP:
5406 b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5407 break;
5408
5409 #ifndef IPPROTO_IGRP
5410 #define IPPROTO_IGRP 9
5411 #endif
5412 case Q_IGRP:
5413 b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5414 break;
5415
5416 #ifndef IPPROTO_PIM
5417 #define IPPROTO_PIM 103
5418 #endif
5419
5420 case Q_PIM:
5421 b1 = gen_proto(cstate, IPPROTO_PIM, Q_DEFAULT, Q_DEFAULT);
5422 break;
5423
5424 #ifndef IPPROTO_VRRP
5425 #define IPPROTO_VRRP 112
5426 #endif
5427
5428 case Q_VRRP:
5429 b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5430 break;
5431
5432 #ifndef IPPROTO_CARP
5433 #define IPPROTO_CARP 112
5434 #endif
5435
5436 case Q_CARP:
5437 b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5438 break;
5439
5440 case Q_IP:
5441 b1 = gen_linktype(cstate, ETHERTYPE_IP);
5442 break;
5443
5444 case Q_ARP:
5445 b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5446 break;
5447
5448 case Q_RARP:
5449 b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5450 break;
5451
5452 case Q_LINK:
5453 bpf_error(cstate, "link layer applied in wrong context");
5454
5455 case Q_ATALK:
5456 b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5457 break;
5458
5459 case Q_AARP:
5460 b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5461 break;
5462
5463 case Q_DECNET:
5464 b1 = gen_linktype(cstate, ETHERTYPE_DN);
5465 break;
5466
5467 case Q_SCA:
5468 b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5469 break;
5470
5471 case Q_LAT:
5472 b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5473 break;
5474
5475 case Q_MOPDL:
5476 b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5477 break;
5478
5479 case Q_MOPRC:
5480 b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5481 break;
5482
5483 case Q_IPV6:
5484 b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5485 break;
5486
5487 #ifndef IPPROTO_ICMPV6
5488 #define IPPROTO_ICMPV6 58
5489 #endif
5490 case Q_ICMPV6:
5491 b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5492 break;
5493
5494 #ifndef IPPROTO_AH
5495 #define IPPROTO_AH 51
5496 #endif
5497 case Q_AH:
5498 b1 = gen_proto(cstate, IPPROTO_AH, Q_DEFAULT, Q_DEFAULT);
5499 break;
5500
5501 #ifndef IPPROTO_ESP
5502 #define IPPROTO_ESP 50
5503 #endif
5504 case Q_ESP:
5505 b1 = gen_proto(cstate, IPPROTO_ESP, Q_DEFAULT, Q_DEFAULT);
5506 break;
5507
5508 case Q_ISO:
5509 b1 = gen_linktype(cstate, LLCSAP_ISONS);
5510 break;
5511
5512 case Q_ESIS:
5513 b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5514 break;
5515
5516 case Q_ISIS:
5517 b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5518 break;
5519
5520 case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5521 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5522 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5523 gen_or(b0, b1);
5524 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5525 gen_or(b0, b1);
5526 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5527 gen_or(b0, b1);
5528 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5529 gen_or(b0, b1);
5530 break;
5531
5532 case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5533 b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5534 b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5535 gen_or(b0, b1);
5536 b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5537 gen_or(b0, b1);
5538 b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5539 gen_or(b0, b1);
5540 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5541 gen_or(b0, b1);
5542 break;
5543
5544 case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5545 b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5546 b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5547 gen_or(b0, b1);
5548 b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5549 gen_or(b0, b1);
5550 break;
5551
5552 case Q_ISIS_LSP:
5553 b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5554 b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5555 gen_or(b0, b1);
5556 break;
5557
5558 case Q_ISIS_SNP:
5559 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5560 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5561 gen_or(b0, b1);
5562 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5563 gen_or(b0, b1);
5564 b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5565 gen_or(b0, b1);
5566 break;
5567
5568 case Q_ISIS_CSNP:
5569 b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5570 b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5571 gen_or(b0, b1);
5572 break;
5573
5574 case Q_ISIS_PSNP:
5575 b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5576 b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5577 gen_or(b0, b1);
5578 break;
5579
5580 case Q_CLNP:
5581 b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5582 break;
5583
5584 case Q_STP:
5585 b1 = gen_linktype(cstate, LLCSAP_8021D);
5586 break;
5587
5588 case Q_IPX:
5589 b1 = gen_linktype(cstate, LLCSAP_IPX);
5590 break;
5591
5592 case Q_NETBEUI:
5593 b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5594 break;
5595
5596 case Q_RADIO:
5597 bpf_error(cstate, "'radio' is not a valid protocol type");
5598
5599 default:
5600 abort();
5601 }
5602 return b1;
5603 }
5604
5605 struct block *
5606 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5607 {
5608 /*
5609 * Catch errors reported by us and routines below us, and return NULL
5610 * on an error.
5611 */
5612 if (setjmp(cstate->top_ctx))
5613 return (NULL);
5614
5615 return gen_proto_abbrev_internal(cstate, proto);
5616 }
5617
5618 static struct block *
5619 gen_ipfrag(compiler_state_t *cstate)
5620 {
5621 struct slist *s;
5622 struct block *b;
5623
5624 /* not IPv4 frag other than the first frag */
5625 s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5626 b = new_block(cstate, JMP(BPF_JSET));
5627 b->s.k = 0x1fff;
5628 b->stmts = s;
5629 gen_not(b);
5630
5631 return b;
5632 }
5633
5634 /*
5635 * Generate a comparison to a port value in the transport-layer header
5636 * at the specified offset from the beginning of that header.
5637 *
5638 * XXX - this handles a variable-length prefix preceding the link-layer
5639 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5640 * variable-length link-layer headers (such as Token Ring or 802.11
5641 * headers).
5642 */
5643 static struct block *
5644 gen_portatom(compiler_state_t *cstate, int off, bpf_u_int32 v)
5645 {
5646 return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5647 }
5648
5649 static struct block *
5650 gen_portatom6(compiler_state_t *cstate, int off, bpf_u_int32 v)
5651 {
5652 return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5653 }
5654
5655 static struct block *
5656 gen_portop(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5657 {
5658 struct block *b0, *b1, *tmp;
5659
5660 /* ip proto 'proto' and not a fragment other than the first fragment */
5661 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5662 b0 = gen_ipfrag(cstate);
5663 gen_and(tmp, b0);
5664
5665 switch (dir) {
5666 case Q_SRC:
5667 b1 = gen_portatom(cstate, 0, port);
5668 break;
5669
5670 case Q_DST:
5671 b1 = gen_portatom(cstate, 2, port);
5672 break;
5673
5674 case Q_AND:
5675 tmp = gen_portatom(cstate, 0, port);
5676 b1 = gen_portatom(cstate, 2, port);
5677 gen_and(tmp, b1);
5678 break;
5679
5680 case Q_DEFAULT:
5681 case Q_OR:
5682 tmp = gen_portatom(cstate, 0, port);
5683 b1 = gen_portatom(cstate, 2, port);
5684 gen_or(tmp, b1);
5685 break;
5686
5687 case Q_ADDR1:
5688 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5689 /*NOTREACHED*/
5690
5691 case Q_ADDR2:
5692 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5693 /*NOTREACHED*/
5694
5695 case Q_ADDR3:
5696 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5697 /*NOTREACHED*/
5698
5699 case Q_ADDR4:
5700 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5701 /*NOTREACHED*/
5702
5703 case Q_RA:
5704 bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5705 /*NOTREACHED*/
5706
5707 case Q_TA:
5708 bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5709 /*NOTREACHED*/
5710
5711 default:
5712 abort();
5713 /*NOTREACHED*/
5714 }
5715 gen_and(b0, b1);
5716
5717 return b1;
5718 }
5719
5720 static struct block *
5721 gen_port(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5722 {
5723 struct block *b0, *b1, *tmp;
5724
5725 /*
5726 * ether proto ip
5727 *
5728 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5729 * not LLC encapsulation with LLCSAP_IP.
5730 *
5731 * For IEEE 802 networks - which includes 802.5 token ring
5732 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5733 * says that SNAP encapsulation is used, not LLC encapsulation
5734 * with LLCSAP_IP.
5735 *
5736 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5737 * RFC 2225 say that SNAP encapsulation is used, not LLC
5738 * encapsulation with LLCSAP_IP.
5739 *
5740 * So we always check for ETHERTYPE_IP.
5741 */
5742 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5743
5744 switch (ip_proto) {
5745 case IPPROTO_UDP:
5746 case IPPROTO_TCP:
5747 case IPPROTO_SCTP:
5748 b1 = gen_portop(cstate, port, (u_int)ip_proto, dir);
5749 break;
5750
5751 case PROTO_UNDEF:
5752 tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5753 b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5754 gen_or(tmp, b1);
5755 tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5756 gen_or(tmp, b1);
5757 break;
5758
5759 default:
5760 abort();
5761 }
5762 gen_and(b0, b1);
5763 return b1;
5764 }
5765
5766 struct block *
5767 gen_portop6(compiler_state_t *cstate, u_int port, u_int proto, int dir)
5768 {
5769 struct block *b0, *b1, *tmp;
5770
5771 /* ip6 proto 'proto' */
5772 /* XXX - catch the first fragment of a fragmented packet? */
5773 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5774
5775 switch (dir) {
5776 case Q_SRC:
5777 b1 = gen_portatom6(cstate, 0, port);
5778 break;
5779
5780 case Q_DST:
5781 b1 = gen_portatom6(cstate, 2, port);
5782 break;
5783
5784 case Q_AND:
5785 tmp = gen_portatom6(cstate, 0, port);
5786 b1 = gen_portatom6(cstate, 2, port);
5787 gen_and(tmp, b1);
5788 break;
5789
5790 case Q_DEFAULT:
5791 case Q_OR:
5792 tmp = gen_portatom6(cstate, 0, port);
5793 b1 = gen_portatom6(cstate, 2, port);
5794 gen_or(tmp, b1);
5795 break;
5796
5797 default:
5798 abort();
5799 }
5800 gen_and(b0, b1);
5801
5802 return b1;
5803 }
5804
5805 static struct block *
5806 gen_port6(compiler_state_t *cstate, u_int port, int ip_proto, int dir)
5807 {
5808 struct block *b0, *b1, *tmp;
5809
5810 /* link proto ip6 */
5811 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5812
5813 switch (ip_proto) {
5814 case IPPROTO_UDP:
5815 case IPPROTO_TCP:
5816 case IPPROTO_SCTP:
5817 b1 = gen_portop6(cstate, port, (u_int)ip_proto, dir);
5818 break;
5819
5820 case PROTO_UNDEF:
5821 tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5822 b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5823 gen_or(tmp, b1);
5824 tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5825 gen_or(tmp, b1);
5826 break;
5827
5828 default:
5829 abort();
5830 }
5831 gen_and(b0, b1);
5832 return b1;
5833 }
5834
5835 /* gen_portrange code */
5836 static struct block *
5837 gen_portrangeatom(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5838 bpf_u_int32 v2)
5839 {
5840 struct block *b1, *b2;
5841
5842 if (v1 > v2) {
5843 /*
5844 * Reverse the order of the ports, so v1 is the lower one.
5845 */
5846 bpf_u_int32 vtemp;
5847
5848 vtemp = v1;
5849 v1 = v2;
5850 v2 = vtemp;
5851 }
5852
5853 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5854 b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5855
5856 gen_and(b1, b2);
5857
5858 return b2;
5859 }
5860
5861 static struct block *
5862 gen_portrangeop(compiler_state_t *cstate, u_int port1, u_int port2,
5863 bpf_u_int32 proto, int dir)
5864 {
5865 struct block *b0, *b1, *tmp;
5866
5867 /* ip proto 'proto' and not a fragment other than the first fragment */
5868 tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, proto);
5869 b0 = gen_ipfrag(cstate);
5870 gen_and(tmp, b0);
5871
5872 switch (dir) {
5873 case Q_SRC:
5874 b1 = gen_portrangeatom(cstate, 0, port1, port2);
5875 break;
5876
5877 case Q_DST:
5878 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5879 break;
5880
5881 case Q_AND:
5882 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5883 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5884 gen_and(tmp, b1);
5885 break;
5886
5887 case Q_DEFAULT:
5888 case Q_OR:
5889 tmp = gen_portrangeatom(cstate, 0, port1, port2);
5890 b1 = gen_portrangeatom(cstate, 2, port1, port2);
5891 gen_or(tmp, b1);
5892 break;
5893
5894 case Q_ADDR1:
5895 bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5896 /*NOTREACHED*/
5897
5898 case Q_ADDR2:
5899 bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5900 /*NOTREACHED*/
5901
5902 case Q_ADDR3:
5903 bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5904 /*NOTREACHED*/
5905
5906 case Q_ADDR4:
5907 bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5908 /*NOTREACHED*/
5909
5910 case Q_RA:
5911 bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5912 /*NOTREACHED*/
5913
5914 case Q_TA:
5915 bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5916 /*NOTREACHED*/
5917
5918 default:
5919 abort();
5920 /*NOTREACHED*/
5921 }
5922 gen_and(b0, b1);
5923
5924 return b1;
5925 }
5926
5927 static struct block *
5928 gen_portrange(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
5929 int dir)
5930 {
5931 struct block *b0, *b1, *tmp;
5932
5933 /* link proto ip */
5934 b0 = gen_linktype(cstate, ETHERTYPE_IP);
5935
5936 switch (ip_proto) {
5937 case IPPROTO_UDP:
5938 case IPPROTO_TCP:
5939 case IPPROTO_SCTP:
5940 b1 = gen_portrangeop(cstate, port1, port2, (bpf_u_int32)ip_proto,
5941 dir);
5942 break;
5943
5944 case PROTO_UNDEF:
5945 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5946 b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5947 gen_or(tmp, b1);
5948 tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5949 gen_or(tmp, b1);
5950 break;
5951
5952 default:
5953 abort();
5954 }
5955 gen_and(b0, b1);
5956 return b1;
5957 }
5958
5959 static struct block *
5960 gen_portrangeatom6(compiler_state_t *cstate, u_int off, bpf_u_int32 v1,
5961 bpf_u_int32 v2)
5962 {
5963 struct block *b1, *b2;
5964
5965 if (v1 > v2) {
5966 /*
5967 * Reverse the order of the ports, so v1 is the lower one.
5968 */
5969 bpf_u_int32 vtemp;
5970
5971 vtemp = v1;
5972 v1 = v2;
5973 v2 = vtemp;
5974 }
5975
5976 b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5977 b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5978
5979 gen_and(b1, b2);
5980
5981 return b2;
5982 }
5983
5984 static struct block *
5985 gen_portrangeop6(compiler_state_t *cstate, u_int port1, u_int port2,
5986 bpf_u_int32 proto, int dir)
5987 {
5988 struct block *b0, *b1, *tmp;
5989
5990 /* ip6 proto 'proto' */
5991 /* XXX - catch the first fragment of a fragmented packet? */
5992 b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, proto);
5993
5994 switch (dir) {
5995 case Q_SRC:
5996 b1 = gen_portrangeatom6(cstate, 0, port1, port2);
5997 break;
5998
5999 case Q_DST:
6000 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6001 break;
6002
6003 case Q_AND:
6004 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6005 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6006 gen_and(tmp, b1);
6007 break;
6008
6009 case Q_DEFAULT:
6010 case Q_OR:
6011 tmp = gen_portrangeatom6(cstate, 0, port1, port2);
6012 b1 = gen_portrangeatom6(cstate, 2, port1, port2);
6013 gen_or(tmp, b1);
6014 break;
6015
6016 default:
6017 abort();
6018 }
6019 gen_and(b0, b1);
6020
6021 return b1;
6022 }
6023
6024 static struct block *
6025 gen_portrange6(compiler_state_t *cstate, u_int port1, u_int port2, int ip_proto,
6026 int dir)
6027 {
6028 struct block *b0, *b1, *tmp;
6029
6030 /* link proto ip6 */
6031 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6032
6033 switch (ip_proto) {
6034 case IPPROTO_UDP:
6035 case IPPROTO_TCP:
6036 case IPPROTO_SCTP:
6037 b1 = gen_portrangeop6(cstate, port1, port2, (bpf_u_int32)ip_proto,
6038 dir);
6039 break;
6040
6041 case PROTO_UNDEF:
6042 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
6043 b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
6044 gen_or(tmp, b1);
6045 tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
6046 gen_or(tmp, b1);
6047 break;
6048
6049 default:
6050 abort();
6051 }
6052 gen_and(b0, b1);
6053 return b1;
6054 }
6055
6056 static int
6057 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6058 {
6059 register int v;
6060
6061 switch (proto) {
6062
6063 case Q_DEFAULT:
6064 case Q_IP:
6065 case Q_IPV6:
6066 v = pcap_nametoproto(name);
6067 if (v == PROTO_UNDEF)
6068 bpf_error(cstate, "unknown ip proto '%s'", name);
6069 break;
6070
6071 case Q_LINK:
6072 /* XXX should look up h/w protocol type based on cstate->linktype */
6073 v = pcap_nametoeproto(name);
6074 if (v == PROTO_UNDEF) {
6075 v = pcap_nametollc(name);
6076 if (v == PROTO_UNDEF)
6077 bpf_error(cstate, "unknown ether proto '%s'", name);
6078 }
6079 break;
6080
6081 case Q_ISO:
6082 if (strcmp(name, "esis") == 0)
6083 v = ISO9542_ESIS;
6084 else if (strcmp(name, "isis") == 0)
6085 v = ISO10589_ISIS;
6086 else if (strcmp(name, "clnp") == 0)
6087 v = ISO8473_CLNP;
6088 else
6089 bpf_error(cstate, "unknown osi proto '%s'", name);
6090 break;
6091
6092 default:
6093 v = PROTO_UNDEF;
6094 break;
6095 }
6096 return v;
6097 }
6098
6099 #if !defined(NO_PROTOCHAIN)
6100 static struct block *
6101 gen_protochain(compiler_state_t *cstate, bpf_u_int32 v, int proto)
6102 {
6103 struct block *b0, *b;
6104 struct slist *s[100];
6105 int fix2, fix3, fix4, fix5;
6106 int ahcheck, again, end;
6107 int i, max;
6108 int reg2 = alloc_reg(cstate);
6109
6110 memset(s, 0, sizeof(s));
6111 fix3 = fix4 = fix5 = 0;
6112
6113 switch (proto) {
6114 case Q_IP:
6115 case Q_IPV6:
6116 break;
6117 case Q_DEFAULT:
6118 b0 = gen_protochain(cstate, v, Q_IP);
6119 b = gen_protochain(cstate, v, Q_IPV6);
6120 gen_or(b0, b);
6121 return b;
6122 default:
6123 bpf_error(cstate, "bad protocol applied for 'protochain'");
6124 /*NOTREACHED*/
6125 }
6126
6127 /*
6128 * We don't handle variable-length prefixes before the link-layer
6129 * header, or variable-length link-layer headers, here yet.
6130 * We might want to add BPF instructions to do the protochain
6131 * work, to simplify that and, on platforms that have a BPF
6132 * interpreter with the new instructions, let the filtering
6133 * be done in the kernel. (We already require a modified BPF
6134 * engine to do the protochain stuff, to support backward
6135 * branches, and backward branch support is unlikely to appear
6136 * in kernel BPF engines.)
6137 */
6138 if (cstate->off_linkpl.is_variable)
6139 bpf_error(cstate, "'protochain' not supported with variable length headers");
6140
6141 /*
6142 * To quote a comment in optimize.c:
6143 *
6144 * "These data structures are used in a Cocke and Schwartz style
6145 * value numbering scheme. Since the flowgraph is acyclic,
6146 * exit values can be propagated from a node's predecessors
6147 * provided it is uniquely defined."
6148 *
6149 * "Acyclic" means "no backward branches", which means "no
6150 * loops", so we have to turn the optimizer off.
6151 */
6152 cstate->no_optimize = 1;
6153
6154 /*
6155 * s[0] is a dummy entry to protect other BPF insn from damage
6156 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6157 * hard to find interdependency made by jump table fixup.
6158 */
6159 i = 0;
6160 s[i] = new_stmt(cstate, 0); /*dummy*/
6161 i++;
6162
6163 switch (proto) {
6164 case Q_IP:
6165 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6166
6167 /* A = ip->ip_p */
6168 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6169 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6170 i++;
6171 /* X = ip->ip_hl << 2 */
6172 s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6173 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6174 i++;
6175 break;
6176
6177 case Q_IPV6:
6178 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6179
6180 /* A = ip6->ip_nxt */
6181 s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6182 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6183 i++;
6184 /* X = sizeof(struct ip6_hdr) */
6185 s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6186 s[i]->s.k = 40;
6187 i++;
6188 break;
6189
6190 default:
6191 bpf_error(cstate, "unsupported proto to gen_protochain");
6192 /*NOTREACHED*/
6193 }
6194
6195 /* again: if (A == v) goto end; else fall through; */
6196 again = i;
6197 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6198 s[i]->s.k = v;
6199 s[i]->s.jt = NULL; /*later*/
6200 s[i]->s.jf = NULL; /*update in next stmt*/
6201 fix5 = i;
6202 i++;
6203
6204 #ifndef IPPROTO_NONE
6205 #define IPPROTO_NONE 59
6206 #endif
6207 /* if (A == IPPROTO_NONE) goto end */
6208 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6209 s[i]->s.jt = NULL; /*later*/
6210 s[i]->s.jf = NULL; /*update in next stmt*/
6211 s[i]->s.k = IPPROTO_NONE;
6212 s[fix5]->s.jf = s[i];
6213 fix2 = i;
6214 i++;
6215
6216 if (proto == Q_IPV6) {
6217 int v6start, v6end, v6advance, j;
6218
6219 v6start = i;
6220 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6221 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6222 s[i]->s.jt = NULL; /*later*/
6223 s[i]->s.jf = NULL; /*update in next stmt*/
6224 s[i]->s.k = IPPROTO_HOPOPTS;
6225 s[fix2]->s.jf = s[i];
6226 i++;
6227 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6228 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6229 s[i]->s.jt = NULL; /*later*/
6230 s[i]->s.jf = NULL; /*update in next stmt*/
6231 s[i]->s.k = IPPROTO_DSTOPTS;
6232 i++;
6233 /* if (A == IPPROTO_ROUTING) goto v6advance */
6234 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6235 s[i]->s.jt = NULL; /*later*/
6236 s[i]->s.jf = NULL; /*update in next stmt*/
6237 s[i]->s.k = IPPROTO_ROUTING;
6238 i++;
6239 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6240 s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6241 s[i]->s.jt = NULL; /*later*/
6242 s[i]->s.jf = NULL; /*later*/
6243 s[i]->s.k = IPPROTO_FRAGMENT;
6244 fix3 = i;
6245 v6end = i;
6246 i++;
6247
6248 /* v6advance: */
6249 v6advance = i;
6250
6251 /*
6252 * in short,
6253 * A = P[X + packet head];
6254 * X = X + (P[X + packet head + 1] + 1) * 8;
6255 */
6256 /* A = P[X + packet head] */
6257 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6258 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6259 i++;
6260 /* MEM[reg2] = A */
6261 s[i] = new_stmt(cstate, BPF_ST);
6262 s[i]->s.k = reg2;
6263 i++;
6264 /* A = P[X + packet head + 1]; */
6265 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6266 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6267 i++;
6268 /* A += 1 */
6269 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6270 s[i]->s.k = 1;
6271 i++;
6272 /* A *= 8 */
6273 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6274 s[i]->s.k = 8;
6275 i++;
6276 /* A += X */
6277 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6278 s[i]->s.k = 0;
6279 i++;
6280 /* X = A; */
6281 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6282 i++;
6283 /* A = MEM[reg2] */
6284 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6285 s[i]->s.k = reg2;
6286 i++;
6287
6288 /* goto again; (must use BPF_JA for backward jump) */
6289 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6290 s[i]->s.k = again - i - 1;
6291 s[i - 1]->s.jf = s[i];
6292 i++;
6293
6294 /* fixup */
6295 for (j = v6start; j <= v6end; j++)
6296 s[j]->s.jt = s[v6advance];
6297 } else {
6298 /* nop */
6299 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6300 s[i]->s.k = 0;
6301 s[fix2]->s.jf = s[i];
6302 i++;
6303 }
6304
6305 /* ahcheck: */
6306 ahcheck = i;
6307 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6308 s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6309 s[i]->s.jt = NULL; /*later*/
6310 s[i]->s.jf = NULL; /*later*/
6311 s[i]->s.k = IPPROTO_AH;
6312 if (fix3)
6313 s[fix3]->s.jf = s[ahcheck];
6314 fix4 = i;
6315 i++;
6316
6317 /*
6318 * in short,
6319 * A = P[X];
6320 * X = X + (P[X + 1] + 2) * 4;
6321 */
6322 /* A = X */
6323 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6324 i++;
6325 /* A = P[X + packet head]; */
6326 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6327 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6328 i++;
6329 /* MEM[reg2] = A */
6330 s[i] = new_stmt(cstate, BPF_ST);
6331 s[i]->s.k = reg2;
6332 i++;
6333 /* A = X */
6334 s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6335 i++;
6336 /* A += 1 */
6337 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6338 s[i]->s.k = 1;
6339 i++;
6340 /* X = A */
6341 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6342 i++;
6343 /* A = P[X + packet head] */
6344 s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6345 s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6346 i++;
6347 /* A += 2 */
6348 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6349 s[i]->s.k = 2;
6350 i++;
6351 /* A *= 4 */
6352 s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6353 s[i]->s.k = 4;
6354 i++;
6355 /* X = A; */
6356 s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6357 i++;
6358 /* A = MEM[reg2] */
6359 s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6360 s[i]->s.k = reg2;
6361 i++;
6362
6363 /* goto again; (must use BPF_JA for backward jump) */
6364 s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6365 s[i]->s.k = again - i - 1;
6366 i++;
6367
6368 /* end: nop */
6369 end = i;
6370 s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6371 s[i]->s.k = 0;
6372 s[fix2]->s.jt = s[end];
6373 s[fix4]->s.jf = s[end];
6374 s[fix5]->s.jt = s[end];
6375 i++;
6376
6377 /*
6378 * make slist chain
6379 */
6380 max = i;
6381 for (i = 0; i < max - 1; i++)
6382 s[i]->next = s[i + 1];
6383 s[max - 1]->next = NULL;
6384
6385 /*
6386 * emit final check
6387 */
6388 b = new_block(cstate, JMP(BPF_JEQ));
6389 b->stmts = s[1]; /*remember, s[0] is dummy*/
6390 b->s.k = v;
6391
6392 free_reg(cstate, reg2);
6393
6394 gen_and(b0, b);
6395 return b;
6396 }
6397 #endif /* !defined(NO_PROTOCHAIN) */
6398
6399 static struct block *
6400 gen_check_802_11_data_frame(compiler_state_t *cstate)
6401 {
6402 struct slist *s;
6403 struct block *b0, *b1;
6404
6405 /*
6406 * A data frame has the 0x08 bit (b3) in the frame control field set
6407 * and the 0x04 bit (b2) clear.
6408 */
6409 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6410 b0 = new_block(cstate, JMP(BPF_JSET));
6411 b0->s.k = 0x08;
6412 b0->stmts = s;
6413
6414 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6415 b1 = new_block(cstate, JMP(BPF_JSET));
6416 b1->s.k = 0x04;
6417 b1->stmts = s;
6418 gen_not(b1);
6419
6420 gen_and(b1, b0);
6421
6422 return b0;
6423 }
6424
6425 /*
6426 * Generate code that checks whether the packet is a packet for protocol
6427 * <proto> and whether the type field in that protocol's header has
6428 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6429 * IP packet and checks the protocol number in the IP header against <v>.
6430 *
6431 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6432 * against Q_IP and Q_IPV6.
6433 */
6434 static struct block *
6435 gen_proto(compiler_state_t *cstate, bpf_u_int32 v, int proto, int dir)
6436 {
6437 struct block *b0, *b1;
6438 struct block *b2;
6439
6440 if (dir != Q_DEFAULT)
6441 bpf_error(cstate, "direction applied to 'proto'");
6442
6443 switch (proto) {
6444 case Q_DEFAULT:
6445 b0 = gen_proto(cstate, v, Q_IP, dir);
6446 b1 = gen_proto(cstate, v, Q_IPV6, dir);
6447 gen_or(b0, b1);
6448 return b1;
6449
6450 case Q_LINK:
6451 return gen_linktype(cstate, v);
6452
6453 case Q_IP:
6454 /*
6455 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6456 * not LLC encapsulation with LLCSAP_IP.
6457 *
6458 * For IEEE 802 networks - which includes 802.5 token ring
6459 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6460 * says that SNAP encapsulation is used, not LLC encapsulation
6461 * with LLCSAP_IP.
6462 *
6463 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6464 * RFC 2225 say that SNAP encapsulation is used, not LLC
6465 * encapsulation with LLCSAP_IP.
6466 *
6467 * So we always check for ETHERTYPE_IP.
6468 */
6469 b0 = gen_linktype(cstate, ETHERTYPE_IP);
6470 b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, v);
6471 gen_and(b0, b1);
6472 return b1;
6473
6474 case Q_ARP:
6475 bpf_error(cstate, "arp does not encapsulate another protocol");
6476 /*NOTREACHED*/
6477
6478 case Q_RARP:
6479 bpf_error(cstate, "rarp does not encapsulate another protocol");
6480 /*NOTREACHED*/
6481
6482 case Q_SCTP:
6483 bpf_error(cstate, "'sctp proto' is bogus");
6484 /*NOTREACHED*/
6485
6486 case Q_TCP:
6487 bpf_error(cstate, "'tcp proto' is bogus");
6488 /*NOTREACHED*/
6489
6490 case Q_UDP:
6491 bpf_error(cstate, "'udp proto' is bogus");
6492 /*NOTREACHED*/
6493
6494 case Q_ICMP:
6495 bpf_error(cstate, "'icmp proto' is bogus");
6496 /*NOTREACHED*/
6497
6498 case Q_IGMP:
6499 bpf_error(cstate, "'igmp proto' is bogus");
6500 /*NOTREACHED*/
6501
6502 case Q_IGRP:
6503 bpf_error(cstate, "'igrp proto' is bogus");
6504 /*NOTREACHED*/
6505
6506 case Q_ATALK:
6507 bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6508 /*NOTREACHED*/
6509
6510 case Q_DECNET:
6511 bpf_error(cstate, "DECNET encapsulation is not specifiable");
6512 /*NOTREACHED*/
6513
6514 case Q_LAT:
6515 bpf_error(cstate, "LAT does not encapsulate another protocol");
6516 /*NOTREACHED*/
6517
6518 case Q_SCA:
6519 bpf_error(cstate, "SCA does not encapsulate another protocol");
6520 /*NOTREACHED*/
6521
6522 case Q_MOPRC:
6523 bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6524 /*NOTREACHED*/
6525
6526 case Q_MOPDL:
6527 bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6528 /*NOTREACHED*/
6529
6530 case Q_IPV6:
6531 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6532 /*
6533 * Also check for a fragment header before the final
6534 * header.
6535 */
6536 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6537 b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, v);
6538 gen_and(b2, b1);
6539 b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, v);
6540 gen_or(b2, b1);
6541 gen_and(b0, b1);
6542 return b1;
6543
6544 case Q_ICMPV6:
6545 bpf_error(cstate, "'icmp6 proto' is bogus");
6546 /*NOTREACHED*/
6547
6548 case Q_AH:
6549 bpf_error(cstate, "'ah proto' is bogus");
6550 /*NOTREACHED*/
6551
6552 case Q_ESP:
6553 bpf_error(cstate, "'esp proto' is bogus");
6554 /*NOTREACHED*/
6555
6556 case Q_PIM:
6557 bpf_error(cstate, "'pim proto' is bogus");
6558 /*NOTREACHED*/
6559
6560 case Q_VRRP:
6561 bpf_error(cstate, "'vrrp proto' is bogus");
6562 /*NOTREACHED*/
6563
6564 case Q_AARP:
6565 bpf_error(cstate, "'aarp proto' is bogus");
6566 /*NOTREACHED*/
6567
6568 case Q_ISO:
6569 switch (cstate->linktype) {
6570
6571 case DLT_FRELAY:
6572 /*
6573 * Frame Relay packets typically have an OSI
6574 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6575 * generates code to check for all the OSI
6576 * NLPIDs, so calling it and then adding a check
6577 * for the particular NLPID for which we're
6578 * looking is bogus, as we can just check for
6579 * the NLPID.
6580 *
6581 * What we check for is the NLPID and a frame
6582 * control field value of UI, i.e. 0x03 followed
6583 * by the NLPID.
6584 *
6585 * XXX - assumes a 2-byte Frame Relay header with
6586 * DLCI and flags. What if the address is longer?
6587 *
6588 * XXX - what about SNAP-encapsulated frames?
6589 */
6590 return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6591 /*NOTREACHED*/
6592
6593 case DLT_C_HDLC:
6594 case DLT_HDLC:
6595 /*
6596 * Cisco uses an Ethertype lookalike - for OSI,
6597 * it's 0xfefe.
6598 */
6599 b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6600 /* OSI in C-HDLC is stuffed with a fudge byte */
6601 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, v);
6602 gen_and(b0, b1);
6603 return b1;
6604
6605 default:
6606 b0 = gen_linktype(cstate, LLCSAP_ISONS);
6607 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, v);
6608 gen_and(b0, b1);
6609 return b1;
6610 }
6611
6612 case Q_ESIS:
6613 bpf_error(cstate, "'esis proto' is bogus");
6614 /*NOTREACHED*/
6615
6616 case Q_ISIS:
6617 b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6618 /*
6619 * 4 is the offset of the PDU type relative to the IS-IS
6620 * header.
6621 */
6622 b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, v);
6623 gen_and(b0, b1);
6624 return b1;
6625
6626 case Q_CLNP:
6627 bpf_error(cstate, "'clnp proto' is not supported");
6628 /*NOTREACHED*/
6629
6630 case Q_STP:
6631 bpf_error(cstate, "'stp proto' is bogus");
6632 /*NOTREACHED*/
6633
6634 case Q_IPX:
6635 bpf_error(cstate, "'ipx proto' is bogus");
6636 /*NOTREACHED*/
6637
6638 case Q_NETBEUI:
6639 bpf_error(cstate, "'netbeui proto' is bogus");
6640 /*NOTREACHED*/
6641
6642 case Q_ISIS_L1:
6643 bpf_error(cstate, "'l1 proto' is bogus");
6644 /*NOTREACHED*/
6645
6646 case Q_ISIS_L2:
6647 bpf_error(cstate, "'l2 proto' is bogus");
6648 /*NOTREACHED*/
6649
6650 case Q_ISIS_IIH:
6651 bpf_error(cstate, "'iih proto' is bogus");
6652 /*NOTREACHED*/
6653
6654 case Q_ISIS_SNP:
6655 bpf_error(cstate, "'snp proto' is bogus");
6656 /*NOTREACHED*/
6657
6658 case Q_ISIS_CSNP:
6659 bpf_error(cstate, "'csnp proto' is bogus");
6660 /*NOTREACHED*/
6661
6662 case Q_ISIS_PSNP:
6663 bpf_error(cstate, "'psnp proto' is bogus");
6664 /*NOTREACHED*/
6665
6666 case Q_ISIS_LSP:
6667 bpf_error(cstate, "'lsp proto' is bogus");
6668 /*NOTREACHED*/
6669
6670 case Q_RADIO:
6671 bpf_error(cstate, "'radio proto' is bogus");
6672 /*NOTREACHED*/
6673
6674 case Q_CARP:
6675 bpf_error(cstate, "'carp proto' is bogus");
6676 /*NOTREACHED*/
6677
6678 default:
6679 abort();
6680 /*NOTREACHED*/
6681 }
6682 /*NOTREACHED*/
6683 }
6684
6685 /*
6686 * Convert a non-numeric name to a port number.
6687 */
6688 static int
6689 nametoport(compiler_state_t *cstate, const char *name, int ipproto)
6690 {
6691 struct addrinfo hints, *res, *ai;
6692 int error;
6693 struct sockaddr_in *in4;
6694 #ifdef INET6
6695 struct sockaddr_in6 *in6;
6696 #endif
6697 int port = -1;
6698
6699 /*
6700 * We check for both TCP and UDP in case there are
6701 * ambiguous entries.
6702 */
6703 memset(&hints, 0, sizeof(hints));
6704 hints.ai_family = PF_UNSPEC;
6705 hints.ai_socktype = (ipproto == IPPROTO_TCP) ? SOCK_STREAM : SOCK_DGRAM;
6706 hints.ai_protocol = ipproto;
6707 error = getaddrinfo(NULL, name, &hints, &res);
6708 if (error != 0) {
6709 switch (error) {
6710
6711 case EAI_NONAME:
6712 case EAI_SERVICE:
6713 /*
6714 * No such port. Just return -1.
6715 */
6716 break;
6717
6718 #ifdef EAI_SYSTEM
6719 case EAI_SYSTEM:
6720 /*
6721 * We don't use strerror() because it's not
6722 * guaranteed to be thread-safe on all platforms
6723 * (probably because it might use a non-thread-local
6724 * buffer into which to format an error message
6725 * if the error code isn't one for which it has
6726 * a canned string; three cheers for C string
6727 * handling).
6728 */
6729 bpf_set_error(cstate, "getaddrinfo(\"%s\" fails with system error: %d",
6730 name, errno);
6731 port = -2; /* a real error */
6732 break;
6733 #endif
6734
6735 default:
6736 /*
6737 * This is a real error, not just "there's
6738 * no such service name".
6739 *
6740 * We don't use gai_strerror() because it's not
6741 * guaranteed to be thread-safe on all platforms
6742 * (probably because it might use a non-thread-local
6743 * buffer into which to format an error message
6744 * if the error code isn't one for which it has
6745 * a canned string; three cheers for C string
6746 * handling).
6747 */
6748 bpf_set_error(cstate, "getaddrinfo(\"%s\") fails with error: %d",
6749 name, error);
6750 port = -2; /* a real error */
6751 break;
6752 }
6753 } else {
6754 /*
6755 * OK, we found it. Did it find anything?
6756 */
6757 for (ai = res; ai != NULL; ai = ai->ai_next) {
6758 /*
6759 * Does it have an address?
6760 */
6761 if (ai->ai_addr != NULL) {
6762 /*
6763 * Yes. Get a port number; we're done.
6764 */
6765 if (ai->ai_addr->sa_family == AF_INET) {
6766 in4 = (struct sockaddr_in *)ai->ai_addr;
6767 port = ntohs(in4->sin_port);
6768 break;
6769 }
6770 #ifdef INET6
6771 if (ai->ai_addr->sa_family == AF_INET6) {
6772 in6 = (struct sockaddr_in6 *)ai->ai_addr;
6773 port = ntohs(in6->sin6_port);
6774 break;
6775 }
6776 #endif
6777 }
6778 }
6779 freeaddrinfo(res);
6780 }
6781 return port;
6782 }
6783
6784 /*
6785 * Convert a string to a port number.
6786 */
6787 static bpf_u_int32
6788 stringtoport(compiler_state_t *cstate, const char *string, size_t string_size,
6789 int *proto)
6790 {
6791 stoulen_ret ret;
6792 char *cpy;
6793 bpf_u_int32 val;
6794 int tcp_port = -1;
6795 int udp_port = -1;
6796
6797 /*
6798 * See if it's a number.
6799 */
6800 ret = stoulen(string, string_size, &val, cstate);
6801 switch (ret) {
6802
6803 case STOULEN_OK:
6804 /* Unknown port type - it's just a number. */
6805 *proto = PROTO_UNDEF;
6806 break;
6807
6808 case STOULEN_NOT_OCTAL_NUMBER:
6809 case STOULEN_NOT_HEX_NUMBER:
6810 case STOULEN_NOT_DECIMAL_NUMBER:
6811 /*
6812 * Not a valid number; try looking it up as a port.
6813 */
6814 cpy = malloc(string_size + 1); /* +1 for terminating '\0' */
6815 memcpy(cpy, string, string_size);
6816 cpy[string_size] = '\0';
6817 tcp_port = nametoport(cstate, cpy, IPPROTO_TCP);
6818 if (tcp_port == -2) {
6819 /*
6820 * We got a hard error; the error string has
6821 * already been set.
6822 */
6823 free(cpy);
6824 longjmp(cstate->top_ctx, 1);
6825 /*NOTREACHED*/
6826 }
6827 udp_port = nametoport(cstate, cpy, IPPROTO_UDP);
6828 if (udp_port == -2) {
6829 /*
6830 * We got a hard error; the error string has
6831 * already been set.
6832 */
6833 free(cpy);
6834 longjmp(cstate->top_ctx, 1);
6835 /*NOTREACHED*/
6836 }
6837
6838 /*
6839 * We need to check /etc/services for ambiguous entries.
6840 * If we find an ambiguous entry, and it has the
6841 * same port number, change the proto to PROTO_UNDEF
6842 * so both TCP and UDP will be checked.
6843 */
6844 if (tcp_port >= 0) {
6845 val = (bpf_u_int32)tcp_port;
6846 *proto = IPPROTO_TCP;
6847 if (udp_port >= 0) {
6848 if (udp_port == tcp_port)
6849 *proto = PROTO_UNDEF;
6850 #ifdef notdef
6851 else
6852 /* Can't handle ambiguous names that refer
6853 to different port numbers. */
6854 warning("ambiguous port %s in /etc/services",
6855 cpy);
6856 #endif
6857 }
6858 free(cpy);
6859 break;
6860 }
6861 if (udp_port >= 0) {
6862 val = (bpf_u_int32)udp_port;
6863 *proto = IPPROTO_UDP;
6864 free(cpy);
6865 break;
6866 }
6867 #if defined(ultrix) || defined(__osf__)
6868 /* Special hack in case NFS isn't in /etc/services */
6869 if (strcmp(cpy, "nfs") == 0) {
6870 val = 2049;
6871 *proto = PROTO_UNDEF;
6872 free(cpy);
6873 break;
6874 }
6875 #endif
6876 bpf_set_error(cstate, "'%s' is not a valid port", cpy);
6877 free(cpy);
6878 longjmp(cstate->top_ctx, 1);
6879 /*NOTREACHED*/
6880
6881 case STOULEN_ERROR:
6882 /* Error already set. */
6883 longjmp(cstate->top_ctx, 1);
6884 /*NOTREACHED*/
6885
6886 default:
6887 /* Should not happen */
6888 bpf_set_error(cstate, "stoulen returned %d - this should not happen", ret);
6889 longjmp(cstate->top_ctx, 1);
6890 /*NOTREACHED*/
6891 }
6892 return (val);
6893 }
6894
6895 /*
6896 * Convert a string in the form PPP-PPP, which correspond to ports, to
6897 * a starting and ending port in a port range.
6898 */
6899 static void
6900 stringtoportrange(compiler_state_t *cstate, const char *string,
6901 bpf_u_int32 *port1, bpf_u_int32 *port2, int *proto)
6902 {
6903 char *hyphen_off;
6904 const char *first, *second;
6905 size_t first_size, second_size;
6906 int save_proto;
6907
6908 if ((hyphen_off = strchr(string, '-')) == NULL)
6909 bpf_error(cstate, "port range '%s' contains no hyphen", string);
6910
6911 /*
6912 * Make sure there are no other hyphens.
6913 *
6914 * XXX - we support named ports, but there are some port names
6915 * in /etc/services that include hyphens, so this would rule
6916 * that out.
6917 */
6918 if (strchr(hyphen_off + 1, '-') != NULL)
6919 bpf_error(cstate, "port range '%s' contains more than one hyphen",
6920 string);
6921
6922 /*
6923 * Get the length of the first port.
6924 */
6925 first = string;
6926 first_size = hyphen_off - string;
6927 if (first_size == 0) {
6928 /* Range of "-port", which we don't support. */
6929 bpf_error(cstate, "port range '%s' has no starting port", string);
6930 }
6931
6932 /*
6933 * Try to convert it to a port.
6934 */
6935 *port1 = stringtoport(cstate, first, first_size, proto);
6936 save_proto = *proto;
6937
6938 /*
6939 * Get the length of the second port.
6940 */
6941 second = hyphen_off + 1;
6942 second_size = strlen(second);
6943 if (second_size == 0) {
6944 /* Range of "port-", which we don't support. */
6945 bpf_error(cstate, "port range '%s' has no ending port", string);
6946 }
6947
6948 /*
6949 * Try to convert it to a port.
6950 */
6951 *port2 = stringtoport(cstate, second, second_size, proto);
6952 if (*proto != save_proto)
6953 *proto = PROTO_UNDEF;
6954 }
6955
6956 struct block *
6957 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6958 {
6959 int proto = q.proto;
6960 int dir = q.dir;
6961 int tproto;
6962 u_char *eaddr;
6963 bpf_u_int32 mask, addr;
6964 struct addrinfo *res, *res0;
6965 struct sockaddr_in *sin4;
6966 #ifdef INET6
6967 int tproto6;
6968 struct sockaddr_in6 *sin6;
6969 struct in6_addr mask128;
6970 #endif /*INET6*/
6971 struct block *b, *tmp;
6972 int port, real_proto;
6973 bpf_u_int32 port1, port2;
6974
6975 /*
6976 * Catch errors reported by us and routines below us, and return NULL
6977 * on an error.
6978 */
6979 if (setjmp(cstate->top_ctx))
6980 return (NULL);
6981
6982 switch (q.addr) {
6983
6984 case Q_NET:
6985 addr = pcap_nametonetaddr(name);
6986 if (addr == 0)
6987 bpf_error(cstate, "unknown network '%s'", name);
6988 /* Left justify network addr and calculate its network mask */
6989 mask = 0xffffffff;
6990 while (addr && (addr & 0xff000000) == 0) {
6991 addr <<= 8;
6992 mask <<= 8;
6993 }
6994 return gen_host(cstate, addr, mask, proto, dir, q.addr);
6995
6996 case Q_DEFAULT:
6997 case Q_HOST:
6998 if (proto == Q_LINK) {
6999 switch (cstate->linktype) {
7000
7001 case DLT_EN10MB:
7002 case DLT_NETANALYZER:
7003 case DLT_NETANALYZER_TRANSPARENT:
7004 eaddr = pcap_ether_hostton(name);
7005 if (eaddr == NULL)
7006 bpf_error(cstate,
7007 "unknown ether host '%s'", name);
7008 tmp = gen_prevlinkhdr_check(cstate);
7009 b = gen_ehostop(cstate, eaddr, dir);
7010 if (tmp != NULL)
7011 gen_and(tmp, b);
7012 free(eaddr);
7013 return b;
7014
7015 case DLT_FDDI:
7016 eaddr = pcap_ether_hostton(name);
7017 if (eaddr == NULL)
7018 bpf_error(cstate,
7019 "unknown FDDI host '%s'", name);
7020 b = gen_fhostop(cstate, eaddr, dir);
7021 free(eaddr);
7022 return b;
7023
7024 case DLT_IEEE802:
7025 eaddr = pcap_ether_hostton(name);
7026 if (eaddr == NULL)
7027 bpf_error(cstate,
7028 "unknown token ring host '%s'", name);
7029 b = gen_thostop(cstate, eaddr, dir);
7030 free(eaddr);
7031 return b;
7032
7033 case DLT_IEEE802_11:
7034 case DLT_PRISM_HEADER:
7035 case DLT_IEEE802_11_RADIO_AVS:
7036 case DLT_IEEE802_11_RADIO:
7037 case DLT_PPI:
7038 eaddr = pcap_ether_hostton(name);
7039 if (eaddr == NULL)
7040 bpf_error(cstate,
7041 "unknown 802.11 host '%s'", name);
7042 b = gen_wlanhostop(cstate, eaddr, dir);
7043 free(eaddr);
7044 return b;
7045
7046 case DLT_IP_OVER_FC:
7047 eaddr = pcap_ether_hostton(name);
7048 if (eaddr == NULL)
7049 bpf_error(cstate,
7050 "unknown Fibre Channel host '%s'", name);
7051 b = gen_ipfchostop(cstate, eaddr, dir);
7052 free(eaddr);
7053 return b;
7054 }
7055
7056 bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
7057 } else if (proto == Q_DECNET) {
7058 /*
7059 * A long time ago on Ultrix libpcap supported
7060 * translation of DECnet host names into DECnet
7061 * addresses, but this feature is history now.
7062 */
7063 bpf_error(cstate, "invalid DECnet address '%s'", name);
7064 } else {
7065 #ifdef INET6
7066 memset(&mask128, 0xff, sizeof(mask128));
7067 #endif
7068 res0 = res = pcap_nametoaddrinfo(name);
7069 if (res == NULL)
7070 bpf_error(cstate, "unknown host '%s'", name);
7071 cstate->ai = res;
7072 b = tmp = NULL;
7073 tproto = proto;
7074 #ifdef INET6
7075 tproto6 = proto;
7076 #endif
7077 if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
7078 tproto == Q_DEFAULT) {
7079 tproto = Q_IP;
7080 #ifdef INET6
7081 tproto6 = Q_IPV6;
7082 #endif
7083 }
7084 for (res = res0; res; res = res->ai_next) {
7085 switch (res->ai_family) {
7086 case AF_INET:
7087 #ifdef INET6
7088 if (tproto == Q_IPV6)
7089 continue;
7090 #endif
7091
7092 sin4 = (struct sockaddr_in *)
7093 res->ai_addr;
7094 tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
7095 0xffffffff, tproto, dir, q.addr);
7096 break;
7097 #ifdef INET6
7098 case AF_INET6:
7099 if (tproto6 == Q_IP)
7100 continue;
7101
7102 sin6 = (struct sockaddr_in6 *)
7103 res->ai_addr;
7104 tmp = gen_host6(cstate, &sin6->sin6_addr,
7105 &mask128, tproto6, dir, q.addr);
7106 break;
7107 #endif
7108 default:
7109 continue;
7110 }
7111 if (b)
7112 gen_or(b, tmp);
7113 b = tmp;
7114 }
7115 cstate->ai = NULL;
7116 freeaddrinfo(res0);
7117 if (b == NULL) {
7118 bpf_error(cstate, "unknown host '%s'%s", name,
7119 (proto == Q_DEFAULT)
7120 ? ""
7121 : " for specified address family");
7122 }
7123 return b;
7124 }
7125
7126 case Q_PORT:
7127 if (proto != Q_DEFAULT &&
7128 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7129 bpf_error(cstate, "illegal qualifier of 'port'");
7130 if (pcap_nametoport(name, &port, &real_proto) == 0)
7131 bpf_error(cstate, "unknown port '%s'", name);
7132 if (proto == Q_UDP) {
7133 if (real_proto == IPPROTO_TCP)
7134 bpf_error(cstate, "port '%s' is tcp", name);
7135 else if (real_proto == IPPROTO_SCTP)
7136 bpf_error(cstate, "port '%s' is sctp", name);
7137 else
7138 /* override PROTO_UNDEF */
7139 real_proto = IPPROTO_UDP;
7140 }
7141 if (proto == Q_TCP) {
7142 if (real_proto == IPPROTO_UDP)
7143 bpf_error(cstate, "port '%s' is udp", name);
7144
7145 else if (real_proto == IPPROTO_SCTP)
7146 bpf_error(cstate, "port '%s' is sctp", name);
7147 else
7148 /* override PROTO_UNDEF */
7149 real_proto = IPPROTO_TCP;
7150 }
7151 if (proto == Q_SCTP) {
7152 if (real_proto == IPPROTO_UDP)
7153 bpf_error(cstate, "port '%s' is udp", name);
7154
7155 else if (real_proto == IPPROTO_TCP)
7156 bpf_error(cstate, "port '%s' is tcp", name);
7157 else
7158 /* override PROTO_UNDEF */
7159 real_proto = IPPROTO_SCTP;
7160 }
7161 if (port < 0)
7162 bpf_error(cstate, "illegal port number %d < 0", port);
7163 if (port > 65535)
7164 bpf_error(cstate, "illegal port number %d > 65535", port);
7165 b = gen_port(cstate, port, real_proto, dir);
7166 gen_or(gen_port6(cstate, port, real_proto, dir), b);
7167 return b;
7168
7169 case Q_PORTRANGE:
7170 if (proto != Q_DEFAULT &&
7171 proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
7172 bpf_error(cstate, "illegal qualifier of 'portrange'");
7173 stringtoportrange(cstate, name, &port1, &port2, &real_proto);
7174 if (proto == Q_UDP) {
7175 if (real_proto == IPPROTO_TCP)
7176 bpf_error(cstate, "port in range '%s' is tcp", name);
7177 else if (real_proto == IPPROTO_SCTP)
7178 bpf_error(cstate, "port in range '%s' is sctp", name);
7179 else
7180 /* override PROTO_UNDEF */
7181 real_proto = IPPROTO_UDP;
7182 }
7183 if (proto == Q_TCP) {
7184 if (real_proto == IPPROTO_UDP)
7185 bpf_error(cstate, "port in range '%s' is udp", name);
7186 else if (real_proto == IPPROTO_SCTP)
7187 bpf_error(cstate, "port in range '%s' is sctp", name);
7188 else
7189 /* override PROTO_UNDEF */
7190 real_proto = IPPROTO_TCP;
7191 }
7192 if (proto == Q_SCTP) {
7193 if (real_proto == IPPROTO_UDP)
7194 bpf_error(cstate, "port in range '%s' is udp", name);
7195 else if (real_proto == IPPROTO_TCP)
7196 bpf_error(cstate, "port in range '%s' is tcp", name);
7197 else
7198 /* override PROTO_UNDEF */
7199 real_proto = IPPROTO_SCTP;
7200 }
7201 if (port1 > 65535)
7202 bpf_error(cstate, "illegal port number %d > 65535", port1);
7203 if (port2 > 65535)
7204 bpf_error(cstate, "illegal port number %d > 65535", port2);
7205
7206 b = gen_portrange(cstate, port1, port2, real_proto, dir);
7207 gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
7208 return b;
7209
7210 case Q_GATEWAY:
7211 #ifndef INET6
7212 eaddr = pcap_ether_hostton(name);
7213 if (eaddr == NULL)
7214 bpf_error(cstate, "unknown ether host: %s", name);
7215
7216 res = pcap_nametoaddrinfo(name);
7217 cstate->ai = res;
7218 if (res == NULL)
7219 bpf_error(cstate, "unknown host '%s'", name);
7220 b = gen_gateway(cstate, eaddr, res, proto, dir);
7221 cstate->ai = NULL;
7222 freeaddrinfo(res);
7223 if (b == NULL)
7224 bpf_error(cstate, "unknown host '%s'", name);
7225 return b;
7226 #else
7227 bpf_error(cstate, "'gateway' not supported in this configuration");
7228 #endif /*INET6*/
7229
7230 case Q_PROTO:
7231 real_proto = lookup_proto(cstate, name, proto);
7232 if (real_proto >= 0)
7233 return gen_proto(cstate, real_proto, proto, dir);
7234 else
7235 bpf_error(cstate, "unknown protocol: %s", name);
7236
7237 #if !defined(NO_PROTOCHAIN)
7238 case Q_PROTOCHAIN:
7239 real_proto = lookup_proto(cstate, name, proto);
7240 if (real_proto >= 0)
7241 return gen_protochain(cstate, real_proto, proto);
7242 else
7243 bpf_error(cstate, "unknown protocol: %s", name);
7244 #endif /* !defined(NO_PROTOCHAIN) */
7245
7246 case Q_UNDEF:
7247 syntax(cstate);
7248 /*NOTREACHED*/
7249 }
7250 abort();
7251 /*NOTREACHED*/
7252 }
7253
7254 struct block *
7255 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
7256 bpf_u_int32 masklen, struct qual q)
7257 {
7258 register int nlen, mlen;
7259 bpf_u_int32 n, m;
7260
7261 /*
7262 * Catch errors reported by us and routines below us, and return NULL
7263 * on an error.
7264 */
7265 if (setjmp(cstate->top_ctx))
7266 return (NULL);
7267
7268 nlen = __pcap_atoin(s1, &n);
7269 if (nlen < 0)
7270 bpf_error(cstate, "invalid IPv4 address '%s'", s1);
7271 /* Promote short ipaddr */
7272 n <<= 32 - nlen;
7273
7274 if (s2 != NULL) {
7275 mlen = __pcap_atoin(s2, &m);
7276 if (mlen < 0)
7277 bpf_error(cstate, "invalid IPv4 address '%s'", s2);
7278 /* Promote short ipaddr */
7279 m <<= 32 - mlen;
7280 if ((n & ~m) != 0)
7281 bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
7282 s1, s2);
7283 } else {
7284 /* Convert mask len to mask */
7285 if (masklen > 32)
7286 bpf_error(cstate, "mask length must be <= 32");
7287 if (masklen == 0) {
7288 /*
7289 * X << 32 is not guaranteed by C to be 0; it's
7290 * undefined.
7291 */
7292 m = 0;
7293 } else
7294 m = 0xffffffff << (32 - masklen);
7295 if ((n & ~m) != 0)
7296 bpf_error(cstate, "non-network bits set in \"%s/%d\"",
7297 s1, masklen);
7298 }
7299
7300 switch (q.addr) {
7301
7302 case Q_NET:
7303 return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
7304
7305 default:
7306 bpf_error(cstate, "Mask syntax for networks only");
7307 /*NOTREACHED*/
7308 }
7309 /*NOTREACHED*/
7310 }
7311
7312 struct block *
7313 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7314 {
7315 bpf_u_int32 mask;
7316 int proto;
7317 int dir;
7318 register int vlen;
7319
7320 /*
7321 * Catch errors reported by us and routines below us, and return NULL
7322 * on an error.
7323 */
7324 if (setjmp(cstate->top_ctx))
7325 return (NULL);
7326
7327 proto = q.proto;
7328 dir = q.dir;
7329 if (s == NULL) {
7330 /*
7331 * v contains a 32-bit unsigned parsed from a string of the
7332 * form {N}, which could be decimal, hexadecimal or octal.
7333 * Although it would be possible to use the value as a raw
7334 * 16-bit DECnet address when the value fits into 16 bits, this
7335 * would be a questionable feature: DECnet address wire
7336 * encoding is little-endian, so this would not work as
7337 * intuitively as the same works for [big-endian] IPv4
7338 * addresses (0x01020304 means 1.2.3.4).
7339 */
7340 if (proto == Q_DECNET)
7341 bpf_error(cstate, "invalid DECnet address '%u'", v);
7342 vlen = 32;
7343 } else if (proto == Q_DECNET) {
7344 /*
7345 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7346 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7347 * for a valid DECnet address.
7348 */
7349 vlen = __pcap_atodn(s, &v);
7350 if (vlen == 0)
7351 bpf_error(cstate, "invalid DECnet address '%s'", s);
7352 } else {
7353 /*
7354 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7355 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7356 * IPv4 address.
7357 */
7358 vlen = __pcap_atoin(s, &v);
7359 if (vlen < 0)
7360 bpf_error(cstate, "invalid IPv4 address '%s'", s);
7361 }
7362
7363 switch (q.addr) {
7364
7365 case Q_DEFAULT:
7366 case Q_HOST:
7367 case Q_NET:
7368 if (proto == Q_DECNET)
7369 return gen_host(cstate, v, 0, proto, dir, q.addr);
7370 else if (proto == Q_LINK) {
7371 bpf_error(cstate, "illegal link layer address");
7372 } else {
7373 mask = 0xffffffff;
7374 if (s == NULL && q.addr == Q_NET) {
7375 /* Promote short net number */
7376 while (v && (v & 0xff000000) == 0) {
7377 v <<= 8;
7378 mask <<= 8;
7379 }
7380 } else {
7381 /* Promote short ipaddr */
7382 v <<= 32 - vlen;
7383 mask <<= 32 - vlen ;
7384 }
7385 return gen_host(cstate, v, mask, proto, dir, q.addr);
7386 }
7387
7388 case Q_PORT:
7389 if (proto == Q_UDP)
7390 proto = IPPROTO_UDP;
7391 else if (proto == Q_TCP)
7392 proto = IPPROTO_TCP;
7393 else if (proto == Q_SCTP)
7394 proto = IPPROTO_SCTP;
7395 else if (proto == Q_DEFAULT)
7396 proto = PROTO_UNDEF;
7397 else
7398 bpf_error(cstate, "illegal qualifier of 'port'");
7399
7400 if (v > 65535)
7401 bpf_error(cstate, "illegal port number %u > 65535", v);
7402
7403 {
7404 struct block *b;
7405 b = gen_port(cstate, v, proto, dir);
7406 gen_or(gen_port6(cstate, v, proto, dir), b);
7407 return b;
7408 }
7409
7410 case Q_PORTRANGE:
7411 if (proto == Q_UDP)
7412 proto = IPPROTO_UDP;
7413 else if (proto == Q_TCP)
7414 proto = IPPROTO_TCP;
7415 else if (proto == Q_SCTP)
7416 proto = IPPROTO_SCTP;
7417 else if (proto == Q_DEFAULT)
7418 proto = PROTO_UNDEF;
7419 else
7420 bpf_error(cstate, "illegal qualifier of 'portrange'");
7421
7422 if (v > 65535)
7423 bpf_error(cstate, "illegal port number %u > 65535", v);
7424
7425 {
7426 struct block *b;
7427 b = gen_portrange(cstate, v, v, proto, dir);
7428 gen_or(gen_portrange6(cstate, v, v, proto, dir), b);
7429 return b;
7430 }
7431
7432 case Q_GATEWAY:
7433 bpf_error(cstate, "'gateway' requires a name");
7434 /*NOTREACHED*/
7435
7436 case Q_PROTO:
7437 return gen_proto(cstate, v, proto, dir);
7438
7439 #if !defined(NO_PROTOCHAIN)
7440 case Q_PROTOCHAIN:
7441 return gen_protochain(cstate, v, proto);
7442 #endif
7443
7444 case Q_UNDEF:
7445 syntax(cstate);
7446 /*NOTREACHED*/
7447
7448 default:
7449 abort();
7450 /*NOTREACHED*/
7451 }
7452 /*NOTREACHED*/
7453 }
7454
7455 #ifdef INET6
7456 struct block *
7457 gen_mcode6(compiler_state_t *cstate, const char *s, bpf_u_int32 masklen,
7458 struct qual q)
7459 {
7460 struct addrinfo *res;
7461 struct in6_addr *addr;
7462 struct in6_addr mask;
7463 struct block *b;
7464 bpf_u_int32 a[4], m[4]; /* Same as in gen_hostop6(). */
7465
7466 /*
7467 * Catch errors reported by us and routines below us, and return NULL
7468 * on an error.
7469 */
7470 if (setjmp(cstate->top_ctx))
7471 return (NULL);
7472
7473 res = pcap_nametoaddrinfo(s);
7474 if (!res)
7475 bpf_error(cstate, "invalid ip6 address %s", s);
7476 cstate->ai = res;
7477 if (res->ai_next)
7478 bpf_error(cstate, "%s resolved to multiple address", s);
7479 addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7480
7481 if (masklen > sizeof(mask.s6_addr) * 8)
7482 bpf_error(cstate, "mask length must be <= %zu", sizeof(mask.s6_addr) * 8);
7483 memset(&mask, 0, sizeof(mask));
7484 memset(&mask.s6_addr, 0xff, masklen / 8);
7485 if (masklen % 8) {
7486 mask.s6_addr[masklen / 8] =
7487 (0xff << (8 - masklen % 8)) & 0xff;
7488 }
7489
7490 memcpy(a, addr, sizeof(a));
7491 memcpy(m, &mask, sizeof(m));
7492 if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7493 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7494 bpf_error(cstate, "non-network bits set in \"%s/%d\"", s, masklen);
7495 }
7496
7497 switch (q.addr) {
7498
7499 case Q_DEFAULT:
7500 case Q_HOST:
7501 if (masklen != 128)
7502 bpf_error(cstate, "Mask syntax for networks only");
7503 /* FALLTHROUGH */
7504
7505 case Q_NET:
7506 b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7507 cstate->ai = NULL;
7508 freeaddrinfo(res);
7509 return b;
7510
7511 default:
7512 bpf_error(cstate, "invalid qualifier against IPv6 address");
7513 /*NOTREACHED*/
7514 }
7515 }
7516 #endif /*INET6*/
7517
7518 struct block *
7519 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7520 {
7521 struct block *b, *tmp;
7522
7523 /*
7524 * Catch errors reported by us and routines below us, and return NULL
7525 * on an error.
7526 */
7527 if (setjmp(cstate->top_ctx))
7528 return (NULL);
7529
7530 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7531 cstate->e = pcap_ether_aton(s);
7532 if (cstate->e == NULL)
7533 bpf_error(cstate, "malloc");
7534 switch (cstate->linktype) {
7535 case DLT_EN10MB:
7536 case DLT_NETANALYZER:
7537 case DLT_NETANALYZER_TRANSPARENT:
7538 tmp = gen_prevlinkhdr_check(cstate);
7539 b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7540 if (tmp != NULL)
7541 gen_and(tmp, b);
7542 break;
7543 case DLT_FDDI:
7544 b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7545 break;
7546 case DLT_IEEE802:
7547 b = gen_thostop(cstate, cstate->e, (int)q.dir);
7548 break;
7549 case DLT_IEEE802_11:
7550 case DLT_PRISM_HEADER:
7551 case DLT_IEEE802_11_RADIO_AVS:
7552 case DLT_IEEE802_11_RADIO:
7553 case DLT_PPI:
7554 b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7555 break;
7556 case DLT_IP_OVER_FC:
7557 b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7558 break;
7559 default:
7560 free(cstate->e);
7561 cstate->e = NULL;
7562 bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7563 /*NOTREACHED*/
7564 }
7565 free(cstate->e);
7566 cstate->e = NULL;
7567 return (b);
7568 }
7569 bpf_error(cstate, "ethernet address used in non-ether expression");
7570 /*NOTREACHED*/
7571 }
7572
7573 void
7574 sappend(struct slist *s0, struct slist *s1)
7575 {
7576 /*
7577 * This is definitely not the best way to do this, but the
7578 * lists will rarely get long.
7579 */
7580 while (s0->next)
7581 s0 = s0->next;
7582 s0->next = s1;
7583 }
7584
7585 static struct slist *
7586 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7587 {
7588 struct slist *s;
7589
7590 s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7591 s->s.k = a->regno;
7592 return s;
7593 }
7594
7595 static struct slist *
7596 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7597 {
7598 struct slist *s;
7599
7600 s = new_stmt(cstate, BPF_LD|BPF_MEM);
7601 s->s.k = a->regno;
7602 return s;
7603 }
7604
7605 /*
7606 * Modify "index" to use the value stored into its register as an
7607 * offset relative to the beginning of the header for the protocol
7608 * "proto", and allocate a register and put an item "size" bytes long
7609 * (1, 2, or 4) at that offset into that register, making it the register
7610 * for "index".
7611 */
7612 static struct arth *
7613 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst,
7614 bpf_u_int32 size)
7615 {
7616 int size_code;
7617 struct slist *s, *tmp;
7618 struct block *b;
7619 int regno = alloc_reg(cstate);
7620
7621 free_reg(cstate, inst->regno);
7622 switch (size) {
7623
7624 default:
7625 bpf_error(cstate, "data size must be 1, 2, or 4");
7626 /*NOTREACHED*/
7627
7628 case 1:
7629 size_code = BPF_B;
7630 break;
7631
7632 case 2:
7633 size_code = BPF_H;
7634 break;
7635
7636 case 4:
7637 size_code = BPF_W;
7638 break;
7639 }
7640 switch (proto) {
7641 default:
7642 bpf_error(cstate, "unsupported index operation");
7643
7644 case Q_RADIO:
7645 /*
7646 * The offset is relative to the beginning of the packet
7647 * data, if we have a radio header. (If we don't, this
7648 * is an error.)
7649 */
7650 if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7651 cstate->linktype != DLT_IEEE802_11_RADIO &&
7652 cstate->linktype != DLT_PRISM_HEADER)
7653 bpf_error(cstate, "radio information not present in capture");
7654
7655 /*
7656 * Load into the X register the offset computed into the
7657 * register specified by "index".
7658 */
7659 s = xfer_to_x(cstate, inst);
7660
7661 /*
7662 * Load the item at that offset.
7663 */
7664 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7665 sappend(s, tmp);
7666 sappend(inst->s, s);
7667 break;
7668
7669 case Q_LINK:
7670 /*
7671 * The offset is relative to the beginning of
7672 * the link-layer header.
7673 *
7674 * XXX - what about ATM LANE? Should the index be
7675 * relative to the beginning of the AAL5 frame, so
7676 * that 0 refers to the beginning of the LE Control
7677 * field, or relative to the beginning of the LAN
7678 * frame, so that 0 refers, for Ethernet LANE, to
7679 * the beginning of the destination address?
7680 */
7681 s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7682
7683 /*
7684 * If "s" is non-null, it has code to arrange that the
7685 * X register contains the length of the prefix preceding
7686 * the link-layer header. Add to it the offset computed
7687 * into the register specified by "index", and move that
7688 * into the X register. Otherwise, just load into the X
7689 * register the offset computed into the register specified
7690 * by "index".
7691 */
7692 if (s != NULL) {
7693 sappend(s, xfer_to_a(cstate, inst));
7694 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7695 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7696 } else
7697 s = xfer_to_x(cstate, inst);
7698
7699 /*
7700 * Load the item at the sum of the offset we've put in the
7701 * X register and the offset of the start of the link
7702 * layer header (which is 0 if the radio header is
7703 * variable-length; that header length is what we put
7704 * into the X register and then added to the index).
7705 */
7706 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7707 tmp->s.k = cstate->off_linkhdr.constant_part;
7708 sappend(s, tmp);
7709 sappend(inst->s, s);
7710 break;
7711
7712 case Q_IP:
7713 case Q_ARP:
7714 case Q_RARP:
7715 case Q_ATALK:
7716 case Q_DECNET:
7717 case Q_SCA:
7718 case Q_LAT:
7719 case Q_MOPRC:
7720 case Q_MOPDL:
7721 case Q_IPV6:
7722 /*
7723 * The offset is relative to the beginning of
7724 * the network-layer header.
7725 * XXX - are there any cases where we want
7726 * cstate->off_nl_nosnap?
7727 */
7728 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7729
7730 /*
7731 * If "s" is non-null, it has code to arrange that the
7732 * X register contains the variable part of the offset
7733 * of the link-layer payload. Add to it the offset
7734 * computed into the register specified by "index",
7735 * and move that into the X register. Otherwise, just
7736 * load into the X register the offset computed into
7737 * the register specified by "index".
7738 */
7739 if (s != NULL) {
7740 sappend(s, xfer_to_a(cstate, inst));
7741 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7742 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7743 } else
7744 s = xfer_to_x(cstate, inst);
7745
7746 /*
7747 * Load the item at the sum of the offset we've put in the
7748 * X register, the offset of the start of the network
7749 * layer header from the beginning of the link-layer
7750 * payload, and the constant part of the offset of the
7751 * start of the link-layer payload.
7752 */
7753 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7754 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7755 sappend(s, tmp);
7756 sappend(inst->s, s);
7757
7758 /*
7759 * Do the computation only if the packet contains
7760 * the protocol in question.
7761 */
7762 b = gen_proto_abbrev_internal(cstate, proto);
7763 if (inst->b)
7764 gen_and(inst->b, b);
7765 inst->b = b;
7766 break;
7767
7768 case Q_SCTP:
7769 case Q_TCP:
7770 case Q_UDP:
7771 case Q_ICMP:
7772 case Q_IGMP:
7773 case Q_IGRP:
7774 case Q_PIM:
7775 case Q_VRRP:
7776 case Q_CARP:
7777 /*
7778 * The offset is relative to the beginning of
7779 * the transport-layer header.
7780 *
7781 * Load the X register with the length of the IPv4 header
7782 * (plus the offset of the link-layer header, if it's
7783 * a variable-length header), in bytes.
7784 *
7785 * XXX - are there any cases where we want
7786 * cstate->off_nl_nosnap?
7787 * XXX - we should, if we're built with
7788 * IPv6 support, generate code to load either
7789 * IPv4, IPv6, or both, as appropriate.
7790 */
7791 s = gen_loadx_iphdrlen(cstate);
7792
7793 /*
7794 * The X register now contains the sum of the variable
7795 * part of the offset of the link-layer payload and the
7796 * length of the network-layer header.
7797 *
7798 * Load into the A register the offset relative to
7799 * the beginning of the transport layer header,
7800 * add the X register to that, move that to the
7801 * X register, and load with an offset from the
7802 * X register equal to the sum of the constant part of
7803 * the offset of the link-layer payload and the offset,
7804 * relative to the beginning of the link-layer payload,
7805 * of the network-layer header.
7806 */
7807 sappend(s, xfer_to_a(cstate, inst));
7808 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7809 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7810 sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code));
7811 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7812 sappend(inst->s, s);
7813
7814 /*
7815 * Do the computation only if the packet contains
7816 * the protocol in question - which is true only
7817 * if this is an IP datagram and is the first or
7818 * only fragment of that datagram.
7819 */
7820 gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7821 if (inst->b)
7822 gen_and(inst->b, b);
7823 gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7824 inst->b = b;
7825 break;
7826 case Q_ICMPV6:
7827 /*
7828 * Do the computation only if the packet contains
7829 * the protocol in question.
7830 */
7831 b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7832 if (inst->b)
7833 gen_and(inst->b, b);
7834 inst->b = b;
7835
7836 /*
7837 * Check if we have an icmp6 next header
7838 */
7839 b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7840 if (inst->b)
7841 gen_and(inst->b, b);
7842 inst->b = b;
7843
7844 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7845 /*
7846 * If "s" is non-null, it has code to arrange that the
7847 * X register contains the variable part of the offset
7848 * of the link-layer payload. Add to it the offset
7849 * computed into the register specified by "index",
7850 * and move that into the X register. Otherwise, just
7851 * load into the X register the offset computed into
7852 * the register specified by "index".
7853 */
7854 if (s != NULL) {
7855 sappend(s, xfer_to_a(cstate, inst));
7856 sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7857 sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7858 } else
7859 s = xfer_to_x(cstate, inst);
7860
7861 /*
7862 * Load the item at the sum of the offset we've put in the
7863 * X register, the offset of the start of the network
7864 * layer header from the beginning of the link-layer
7865 * payload, and the constant part of the offset of the
7866 * start of the link-layer payload.
7867 */
7868 tmp = new_stmt(cstate, BPF_LD|BPF_IND|size_code);
7869 tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7870
7871 sappend(s, tmp);
7872 sappend(inst->s, s);
7873
7874 break;
7875 }
7876 inst->regno = regno;
7877 s = new_stmt(cstate, BPF_ST);
7878 s->s.k = regno;
7879 sappend(inst->s, s);
7880
7881 return inst;
7882 }
7883
7884 struct arth *
7885 gen_load(compiler_state_t *cstate, int proto, struct arth *inst,
7886 bpf_u_int32 size)
7887 {
7888 /*
7889 * Catch errors reported by us and routines below us, and return NULL
7890 * on an error.
7891 */
7892 if (setjmp(cstate->top_ctx))
7893 return (NULL);
7894
7895 return gen_load_internal(cstate, proto, inst, size);
7896 }
7897
7898 static struct block *
7899 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7900 struct arth *a1, int reversed)
7901 {
7902 struct slist *s0, *s1, *s2;
7903 struct block *b, *tmp;
7904
7905 s0 = xfer_to_x(cstate, a1);
7906 s1 = xfer_to_a(cstate, a0);
7907 if (code == BPF_JEQ) {
7908 s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7909 b = new_block(cstate, JMP(code));
7910 sappend(s1, s2);
7911 }
7912 else
7913 b = new_block(cstate, BPF_JMP|code|BPF_X);
7914 if (reversed)
7915 gen_not(b);
7916
7917 sappend(s0, s1);
7918 sappend(a1->s, s0);
7919 sappend(a0->s, a1->s);
7920
7921 b->stmts = a0->s;
7922
7923 free_reg(cstate, a0->regno);
7924 free_reg(cstate, a1->regno);
7925
7926 /* 'and' together protocol checks */
7927 if (a0->b) {
7928 if (a1->b) {
7929 gen_and(a0->b, tmp = a1->b);
7930 }
7931 else
7932 tmp = a0->b;
7933 } else
7934 tmp = a1->b;
7935
7936 if (tmp)
7937 gen_and(tmp, b);
7938
7939 return b;
7940 }
7941
7942 struct block *
7943 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7944 struct arth *a1, int reversed)
7945 {
7946 /*
7947 * Catch errors reported by us and routines below us, and return NULL
7948 * on an error.
7949 */
7950 if (setjmp(cstate->top_ctx))
7951 return (NULL);
7952
7953 return gen_relation_internal(cstate, code, a0, a1, reversed);
7954 }
7955
7956 struct arth *
7957 gen_loadlen(compiler_state_t *cstate)
7958 {
7959 int regno;
7960 struct arth *a;
7961 struct slist *s;
7962
7963 /*
7964 * Catch errors reported by us and routines below us, and return NULL
7965 * on an error.
7966 */
7967 if (setjmp(cstate->top_ctx))
7968 return (NULL);
7969
7970 regno = alloc_reg(cstate);
7971 a = (struct arth *)newchunk(cstate, sizeof(*a));
7972 s = new_stmt(cstate, BPF_LD|BPF_LEN);
7973 s->next = new_stmt(cstate, BPF_ST);
7974 s->next->s.k = regno;
7975 a->s = s;
7976 a->regno = regno;
7977
7978 return a;
7979 }
7980
7981 static struct arth *
7982 gen_loadi_internal(compiler_state_t *cstate, bpf_u_int32 val)
7983 {
7984 struct arth *a;
7985 struct slist *s;
7986 int reg;
7987
7988 a = (struct arth *)newchunk(cstate, sizeof(*a));
7989
7990 reg = alloc_reg(cstate);
7991
7992 s = new_stmt(cstate, BPF_LD|BPF_IMM);
7993 s->s.k = val;
7994 s->next = new_stmt(cstate, BPF_ST);
7995 s->next->s.k = reg;
7996 a->s = s;
7997 a->regno = reg;
7998
7999 return a;
8000 }
8001
8002 struct arth *
8003 gen_loadi(compiler_state_t *cstate, bpf_u_int32 val)
8004 {
8005 /*
8006 * Catch errors reported by us and routines below us, and return NULL
8007 * on an error.
8008 */
8009 if (setjmp(cstate->top_ctx))
8010 return (NULL);
8011
8012 return gen_loadi_internal(cstate, val);
8013 }
8014
8015 /*
8016 * The a_arg dance is to avoid annoying whining by compilers that
8017 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8018 * It's not *used* after setjmp returns.
8019 */
8020 struct arth *
8021 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
8022 {
8023 struct arth *a = a_arg;
8024 struct slist *s;
8025
8026 /*
8027 * Catch errors reported by us and routines below us, and return NULL
8028 * on an error.
8029 */
8030 if (setjmp(cstate->top_ctx))
8031 return (NULL);
8032
8033 s = xfer_to_a(cstate, a);
8034 sappend(a->s, s);
8035 s = new_stmt(cstate, BPF_ALU|BPF_NEG);
8036 s->s.k = 0;
8037 sappend(a->s, s);
8038 s = new_stmt(cstate, BPF_ST);
8039 s->s.k = a->regno;
8040 sappend(a->s, s);
8041
8042 return a;
8043 }
8044
8045 /*
8046 * The a0_arg dance is to avoid annoying whining by compilers that
8047 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
8048 * It's not *used* after setjmp returns.
8049 */
8050 struct arth *
8051 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
8052 struct arth *a1)
8053 {
8054 struct arth *a0 = a0_arg;
8055 struct slist *s0, *s1, *s2;
8056
8057 /*
8058 * Catch errors reported by us and routines below us, and return NULL
8059 * on an error.
8060 */
8061 if (setjmp(cstate->top_ctx))
8062 return (NULL);
8063
8064 /*
8065 * Disallow division by, or modulus by, zero; we do this here
8066 * so that it gets done even if the optimizer is disabled.
8067 *
8068 * Also disallow shifts by a value greater than 31; we do this
8069 * here, for the same reason.
8070 */
8071 if (code == BPF_DIV) {
8072 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8073 bpf_error(cstate, "division by zero");
8074 } else if (code == BPF_MOD) {
8075 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
8076 bpf_error(cstate, "modulus by zero");
8077 } else if (code == BPF_LSH || code == BPF_RSH) {
8078 if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k > 31)
8079 bpf_error(cstate, "shift by more than 31 bits");
8080 }
8081 s0 = xfer_to_x(cstate, a1);
8082 s1 = xfer_to_a(cstate, a0);
8083 s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
8084
8085 sappend(s1, s2);
8086 sappend(s0, s1);
8087 sappend(a1->s, s0);
8088 sappend(a0->s, a1->s);
8089
8090 free_reg(cstate, a0->regno);
8091 free_reg(cstate, a1->regno);
8092
8093 s0 = new_stmt(cstate, BPF_ST);
8094 a0->regno = s0->s.k = alloc_reg(cstate);
8095 sappend(a0->s, s0);
8096
8097 return a0;
8098 }
8099
8100 /*
8101 * Initialize the table of used registers and the current register.
8102 */
8103 static void
8104 init_regs(compiler_state_t *cstate)
8105 {
8106 cstate->curreg = 0;
8107 memset(cstate->regused, 0, sizeof cstate->regused);
8108 }
8109
8110 /*
8111 * Return the next free register.
8112 */
8113 static int
8114 alloc_reg(compiler_state_t *cstate)
8115 {
8116 int n = BPF_MEMWORDS;
8117
8118 while (--n >= 0) {
8119 if (cstate->regused[cstate->curreg])
8120 cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
8121 else {
8122 cstate->regused[cstate->curreg] = 1;
8123 return cstate->curreg;
8124 }
8125 }
8126 bpf_error(cstate, "too many registers needed to evaluate expression");
8127 /*NOTREACHED*/
8128 }
8129
8130 /*
8131 * Return a register to the table so it can
8132 * be used later.
8133 */
8134 static void
8135 free_reg(compiler_state_t *cstate, int n)
8136 {
8137 cstate->regused[n] = 0;
8138 }
8139
8140 static struct block *
8141 gen_len(compiler_state_t *cstate, int jmp, int n)
8142 {
8143 struct slist *s;
8144 struct block *b;
8145
8146 s = new_stmt(cstate, BPF_LD|BPF_LEN);
8147 b = new_block(cstate, JMP(jmp));
8148 b->stmts = s;
8149 b->s.k = n;
8150
8151 return b;
8152 }
8153
8154 struct block *
8155 gen_greater(compiler_state_t *cstate, int n)
8156 {
8157 /*
8158 * Catch errors reported by us and routines below us, and return NULL
8159 * on an error.
8160 */
8161 if (setjmp(cstate->top_ctx))
8162 return (NULL);
8163
8164 return gen_len(cstate, BPF_JGE, n);
8165 }
8166
8167 /*
8168 * Actually, this is less than or equal.
8169 */
8170 struct block *
8171 gen_less(compiler_state_t *cstate, int n)
8172 {
8173 struct block *b;
8174
8175 /*
8176 * Catch errors reported by us and routines below us, and return NULL
8177 * on an error.
8178 */
8179 if (setjmp(cstate->top_ctx))
8180 return (NULL);
8181
8182 b = gen_len(cstate, BPF_JGT, n);
8183 gen_not(b);
8184
8185 return b;
8186 }
8187
8188 /*
8189 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8190 * the beginning of the link-layer header.
8191 * XXX - that means you can't test values in the radiotap header, but
8192 * as that header is difficult if not impossible to parse generally
8193 * without a loop, that might not be a severe problem. A new keyword
8194 * "radio" could be added for that, although what you'd really want
8195 * would be a way of testing particular radio header values, which
8196 * would generate code appropriate to the radio header in question.
8197 */
8198 struct block *
8199 gen_byteop(compiler_state_t *cstate, int op, int idx, bpf_u_int32 val)
8200 {
8201 struct block *b;
8202 struct slist *s;
8203
8204 /*
8205 * Catch errors reported by us and routines below us, and return NULL
8206 * on an error.
8207 */
8208 if (setjmp(cstate->top_ctx))
8209 return (NULL);
8210
8211 switch (op) {
8212 default:
8213 abort();
8214
8215 case '=':
8216 return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8217
8218 case '<':
8219 b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8220 return b;
8221
8222 case '>':
8223 b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, val);
8224 return b;
8225
8226 case '|':
8227 s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
8228 break;
8229
8230 case '&':
8231 s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8232 break;
8233 }
8234 s->s.k = val;
8235 b = new_block(cstate, JMP(BPF_JEQ));
8236 b->stmts = s;
8237 gen_not(b);
8238
8239 return b;
8240 }
8241
8242 static const u_char abroadcast[] = { 0x0 };
8243
8244 struct block *
8245 gen_broadcast(compiler_state_t *cstate, int proto)
8246 {
8247 bpf_u_int32 hostmask;
8248 struct block *b0, *b1, *b2;
8249 static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8250
8251 /*
8252 * Catch errors reported by us and routines below us, and return NULL
8253 * on an error.
8254 */
8255 if (setjmp(cstate->top_ctx))
8256 return (NULL);
8257
8258 switch (proto) {
8259
8260 case Q_DEFAULT:
8261 case Q_LINK:
8262 switch (cstate->linktype) {
8263 case DLT_ARCNET:
8264 case DLT_ARCNET_LINUX:
8265 return gen_ahostop(cstate, abroadcast, Q_DST);
8266 case DLT_EN10MB:
8267 case DLT_NETANALYZER:
8268 case DLT_NETANALYZER_TRANSPARENT:
8269 b1 = gen_prevlinkhdr_check(cstate);
8270 b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
8271 if (b1 != NULL)
8272 gen_and(b1, b0);
8273 return b0;
8274 case DLT_FDDI:
8275 return gen_fhostop(cstate, ebroadcast, Q_DST);
8276 case DLT_IEEE802:
8277 return gen_thostop(cstate, ebroadcast, Q_DST);
8278 case DLT_IEEE802_11:
8279 case DLT_PRISM_HEADER:
8280 case DLT_IEEE802_11_RADIO_AVS:
8281 case DLT_IEEE802_11_RADIO:
8282 case DLT_PPI:
8283 return gen_wlanhostop(cstate, ebroadcast, Q_DST);
8284 case DLT_IP_OVER_FC:
8285 return gen_ipfchostop(cstate, ebroadcast, Q_DST);
8286 default:
8287 bpf_error(cstate, "not a broadcast link");
8288 }
8289 /*NOTREACHED*/
8290
8291 case Q_IP:
8292 /*
8293 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8294 * as an indication that we don't know the netmask, and fail
8295 * in that case.
8296 */
8297 if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
8298 bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
8299 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8300 hostmask = ~cstate->netmask;
8301 b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, 0, hostmask);
8302 b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
8303 ~0 & hostmask, hostmask);
8304 gen_or(b1, b2);
8305 gen_and(b0, b2);
8306 return b2;
8307 }
8308 bpf_error(cstate, "only link-layer/IP broadcast filters supported");
8309 /*NOTREACHED*/
8310 }
8311
8312 /*
8313 * Generate code to test the low-order bit of a MAC address (that's
8314 * the bottom bit of the *first* byte).
8315 */
8316 static struct block *
8317 gen_mac_multicast(compiler_state_t *cstate, int offset)
8318 {
8319 register struct block *b0;
8320 register struct slist *s;
8321
8322 /* link[offset] & 1 != 0 */
8323 s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
8324 b0 = new_block(cstate, JMP(BPF_JSET));
8325 b0->s.k = 1;
8326 b0->stmts = s;
8327 return b0;
8328 }
8329
8330 struct block *
8331 gen_multicast(compiler_state_t *cstate, int proto)
8332 {
8333 register struct block *b0, *b1, *b2;
8334 register struct slist *s;
8335
8336 /*
8337 * Catch errors reported by us and routines below us, and return NULL
8338 * on an error.
8339 */
8340 if (setjmp(cstate->top_ctx))
8341 return (NULL);
8342
8343 switch (proto) {
8344
8345 case Q_DEFAULT:
8346 case Q_LINK:
8347 switch (cstate->linktype) {
8348 case DLT_ARCNET:
8349 case DLT_ARCNET_LINUX:
8350 /* all ARCnet multicasts use the same address */
8351 return gen_ahostop(cstate, abroadcast, Q_DST);
8352 case DLT_EN10MB:
8353 case DLT_NETANALYZER:
8354 case DLT_NETANALYZER_TRANSPARENT:
8355 b1 = gen_prevlinkhdr_check(cstate);
8356 /* ether[0] & 1 != 0 */
8357 b0 = gen_mac_multicast(cstate, 0);
8358 if (b1 != NULL)
8359 gen_and(b1, b0);
8360 return b0;
8361 case DLT_FDDI:
8362 /*
8363 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8364 *
8365 * XXX - was that referring to bit-order issues?
8366 */
8367 /* fddi[1] & 1 != 0 */
8368 return gen_mac_multicast(cstate, 1);
8369 case DLT_IEEE802:
8370 /* tr[2] & 1 != 0 */
8371 return gen_mac_multicast(cstate, 2);
8372 case DLT_IEEE802_11:
8373 case DLT_PRISM_HEADER:
8374 case DLT_IEEE802_11_RADIO_AVS:
8375 case DLT_IEEE802_11_RADIO:
8376 case DLT_PPI:
8377 /*
8378 * Oh, yuk.
8379 *
8380 * For control frames, there is no DA.
8381 *
8382 * For management frames, DA is at an
8383 * offset of 4 from the beginning of
8384 * the packet.
8385 *
8386 * For data frames, DA is at an offset
8387 * of 4 from the beginning of the packet
8388 * if To DS is clear and at an offset of
8389 * 16 from the beginning of the packet
8390 * if To DS is set.
8391 */
8392
8393 /*
8394 * Generate the tests to be done for data frames.
8395 *
8396 * First, check for To DS set, i.e. "link[1] & 0x01".
8397 */
8398 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8399 b1 = new_block(cstate, JMP(BPF_JSET));
8400 b1->s.k = 0x01; /* To DS */
8401 b1->stmts = s;
8402
8403 /*
8404 * If To DS is set, the DA is at 16.
8405 */
8406 b0 = gen_mac_multicast(cstate, 16);
8407 gen_and(b1, b0);
8408
8409 /*
8410 * Now, check for To DS not set, i.e. check
8411 * "!(link[1] & 0x01)".
8412 */
8413 s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8414 b2 = new_block(cstate, JMP(BPF_JSET));
8415 b2->s.k = 0x01; /* To DS */
8416 b2->stmts = s;
8417 gen_not(b2);
8418
8419 /*
8420 * If To DS is not set, the DA is at 4.
8421 */
8422 b1 = gen_mac_multicast(cstate, 4);
8423 gen_and(b2, b1);
8424
8425 /*
8426 * Now OR together the last two checks. That gives
8427 * the complete set of checks for data frames.
8428 */
8429 gen_or(b1, b0);
8430
8431 /*
8432 * Now check for a data frame.
8433 * I.e, check "link[0] & 0x08".
8434 */
8435 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8436 b1 = new_block(cstate, JMP(BPF_JSET));
8437 b1->s.k = 0x08;
8438 b1->stmts = s;
8439
8440 /*
8441 * AND that with the checks done for data frames.
8442 */
8443 gen_and(b1, b0);
8444
8445 /*
8446 * If the high-order bit of the type value is 0, this
8447 * is a management frame.
8448 * I.e, check "!(link[0] & 0x08)".
8449 */
8450 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8451 b2 = new_block(cstate, JMP(BPF_JSET));
8452 b2->s.k = 0x08;
8453 b2->stmts = s;
8454 gen_not(b2);
8455
8456 /*
8457 * For management frames, the DA is at 4.
8458 */
8459 b1 = gen_mac_multicast(cstate, 4);
8460 gen_and(b2, b1);
8461
8462 /*
8463 * OR that with the checks done for data frames.
8464 * That gives the checks done for management and
8465 * data frames.
8466 */
8467 gen_or(b1, b0);
8468
8469 /*
8470 * If the low-order bit of the type value is 1,
8471 * this is either a control frame or a frame
8472 * with a reserved type, and thus not a
8473 * frame with an SA.
8474 *
8475 * I.e., check "!(link[0] & 0x04)".
8476 */
8477 s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8478 b1 = new_block(cstate, JMP(BPF_JSET));
8479 b1->s.k = 0x04;
8480 b1->stmts = s;
8481 gen_not(b1);
8482
8483 /*
8484 * AND that with the checks for data and management
8485 * frames.
8486 */
8487 gen_and(b1, b0);
8488 return b0;
8489 case DLT_IP_OVER_FC:
8490 b0 = gen_mac_multicast(cstate, 2);
8491 return b0;
8492 default:
8493 break;
8494 }
8495 /* Link not known to support multicasts */
8496 break;
8497
8498 case Q_IP:
8499 b0 = gen_linktype(cstate, ETHERTYPE_IP);
8500 b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, 224);
8501 gen_and(b0, b1);
8502 return b1;
8503
8504 case Q_IPV6:
8505 b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8506 b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, 255);
8507 gen_and(b0, b1);
8508 return b1;
8509 }
8510 bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8511 /*NOTREACHED*/
8512 }
8513
8514 struct block *
8515 gen_ifindex(compiler_state_t *cstate, int ifindex)
8516 {
8517 register struct block *b0;
8518
8519 /*
8520 * Catch errors reported by us and routines below us, and return NULL
8521 * on an error.
8522 */
8523 if (setjmp(cstate->top_ctx))
8524 return (NULL);
8525
8526 /*
8527 * Only some data link types support ifindex qualifiers.
8528 */
8529 switch (cstate->linktype) {
8530 case DLT_LINUX_SLL2:
8531 /* match packets on this interface */
8532 b0 = gen_cmp(cstate, OR_LINKHDR, 4, BPF_W, ifindex);
8533 break;
8534 default:
8535 #if defined(linux)
8536 /*
8537 * This is Linux; we require PF_PACKET support.
8538 * If this is a *live* capture, we can look at
8539 * special meta-data in the filter expression;
8540 * if it's a savefile, we can't.
8541 */
8542 if (cstate->bpf_pcap->rfile != NULL) {
8543 /* We have a FILE *, so this is a savefile */
8544 bpf_error(cstate, "ifindex not supported on %s when reading savefiles",
8545 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8546 /*NOTREACHED*/
8547 }
8548 /* match ifindex */
8549 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_IFINDEX, BPF_W,
8550 ifindex);
8551 #else /* defined(linux) */
8552 bpf_error(cstate, "ifindex not supported on %s",
8553 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8554 /*NOTREACHED*/
8555 #endif /* defined(linux) */
8556 }
8557 return (b0);
8558 }
8559
8560 /*
8561 * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8562 * Outbound traffic is sent by this machine, while inbound traffic is
8563 * sent by a remote machine (and may include packets destined for a
8564 * unicast or multicast link-layer address we are not subscribing to).
8565 * These are the same definitions implemented by pcap_setdirection().
8566 * Capturing only unicast traffic destined for this host is probably
8567 * better accomplished using a higher-layer filter.
8568 */
8569 struct block *
8570 gen_inbound(compiler_state_t *cstate, int dir)
8571 {
8572 register struct block *b0;
8573
8574 /*
8575 * Catch errors reported by us and routines below us, and return NULL
8576 * on an error.
8577 */
8578 if (setjmp(cstate->top_ctx))
8579 return (NULL);
8580
8581 /*
8582 * Only some data link types support inbound/outbound qualifiers.
8583 */
8584 switch (cstate->linktype) {
8585 case DLT_SLIP:
8586 b0 = gen_relation_internal(cstate, BPF_JEQ,
8587 gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8588 gen_loadi_internal(cstate, 0),
8589 dir);
8590 break;
8591
8592 case DLT_IPNET:
8593 if (dir) {
8594 /* match outgoing packets */
8595 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8596 } else {
8597 /* match incoming packets */
8598 b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8599 }
8600 break;
8601
8602 case DLT_LINUX_SLL:
8603 /* match outgoing packets */
8604 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8605 if (!dir) {
8606 /* to filter on inbound traffic, invert the match */
8607 gen_not(b0);
8608 }
8609 break;
8610
8611 case DLT_LINUX_SLL2:
8612 /* match outgoing packets */
8613 b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8614 if (!dir) {
8615 /* to filter on inbound traffic, invert the match */
8616 gen_not(b0);
8617 }
8618 break;
8619
8620 case DLT_PFLOG:
8621 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8622 ((dir == 0) ? PF_IN : PF_OUT));
8623 break;
8624
8625 case DLT_PPP_PPPD:
8626 if (dir) {
8627 /* match outgoing packets */
8628 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8629 } else {
8630 /* match incoming packets */
8631 b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8632 }
8633 break;
8634
8635 case DLT_JUNIPER_MFR:
8636 case DLT_JUNIPER_MLFR:
8637 case DLT_JUNIPER_MLPPP:
8638 case DLT_JUNIPER_ATM1:
8639 case DLT_JUNIPER_ATM2:
8640 case DLT_JUNIPER_PPPOE:
8641 case DLT_JUNIPER_PPPOE_ATM:
8642 case DLT_JUNIPER_GGSN:
8643 case DLT_JUNIPER_ES:
8644 case DLT_JUNIPER_MONITOR:
8645 case DLT_JUNIPER_SERVICES:
8646 case DLT_JUNIPER_ETHER:
8647 case DLT_JUNIPER_PPP:
8648 case DLT_JUNIPER_FRELAY:
8649 case DLT_JUNIPER_CHDLC:
8650 case DLT_JUNIPER_VP:
8651 case DLT_JUNIPER_ST:
8652 case DLT_JUNIPER_ISM:
8653 case DLT_JUNIPER_VS:
8654 case DLT_JUNIPER_SRX_E2E:
8655 case DLT_JUNIPER_FIBRECHANNEL:
8656 case DLT_JUNIPER_ATM_CEMIC:
8657
8658 /* juniper flags (including direction) are stored
8659 * the byte after the 3-byte magic number */
8660 if (dir) {
8661 /* match outgoing packets */
8662 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8663 } else {
8664 /* match incoming packets */
8665 b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8666 }
8667 break;
8668
8669 default:
8670 /*
8671 * If we have packet meta-data indicating a direction,
8672 * and that metadata can be checked by BPF code, check
8673 * it. Otherwise, give up, as this link-layer type has
8674 * nothing in the packet data.
8675 *
8676 * Currently, the only platform where a BPF filter can
8677 * check that metadata is Linux with the in-kernel
8678 * BPF interpreter. If other packet capture mechanisms
8679 * and BPF filters also supported this, it would be
8680 * nice. It would be even better if they made that
8681 * metadata available so that we could provide it
8682 * with newer capture APIs, allowing it to be saved
8683 * in pcapng files.
8684 */
8685 #if defined(linux)
8686 /*
8687 * This is Linux; we require PF_PACKET support.
8688 * If this is a *live* capture, we can look at
8689 * special meta-data in the filter expression;
8690 * if it's a savefile, we can't.
8691 */
8692 if (cstate->bpf_pcap->rfile != NULL) {
8693 /* We have a FILE *, so this is a savefile */
8694 bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8695 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8696 /*NOTREACHED*/
8697 }
8698 /* match outgoing packets */
8699 b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8700 PACKET_OUTGOING);
8701 if (!dir) {
8702 /* to filter on inbound traffic, invert the match */
8703 gen_not(b0);
8704 }
8705 #else /* defined(linux) */
8706 bpf_error(cstate, "inbound/outbound not supported on %s",
8707 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8708 /*NOTREACHED*/
8709 #endif /* defined(linux) */
8710 }
8711 return (b0);
8712 }
8713
8714 /* PF firewall log matched interface */
8715 struct block *
8716 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8717 {
8718 struct block *b0;
8719 u_int len, off;
8720
8721 /*
8722 * Catch errors reported by us and routines below us, and return NULL
8723 * on an error.
8724 */
8725 if (setjmp(cstate->top_ctx))
8726 return (NULL);
8727
8728 if (cstate->linktype != DLT_PFLOG) {
8729 bpf_error(cstate, "ifname supported only on PF linktype");
8730 /*NOTREACHED*/
8731 }
8732 len = sizeof(((struct pfloghdr *)0)->ifname);
8733 off = offsetof(struct pfloghdr, ifname);
8734 if (strlen(ifname) >= len) {
8735 bpf_error(cstate, "ifname interface names can only be %d characters",
8736 len-1);
8737 /*NOTREACHED*/
8738 }
8739 b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8740 (const u_char *)ifname);
8741 return (b0);
8742 }
8743
8744 /* PF firewall log ruleset name */
8745 struct block *
8746 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8747 {
8748 struct block *b0;
8749
8750 /*
8751 * Catch errors reported by us and routines below us, and return NULL
8752 * on an error.
8753 */
8754 if (setjmp(cstate->top_ctx))
8755 return (NULL);
8756
8757 if (cstate->linktype != DLT_PFLOG) {
8758 bpf_error(cstate, "ruleset supported only on PF linktype");
8759 /*NOTREACHED*/
8760 }
8761
8762 if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8763 bpf_error(cstate, "ruleset names can only be %ld characters",
8764 (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8765 /*NOTREACHED*/
8766 }
8767
8768 b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8769 (u_int)strlen(ruleset), (const u_char *)ruleset);
8770 return (b0);
8771 }
8772
8773 /* PF firewall log rule number */
8774 struct block *
8775 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8776 {
8777 struct block *b0;
8778
8779 /*
8780 * Catch errors reported by us and routines below us, and return NULL
8781 * on an error.
8782 */
8783 if (setjmp(cstate->top_ctx))
8784 return (NULL);
8785
8786 if (cstate->linktype != DLT_PFLOG) {
8787 bpf_error(cstate, "rnr supported only on PF linktype");
8788 /*NOTREACHED*/
8789 }
8790
8791 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8792 (bpf_u_int32)rnr);
8793 return (b0);
8794 }
8795
8796 /* PF firewall log sub-rule number */
8797 struct block *
8798 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8799 {
8800 struct block *b0;
8801
8802 /*
8803 * Catch errors reported by us and routines below us, and return NULL
8804 * on an error.
8805 */
8806 if (setjmp(cstate->top_ctx))
8807 return (NULL);
8808
8809 if (cstate->linktype != DLT_PFLOG) {
8810 bpf_error(cstate, "srnr supported only on PF linktype");
8811 /*NOTREACHED*/
8812 }
8813
8814 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8815 (bpf_u_int32)srnr);
8816 return (b0);
8817 }
8818
8819 /* PF firewall log reason code */
8820 struct block *
8821 gen_pf_reason(compiler_state_t *cstate, int reason)
8822 {
8823 struct block *b0;
8824
8825 /*
8826 * Catch errors reported by us and routines below us, and return NULL
8827 * on an error.
8828 */
8829 if (setjmp(cstate->top_ctx))
8830 return (NULL);
8831
8832 if (cstate->linktype != DLT_PFLOG) {
8833 bpf_error(cstate, "reason supported only on PF linktype");
8834 /*NOTREACHED*/
8835 }
8836
8837 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8838 (bpf_u_int32)reason);
8839 return (b0);
8840 }
8841
8842 /* PF firewall log action */
8843 struct block *
8844 gen_pf_action(compiler_state_t *cstate, int action)
8845 {
8846 struct block *b0;
8847
8848 /*
8849 * Catch errors reported by us and routines below us, and return NULL
8850 * on an error.
8851 */
8852 if (setjmp(cstate->top_ctx))
8853 return (NULL);
8854
8855 if (cstate->linktype != DLT_PFLOG) {
8856 bpf_error(cstate, "action supported only on PF linktype");
8857 /*NOTREACHED*/
8858 }
8859
8860 b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8861 (bpf_u_int32)action);
8862 return (b0);
8863 }
8864
8865 /* IEEE 802.11 wireless header */
8866 struct block *
8867 gen_p80211_type(compiler_state_t *cstate, bpf_u_int32 type, bpf_u_int32 mask)
8868 {
8869 struct block *b0;
8870
8871 /*
8872 * Catch errors reported by us and routines below us, and return NULL
8873 * on an error.
8874 */
8875 if (setjmp(cstate->top_ctx))
8876 return (NULL);
8877
8878 switch (cstate->linktype) {
8879
8880 case DLT_IEEE802_11:
8881 case DLT_PRISM_HEADER:
8882 case DLT_IEEE802_11_RADIO_AVS:
8883 case DLT_IEEE802_11_RADIO:
8884 b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, type, mask);
8885 break;
8886
8887 default:
8888 bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8889 /*NOTREACHED*/
8890 }
8891
8892 return (b0);
8893 }
8894
8895 struct block *
8896 gen_p80211_fcdir(compiler_state_t *cstate, bpf_u_int32 fcdir)
8897 {
8898 struct block *b0;
8899
8900 /*
8901 * Catch errors reported by us and routines below us, and return NULL
8902 * on an error.
8903 */
8904 if (setjmp(cstate->top_ctx))
8905 return (NULL);
8906
8907 switch (cstate->linktype) {
8908
8909 case DLT_IEEE802_11:
8910 case DLT_PRISM_HEADER:
8911 case DLT_IEEE802_11_RADIO_AVS:
8912 case DLT_IEEE802_11_RADIO:
8913 break;
8914
8915 default:
8916 bpf_error(cstate, "frame direction supported only with 802.11 headers");
8917 /*NOTREACHED*/
8918 }
8919
8920 b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, fcdir,
8921 IEEE80211_FC1_DIR_MASK);
8922
8923 return (b0);
8924 }
8925
8926 struct block *
8927 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8928 {
8929 struct block *b;
8930
8931 /*
8932 * Catch errors reported by us and routines below us, and return NULL
8933 * on an error.
8934 */
8935 if (setjmp(cstate->top_ctx))
8936 return (NULL);
8937
8938 switch (cstate->linktype) {
8939
8940 case DLT_ARCNET:
8941 case DLT_ARCNET_LINUX:
8942 if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8943 q.proto == Q_LINK) {
8944 cstate->e = pcap_ether_aton(s);
8945 if (cstate->e == NULL)
8946 bpf_error(cstate, "malloc");
8947 b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8948 free(cstate->e);
8949 cstate->e = NULL;
8950 return (b);
8951 } else
8952 bpf_error(cstate, "ARCnet address used in non-arc expression");
8953 /*NOTREACHED*/
8954
8955 default:
8956 bpf_error(cstate, "aid supported only on ARCnet");
8957 /*NOTREACHED*/
8958 }
8959 }
8960
8961 static struct block *
8962 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8963 {
8964 register struct block *b0, *b1;
8965
8966 switch (dir) {
8967 /* src comes first, different from Ethernet */
8968 case Q_SRC:
8969 return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8970
8971 case Q_DST:
8972 return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8973
8974 case Q_AND:
8975 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8976 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8977 gen_and(b0, b1);
8978 return b1;
8979
8980 case Q_DEFAULT:
8981 case Q_OR:
8982 b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8983 b1 = gen_ahostop(cstate, eaddr, Q_DST);
8984 gen_or(b0, b1);
8985 return b1;
8986
8987 case Q_ADDR1:
8988 bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8989 /*NOTREACHED*/
8990
8991 case Q_ADDR2:
8992 bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8993 /*NOTREACHED*/
8994
8995 case Q_ADDR3:
8996 bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8997 /*NOTREACHED*/
8998
8999 case Q_ADDR4:
9000 bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
9001 /*NOTREACHED*/
9002
9003 case Q_RA:
9004 bpf_error(cstate, "'ra' is only supported on 802.11");
9005 /*NOTREACHED*/
9006
9007 case Q_TA:
9008 bpf_error(cstate, "'ta' is only supported on 802.11");
9009 /*NOTREACHED*/
9010 }
9011 abort();
9012 /*NOTREACHED*/
9013 }
9014
9015 static struct block *
9016 gen_vlan_tpid_test(compiler_state_t *cstate)
9017 {
9018 struct block *b0, *b1;
9019
9020 /* check for VLAN, including 802.1ad and QinQ */
9021 b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
9022 b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
9023 gen_or(b0,b1);
9024 b0 = b1;
9025 b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
9026 gen_or(b0,b1);
9027
9028 return b1;
9029 }
9030
9031 static struct block *
9032 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
9033 {
9034 if (vlan_num > 0x0fff) {
9035 bpf_error(cstate, "VLAN tag %u greater than maximum %u",
9036 vlan_num, 0x0fff);
9037 }
9038 return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, vlan_num, 0x0fff);
9039 }
9040
9041 static struct block *
9042 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9043 int has_vlan_tag)
9044 {
9045 struct block *b0, *b1;
9046
9047 b0 = gen_vlan_tpid_test(cstate);
9048
9049 if (has_vlan_tag) {
9050 b1 = gen_vlan_vid_test(cstate, vlan_num);
9051 gen_and(b0, b1);
9052 b0 = b1;
9053 }
9054
9055 /*
9056 * Both payload and link header type follow the VLAN tags so that
9057 * both need to be updated.
9058 */
9059 cstate->off_linkpl.constant_part += 4;
9060 cstate->off_linktype.constant_part += 4;
9061
9062 return b0;
9063 }
9064
9065 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9066 /* add v to variable part of off */
9067 static void
9068 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off,
9069 bpf_u_int32 v, struct slist *s)
9070 {
9071 struct slist *s2;
9072
9073 if (!off->is_variable)
9074 off->is_variable = 1;
9075 if (off->reg == -1)
9076 off->reg = alloc_reg(cstate);
9077
9078 s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
9079 s2->s.k = off->reg;
9080 sappend(s, s2);
9081 s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
9082 s2->s.k = v;
9083 sappend(s, s2);
9084 s2 = new_stmt(cstate, BPF_ST);
9085 s2->s.k = off->reg;
9086 sappend(s, s2);
9087 }
9088
9089 /*
9090 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
9091 * and link type offsets first
9092 */
9093 static void
9094 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
9095 {
9096 struct slist s;
9097
9098 /* offset determined at run time, shift variable part */
9099 s.next = NULL;
9100 cstate->is_vlan_vloffset = 1;
9101 gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
9102 gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
9103
9104 /* we get a pointer to a chain of or-ed blocks, patch first of them */
9105 sappend(s.next, b_tpid->head->stmts);
9106 b_tpid->head->stmts = s.next;
9107 }
9108
9109 /*
9110 * patch block b_vid (VLAN id test) to load VID value either from packet
9111 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
9112 */
9113 static void
9114 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
9115 {
9116 struct slist *s, *s2, *sjeq;
9117 unsigned cnt;
9118
9119 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9120 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9121
9122 /* true -> next instructions, false -> beginning of b_vid */
9123 sjeq = new_stmt(cstate, JMP(BPF_JEQ));
9124 sjeq->s.k = 1;
9125 sjeq->s.jf = b_vid->stmts;
9126 sappend(s, sjeq);
9127
9128 s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9129 s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
9130 sappend(s, s2);
9131 sjeq->s.jt = s2;
9132
9133 /* Jump to the test in b_vid. We need to jump one instruction before
9134 * the end of the b_vid block so that we only skip loading the TCI
9135 * from packet data and not the 'and' instruction extracting VID.
9136 */
9137 cnt = 0;
9138 for (s2 = b_vid->stmts; s2; s2 = s2->next)
9139 cnt++;
9140 s2 = new_stmt(cstate, JMP(BPF_JA));
9141 s2->s.k = cnt - 1;
9142 sappend(s, s2);
9143
9144 /* insert our statements at the beginning of b_vid */
9145 sappend(s, b_vid->stmts);
9146 b_vid->stmts = s;
9147 }
9148
9149 /*
9150 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9151 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9152 * tag can be either in metadata or in packet data; therefore if the
9153 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9154 * header for VLAN tag. As the decision is done at run time, we need
9155 * update variable part of the offsets
9156 */
9157 static struct block *
9158 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
9159 int has_vlan_tag)
9160 {
9161 struct block *b0, *b_tpid, *b_vid = NULL;
9162 struct slist *s;
9163
9164 /* generate new filter code based on extracting packet
9165 * metadata */
9166 s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
9167 s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
9168
9169 b0 = new_block(cstate, JMP(BPF_JEQ));
9170 b0->stmts = s;
9171 b0->s.k = 1;
9172
9173 /*
9174 * This is tricky. We need to insert the statements updating variable
9175 * parts of offsets before the traditional TPID and VID tests so
9176 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9177 * we do not want this update to affect those checks. That's why we
9178 * generate both test blocks first and insert the statements updating
9179 * variable parts of both offsets after that. This wouldn't work if
9180 * there already were variable length link header when entering this
9181 * function but gen_vlan_bpf_extensions() isn't called in that case.
9182 */
9183 b_tpid = gen_vlan_tpid_test(cstate);
9184 if (has_vlan_tag)
9185 b_vid = gen_vlan_vid_test(cstate, vlan_num);
9186
9187 gen_vlan_patch_tpid_test(cstate, b_tpid);
9188 gen_or(b0, b_tpid);
9189 b0 = b_tpid;
9190
9191 if (has_vlan_tag) {
9192 gen_vlan_patch_vid_test(cstate, b_vid);
9193 gen_and(b0, b_vid);
9194 b0 = b_vid;
9195 }
9196
9197 return b0;
9198 }
9199 #endif
9200
9201 /*
9202 * support IEEE 802.1Q VLAN trunk over ethernet
9203 */
9204 struct block *
9205 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
9206 {
9207 struct block *b0;
9208
9209 /*
9210 * Catch errors reported by us and routines below us, and return NULL
9211 * on an error.
9212 */
9213 if (setjmp(cstate->top_ctx))
9214 return (NULL);
9215
9216 /* can't check for VLAN-encapsulated packets inside MPLS */
9217 if (cstate->label_stack_depth > 0)
9218 bpf_error(cstate, "no VLAN match after MPLS");
9219
9220 /*
9221 * Check for a VLAN packet, and then change the offsets to point
9222 * to the type and data fields within the VLAN packet. Just
9223 * increment the offsets, so that we can support a hierarchy, e.g.
9224 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
9225 * VLAN 100.
9226 *
9227 * XXX - this is a bit of a kludge. If we were to split the
9228 * compiler into a parser that parses an expression and
9229 * generates an expression tree, and a code generator that
9230 * takes an expression tree (which could come from our
9231 * parser or from some other parser) and generates BPF code,
9232 * we could perhaps make the offsets parameters of routines
9233 * and, in the handler for an "AND" node, pass to subnodes
9234 * other than the VLAN node the adjusted offsets.
9235 *
9236 * This would mean that "vlan" would, instead of changing the
9237 * behavior of *all* tests after it, change only the behavior
9238 * of tests ANDed with it. That would change the documented
9239 * semantics of "vlan", which might break some expressions.
9240 * However, it would mean that "(vlan and ip) or ip" would check
9241 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9242 * checking only for VLAN-encapsulated IP, so that could still
9243 * be considered worth doing; it wouldn't break expressions
9244 * that are of the form "vlan and ..." or "vlan N and ...",
9245 * which I suspect are the most common expressions involving
9246 * "vlan". "vlan or ..." doesn't necessarily do what the user
9247 * would really want, now, as all the "or ..." tests would
9248 * be done assuming a VLAN, even though the "or" could be viewed
9249 * as meaning "or, if this isn't a VLAN packet...".
9250 */
9251 switch (cstate->linktype) {
9252
9253 case DLT_EN10MB:
9254 case DLT_NETANALYZER:
9255 case DLT_NETANALYZER_TRANSPARENT:
9256 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9257 /* Verify that this is the outer part of the packet and
9258 * not encapsulated somehow. */
9259 if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
9260 cstate->off_linkhdr.constant_part ==
9261 cstate->off_outermostlinkhdr.constant_part) {
9262 /*
9263 * Do we need special VLAN handling?
9264 */
9265 if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
9266 b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
9267 has_vlan_tag);
9268 else
9269 b0 = gen_vlan_no_bpf_extensions(cstate,
9270 vlan_num, has_vlan_tag);
9271 } else
9272 #endif
9273 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
9274 has_vlan_tag);
9275 break;
9276
9277 case DLT_IEEE802_11:
9278 case DLT_PRISM_HEADER:
9279 case DLT_IEEE802_11_RADIO_AVS:
9280 case DLT_IEEE802_11_RADIO:
9281 b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
9282 break;
9283
9284 default:
9285 bpf_error(cstate, "no VLAN support for %s",
9286 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9287 /*NOTREACHED*/
9288 }
9289
9290 cstate->vlan_stack_depth++;
9291
9292 return (b0);
9293 }
9294
9295 /*
9296 * support for MPLS
9297 *
9298 * The label_num_arg dance is to avoid annoying whining by compilers that
9299 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9300 * It's not *used* after setjmp returns.
9301 */
9302 struct block *
9303 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9304 int has_label_num)
9305 {
9306 volatile bpf_u_int32 label_num = label_num_arg;
9307 struct block *b0, *b1;
9308
9309 /*
9310 * Catch errors reported by us and routines below us, and return NULL
9311 * on an error.
9312 */
9313 if (setjmp(cstate->top_ctx))
9314 return (NULL);
9315
9316 if (cstate->label_stack_depth > 0) {
9317 /* just match the bottom-of-stack bit clear */
9318 b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9319 } else {
9320 /*
9321 * We're not in an MPLS stack yet, so check the link-layer
9322 * type against MPLS.
9323 */
9324 switch (cstate->linktype) {
9325
9326 case DLT_C_HDLC: /* fall through */
9327 case DLT_HDLC:
9328 case DLT_EN10MB:
9329 case DLT_NETANALYZER:
9330 case DLT_NETANALYZER_TRANSPARENT:
9331 b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9332 break;
9333
9334 case DLT_PPP:
9335 b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9336 break;
9337
9338 /* FIXME add other DLT_s ...
9339 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9340 * leave it for now */
9341
9342 default:
9343 bpf_error(cstate, "no MPLS support for %s",
9344 pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9345 /*NOTREACHED*/
9346 }
9347 }
9348
9349 /* If a specific MPLS label is requested, check it */
9350 if (has_label_num) {
9351 if (label_num > 0xFFFFF) {
9352 bpf_error(cstate, "MPLS label %u greater than maximum %u",
9353 label_num, 0xFFFFF);
9354 }
9355 label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9356 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, label_num,
9357 0xfffff000); /* only compare the first 20 bits */
9358 gen_and(b0, b1);
9359 b0 = b1;
9360 }
9361
9362 /*
9363 * Change the offsets to point to the type and data fields within
9364 * the MPLS packet. Just increment the offsets, so that we
9365 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9366 * capture packets with an outer label of 100000 and an inner
9367 * label of 1024.
9368 *
9369 * Increment the MPLS stack depth as well; this indicates that
9370 * we're checking MPLS-encapsulated headers, to make sure higher
9371 * level code generators don't try to match against IP-related
9372 * protocols such as Q_ARP, Q_RARP etc.
9373 *
9374 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9375 */
9376 cstate->off_nl_nosnap += 4;
9377 cstate->off_nl += 4;
9378 cstate->label_stack_depth++;
9379 return (b0);
9380 }
9381
9382 /*
9383 * Support PPPOE discovery and session.
9384 */
9385 struct block *
9386 gen_pppoed(compiler_state_t *cstate)
9387 {
9388 /*
9389 * Catch errors reported by us and routines below us, and return NULL
9390 * on an error.
9391 */
9392 if (setjmp(cstate->top_ctx))
9393 return (NULL);
9394
9395 /* check for PPPoE discovery */
9396 return gen_linktype(cstate, ETHERTYPE_PPPOED);
9397 }
9398
9399 struct block *
9400 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9401 {
9402 struct block *b0, *b1;
9403
9404 /*
9405 * Catch errors reported by us and routines below us, and return NULL
9406 * on an error.
9407 */
9408 if (setjmp(cstate->top_ctx))
9409 return (NULL);
9410
9411 /*
9412 * Test against the PPPoE session link-layer type.
9413 */
9414 b0 = gen_linktype(cstate, ETHERTYPE_PPPOES);
9415
9416 /* If a specific session is requested, check PPPoE session id */
9417 if (has_sess_num) {
9418 if (sess_num > 0x0000ffff) {
9419 bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9420 sess_num, 0x0000ffff);
9421 }
9422 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, sess_num, 0x0000ffff);
9423 gen_and(b0, b1);
9424 b0 = b1;
9425 }
9426
9427 /*
9428 * Change the offsets to point to the type and data fields within
9429 * the PPP packet, and note that this is PPPoE rather than
9430 * raw PPP.
9431 *
9432 * XXX - this is a bit of a kludge. See the comments in
9433 * gen_vlan().
9434 *
9435 * The "network-layer" protocol is PPPoE, which has a 6-byte
9436 * PPPoE header, followed by a PPP packet.
9437 *
9438 * There is no HDLC encapsulation for the PPP packet (it's
9439 * encapsulated in PPPoES instead), so the link-layer type
9440 * starts at the first byte of the PPP packet. For PPPoE,
9441 * that offset is relative to the beginning of the total
9442 * link-layer payload, including any 802.2 LLC header, so
9443 * it's 6 bytes past cstate->off_nl.
9444 */
9445 PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9446 cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9447 cstate->off_linkpl.reg);
9448
9449 cstate->off_linktype = cstate->off_linkhdr;
9450 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9451
9452 cstate->off_nl = 0;
9453 cstate->off_nl_nosnap = 0; /* no 802.2 LLC */
9454
9455 return b0;
9456 }
9457
9458 /* Check that this is Geneve and the VNI is correct if
9459 * specified. Parameterized to handle both IPv4 and IPv6. */
9460 static struct block *
9461 gen_geneve_check(compiler_state_t *cstate,
9462 struct block *(*gen_portfn)(compiler_state_t *, u_int, int, int),
9463 enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9464 {
9465 struct block *b0, *b1;
9466
9467 b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9468
9469 /* Check that we are operating on version 0. Otherwise, we
9470 * can't decode the rest of the fields. The version is 2 bits
9471 * in the first byte of the Geneve header. */
9472 b1 = gen_mcmp(cstate, offrel, 8, BPF_B, 0, 0xc0);
9473 gen_and(b0, b1);
9474 b0 = b1;
9475
9476 if (has_vni) {
9477 if (vni > 0xffffff) {
9478 bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9479 vni, 0xffffff);
9480 }
9481 vni <<= 8; /* VNI is in the upper 3 bytes */
9482 b1 = gen_mcmp(cstate, offrel, 12, BPF_W, vni, 0xffffff00);
9483 gen_and(b0, b1);
9484 b0 = b1;
9485 }
9486
9487 return b0;
9488 }
9489
9490 /* The IPv4 and IPv6 Geneve checks need to do two things:
9491 * - Verify that this actually is Geneve with the right VNI.
9492 * - Place the IP header length (plus variable link prefix if
9493 * needed) into register A to be used later to compute
9494 * the inner packet offsets. */
9495 static struct block *
9496 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9497 {
9498 struct block *b0, *b1;
9499 struct slist *s, *s1;
9500
9501 b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9502
9503 /* Load the IP header length into A. */
9504 s = gen_loadx_iphdrlen(cstate);
9505
9506 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9507 sappend(s, s1);
9508
9509 /* Forcibly append these statements to the true condition
9510 * of the protocol check by creating a new block that is
9511 * always true and ANDing them. */
9512 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9513 b1->stmts = s;
9514 b1->s.k = 0;
9515
9516 gen_and(b0, b1);
9517
9518 return b1;
9519 }
9520
9521 static struct block *
9522 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9523 {
9524 struct block *b0, *b1;
9525 struct slist *s, *s1;
9526
9527 b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9528
9529 /* Load the IP header length. We need to account for a
9530 * variable length link prefix if there is one. */
9531 s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9532 if (s) {
9533 s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9534 s1->s.k = 40;
9535 sappend(s, s1);
9536
9537 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9538 s1->s.k = 0;
9539 sappend(s, s1);
9540 } else {
9541 s = new_stmt(cstate, BPF_LD|BPF_IMM);
9542 s->s.k = 40;
9543 }
9544
9545 /* Forcibly append these statements to the true condition
9546 * of the protocol check by creating a new block that is
9547 * always true and ANDing them. */
9548 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9549 sappend(s, s1);
9550
9551 b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9552 b1->stmts = s;
9553 b1->s.k = 0;
9554
9555 gen_and(b0, b1);
9556
9557 return b1;
9558 }
9559
9560 /* We need to store three values based on the Geneve header::
9561 * - The offset of the linktype.
9562 * - The offset of the end of the Geneve header.
9563 * - The offset of the end of the encapsulated MAC header. */
9564 static struct slist *
9565 gen_geneve_offsets(compiler_state_t *cstate)
9566 {
9567 struct slist *s, *s1, *s_proto;
9568
9569 /* First we need to calculate the offset of the Geneve header
9570 * itself. This is composed of the IP header previously calculated
9571 * (include any variable link prefix) and stored in A plus the
9572 * fixed sized headers (fixed link prefix, MAC length, and UDP
9573 * header). */
9574 s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9575 s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9576
9577 /* Stash this in X since we'll need it later. */
9578 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9579 sappend(s, s1);
9580
9581 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9582 * store it. */
9583 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9584 s1->s.k = 2;
9585 sappend(s, s1);
9586
9587 cstate->off_linktype.reg = alloc_reg(cstate);
9588 cstate->off_linktype.is_variable = 1;
9589 cstate->off_linktype.constant_part = 0;
9590
9591 s1 = new_stmt(cstate, BPF_ST);
9592 s1->s.k = cstate->off_linktype.reg;
9593 sappend(s, s1);
9594
9595 /* Load the Geneve option length and mask and shift to get the
9596 * number of bytes. It is stored in the first byte of the Geneve
9597 * header. */
9598 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9599 s1->s.k = 0;
9600 sappend(s, s1);
9601
9602 s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9603 s1->s.k = 0x3f;
9604 sappend(s, s1);
9605
9606 s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9607 s1->s.k = 4;
9608 sappend(s, s1);
9609
9610 /* Add in the rest of the Geneve base header. */
9611 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9612 s1->s.k = 8;
9613 sappend(s, s1);
9614
9615 /* Add the Geneve header length to its offset and store. */
9616 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9617 s1->s.k = 0;
9618 sappend(s, s1);
9619
9620 /* Set the encapsulated type as Ethernet. Even though we may
9621 * not actually have Ethernet inside there are two reasons this
9622 * is useful:
9623 * - The linktype field is always in EtherType format regardless
9624 * of whether it is in Geneve or an inner Ethernet frame.
9625 * - The only link layer that we have specific support for is
9626 * Ethernet. We will confirm that the packet actually is
9627 * Ethernet at runtime before executing these checks. */
9628 PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9629
9630 s1 = new_stmt(cstate, BPF_ST);
9631 s1->s.k = cstate->off_linkhdr.reg;
9632 sappend(s, s1);
9633
9634 /* Calculate whether we have an Ethernet header or just raw IP/
9635 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9636 * and linktype by 14 bytes so that the network header can be found
9637 * seamlessly. Otherwise, keep what we've calculated already. */
9638
9639 /* We have a bare jmp so we can't use the optimizer. */
9640 cstate->no_optimize = 1;
9641
9642 /* Load the EtherType in the Geneve header, 2 bytes in. */
9643 s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9644 s1->s.k = 2;
9645 sappend(s, s1);
9646
9647 /* Load X with the end of the Geneve header. */
9648 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9649 s1->s.k = cstate->off_linkhdr.reg;
9650 sappend(s, s1);
9651
9652 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9653 * end of this check, we should have the total length in X. In
9654 * the non-Ethernet case, it's already there. */
9655 s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9656 s_proto->s.k = ETHERTYPE_TEB;
9657 sappend(s, s_proto);
9658
9659 s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9660 sappend(s, s1);
9661 s_proto->s.jt = s1;
9662
9663 /* Since this is Ethernet, use the EtherType of the payload
9664 * directly as the linktype. Overwrite what we already have. */
9665 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9666 s1->s.k = 12;
9667 sappend(s, s1);
9668
9669 s1 = new_stmt(cstate, BPF_ST);
9670 s1->s.k = cstate->off_linktype.reg;
9671 sappend(s, s1);
9672
9673 /* Advance two bytes further to get the end of the Ethernet
9674 * header. */
9675 s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9676 s1->s.k = 2;
9677 sappend(s, s1);
9678
9679 /* Move the result to X. */
9680 s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9681 sappend(s, s1);
9682
9683 /* Store the final result of our linkpl calculation. */
9684 cstate->off_linkpl.reg = alloc_reg(cstate);
9685 cstate->off_linkpl.is_variable = 1;
9686 cstate->off_linkpl.constant_part = 0;
9687
9688 s1 = new_stmt(cstate, BPF_STX);
9689 s1->s.k = cstate->off_linkpl.reg;
9690 sappend(s, s1);
9691 s_proto->s.jf = s1;
9692
9693 cstate->off_nl = 0;
9694
9695 return s;
9696 }
9697
9698 /* Check to see if this is a Geneve packet. */
9699 struct block *
9700 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9701 {
9702 struct block *b0, *b1;
9703 struct slist *s;
9704
9705 /*
9706 * Catch errors reported by us and routines below us, and return NULL
9707 * on an error.
9708 */
9709 if (setjmp(cstate->top_ctx))
9710 return (NULL);
9711
9712 b0 = gen_geneve4(cstate, vni, has_vni);
9713 b1 = gen_geneve6(cstate, vni, has_vni);
9714
9715 gen_or(b0, b1);
9716 b0 = b1;
9717
9718 /* Later filters should act on the payload of the Geneve frame,
9719 * update all of the header pointers. Attach this code so that
9720 * it gets executed in the event that the Geneve filter matches. */
9721 s = gen_geneve_offsets(cstate);
9722
9723 b1 = gen_true(cstate);
9724 sappend(s, b1->stmts);
9725 b1->stmts = s;
9726
9727 gen_and(b0, b1);
9728
9729 cstate->is_geneve = 1;
9730
9731 return b1;
9732 }
9733
9734 /* Check that the encapsulated frame has a link layer header
9735 * for Ethernet filters. */
9736 static struct block *
9737 gen_geneve_ll_check(compiler_state_t *cstate)
9738 {
9739 struct block *b0;
9740 struct slist *s, *s1;
9741
9742 /* The easiest way to see if there is a link layer present
9743 * is to check if the link layer header and payload are not
9744 * the same. */
9745
9746 /* Geneve always generates pure variable offsets so we can
9747 * compare only the registers. */
9748 s = new_stmt(cstate, BPF_LD|BPF_MEM);
9749 s->s.k = cstate->off_linkhdr.reg;
9750
9751 s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9752 s1->s.k = cstate->off_linkpl.reg;
9753 sappend(s, s1);
9754
9755 b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9756 b0->stmts = s;
9757 b0->s.k = 0;
9758 gen_not(b0);
9759
9760 return b0;
9761 }
9762
9763 static struct block *
9764 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9765 bpf_u_int32 jvalue, int jtype, int reverse)
9766 {
9767 struct block *b0;
9768
9769 switch (atmfield) {
9770
9771 case A_VPI:
9772 if (!cstate->is_atm)
9773 bpf_error(cstate, "'vpi' supported only on raw ATM");
9774 if (cstate->off_vpi == OFFSET_NOT_SET)
9775 abort();
9776 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B,
9777 0xffffffffU, jtype, reverse, jvalue);
9778 break;
9779
9780 case A_VCI:
9781 if (!cstate->is_atm)
9782 bpf_error(cstate, "'vci' supported only on raw ATM");
9783 if (cstate->off_vci == OFFSET_NOT_SET)
9784 abort();
9785 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H,
9786 0xffffffffU, jtype, reverse, jvalue);
9787 break;
9788
9789 case A_PROTOTYPE:
9790 if (cstate->off_proto == OFFSET_NOT_SET)
9791 abort(); /* XXX - this isn't on FreeBSD */
9792 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9793 0x0fU, jtype, reverse, jvalue);
9794 break;
9795
9796 case A_MSGTYPE:
9797 if (cstate->off_payload == OFFSET_NOT_SET)
9798 abort();
9799 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9800 0xffffffffU, jtype, reverse, jvalue);
9801 break;
9802
9803 case A_CALLREFTYPE:
9804 if (!cstate->is_atm)
9805 bpf_error(cstate, "'callref' supported only on raw ATM");
9806 if (cstate->off_proto == OFFSET_NOT_SET)
9807 abort();
9808 b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B,
9809 0xffffffffU, jtype, reverse, jvalue);
9810 break;
9811
9812 default:
9813 abort();
9814 }
9815 return b0;
9816 }
9817
9818 static struct block *
9819 gen_atmtype_metac(compiler_state_t *cstate)
9820 {
9821 struct block *b0, *b1;
9822
9823 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9824 b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9825 gen_and(b0, b1);
9826 return b1;
9827 }
9828
9829 static struct block *
9830 gen_atmtype_sc(compiler_state_t *cstate)
9831 {
9832 struct block *b0, *b1;
9833
9834 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9835 b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9836 gen_and(b0, b1);
9837 return b1;
9838 }
9839
9840 static struct block *
9841 gen_atmtype_llc(compiler_state_t *cstate)
9842 {
9843 struct block *b0;
9844
9845 b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9846 cstate->linktype = cstate->prevlinktype;
9847 return b0;
9848 }
9849
9850 struct block *
9851 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9852 bpf_u_int32 jvalue, int jtype, int reverse)
9853 {
9854 /*
9855 * Catch errors reported by us and routines below us, and return NULL
9856 * on an error.
9857 */
9858 if (setjmp(cstate->top_ctx))
9859 return (NULL);
9860
9861 return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9862 reverse);
9863 }
9864
9865 struct block *
9866 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9867 {
9868 struct block *b0, *b1;
9869
9870 /*
9871 * Catch errors reported by us and routines below us, and return NULL
9872 * on an error.
9873 */
9874 if (setjmp(cstate->top_ctx))
9875 return (NULL);
9876
9877 switch (type) {
9878
9879 case A_METAC:
9880 /* Get all packets in Meta signalling Circuit */
9881 if (!cstate->is_atm)
9882 bpf_error(cstate, "'metac' supported only on raw ATM");
9883 b1 = gen_atmtype_metac(cstate);
9884 break;
9885
9886 case A_BCC:
9887 /* Get all packets in Broadcast Circuit*/
9888 if (!cstate->is_atm)
9889 bpf_error(cstate, "'bcc' supported only on raw ATM");
9890 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9891 b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9892 gen_and(b0, b1);
9893 break;
9894
9895 case A_OAMF4SC:
9896 /* Get all cells in Segment OAM F4 circuit*/
9897 if (!cstate->is_atm)
9898 bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9899 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9900 b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9901 gen_and(b0, b1);
9902 break;
9903
9904 case A_OAMF4EC:
9905 /* Get all cells in End-to-End OAM F4 Circuit*/
9906 if (!cstate->is_atm)
9907 bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9908 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9909 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9910 gen_and(b0, b1);
9911 break;
9912
9913 case A_SC:
9914 /* Get all packets in connection Signalling Circuit */
9915 if (!cstate->is_atm)
9916 bpf_error(cstate, "'sc' supported only on raw ATM");
9917 b1 = gen_atmtype_sc(cstate);
9918 break;
9919
9920 case A_ILMIC:
9921 /* Get all packets in ILMI Circuit */
9922 if (!cstate->is_atm)
9923 bpf_error(cstate, "'ilmic' supported only on raw ATM");
9924 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9925 b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9926 gen_and(b0, b1);
9927 break;
9928
9929 case A_LANE:
9930 /* Get all LANE packets */
9931 if (!cstate->is_atm)
9932 bpf_error(cstate, "'lane' supported only on raw ATM");
9933 b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9934
9935 /*
9936 * Arrange that all subsequent tests assume LANE
9937 * rather than LLC-encapsulated packets, and set
9938 * the offsets appropriately for LANE-encapsulated
9939 * Ethernet.
9940 *
9941 * We assume LANE means Ethernet, not Token Ring.
9942 */
9943 PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9944 cstate->off_payload + 2, /* Ethernet header */
9945 -1);
9946 cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9947 cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */
9948 cstate->off_nl = 0; /* Ethernet II */
9949 cstate->off_nl_nosnap = 3; /* 802.3+802.2 */
9950 break;
9951
9952 case A_LLC:
9953 /* Get all LLC-encapsulated packets */
9954 if (!cstate->is_atm)
9955 bpf_error(cstate, "'llc' supported only on raw ATM");
9956 b1 = gen_atmtype_llc(cstate);
9957 break;
9958
9959 default:
9960 abort();
9961 }
9962 return b1;
9963 }
9964
9965 /*
9966 * Filtering for MTP2 messages based on li value
9967 * FISU, length is null
9968 * LSSU, length is 1 or 2
9969 * MSU, length is 3 or more
9970 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9971 */
9972 struct block *
9973 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9974 {
9975 struct block *b0, *b1;
9976
9977 /*
9978 * Catch errors reported by us and routines below us, and return NULL
9979 * on an error.
9980 */
9981 if (setjmp(cstate->top_ctx))
9982 return (NULL);
9983
9984 switch (type) {
9985
9986 case M_FISU:
9987 if ( (cstate->linktype != DLT_MTP2) &&
9988 (cstate->linktype != DLT_ERF) &&
9989 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9990 bpf_error(cstate, "'fisu' supported only on MTP2");
9991 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9992 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
9993 0x3fU, BPF_JEQ, 0, 0U);
9994 break;
9995
9996 case M_LSSU:
9997 if ( (cstate->linktype != DLT_MTP2) &&
9998 (cstate->linktype != DLT_ERF) &&
9999 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10000 bpf_error(cstate, "'lssu' supported only on MTP2");
10001 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10002 0x3fU, BPF_JGT, 1, 2U);
10003 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10004 0x3fU, BPF_JGT, 0, 0U);
10005 gen_and(b1, b0);
10006 break;
10007
10008 case M_MSU:
10009 if ( (cstate->linktype != DLT_MTP2) &&
10010 (cstate->linktype != DLT_ERF) &&
10011 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10012 bpf_error(cstate, "'msu' supported only on MTP2");
10013 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B,
10014 0x3fU, BPF_JGT, 0, 2U);
10015 break;
10016
10017 case MH_FISU:
10018 if ( (cstate->linktype != DLT_MTP2) &&
10019 (cstate->linktype != DLT_ERF) &&
10020 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10021 bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
10022 /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
10023 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10024 0xff80U, BPF_JEQ, 0, 0U);
10025 break;
10026
10027 case MH_LSSU:
10028 if ( (cstate->linktype != DLT_MTP2) &&
10029 (cstate->linktype != DLT_ERF) &&
10030 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10031 bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
10032 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10033 0xff80U, BPF_JGT, 1, 0x0100U);
10034 b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10035 0xff80U, BPF_JGT, 0, 0U);
10036 gen_and(b1, b0);
10037 break;
10038
10039 case MH_MSU:
10040 if ( (cstate->linktype != DLT_MTP2) &&
10041 (cstate->linktype != DLT_ERF) &&
10042 (cstate->linktype != DLT_MTP2_WITH_PHDR) )
10043 bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
10044 b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H,
10045 0xff80U, BPF_JGT, 0, 0x0100U);
10046 break;
10047
10048 default:
10049 abort();
10050 }
10051 return b0;
10052 }
10053
10054 /*
10055 * The jvalue_arg dance is to avoid annoying whining by compilers that
10056 * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
10057 * It's not *used* after setjmp returns.
10058 */
10059 struct block *
10060 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
10061 bpf_u_int32 jvalue_arg, int jtype, int reverse)
10062 {
10063 volatile bpf_u_int32 jvalue = jvalue_arg;
10064 struct block *b0;
10065 bpf_u_int32 val1 , val2 , val3;
10066 u_int newoff_sio;
10067 u_int newoff_opc;
10068 u_int newoff_dpc;
10069 u_int newoff_sls;
10070
10071 /*
10072 * Catch errors reported by us and routines below us, and return NULL
10073 * on an error.
10074 */
10075 if (setjmp(cstate->top_ctx))
10076 return (NULL);
10077
10078 newoff_sio = cstate->off_sio;
10079 newoff_opc = cstate->off_opc;
10080 newoff_dpc = cstate->off_dpc;
10081 newoff_sls = cstate->off_sls;
10082 switch (mtp3field) {
10083
10084 case MH_SIO:
10085 newoff_sio += 3; /* offset for MTP2_HSL */
10086 /* FALLTHROUGH */
10087
10088 case M_SIO:
10089 if (cstate->off_sio == OFFSET_NOT_SET)
10090 bpf_error(cstate, "'sio' supported only on SS7");
10091 /* sio coded on 1 byte so max value 255 */
10092 if(jvalue > 255)
10093 bpf_error(cstate, "sio value %u too big; max value = 255",
10094 jvalue);
10095 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffffU,
10096 jtype, reverse, jvalue);
10097 break;
10098
10099 case MH_OPC:
10100 newoff_opc += 3;
10101
10102 /* FALLTHROUGH */
10103 case M_OPC:
10104 if (cstate->off_opc == OFFSET_NOT_SET)
10105 bpf_error(cstate, "'opc' supported only on SS7");
10106 /* opc coded on 14 bits so max value 16383 */
10107 if (jvalue > 16383)
10108 bpf_error(cstate, "opc value %u too big; max value = 16383",
10109 jvalue);
10110 /* the following instructions are made to convert jvalue
10111 * to the form used to write opc in an ss7 message*/
10112 val1 = jvalue & 0x00003c00;
10113 val1 = val1 >>10;
10114 val2 = jvalue & 0x000003fc;
10115 val2 = val2 <<6;
10116 val3 = jvalue & 0x00000003;
10117 val3 = val3 <<22;
10118 jvalue = val1 + val2 + val3;
10119 b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0fU,
10120 jtype, reverse, jvalue);
10121 break;
10122
10123 case MH_DPC:
10124 newoff_dpc += 3;
10125 /* FALLTHROUGH */
10126
10127 case M_DPC:
10128 if (cstate->off_dpc == OFFSET_NOT_SET)
10129 bpf_error(cstate, "'dpc' supported only on SS7");
10130 /* dpc coded on 14 bits so max value 16383 */
10131 if (jvalue > 16383)
10132 bpf_error(cstate, "dpc value %u too big; max value = 16383",
10133 jvalue);
10134 /* the following instructions are made to convert jvalue
10135 * to the forme used to write dpc in an ss7 message*/
10136 val1 = jvalue & 0x000000ff;
10137 val1 = val1 << 24;
10138 val2 = jvalue & 0x00003f00;
10139 val2 = val2 << 8;
10140 jvalue = val1 + val2;
10141 b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000U,
10142 jtype, reverse, jvalue);
10143 break;
10144
10145 case MH_SLS:
10146 newoff_sls += 3;
10147 /* FALLTHROUGH */
10148
10149 case M_SLS:
10150 if (cstate->off_sls == OFFSET_NOT_SET)
10151 bpf_error(cstate, "'sls' supported only on SS7");
10152 /* sls coded on 4 bits so max value 15 */
10153 if (jvalue > 15)
10154 bpf_error(cstate, "sls value %u too big; max value = 15",
10155 jvalue);
10156 /* the following instruction is made to convert jvalue
10157 * to the forme used to write sls in an ss7 message*/
10158 jvalue = jvalue << 4;
10159 b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0U,
10160 jtype, reverse, jvalue);
10161 break;
10162
10163 default:
10164 abort();
10165 }
10166 return b0;
10167 }
10168
10169 static struct block *
10170 gen_msg_abbrev(compiler_state_t *cstate, int type)
10171 {
10172 struct block *b1;
10173
10174 /*
10175 * Q.2931 signalling protocol messages for handling virtual circuits
10176 * establishment and teardown
10177 */
10178 switch (type) {
10179
10180 case A_SETUP:
10181 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
10182 break;
10183
10184 case A_CALLPROCEED:
10185 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
10186 break;
10187
10188 case A_CONNECT:
10189 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
10190 break;
10191
10192 case A_CONNECTACK:
10193 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
10194 break;
10195
10196 case A_RELEASE:
10197 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
10198 break;
10199
10200 case A_RELEASE_DONE:
10201 b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
10202 break;
10203
10204 default:
10205 abort();
10206 }
10207 return b1;
10208 }
10209
10210 struct block *
10211 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
10212 {
10213 struct block *b0, *b1;
10214
10215 /*
10216 * Catch errors reported by us and routines below us, and return NULL
10217 * on an error.
10218 */
10219 if (setjmp(cstate->top_ctx))
10220 return (NULL);
10221
10222 switch (type) {
10223
10224 case A_OAM:
10225 if (!cstate->is_atm)
10226 bpf_error(cstate, "'oam' supported only on raw ATM");
10227 /* OAM F4 type */
10228 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10229 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10230 gen_or(b0, b1);
10231 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10232 gen_and(b0, b1);
10233 break;
10234
10235 case A_OAMF4:
10236 if (!cstate->is_atm)
10237 bpf_error(cstate, "'oamf4' supported only on raw ATM");
10238 /* OAM F4 type */
10239 b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
10240 b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
10241 gen_or(b0, b1);
10242 b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
10243 gen_and(b0, b1);
10244 break;
10245
10246 case A_CONNECTMSG:
10247 /*
10248 * Get Q.2931 signalling messages for switched
10249 * virtual connection
10250 */
10251 if (!cstate->is_atm)
10252 bpf_error(cstate, "'connectmsg' supported only on raw ATM");
10253 b0 = gen_msg_abbrev(cstate, A_SETUP);
10254 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10255 gen_or(b0, b1);
10256 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10257 gen_or(b0, b1);
10258 b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
10259 gen_or(b0, b1);
10260 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10261 gen_or(b0, b1);
10262 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10263 gen_or(b0, b1);
10264 b0 = gen_atmtype_sc(cstate);
10265 gen_and(b0, b1);
10266 break;
10267
10268 case A_METACONNECT:
10269 if (!cstate->is_atm)
10270 bpf_error(cstate, "'metaconnect' supported only on raw ATM");
10271 b0 = gen_msg_abbrev(cstate, A_SETUP);
10272 b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
10273 gen_or(b0, b1);
10274 b0 = gen_msg_abbrev(cstate, A_CONNECT);
10275 gen_or(b0, b1);
10276 b0 = gen_msg_abbrev(cstate, A_RELEASE);
10277 gen_or(b0, b1);
10278 b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
10279 gen_or(b0, b1);
10280 b0 = gen_atmtype_metac(cstate);
10281 gen_and(b0, b1);
10282 break;
10283
10284 default:
10285 abort();
10286 }
10287 return b1;
10288 }