2 * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 * The Regents of the University of California. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 #include <netinet/in.h>
43 #include "ethertype.h"
46 #include "ieee80211.h"
50 #include "pcap/ipnet.h"
51 #include "diag-control.h"
52 #include "pcap-util.h"
56 #if defined(__linux__)
57 #include <linux/types.h>
58 #include <linux/if_packet.h>
59 #include <linux/filter.h>
63 #ifdef HAVE_NPCAP_BPF_H
64 /* Defines BPF extensions for Npcap */
65 #include <npcap-bpf.h>
68 #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
75 uint16_t u6_addr16
[8];
76 uint32_t u6_addr32
[4];
78 #define s6_addr in6_u.u6_addr8
79 #define s6_addr16 in6_u.u6_addr16
80 #define s6_addr32 in6_u.u6_addr32
81 #define s6_addr64 in6_u.u6_addr64
84 typedef unsigned short sa_family_t
;
86 #define __SOCKADDR_COMMON(sa_prefix) \
87 sa_family_t sa_prefix##family
89 /* Ditto, for IPv6. */
92 __SOCKADDR_COMMON (sin6_
);
93 uint16_t sin6_port
; /* Transport layer port # */
94 uint32_t sin6_flowinfo
; /* IPv6 flow information */
95 struct in6_addr sin6_addr
; /* IPv6 address */
98 #ifndef EAI_ADDRFAMILY
100 int ai_flags
; /* AI_PASSIVE, AI_CANONNAME */
101 int ai_family
; /* PF_xxx */
102 int ai_socktype
; /* SOCK_xxx */
103 int ai_protocol
; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
104 size_t ai_addrlen
; /* length of ai_addr */
105 char *ai_canonname
; /* canonical name for hostname */
106 struct sockaddr
*ai_addr
; /* binary address */
107 struct addrinfo
*ai_next
; /* next structure in linked list */
109 #endif /* EAI_ADDRFAMILY */
110 #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
113 #include <netdb.h> /* for "struct addrinfo" */
115 #include <pcap/namedb.h>
117 #include "nametoaddr.h"
119 #define ETHERMTU 1500
121 #ifndef IPPROTO_HOPOPTS
122 #define IPPROTO_HOPOPTS 0
124 #ifndef IPPROTO_ROUTING
125 #define IPPROTO_ROUTING 43
127 #ifndef IPPROTO_FRAGMENT
128 #define IPPROTO_FRAGMENT 44
130 #ifndef IPPROTO_DSTOPTS
131 #define IPPROTO_DSTOPTS 60
134 #define IPPROTO_SCTP 132
137 #define GENEVE_PORT 6081
138 #define VXLAN_PORT 4789
142 * from: NetBSD: if_arc.h,v 1.13 1999/11/19 20:41:19 thorpej Exp
146 #define ARCTYPE_IP_OLD 240 /* IP protocol */
147 #define ARCTYPE_ARP_OLD 241 /* address resolution protocol */
150 #define ARCTYPE_IP 212 /* IP protocol */
151 #define ARCTYPE_ARP 213 /* address resolution protocol */
152 #define ARCTYPE_REVARP 214 /* reverse addr resolution protocol */
154 #define ARCTYPE_ATALK 221 /* Appletalk */
155 #define ARCTYPE_BANIAN 247 /* Banyan Vines */
156 #define ARCTYPE_IPX 250 /* Novell IPX */
158 #define ARCTYPE_INET6 0xc4 /* IPng */
159 #define ARCTYPE_DIAGNOSE 0x80 /* as per ANSI/ATA 878.1 */
162 /* Based on UNI3.1 standard by ATM Forum */
164 /* ATM traffic types based on VPI=0 and (the following VCI */
165 #define VCI_PPC 0x05 /* Point-to-point signal msg */
166 #define VCI_BCC 0x02 /* Broadcast signal msg */
167 #define VCI_OAMF4SC 0x03 /* Segment OAM F4 flow cell */
168 #define VCI_OAMF4EC 0x04 /* End-to-end OAM F4 flow cell */
169 #define VCI_METAC 0x01 /* Meta signal msg */
170 #define VCI_ILMIC 0x10 /* ILMI msg */
172 /* Q.2931 signalling messages */
173 #define CALL_PROCEED 0x02 /* call proceeding */
174 #define CONNECT 0x07 /* connect */
175 #define CONNECT_ACK 0x0f /* connect_ack */
176 #define SETUP 0x05 /* setup */
177 #define RELEASE 0x4d /* release */
178 #define RELEASE_DONE 0x5a /* release_done */
179 #define RESTART 0x46 /* restart */
180 #define RESTART_ACK 0x4e /* restart ack */
181 #define STATUS 0x7d /* status */
182 #define STATUS_ENQ 0x75 /* status ack */
183 #define ADD_PARTY 0x80 /* add party */
184 #define ADD_PARTY_ACK 0x81 /* add party ack */
185 #define ADD_PARTY_REJ 0x82 /* add party rej */
186 #define DROP_PARTY 0x83 /* drop party */
187 #define DROP_PARTY_ACK 0x84 /* drop party ack */
189 /* Information Element Parameters in the signalling messages */
190 #define CAUSE 0x08 /* cause */
191 #define ENDPT_REF 0x54 /* endpoint reference */
192 #define AAL_PARA 0x58 /* ATM adaptation layer parameters */
193 #define TRAFF_DESCRIP 0x59 /* atm traffic descriptors */
194 #define CONNECT_ID 0x5a /* connection identifier */
195 #define QOS_PARA 0x5c /* quality of service parameters */
196 #define B_HIGHER 0x5d /* broadband higher layer information */
197 #define B_BEARER 0x5e /* broadband bearer capability */
198 #define B_LOWER 0x5f /* broadband lower information */
199 #define CALLING_PARTY 0x6c /* calling party number */
200 #define CALLED_PARTY 0x70 /* called party number */
204 /* Q.2931 signalling general messages format */
205 #define PROTO_POS 0 /* offset of protocol discriminator */
206 #define CALL_REF_POS 2 /* offset of call reference value */
207 #define MSG_TYPE_POS 5 /* offset of message type */
208 #define MSG_LEN_POS 7 /* offset of message length */
209 #define IE_BEGIN_POS 9 /* offset of first information element */
211 /* format of signalling messages */
214 #define FIELD_BEGIN_POS 4
217 /* SunATM header for ATM packet */
218 #define SUNATM_DIR_POS 0
219 #define SUNATM_VPI_POS 1
220 #define SUNATM_VCI_POS 2
221 #define SUNATM_PKT_BEGIN_POS 4 /* Start of ATM packet */
223 /* Protocol type values in the bottom for bits of the byte at SUNATM_DIR_POS. */
224 #define PT_LANE 0x01 /* LANE */
225 #define PT_LLC 0x02 /* LLC encapsulation */
226 #define PT_ILMI 0x05 /* ILMI */
227 #define PT_QSAAL 0x06 /* Q.SAAL */
230 /* Types missing from some systems */
233 * Network layer protocol identifiers
236 #define ISO8473_CLNP 0x81
239 #define ISO9542_ESIS 0x82
241 #ifndef ISO9542X25_ESIS
242 #define ISO9542X25_ESIS 0x8a
244 #ifndef ISO10589_ISIS
245 #define ISO10589_ISIS 0x83
248 #define ISIS_L1_LAN_IIH 15
249 #define ISIS_L2_LAN_IIH 16
250 #define ISIS_PTP_IIH 17
251 #define ISIS_L1_LSP 18
252 #define ISIS_L2_LSP 20
253 #define ISIS_L1_CSNP 24
254 #define ISIS_L2_CSNP 25
255 #define ISIS_L1_PSNP 26
256 #define ISIS_L2_PSNP 27
258 * The maximum possible value can also be used as a bit mask because the
259 * "PDU Type" field comprises the least significant 5 bits of a particular
260 * octet, see sections 9.5~9.13 of ISO/IEC 10589:2002(E).
262 #define ISIS_PDU_TYPE_MAX 0x1FU
264 #ifndef ISO8878A_CONS
265 #define ISO8878A_CONS 0x84
267 #ifndef ISO10747_IDRP
268 #define ISO10747_IDRP 0x85
271 // Same as in tcpdump/print-sl.c.
273 #define SLIPDIR_OUT 1
275 #ifdef HAVE_OS_PROTO_H
276 #include "os-proto.h"
279 #define JMP(c) ((c)|BPF_JMP|BPF_K)
282 * "Push" the current value of the link-layer header type and link-layer
283 * header offset onto a "stack", and set a new value. (It's not a
284 * full-blown stack; we keep only the top two items.)
286 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
288 (cs)->prevlinktype = (cs)->linktype; \
289 (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
290 (cs)->linktype = (new_linktype); \
291 (cs)->off_linkhdr.is_variable = (new_is_variable); \
292 (cs)->off_linkhdr.constant_part = (new_constant_part); \
293 (cs)->off_linkhdr.reg = (new_reg); \
294 (cs)->is_encap = 0; \
298 * Offset "not set" value.
300 #define OFFSET_NOT_SET 0xffffffffU
303 * Absolute offsets, which are offsets from the beginning of the raw
304 * packet data, are, in the general case, the sum of a variable value
305 * and a constant value; the variable value may be absent, in which
306 * case the offset is only the constant value, and the constant value
307 * may be zero, in which case the offset is only the variable value.
309 * bpf_abs_offset is a structure containing all that information:
311 * is_variable is 1 if there's a variable part.
313 * constant_part is the constant part of the value, possibly zero;
315 * if is_variable is 1, reg is the register number for a register
316 * containing the variable value if the register has been assigned,
326 * Value passed to gen_load_a() to indicate what the offset argument
327 * is relative to the beginning of.
330 OR_PACKET
, /* full packet data */
331 OR_LINKHDR
, /* link-layer header */
332 OR_PREVLINKHDR
, /* previous link-layer header */
333 OR_LLC
, /* 802.2 LLC header */
334 OR_PREVMPLSHDR
, /* previous MPLS header */
335 OR_LINKTYPE
, /* link-layer type */
336 OR_LINKPL
, /* link-layer payload */
337 OR_LINKPL_NOSNAP
, /* link-layer payload, with no SNAP header at the link layer */
338 OR_TRAN_IPV4
, /* transport-layer header, with IPv4 network layer */
339 OR_TRAN_IPV6
/* transport-layer header, with IPv6 network layer */
343 * We divvy out chunks of memory rather than call malloc each time so
344 * we don't have to worry about leaking memory. It's probably
345 * not a big deal if all this memory was wasted but if this ever
346 * goes into a library that would probably not be a good idea.
348 * XXX - this *is* in a library....
351 #define CHUNK0SIZE 1024
358 * A chunk can store any of:
359 * - a string (guaranteed alignment 1 but present for completeness)
363 * For this simple allocator every allocated chunk gets rounded up to the
364 * alignment needed for any chunk.
375 #define CHUNK_ALIGN (offsetof(struct chunk_align, u))
377 /* Code generator state */
379 struct _compiler_state
{
390 int outermostlinktype
;
395 /* Hack for handling VLAN and MPLS stacks. */
396 u_int label_stack_depth
;
397 u_int vlan_stack_depth
;
403 * As errors are handled by a longjmp, anything allocated must
404 * be freed in the longjmp handler, so it must be reachable
407 * One thing that's allocated is the result of pcap_nametoaddrinfo();
408 * it must be freed with freeaddrinfo(). This variable points to
409 * any addrinfo structure that would need to be freed.
414 * Another thing that's allocated is the result of pcap_ether_aton();
415 * it must be freed with free(). This variable points to any
416 * address that would need to be freed.
421 * Various code constructs need to know the layout of the packet.
422 * These values give the necessary offsets from the beginning
423 * of the packet data.
427 * Absolute offset of the beginning of the link-layer header.
429 bpf_abs_offset off_linkhdr
;
432 * If we're checking a link-layer header for a packet encapsulated
433 * in another protocol layer, this is the equivalent information
434 * for the previous layers' link-layer header from the beginning
435 * of the raw packet data.
437 bpf_abs_offset off_prevlinkhdr
;
440 * This is the equivalent information for the outermost layers'
443 bpf_abs_offset off_outermostlinkhdr
;
446 * Absolute offset of the beginning of the link-layer payload.
448 bpf_abs_offset off_linkpl
;
451 * "off_linktype" is the offset to information in the link-layer
452 * header giving the packet type. This is an absolute offset
453 * from the beginning of the packet.
455 * For Ethernet, it's the offset of the Ethernet type field; this
456 * means that it must have a value that skips VLAN tags.
458 * For link-layer types that always use 802.2 headers, it's the
459 * offset of the LLC header; this means that it must have a value
460 * that skips VLAN tags.
462 * For PPP, it's the offset of the PPP type field.
464 * For Cisco HDLC, it's the offset of the CHDLC type field.
466 * For BSD loopback, it's the offset of the AF_ value.
468 * For Linux cooked sockets, it's the offset of the type field.
470 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
471 * encapsulation, in which case, IP is assumed.
473 bpf_abs_offset off_linktype
;
476 * TRUE if the link layer includes an ATM pseudo-header.
480 /* TRUE if "geneve" or "vxlan" appeared in the filter; it
481 * causes us to generate code that checks for a Geneve or
482 * VXLAN header respectively and assume that later filters
483 * apply to the encapsulated payload.
488 * TRUE if we need variable length part of VLAN offset
490 int is_vlan_vloffset
;
493 * These are offsets for the ATM pseudo-header.
500 * These are offsets for the MTP2 fields.
506 * These are offsets for the MTP3 fields.
514 * This is the offset of the first byte after the ATM pseudo_header,
515 * or -1 if there is no ATM pseudo-header.
520 * These are offsets to the beginning of the network-layer header.
521 * They are relative to the beginning of the link-layer payload
522 * (i.e., they don't include off_linkhdr.constant_part or
523 * off_linkpl.constant_part).
525 * If the link layer never uses 802.2 LLC:
527 * "off_nl" and "off_nl_nosnap" are the same.
529 * If the link layer always uses 802.2 LLC:
531 * "off_nl" is the offset if there's a SNAP header following
534 * "off_nl_nosnap" is the offset if there's no SNAP header.
536 * If the link layer is Ethernet:
538 * "off_nl" is the offset if the packet is an Ethernet II packet
539 * (we assume no 802.3+802.2+SNAP);
541 * "off_nl_nosnap" is the offset if the packet is an 802.3 packet
542 * with an 802.2 header following it.
548 * Here we handle simple allocation of the scratch registers.
549 * If too many registers are alloc'd, the allocator punts.
551 int regused
[BPF_MEMWORDS
];
557 struct chunk chunks
[NCHUNKS
];
562 * For use by routines outside this file.
566 bpf_set_error(compiler_state_t
*cstate
, const char *fmt
, ...)
571 * If we've already set an error, don't override it.
572 * The lexical analyzer reports some errors by setting
573 * the error and then returning a LEX_ERROR token, which
574 * is not recognized by any grammar rule, and thus forces
575 * the parse to stop. We don't want the error reported
576 * by the lexical analyzer to be overwritten by the syntax
579 if (!cstate
->error_set
) {
581 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
584 cstate
->error_set
= 1;
589 * For use *ONLY* in routines in this file.
591 static void PCAP_NORETURN
bpf_error(compiler_state_t
*, const char *, ...)
592 PCAP_PRINTFLIKE(2, 3);
595 static void PCAP_NORETURN
596 bpf_error(compiler_state_t
*cstate
, const char *fmt
, ...)
601 (void)vsnprintf(cstate
->bpf_pcap
->errbuf
, PCAP_ERRBUF_SIZE
,
604 longjmp(cstate
->top_ctx
, 1);
611 static int init_linktype(compiler_state_t
*, pcap_t
*);
613 static void init_regs(compiler_state_t
*);
614 static int alloc_reg(compiler_state_t
*);
615 static void free_reg(compiler_state_t
*, int);
617 static void initchunks(compiler_state_t
*cstate
);
618 static void *newchunk_nolongjmp(compiler_state_t
*cstate
, size_t);
619 static void *newchunk(compiler_state_t
*cstate
, size_t);
620 static void freechunks(compiler_state_t
*cstate
);
621 static inline struct block
*new_block(compiler_state_t
*cstate
, int);
622 static inline struct slist
*new_stmt(compiler_state_t
*cstate
, int);
623 static struct block
*gen_retblk(compiler_state_t
*cstate
, int);
624 static inline void syntax(compiler_state_t
*cstate
);
626 static void backpatch(struct block
*, struct block
*);
627 static void merge(struct block
*, struct block
*);
628 static struct block
*gen_cmp(compiler_state_t
*, enum e_offrel
, u_int
,
630 static struct block
*gen_cmp_gt(compiler_state_t
*, enum e_offrel
, u_int
,
632 static struct block
*gen_cmp_ge(compiler_state_t
*, enum e_offrel
, u_int
,
634 static struct block
*gen_cmp_lt(compiler_state_t
*, enum e_offrel
, u_int
,
636 static struct block
*gen_cmp_le(compiler_state_t
*, enum e_offrel
, u_int
,
638 static struct block
*gen_mcmp(compiler_state_t
*, enum e_offrel
, u_int
,
639 u_int
, bpf_u_int32
, bpf_u_int32
);
640 static struct block
*gen_bcmp(compiler_state_t
*, enum e_offrel
, u_int
,
641 u_int
, const u_char
*);
642 static struct block
*gen_ncmp(compiler_state_t
*, enum e_offrel
, u_int
,
643 u_int
, bpf_u_int32
, int, int, bpf_u_int32
);
644 static struct slist
*gen_load_absoffsetrel(compiler_state_t
*, bpf_abs_offset
*,
646 static struct slist
*gen_load_a(compiler_state_t
*, enum e_offrel
, u_int
,
648 static struct slist
*gen_loadx_iphdrlen(compiler_state_t
*);
649 static struct block
*gen_uncond(compiler_state_t
*, int);
650 static inline struct block
*gen_true(compiler_state_t
*);
651 static inline struct block
*gen_false(compiler_state_t
*);
652 static struct block
*gen_ether_linktype(compiler_state_t
*, bpf_u_int32
);
653 static struct block
*gen_ipnet_linktype(compiler_state_t
*, bpf_u_int32
);
654 static struct block
*gen_linux_sll_linktype(compiler_state_t
*, bpf_u_int32
);
655 static struct slist
*gen_load_pflog_llprefixlen(compiler_state_t
*);
656 static struct slist
*gen_load_prism_llprefixlen(compiler_state_t
*);
657 static struct slist
*gen_load_avs_llprefixlen(compiler_state_t
*);
658 static struct slist
*gen_load_radiotap_llprefixlen(compiler_state_t
*);
659 static struct slist
*gen_load_ppi_llprefixlen(compiler_state_t
*);
660 static void insert_compute_vloffsets(compiler_state_t
*, struct block
*);
661 static struct slist
*gen_abs_offset_varpart(compiler_state_t
*,
663 static bpf_u_int32
ethertype_to_ppptype(bpf_u_int32
);
664 static struct block
*gen_linktype(compiler_state_t
*, bpf_u_int32
);
665 static struct block
*gen_snap(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
);
666 static struct block
*gen_llc_linktype(compiler_state_t
*, bpf_u_int32
);
667 static struct block
*gen_hostop(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
670 static struct block
*gen_hostop6(compiler_state_t
*, struct in6_addr
*,
671 struct in6_addr
*, int, u_int
, u_int
);
673 static struct block
*gen_ahostop(compiler_state_t
*, const uint8_t, int);
674 static struct block
*gen_ehostop(compiler_state_t
*, const u_char
*, int);
675 static struct block
*gen_fhostop(compiler_state_t
*, const u_char
*, int);
676 static struct block
*gen_thostop(compiler_state_t
*, const u_char
*, int);
677 static struct block
*gen_wlanhostop(compiler_state_t
*, const u_char
*, int);
678 static struct block
*gen_ipfchostop(compiler_state_t
*, const u_char
*, int);
679 static struct block
*gen_dnhostop(compiler_state_t
*, bpf_u_int32
, int);
680 static struct block
*gen_mpls_linktype(compiler_state_t
*, bpf_u_int32
);
681 static struct block
*gen_host(compiler_state_t
*, bpf_u_int32
, bpf_u_int32
,
684 static struct block
*gen_host6(compiler_state_t
*, struct in6_addr
*,
685 struct in6_addr
*, int, int, int);
688 static struct block
*gen_gateway(compiler_state_t
*, const u_char
*,
689 struct addrinfo
*, int);
691 static struct block
*gen_ipfrag(compiler_state_t
*);
692 static struct block
*gen_portatom(compiler_state_t
*, int, bpf_u_int32
);
693 static struct block
*gen_portrangeatom(compiler_state_t
*, u_int
, bpf_u_int32
,
695 static struct block
*gen_portatom6(compiler_state_t
*, int, bpf_u_int32
);
696 static struct block
*gen_portrangeatom6(compiler_state_t
*, u_int
, bpf_u_int32
,
698 static struct block
*gen_portop(compiler_state_t
*, u_int
, u_int
, int);
699 static struct block
*gen_port(compiler_state_t
*, u_int
, int, int);
700 static struct block
*gen_portrangeop(compiler_state_t
*, u_int
, u_int
,
702 static struct block
*gen_portrange(compiler_state_t
*, u_int
, u_int
, int, int);
703 struct block
*gen_portop6(compiler_state_t
*, u_int
, u_int
, int);
704 static struct block
*gen_port6(compiler_state_t
*, u_int
, int, int);
705 static struct block
*gen_portrangeop6(compiler_state_t
*, u_int
, u_int
,
707 static struct block
*gen_portrange6(compiler_state_t
*, u_int
, u_int
, int, int);
708 static int lookup_proto(compiler_state_t
*, const char *, int);
709 #if !defined(NO_PROTOCHAIN)
710 static struct block
*gen_protochain(compiler_state_t
*, bpf_u_int32
, int);
711 #endif /* !defined(NO_PROTOCHAIN) */
712 static struct block
*gen_proto(compiler_state_t
*, bpf_u_int32
, int);
713 static struct slist
*xfer_to_x(compiler_state_t
*, struct arth
*);
714 static struct slist
*xfer_to_a(compiler_state_t
*, struct arth
*);
715 static struct block
*gen_mac_multicast(compiler_state_t
*, int);
716 static struct block
*gen_len(compiler_state_t
*, int, int);
717 static struct block
*gen_encap_ll_check(compiler_state_t
*cstate
);
719 static struct block
*gen_atmfield_code_internal(compiler_state_t
*, int,
720 bpf_u_int32
, int, int);
721 static struct block
*gen_atmtype_llc(compiler_state_t
*);
722 static struct block
*gen_msg_abbrev(compiler_state_t
*, int type
);
725 initchunks(compiler_state_t
*cstate
)
729 for (i
= 0; i
< NCHUNKS
; i
++) {
730 cstate
->chunks
[i
].n_left
= 0;
731 cstate
->chunks
[i
].m
= NULL
;
733 cstate
->cur_chunk
= 0;
737 newchunk_nolongjmp(compiler_state_t
*cstate
, size_t n
)
743 /* Round up to chunk alignment. */
744 n
= (n
+ CHUNK_ALIGN
- 1) & ~(CHUNK_ALIGN
- 1);
746 cp
= &cstate
->chunks
[cstate
->cur_chunk
];
747 if (n
> cp
->n_left
) {
749 k
= ++cstate
->cur_chunk
;
751 bpf_set_error(cstate
, "out of memory");
754 size
= CHUNK0SIZE
<< k
;
755 cp
->m
= (void *)malloc(size
);
757 bpf_set_error(cstate
, "out of memory");
760 memset((char *)cp
->m
, 0, size
);
763 bpf_set_error(cstate
, "out of memory");
768 return (void *)((char *)cp
->m
+ cp
->n_left
);
772 newchunk(compiler_state_t
*cstate
, size_t n
)
776 p
= newchunk_nolongjmp(cstate
, n
);
778 longjmp(cstate
->top_ctx
, 1);
785 freechunks(compiler_state_t
*cstate
)
789 for (i
= 0; i
< NCHUNKS
; ++i
)
790 if (cstate
->chunks
[i
].m
!= NULL
)
791 free(cstate
->chunks
[i
].m
);
795 * A strdup whose allocations are freed after code generation is over.
796 * This is used by the lexical analyzer, so it can't longjmp; it just
797 * returns NULL on an allocation error, and the callers must check
801 sdup(compiler_state_t
*cstate
, const char *s
)
803 size_t n
= strlen(s
) + 1;
804 char *cp
= newchunk_nolongjmp(cstate
, n
);
808 pcapint_strlcpy(cp
, s
, n
);
812 static inline struct block
*
813 new_block(compiler_state_t
*cstate
, int code
)
817 p
= (struct block
*)newchunk(cstate
, sizeof(*p
));
824 static inline struct slist
*
825 new_stmt(compiler_state_t
*cstate
, int code
)
829 p
= (struct slist
*)newchunk(cstate
, sizeof(*p
));
835 static struct block
*
836 gen_retblk_internal(compiler_state_t
*cstate
, int v
)
838 struct block
*b
= new_block(cstate
, BPF_RET
|BPF_K
);
844 static struct block
*
845 gen_retblk(compiler_state_t
*cstate
, int v
)
847 if (setjmp(cstate
->top_ctx
)) {
849 * gen_retblk() only fails because a memory
850 * allocation failed in newchunk(), meaning
851 * that it can't return a pointer.
857 return gen_retblk_internal(cstate
, v
);
860 static inline PCAP_NORETURN_DEF
void
861 syntax(compiler_state_t
*cstate
)
863 bpf_error(cstate
, "syntax error in filter expression");
867 * For the given integer return a string with the keyword (or the nominal
868 * keyword if there is more than one). This is a simpler version of tok2str()
869 * in tcpdump because in this problem space a valid integer value is not
873 qual2kw(const char *kind
, const unsigned id
, const char *tokens
[],
876 static char buf
[4][64];
879 if (id
< size
&& tokens
[id
])
882 char *ret
= buf
[idx
];
883 idx
= (idx
+ 1) % (sizeof(buf
) / sizeof(buf
[0]));
884 ret
[0] = '\0'; // just in case
885 snprintf(ret
, sizeof(buf
[0]), "<invalid %s %u>", kind
, id
);
889 // protocol qualifier keywords
891 pqkw(const unsigned id
)
893 const char * tokens
[] = {
905 [Q_DECNET
] = "decnet",
911 [Q_ICMPV6
] = "icmp6",
923 [Q_NETBEUI
] = "netbeui",
926 [Q_ISIS_IIH
] = "iih",
927 [Q_ISIS_SNP
] = "snp",
928 [Q_ISIS_CSNP
] = "csnp",
929 [Q_ISIS_PSNP
] = "psnp",
930 [Q_ISIS_LSP
] = "lsp",
934 return qual2kw("proto", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
937 // direction qualifier keywords
939 dqkw(const unsigned id
)
941 const char * map
[] = {
944 [Q_OR
] = "src or dst",
945 [Q_AND
] = "src and dst",
953 return qual2kw("dir", id
, map
, sizeof(map
) / sizeof(map
[0]));
958 atmkw(const unsigned id
)
960 const char * tokens
[] = {
963 [A_OAMF4SC
] = "oamf4sc",
964 [A_OAMF4EC
] = "oamf4ec",
970 // no keyword for A_SETUP
971 // no keyword for A_CALLPROCEED
972 // no keyword for A_CONNECT
973 // no keyword for A_CONNECTACK
974 // no keyword for A_RELEASE
975 // no keyword for A_RELEASE_DONE
978 // no keyword for A_PROTOTYPE
979 // no keyword for A_MSGTYPE
980 [A_CONNECTMSG
] = "connectmsg",
981 [A_METACONNECT
] = "metaconnect",
983 return qual2kw("ATM keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
988 ss7kw(const unsigned id
)
990 const char * tokens
[] = {
1006 return qual2kw("MTP keyword", id
, tokens
, sizeof(tokens
) / sizeof(tokens
[0]));
1009 static PCAP_NORETURN_DEF
void
1010 fail_kw_on_dlt(compiler_state_t
*cstate
, const char *keyword
)
1012 bpf_error(cstate
, "'%s' not supported on %s", keyword
,
1013 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
1017 assert_pflog(compiler_state_t
*cstate
, const char *kw
)
1019 if (cstate
->linktype
!= DLT_PFLOG
)
1020 bpf_error(cstate
, "'%s' supported only on PFLOG linktype", kw
);
1024 assert_atm(compiler_state_t
*cstate
, const char *kw
)
1027 * Belt and braces: init_linktype() sets either all of these struct
1028 * members (for DLT_SUNATM) or none (otherwise).
1030 if (cstate
->linktype
!= DLT_SUNATM
||
1032 cstate
->off_vpi
== OFFSET_NOT_SET
||
1033 cstate
->off_vci
== OFFSET_NOT_SET
||
1034 cstate
->off_proto
== OFFSET_NOT_SET
||
1035 cstate
->off_payload
== OFFSET_NOT_SET
)
1036 bpf_error(cstate
, "'%s' supported only on SUNATM", kw
);
1040 assert_ss7(compiler_state_t
*cstate
, const char *kw
)
1042 switch (cstate
->linktype
) {
1045 case DLT_MTP2_WITH_PHDR
:
1046 // Belt and braces, same as in assert_atm().
1047 if (cstate
->off_sio
!= OFFSET_NOT_SET
&&
1048 cstate
->off_opc
!= OFFSET_NOT_SET
&&
1049 cstate
->off_dpc
!= OFFSET_NOT_SET
&&
1050 cstate
->off_sls
!= OFFSET_NOT_SET
)
1053 bpf_error(cstate
, "'%s' supported only on SS7", kw
);
1057 assert_maxval(compiler_state_t
*cstate
, const char *name
,
1058 const bpf_u_int32 val
, const bpf_u_int32 maxval
)
1061 bpf_error(cstate
, "%s %u greater than maximum %u",
1065 #define ERRSTR_802_11_ONLY_KW "'%s' is valid for 802.11 syntax only"
1066 #define ERRSTR_INVALID_QUAL "'%s' is not a valid qualifier for '%s'"
1068 // Validate a port/portrange proto qualifier and map to an IP protocol number.
1070 port_pq_to_ipproto(compiler_state_t
*cstate
, const int proto
, const char *kw
)
1078 return IPPROTO_SCTP
;
1082 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), kw
);
1086 pcap_compile(pcap_t
*p
, struct bpf_program
*program
,
1087 const char *buf
, int optimize
, bpf_u_int32 mask
)
1093 compiler_state_t cstate
;
1094 yyscan_t scanner
= NULL
;
1095 YY_BUFFER_STATE in_buffer
= NULL
;
1100 * If this pcap_t hasn't been activated, it doesn't have a
1101 * link-layer type, so we can't use it.
1103 if (!p
->activated
) {
1104 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1105 "not-yet-activated pcap_t passed to pcap_compile");
1106 return (PCAP_ERROR
);
1111 * Initialize Winsock, asking for the latest version (2.2),
1112 * as we may be calling Winsock routines to translate
1113 * host names to addresses.
1115 err
= WSAStartup(MAKEWORD(2, 2), &wsaData
);
1117 pcapint_fmt_errmsg_for_win32_err(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1118 err
, "Error calling WSAStartup()");
1119 return (PCAP_ERROR
);
1123 #ifdef ENABLE_REMOTE
1125 * If the device on which we're capturing need to be notified
1126 * that a new filter is being compiled, do so.
1128 * This allows them to save a copy of it, in case, for example,
1129 * they're implementing a form of remote packet capture, and
1130 * want the remote machine to filter out the packets in which
1131 * it's sending the packets it's captured.
1133 * XXX - the fact that we happen to be compiling a filter
1134 * doesn't necessarily mean we'll be installing it as the
1135 * filter for this pcap_t; we might be running it from userland
1136 * on captured packets to do packet classification. We really
1137 * need a better way of handling this, but this is all that
1138 * the WinPcap remote capture code did.
1140 if (p
->save_current_filter_op
!= NULL
)
1141 (p
->save_current_filter_op
)(p
, buf
);
1144 initchunks(&cstate
);
1145 cstate
.no_optimize
= 0;
1150 cstate
.ic
.root
= NULL
;
1151 cstate
.ic
.cur_mark
= 0;
1152 cstate
.bpf_pcap
= p
;
1153 cstate
.error_set
= 0;
1156 cstate
.netmask
= mask
;
1158 cstate
.snaplen
= pcap_snapshot(p
);
1159 if (cstate
.snaplen
== 0) {
1160 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1161 "snaplen of 0 rejects all packets");
1166 if (pcap_lex_init(&scanner
) != 0) {
1167 pcapint_fmt_errmsg_for_errno(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1168 errno
, "can't initialize scanner");
1172 in_buffer
= pcap__scan_string(buf
? buf
: "", scanner
);
1175 * Associate the compiler state with the lexical analyzer
1178 pcap_set_extra(&cstate
, scanner
);
1180 if (init_linktype(&cstate
, p
) == -1) {
1184 if (pcap_parse(scanner
, &cstate
) != 0) {
1186 if (cstate
.ai
!= NULL
)
1187 freeaddrinfo(cstate
.ai
);
1189 if (cstate
.e
!= NULL
)
1195 if (cstate
.ic
.root
== NULL
) {
1196 cstate
.ic
.root
= gen_retblk(&cstate
, cstate
.snaplen
);
1199 * Catch errors reported by gen_retblk().
1201 if (cstate
.ic
.root
== NULL
) {
1207 if (optimize
&& !cstate
.no_optimize
) {
1208 if (bpf_optimize(&cstate
.ic
, p
->errbuf
) == -1) {
1213 if (cstate
.ic
.root
== NULL
||
1214 (cstate
.ic
.root
->s
.code
== (BPF_RET
|BPF_K
) && cstate
.ic
.root
->s
.k
== 0)) {
1215 (void)snprintf(p
->errbuf
, PCAP_ERRBUF_SIZE
,
1216 "expression rejects all packets");
1221 program
->bf_insns
= icode_to_fcode(&cstate
.ic
,
1222 cstate
.ic
.root
, &len
, p
->errbuf
);
1223 if (program
->bf_insns
== NULL
) {
1228 program
->bf_len
= len
;
1230 rc
= 0; /* We're all okay */
1234 * Clean up everything for the lexical analyzer.
1236 if (in_buffer
!= NULL
)
1237 pcap__delete_buffer(in_buffer
, scanner
);
1238 if (scanner
!= NULL
)
1239 pcap_lex_destroy(scanner
);
1242 * Clean up our own allocated memory.
1244 freechunks(&cstate
);
1254 * entry point for using the compiler with no pcap open
1255 * pass in all the stuff that is needed explicitly instead.
1258 pcap_compile_nopcap(int snaplen_arg
, int linktype_arg
,
1259 struct bpf_program
*program
,
1260 const char *buf
, int optimize
, bpf_u_int32 mask
)
1265 p
= pcap_open_dead(linktype_arg
, snaplen_arg
);
1267 return (PCAP_ERROR
);
1268 ret
= pcap_compile(p
, program
, buf
, optimize
, mask
);
1274 * Clean up a "struct bpf_program" by freeing all the memory allocated
1278 pcap_freecode(struct bpf_program
*program
)
1280 program
->bf_len
= 0;
1281 if (program
->bf_insns
!= NULL
) {
1282 free((char *)program
->bf_insns
);
1283 program
->bf_insns
= NULL
;
1288 * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
1289 * which of the jt and jf fields has been resolved and which is a pointer
1290 * back to another unresolved block (or nil). At least one of the fields
1291 * in each block is already resolved.
1294 backpatch(struct block
*list
, struct block
*target
)
1311 * Merge the lists in b0 and b1, using the 'sense' field to indicate
1312 * which of jt and jf is the link.
1315 merge(struct block
*b0
, struct block
*b1
)
1317 register struct block
**p
= &b0
;
1319 /* Find end of list. */
1321 p
= !((*p
)->sense
) ? &JT(*p
) : &JF(*p
);
1323 /* Concatenate the lists. */
1328 finish_parse(compiler_state_t
*cstate
, struct block
*p
)
1331 * Catch errors reported by us and routines below us, and return -1
1334 if (setjmp(cstate
->top_ctx
))
1338 * Insert before the statements of the first (root) block any
1339 * statements needed to load the lengths of any variable-length
1340 * headers into registers.
1342 * XXX - a fancier strategy would be to insert those before the
1343 * statements of all blocks that use those lengths and that
1344 * have no predecessors that use them, so that we only compute
1345 * the lengths if we need them. There might be even better
1346 * approaches than that.
1348 * However, those strategies would be more complicated, and
1349 * as we don't generate code to compute a length if the
1350 * program has no tests that use the length, and as most
1351 * tests will probably use those lengths, we would just
1352 * postpone computing the lengths so that it's not done
1353 * for tests that fail early, and it's not clear that's
1356 insert_compute_vloffsets(cstate
, p
->head
);
1359 * For DLT_PPI captures, generate a check of the per-packet
1360 * DLT value to make sure it's DLT_IEEE802_11.
1362 * XXX - TurboCap cards use DLT_PPI for Ethernet.
1363 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
1364 * with appropriate Ethernet information and use that rather
1365 * than using something such as DLT_PPI where you don't know
1366 * the link-layer header type until runtime, which, in the
1367 * general case, would force us to generate both Ethernet *and*
1368 * 802.11 code (*and* anything else for which PPI is used)
1369 * and choose between them early in the BPF program?
1371 if (cstate
->linktype
== DLT_PPI
) {
1372 struct block
*ppi_dlt_check
= gen_cmp(cstate
, OR_PACKET
,
1373 4, BPF_W
, SWAPLONG(DLT_IEEE802_11
));
1374 gen_and(ppi_dlt_check
, p
);
1377 backpatch(p
, gen_retblk_internal(cstate
, cstate
->snaplen
));
1378 p
->sense
= !p
->sense
;
1379 backpatch(p
, gen_retblk_internal(cstate
, 0));
1380 cstate
->ic
.root
= p
->head
;
1385 gen_and(struct block
*b0
, struct block
*b1
)
1387 backpatch(b0
, b1
->head
);
1388 b0
->sense
= !b0
->sense
;
1389 b1
->sense
= !b1
->sense
;
1391 b1
->sense
= !b1
->sense
;
1392 b1
->head
= b0
->head
;
1396 gen_or(struct block
*b0
, struct block
*b1
)
1398 b0
->sense
= !b0
->sense
;
1399 backpatch(b0
, b1
->head
);
1400 b0
->sense
= !b0
->sense
;
1402 b1
->head
= b0
->head
;
1406 gen_not(struct block
*b
)
1408 b
->sense
= !b
->sense
;
1411 static struct block
*
1412 gen_cmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1413 u_int size
, bpf_u_int32 v
)
1415 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JEQ
, 0, v
);
1418 static struct block
*
1419 gen_cmp_gt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1420 u_int size
, bpf_u_int32 v
)
1422 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 0, v
);
1425 static struct block
*
1426 gen_cmp_ge(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1427 u_int size
, bpf_u_int32 v
)
1429 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 0, v
);
1432 static struct block
*
1433 gen_cmp_lt(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1434 u_int size
, bpf_u_int32 v
)
1436 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGE
, 1, v
);
1439 static struct block
*
1440 gen_cmp_le(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1441 u_int size
, bpf_u_int32 v
)
1443 return gen_ncmp(cstate
, offrel
, offset
, size
, 0xffffffff, BPF_JGT
, 1, v
);
1446 static struct block
*
1447 gen_mcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1448 u_int size
, bpf_u_int32 v
, bpf_u_int32 mask
)
1450 return gen_ncmp(cstate
, offrel
, offset
, size
, mask
, BPF_JEQ
, 0, v
);
1453 static struct block
*
1454 gen_bcmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1455 u_int size
, const u_char
*v
)
1457 register struct block
*b
, *tmp
;
1461 register const u_char
*p
= &v
[size
- 4];
1463 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 4, BPF_W
,
1471 register const u_char
*p
= &v
[size
- 2];
1473 tmp
= gen_cmp(cstate
, offrel
, offset
+ size
- 2, BPF_H
,
1481 tmp
= gen_cmp(cstate
, offrel
, offset
, BPF_B
, v
[0]);
1490 * AND the field of size "size" at offset "offset" relative to the header
1491 * specified by "offrel" with "mask", and compare it with the value "v"
1492 * with the test specified by "jtype"; if "reverse" is true, the test
1493 * should test the opposite of "jtype".
1495 static struct block
*
1496 gen_ncmp(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
1497 u_int size
, bpf_u_int32 mask
, int jtype
, int reverse
,
1500 struct slist
*s
, *s2
;
1503 s
= gen_load_a(cstate
, offrel
, offset
, size
);
1505 if (mask
!= 0xffffffff) {
1506 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
1511 b
= new_block(cstate
, JMP(jtype
));
1520 init_linktype(compiler_state_t
*cstate
, pcap_t
*p
)
1522 cstate
->pcap_fddipad
= p
->fddipad
;
1525 * We start out with only one link-layer header.
1527 cstate
->outermostlinktype
= pcap_datalink(p
);
1528 cstate
->off_outermostlinkhdr
.constant_part
= 0;
1529 cstate
->off_outermostlinkhdr
.is_variable
= 0;
1530 cstate
->off_outermostlinkhdr
.reg
= -1;
1532 cstate
->prevlinktype
= cstate
->outermostlinktype
;
1533 cstate
->off_prevlinkhdr
.constant_part
= 0;
1534 cstate
->off_prevlinkhdr
.is_variable
= 0;
1535 cstate
->off_prevlinkhdr
.reg
= -1;
1537 cstate
->linktype
= cstate
->outermostlinktype
;
1538 cstate
->off_linkhdr
.constant_part
= 0;
1539 cstate
->off_linkhdr
.is_variable
= 0;
1540 cstate
->off_linkhdr
.reg
= -1;
1545 cstate
->off_linkpl
.constant_part
= 0;
1546 cstate
->off_linkpl
.is_variable
= 0;
1547 cstate
->off_linkpl
.reg
= -1;
1549 cstate
->off_linktype
.constant_part
= 0;
1550 cstate
->off_linktype
.is_variable
= 0;
1551 cstate
->off_linktype
.reg
= -1;
1554 * Assume it's not raw ATM with a pseudo-header, for now.
1557 cstate
->off_vpi
= OFFSET_NOT_SET
;
1558 cstate
->off_vci
= OFFSET_NOT_SET
;
1559 cstate
->off_proto
= OFFSET_NOT_SET
;
1560 cstate
->off_payload
= OFFSET_NOT_SET
;
1563 * And not encapsulated with either Geneve or VXLAN.
1565 cstate
->is_encap
= 0;
1568 * No variable length VLAN offset by default
1570 cstate
->is_vlan_vloffset
= 0;
1573 * And assume we're not doing SS7.
1575 cstate
->off_li
= OFFSET_NOT_SET
;
1576 cstate
->off_li_hsl
= OFFSET_NOT_SET
;
1577 cstate
->off_sio
= OFFSET_NOT_SET
;
1578 cstate
->off_opc
= OFFSET_NOT_SET
;
1579 cstate
->off_dpc
= OFFSET_NOT_SET
;
1580 cstate
->off_sls
= OFFSET_NOT_SET
;
1582 cstate
->label_stack_depth
= 0;
1583 cstate
->vlan_stack_depth
= 0;
1585 switch (cstate
->linktype
) {
1588 cstate
->off_linktype
.constant_part
= 2;
1589 cstate
->off_linkpl
.constant_part
= 6;
1590 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1591 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1594 case DLT_ARCNET_LINUX
:
1595 cstate
->off_linktype
.constant_part
= 4;
1596 cstate
->off_linkpl
.constant_part
= 8;
1597 cstate
->off_nl
= 0; /* XXX in reality, variable! */
1598 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1602 cstate
->off_linktype
.constant_part
= 12;
1603 cstate
->off_linkpl
.constant_part
= 14; /* Ethernet header length */
1604 cstate
->off_nl
= 0; /* Ethernet II */
1605 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
1610 * SLIP doesn't have a link level type. The 16 byte
1611 * header is hacked into our SLIP driver.
1613 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1614 cstate
->off_linkpl
.constant_part
= 16;
1616 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1619 case DLT_SLIP_BSDOS
:
1620 /* XXX this may be the same as the DLT_PPP_BSDOS case */
1621 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1623 cstate
->off_linkpl
.constant_part
= 24;
1625 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1630 cstate
->off_linktype
.constant_part
= 0;
1631 cstate
->off_linkpl
.constant_part
= 4;
1633 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1637 cstate
->off_linktype
.constant_part
= 0;
1638 cstate
->off_linkpl
.constant_part
= 12;
1640 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1645 case DLT_C_HDLC
: /* BSD/OS Cisco HDLC */
1646 case DLT_HDLC
: /* NetBSD (Cisco) HDLC */
1647 case DLT_PPP_SERIAL
: /* NetBSD sync/async serial PPP */
1648 cstate
->off_linktype
.constant_part
= 2; /* skip HDLC-like framing */
1649 cstate
->off_linkpl
.constant_part
= 4; /* skip HDLC-like framing and protocol field */
1651 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1656 * This does not include the Ethernet header, and
1657 * only covers session state.
1659 cstate
->off_linktype
.constant_part
= 6;
1660 cstate
->off_linkpl
.constant_part
= 8;
1662 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1666 cstate
->off_linktype
.constant_part
= 5;
1667 cstate
->off_linkpl
.constant_part
= 24;
1669 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1674 * FDDI doesn't really have a link-level type field.
1675 * We set "off_linktype" to the offset of the LLC header.
1677 * To check for Ethernet types, we assume that SSAP = SNAP
1678 * is being used and pick out the encapsulated Ethernet type.
1679 * XXX - should we generate code to check for SNAP?
1681 cstate
->off_linktype
.constant_part
= 13;
1682 cstate
->off_linktype
.constant_part
+= cstate
->pcap_fddipad
;
1683 cstate
->off_linkpl
.constant_part
= 13; /* FDDI MAC header length */
1684 cstate
->off_linkpl
.constant_part
+= cstate
->pcap_fddipad
;
1685 cstate
->off_nl
= 8; /* 802.2+SNAP */
1686 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1691 * Token Ring doesn't really have a link-level type field.
1692 * We set "off_linktype" to the offset of the LLC header.
1694 * To check for Ethernet types, we assume that SSAP = SNAP
1695 * is being used and pick out the encapsulated Ethernet type.
1696 * XXX - should we generate code to check for SNAP?
1698 * XXX - the header is actually variable-length.
1699 * Some various Linux patched versions gave 38
1700 * as "off_linktype" and 40 as "off_nl"; however,
1701 * if a token ring packet has *no* routing
1702 * information, i.e. is not source-routed, the correct
1703 * values are 20 and 22, as they are in the vanilla code.
1705 * A packet is source-routed iff the uppermost bit
1706 * of the first byte of the source address, at an
1707 * offset of 8, has the uppermost bit set. If the
1708 * packet is source-routed, the total number of bytes
1709 * of routing information is 2 plus bits 0x1F00 of
1710 * the 16-bit value at an offset of 14 (shifted right
1711 * 8 - figure out which byte that is).
1713 cstate
->off_linktype
.constant_part
= 14;
1714 cstate
->off_linkpl
.constant_part
= 14; /* Token Ring MAC header length */
1715 cstate
->off_nl
= 8; /* 802.2+SNAP */
1716 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1719 case DLT_PRISM_HEADER
:
1720 case DLT_IEEE802_11_RADIO_AVS
:
1721 case DLT_IEEE802_11_RADIO
:
1722 cstate
->off_linkhdr
.is_variable
= 1;
1723 /* Fall through, 802.11 doesn't have a variable link
1724 * prefix but is otherwise the same. */
1727 case DLT_IEEE802_11
:
1729 * 802.11 doesn't really have a link-level type field.
1730 * We set "off_linktype.constant_part" to the offset of
1733 * To check for Ethernet types, we assume that SSAP = SNAP
1734 * is being used and pick out the encapsulated Ethernet type.
1735 * XXX - should we generate code to check for SNAP?
1737 * We also handle variable-length radio headers here.
1738 * The Prism header is in theory variable-length, but in
1739 * practice it's always 144 bytes long. However, some
1740 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1741 * sometimes or always supply an AVS header, so we
1742 * have to check whether the radio header is a Prism
1743 * header or an AVS header, so, in practice, it's
1746 cstate
->off_linktype
.constant_part
= 24;
1747 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1748 cstate
->off_linkpl
.is_variable
= 1;
1749 cstate
->off_nl
= 8; /* 802.2+SNAP */
1750 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1755 * At the moment we treat PPI the same way that we treat
1756 * normal Radiotap encoded packets. The difference is in
1757 * the function that generates the code at the beginning
1758 * to compute the header length. Since this code generator
1759 * of PPI supports bare 802.11 encapsulation only (i.e.
1760 * the encapsulated DLT should be DLT_IEEE802_11) we
1761 * generate code to check for this too.
1763 cstate
->off_linktype
.constant_part
= 24;
1764 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1765 cstate
->off_linkpl
.is_variable
= 1;
1766 cstate
->off_linkhdr
.is_variable
= 1;
1767 cstate
->off_nl
= 8; /* 802.2+SNAP */
1768 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1771 case DLT_ATM_RFC1483
:
1772 case DLT_ATM_CLIP
: /* Linux ATM defines this */
1774 * assume routed, non-ISO PDUs
1775 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1777 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1778 * or PPP with the PPP NLPID (e.g., PPPoA)? The
1779 * latter would presumably be treated the way PPPoE
1780 * should be, so you can do "pppoe and udp port 2049"
1781 * or "pppoa and tcp port 80" and have it check for
1782 * PPPo{A,E} and a PPP protocol of IP and....
1784 cstate
->off_linktype
.constant_part
= 0;
1785 cstate
->off_linkpl
.constant_part
= 0; /* packet begins with LLC header */
1786 cstate
->off_nl
= 8; /* 802.2+SNAP */
1787 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1792 * Full Frontal ATM; you get AALn PDUs with an ATM
1796 cstate
->off_vpi
= SUNATM_VPI_POS
;
1797 cstate
->off_vci
= SUNATM_VCI_POS
;
1798 cstate
->off_proto
= PROTO_POS
;
1799 cstate
->off_payload
= SUNATM_PKT_BEGIN_POS
;
1800 cstate
->off_linktype
.constant_part
= cstate
->off_payload
;
1801 cstate
->off_linkpl
.constant_part
= cstate
->off_payload
; /* if LLC-encapsulated */
1802 cstate
->off_nl
= 8; /* 802.2+SNAP */
1803 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1809 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1810 cstate
->off_linkpl
.constant_part
= 0;
1812 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1815 case DLT_LINUX_SLL
: /* fake header for Linux cooked socket v1 */
1816 cstate
->off_linktype
.constant_part
= 14;
1817 cstate
->off_linkpl
.constant_part
= 16;
1819 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1822 case DLT_LINUX_SLL2
: /* fake header for Linux cooked socket v2 */
1823 cstate
->off_linktype
.constant_part
= 0;
1824 cstate
->off_linkpl
.constant_part
= 20;
1826 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1831 * LocalTalk does have a 1-byte type field in the LLAP header,
1832 * but really it just indicates whether there is a "short" or
1833 * "long" DDP packet following.
1835 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1836 cstate
->off_linkpl
.constant_part
= 0;
1838 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1841 case DLT_IP_OVER_FC
:
1843 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1844 * link-level type field. We set "off_linktype" to the
1845 * offset of the LLC header.
1847 * To check for Ethernet types, we assume that SSAP = SNAP
1848 * is being used and pick out the encapsulated Ethernet type.
1849 * XXX - should we generate code to check for SNAP? RFC
1850 * 2625 says SNAP should be used.
1852 cstate
->off_linktype
.constant_part
= 16;
1853 cstate
->off_linkpl
.constant_part
= 16;
1854 cstate
->off_nl
= 8; /* 802.2+SNAP */
1855 cstate
->off_nl_nosnap
= 3; /* 802.2 */
1860 * XXX - we should set this to handle SNAP-encapsulated
1861 * frames (NLPID of 0x80).
1863 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1864 cstate
->off_linkpl
.constant_part
= 0;
1866 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1870 * the only BPF-interesting FRF.16 frames are non-control frames;
1871 * Frame Relay has a variable length link-layer
1872 * so lets start with offset 4 for now and increments later on (FIXME);
1875 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1876 cstate
->off_linkpl
.constant_part
= 0;
1878 cstate
->off_nl_nosnap
= 0; /* XXX - for now -> no 802.2 LLC */
1881 case DLT_APPLE_IP_OVER_IEEE1394
:
1882 cstate
->off_linktype
.constant_part
= 16;
1883 cstate
->off_linkpl
.constant_part
= 18;
1885 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1888 case DLT_SYMANTEC_FIREWALL
:
1889 cstate
->off_linktype
.constant_part
= 6;
1890 cstate
->off_linkpl
.constant_part
= 44;
1891 cstate
->off_nl
= 0; /* Ethernet II */
1892 cstate
->off_nl_nosnap
= 0; /* XXX - what does it do with 802.3 packets? */
1896 cstate
->off_linktype
.constant_part
= 0;
1897 cstate
->off_linkpl
.constant_part
= 0; /* link-layer header is variable-length */
1898 cstate
->off_linkpl
.is_variable
= 1;
1900 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
1903 case DLT_JUNIPER_MFR
:
1904 case DLT_JUNIPER_MLFR
:
1905 case DLT_JUNIPER_MLPPP
:
1906 case DLT_JUNIPER_PPP
:
1907 case DLT_JUNIPER_CHDLC
:
1908 case DLT_JUNIPER_FRELAY
:
1909 cstate
->off_linktype
.constant_part
= 4;
1910 cstate
->off_linkpl
.constant_part
= 4;
1912 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1915 case DLT_JUNIPER_ATM1
:
1916 cstate
->off_linktype
.constant_part
= 4; /* in reality variable between 4-8 */
1917 cstate
->off_linkpl
.constant_part
= 4; /* in reality variable between 4-8 */
1919 cstate
->off_nl_nosnap
= 10;
1922 case DLT_JUNIPER_ATM2
:
1923 cstate
->off_linktype
.constant_part
= 8; /* in reality variable between 8-12 */
1924 cstate
->off_linkpl
.constant_part
= 8; /* in reality variable between 8-12 */
1926 cstate
->off_nl_nosnap
= 10;
1929 /* frames captured on a Juniper PPPoE service PIC
1930 * contain raw ethernet frames */
1931 case DLT_JUNIPER_PPPOE
:
1932 case DLT_JUNIPER_ETHER
:
1933 cstate
->off_linkpl
.constant_part
= 14;
1934 cstate
->off_linktype
.constant_part
= 16;
1935 cstate
->off_nl
= 18; /* Ethernet II */
1936 cstate
->off_nl_nosnap
= 21; /* 802.3+802.2 */
1939 case DLT_JUNIPER_PPPOE_ATM
:
1940 cstate
->off_linktype
.constant_part
= 4;
1941 cstate
->off_linkpl
.constant_part
= 6;
1943 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1946 case DLT_JUNIPER_GGSN
:
1947 cstate
->off_linktype
.constant_part
= 6;
1948 cstate
->off_linkpl
.constant_part
= 12;
1950 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1953 case DLT_JUNIPER_ES
:
1954 cstate
->off_linktype
.constant_part
= 6;
1955 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1956 cstate
->off_nl
= OFFSET_NOT_SET
; /* not really a network layer but raw IP addresses */
1957 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1960 case DLT_JUNIPER_MONITOR
:
1961 cstate
->off_linktype
.constant_part
= 12;
1962 cstate
->off_linkpl
.constant_part
= 12;
1963 cstate
->off_nl
= 0; /* raw IP/IP6 header */
1964 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1967 case DLT_BACNET_MS_TP
:
1968 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
1969 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1970 cstate
->off_nl
= OFFSET_NOT_SET
;
1971 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1974 case DLT_JUNIPER_SERVICES
:
1975 cstate
->off_linktype
.constant_part
= 12;
1976 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1977 cstate
->off_nl
= OFFSET_NOT_SET
; /* L3 proto location dep. on cookie type */
1978 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
1981 case DLT_JUNIPER_VP
:
1982 cstate
->off_linktype
.constant_part
= 18;
1983 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1984 cstate
->off_nl
= OFFSET_NOT_SET
;
1985 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1988 case DLT_JUNIPER_ST
:
1989 cstate
->off_linktype
.constant_part
= 18;
1990 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1991 cstate
->off_nl
= OFFSET_NOT_SET
;
1992 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
1995 case DLT_JUNIPER_ISM
:
1996 cstate
->off_linktype
.constant_part
= 8;
1997 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
1998 cstate
->off_nl
= OFFSET_NOT_SET
;
1999 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2002 case DLT_JUNIPER_VS
:
2003 case DLT_JUNIPER_SRX_E2E
:
2004 case DLT_JUNIPER_FIBRECHANNEL
:
2005 case DLT_JUNIPER_ATM_CEMIC
:
2006 cstate
->off_linktype
.constant_part
= 8;
2007 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2008 cstate
->off_nl
= OFFSET_NOT_SET
;
2009 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2014 cstate
->off_li_hsl
= 4;
2015 cstate
->off_sio
= 3;
2016 cstate
->off_opc
= 4;
2017 cstate
->off_dpc
= 4;
2018 cstate
->off_sls
= 7;
2019 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2020 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2021 cstate
->off_nl
= OFFSET_NOT_SET
;
2022 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2025 case DLT_MTP2_WITH_PHDR
:
2027 cstate
->off_li_hsl
= 8;
2028 cstate
->off_sio
= 7;
2029 cstate
->off_opc
= 8;
2030 cstate
->off_dpc
= 8;
2031 cstate
->off_sls
= 11;
2032 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2033 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2034 cstate
->off_nl
= OFFSET_NOT_SET
;
2035 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2039 cstate
->off_li
= 22;
2040 cstate
->off_li_hsl
= 24;
2041 cstate
->off_sio
= 23;
2042 cstate
->off_opc
= 24;
2043 cstate
->off_dpc
= 24;
2044 cstate
->off_sls
= 27;
2045 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2046 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2047 cstate
->off_nl
= OFFSET_NOT_SET
;
2048 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2052 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2053 cstate
->off_linkpl
.constant_part
= 4;
2055 cstate
->off_nl_nosnap
= 0;
2060 * Currently, only raw "link[N:M]" filtering is supported.
2062 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
; /* variable, min 15, max 71 steps of 7 */
2063 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2064 cstate
->off_nl
= OFFSET_NOT_SET
; /* variable, min 16, max 71 steps of 7 */
2065 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
; /* no 802.2 LLC */
2069 cstate
->off_linktype
.constant_part
= 1;
2070 cstate
->off_linkpl
.constant_part
= 24; /* ipnet header length */
2072 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2075 case DLT_NETANALYZER
:
2076 cstate
->off_linkhdr
.constant_part
= 4; /* Ethernet header is past 4-byte pseudo-header */
2077 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2078 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+Ethernet header length */
2079 cstate
->off_nl
= 0; /* Ethernet II */
2080 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2083 case DLT_NETANALYZER_TRANSPARENT
:
2084 cstate
->off_linkhdr
.constant_part
= 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */
2085 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
2086 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* pseudo-header+preamble+SFD+Ethernet header length */
2087 cstate
->off_nl
= 0; /* Ethernet II */
2088 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
2093 * For values in the range in which we've assigned new
2094 * DLT_ values, only raw "link[N:M]" filtering is supported.
2096 if (cstate
->linktype
>= DLT_HIGH_MATCHING_MIN
&&
2097 cstate
->linktype
<= DLT_HIGH_MATCHING_MAX
) {
2098 cstate
->off_linktype
.constant_part
= OFFSET_NOT_SET
;
2099 cstate
->off_linkpl
.constant_part
= OFFSET_NOT_SET
;
2100 cstate
->off_nl
= OFFSET_NOT_SET
;
2101 cstate
->off_nl_nosnap
= OFFSET_NOT_SET
;
2103 bpf_set_error(cstate
, "unknown data link type %d (min %d, max %d)",
2104 cstate
->linktype
, DLT_HIGH_MATCHING_MIN
, DLT_HIGH_MATCHING_MAX
);
2110 cstate
->off_outermostlinkhdr
= cstate
->off_prevlinkhdr
= cstate
->off_linkhdr
;
2115 * Load a value relative to the specified absolute offset.
2117 static struct slist
*
2118 gen_load_absoffsetrel(compiler_state_t
*cstate
, bpf_abs_offset
*abs_offset
,
2119 u_int offset
, u_int size
)
2121 struct slist
*s
, *s2
;
2123 s
= gen_abs_offset_varpart(cstate
, abs_offset
);
2126 * If "s" is non-null, it has code to arrange that the X register
2127 * contains the variable part of the absolute offset, so we
2128 * generate a load relative to that, with an offset of
2129 * abs_offset->constant_part + offset.
2131 * Otherwise, we can do an absolute load with an offset of
2132 * abs_offset->constant_part + offset.
2136 * "s" points to a list of statements that puts the
2137 * variable part of the absolute offset into the X register.
2138 * Do an indirect load, to use the X register as an offset.
2140 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2141 s2
->s
.k
= abs_offset
->constant_part
+ offset
;
2145 * There is no variable part of the absolute offset, so
2146 * just do an absolute load.
2148 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2149 s
->s
.k
= abs_offset
->constant_part
+ offset
;
2155 * Load a value relative to the beginning of the specified header.
2157 static struct slist
*
2158 gen_load_a(compiler_state_t
*cstate
, enum e_offrel offrel
, u_int offset
,
2161 struct slist
*s
, *s2
;
2164 * Squelch warnings from compilers that *don't* assume that
2165 * offrel always has a valid enum value and therefore don't
2166 * assume that we'll always go through one of the case arms.
2168 * If we have a default case, compilers that *do* assume that
2169 * will then complain about the default case code being
2172 * Damned if you do, damned if you don't.
2179 s
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|size
);
2184 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkhdr
, offset
, size
);
2187 case OR_PREVLINKHDR
:
2188 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_prevlinkhdr
, offset
, size
);
2192 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, offset
, size
);
2195 case OR_PREVMPLSHDR
:
2196 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
- 4 + offset
, size
);
2200 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ offset
, size
);
2203 case OR_LINKPL_NOSNAP
:
2204 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl_nosnap
+ offset
, size
);
2208 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linktype
, offset
, size
);
2213 * Load the X register with the length of the IPv4 header
2214 * (plus the offset of the link-layer header, if it's
2215 * preceded by a variable-length header such as a radio
2216 * header), in bytes.
2218 s
= gen_loadx_iphdrlen(cstate
);
2221 * Load the item at {offset of the link-layer payload} +
2222 * {offset, relative to the start of the link-layer
2223 * payload, of the IPv4 header} + {length of the IPv4 header} +
2224 * {specified offset}.
2226 * If the offset of the link-layer payload is variable,
2227 * the variable part of that offset is included in the
2228 * value in the X register, and we include the constant
2229 * part in the offset of the load.
2231 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size
);
2232 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ offset
;
2237 s
= gen_load_absoffsetrel(cstate
, &cstate
->off_linkpl
, cstate
->off_nl
+ 40 + offset
, size
);
2244 * Generate code to load into the X register the sum of the length of
2245 * the IPv4 header and the variable part of the offset of the link-layer
2248 static struct slist
*
2249 gen_loadx_iphdrlen(compiler_state_t
*cstate
)
2251 struct slist
*s
, *s2
;
2253 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
2256 * The offset of the link-layer payload has a variable
2257 * part. "s" points to a list of statements that put
2258 * the variable part of that offset into the X register.
2260 * The 4*([k]&0xf) addressing mode can't be used, as we
2261 * don't have a constant offset, so we have to load the
2262 * value in question into the A register and add to it
2263 * the value from the X register.
2265 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
2266 s2
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2268 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2271 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2276 * The A register now contains the length of the IP header.
2277 * We need to add to it the variable part of the offset of
2278 * the link-layer payload, which is still in the X
2279 * register, and move the result into the X register.
2281 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
2282 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
2285 * The offset of the link-layer payload is a constant,
2286 * so no code was generated to load the (nonexistent)
2287 * variable part of that offset.
2289 * This means we can use the 4*([k]&0xf) addressing
2290 * mode. Load the length of the IPv4 header, which
2291 * is at an offset of cstate->off_nl from the beginning of
2292 * the link-layer payload, and thus at an offset of
2293 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
2294 * of the raw packet data, using that addressing mode.
2296 s
= new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
2297 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
2303 static struct block
*
2304 gen_uncond(compiler_state_t
*cstate
, int rsense
)
2309 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
2311 b
= new_block(cstate
, JMP(BPF_JEQ
));
2317 static inline struct block
*
2318 gen_true(compiler_state_t
*cstate
)
2320 return gen_uncond(cstate
, 1);
2323 static inline struct block
*
2324 gen_false(compiler_state_t
*cstate
)
2326 return gen_uncond(cstate
, 0);
2330 * Generate code to match a particular packet type.
2332 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2333 * value, if <= ETHERMTU. We use that to determine whether to
2334 * match the type/length field or to check the type/length field for
2335 * a value <= ETHERMTU to see whether it's a type field and then do
2336 * the appropriate test.
2338 static struct block
*
2339 gen_ether_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2341 struct block
*b0
, *b1
;
2347 case LLCSAP_NETBEUI
:
2349 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2350 * so we check the DSAP and SSAP.
2352 * LLCSAP_IP checks for IP-over-802.2, rather
2353 * than IP-over-Ethernet or IP-over-SNAP.
2355 * XXX - should we check both the DSAP and the
2356 * SSAP, like this, or should we check just the
2357 * DSAP, as we do for other types <= ETHERMTU
2358 * (i.e., other SAP values)?
2360 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2361 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2369 * Ethernet_II frames, which are Ethernet
2370 * frames with a frame type of ETHERTYPE_IPX;
2372 * Ethernet_802.3 frames, which are 802.3
2373 * frames (i.e., the type/length field is
2374 * a length field, <= ETHERMTU, rather than
2375 * a type field) with the first two bytes
2376 * after the Ethernet/802.3 header being
2379 * Ethernet_802.2 frames, which are 802.3
2380 * frames with an 802.2 LLC header and
2381 * with the IPX LSAP as the DSAP in the LLC
2384 * Ethernet_SNAP frames, which are 802.3
2385 * frames with an LLC header and a SNAP
2386 * header and with an OUI of 0x000000
2387 * (encapsulated Ethernet) and a protocol
2388 * ID of ETHERTYPE_IPX in the SNAP header.
2390 * XXX - should we generate the same code both
2391 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2395 * This generates code to check both for the
2396 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2398 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2399 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
2403 * Now we add code to check for SNAP frames with
2404 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2406 b0
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2410 * Now we generate code to check for 802.3
2411 * frames in general.
2413 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2416 * Now add the check for 802.3 frames before the
2417 * check for Ethernet_802.2 and Ethernet_802.3,
2418 * as those checks should only be done on 802.3
2419 * frames, not on Ethernet frames.
2424 * Now add the check for Ethernet_II frames, and
2425 * do that before checking for the other frame
2428 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2432 case ETHERTYPE_ATALK
:
2433 case ETHERTYPE_AARP
:
2435 * EtherTalk (AppleTalk protocols on Ethernet link
2436 * layer) may use 802.2 encapsulation.
2440 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2441 * we check for an Ethernet type field less or equal than
2442 * 1500, which means it's an 802.3 length field.
2444 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2447 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2448 * SNAP packets with an organization code of
2449 * 0x080007 (Apple, for Appletalk) and a protocol
2450 * type of ETHERTYPE_ATALK (Appletalk).
2452 * 802.2-encapsulated ETHERTYPE_AARP packets are
2453 * SNAP packets with an organization code of
2454 * 0x000000 (encapsulated Ethernet) and a protocol
2455 * type of ETHERTYPE_AARP (Appletalk ARP).
2457 if (ll_proto
== ETHERTYPE_ATALK
)
2458 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2459 else /* ll_proto == ETHERTYPE_AARP */
2460 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2464 * Check for Ethernet encapsulation (Ethertalk
2465 * phase 1?); we just check for the Ethernet
2468 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2474 if (ll_proto
<= ETHERMTU
) {
2476 * This is an LLC SAP value, so the frames
2477 * that match would be 802.2 frames.
2478 * Check that the frame is an 802.2 frame
2479 * (i.e., that the length/type field is
2480 * a length field, <= ETHERMTU) and
2481 * then check the DSAP.
2483 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
2484 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 2, BPF_B
, ll_proto
);
2489 * This is an Ethernet type, so compare
2490 * the length/type field with it (if
2491 * the frame is an 802.2 frame, the length
2492 * field will be <= ETHERMTU, and, as
2493 * "ll_proto" is > ETHERMTU, this test
2494 * will fail and the frame won't match,
2495 * which is what we want).
2497 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2502 static struct block
*
2503 gen_loopback_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2506 * For DLT_NULL, the link-layer header is a 32-bit word
2507 * containing an AF_ value in *host* byte order, and for
2508 * DLT_ENC, the link-layer header begins with a 32-bit
2509 * word containing an AF_ value in host byte order.
2511 * In addition, if we're reading a saved capture file,
2512 * the host byte order in the capture may not be the
2513 * same as the host byte order on this machine.
2515 * For DLT_LOOP, the link-layer header is a 32-bit
2516 * word containing an AF_ value in *network* byte order.
2518 if (cstate
->linktype
== DLT_NULL
|| cstate
->linktype
== DLT_ENC
) {
2520 * The AF_ value is in host byte order, but the BPF
2521 * interpreter will convert it to network byte order.
2523 * If this is a save file, and it's from a machine
2524 * with the opposite byte order to ours, we byte-swap
2527 * Then we run it through "htonl()", and generate
2528 * code to compare against the result.
2530 if (cstate
->bpf_pcap
->rfile
!= NULL
&& cstate
->bpf_pcap
->swapped
)
2531 ll_proto
= SWAPLONG(ll_proto
);
2532 ll_proto
= htonl(ll_proto
);
2534 return (gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_W
, ll_proto
));
2538 * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2539 * or IPv6 then we have an error.
2541 static struct block
*
2542 gen_ipnet_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2547 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET
);
2550 case ETHERTYPE_IPV6
:
2551 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
, IPH_AF_INET6
);
2558 return gen_false(cstate
);
2562 * Generate code to match a particular packet type.
2564 * "ll_proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2565 * value, if <= ETHERMTU. We use that to determine whether to
2566 * match the type field or to check the type field for the special
2567 * LINUX_SLL_P_802_2 value and then do the appropriate test.
2569 static struct block
*
2570 gen_linux_sll_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
2572 struct block
*b0
, *b1
;
2578 case LLCSAP_NETBEUI
:
2580 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2581 * so we check the DSAP and SSAP.
2583 * LLCSAP_IP checks for IP-over-802.2, rather
2584 * than IP-over-Ethernet or IP-over-SNAP.
2586 * XXX - should we check both the DSAP and the
2587 * SSAP, like this, or should we check just the
2588 * DSAP, as we do for other types <= ETHERMTU
2589 * (i.e., other SAP values)?
2591 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2592 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (ll_proto
<< 8) | ll_proto
);
2598 * Ethernet_II frames, which are Ethernet
2599 * frames with a frame type of ETHERTYPE_IPX;
2601 * Ethernet_802.3 frames, which have a frame
2602 * type of LINUX_SLL_P_802_3;
2604 * Ethernet_802.2 frames, which are 802.3
2605 * frames with an 802.2 LLC header (i.e, have
2606 * a frame type of LINUX_SLL_P_802_2) and
2607 * with the IPX LSAP as the DSAP in the LLC
2610 * Ethernet_SNAP frames, which are 802.3
2611 * frames with an LLC header and a SNAP
2612 * header and with an OUI of 0x000000
2613 * (encapsulated Ethernet) and a protocol
2614 * ID of ETHERTYPE_IPX in the SNAP header.
2616 * First, do the checks on LINUX_SLL_P_802_2
2617 * frames; generate the check for either
2618 * Ethernet_802.2 or Ethernet_SNAP frames, and
2619 * then put a check for LINUX_SLL_P_802_2 frames
2622 b0
= gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
2623 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_IPX
);
2625 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2629 * Now check for 802.3 frames and OR that with
2630 * the previous test.
2632 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_3
);
2636 * Now add the check for Ethernet_II frames, and
2637 * do that before checking for the other frame
2640 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERTYPE_IPX
);
2644 case ETHERTYPE_ATALK
:
2645 case ETHERTYPE_AARP
:
2647 * EtherTalk (AppleTalk protocols on Ethernet link
2648 * layer) may use 802.2 encapsulation.
2652 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2653 * we check for the 802.2 protocol type in the
2654 * "Ethernet type" field.
2656 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2659 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2660 * SNAP packets with an organization code of
2661 * 0x080007 (Apple, for Appletalk) and a protocol
2662 * type of ETHERTYPE_ATALK (Appletalk).
2664 * 802.2-encapsulated ETHERTYPE_AARP packets are
2665 * SNAP packets with an organization code of
2666 * 0x000000 (encapsulated Ethernet) and a protocol
2667 * type of ETHERTYPE_AARP (Appletalk ARP).
2669 if (ll_proto
== ETHERTYPE_ATALK
)
2670 b1
= gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
2671 else /* ll_proto == ETHERTYPE_AARP */
2672 b1
= gen_snap(cstate
, 0x000000, ETHERTYPE_AARP
);
2676 * Check for Ethernet encapsulation (Ethertalk
2677 * phase 1?); we just check for the Ethernet
2680 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2686 if (ll_proto
<= ETHERMTU
) {
2688 * This is an LLC SAP value, so the frames
2689 * that match would be 802.2 frames.
2690 * Check for the 802.2 protocol type
2691 * in the "Ethernet type" field, and
2692 * then check the DSAP.
2694 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, LINUX_SLL_P_802_2
);
2695 b1
= gen_cmp(cstate
, OR_LINKHDR
, cstate
->off_linkpl
.constant_part
, BPF_B
,
2701 * This is an Ethernet type, so compare
2702 * the length/type field with it (if
2703 * the frame is an 802.2 frame, the length
2704 * field will be <= ETHERMTU, and, as
2705 * "ll_proto" is > ETHERMTU, this test
2706 * will fail and the frame won't match,
2707 * which is what we want).
2709 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
2715 * Load a value relative to the beginning of the link-layer header after the
2718 static struct slist
*
2719 gen_load_pflog_llprefixlen(compiler_state_t
*cstate
)
2721 struct slist
*s1
, *s2
;
2724 * Generate code to load the length of the pflog header into
2725 * the register assigned to hold that length, if one has been
2726 * assigned. (If one hasn't been assigned, no code we've
2727 * generated uses that prefix, so we don't need to generate any
2730 if (cstate
->off_linkpl
.reg
!= -1) {
2732 * The length is in the first byte of the header.
2734 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2738 * Round it up to a multiple of 4.
2739 * Add 3, and clear the lower 2 bits.
2741 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
2744 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2745 s2
->s
.k
= 0xfffffffc;
2749 * Now allocate a register to hold that value and store
2752 s2
= new_stmt(cstate
, BPF_ST
);
2753 s2
->s
.k
= cstate
->off_linkpl
.reg
;
2757 * Now move it into the X register.
2759 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2767 static struct slist
*
2768 gen_load_prism_llprefixlen(compiler_state_t
*cstate
)
2770 struct slist
*s1
, *s2
;
2771 struct slist
*sjeq_avs_cookie
;
2772 struct slist
*sjcommon
;
2775 * This code is not compatible with the optimizer, as
2776 * we are generating jmp instructions within a normal
2777 * slist of instructions
2779 cstate
->no_optimize
= 1;
2782 * Generate code to load the length of the radio header into
2783 * the register assigned to hold that length, if one has been
2784 * assigned. (If one hasn't been assigned, no code we've
2785 * generated uses that prefix, so we don't need to generate any
2788 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2789 * or always use the AVS header rather than the Prism header.
2790 * We load a 4-byte big-endian value at the beginning of the
2791 * raw packet data, and see whether, when masked with 0xFFFFF000,
2792 * it's equal to 0x80211000. If so, that indicates that it's
2793 * an AVS header (the masked-out bits are the version number).
2794 * Otherwise, it's a Prism header.
2796 * XXX - the Prism header is also, in theory, variable-length,
2797 * but no known software generates headers that aren't 144
2800 if (cstate
->off_linkhdr
.reg
!= -1) {
2804 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2808 * AND it with 0xFFFFF000.
2810 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
2811 s2
->s
.k
= 0xFFFFF000;
2815 * Compare with 0x80211000.
2817 sjeq_avs_cookie
= new_stmt(cstate
, JMP(BPF_JEQ
));
2818 sjeq_avs_cookie
->s
.k
= 0x80211000;
2819 sappend(s1
, sjeq_avs_cookie
);
2824 * The 4 bytes at an offset of 4 from the beginning of
2825 * the AVS header are the length of the AVS header.
2826 * That field is big-endian.
2828 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2831 sjeq_avs_cookie
->s
.jt
= s2
;
2834 * Now jump to the code to allocate a register
2835 * into which to save the header length and
2836 * store the length there. (The "jump always"
2837 * instruction needs to have the k field set;
2838 * it's added to the PC, so, as we're jumping
2839 * over a single instruction, it should be 1.)
2841 sjcommon
= new_stmt(cstate
, JMP(BPF_JA
));
2843 sappend(s1
, sjcommon
);
2846 * Now for the code that handles the Prism header.
2847 * Just load the length of the Prism header (144)
2848 * into the A register. Have the test for an AVS
2849 * header branch here if we don't have an AVS header.
2851 s2
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
2854 sjeq_avs_cookie
->s
.jf
= s2
;
2857 * Now allocate a register to hold that value and store
2858 * it. The code for the AVS header will jump here after
2859 * loading the length of the AVS header.
2861 s2
= new_stmt(cstate
, BPF_ST
);
2862 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2864 sjcommon
->s
.jf
= s2
;
2867 * Now move it into the X register.
2869 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2877 static struct slist
*
2878 gen_load_avs_llprefixlen(compiler_state_t
*cstate
)
2880 struct slist
*s1
, *s2
;
2883 * Generate code to load the length of the AVS header into
2884 * the register assigned to hold that length, if one has been
2885 * assigned. (If one hasn't been assigned, no code we've
2886 * generated uses that prefix, so we don't need to generate any
2889 if (cstate
->off_linkhdr
.reg
!= -1) {
2891 * The 4 bytes at an offset of 4 from the beginning of
2892 * the AVS header are the length of the AVS header.
2893 * That field is big-endian.
2895 s1
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_ABS
);
2899 * Now allocate a register to hold that value and store
2902 s2
= new_stmt(cstate
, BPF_ST
);
2903 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2907 * Now move it into the X register.
2909 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2917 static struct slist
*
2918 gen_load_radiotap_llprefixlen(compiler_state_t
*cstate
)
2920 struct slist
*s1
, *s2
;
2923 * Generate code to load the length of the radiotap header into
2924 * the register assigned to hold that length, if one has been
2925 * assigned. (If one hasn't been assigned, no code we've
2926 * generated uses that prefix, so we don't need to generate any
2929 if (cstate
->off_linkhdr
.reg
!= -1) {
2931 * The 2 bytes at offsets of 2 and 3 from the beginning
2932 * of the radiotap header are the length of the radiotap
2933 * header; unfortunately, it's little-endian, so we have
2934 * to load it a byte at a time and construct the value.
2938 * Load the high-order byte, at an offset of 3, shift it
2939 * left a byte, and put the result in the X register.
2941 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2943 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
2946 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2950 * Load the next byte, at an offset of 2, and OR the
2951 * value from the X register into it.
2953 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
2956 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
2960 * Now allocate a register to hold that value and store
2963 s2
= new_stmt(cstate
, BPF_ST
);
2964 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
2968 * Now move it into the X register.
2970 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
2979 * At the moment we treat PPI as normal Radiotap encoded
2980 * packets. The difference is in the function that generates
2981 * the code at the beginning to compute the header length.
2982 * Since this code generator of PPI supports bare 802.11
2983 * encapsulation only (i.e. the encapsulated DLT should be
2984 * DLT_IEEE802_11) we generate code to check for this too;
2985 * that's done in finish_parse().
2987 static struct slist
*
2988 gen_load_ppi_llprefixlen(compiler_state_t
*cstate
)
2990 struct slist
*s1
, *s2
;
2993 * Generate code to load the length of the radiotap header
2994 * into the register assigned to hold that length, if one has
2997 if (cstate
->off_linkhdr
.reg
!= -1) {
2999 * The 2 bytes at offsets of 2 and 3 from the beginning
3000 * of the radiotap header are the length of the radiotap
3001 * header; unfortunately, it's little-endian, so we have
3002 * to load it a byte at a time and construct the value.
3006 * Load the high-order byte, at an offset of 3, shift it
3007 * left a byte, and put the result in the X register.
3009 s1
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3011 s2
= new_stmt(cstate
, BPF_ALU
|BPF_LSH
|BPF_K
);
3014 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3018 * Load the next byte, at an offset of 2, and OR the
3019 * value from the X register into it.
3021 s2
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
3024 s2
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_X
);
3028 * Now allocate a register to hold that value and store
3031 s2
= new_stmt(cstate
, BPF_ST
);
3032 s2
->s
.k
= cstate
->off_linkhdr
.reg
;
3036 * Now move it into the X register.
3038 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
3047 * Load a value relative to the beginning of the link-layer header after the 802.11
3048 * header, i.e. LLC_SNAP.
3049 * The link-layer header doesn't necessarily begin at the beginning
3050 * of the packet data; there might be a variable-length prefix containing
3051 * radio information.
3053 static struct slist
*
3054 gen_load_802_11_header_len(compiler_state_t
*cstate
, struct slist
*s
, struct slist
*snext
)
3057 struct slist
*sjset_data_frame_1
;
3058 struct slist
*sjset_data_frame_2
;
3059 struct slist
*sjset_qos
;
3060 struct slist
*sjset_radiotap_flags_present
;
3061 struct slist
*sjset_radiotap_ext_present
;
3062 struct slist
*sjset_radiotap_tsft_present
;
3063 struct slist
*sjset_tsft_datapad
, *sjset_notsft_datapad
;
3064 struct slist
*s_roundup
;
3066 if (cstate
->off_linkpl
.reg
== -1) {
3068 * No register has been assigned to the offset of
3069 * the link-layer payload, which means nobody needs
3070 * it; don't bother computing it - just return
3071 * what we already have.
3077 * This code is not compatible with the optimizer, as
3078 * we are generating jmp instructions within a normal
3079 * slist of instructions
3081 cstate
->no_optimize
= 1;
3084 * If "s" is non-null, it has code to arrange that the X register
3085 * contains the length of the prefix preceding the link-layer
3088 * Otherwise, the length of the prefix preceding the link-layer
3089 * header is "off_outermostlinkhdr.constant_part".
3093 * There is no variable-length header preceding the
3094 * link-layer header.
3096 * Load the length of the fixed-length prefix preceding
3097 * the link-layer header (if any) into the X register,
3098 * and store it in the cstate->off_linkpl.reg register.
3099 * That length is off_outermostlinkhdr.constant_part.
3101 s
= new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
3102 s
->s
.k
= cstate
->off_outermostlinkhdr
.constant_part
;
3106 * The X register contains the offset of the beginning of the
3107 * link-layer header; add 24, which is the minimum length
3108 * of the MAC header for a data frame, to that, and store it
3109 * in cstate->off_linkpl.reg, and then load the Frame Control field,
3110 * which is at the offset in the X register, with an indexed load.
3112 s2
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
3114 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
3117 s2
= new_stmt(cstate
, BPF_ST
);
3118 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3121 s2
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
3126 * Check the Frame Control field to see if this is a data frame;
3127 * a data frame has the 0x08 bit (b3) in that field set and the
3128 * 0x04 bit (b2) clear.
3130 sjset_data_frame_1
= new_stmt(cstate
, JMP(BPF_JSET
));
3131 sjset_data_frame_1
->s
.k
= 0x08;
3132 sappend(s
, sjset_data_frame_1
);
3135 * If b3 is set, test b2, otherwise go to the first statement of
3136 * the rest of the program.
3138 sjset_data_frame_1
->s
.jt
= sjset_data_frame_2
= new_stmt(cstate
, JMP(BPF_JSET
));
3139 sjset_data_frame_2
->s
.k
= 0x04;
3140 sappend(s
, sjset_data_frame_2
);
3141 sjset_data_frame_1
->s
.jf
= snext
;
3144 * If b2 is not set, this is a data frame; test the QoS bit.
3145 * Otherwise, go to the first statement of the rest of the
3148 sjset_data_frame_2
->s
.jt
= snext
;
3149 sjset_data_frame_2
->s
.jf
= sjset_qos
= new_stmt(cstate
, JMP(BPF_JSET
));
3150 sjset_qos
->s
.k
= 0x80; /* QoS bit */
3151 sappend(s
, sjset_qos
);
3154 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
3156 * Otherwise, go to the first statement of the rest of the
3159 sjset_qos
->s
.jt
= s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3160 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3162 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3165 s2
= new_stmt(cstate
, BPF_ST
);
3166 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3170 * If we have a radiotap header, look at it to see whether
3171 * there's Atheros padding between the MAC-layer header
3174 * Note: all of the fields in the radiotap header are
3175 * little-endian, so we byte-swap all of the values
3176 * we test against, as they will be loaded as big-endian
3179 * XXX - in the general case, we would have to scan through
3180 * *all* the presence bits, if there's more than one word of
3181 * presence bits. That would require a loop, meaning that
3182 * we wouldn't be able to run the filter in the kernel.
3184 * We assume here that the Atheros adapters that insert the
3185 * annoying padding don't have multiple antennae and therefore
3186 * do not generate radiotap headers with multiple presence words.
3188 if (cstate
->linktype
== DLT_IEEE802_11_RADIO
) {
3190 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
3191 * in the first presence flag word?
3193 sjset_qos
->s
.jf
= s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_W
);
3197 sjset_radiotap_flags_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3198 sjset_radiotap_flags_present
->s
.k
= SWAPLONG(0x00000002);
3199 sappend(s
, sjset_radiotap_flags_present
);
3202 * If not, skip all of this.
3204 sjset_radiotap_flags_present
->s
.jf
= snext
;
3207 * Otherwise, is the "extension" bit set in that word?
3209 sjset_radiotap_ext_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3210 sjset_radiotap_ext_present
->s
.k
= SWAPLONG(0x80000000);
3211 sappend(s
, sjset_radiotap_ext_present
);
3212 sjset_radiotap_flags_present
->s
.jt
= sjset_radiotap_ext_present
;
3215 * If so, skip all of this.
3217 sjset_radiotap_ext_present
->s
.jt
= snext
;
3220 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
3222 sjset_radiotap_tsft_present
= new_stmt(cstate
, JMP(BPF_JSET
));
3223 sjset_radiotap_tsft_present
->s
.k
= SWAPLONG(0x00000001);
3224 sappend(s
, sjset_radiotap_tsft_present
);
3225 sjset_radiotap_ext_present
->s
.jf
= sjset_radiotap_tsft_present
;
3228 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
3229 * at an offset of 16 from the beginning of the raw packet
3230 * data (8 bytes for the radiotap header and 8 bytes for
3233 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3236 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3239 sjset_radiotap_tsft_present
->s
.jt
= s2
;
3241 sjset_tsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3242 sjset_tsft_datapad
->s
.k
= 0x20;
3243 sappend(s
, sjset_tsft_datapad
);
3246 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
3247 * at an offset of 8 from the beginning of the raw packet
3248 * data (8 bytes for the radiotap header).
3250 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
3253 s2
= new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
3256 sjset_radiotap_tsft_present
->s
.jf
= s2
;
3258 sjset_notsft_datapad
= new_stmt(cstate
, JMP(BPF_JSET
));
3259 sjset_notsft_datapad
->s
.k
= 0x20;
3260 sappend(s
, sjset_notsft_datapad
);
3263 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
3264 * set, round the length of the 802.11 header to
3265 * a multiple of 4. Do that by adding 3 and then
3266 * dividing by and multiplying by 4, which we do by
3269 s_roundup
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
3270 s_roundup
->s
.k
= cstate
->off_linkpl
.reg
;
3271 sappend(s
, s_roundup
);
3272 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
3275 s2
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_IMM
);
3276 s2
->s
.k
= (bpf_u_int32
)~3;
3278 s2
= new_stmt(cstate
, BPF_ST
);
3279 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3282 sjset_tsft_datapad
->s
.jt
= s_roundup
;
3283 sjset_tsft_datapad
->s
.jf
= snext
;
3284 sjset_notsft_datapad
->s
.jt
= s_roundup
;
3285 sjset_notsft_datapad
->s
.jf
= snext
;
3287 sjset_qos
->s
.jf
= snext
;
3293 insert_compute_vloffsets(compiler_state_t
*cstate
, struct block
*b
)
3297 /* There is an implicit dependency between the link
3298 * payload and link header since the payload computation
3299 * includes the variable part of the header. Therefore,
3300 * if nobody else has allocated a register for the link
3301 * header and we need it, do it now. */
3302 if (cstate
->off_linkpl
.reg
!= -1 && cstate
->off_linkhdr
.is_variable
&&
3303 cstate
->off_linkhdr
.reg
== -1)
3304 cstate
->off_linkhdr
.reg
= alloc_reg(cstate
);
3307 * For link-layer types that have a variable-length header
3308 * preceding the link-layer header, generate code to load
3309 * the offset of the link-layer header into the register
3310 * assigned to that offset, if any.
3312 * XXX - this, and the next switch statement, won't handle
3313 * encapsulation of 802.11 or 802.11+radio information in
3314 * some other protocol stack. That's significantly more
3317 switch (cstate
->outermostlinktype
) {
3319 case DLT_PRISM_HEADER
:
3320 s
= gen_load_prism_llprefixlen(cstate
);
3323 case DLT_IEEE802_11_RADIO_AVS
:
3324 s
= gen_load_avs_llprefixlen(cstate
);
3327 case DLT_IEEE802_11_RADIO
:
3328 s
= gen_load_radiotap_llprefixlen(cstate
);
3332 s
= gen_load_ppi_llprefixlen(cstate
);
3341 * For link-layer types that have a variable-length link-layer
3342 * header, generate code to load the offset of the link-layer
3343 * payload into the register assigned to that offset, if any.
3345 switch (cstate
->outermostlinktype
) {
3347 case DLT_IEEE802_11
:
3348 case DLT_PRISM_HEADER
:
3349 case DLT_IEEE802_11_RADIO_AVS
:
3350 case DLT_IEEE802_11_RADIO
:
3352 s
= gen_load_802_11_header_len(cstate
, s
, b
->stmts
);
3356 s
= gen_load_pflog_llprefixlen(cstate
);
3361 * If there is no initialization yet and we need variable
3362 * length offsets for VLAN, initialize them to zero
3364 if (s
== NULL
&& cstate
->is_vlan_vloffset
) {
3367 if (cstate
->off_linkpl
.reg
== -1)
3368 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
3369 if (cstate
->off_linktype
.reg
== -1)
3370 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
3372 s
= new_stmt(cstate
, BPF_LD
|BPF_W
|BPF_IMM
);
3374 s2
= new_stmt(cstate
, BPF_ST
);
3375 s2
->s
.k
= cstate
->off_linkpl
.reg
;
3377 s2
= new_stmt(cstate
, BPF_ST
);
3378 s2
->s
.k
= cstate
->off_linktype
.reg
;
3383 * If we have any offset-loading code, append all the
3384 * existing statements in the block to those statements,
3385 * and make the resulting list the list of statements
3389 sappend(s
, b
->stmts
);
3395 * Take an absolute offset, and:
3397 * if it has no variable part, return NULL;
3399 * if it has a variable part, generate code to load the register
3400 * containing that variable part into the X register, returning
3401 * a pointer to that code - if no register for that offset has
3402 * been allocated, allocate it first.
3404 * (The code to set that register will be generated later, but will
3405 * be placed earlier in the code sequence.)
3407 static struct slist
*
3408 gen_abs_offset_varpart(compiler_state_t
*cstate
, bpf_abs_offset
*off
)
3412 if (off
->is_variable
) {
3413 if (off
->reg
== -1) {
3415 * We haven't yet assigned a register for the
3416 * variable part of the offset of the link-layer
3417 * header; allocate one.
3419 off
->reg
= alloc_reg(cstate
);
3423 * Load the register containing the variable part of the
3424 * offset of the link-layer header into the X register.
3426 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
3431 * That offset isn't variable, there's no variable part,
3432 * so we don't need to generate any code.
3439 * Map an Ethernet type to the equivalent PPP type.
3442 ethertype_to_ppptype(bpf_u_int32 ll_proto
)
3450 case ETHERTYPE_IPV6
:
3451 ll_proto
= PPP_IPV6
;
3455 ll_proto
= PPP_DECNET
;
3458 case ETHERTYPE_ATALK
:
3459 ll_proto
= PPP_APPLE
;
3472 * I'm assuming the "Bridging PDU"s that go
3473 * over PPP are Spanning Tree Protocol
3476 ll_proto
= PPP_BRPDU
;
3487 * Generate any tests that, for encapsulation of a link-layer packet
3488 * inside another protocol stack, need to be done to check for those
3489 * link-layer packets (and that haven't already been done by a check
3490 * for that encapsulation).
3492 static struct block
*
3493 gen_prevlinkhdr_check(compiler_state_t
*cstate
)
3497 if (cstate
->is_encap
)
3498 return gen_encap_ll_check(cstate
);
3500 switch (cstate
->prevlinktype
) {
3504 * This is LANE-encapsulated Ethernet; check that the LANE
3505 * packet doesn't begin with an LE Control marker, i.e.
3506 * that it's data, not a control message.
3508 * (We've already generated a test for LANE.)
3510 b0
= gen_cmp(cstate
, OR_PREVLINKHDR
, SUNATM_PKT_BEGIN_POS
, BPF_H
, 0xFF00);
3516 * No such tests are necessary.
3524 * The three different values we should check for when checking for an
3525 * IPv6 packet with DLT_NULL.
3527 #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */
3528 #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */
3529 #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */
3532 * Generate code to match a particular packet type by matching the
3533 * link-layer type field or fields in the 802.2 LLC header.
3535 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3536 * value, if <= ETHERMTU.
3538 static struct block
*
3539 gen_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
3541 struct block
*b0
, *b1
, *b2
;
3543 /* are we checking MPLS-encapsulated packets? */
3544 if (cstate
->label_stack_depth
> 0)
3545 return gen_mpls_linktype(cstate
, ll_proto
);
3547 switch (cstate
->linktype
) {
3550 case DLT_NETANALYZER
:
3551 case DLT_NETANALYZER_TRANSPARENT
:
3552 /* Geneve has an EtherType regardless of whether there is an
3553 * L2 header. VXLAN always has an EtherType. */
3554 if (!cstate
->is_encap
)
3555 b0
= gen_prevlinkhdr_check(cstate
);
3559 b1
= gen_ether_linktype(cstate
, ll_proto
);
3570 ll_proto
= (ll_proto
<< 8 | LLCSAP_ISONS
);
3574 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3578 case DLT_IEEE802_11
:
3579 case DLT_PRISM_HEADER
:
3580 case DLT_IEEE802_11_RADIO_AVS
:
3581 case DLT_IEEE802_11_RADIO
:
3584 * Check that we have a data frame.
3586 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
3587 IEEE80211_FC0_TYPE_DATA
,
3588 IEEE80211_FC0_TYPE_MASK
);
3591 * Now check for the specified link-layer type.
3593 b1
= gen_llc_linktype(cstate
, ll_proto
);
3600 * XXX - check for LLC frames.
3602 return gen_llc_linktype(cstate
, ll_proto
);
3607 * XXX - check for LLC PDUs, as per IEEE 802.5.
3609 return gen_llc_linktype(cstate
, ll_proto
);
3612 case DLT_ATM_RFC1483
:
3614 case DLT_IP_OVER_FC
:
3615 return gen_llc_linktype(cstate
, ll_proto
);
3620 * Check for an LLC-encapsulated version of this protocol;
3621 * if we were checking for LANE, linktype would no longer
3624 * Check for LLC encapsulation and then check the protocol.
3626 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
3627 b1
= gen_llc_linktype(cstate
, ll_proto
);
3633 return gen_linux_sll_linktype(cstate
, ll_proto
);
3637 case DLT_SLIP_BSDOS
:
3640 * These types don't provide any type field; packets
3641 * are always IPv4 or IPv6.
3643 * XXX - for IPv4, check for a version number of 4, and,
3644 * for IPv6, check for a version number of 6?
3649 /* Check for a version number of 4. */
3650 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x40, 0xF0);
3652 case ETHERTYPE_IPV6
:
3653 /* Check for a version number of 6. */
3654 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, 0x60, 0xF0);
3657 return gen_false(cstate
); /* always false */
3663 * Raw IPv4, so no type field.
3665 if (ll_proto
== ETHERTYPE_IP
)
3666 return gen_true(cstate
); /* always true */
3668 /* Checking for something other than IPv4; always false */
3669 return gen_false(cstate
);
3674 * Raw IPv6, so no type field.
3676 if (ll_proto
== ETHERTYPE_IPV6
)
3677 return gen_true(cstate
); /* always true */
3679 /* Checking for something other than IPv6; always false */
3680 return gen_false(cstate
);
3685 case DLT_PPP_SERIAL
:
3688 * We use Ethernet protocol types inside libpcap;
3689 * map them to the corresponding PPP protocol types.
3691 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3692 ethertype_to_ppptype(ll_proto
));
3697 * We use Ethernet protocol types inside libpcap;
3698 * map them to the corresponding PPP protocol types.
3704 * Also check for Van Jacobson-compressed IP.
3705 * XXX - do this for other forms of PPP?
3707 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_IP
);
3708 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJC
);
3710 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, PPP_VJNC
);
3715 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
,
3716 ethertype_to_ppptype(ll_proto
));
3726 return (gen_loopback_linktype(cstate
, AF_INET
));
3728 case ETHERTYPE_IPV6
:
3730 * AF_ values may, unfortunately, be platform-
3731 * dependent; AF_INET isn't, because everybody
3732 * used 4.2BSD's value, but AF_INET6 is, because
3733 * 4.2BSD didn't have a value for it (given that
3734 * IPv6 didn't exist back in the early 1980's),
3735 * and they all picked their own values.
3737 * This means that, if we're reading from a
3738 * savefile, we need to check for all the
3741 * If we're doing a live capture, we only need
3742 * to check for this platform's value; however,
3743 * Npcap uses 24, which isn't Windows's AF_INET6
3744 * value. (Given the multiple different values,
3745 * programs that read pcap files shouldn't be
3746 * checking for their platform's AF_INET6 value
3747 * anyway, they should check for all of the
3748 * possible values. and they might as well do
3749 * that even for live captures.)
3751 if (cstate
->bpf_pcap
->rfile
!= NULL
) {
3753 * Savefile - check for all three
3754 * possible IPv6 values.
3756 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_BSD
);
3757 b1
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_FREEBSD
);
3759 b0
= gen_loopback_linktype(cstate
, BSD_AFNUM_INET6_DARWIN
);
3764 * Live capture, so we only need to
3765 * check for the value used on this
3770 * Npcap doesn't use Windows's AF_INET6,
3771 * as that collides with AF_IPX on
3772 * some BSDs (both have the value 23).
3773 * Instead, it uses 24.
3775 return (gen_loopback_linktype(cstate
, 24));
3778 return (gen_loopback_linktype(cstate
, AF_INET6
));
3779 #else /* AF_INET6 */
3781 * I guess this platform doesn't support
3782 * IPv6, so we just reject all packets.
3784 return gen_false(cstate
);
3785 #endif /* AF_INET6 */
3791 * Not a type on which we support filtering.
3792 * XXX - support those that have AF_ values
3793 * #defined on this platform, at least?
3795 return gen_false(cstate
);
3800 * af field is host byte order in contrast to the rest of
3803 if (ll_proto
== ETHERTYPE_IP
)
3804 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3806 else if (ll_proto
== ETHERTYPE_IPV6
)
3807 return (gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, af
),
3810 return gen_false(cstate
);
3814 case DLT_ARCNET_LINUX
:
3816 * XXX should we check for first fragment if the protocol
3822 return gen_false(cstate
);
3824 case ETHERTYPE_IPV6
:
3825 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3829 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3831 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3837 b0
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3839 b1
= gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3844 case ETHERTYPE_REVARP
:
3845 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3848 case ETHERTYPE_ATALK
:
3849 return (gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_B
,
3856 case ETHERTYPE_ATALK
:
3857 return gen_true(cstate
);
3859 return gen_false(cstate
);
3865 * XXX - assumes a 2-byte Frame Relay header with
3866 * DLCI and flags. What if the address is longer?
3872 * Check for the special NLPID for IP.
3874 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0xcc);
3876 case ETHERTYPE_IPV6
:
3878 * Check for the special NLPID for IPv6.
3880 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | 0x8e);
3884 * Check for several OSI protocols.
3886 * Frame Relay packets typically have an OSI
3887 * NLPID at the beginning; we check for each
3890 * What we check for is the NLPID and a frame
3891 * control field of UI, i.e. 0x03 followed
3894 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO8473_CLNP
);
3895 b1
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO9542_ESIS
);
3896 b2
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | ISO10589_ISIS
);
3902 return gen_false(cstate
);
3907 break; // not implemented
3909 case DLT_JUNIPER_MFR
:
3910 case DLT_JUNIPER_MLFR
:
3911 case DLT_JUNIPER_MLPPP
:
3912 case DLT_JUNIPER_ATM1
:
3913 case DLT_JUNIPER_ATM2
:
3914 case DLT_JUNIPER_PPPOE
:
3915 case DLT_JUNIPER_PPPOE_ATM
:
3916 case DLT_JUNIPER_GGSN
:
3917 case DLT_JUNIPER_ES
:
3918 case DLT_JUNIPER_MONITOR
:
3919 case DLT_JUNIPER_SERVICES
:
3920 case DLT_JUNIPER_ETHER
:
3921 case DLT_JUNIPER_PPP
:
3922 case DLT_JUNIPER_FRELAY
:
3923 case DLT_JUNIPER_CHDLC
:
3924 case DLT_JUNIPER_VP
:
3925 case DLT_JUNIPER_ST
:
3926 case DLT_JUNIPER_ISM
:
3927 case DLT_JUNIPER_VS
:
3928 case DLT_JUNIPER_SRX_E2E
:
3929 case DLT_JUNIPER_FIBRECHANNEL
:
3930 case DLT_JUNIPER_ATM_CEMIC
:
3932 /* just lets verify the magic number for now -
3933 * on ATM we may have up to 6 different encapsulations on the wire
3934 * and need a lot of heuristics to figure out that the payload
3937 * FIXME encapsulation specific BPF_ filters
3939 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x4d474300, 0xffffff00); /* compare the magic number */
3941 case DLT_BACNET_MS_TP
:
3942 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_W
, 0x55FF0000, 0xffff0000);
3945 return gen_ipnet_linktype(cstate
, ll_proto
);
3947 case DLT_LINUX_IRDA
:
3950 case DLT_MTP2_WITH_PHDR
:
3953 case DLT_LINUX_LAPD
:
3954 case DLT_USB_FREEBSD
:
3956 case DLT_USB_LINUX_MMAPPED
:
3958 case DLT_BLUETOOTH_HCI_H4
:
3959 case DLT_BLUETOOTH_HCI_H4_WITH_PHDR
:
3961 case DLT_CAN_SOCKETCAN
:
3962 case DLT_IEEE802_15_4
:
3963 case DLT_IEEE802_15_4_LINUX
:
3964 case DLT_IEEE802_15_4_NONASK_PHY
:
3965 case DLT_IEEE802_15_4_NOFCS
:
3966 case DLT_IEEE802_15_4_TAP
:
3967 case DLT_IEEE802_16_MAC_CPS_RADIO
:
3970 case DLT_IPMB_KONTRON
:
3974 /* Using the fixed-size NFLOG header it is possible to tell only
3975 * the address family of the packet, other meaningful data is
3976 * either missing or behind TLVs.
3978 break; // not implemented
3982 * Does this link-layer header type have a field
3983 * indicating the type of the next protocol? If
3984 * so, off_linktype.constant_part will be the offset of that
3985 * field in the packet; if not, it will be OFFSET_NOT_SET.
3987 if (cstate
->off_linktype
.constant_part
!= OFFSET_NOT_SET
) {
3989 * Yes; assume it's an Ethernet type. (If
3990 * it's not, it needs to be handled specially
3993 return gen_cmp(cstate
, OR_LINKTYPE
, 0, BPF_H
, ll_proto
);
3997 bpf_error(cstate
, "link-layer type filtering not implemented for %s",
3998 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
4002 * Check for an LLC SNAP packet with a given organization code and
4003 * protocol type; we check the entire contents of the 802.2 LLC and
4004 * snap headers, checking for DSAP and SSAP of SNAP and a control
4005 * field of 0x03 in the LLC header, and for the specified organization
4006 * code and protocol type in the SNAP header.
4008 static struct block
*
4009 gen_snap(compiler_state_t
*cstate
, bpf_u_int32 orgcode
, bpf_u_int32 ptype
)
4011 u_char snapblock
[8];
4013 snapblock
[0] = LLCSAP_SNAP
; /* DSAP = SNAP */
4014 snapblock
[1] = LLCSAP_SNAP
; /* SSAP = SNAP */
4015 snapblock
[2] = 0x03; /* control = UI */
4016 snapblock
[3] = (u_char
)(orgcode
>> 16); /* upper 8 bits of organization code */
4017 snapblock
[4] = (u_char
)(orgcode
>> 8); /* middle 8 bits of organization code */
4018 snapblock
[5] = (u_char
)(orgcode
>> 0); /* lower 8 bits of organization code */
4019 snapblock
[6] = (u_char
)(ptype
>> 8); /* upper 8 bits of protocol type */
4020 snapblock
[7] = (u_char
)(ptype
>> 0); /* lower 8 bits of protocol type */
4021 return gen_bcmp(cstate
, OR_LLC
, 0, 8, snapblock
);
4025 * Generate code to match frames with an LLC header.
4027 static struct block
*
4028 gen_llc_internal(compiler_state_t
*cstate
)
4030 struct block
*b0
, *b1
;
4032 switch (cstate
->linktype
) {
4036 * We check for an Ethernet type field less or equal than
4037 * 1500, which means it's an 802.3 length field.
4039 b0
= gen_cmp_le(cstate
, OR_LINKTYPE
, 0, BPF_H
, ETHERMTU
);
4042 * Now check for the purported DSAP and SSAP not being
4043 * 0xFF, to rule out NetWare-over-802.3.
4045 b1
= gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, 0xFFFF);
4052 * We check for LLC traffic.
4054 b0
= gen_atmtype_llc(cstate
);
4057 case DLT_IEEE802
: /* Token Ring */
4059 * XXX - check for LLC frames.
4061 return gen_true(cstate
);
4065 * XXX - check for LLC frames.
4067 return gen_true(cstate
);
4069 case DLT_ATM_RFC1483
:
4071 * For LLC encapsulation, these are defined to have an
4074 * For VC encapsulation, they don't, but there's no
4075 * way to check for that; the protocol used on the VC
4076 * is negotiated out of band.
4078 return gen_true(cstate
);
4080 case DLT_IEEE802_11
:
4081 case DLT_PRISM_HEADER
:
4082 case DLT_IEEE802_11_RADIO
:
4083 case DLT_IEEE802_11_RADIO_AVS
:
4086 * Check that we have a data frame.
4088 return gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
4089 IEEE80211_FC0_TYPE_DATA
,
4090 IEEE80211_FC0_TYPE_MASK
);
4093 fail_kw_on_dlt(cstate
, "llc");
4099 gen_llc(compiler_state_t
*cstate
)
4102 * Catch errors reported by us and routines below us, and return NULL
4105 if (setjmp(cstate
->top_ctx
))
4108 return gen_llc_internal(cstate
);
4112 gen_llc_i(compiler_state_t
*cstate
)
4114 struct block
*b0
, *b1
;
4118 * Catch errors reported by us and routines below us, and return NULL
4121 if (setjmp(cstate
->top_ctx
))
4125 * Check whether this is an LLC frame.
4127 b0
= gen_llc_internal(cstate
);
4130 * Load the control byte and test the low-order bit; it must
4131 * be clear for I frames.
4133 s
= gen_load_a(cstate
, OR_LLC
, 2, BPF_B
);
4134 b1
= new_block(cstate
, JMP(BPF_JSET
));
4143 gen_llc_s(compiler_state_t
*cstate
)
4145 struct block
*b0
, *b1
;
4148 * Catch errors reported by us and routines below us, and return NULL
4151 if (setjmp(cstate
->top_ctx
))
4155 * Check whether this is an LLC frame.
4157 b0
= gen_llc_internal(cstate
);
4160 * Now compare the low-order 2 bit of the control byte against
4161 * the appropriate value for S frames.
4163 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_S_FMT
, 0x03);
4169 gen_llc_u(compiler_state_t
*cstate
)
4171 struct block
*b0
, *b1
;
4174 * Catch errors reported by us and routines below us, and return NULL
4177 if (setjmp(cstate
->top_ctx
))
4181 * Check whether this is an LLC frame.
4183 b0
= gen_llc_internal(cstate
);
4186 * Now compare the low-order 2 bit of the control byte against
4187 * the appropriate value for U frames.
4189 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, LLC_U_FMT
, 0x03);
4195 gen_llc_s_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4197 struct block
*b0
, *b1
;
4200 * Catch errors reported by us and routines below us, and return NULL
4203 if (setjmp(cstate
->top_ctx
))
4207 * Check whether this is an LLC frame.
4209 b0
= gen_llc_internal(cstate
);
4212 * Now check for an S frame with the appropriate type.
4214 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_S_CMD_MASK
);
4220 gen_llc_u_subtype(compiler_state_t
*cstate
, bpf_u_int32 subtype
)
4222 struct block
*b0
, *b1
;
4225 * Catch errors reported by us and routines below us, and return NULL
4228 if (setjmp(cstate
->top_ctx
))
4232 * Check whether this is an LLC frame.
4234 b0
= gen_llc_internal(cstate
);
4237 * Now check for a U frame with the appropriate type.
4239 b1
= gen_mcmp(cstate
, OR_LLC
, 2, BPF_B
, subtype
, LLC_U_CMD_MASK
);
4245 * Generate code to match a particular packet type, for link-layer types
4246 * using 802.2 LLC headers.
4248 * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
4249 * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
4251 * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
4252 * value, if <= ETHERMTU. We use that to determine whether to
4253 * match the DSAP or both DSAP and LSAP or to check the OUI and
4254 * protocol ID in a SNAP header.
4256 static struct block
*
4257 gen_llc_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
4260 * XXX - handle token-ring variable-length header.
4266 case LLCSAP_NETBEUI
:
4268 * XXX - should we check both the DSAP and the
4269 * SSAP, like this, or should we check just the
4270 * DSAP, as we do for other SAP values?
4272 return gen_cmp(cstate
, OR_LLC
, 0, BPF_H
, (bpf_u_int32
)
4273 ((ll_proto
<< 8) | ll_proto
));
4277 * XXX - are there ever SNAP frames for IPX on
4278 * non-Ethernet 802.x networks?
4280 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, LLCSAP_IPX
);
4282 case ETHERTYPE_ATALK
:
4284 * 802.2-encapsulated ETHERTYPE_ATALK packets are
4285 * SNAP packets with an organization code of
4286 * 0x080007 (Apple, for Appletalk) and a protocol
4287 * type of ETHERTYPE_ATALK (Appletalk).
4289 * XXX - check for an organization code of
4290 * encapsulated Ethernet as well?
4292 return gen_snap(cstate
, 0x080007, ETHERTYPE_ATALK
);
4296 * XXX - we don't have to check for IPX 802.3
4297 * here, but should we check for the IPX Ethertype?
4299 if (ll_proto
<= ETHERMTU
) {
4301 * This is an LLC SAP value, so check
4304 return gen_cmp(cstate
, OR_LLC
, 0, BPF_B
, ll_proto
);
4307 * This is an Ethernet type; we assume that it's
4308 * unlikely that it'll appear in the right place
4309 * at random, and therefore check only the
4310 * location that would hold the Ethernet type
4311 * in a SNAP frame with an organization code of
4312 * 0x000000 (encapsulated Ethernet).
4314 * XXX - if we were to check for the SNAP DSAP and
4315 * LSAP, as per XXX, and were also to check for an
4316 * organization code of 0x000000 (encapsulated
4317 * Ethernet), we'd do
4319 * return gen_snap(cstate, 0x000000, ll_proto);
4321 * here; for now, we don't, as per the above.
4322 * I don't know whether it's worth the extra CPU
4323 * time to do the right check or not.
4325 return gen_cmp(cstate
, OR_LLC
, 6, BPF_H
, ll_proto
);
4330 static struct block
*
4331 gen_hostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
4332 int dir
, u_int src_off
, u_int dst_off
)
4334 struct block
*b0
, *b1
;
4348 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4349 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4355 b0
= gen_hostop(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4356 b1
= gen_hostop(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4366 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4373 return gen_mcmp(cstate
, OR_LINKPL
, offset
, BPF_W
, addr
, mask
);
4377 static struct block
*
4378 gen_hostop6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
4379 struct in6_addr
*mask
, int dir
, u_int src_off
, u_int dst_off
)
4381 struct block
*b0
, *b1
;
4384 * Code below needs to access four separate 32-bit parts of the 128-bit
4385 * IPv6 address and mask. In some OSes this is as simple as using the
4386 * s6_addr32 pseudo-member of struct in6_addr, which contains a union of
4387 * 8-, 16- and 32-bit arrays. In other OSes this is not the case, as
4388 * far as libpcap sees it. Hence copy the data before use to avoid
4389 * potential unaligned memory access and the associated compiler
4390 * warnings (whether genuine or not).
4392 bpf_u_int32 a
[4], m
[4];
4405 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4406 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4412 b0
= gen_hostop6(cstate
, addr
, mask
, Q_SRC
, src_off
, dst_off
);
4413 b1
= gen_hostop6(cstate
, addr
, mask
, Q_DST
, src_off
, dst_off
);
4423 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4430 /* this order is important */
4431 memcpy(a
, addr
, sizeof(a
));
4432 memcpy(m
, mask
, sizeof(m
));
4433 b1
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 12, BPF_W
, ntohl(a
[3]), ntohl(m
[3]));
4434 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 8, BPF_W
, ntohl(a
[2]), ntohl(m
[2]));
4436 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 4, BPF_W
, ntohl(a
[1]), ntohl(m
[1]));
4438 b0
= gen_mcmp(cstate
, OR_LINKPL
, offset
+ 0, BPF_W
, ntohl(a
[0]), ntohl(m
[0]));
4444 static struct block
*
4445 gen_ehostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4447 register struct block
*b0
, *b1
;
4451 return gen_bcmp(cstate
, OR_LINKHDR
, 6, 6, eaddr
);
4454 return gen_bcmp(cstate
, OR_LINKHDR
, 0, 6, eaddr
);
4457 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4458 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4464 b0
= gen_ehostop(cstate
, eaddr
, Q_SRC
);
4465 b1
= gen_ehostop(cstate
, eaddr
, Q_DST
);
4475 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4483 * Like gen_ehostop, but for DLT_FDDI
4485 static struct block
*
4486 gen_fhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4488 struct block
*b0
, *b1
;
4492 return gen_bcmp(cstate
, OR_LINKHDR
, 6 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4495 return gen_bcmp(cstate
, OR_LINKHDR
, 0 + 1 + cstate
->pcap_fddipad
, 6, eaddr
);
4498 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4499 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4505 b0
= gen_fhostop(cstate
, eaddr
, Q_SRC
);
4506 b1
= gen_fhostop(cstate
, eaddr
, Q_DST
);
4516 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4524 * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4526 static struct block
*
4527 gen_thostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4529 register struct block
*b0
, *b1
;
4533 return gen_bcmp(cstate
, OR_LINKHDR
, 8, 6, eaddr
);
4536 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
4539 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4540 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4546 b0
= gen_thostop(cstate
, eaddr
, Q_SRC
);
4547 b1
= gen_thostop(cstate
, eaddr
, Q_DST
);
4557 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
4565 * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4566 * various 802.11 + radio headers.
4568 static struct block
*
4569 gen_wlanhostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4571 register struct block
*b0
, *b1
, *b2
;
4572 register struct slist
*s
;
4574 #ifdef ENABLE_WLAN_FILTERING_PATCH
4577 * We need to disable the optimizer because the optimizer is buggy
4578 * and wipes out some LD instructions generated by the below
4579 * code to validate the Frame Control bits
4581 cstate
->no_optimize
= 1;
4582 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4589 * For control frames, there is no SA.
4591 * For management frames, SA is at an
4592 * offset of 10 from the beginning of
4595 * For data frames, SA is at an offset
4596 * of 10 from the beginning of the packet
4597 * if From DS is clear, at an offset of
4598 * 16 from the beginning of the packet
4599 * if From DS is set and To DS is clear,
4600 * and an offset of 24 from the beginning
4601 * of the packet if From DS is set and To DS
4606 * Generate the tests to be done for data frames
4609 * First, check for To DS set, i.e. check "link[1] & 0x01".
4611 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4612 b1
= new_block(cstate
, JMP(BPF_JSET
));
4613 b1
->s
.k
= 0x01; /* To DS */
4617 * If To DS is set, the SA is at 24.
4619 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4623 * Now, check for To DS not set, i.e. check
4624 * "!(link[1] & 0x01)".
4626 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4627 b2
= new_block(cstate
, JMP(BPF_JSET
));
4628 b2
->s
.k
= 0x01; /* To DS */
4633 * If To DS is not set, the SA is at 16.
4635 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4639 * Now OR together the last two checks. That gives
4640 * the complete set of checks for data frames with
4646 * Now check for From DS being set, and AND that with
4647 * the ORed-together checks.
4649 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4650 b1
= new_block(cstate
, JMP(BPF_JSET
));
4651 b1
->s
.k
= 0x02; /* From DS */
4656 * Now check for data frames with From DS not set.
4658 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4659 b2
= new_block(cstate
, JMP(BPF_JSET
));
4660 b2
->s
.k
= 0x02; /* From DS */
4665 * If From DS isn't set, the SA is at 10.
4667 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4671 * Now OR together the checks for data frames with
4672 * From DS not set and for data frames with From DS
4673 * set; that gives the checks done for data frames.
4678 * Now check for a data frame.
4679 * I.e, check "link[0] & 0x08".
4681 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4682 b1
= new_block(cstate
, JMP(BPF_JSET
));
4687 * AND that with the checks done for data frames.
4692 * If the high-order bit of the type value is 0, this
4693 * is a management frame.
4694 * I.e, check "!(link[0] & 0x08)".
4696 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4697 b2
= new_block(cstate
, JMP(BPF_JSET
));
4703 * For management frames, the SA is at 10.
4705 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4709 * OR that with the checks done for data frames.
4710 * That gives the checks done for management and
4716 * If the low-order bit of the type value is 1,
4717 * this is either a control frame or a frame
4718 * with a reserved type, and thus not a
4721 * I.e., check "!(link[0] & 0x04)".
4723 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4724 b1
= new_block(cstate
, JMP(BPF_JSET
));
4730 * AND that with the checks for data and management
4740 * For control frames, there is no DA.
4742 * For management frames, DA is at an
4743 * offset of 4 from the beginning of
4746 * For data frames, DA is at an offset
4747 * of 4 from the beginning of the packet
4748 * if To DS is clear and at an offset of
4749 * 16 from the beginning of the packet
4754 * Generate the tests to be done for data frames.
4756 * First, check for To DS set, i.e. "link[1] & 0x01".
4758 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4759 b1
= new_block(cstate
, JMP(BPF_JSET
));
4760 b1
->s
.k
= 0x01; /* To DS */
4764 * If To DS is set, the DA is at 16.
4766 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4770 * Now, check for To DS not set, i.e. check
4771 * "!(link[1] & 0x01)".
4773 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
4774 b2
= new_block(cstate
, JMP(BPF_JSET
));
4775 b2
->s
.k
= 0x01; /* To DS */
4780 * If To DS is not set, the DA is at 4.
4782 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4786 * Now OR together the last two checks. That gives
4787 * the complete set of checks for data frames.
4792 * Now check for a data frame.
4793 * I.e, check "link[0] & 0x08".
4795 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4796 b1
= new_block(cstate
, JMP(BPF_JSET
));
4801 * AND that with the checks done for data frames.
4806 * If the high-order bit of the type value is 0, this
4807 * is a management frame.
4808 * I.e, check "!(link[0] & 0x08)".
4810 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4811 b2
= new_block(cstate
, JMP(BPF_JSET
));
4817 * For management frames, the DA is at 4.
4819 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4823 * OR that with the checks done for data frames.
4824 * That gives the checks done for management and
4830 * If the low-order bit of the type value is 1,
4831 * this is either a control frame or a frame
4832 * with a reserved type, and thus not a
4835 * I.e., check "!(link[0] & 0x04)".
4837 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4838 b1
= new_block(cstate
, JMP(BPF_JSET
));
4844 * AND that with the checks for data and management
4851 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4852 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4858 b0
= gen_wlanhostop(cstate
, eaddr
, Q_SRC
);
4859 b1
= gen_wlanhostop(cstate
, eaddr
, Q_DST
);
4864 * XXX - add BSSID keyword?
4867 return (gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
));
4871 * Not present in CTS or ACK control frames.
4873 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4874 IEEE80211_FC0_TYPE_MASK
);
4876 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4877 IEEE80211_FC0_SUBTYPE_MASK
);
4879 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4880 IEEE80211_FC0_SUBTYPE_MASK
);
4884 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4890 * Not present in control frames.
4892 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4893 IEEE80211_FC0_TYPE_MASK
);
4895 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 16, 6, eaddr
);
4901 * Present only if the direction mask has both "From DS"
4902 * and "To DS" set. Neither control frames nor management
4903 * frames should have both of those set, so we don't
4904 * check the frame type.
4906 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
,
4907 IEEE80211_FC1_DIR_DSTODS
, IEEE80211_FC1_DIR_MASK
);
4908 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 24, 6, eaddr
);
4914 * Not present in management frames; addr1 in other
4919 * If the high-order bit of the type value is 0, this
4920 * is a management frame.
4921 * I.e, check "(link[0] & 0x08)".
4923 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4924 b1
= new_block(cstate
, JMP(BPF_JSET
));
4931 b0
= gen_bcmp(cstate
, OR_LINKHDR
, 4, 6, eaddr
);
4934 * AND that with the check of addr1.
4941 * Not present in management frames; addr2, if present,
4946 * Not present in CTS or ACK control frames.
4948 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_TYPE_CTL
,
4949 IEEE80211_FC0_TYPE_MASK
);
4951 b1
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_CTS
,
4952 IEEE80211_FC0_SUBTYPE_MASK
);
4954 b2
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, IEEE80211_FC0_SUBTYPE_ACK
,
4955 IEEE80211_FC0_SUBTYPE_MASK
);
4961 * If the high-order bit of the type value is 0, this
4962 * is a management frame.
4963 * I.e, check "(link[0] & 0x08)".
4965 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
4966 b1
= new_block(cstate
, JMP(BPF_JSET
));
4971 * AND that with the check for frames other than
4972 * CTS and ACK frames.
4979 b1
= gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
4988 * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4989 * (We assume that the addresses are IEEE 48-bit MAC addresses,
4990 * as the RFC states.)
4992 static struct block
*
4993 gen_ipfchostop(compiler_state_t
*cstate
, const u_char
*eaddr
, int dir
)
4995 register struct block
*b0
, *b1
;
4999 return gen_bcmp(cstate
, OR_LINKHDR
, 10, 6, eaddr
);
5002 return gen_bcmp(cstate
, OR_LINKHDR
, 2, 6, eaddr
);
5005 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5006 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5012 b0
= gen_ipfchostop(cstate
, eaddr
, Q_SRC
);
5013 b1
= gen_ipfchostop(cstate
, eaddr
, Q_DST
);
5023 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5031 * This is quite tricky because there may be pad bytes in front of the
5032 * DECNET header, and then there are two possible data packet formats that
5033 * carry both src and dst addresses, plus 5 packet types in a format that
5034 * carries only the src node, plus 2 types that use a different format and
5035 * also carry just the src node.
5039 * Instead of doing those all right, we just look for data packets with
5040 * 0 or 1 bytes of padding. If you want to look at other packets, that
5041 * will require a lot more hacking.
5043 * To add support for filtering on DECNET "areas" (network numbers)
5044 * one would want to add a "mask" argument to this routine. That would
5045 * make the filter even more inefficient, although one could be clever
5046 * and not generate masking instructions if the mask is 0xFFFF.
5048 static struct block
*
5049 gen_dnhostop(compiler_state_t
*cstate
, bpf_u_int32 addr
, int dir
)
5051 struct block
*b0
, *b1
, *b2
, *tmp
;
5052 u_int offset_lh
; /* offset if long header is received */
5053 u_int offset_sh
; /* offset if short header is received */
5058 offset_sh
= 1; /* follows flags */
5059 offset_lh
= 7; /* flgs,darea,dsubarea,HIORD */
5063 offset_sh
= 3; /* follows flags, dstnode */
5064 offset_lh
= 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
5068 /* Inefficient because we do our Calvinball dance twice */
5069 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5070 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5076 /* Inefficient because we do our Calvinball dance twice */
5077 b0
= gen_dnhostop(cstate
, addr
, Q_SRC
);
5078 b1
= gen_dnhostop(cstate
, addr
, Q_DST
);
5088 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
5096 * In a DECnet message inside an Ethernet frame the first two bytes
5097 * immediately after EtherType are the [litle-endian] DECnet message
5098 * length, which is irrelevant in this context.
5100 * "pad = 1" means the third byte equals 0x81, thus it is the PLENGTH
5101 * 8-bit bitmap of the optional padding before the packet route header.
5102 * The bitmap always has bit 7 set to 1 and in this case has bits 0-6
5103 * (TOTAL-PAD-SEQUENCE-LENGTH) set to integer value 1. The latter
5104 * means there aren't any PAD bytes after the bitmap, so the header
5105 * begins at the fourth byte. "pad = 0" means bit 7 of the third byte
5106 * is set to 0, thus the header begins at the third byte.
5108 * The header can be in several (as mentioned above) formats, all of
5109 * which begin with the FLAGS 8-bit bitmap, which always has bit 7
5110 * (PF, "pad field") set to 0 regardless of any padding present before
5111 * the header. "Short header" means bits 0-2 of the bitmap encode the
5112 * integer value 2 (SFDP), and "long header" means value 6 (LFDP).
5114 * To test PLENGTH and FLAGS, use multiple-byte constants with the
5115 * values and the masks, this maps to the required single bytes of
5116 * the message correctly on both big-endian and little-endian hosts.
5117 * For the DECnet address use SWAPSHORT(), which always swaps bytes,
5118 * because the wire encoding is little-endian and BPF multiple-byte
5119 * loads are big-endian. When the destination address is near enough
5120 * to PLENGTH and FLAGS, generate one 32-bit comparison instead of two
5123 /* Check for pad = 1, long header case */
5124 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8106U
, 0xFF07U
);
5125 b1
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_lh
,
5126 BPF_H
, SWAPSHORT(addr
));
5128 /* Check for pad = 0, long header case */
5129 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x06U
, 0x07U
);
5130 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_lh
, BPF_H
,
5134 /* Check for pad = 1, short header case */
5136 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5137 0x81020000U
| SWAPSHORT(addr
),
5140 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_H
, 0x8102U
, 0xFF07U
);
5141 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + 1 + offset_sh
, BPF_H
,
5146 /* Check for pad = 0, short header case */
5148 b2
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_W
,
5149 0x02000000U
| SWAPSHORT(addr
) << 8,
5152 tmp
= gen_mcmp(cstate
, OR_LINKPL
, 2, BPF_B
, 0x02U
, 0x07U
);
5153 b2
= gen_cmp(cstate
, OR_LINKPL
, 2 + offset_sh
, BPF_H
,
5163 * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
5164 * test the bottom-of-stack bit, and then check the version number
5165 * field in the IP header.
5167 static struct block
*
5168 gen_mpls_linktype(compiler_state_t
*cstate
, bpf_u_int32 ll_proto
)
5170 struct block
*b0
, *b1
;
5175 /* match the bottom-of-stack bit */
5176 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5177 /* match the IPv4 version number */
5178 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x40, 0xf0);
5182 case ETHERTYPE_IPV6
:
5183 /* match the bottom-of-stack bit */
5184 b0
= gen_mcmp(cstate
, OR_LINKPL
, (u_int
)-2, BPF_B
, 0x01, 0x01);
5185 /* match the IPv4 version number */
5186 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_B
, 0x60, 0xf0);
5191 /* FIXME add other L3 proto IDs */
5192 bpf_error(cstate
, "unsupported protocol over mpls");
5197 static struct block
*
5198 gen_host(compiler_state_t
*cstate
, bpf_u_int32 addr
, bpf_u_int32 mask
,
5199 int proto
, int dir
, int type
)
5201 struct block
*b0
, *b1
;
5206 b0
= gen_host(cstate
, addr
, mask
, Q_IP
, dir
, type
);
5208 * Only check for non-IPv4 addresses if we're not
5209 * checking MPLS-encapsulated packets.
5211 if (cstate
->label_stack_depth
== 0) {
5212 b1
= gen_host(cstate
, addr
, mask
, Q_ARP
, dir
, type
);
5214 b0
= gen_host(cstate
, addr
, mask
, Q_RARP
, dir
, type
);
5220 // "link net NETNAME" and variations thereof
5221 break; // invalid qualifier
5224 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5225 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 12, 16);
5230 b0
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5231 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5236 b0
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5237 b1
= gen_hostop(cstate
, addr
, mask
, dir
, 14, 24);
5248 break; // invalid qualifier
5251 b0
= gen_linktype(cstate
, ETHERTYPE_DN
);
5252 b1
= gen_dnhostop(cstate
, addr
, dir
);
5283 break; // invalid qualifier
5288 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5289 type
== Q_NET
? "ip net" : "ip host");
5294 static struct block
*
5295 gen_host6(compiler_state_t
*cstate
, struct in6_addr
*addr
,
5296 struct in6_addr
*mask
, int proto
, int dir
, int type
)
5298 struct block
*b0
, *b1
;
5304 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5305 b1
= gen_hostop6(cstate
, addr
, mask
, dir
, 8, 24);
5347 break; // invalid qualifier
5352 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
),
5353 type
== Q_NET
? "ip6 net" : "ip6 host");
5360 * This primitive is non-directional by design, so the grammar does not allow
5361 * to qualify it with a direction.
5363 static struct block
*
5364 gen_gateway(compiler_state_t
*cstate
, const u_char
*eaddr
,
5365 struct addrinfo
*alist
, int proto
)
5367 struct block
*b0
, *b1
, *tmp
;
5368 struct addrinfo
*ai
;
5369 struct sockaddr_in
*sin
;
5376 switch (cstate
->linktype
) {
5378 case DLT_NETANALYZER
:
5379 case DLT_NETANALYZER_TRANSPARENT
:
5380 b1
= gen_prevlinkhdr_check(cstate
);
5381 b0
= gen_ehostop(cstate
, eaddr
, Q_OR
);
5386 b0
= gen_fhostop(cstate
, eaddr
, Q_OR
);
5389 b0
= gen_thostop(cstate
, eaddr
, Q_OR
);
5391 case DLT_IEEE802_11
:
5392 case DLT_PRISM_HEADER
:
5393 case DLT_IEEE802_11_RADIO_AVS
:
5394 case DLT_IEEE802_11_RADIO
:
5396 b0
= gen_wlanhostop(cstate
, eaddr
, Q_OR
);
5398 case DLT_IP_OVER_FC
:
5399 b0
= gen_ipfchostop(cstate
, eaddr
, Q_OR
);
5403 * This is LLC-multiplexed traffic; if it were
5404 * LANE, cstate->linktype would have been set to
5410 "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5413 for (ai
= alist
; ai
!= NULL
; ai
= ai
->ai_next
) {
5415 * Does it have an address?
5417 if (ai
->ai_addr
!= NULL
) {
5419 * Yes. Is it an IPv4 address?
5421 if (ai
->ai_addr
->sa_family
== AF_INET
) {
5423 * Generate an entry for it.
5425 sin
= (struct sockaddr_in
*)ai
->ai_addr
;
5426 tmp
= gen_host(cstate
,
5427 ntohl(sin
->sin_addr
.s_addr
),
5428 0xffffffff, proto
, Q_OR
, Q_HOST
);
5430 * Is it the *first* IPv4 address?
5434 * Yes, so start with it.
5439 * No, so OR it into the
5451 * No IPv4 addresses found.
5459 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "gateway");
5464 static struct block
*
5465 gen_proto_abbrev_internal(compiler_state_t
*cstate
, int proto
)
5468 struct block
*b1
= NULL
;
5473 b1
= gen_proto(cstate
, IPPROTO_SCTP
, Q_DEFAULT
);
5477 b1
= gen_proto(cstate
, IPPROTO_TCP
, Q_DEFAULT
);
5481 b1
= gen_proto(cstate
, IPPROTO_UDP
, Q_DEFAULT
);
5485 b1
= gen_proto(cstate
, IPPROTO_ICMP
, Q_IP
);
5488 #ifndef IPPROTO_IGMP
5489 #define IPPROTO_IGMP 2
5493 b1
= gen_proto(cstate
, IPPROTO_IGMP
, Q_IP
);
5496 #ifndef IPPROTO_IGRP
5497 #define IPPROTO_IGRP 9
5500 b1
= gen_proto(cstate
, IPPROTO_IGRP
, Q_IP
);
5504 #define IPPROTO_PIM 103
5508 b1
= gen_proto(cstate
, IPPROTO_PIM
, Q_DEFAULT
);
5511 #ifndef IPPROTO_VRRP
5512 #define IPPROTO_VRRP 112
5516 b1
= gen_proto(cstate
, IPPROTO_VRRP
, Q_IP
);
5519 #ifndef IPPROTO_CARP
5520 #define IPPROTO_CARP 112
5524 b1
= gen_proto(cstate
, IPPROTO_CARP
, Q_IP
);
5528 b1
= gen_linktype(cstate
, ETHERTYPE_IP
);
5532 b1
= gen_linktype(cstate
, ETHERTYPE_ARP
);
5536 b1
= gen_linktype(cstate
, ETHERTYPE_REVARP
);
5540 break; // invalid syntax
5543 b1
= gen_linktype(cstate
, ETHERTYPE_ATALK
);
5547 b1
= gen_linktype(cstate
, ETHERTYPE_AARP
);
5551 b1
= gen_linktype(cstate
, ETHERTYPE_DN
);
5555 b1
= gen_linktype(cstate
, ETHERTYPE_SCA
);
5559 b1
= gen_linktype(cstate
, ETHERTYPE_LAT
);
5563 b1
= gen_linktype(cstate
, ETHERTYPE_MOPDL
);
5567 b1
= gen_linktype(cstate
, ETHERTYPE_MOPRC
);
5571 b1
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5574 #ifndef IPPROTO_ICMPV6
5575 #define IPPROTO_ICMPV6 58
5578 b1
= gen_proto(cstate
, IPPROTO_ICMPV6
, Q_IPV6
);
5582 #define IPPROTO_AH 51
5585 b1
= gen_proto(cstate
, IPPROTO_AH
, Q_DEFAULT
);
5589 #define IPPROTO_ESP 50
5592 b1
= gen_proto(cstate
, IPPROTO_ESP
, Q_DEFAULT
);
5596 b1
= gen_linktype(cstate
, LLCSAP_ISONS
);
5600 b1
= gen_proto(cstate
, ISO9542_ESIS
, Q_ISO
);
5604 b1
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
5607 case Q_ISIS_L1
: /* all IS-IS Level1 PDU-Types */
5608 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5609 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5611 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5613 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5615 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5619 case Q_ISIS_L2
: /* all IS-IS Level2 PDU-Types */
5620 b0
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5621 b1
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
); /* FIXME extract the circuit-type bits */
5623 b0
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5625 b0
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5627 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5631 case Q_ISIS_IIH
: /* all IS-IS Hello PDU-Types */
5632 b0
= gen_proto(cstate
, ISIS_L1_LAN_IIH
, Q_ISIS
);
5633 b1
= gen_proto(cstate
, ISIS_L2_LAN_IIH
, Q_ISIS
);
5635 b0
= gen_proto(cstate
, ISIS_PTP_IIH
, Q_ISIS
);
5640 b0
= gen_proto(cstate
, ISIS_L1_LSP
, Q_ISIS
);
5641 b1
= gen_proto(cstate
, ISIS_L2_LSP
, Q_ISIS
);
5646 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5647 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5649 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5651 b0
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5656 b0
= gen_proto(cstate
, ISIS_L1_CSNP
, Q_ISIS
);
5657 b1
= gen_proto(cstate
, ISIS_L2_CSNP
, Q_ISIS
);
5662 b0
= gen_proto(cstate
, ISIS_L1_PSNP
, Q_ISIS
);
5663 b1
= gen_proto(cstate
, ISIS_L2_PSNP
, Q_ISIS
);
5668 b1
= gen_proto(cstate
, ISO8473_CLNP
, Q_ISO
);
5672 b1
= gen_linktype(cstate
, LLCSAP_8021D
);
5676 b1
= gen_linktype(cstate
, LLCSAP_IPX
);
5680 b1
= gen_linktype(cstate
, LLCSAP_NETBEUI
);
5684 break; // invalid syntax
5691 bpf_error(cstate
, "'%s' cannot be used as an abbreviation", pqkw(proto
));
5695 gen_proto_abbrev(compiler_state_t
*cstate
, int proto
)
5698 * Catch errors reported by us and routines below us, and return NULL
5701 if (setjmp(cstate
->top_ctx
))
5704 return gen_proto_abbrev_internal(cstate
, proto
);
5707 static struct block
*
5708 gen_ipfrag(compiler_state_t
*cstate
)
5713 /* not IPv4 frag other than the first frag */
5714 s
= gen_load_a(cstate
, OR_LINKPL
, 6, BPF_H
);
5715 b
= new_block(cstate
, JMP(BPF_JSET
));
5724 * Generate a comparison to a port value in the transport-layer header
5725 * at the specified offset from the beginning of that header.
5727 * XXX - this handles a variable-length prefix preceding the link-layer
5728 * header, such as the radiotap or AVS radio prefix, but doesn't handle
5729 * variable-length link-layer headers (such as Token Ring or 802.11
5732 static struct block
*
5733 gen_portatom(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5735 return gen_cmp(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, v
);
5738 static struct block
*
5739 gen_portatom6(compiler_state_t
*cstate
, int off
, bpf_u_int32 v
)
5741 return gen_cmp(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, v
);
5744 static struct block
*
5745 gen_portop(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5747 struct block
*b0
, *b1
, *tmp
;
5749 /* ip proto 'proto' and not a fragment other than the first fragment */
5750 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5751 b0
= gen_ipfrag(cstate
);
5756 b1
= gen_portatom(cstate
, 0, port
);
5760 b1
= gen_portatom(cstate
, 2, port
);
5764 tmp
= gen_portatom(cstate
, 0, port
);
5765 b1
= gen_portatom(cstate
, 2, port
);
5771 tmp
= gen_portatom(cstate
, 0, port
);
5772 b1
= gen_portatom(cstate
, 2, port
);
5782 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "port");
5794 static struct block
*
5795 gen_port(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5797 struct block
*b0
, *b1
, *tmp
;
5802 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5803 * not LLC encapsulation with LLCSAP_IP.
5805 * For IEEE 802 networks - which includes 802.5 token ring
5806 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5807 * says that SNAP encapsulation is used, not LLC encapsulation
5810 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5811 * RFC 2225 say that SNAP encapsulation is used, not LLC
5812 * encapsulation with LLCSAP_IP.
5814 * So we always check for ETHERTYPE_IP.
5816 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5822 b1
= gen_portop(cstate
, port
, (u_int
)ip_proto
, dir
);
5826 tmp
= gen_portop(cstate
, port
, IPPROTO_TCP
, dir
);
5827 b1
= gen_portop(cstate
, port
, IPPROTO_UDP
, dir
);
5829 tmp
= gen_portop(cstate
, port
, IPPROTO_SCTP
, dir
);
5841 gen_portop6(compiler_state_t
*cstate
, u_int port
, u_int proto
, int dir
)
5843 struct block
*b0
, *b1
, *tmp
;
5845 /* ip6 proto 'proto' */
5846 /* XXX - catch the first fragment of a fragmented packet? */
5847 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
5851 b1
= gen_portatom6(cstate
, 0, port
);
5855 b1
= gen_portatom6(cstate
, 2, port
);
5859 tmp
= gen_portatom6(cstate
, 0, port
);
5860 b1
= gen_portatom6(cstate
, 2, port
);
5866 tmp
= gen_portatom6(cstate
, 0, port
);
5867 b1
= gen_portatom6(cstate
, 2, port
);
5879 static struct block
*
5880 gen_port6(compiler_state_t
*cstate
, u_int port
, int ip_proto
, int dir
)
5882 struct block
*b0
, *b1
, *tmp
;
5884 /* link proto ip6 */
5885 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
5891 b1
= gen_portop6(cstate
, port
, (u_int
)ip_proto
, dir
);
5895 tmp
= gen_portop6(cstate
, port
, IPPROTO_TCP
, dir
);
5896 b1
= gen_portop6(cstate
, port
, IPPROTO_UDP
, dir
);
5898 tmp
= gen_portop6(cstate
, port
, IPPROTO_SCTP
, dir
);
5909 /* gen_portrange code */
5910 static struct block
*
5911 gen_portrangeatom(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
5915 return gen_portatom(cstate
, off
, v1
);
5917 struct block
*b1
, *b2
;
5919 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, min(v1
, v2
));
5920 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV4
, off
, BPF_H
, max(v1
, v2
));
5927 static struct block
*
5928 gen_portrangeop(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
5929 bpf_u_int32 proto
, int dir
)
5931 struct block
*b0
, *b1
, *tmp
;
5933 /* ip proto 'proto' and not a fragment other than the first fragment */
5934 tmp
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, proto
);
5935 b0
= gen_ipfrag(cstate
);
5940 b1
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5944 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5948 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5949 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5955 tmp
= gen_portrangeatom(cstate
, 0, port1
, port2
);
5956 b1
= gen_portrangeatom(cstate
, 2, port1
, port2
);
5966 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, dqkw(dir
), "portrange");
5978 static struct block
*
5979 gen_portrange(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
5982 struct block
*b0
, *b1
, *tmp
;
5985 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
5991 b1
= gen_portrangeop(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
5996 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
5997 b1
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
5999 tmp
= gen_portrangeop(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6010 static struct block
*
6011 gen_portrangeatom6(compiler_state_t
*cstate
, u_int off
, bpf_u_int32 v1
,
6015 return gen_portatom6(cstate
, off
, v1
);
6017 struct block
*b1
, *b2
;
6019 b1
= gen_cmp_ge(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, min(v1
, v2
));
6020 b2
= gen_cmp_le(cstate
, OR_TRAN_IPV6
, off
, BPF_H
, max(v1
, v2
));
6027 static struct block
*
6028 gen_portrangeop6(compiler_state_t
*cstate
, u_int port1
, u_int port2
,
6029 bpf_u_int32 proto
, int dir
)
6031 struct block
*b0
, *b1
, *tmp
;
6033 /* ip6 proto 'proto' */
6034 /* XXX - catch the first fragment of a fragmented packet? */
6035 b0
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, proto
);
6039 b1
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6043 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6047 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6048 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6054 tmp
= gen_portrangeatom6(cstate
, 0, port1
, port2
);
6055 b1
= gen_portrangeatom6(cstate
, 2, port1
, port2
);
6067 static struct block
*
6068 gen_portrange6(compiler_state_t
*cstate
, u_int port1
, u_int port2
, int ip_proto
,
6071 struct block
*b0
, *b1
, *tmp
;
6073 /* link proto ip6 */
6074 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6080 b1
= gen_portrangeop6(cstate
, port1
, port2
, (bpf_u_int32
)ip_proto
,
6085 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_TCP
, dir
);
6086 b1
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_UDP
, dir
);
6088 tmp
= gen_portrangeop6(cstate
, port1
, port2
, IPPROTO_SCTP
, dir
);
6100 lookup_proto(compiler_state_t
*cstate
, const char *name
, int proto
)
6109 v
= pcap_nametoproto(name
);
6110 if (v
== PROTO_UNDEF
)
6111 bpf_error(cstate
, "unknown ip proto '%s'", name
);
6115 /* XXX should look up h/w protocol type based on cstate->linktype */
6116 v
= pcap_nametoeproto(name
);
6117 if (v
== PROTO_UNDEF
) {
6118 v
= pcap_nametollc(name
);
6119 if (v
== PROTO_UNDEF
)
6120 bpf_error(cstate
, "unknown ether proto '%s'", name
);
6125 if (strcmp(name
, "esis") == 0)
6127 else if (strcmp(name
, "isis") == 0)
6129 else if (strcmp(name
, "clnp") == 0)
6132 bpf_error(cstate
, "unknown osi proto '%s'", name
);
6142 #if !defined(NO_PROTOCHAIN)
6144 * This primitive is non-directional by design, so the grammar does not allow
6145 * to qualify it with a direction.
6147 static struct block
*
6148 gen_protochain(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6150 struct block
*b0
, *b
;
6151 struct slist
*s
[100];
6152 int fix2
, fix3
, fix4
, fix5
;
6153 int ahcheck
, again
, end
;
6155 int reg2
= alloc_reg(cstate
);
6157 memset(s
, 0, sizeof(s
));
6158 fix3
= fix4
= fix5
= 0;
6165 b0
= gen_protochain(cstate
, v
, Q_IP
);
6166 b
= gen_protochain(cstate
, v
, Q_IPV6
);
6170 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "protochain");
6175 * We don't handle variable-length prefixes before the link-layer
6176 * header, or variable-length link-layer headers, here yet.
6177 * We might want to add BPF instructions to do the protochain
6178 * work, to simplify that and, on platforms that have a BPF
6179 * interpreter with the new instructions, let the filtering
6180 * be done in the kernel. (We already require a modified BPF
6181 * engine to do the protochain stuff, to support backward
6182 * branches, and backward branch support is unlikely to appear
6183 * in kernel BPF engines.)
6185 if (cstate
->off_linkpl
.is_variable
)
6186 bpf_error(cstate
, "'protochain' not supported with variable length headers");
6189 * To quote a comment in optimize.c:
6191 * "These data structures are used in a Cocke and Schwartz style
6192 * value numbering scheme. Since the flowgraph is acyclic,
6193 * exit values can be propagated from a node's predecessors
6194 * provided it is uniquely defined."
6196 * "Acyclic" means "no backward branches", which means "no
6197 * loops", so we have to turn the optimizer off.
6199 cstate
->no_optimize
= 1;
6202 * s[0] is a dummy entry to protect other BPF insn from damage
6203 * by s[fix] = foo with uninitialized variable "fix". It is somewhat
6204 * hard to find interdependency made by jump table fixup.
6207 s
[i
] = new_stmt(cstate
, 0); /*dummy*/
6212 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6215 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6216 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 9;
6218 /* X = ip->ip_hl << 2 */
6219 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_MSH
|BPF_B
);
6220 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6225 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6227 /* A = ip6->ip_nxt */
6228 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_ABS
|BPF_B
);
6229 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6;
6231 /* X = sizeof(struct ip6_hdr) */
6232 s
[i
] = new_stmt(cstate
, BPF_LDX
|BPF_IMM
);
6238 bpf_error(cstate
, "unsupported proto to gen_protochain");
6242 /* again: if (A == v) goto end; else fall through; */
6244 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6246 s
[i
]->s
.jt
= NULL
; /*later*/
6247 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6251 #ifndef IPPROTO_NONE
6252 #define IPPROTO_NONE 59
6254 /* if (A == IPPROTO_NONE) goto end */
6255 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6256 s
[i
]->s
.jt
= NULL
; /*later*/
6257 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6258 s
[i
]->s
.k
= IPPROTO_NONE
;
6259 s
[fix5
]->s
.jf
= s
[i
];
6263 if (proto
== Q_IPV6
) {
6264 int v6start
, v6end
, v6advance
, j
;
6267 /* if (A == IPPROTO_HOPOPTS) goto v6advance */
6268 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6269 s
[i
]->s
.jt
= NULL
; /*later*/
6270 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6271 s
[i
]->s
.k
= IPPROTO_HOPOPTS
;
6272 s
[fix2
]->s
.jf
= s
[i
];
6274 /* if (A == IPPROTO_DSTOPTS) goto v6advance */
6275 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6276 s
[i
]->s
.jt
= NULL
; /*later*/
6277 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6278 s
[i
]->s
.k
= IPPROTO_DSTOPTS
;
6280 /* if (A == IPPROTO_ROUTING) goto v6advance */
6281 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6282 s
[i
]->s
.jt
= NULL
; /*later*/
6283 s
[i
]->s
.jf
= NULL
; /*update in next stmt*/
6284 s
[i
]->s
.k
= IPPROTO_ROUTING
;
6286 /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6287 s
[i
- 1]->s
.jf
= s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6288 s
[i
]->s
.jt
= NULL
; /*later*/
6289 s
[i
]->s
.jf
= NULL
; /*later*/
6290 s
[i
]->s
.k
= IPPROTO_FRAGMENT
;
6300 * A = P[X + packet head];
6301 * X = X + (P[X + packet head + 1] + 1) * 8;
6303 /* A = P[X + packet head] */
6304 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6305 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6308 s
[i
] = new_stmt(cstate
, BPF_ST
);
6311 /* A = P[X + packet head + 1]; */
6312 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6313 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 1;
6316 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6320 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6324 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
6328 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6331 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6335 /* goto again; (must use BPF_JA for backward jump) */
6336 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6337 s
[i
]->s
.k
= again
- i
- 1;
6338 s
[i
- 1]->s
.jf
= s
[i
];
6342 for (j
= v6start
; j
<= v6end
; j
++)
6343 s
[j
]->s
.jt
= s
[v6advance
];
6346 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6348 s
[fix2
]->s
.jf
= s
[i
];
6354 /* if (A == IPPROTO_AH) then fall through; else goto end; */
6355 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JEQ
|BPF_K
);
6356 s
[i
]->s
.jt
= NULL
; /*later*/
6357 s
[i
]->s
.jf
= NULL
; /*later*/
6358 s
[i
]->s
.k
= IPPROTO_AH
;
6360 s
[fix3
]->s
.jf
= s
[ahcheck
];
6367 * X = X + (P[X + 1] + 2) * 4;
6370 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6372 /* A = P[X + packet head]; */
6373 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6374 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6377 s
[i
] = new_stmt(cstate
, BPF_ST
);
6381 s
[i
- 1]->s
.jt
= s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
6384 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6388 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6390 /* A = P[X + packet head] */
6391 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
6392 s
[i
]->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
6395 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6399 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
6403 s
[i
] = new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
6406 s
[i
] = new_stmt(cstate
, BPF_LD
|BPF_MEM
);
6410 /* goto again; (must use BPF_JA for backward jump) */
6411 s
[i
] = new_stmt(cstate
, BPF_JMP
|BPF_JA
);
6412 s
[i
]->s
.k
= again
- i
- 1;
6417 s
[i
] = new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
6419 s
[fix2
]->s
.jt
= s
[end
];
6420 s
[fix4
]->s
.jf
= s
[end
];
6421 s
[fix5
]->s
.jt
= s
[end
];
6428 for (i
= 0; i
< max
- 1; i
++)
6429 s
[i
]->next
= s
[i
+ 1];
6430 s
[max
- 1]->next
= NULL
;
6435 b
= new_block(cstate
, JMP(BPF_JEQ
));
6436 b
->stmts
= s
[1]; /*remember, s[0] is dummy*/
6439 free_reg(cstate
, reg2
);
6444 #endif /* !defined(NO_PROTOCHAIN) */
6447 * Generate code that checks whether the packet is a packet for protocol
6448 * <proto> and whether the type field in that protocol's header has
6449 * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6450 * IP packet and checks the protocol number in the IP header against <v>.
6452 * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6453 * against Q_IP and Q_IPV6.
6455 * This primitive is non-directional by design, so the grammar does not allow
6456 * to qualify it with a direction.
6458 static struct block
*
6459 gen_proto(compiler_state_t
*cstate
, bpf_u_int32 v
, int proto
)
6461 struct block
*b0
, *b1
;
6466 b0
= gen_proto(cstate
, v
, Q_IP
);
6467 b1
= gen_proto(cstate
, v
, Q_IPV6
);
6472 return gen_linktype(cstate
, v
);
6476 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6477 * not LLC encapsulation with LLCSAP_IP.
6479 * For IEEE 802 networks - which includes 802.5 token ring
6480 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6481 * says that SNAP encapsulation is used, not LLC encapsulation
6484 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6485 * RFC 2225 say that SNAP encapsulation is used, not LLC
6486 * encapsulation with LLCSAP_IP.
6488 * So we always check for ETHERTYPE_IP.
6490 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
6491 b1
= gen_cmp(cstate
, OR_LINKPL
, 9, BPF_B
, v
);
6509 break; // invalid qualifier
6512 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
6514 * Also check for a fragment header before the final
6517 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, IPPROTO_FRAGMENT
);
6518 b1
= gen_cmp(cstate
, OR_LINKPL
, 40, BPF_B
, v
);
6520 b2
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, v
);
6531 break; // invalid qualifier
6534 assert_maxval(cstate
, "ISO protocol", v
, UINT8_MAX
);
6535 switch (cstate
->linktype
) {
6539 * Frame Relay packets typically have an OSI
6540 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6541 * generates code to check for all the OSI
6542 * NLPIDs, so calling it and then adding a check
6543 * for the particular NLPID for which we're
6544 * looking is bogus, as we can just check for
6547 * What we check for is the NLPID and a frame
6548 * control field value of UI, i.e. 0x03 followed
6551 * XXX - assumes a 2-byte Frame Relay header with
6552 * DLCI and flags. What if the address is longer?
6554 * XXX - what about SNAP-encapsulated frames?
6556 return gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
, (0x03<<8) | v
);
6562 * Cisco uses an Ethertype lookalike - for OSI,
6565 b0
= gen_linktype(cstate
, LLCSAP_ISONS
<<8 | LLCSAP_ISONS
);
6566 /* OSI in C-HDLC is stuffed with a fudge byte */
6567 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 1, BPF_B
, v
);
6572 b0
= gen_linktype(cstate
, LLCSAP_ISONS
);
6573 b1
= gen_cmp(cstate
, OR_LINKPL_NOSNAP
, 0, BPF_B
, v
);
6579 break; // invalid qualifier
6582 assert_maxval(cstate
, "IS-IS PDU type", v
, ISIS_PDU_TYPE_MAX
);
6583 b0
= gen_proto(cstate
, ISO10589_ISIS
, Q_ISO
);
6585 * 4 is the offset of the PDU type relative to the IS-IS
6587 * Except when it is not, see above.
6589 unsigned pdu_type_offset
;
6590 switch (cstate
->linktype
) {
6593 pdu_type_offset
= 5;
6596 pdu_type_offset
= 4;
6598 b1
= gen_mcmp(cstate
, OR_LINKPL_NOSNAP
, pdu_type_offset
, BPF_B
,
6599 v
, ISIS_PDU_TYPE_MAX
);
6616 break; // invalid qualifier
6622 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "proto");
6627 * Convert a non-numeric name to a port number.
6630 nametoport(compiler_state_t
*cstate
, const char *name
, int ipproto
)
6632 struct addrinfo hints
, *res
, *ai
;
6634 struct sockaddr_in
*in4
;
6636 struct sockaddr_in6
*in6
;
6641 * We check for both TCP and UDP in case there are
6642 * ambiguous entries.
6644 memset(&hints
, 0, sizeof(hints
));
6645 hints
.ai_family
= PF_UNSPEC
;
6646 hints
.ai_socktype
= (ipproto
== IPPROTO_TCP
) ? SOCK_STREAM
: SOCK_DGRAM
;
6647 hints
.ai_protocol
= ipproto
;
6648 error
= getaddrinfo(NULL
, name
, &hints
, &res
);
6655 * No such port. Just return -1.
6662 * We don't use strerror() because it's not
6663 * guaranteed to be thread-safe on all platforms
6664 * (probably because it might use a non-thread-local
6665 * buffer into which to format an error message
6666 * if the error code isn't one for which it has
6667 * a canned string; three cheers for C string
6670 bpf_set_error(cstate
, "getaddrinfo(\"%s\" fails with system error: %d",
6672 port
= -2; /* a real error */
6678 * This is a real error, not just "there's
6679 * no such service name".
6681 * We don't use gai_strerror() because it's not
6682 * guaranteed to be thread-safe on all platforms
6683 * (probably because it might use a non-thread-local
6684 * buffer into which to format an error message
6685 * if the error code isn't one for which it has
6686 * a canned string; three cheers for C string
6689 bpf_set_error(cstate
, "getaddrinfo(\"%s\") fails with error: %d",
6691 port
= -2; /* a real error */
6696 * OK, we found it. Did it find anything?
6698 for (ai
= res
; ai
!= NULL
; ai
= ai
->ai_next
) {
6700 * Does it have an address?
6702 if (ai
->ai_addr
!= NULL
) {
6704 * Yes. Get a port number; we're done.
6706 if (ai
->ai_addr
->sa_family
== AF_INET
) {
6707 in4
= (struct sockaddr_in
*)ai
->ai_addr
;
6708 port
= ntohs(in4
->sin_port
);
6712 if (ai
->ai_addr
->sa_family
== AF_INET6
) {
6713 in6
= (struct sockaddr_in6
*)ai
->ai_addr
;
6714 port
= ntohs(in6
->sin6_port
);
6726 * Convert a string to a port number.
6729 stringtoport(compiler_state_t
*cstate
, const char *string
, size_t string_size
,
6739 * See if it's a number.
6741 ret
= stoulen(string
, string_size
, &val
, cstate
);
6745 /* Unknown port type - it's just a number. */
6746 *proto
= PROTO_UNDEF
;
6749 case STOULEN_NOT_OCTAL_NUMBER
:
6750 case STOULEN_NOT_HEX_NUMBER
:
6751 case STOULEN_NOT_DECIMAL_NUMBER
:
6753 * Not a valid number; try looking it up as a port.
6755 cpy
= malloc(string_size
+ 1); /* +1 for terminating '\0' */
6756 memcpy(cpy
, string
, string_size
);
6757 cpy
[string_size
] = '\0';
6758 tcp_port
= nametoport(cstate
, cpy
, IPPROTO_TCP
);
6759 if (tcp_port
== -2) {
6761 * We got a hard error; the error string has
6765 longjmp(cstate
->top_ctx
, 1);
6768 udp_port
= nametoport(cstate
, cpy
, IPPROTO_UDP
);
6769 if (udp_port
== -2) {
6771 * We got a hard error; the error string has
6775 longjmp(cstate
->top_ctx
, 1);
6780 * We need to check /etc/services for ambiguous entries.
6781 * If we find an ambiguous entry, and it has the
6782 * same port number, change the proto to PROTO_UNDEF
6783 * so both TCP and UDP will be checked.
6785 if (tcp_port
>= 0) {
6786 val
= (bpf_u_int32
)tcp_port
;
6787 *proto
= IPPROTO_TCP
;
6788 if (udp_port
>= 0) {
6789 if (udp_port
== tcp_port
)
6790 *proto
= PROTO_UNDEF
;
6793 /* Can't handle ambiguous names that refer
6794 to different port numbers. */
6795 warning("ambiguous port %s in /etc/services",
6802 if (udp_port
>= 0) {
6803 val
= (bpf_u_int32
)udp_port
;
6804 *proto
= IPPROTO_UDP
;
6808 bpf_set_error(cstate
, "'%s' is not a valid port", cpy
);
6810 longjmp(cstate
->top_ctx
, 1);
6817 /* Error already set. */
6818 longjmp(cstate
->top_ctx
, 1);
6825 /* Should not happen */
6826 bpf_set_error(cstate
, "stoulen returned %d - this should not happen", ret
);
6827 longjmp(cstate
->top_ctx
, 1);
6834 * Convert a string in the form PPP-PPP, which correspond to ports, to
6835 * a starting and ending port in a port range.
6838 stringtoportrange(compiler_state_t
*cstate
, const char *string
,
6839 bpf_u_int32
*port1
, bpf_u_int32
*port2
, int *proto
)
6842 const char *first
, *second
;
6843 size_t first_size
, second_size
;
6846 if ((hyphen_off
= strchr(string
, '-')) == NULL
)
6847 bpf_error(cstate
, "port range '%s' contains no hyphen", string
);
6850 * Make sure there are no other hyphens.
6852 * XXX - we support named ports, but there are some port names
6853 * in /etc/services that include hyphens, so this would rule
6856 if (strchr(hyphen_off
+ 1, '-') != NULL
)
6857 bpf_error(cstate
, "port range '%s' contains more than one hyphen",
6861 * Get the length of the first port.
6864 first_size
= hyphen_off
- string
;
6865 if (first_size
== 0) {
6866 /* Range of "-port", which we don't support. */
6867 bpf_error(cstate
, "port range '%s' has no starting port", string
);
6871 * Try to convert it to a port.
6873 *port1
= stringtoport(cstate
, first
, first_size
, proto
);
6874 save_proto
= *proto
;
6877 * Get the length of the second port.
6879 second
= hyphen_off
+ 1;
6880 second_size
= strlen(second
);
6881 if (second_size
== 0) {
6882 /* Range of "port-", which we don't support. */
6883 bpf_error(cstate
, "port range '%s' has no ending port", string
);
6887 * Try to convert it to a port.
6889 *port2
= stringtoport(cstate
, second
, second_size
, proto
);
6890 if (*proto
!= save_proto
)
6891 *proto
= PROTO_UNDEF
;
6895 gen_scode(compiler_state_t
*cstate
, const char *name
, struct qual q
)
6897 int proto
= q
.proto
;
6901 bpf_u_int32 mask
, addr
;
6902 struct addrinfo
*res
, *res0
;
6903 struct sockaddr_in
*sin4
;
6906 struct sockaddr_in6
*sin6
;
6907 struct in6_addr mask128
;
6909 struct block
*b
, *tmp
;
6910 int port
, real_proto
;
6911 bpf_u_int32 port1
, port2
;
6914 * Catch errors reported by us and routines below us, and return NULL
6917 if (setjmp(cstate
->top_ctx
))
6923 addr
= pcap_nametonetaddr(name
);
6925 bpf_error(cstate
, "unknown network '%s'", name
);
6926 /* Left justify network addr and calculate its network mask */
6928 while (addr
&& (addr
& 0xff000000) == 0) {
6932 return gen_host(cstate
, addr
, mask
, proto
, dir
, q
.addr
);
6936 if (proto
== Q_LINK
) {
6937 switch (cstate
->linktype
) {
6940 case DLT_NETANALYZER
:
6941 case DLT_NETANALYZER_TRANSPARENT
:
6942 eaddr
= pcap_ether_hostton(name
);
6945 "unknown ether host '%s'", name
);
6946 tmp
= gen_prevlinkhdr_check(cstate
);
6947 b
= gen_ehostop(cstate
, eaddr
, dir
);
6954 eaddr
= pcap_ether_hostton(name
);
6957 "unknown FDDI host '%s'", name
);
6958 b
= gen_fhostop(cstate
, eaddr
, dir
);
6963 eaddr
= pcap_ether_hostton(name
);
6966 "unknown token ring host '%s'", name
);
6967 b
= gen_thostop(cstate
, eaddr
, dir
);
6971 case DLT_IEEE802_11
:
6972 case DLT_PRISM_HEADER
:
6973 case DLT_IEEE802_11_RADIO_AVS
:
6974 case DLT_IEEE802_11_RADIO
:
6976 eaddr
= pcap_ether_hostton(name
);
6979 "unknown 802.11 host '%s'", name
);
6980 b
= gen_wlanhostop(cstate
, eaddr
, dir
);
6984 case DLT_IP_OVER_FC
:
6985 eaddr
= pcap_ether_hostton(name
);
6988 "unknown Fibre Channel host '%s'", name
);
6989 b
= gen_ipfchostop(cstate
, eaddr
, dir
);
6994 bpf_error(cstate
, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6995 } else if (proto
== Q_DECNET
) {
6997 * A long time ago on Ultrix libpcap supported
6998 * translation of DECnet host names into DECnet
6999 * addresses, but this feature is history now.
7001 bpf_error(cstate
, "invalid DECnet address '%s'", name
);
7004 memset(&mask128
, 0xff, sizeof(mask128
));
7006 res0
= res
= pcap_nametoaddrinfo(name
);
7008 bpf_error(cstate
, "unknown host '%s'", name
);
7015 if (cstate
->off_linktype
.constant_part
== OFFSET_NOT_SET
&&
7016 tproto
== Q_DEFAULT
) {
7022 for (res
= res0
; res
; res
= res
->ai_next
) {
7023 switch (res
->ai_family
) {
7026 if (tproto
== Q_IPV6
)
7030 sin4
= (struct sockaddr_in
*)
7032 tmp
= gen_host(cstate
, ntohl(sin4
->sin_addr
.s_addr
),
7033 0xffffffff, tproto
, dir
, q
.addr
);
7037 if (tproto6
== Q_IP
)
7040 sin6
= (struct sockaddr_in6
*)
7042 tmp
= gen_host6(cstate
, &sin6
->sin6_addr
,
7043 &mask128
, tproto6
, dir
, q
.addr
);
7056 bpf_error(cstate
, "unknown host '%s'%s", name
,
7057 (proto
== Q_DEFAULT
)
7059 : " for specified address family");
7065 (void)port_pq_to_ipproto(cstate
, proto
, "port"); // validate only
7066 if (pcap_nametoport(name
, &port
, &real_proto
) == 0)
7067 bpf_error(cstate
, "unknown port '%s'", name
);
7068 if (proto
== Q_UDP
) {
7069 if (real_proto
== IPPROTO_TCP
)
7070 bpf_error(cstate
, "port '%s' is tcp", name
);
7071 else if (real_proto
== IPPROTO_SCTP
)
7072 bpf_error(cstate
, "port '%s' is sctp", name
);
7074 /* override PROTO_UNDEF */
7075 real_proto
= IPPROTO_UDP
;
7077 if (proto
== Q_TCP
) {
7078 if (real_proto
== IPPROTO_UDP
)
7079 bpf_error(cstate
, "port '%s' is udp", name
);
7081 else if (real_proto
== IPPROTO_SCTP
)
7082 bpf_error(cstate
, "port '%s' is sctp", name
);
7084 /* override PROTO_UNDEF */
7085 real_proto
= IPPROTO_TCP
;
7087 if (proto
== Q_SCTP
) {
7088 if (real_proto
== IPPROTO_UDP
)
7089 bpf_error(cstate
, "port '%s' is udp", name
);
7091 else if (real_proto
== IPPROTO_TCP
)
7092 bpf_error(cstate
, "port '%s' is tcp", name
);
7094 /* override PROTO_UNDEF */
7095 real_proto
= IPPROTO_SCTP
;
7098 bpf_error(cstate
, "illegal port number %d < 0", port
);
7100 bpf_error(cstate
, "illegal port number %d > 65535", port
);
7101 b
= gen_port(cstate
, port
, real_proto
, dir
);
7102 gen_or(gen_port6(cstate
, port
, real_proto
, dir
), b
);
7106 (void)port_pq_to_ipproto(cstate
, proto
, "portrange"); // validate only
7107 stringtoportrange(cstate
, name
, &port1
, &port2
, &real_proto
);
7108 if (proto
== Q_UDP
) {
7109 if (real_proto
== IPPROTO_TCP
)
7110 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7111 else if (real_proto
== IPPROTO_SCTP
)
7112 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7114 /* override PROTO_UNDEF */
7115 real_proto
= IPPROTO_UDP
;
7117 if (proto
== Q_TCP
) {
7118 if (real_proto
== IPPROTO_UDP
)
7119 bpf_error(cstate
, "port in range '%s' is udp", name
);
7120 else if (real_proto
== IPPROTO_SCTP
)
7121 bpf_error(cstate
, "port in range '%s' is sctp", name
);
7123 /* override PROTO_UNDEF */
7124 real_proto
= IPPROTO_TCP
;
7126 if (proto
== Q_SCTP
) {
7127 if (real_proto
== IPPROTO_UDP
)
7128 bpf_error(cstate
, "port in range '%s' is udp", name
);
7129 else if (real_proto
== IPPROTO_TCP
)
7130 bpf_error(cstate
, "port in range '%s' is tcp", name
);
7132 /* override PROTO_UNDEF */
7133 real_proto
= IPPROTO_SCTP
;
7136 bpf_error(cstate
, "illegal port number %d > 65535", port1
);
7138 bpf_error(cstate
, "illegal port number %d > 65535", port2
);
7140 b
= gen_portrange(cstate
, port1
, port2
, real_proto
, dir
);
7141 gen_or(gen_portrange6(cstate
, port1
, port2
, real_proto
, dir
), b
);
7146 eaddr
= pcap_ether_hostton(name
);
7148 bpf_error(cstate
, "unknown ether host: %s", name
);
7150 res
= pcap_nametoaddrinfo(name
);
7153 bpf_error(cstate
, "unknown host '%s'", name
);
7154 b
= gen_gateway(cstate
, eaddr
, res
, proto
);
7159 bpf_error(cstate
, "unknown host '%s'", name
);
7162 bpf_error(cstate
, "'gateway' not supported in this configuration");
7166 real_proto
= lookup_proto(cstate
, name
, proto
);
7167 if (real_proto
>= 0)
7168 return gen_proto(cstate
, real_proto
, proto
);
7170 bpf_error(cstate
, "unknown protocol: %s", name
);
7172 #if !defined(NO_PROTOCHAIN)
7174 real_proto
= lookup_proto(cstate
, name
, proto
);
7175 if (real_proto
>= 0)
7176 return gen_protochain(cstate
, real_proto
, proto
);
7178 bpf_error(cstate
, "unknown protocol: %s", name
);
7179 #endif /* !defined(NO_PROTOCHAIN) */
7190 gen_mcode(compiler_state_t
*cstate
, const char *s1
, const char *s2
,
7191 bpf_u_int32 masklen
, struct qual q
)
7193 register int nlen
, mlen
;
7198 * Catch errors reported by us and routines below us, and return NULL
7201 if (setjmp(cstate
->top_ctx
))
7204 nlen
= pcapint_atoin(s1
, &n
);
7206 bpf_error(cstate
, "invalid IPv4 address '%s'", s1
);
7207 /* Promote short ipaddr */
7211 mlen
= pcapint_atoin(s2
, &m
);
7213 bpf_error(cstate
, "invalid IPv4 address '%s'", s2
);
7214 /* Promote short ipaddr */
7217 bpf_error(cstate
, "non-network bits set in \"%s mask %s\"",
7220 /* Convert mask len to mask */
7222 bpf_error(cstate
, "mask length must be <= 32");
7223 m64
= UINT64_C(0xffffffff) << (32 - masklen
);
7224 m
= (bpf_u_int32
)m64
;
7226 bpf_error(cstate
, "non-network bits set in \"%s/%d\"",
7233 return gen_host(cstate
, n
, m
, q
.proto
, q
.dir
, q
.addr
);
7236 // Q_HOST and Q_GATEWAY only (see the grammar)
7237 bpf_error(cstate
, "Mask syntax for networks only");
7244 gen_ncode(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 v
, struct qual q
)
7252 * Catch errors reported by us and routines below us, and return NULL
7255 if (setjmp(cstate
->top_ctx
))
7262 * v contains a 32-bit unsigned parsed from a string of the
7263 * form {N}, which could be decimal, hexadecimal or octal.
7264 * Although it would be possible to use the value as a raw
7265 * 16-bit DECnet address when the value fits into 16 bits, this
7266 * would be a questionable feature: DECnet address wire
7267 * encoding is little-endian, so this would not work as
7268 * intuitively as the same works for [big-endian] IPv4
7269 * addresses (0x01020304 means 1.2.3.4).
7271 if (proto
== Q_DECNET
)
7272 bpf_error(cstate
, "invalid DECnet address '%u'", v
);
7274 } else if (proto
== Q_DECNET
) {
7276 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7277 * {N}.{N}.{N}.{N}, of which only the first potentially stands
7278 * for a valid DECnet address.
7280 vlen
= pcapint_atodn(s
, &v
);
7282 bpf_error(cstate
, "invalid DECnet address '%s'", s
);
7285 * s points to a string of the form {N}.{N}, {N}.{N}.{N} or
7286 * {N}.{N}.{N}.{N}, all of which potentially stand for a valid
7289 vlen
= pcapint_atoin(s
, &v
);
7291 bpf_error(cstate
, "invalid IPv4 address '%s'", s
);
7299 if (proto
== Q_DECNET
)
7300 return gen_host(cstate
, v
, 0, proto
, dir
, q
.addr
);
7301 else if (proto
== Q_LINK
) {
7302 // "link (host|net) IPV4ADDR" and variations thereof
7303 bpf_error(cstate
, "illegal link layer address");
7306 if (s
== NULL
&& q
.addr
== Q_NET
) {
7307 /* Promote short net number */
7308 while (v
&& (v
& 0xff000000) == 0) {
7313 /* Promote short ipaddr */
7315 mask
<<= 32 - vlen
;
7317 return gen_host(cstate
, v
, mask
, proto
, dir
, q
.addr
);
7321 proto
= port_pq_to_ipproto(cstate
, proto
, "port");
7324 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7328 b
= gen_port(cstate
, v
, proto
, dir
);
7329 gen_or(gen_port6(cstate
, v
, proto
, dir
), b
);
7334 proto
= port_pq_to_ipproto(cstate
, proto
, "portrange");
7337 bpf_error(cstate
, "illegal port number %u > 65535", v
);
7341 b
= gen_portrange(cstate
, v
, v
, proto
, dir
);
7342 gen_or(gen_portrange6(cstate
, v
, v
, proto
, dir
), b
);
7347 bpf_error(cstate
, "'gateway' requires a name");
7351 return gen_proto(cstate
, v
, proto
);
7353 #if !defined(NO_PROTOCHAIN)
7355 return gen_protochain(cstate
, v
, proto
);
7371 gen_mcode6(compiler_state_t
*cstate
, const char *s
, bpf_u_int32 masklen
,
7374 struct addrinfo
*res
;
7375 struct in6_addr
*addr
;
7376 struct in6_addr mask
;
7378 bpf_u_int32 a
[4], m
[4]; /* Same as in gen_hostop6(). */
7381 * Catch errors reported by us and routines below us, and return NULL
7384 if (setjmp(cstate
->top_ctx
))
7387 res
= pcap_nametoaddrinfo(s
);
7389 bpf_error(cstate
, "invalid ip6 address %s", s
);
7392 bpf_error(cstate
, "%s resolved to multiple address", s
);
7393 addr
= &((struct sockaddr_in6
*)res
->ai_addr
)->sin6_addr
;
7395 if (masklen
> sizeof(mask
.s6_addr
) * 8)
7396 bpf_error(cstate
, "mask length must be <= %zu", sizeof(mask
.s6_addr
) * 8);
7397 memset(&mask
, 0, sizeof(mask
));
7398 memset(&mask
.s6_addr
, 0xff, masklen
/ 8);
7400 mask
.s6_addr
[masklen
/ 8] =
7401 (0xff << (8 - masklen
% 8)) & 0xff;
7404 memcpy(a
, addr
, sizeof(a
));
7405 memcpy(m
, &mask
, sizeof(m
));
7406 if ((a
[0] & ~m
[0]) || (a
[1] & ~m
[1])
7407 || (a
[2] & ~m
[2]) || (a
[3] & ~m
[3])) {
7408 bpf_error(cstate
, "non-network bits set in \"%s/%d\"", s
, masklen
);
7416 bpf_error(cstate
, "Mask syntax for networks only");
7420 b
= gen_host6(cstate
, addr
, &mask
, q
.proto
, q
.dir
, q
.addr
);
7426 // Q_GATEWAY only (see the grammar)
7427 bpf_error(cstate
, "invalid qualifier against IPv6 address");
7434 gen_ecode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
7436 struct block
*b
, *tmp
;
7439 * Catch errors reported by us and routines below us, and return NULL
7442 if (setjmp(cstate
->top_ctx
))
7445 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) && q
.proto
== Q_LINK
) {
7446 cstate
->e
= pcap_ether_aton(s
);
7447 if (cstate
->e
== NULL
)
7448 bpf_error(cstate
, "malloc");
7449 switch (cstate
->linktype
) {
7451 case DLT_NETANALYZER
:
7452 case DLT_NETANALYZER_TRANSPARENT
:
7453 tmp
= gen_prevlinkhdr_check(cstate
);
7454 b
= gen_ehostop(cstate
, cstate
->e
, (int)q
.dir
);
7459 b
= gen_fhostop(cstate
, cstate
->e
, (int)q
.dir
);
7462 b
= gen_thostop(cstate
, cstate
->e
, (int)q
.dir
);
7464 case DLT_IEEE802_11
:
7465 case DLT_PRISM_HEADER
:
7466 case DLT_IEEE802_11_RADIO_AVS
:
7467 case DLT_IEEE802_11_RADIO
:
7469 b
= gen_wlanhostop(cstate
, cstate
->e
, (int)q
.dir
);
7471 case DLT_IP_OVER_FC
:
7472 b
= gen_ipfchostop(cstate
, cstate
->e
, (int)q
.dir
);
7477 bpf_error(cstate
, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7484 bpf_error(cstate
, "ethernet address used in non-ether expression");
7489 sappend(struct slist
*s0
, struct slist
*s1
)
7492 * This is definitely not the best way to do this, but the
7493 * lists will rarely get long.
7500 static struct slist
*
7501 xfer_to_x(compiler_state_t
*cstate
, struct arth
*a
)
7505 s
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
7510 static struct slist
*
7511 xfer_to_a(compiler_state_t
*cstate
, struct arth
*a
)
7515 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
7521 * Modify "index" to use the value stored into its register as an
7522 * offset relative to the beginning of the header for the protocol
7523 * "proto", and allocate a register and put an item "size" bytes long
7524 * (1, 2, or 4) at that offset into that register, making it the register
7527 static struct arth
*
7528 gen_load_internal(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7532 struct slist
*s
, *tmp
;
7534 int regno
= alloc_reg(cstate
);
7536 free_reg(cstate
, inst
->regno
);
7540 bpf_error(cstate
, "data size must be 1, 2, or 4");
7557 bpf_error(cstate
, "'%s' does not support the index operation", pqkw(proto
));
7561 * The offset is relative to the beginning of the packet
7562 * data, if we have a radio header. (If we don't, this
7565 if (cstate
->linktype
!= DLT_IEEE802_11_RADIO_AVS
&&
7566 cstate
->linktype
!= DLT_IEEE802_11_RADIO
&&
7567 cstate
->linktype
!= DLT_PRISM_HEADER
)
7568 bpf_error(cstate
, "radio information not present in capture");
7571 * Load into the X register the offset computed into the
7572 * register specified by "index".
7574 s
= xfer_to_x(cstate
, inst
);
7577 * Load the item at that offset.
7579 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7581 sappend(inst
->s
, s
);
7586 * The offset is relative to the beginning of
7587 * the link-layer header.
7589 * XXX - what about ATM LANE? Should the index be
7590 * relative to the beginning of the AAL5 frame, so
7591 * that 0 refers to the beginning of the LE Control
7592 * field, or relative to the beginning of the LAN
7593 * frame, so that 0 refers, for Ethernet LANE, to
7594 * the beginning of the destination address?
7596 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkhdr
);
7599 * If "s" is non-null, it has code to arrange that the
7600 * X register contains the length of the prefix preceding
7601 * the link-layer header. Add to it the offset computed
7602 * into the register specified by "index", and move that
7603 * into the X register. Otherwise, just load into the X
7604 * register the offset computed into the register specified
7608 sappend(s
, xfer_to_a(cstate
, inst
));
7609 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7610 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7612 s
= xfer_to_x(cstate
, inst
);
7615 * Load the item at the sum of the offset we've put in the
7616 * X register and the offset of the start of the link
7617 * layer header (which is 0 if the radio header is
7618 * variable-length; that header length is what we put
7619 * into the X register and then added to the index).
7621 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7622 tmp
->s
.k
= cstate
->off_linkhdr
.constant_part
;
7624 sappend(inst
->s
, s
);
7638 * The offset is relative to the beginning of
7639 * the network-layer header.
7640 * XXX - are there any cases where we want
7641 * cstate->off_nl_nosnap?
7643 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7646 * If "s" is non-null, it has code to arrange that the
7647 * X register contains the variable part of the offset
7648 * of the link-layer payload. Add to it the offset
7649 * computed into the register specified by "index",
7650 * and move that into the X register. Otherwise, just
7651 * load into the X register the offset computed into
7652 * the register specified by "index".
7655 sappend(s
, xfer_to_a(cstate
, inst
));
7656 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7657 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7659 s
= xfer_to_x(cstate
, inst
);
7662 * Load the item at the sum of the offset we've put in the
7663 * X register, the offset of the start of the network
7664 * layer header from the beginning of the link-layer
7665 * payload, and the constant part of the offset of the
7666 * start of the link-layer payload.
7668 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7669 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7671 sappend(inst
->s
, s
);
7674 * Do the computation only if the packet contains
7675 * the protocol in question.
7677 b
= gen_proto_abbrev_internal(cstate
, proto
);
7679 gen_and(inst
->b
, b
);
7693 * The offset is relative to the beginning of
7694 * the transport-layer header.
7696 * Load the X register with the length of the IPv4 header
7697 * (plus the offset of the link-layer header, if it's
7698 * a variable-length header), in bytes.
7700 * XXX - are there any cases where we want
7701 * cstate->off_nl_nosnap?
7702 * XXX - we should, if we're built with
7703 * IPv6 support, generate code to load either
7704 * IPv4, IPv6, or both, as appropriate.
7706 s
= gen_loadx_iphdrlen(cstate
);
7709 * The X register now contains the sum of the variable
7710 * part of the offset of the link-layer payload and the
7711 * length of the network-layer header.
7713 * Load into the A register the offset relative to
7714 * the beginning of the transport layer header,
7715 * add the X register to that, move that to the
7716 * X register, and load with an offset from the
7717 * X register equal to the sum of the constant part of
7718 * the offset of the link-layer payload and the offset,
7719 * relative to the beginning of the link-layer payload,
7720 * of the network-layer header.
7722 sappend(s
, xfer_to_a(cstate
, inst
));
7723 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7724 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7725 sappend(s
, tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
));
7726 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
;
7727 sappend(inst
->s
, s
);
7730 * Do the computation only if the packet contains
7731 * the protocol in question - which is true only
7732 * if this is an IP datagram and is the first or
7733 * only fragment of that datagram.
7735 gen_and(gen_proto_abbrev_internal(cstate
, proto
), b
= gen_ipfrag(cstate
));
7737 gen_and(inst
->b
, b
);
7738 gen_and(gen_proto_abbrev_internal(cstate
, Q_IP
), b
);
7743 * Do the computation only if the packet contains
7744 * the protocol in question.
7746 b
= gen_proto_abbrev_internal(cstate
, Q_IPV6
);
7748 gen_and(inst
->b
, b
);
7752 * Check if we have an icmp6 next header
7754 b
= gen_cmp(cstate
, OR_LINKPL
, 6, BPF_B
, 58);
7756 gen_and(inst
->b
, b
);
7759 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
7761 * If "s" is non-null, it has code to arrange that the
7762 * X register contains the variable part of the offset
7763 * of the link-layer payload. Add to it the offset
7764 * computed into the register specified by "index",
7765 * and move that into the X register. Otherwise, just
7766 * load into the X register the offset computed into
7767 * the register specified by "index".
7770 sappend(s
, xfer_to_a(cstate
, inst
));
7771 sappend(s
, new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
));
7772 sappend(s
, new_stmt(cstate
, BPF_MISC
|BPF_TAX
));
7774 s
= xfer_to_x(cstate
, inst
);
7777 * Load the item at the sum of the offset we've put in the
7778 * X register, the offset of the start of the network
7779 * layer header from the beginning of the link-layer
7780 * payload, and the constant part of the offset of the
7781 * start of the link-layer payload.
7783 tmp
= new_stmt(cstate
, BPF_LD
|BPF_IND
|size_code
);
7784 tmp
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 40;
7787 sappend(inst
->s
, s
);
7791 inst
->regno
= regno
;
7792 s
= new_stmt(cstate
, BPF_ST
);
7794 sappend(inst
->s
, s
);
7800 gen_load(compiler_state_t
*cstate
, int proto
, struct arth
*inst
,
7804 * Catch errors reported by us and routines below us, and return NULL
7807 if (setjmp(cstate
->top_ctx
))
7810 return gen_load_internal(cstate
, proto
, inst
, size
);
7813 static struct block
*
7814 gen_relation_internal(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7815 struct arth
*a1
, int reversed
)
7817 struct slist
*s0
, *s1
, *s2
;
7818 struct block
*b
, *tmp
;
7820 s0
= xfer_to_x(cstate
, a1
);
7821 s1
= xfer_to_a(cstate
, a0
);
7822 if (code
== BPF_JEQ
) {
7823 s2
= new_stmt(cstate
, BPF_ALU
|BPF_SUB
|BPF_X
);
7824 b
= new_block(cstate
, JMP(code
));
7828 b
= new_block(cstate
, BPF_JMP
|code
|BPF_X
);
7834 sappend(a0
->s
, a1
->s
);
7838 free_reg(cstate
, a0
->regno
);
7839 free_reg(cstate
, a1
->regno
);
7841 /* 'and' together protocol checks */
7844 gen_and(a0
->b
, tmp
= a1
->b
);
7858 gen_relation(compiler_state_t
*cstate
, int code
, struct arth
*a0
,
7859 struct arth
*a1
, int reversed
)
7862 * Catch errors reported by us and routines below us, and return NULL
7865 if (setjmp(cstate
->top_ctx
))
7868 return gen_relation_internal(cstate
, code
, a0
, a1
, reversed
);
7872 gen_loadlen(compiler_state_t
*cstate
)
7879 * Catch errors reported by us and routines below us, and return NULL
7882 if (setjmp(cstate
->top_ctx
))
7885 regno
= alloc_reg(cstate
);
7886 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7887 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
7888 s
->next
= new_stmt(cstate
, BPF_ST
);
7889 s
->next
->s
.k
= regno
;
7896 static struct arth
*
7897 gen_loadi_internal(compiler_state_t
*cstate
, bpf_u_int32 val
)
7903 a
= (struct arth
*)newchunk(cstate
, sizeof(*a
));
7905 reg
= alloc_reg(cstate
);
7907 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
7909 s
->next
= new_stmt(cstate
, BPF_ST
);
7918 gen_loadi(compiler_state_t
*cstate
, bpf_u_int32 val
)
7921 * Catch errors reported by us and routines below us, and return NULL
7924 if (setjmp(cstate
->top_ctx
))
7927 return gen_loadi_internal(cstate
, val
);
7931 * The a_arg dance is to avoid annoying whining by compilers that
7932 * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7933 * It's not *used* after setjmp returns.
7936 gen_neg(compiler_state_t
*cstate
, struct arth
*a_arg
)
7938 struct arth
*a
= a_arg
;
7942 * Catch errors reported by us and routines below us, and return NULL
7945 if (setjmp(cstate
->top_ctx
))
7948 s
= xfer_to_a(cstate
, a
);
7950 s
= new_stmt(cstate
, BPF_ALU
|BPF_NEG
);
7953 s
= new_stmt(cstate
, BPF_ST
);
7961 * The a0_arg dance is to avoid annoying whining by compilers that
7962 * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7963 * It's not *used* after setjmp returns.
7966 gen_arth(compiler_state_t
*cstate
, int code
, struct arth
*a0_arg
,
7969 struct arth
*a0
= a0_arg
;
7970 struct slist
*s0
, *s1
, *s2
;
7973 * Catch errors reported by us and routines below us, and return NULL
7976 if (setjmp(cstate
->top_ctx
))
7980 * Disallow division by, or modulus by, zero; we do this here
7981 * so that it gets done even if the optimizer is disabled.
7983 * Also disallow shifts by a value greater than 31; we do this
7984 * here, for the same reason.
7986 if (code
== BPF_DIV
) {
7987 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7988 bpf_error(cstate
, "division by zero");
7989 } else if (code
== BPF_MOD
) {
7990 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
== 0)
7991 bpf_error(cstate
, "modulus by zero");
7992 } else if (code
== BPF_LSH
|| code
== BPF_RSH
) {
7993 if (a1
->s
->s
.code
== (BPF_LD
|BPF_IMM
) && a1
->s
->s
.k
> 31)
7994 bpf_error(cstate
, "shift by more than 31 bits");
7996 s0
= xfer_to_x(cstate
, a1
);
7997 s1
= xfer_to_a(cstate
, a0
);
7998 s2
= new_stmt(cstate
, BPF_ALU
|BPF_X
|code
);
8003 sappend(a0
->s
, a1
->s
);
8005 free_reg(cstate
, a0
->regno
);
8006 free_reg(cstate
, a1
->regno
);
8008 s0
= new_stmt(cstate
, BPF_ST
);
8009 a0
->regno
= s0
->s
.k
= alloc_reg(cstate
);
8016 * Initialize the table of used registers and the current register.
8019 init_regs(compiler_state_t
*cstate
)
8022 memset(cstate
->regused
, 0, sizeof cstate
->regused
);
8026 * Return the next free register.
8029 alloc_reg(compiler_state_t
*cstate
)
8031 int n
= BPF_MEMWORDS
;
8034 if (cstate
->regused
[cstate
->curreg
])
8035 cstate
->curreg
= (cstate
->curreg
+ 1) % BPF_MEMWORDS
;
8037 cstate
->regused
[cstate
->curreg
] = 1;
8038 return cstate
->curreg
;
8041 bpf_error(cstate
, "too many registers needed to evaluate expression");
8046 * Return a register to the table so it can
8050 free_reg(compiler_state_t
*cstate
, int n
)
8052 cstate
->regused
[n
] = 0;
8055 static struct block
*
8056 gen_len(compiler_state_t
*cstate
, int jmp
, int n
)
8061 s
= new_stmt(cstate
, BPF_LD
|BPF_LEN
);
8062 b
= new_block(cstate
, JMP(jmp
));
8070 gen_greater(compiler_state_t
*cstate
, int n
)
8073 * Catch errors reported by us and routines below us, and return NULL
8076 if (setjmp(cstate
->top_ctx
))
8079 return gen_len(cstate
, BPF_JGE
, n
);
8083 * Actually, this is less than or equal.
8086 gen_less(compiler_state_t
*cstate
, int n
)
8091 * Catch errors reported by us and routines below us, and return NULL
8094 if (setjmp(cstate
->top_ctx
))
8097 b
= gen_len(cstate
, BPF_JGT
, n
);
8104 * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
8105 * the beginning of the link-layer header.
8106 * XXX - that means you can't test values in the radiotap header, but
8107 * as that header is difficult if not impossible to parse generally
8108 * without a loop, that might not be a severe problem. A new keyword
8109 * "radio" could be added for that, although what you'd really want
8110 * would be a way of testing particular radio header values, which
8111 * would generate code appropriate to the radio header in question.
8114 gen_byteop(compiler_state_t
*cstate
, int op
, int idx
, bpf_u_int32 val
)
8120 * Catch errors reported by us and routines below us, and return NULL
8123 if (setjmp(cstate
->top_ctx
))
8131 return gen_cmp(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8134 b
= gen_cmp_lt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8138 b
= gen_cmp_gt(cstate
, OR_LINKHDR
, (u_int
)idx
, BPF_B
, val
);
8142 s
= new_stmt(cstate
, BPF_ALU
|BPF_OR
|BPF_K
);
8146 s
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
8150 b
= new_block(cstate
, JMP(BPF_JEQ
));
8158 gen_broadcast(compiler_state_t
*cstate
, int proto
)
8160 bpf_u_int32 hostmask
;
8161 struct block
*b0
, *b1
, *b2
;
8162 static const u_char ebroadcast
[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
8165 * Catch errors reported by us and routines below us, and return NULL
8168 if (setjmp(cstate
->top_ctx
))
8175 switch (cstate
->linktype
) {
8177 case DLT_ARCNET_LINUX
:
8178 // ARCnet broadcast is [8-bit] destination address 0.
8179 return gen_ahostop(cstate
, 0, Q_DST
);
8181 case DLT_NETANALYZER
:
8182 case DLT_NETANALYZER_TRANSPARENT
:
8183 b1
= gen_prevlinkhdr_check(cstate
);
8184 b0
= gen_ehostop(cstate
, ebroadcast
, Q_DST
);
8189 return gen_fhostop(cstate
, ebroadcast
, Q_DST
);
8191 return gen_thostop(cstate
, ebroadcast
, Q_DST
);
8192 case DLT_IEEE802_11
:
8193 case DLT_PRISM_HEADER
:
8194 case DLT_IEEE802_11_RADIO_AVS
:
8195 case DLT_IEEE802_11_RADIO
:
8197 return gen_wlanhostop(cstate
, ebroadcast
, Q_DST
);
8198 case DLT_IP_OVER_FC
:
8199 return gen_ipfchostop(cstate
, ebroadcast
, Q_DST
);
8201 fail_kw_on_dlt(cstate
, "broadcast");
8206 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
8207 * as an indication that we don't know the netmask, and fail
8210 if (cstate
->netmask
== PCAP_NETMASK_UNKNOWN
)
8211 bpf_error(cstate
, "netmask not known, so 'ip broadcast' not supported");
8212 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8213 hostmask
= ~cstate
->netmask
;
8214 b1
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, 0, hostmask
);
8215 b2
= gen_mcmp(cstate
, OR_LINKPL
, 16, BPF_W
, hostmask
, hostmask
);
8220 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "broadcast");
8225 * Generate code to test the low-order bit of a MAC address (that's
8226 * the bottom bit of the *first* byte).
8228 static struct block
*
8229 gen_mac_multicast(compiler_state_t
*cstate
, int offset
)
8231 register struct block
*b0
;
8232 register struct slist
*s
;
8234 /* link[offset] & 1 != 0 */
8235 s
= gen_load_a(cstate
, OR_LINKHDR
, offset
, BPF_B
);
8236 b0
= new_block(cstate
, JMP(BPF_JSET
));
8243 gen_multicast(compiler_state_t
*cstate
, int proto
)
8245 register struct block
*b0
, *b1
, *b2
;
8246 register struct slist
*s
;
8249 * Catch errors reported by us and routines below us, and return NULL
8252 if (setjmp(cstate
->top_ctx
))
8259 switch (cstate
->linktype
) {
8261 case DLT_ARCNET_LINUX
:
8262 // ARCnet multicast is the same as broadcast.
8263 return gen_ahostop(cstate
, 0, Q_DST
);
8265 case DLT_NETANALYZER
:
8266 case DLT_NETANALYZER_TRANSPARENT
:
8267 b1
= gen_prevlinkhdr_check(cstate
);
8268 /* ether[0] & 1 != 0 */
8269 b0
= gen_mac_multicast(cstate
, 0);
8275 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8277 * XXX - was that referring to bit-order issues?
8279 /* fddi[1] & 1 != 0 */
8280 return gen_mac_multicast(cstate
, 1);
8282 /* tr[2] & 1 != 0 */
8283 return gen_mac_multicast(cstate
, 2);
8284 case DLT_IEEE802_11
:
8285 case DLT_PRISM_HEADER
:
8286 case DLT_IEEE802_11_RADIO_AVS
:
8287 case DLT_IEEE802_11_RADIO
:
8292 * For control frames, there is no DA.
8294 * For management frames, DA is at an
8295 * offset of 4 from the beginning of
8298 * For data frames, DA is at an offset
8299 * of 4 from the beginning of the packet
8300 * if To DS is clear and at an offset of
8301 * 16 from the beginning of the packet
8306 * Generate the tests to be done for data frames.
8308 * First, check for To DS set, i.e. "link[1] & 0x01".
8310 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8311 b1
= new_block(cstate
, JMP(BPF_JSET
));
8312 b1
->s
.k
= 0x01; /* To DS */
8316 * If To DS is set, the DA is at 16.
8318 b0
= gen_mac_multicast(cstate
, 16);
8322 * Now, check for To DS not set, i.e. check
8323 * "!(link[1] & 0x01)".
8325 s
= gen_load_a(cstate
, OR_LINKHDR
, 1, BPF_B
);
8326 b2
= new_block(cstate
, JMP(BPF_JSET
));
8327 b2
->s
.k
= 0x01; /* To DS */
8332 * If To DS is not set, the DA is at 4.
8334 b1
= gen_mac_multicast(cstate
, 4);
8338 * Now OR together the last two checks. That gives
8339 * the complete set of checks for data frames.
8344 * Now check for a data frame.
8345 * I.e, check "link[0] & 0x08".
8347 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8348 b1
= new_block(cstate
, JMP(BPF_JSET
));
8353 * AND that with the checks done for data frames.
8358 * If the high-order bit of the type value is 0, this
8359 * is a management frame.
8360 * I.e, check "!(link[0] & 0x08)".
8362 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8363 b2
= new_block(cstate
, JMP(BPF_JSET
));
8369 * For management frames, the DA is at 4.
8371 b1
= gen_mac_multicast(cstate
, 4);
8375 * OR that with the checks done for data frames.
8376 * That gives the checks done for management and
8382 * If the low-order bit of the type value is 1,
8383 * this is either a control frame or a frame
8384 * with a reserved type, and thus not a
8387 * I.e., check "!(link[0] & 0x04)".
8389 s
= gen_load_a(cstate
, OR_LINKHDR
, 0, BPF_B
);
8390 b1
= new_block(cstate
, JMP(BPF_JSET
));
8396 * AND that with the checks for data and management
8401 case DLT_IP_OVER_FC
:
8402 b0
= gen_mac_multicast(cstate
, 2);
8407 fail_kw_on_dlt(cstate
, "multicast");
8411 b0
= gen_linktype(cstate
, ETHERTYPE_IP
);
8412 b1
= gen_cmp_ge(cstate
, OR_LINKPL
, 16, BPF_B
, 224);
8417 b0
= gen_linktype(cstate
, ETHERTYPE_IPV6
);
8418 b1
= gen_cmp(cstate
, OR_LINKPL
, 24, BPF_B
, 255);
8422 bpf_error(cstate
, ERRSTR_INVALID_QUAL
, pqkw(proto
), "multicast");
8428 * This is Linux; we require PF_PACKET support. If this is a *live* capture,
8429 * we can look at special meta-data in the filter expression; otherwise we
8430 * can't because it is either a savefile (rfile != NULL) or a pcap_t created
8431 * using pcap_open_dead() (rfile == NULL). Thus check for a flag that
8432 * pcap_activate() conditionally sets.
8435 require_basic_bpf_extensions(compiler_state_t
*cstate
, const char *keyword
)
8437 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_BASIC_HANDLING
)
8439 bpf_error(cstate
, "%s not supported on %s (not a live capture)",
8441 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
8446 gen_ifindex(compiler_state_t
*cstate
, int ifindex
)
8448 register struct block
*b0
;
8451 * Catch errors reported by us and routines below us, and return NULL
8454 if (setjmp(cstate
->top_ctx
))
8458 * Only some data link types support ifindex qualifiers.
8460 switch (cstate
->linktype
) {
8461 case DLT_LINUX_SLL2
:
8462 /* match packets on this interface */
8463 b0
= gen_cmp(cstate
, OR_LINKHDR
, 4, BPF_W
, ifindex
);
8466 #if defined(__linux__)
8467 require_basic_bpf_extensions(cstate
, "ifindex");
8469 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_IFINDEX
, BPF_W
,
8471 #else /* defined(__linux__) */
8472 fail_kw_on_dlt(cstate
, "ifindex");
8474 #endif /* defined(__linux__) */
8480 * Filter on inbound (outbound == 0) or outbound (outbound == 1) traffic.
8481 * Outbound traffic is sent by this machine, while inbound traffic is
8482 * sent by a remote machine (and may include packets destined for a
8483 * unicast or multicast link-layer address we are not subscribing to).
8484 * These are the same definitions implemented by pcap_setdirection().
8485 * Capturing only unicast traffic destined for this host is probably
8486 * better accomplished using a higher-layer filter.
8489 gen_inbound_outbound(compiler_state_t
*cstate
, const int outbound
)
8491 register struct block
*b0
;
8494 * Catch errors reported by us and routines below us, and return NULL
8497 if (setjmp(cstate
->top_ctx
))
8501 * Only some data link types support inbound/outbound qualifiers.
8503 switch (cstate
->linktype
) {
8505 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
,
8506 outbound
? SLIPDIR_OUT
: SLIPDIR_IN
);
8510 b0
= gen_cmp(cstate
, OR_LINKHDR
, 2, BPF_H
,
8511 outbound
? IPNET_OUTBOUND
: IPNET_INBOUND
);
8515 /* match outgoing packets */
8516 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_H
, LINUX_SLL_OUTGOING
);
8518 /* to filter on inbound traffic, invert the match */
8523 case DLT_LINUX_SLL2
:
8524 /* match outgoing packets */
8525 b0
= gen_cmp(cstate
, OR_LINKHDR
, 10, BPF_B
, LINUX_SLL_OUTGOING
);
8527 /* to filter on inbound traffic, invert the match */
8533 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, dir
), BPF_B
,
8534 outbound
? PF_OUT
: PF_IN
);
8538 b0
= gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, outbound
? PPP_PPPD_OUT
: PPP_PPPD_IN
);
8541 case DLT_JUNIPER_MFR
:
8542 case DLT_JUNIPER_MLFR
:
8543 case DLT_JUNIPER_MLPPP
:
8544 case DLT_JUNIPER_ATM1
:
8545 case DLT_JUNIPER_ATM2
:
8546 case DLT_JUNIPER_PPPOE
:
8547 case DLT_JUNIPER_PPPOE_ATM
:
8548 case DLT_JUNIPER_GGSN
:
8549 case DLT_JUNIPER_ES
:
8550 case DLT_JUNIPER_MONITOR
:
8551 case DLT_JUNIPER_SERVICES
:
8552 case DLT_JUNIPER_ETHER
:
8553 case DLT_JUNIPER_PPP
:
8554 case DLT_JUNIPER_FRELAY
:
8555 case DLT_JUNIPER_CHDLC
:
8556 case DLT_JUNIPER_VP
:
8557 case DLT_JUNIPER_ST
:
8558 case DLT_JUNIPER_ISM
:
8559 case DLT_JUNIPER_VS
:
8560 case DLT_JUNIPER_SRX_E2E
:
8561 case DLT_JUNIPER_FIBRECHANNEL
:
8562 case DLT_JUNIPER_ATM_CEMIC
:
8563 /* juniper flags (including direction) are stored
8564 * the byte after the 3-byte magic number */
8565 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 3, BPF_B
, outbound
? 0 : 1, 0x01);
8570 * If we have packet meta-data indicating a direction,
8571 * and that metadata can be checked by BPF code, check
8572 * it. Otherwise, give up, as this link-layer type has
8573 * nothing in the packet data.
8575 * Currently, the only platform where a BPF filter can
8576 * check that metadata is Linux with the in-kernel
8577 * BPF interpreter. If other packet capture mechanisms
8578 * and BPF filters also supported this, it would be
8579 * nice. It would be even better if they made that
8580 * metadata available so that we could provide it
8581 * with newer capture APIs, allowing it to be saved
8584 #if defined(__linux__)
8585 require_basic_bpf_extensions(cstate
, outbound
? "outbound" : "inbound");
8586 /* match outgoing packets */
8587 b0
= gen_cmp(cstate
, OR_LINKHDR
, SKF_AD_OFF
+ SKF_AD_PKTTYPE
, BPF_H
,
8590 /* to filter on inbound traffic, invert the match */
8593 #else /* defined(__linux__) */
8594 fail_kw_on_dlt(cstate
, outbound
? "outbound" : "inbound");
8596 #endif /* defined(__linux__) */
8601 /* PF firewall log matched interface */
8603 gen_pf_ifname(compiler_state_t
*cstate
, const char *ifname
)
8609 * Catch errors reported by us and routines below us, and return NULL
8612 if (setjmp(cstate
->top_ctx
))
8615 assert_pflog(cstate
, "ifname");
8617 len
= sizeof(((struct pfloghdr
*)0)->ifname
);
8618 off
= offsetof(struct pfloghdr
, ifname
);
8619 if (strlen(ifname
) >= len
) {
8620 bpf_error(cstate
, "ifname interface names can only be %d characters",
8624 b0
= gen_bcmp(cstate
, OR_LINKHDR
, off
, (u_int
)strlen(ifname
),
8625 (const u_char
*)ifname
);
8629 /* PF firewall log ruleset name */
8631 gen_pf_ruleset(compiler_state_t
*cstate
, char *ruleset
)
8636 * Catch errors reported by us and routines below us, and return NULL
8639 if (setjmp(cstate
->top_ctx
))
8642 assert_pflog(cstate
, "ruleset");
8644 if (strlen(ruleset
) >= sizeof(((struct pfloghdr
*)0)->ruleset
)) {
8645 bpf_error(cstate
, "ruleset names can only be %ld characters",
8646 (long)(sizeof(((struct pfloghdr
*)0)->ruleset
) - 1));
8650 b0
= gen_bcmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, ruleset
),
8651 (u_int
)strlen(ruleset
), (const u_char
*)ruleset
);
8655 /* PF firewall log rule number */
8657 gen_pf_rnr(compiler_state_t
*cstate
, int rnr
)
8662 * Catch errors reported by us and routines below us, and return NULL
8665 if (setjmp(cstate
->top_ctx
))
8668 assert_pflog(cstate
, "rnr");
8670 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, rulenr
), BPF_W
,
8675 /* PF firewall log sub-rule number */
8677 gen_pf_srnr(compiler_state_t
*cstate
, int srnr
)
8682 * Catch errors reported by us and routines below us, and return NULL
8685 if (setjmp(cstate
->top_ctx
))
8688 assert_pflog(cstate
, "srnr");
8690 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, subrulenr
), BPF_W
,
8695 /* PF firewall log reason code */
8697 gen_pf_reason(compiler_state_t
*cstate
, int reason
)
8702 * Catch errors reported by us and routines below us, and return NULL
8705 if (setjmp(cstate
->top_ctx
))
8708 assert_pflog(cstate
, "reason");
8710 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, reason
), BPF_B
,
8711 (bpf_u_int32
)reason
);
8715 /* PF firewall log action */
8717 gen_pf_action(compiler_state_t
*cstate
, int action
)
8722 * Catch errors reported by us and routines below us, and return NULL
8725 if (setjmp(cstate
->top_ctx
))
8728 assert_pflog(cstate
, "action");
8730 b0
= gen_cmp(cstate
, OR_LINKHDR
, offsetof(struct pfloghdr
, action
), BPF_B
,
8731 (bpf_u_int32
)action
);
8735 /* IEEE 802.11 wireless header */
8737 gen_p80211_type(compiler_state_t
*cstate
, bpf_u_int32 type
, bpf_u_int32 mask
)
8742 * Catch errors reported by us and routines below us, and return NULL
8745 if (setjmp(cstate
->top_ctx
))
8748 switch (cstate
->linktype
) {
8750 case DLT_IEEE802_11
:
8751 case DLT_PRISM_HEADER
:
8752 case DLT_IEEE802_11_RADIO_AVS
:
8753 case DLT_IEEE802_11_RADIO
:
8755 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 0, BPF_B
, type
, mask
);
8759 fail_kw_on_dlt(cstate
, "type/subtype");
8767 gen_p80211_fcdir(compiler_state_t
*cstate
, bpf_u_int32 fcdir
)
8772 * Catch errors reported by us and routines below us, and return NULL
8775 if (setjmp(cstate
->top_ctx
))
8778 switch (cstate
->linktype
) {
8780 case DLT_IEEE802_11
:
8781 case DLT_PRISM_HEADER
:
8782 case DLT_IEEE802_11_RADIO_AVS
:
8783 case DLT_IEEE802_11_RADIO
:
8788 fail_kw_on_dlt(cstate
, "dir");
8792 b0
= gen_mcmp(cstate
, OR_LINKHDR
, 1, BPF_B
, fcdir
,
8793 IEEE80211_FC1_DIR_MASK
);
8798 // Process an ARCnet host address string.
8800 gen_acode(compiler_state_t
*cstate
, const char *s
, struct qual q
)
8803 * Catch errors reported by us and routines below us, and return NULL
8806 if (setjmp(cstate
->top_ctx
))
8809 switch (cstate
->linktype
) {
8812 case DLT_ARCNET_LINUX
:
8813 if ((q
.addr
== Q_HOST
|| q
.addr
== Q_DEFAULT
) &&
8814 q
.proto
== Q_LINK
) {
8817 * The lexer currently defines the address format in a
8818 * way that makes this error condition never true.
8819 * Let's check it anyway in case this part of the lexer
8820 * changes in future.
8822 if (! pcapint_atoan(s
, &addr
))
8823 bpf_error(cstate
, "invalid ARCnet address '%s'", s
);
8824 return gen_ahostop(cstate
, addr
, (int)q
.dir
);
8826 bpf_error(cstate
, "ARCnet address used in non-arc expression");
8830 bpf_error(cstate
, "aid supported only on ARCnet");
8835 // Compare an ARCnet host address with the given value.
8836 static struct block
*
8837 gen_ahostop(compiler_state_t
*cstate
, const uint8_t eaddr
, int dir
)
8839 register struct block
*b0
, *b1
;
8843 * ARCnet is different from Ethernet: the source address comes before
8844 * the destination address, each is one byte long. This holds for all
8845 * three "buffer formats" in RFC 1201 Section 2.1, see also page 4-10
8846 * in the 1983 edition of the "ARCNET Designer's Handbook" published
8847 * by Datapoint (document number 61610-01).
8850 return gen_cmp(cstate
, OR_LINKHDR
, 0, BPF_B
, eaddr
);
8853 return gen_cmp(cstate
, OR_LINKHDR
, 1, BPF_B
, eaddr
);
8856 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8857 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8863 b0
= gen_ahostop(cstate
, eaddr
, Q_SRC
);
8864 b1
= gen_ahostop(cstate
, eaddr
, Q_DST
);
8874 bpf_error(cstate
, ERRSTR_802_11_ONLY_KW
, dqkw(dir
));
8881 static struct block
*
8882 gen_vlan_tpid_test(compiler_state_t
*cstate
)
8884 struct block
*b0
, *b1
;
8886 /* check for VLAN, including 802.1ad and QinQ */
8887 b0
= gen_linktype(cstate
, ETHERTYPE_8021Q
);
8888 b1
= gen_linktype(cstate
, ETHERTYPE_8021AD
);
8891 b1
= gen_linktype(cstate
, ETHERTYPE_8021QINQ
);
8897 static struct block
*
8898 gen_vlan_vid_test(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
)
8900 assert_maxval(cstate
, "VLAN tag", vlan_num
, 0x0fff);
8901 return gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_H
, vlan_num
, 0x0fff);
8904 static struct block
*
8905 gen_vlan_no_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
8908 struct block
*b0
, *b1
;
8910 b0
= gen_vlan_tpid_test(cstate
);
8913 b1
= gen_vlan_vid_test(cstate
, vlan_num
);
8919 * Both payload and link header type follow the VLAN tags so that
8920 * both need to be updated.
8922 cstate
->off_linkpl
.constant_part
+= 4;
8923 cstate
->off_linktype
.constant_part
+= 4;
8928 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8929 /* add v to variable part of off */
8931 gen_vlan_vloffset_add(compiler_state_t
*cstate
, bpf_abs_offset
*off
,
8932 bpf_u_int32 v
, struct slist
*s
)
8936 if (!off
->is_variable
)
8937 off
->is_variable
= 1;
8939 off
->reg
= alloc_reg(cstate
);
8941 s2
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
8944 s2
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_IMM
);
8947 s2
= new_stmt(cstate
, BPF_ST
);
8953 * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8954 * and link type offsets first
8957 gen_vlan_patch_tpid_test(compiler_state_t
*cstate
, struct block
*b_tpid
)
8961 /* offset determined at run time, shift variable part */
8963 cstate
->is_vlan_vloffset
= 1;
8964 gen_vlan_vloffset_add(cstate
, &cstate
->off_linkpl
, 4, &s
);
8965 gen_vlan_vloffset_add(cstate
, &cstate
->off_linktype
, 4, &s
);
8967 /* we get a pointer to a chain of or-ed blocks, patch first of them */
8968 sappend(s
.next
, b_tpid
->head
->stmts
);
8969 b_tpid
->head
->stmts
= s
.next
;
8973 * patch block b_vid (VLAN id test) to load VID value either from packet
8974 * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8977 gen_vlan_patch_vid_test(compiler_state_t
*cstate
, struct block
*b_vid
)
8979 struct slist
*s
, *s2
, *sjeq
;
8982 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
8983 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
8985 /* true -> next instructions, false -> beginning of b_vid */
8986 sjeq
= new_stmt(cstate
, JMP(BPF_JEQ
));
8988 sjeq
->s
.jf
= b_vid
->stmts
;
8991 s2
= new_stmt(cstate
, BPF_LD
|BPF_H
|BPF_ABS
);
8992 s2
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG
);
8996 /* Jump to the test in b_vid. We need to jump one instruction before
8997 * the end of the b_vid block so that we only skip loading the TCI
8998 * from packet data and not the 'and' instruction extracting VID.
9001 for (s2
= b_vid
->stmts
; s2
; s2
= s2
->next
)
9003 s2
= new_stmt(cstate
, JMP(BPF_JA
));
9007 /* insert our statements at the beginning of b_vid */
9008 sappend(s
, b_vid
->stmts
);
9013 * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
9014 * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN
9015 * tag can be either in metadata or in packet data; therefore if the
9016 * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
9017 * header for VLAN tag. As the decision is done at run time, we need
9018 * update variable part of the offsets
9020 static struct block
*
9021 gen_vlan_bpf_extensions(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
,
9024 struct block
*b0
, *b_tpid
, *b_vid
= NULL
;
9027 /* generate new filter code based on extracting packet
9029 s
= new_stmt(cstate
, BPF_LD
|BPF_B
|BPF_ABS
);
9030 s
->s
.k
= (bpf_u_int32
)(SKF_AD_OFF
+ SKF_AD_VLAN_TAG_PRESENT
);
9032 b0
= new_block(cstate
, JMP(BPF_JEQ
));
9037 * This is tricky. We need to insert the statements updating variable
9038 * parts of offsets before the traditional TPID and VID tests so
9039 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
9040 * we do not want this update to affect those checks. That's why we
9041 * generate both test blocks first and insert the statements updating
9042 * variable parts of both offsets after that. This wouldn't work if
9043 * there already were variable length link header when entering this
9044 * function but gen_vlan_bpf_extensions() isn't called in that case.
9046 b_tpid
= gen_vlan_tpid_test(cstate
);
9048 b_vid
= gen_vlan_vid_test(cstate
, vlan_num
);
9050 gen_vlan_patch_tpid_test(cstate
, b_tpid
);
9055 gen_vlan_patch_vid_test(cstate
, b_vid
);
9065 * support IEEE 802.1Q VLAN trunk over ethernet
9068 gen_vlan(compiler_state_t
*cstate
, bpf_u_int32 vlan_num
, int has_vlan_tag
)
9073 * Catch errors reported by us and routines below us, and return NULL
9076 if (setjmp(cstate
->top_ctx
))
9079 /* can't check for VLAN-encapsulated packets inside MPLS */
9080 if (cstate
->label_stack_depth
> 0)
9081 bpf_error(cstate
, "no VLAN match after MPLS");
9084 * Check for a VLAN packet, and then change the offsets to point
9085 * to the type and data fields within the VLAN packet. Just
9086 * increment the offsets, so that we can support a hierarchy, e.g.
9087 * "vlan 100 && vlan 200" to capture VLAN 200 encapsulated within
9090 * XXX - this is a bit of a kludge. If we were to split the
9091 * compiler into a parser that parses an expression and
9092 * generates an expression tree, and a code generator that
9093 * takes an expression tree (which could come from our
9094 * parser or from some other parser) and generates BPF code,
9095 * we could perhaps make the offsets parameters of routines
9096 * and, in the handler for an "AND" node, pass to subnodes
9097 * other than the VLAN node the adjusted offsets.
9099 * This would mean that "vlan" would, instead of changing the
9100 * behavior of *all* tests after it, change only the behavior
9101 * of tests ANDed with it. That would change the documented
9102 * semantics of "vlan", which might break some expressions.
9103 * However, it would mean that "(vlan and ip) or ip" would check
9104 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
9105 * checking only for VLAN-encapsulated IP, so that could still
9106 * be considered worth doing; it wouldn't break expressions
9107 * that are of the form "vlan and ..." or "vlan N and ...",
9108 * which I suspect are the most common expressions involving
9109 * "vlan". "vlan or ..." doesn't necessarily do what the user
9110 * would really want, now, as all the "or ..." tests would
9111 * be done assuming a VLAN, even though the "or" could be viewed
9112 * as meaning "or, if this isn't a VLAN packet...".
9114 switch (cstate
->linktype
) {
9118 * Newer version of the Linux kernel pass around
9119 * packets in which the VLAN tag has been removed
9120 * from the packet data and put into metadata.
9122 * This requires special treatment.
9124 #if defined(SKF_AD_VLAN_TAG_PRESENT)
9125 /* Verify that this is the outer part of the packet and
9126 * not encapsulated somehow. */
9127 if (cstate
->vlan_stack_depth
== 0 && !cstate
->off_linkhdr
.is_variable
&&
9128 cstate
->off_linkhdr
.constant_part
==
9129 cstate
->off_outermostlinkhdr
.constant_part
) {
9131 * Do we need special VLAN handling?
9133 if (cstate
->bpf_pcap
->bpf_codegen_flags
& BPF_SPECIAL_VLAN_HANDLING
)
9134 b0
= gen_vlan_bpf_extensions(cstate
, vlan_num
,
9137 b0
= gen_vlan_no_bpf_extensions(cstate
,
9138 vlan_num
, has_vlan_tag
);
9141 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
,
9145 case DLT_NETANALYZER
:
9146 case DLT_NETANALYZER_TRANSPARENT
:
9147 case DLT_IEEE802_11
:
9148 case DLT_PRISM_HEADER
:
9149 case DLT_IEEE802_11_RADIO_AVS
:
9150 case DLT_IEEE802_11_RADIO
:
9152 * These are either Ethernet packets with an additional
9153 * metadata header (the NetAnalyzer types), or 802.11
9154 * packets, possibly with an additional metadata header.
9156 * For the first of those, the VLAN tag is in the normal
9157 * place, so the special-case handling above isn't
9160 * For the second of those, we don't do the special-case
9163 b0
= gen_vlan_no_bpf_extensions(cstate
, vlan_num
, has_vlan_tag
);
9167 bpf_error(cstate
, "no VLAN support for %s",
9168 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9172 cstate
->vlan_stack_depth
++;
9180 * The label_num_arg dance is to avoid annoying whining by compilers that
9181 * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9182 * It's not *used* after setjmp returns.
9184 static struct block
*
9185 gen_mpls_internal(compiler_state_t
*cstate
, bpf_u_int32 label_num
,
9188 struct block
*b0
, *b1
;
9190 if (cstate
->label_stack_depth
> 0) {
9191 /* just match the bottom-of-stack bit clear */
9192 b0
= gen_mcmp(cstate
, OR_PREVMPLSHDR
, 2, BPF_B
, 0, 0x01);
9195 * We're not in an MPLS stack yet, so check the link-layer
9196 * type against MPLS.
9198 switch (cstate
->linktype
) {
9200 case DLT_C_HDLC
: /* fall through */
9203 case DLT_NETANALYZER
:
9204 case DLT_NETANALYZER_TRANSPARENT
:
9205 b0
= gen_linktype(cstate
, ETHERTYPE_MPLS
);
9209 b0
= gen_linktype(cstate
, PPP_MPLS_UCAST
);
9212 /* FIXME add other DLT_s ...
9213 * for Frame-Relay/and ATM this may get messy due to SNAP headers
9214 * leave it for now */
9217 bpf_error(cstate
, "no MPLS support for %s",
9218 pcap_datalink_val_to_description_or_dlt(cstate
->linktype
));
9223 /* If a specific MPLS label is requested, check it */
9224 if (has_label_num
) {
9225 assert_maxval(cstate
, "MPLS label", label_num
, 0xFFFFF);
9226 label_num
= label_num
<< 12; /* label is shifted 12 bits on the wire */
9227 b1
= gen_mcmp(cstate
, OR_LINKPL
, 0, BPF_W
, label_num
,
9228 0xfffff000); /* only compare the first 20 bits */
9234 * Change the offsets to point to the type and data fields within
9235 * the MPLS packet. Just increment the offsets, so that we
9236 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9237 * capture packets with an outer label of 100000 and an inner
9240 * Increment the MPLS stack depth as well; this indicates that
9241 * we're checking MPLS-encapsulated headers, to make sure higher
9242 * level code generators don't try to match against IP-related
9243 * protocols such as Q_ARP, Q_RARP etc.
9245 * XXX - this is a bit of a kludge. See comments in gen_vlan().
9247 cstate
->off_nl_nosnap
+= 4;
9248 cstate
->off_nl
+= 4;
9249 cstate
->label_stack_depth
++;
9254 gen_mpls(compiler_state_t
*cstate
, bpf_u_int32 label_num
, int has_label_num
)
9257 * Catch errors reported by us and routines below us, and return NULL
9260 if (setjmp(cstate
->top_ctx
))
9263 return gen_mpls_internal(cstate
, label_num
, has_label_num
);
9267 * Support PPPOE discovery and session.
9270 gen_pppoed(compiler_state_t
*cstate
)
9273 * Catch errors reported by us and routines below us, and return NULL
9276 if (setjmp(cstate
->top_ctx
))
9279 /* check for PPPoE discovery */
9280 return gen_linktype(cstate
, ETHERTYPE_PPPOED
);
9284 * RFC 2516 Section 4:
9286 * The Ethernet payload for PPPoE is as follows:
9289 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
9290 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9291 * | VER | TYPE | CODE | SESSION_ID |
9292 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9293 * | LENGTH | payload ~
9294 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
9297 gen_pppoes(compiler_state_t
*cstate
, bpf_u_int32 sess_num
, int has_sess_num
)
9299 struct block
*b0
, *b1
;
9302 * Catch errors reported by us and routines below us, and return NULL
9305 if (setjmp(cstate
->top_ctx
))
9309 * Test against the PPPoE session link-layer type.
9311 b0
= gen_linktype(cstate
, ETHERTYPE_PPPOES
);
9313 /* If a specific session is requested, check PPPoE session id */
9315 assert_maxval(cstate
, "PPPoE session number", sess_num
, UINT16_MAX
);
9316 b1
= gen_cmp(cstate
, OR_LINKPL
, 2, BPF_H
, sess_num
);
9322 * Change the offsets to point to the type and data fields within
9323 * the PPP packet, and note that this is PPPoE rather than
9326 * XXX - this is a bit of a kludge. See the comments in
9329 * The "network-layer" protocol is PPPoE, which has a 6-byte
9330 * PPPoE header, followed by a PPP packet.
9332 * There is no HDLC encapsulation for the PPP packet (it's
9333 * encapsulated in PPPoES instead), so the link-layer type
9334 * starts at the first byte of the PPP packet. For PPPoE,
9335 * that offset is relative to the beginning of the total
9336 * link-layer payload, including any 802.2 LLC header, so
9337 * it's 6 bytes past cstate->off_nl.
9339 PUSH_LINKHDR(cstate
, DLT_PPP
, cstate
->off_linkpl
.is_variable
,
9340 cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 6, /* 6 bytes past the PPPoE header */
9341 cstate
->off_linkpl
.reg
);
9343 cstate
->off_linktype
= cstate
->off_linkhdr
;
9344 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 2;
9347 cstate
->off_nl_nosnap
= 0; /* no 802.2 LLC */
9352 /* Check that this is Geneve and the VNI is correct if
9353 * specified. Parameterized to handle both IPv4 and IPv6. */
9354 static struct block
*
9355 gen_geneve_check(compiler_state_t
*cstate
,
9356 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9357 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9359 struct block
*b0
, *b1
;
9361 b0
= gen_portfn(cstate
, GENEVE_PORT
, IPPROTO_UDP
, Q_DST
);
9363 /* Check that we are operating on version 0. Otherwise, we
9364 * can't decode the rest of the fields. The version is 2 bits
9365 * in the first byte of the Geneve header. */
9366 b1
= gen_mcmp(cstate
, offrel
, 8, BPF_B
, 0, 0xc0);
9371 assert_maxval(cstate
, "Geneve VNI", vni
, 0xffffff);
9372 vni
<<= 8; /* VNI is in the upper 3 bytes */
9373 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9381 /* The IPv4 and IPv6 Geneve checks need to do two things:
9382 * - Verify that this actually is Geneve with the right VNI.
9383 * - Place the IP header length (plus variable link prefix if
9384 * needed) into register A to be used later to compute
9385 * the inner packet offsets. */
9386 static struct block
*
9387 gen_geneve4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9389 struct block
*b0
, *b1
;
9390 struct slist
*s
, *s1
;
9392 b0
= gen_geneve_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9394 /* Load the IP header length into A. */
9395 s
= gen_loadx_iphdrlen(cstate
);
9397 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9400 /* Forcibly append these statements to the true condition
9401 * of the protocol check by creating a new block that is
9402 * always true and ANDing them. */
9403 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9412 static struct block
*
9413 gen_geneve6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9415 struct block
*b0
, *b1
;
9416 struct slist
*s
, *s1
;
9418 b0
= gen_geneve_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9420 /* Load the IP header length. We need to account for a
9421 * variable length link prefix if there is one. */
9422 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9424 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9428 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9432 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9436 /* Forcibly append these statements to the true condition
9437 * of the protocol check by creating a new block that is
9438 * always true and ANDing them. */
9439 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9442 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9451 /* We need to store three values based on the Geneve header::
9452 * - The offset of the linktype.
9453 * - The offset of the end of the Geneve header.
9454 * - The offset of the end of the encapsulated MAC header. */
9455 static struct slist
*
9456 gen_geneve_offsets(compiler_state_t
*cstate
)
9458 struct slist
*s
, *s1
, *s_proto
;
9460 /* First we need to calculate the offset of the Geneve header
9461 * itself. This is composed of the IP header previously calculated
9462 * (include any variable link prefix) and stored in A plus the
9463 * fixed sized headers (fixed link prefix, MAC length, and UDP
9465 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9466 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9468 /* Stash this in X since we'll need it later. */
9469 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9472 /* The EtherType in Geneve is 2 bytes in. Calculate this and
9474 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9478 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9479 cstate
->off_linktype
.is_variable
= 1;
9480 cstate
->off_linktype
.constant_part
= 0;
9482 s1
= new_stmt(cstate
, BPF_ST
);
9483 s1
->s
.k
= cstate
->off_linktype
.reg
;
9486 /* Load the Geneve option length and mask and shift to get the
9487 * number of bytes. It is stored in the first byte of the Geneve
9489 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_B
);
9493 s1
= new_stmt(cstate
, BPF_ALU
|BPF_AND
|BPF_K
);
9497 s1
= new_stmt(cstate
, BPF_ALU
|BPF_MUL
|BPF_K
);
9501 /* Add in the rest of the Geneve base header. */
9502 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9506 /* Add the Geneve header length to its offset and store. */
9507 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9511 /* Set the encapsulated type as Ethernet. Even though we may
9512 * not actually have Ethernet inside there are two reasons this
9514 * - The linktype field is always in EtherType format regardless
9515 * of whether it is in Geneve or an inner Ethernet frame.
9516 * - The only link layer that we have specific support for is
9517 * Ethernet. We will confirm that the packet actually is
9518 * Ethernet at runtime before executing these checks. */
9519 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9521 s1
= new_stmt(cstate
, BPF_ST
);
9522 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9525 /* Calculate whether we have an Ethernet header or just raw IP/
9526 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9527 * and linktype by 14 bytes so that the network header can be found
9528 * seamlessly. Otherwise, keep what we've calculated already. */
9530 /* We have a bare jmp so we can't use the optimizer. */
9531 cstate
->no_optimize
= 1;
9533 /* Load the EtherType in the Geneve header, 2 bytes in. */
9534 s1
= new_stmt(cstate
, BPF_LD
|BPF_IND
|BPF_H
);
9538 /* Load X with the end of the Geneve header. */
9539 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9540 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9543 /* Check if the EtherType is Transparent Ethernet Bridging. At the
9544 * end of this check, we should have the total length in X. In
9545 * the non-Ethernet case, it's already there. */
9546 s_proto
= new_stmt(cstate
, JMP(BPF_JEQ
));
9547 s_proto
->s
.k
= ETHERTYPE_TEB
;
9548 sappend(s
, s_proto
);
9550 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9554 /* Since this is Ethernet, use the EtherType of the payload
9555 * directly as the linktype. Overwrite what we already have. */
9556 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9560 s1
= new_stmt(cstate
, BPF_ST
);
9561 s1
->s
.k
= cstate
->off_linktype
.reg
;
9564 /* Advance two bytes further to get the end of the Ethernet
9566 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9570 /* Move the result to X. */
9571 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9574 /* Store the final result of our linkpl calculation. */
9575 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9576 cstate
->off_linkpl
.is_variable
= 1;
9577 cstate
->off_linkpl
.constant_part
= 0;
9579 s1
= new_stmt(cstate
, BPF_STX
);
9580 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9589 /* Check to see if this is a Geneve packet. */
9591 gen_geneve(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9593 struct block
*b0
, *b1
;
9597 * Catch errors reported by us and routines below us, and return NULL
9600 if (setjmp(cstate
->top_ctx
))
9603 b0
= gen_geneve4(cstate
, vni
, has_vni
);
9604 b1
= gen_geneve6(cstate
, vni
, has_vni
);
9609 /* Later filters should act on the payload of the Geneve frame,
9610 * update all of the header pointers. Attach this code so that
9611 * it gets executed in the event that the Geneve filter matches. */
9612 s
= gen_geneve_offsets(cstate
);
9614 b1
= gen_true(cstate
);
9615 sappend(s
, b1
->stmts
);
9620 cstate
->is_encap
= 1;
9625 /* Check that this is VXLAN and the VNI is correct if
9626 * specified. Parameterized to handle both IPv4 and IPv6. */
9627 static struct block
*
9628 gen_vxlan_check(compiler_state_t
*cstate
,
9629 struct block
*(*gen_portfn
)(compiler_state_t
*, u_int
, int, int),
9630 enum e_offrel offrel
, bpf_u_int32 vni
, int has_vni
)
9632 struct block
*b0
, *b1
;
9634 b0
= gen_portfn(cstate
, VXLAN_PORT
, IPPROTO_UDP
, Q_DST
);
9636 /* Check that the VXLAN header has the flag bits set
9638 b1
= gen_cmp(cstate
, offrel
, 8, BPF_B
, 0x08);
9643 assert_maxval(cstate
, "VXLAN VNI", vni
, 0xffffff);
9644 vni
<<= 8; /* VNI is in the upper 3 bytes */
9645 b1
= gen_mcmp(cstate
, offrel
, 12, BPF_W
, vni
, 0xffffff00);
9653 /* The IPv4 and IPv6 VXLAN checks need to do two things:
9654 * - Verify that this actually is VXLAN with the right VNI.
9655 * - Place the IP header length (plus variable link prefix if
9656 * needed) into register A to be used later to compute
9657 * the inner packet offsets. */
9658 static struct block
*
9659 gen_vxlan4(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9661 struct block
*b0
, *b1
;
9662 struct slist
*s
, *s1
;
9664 b0
= gen_vxlan_check(cstate
, gen_port
, OR_TRAN_IPV4
, vni
, has_vni
);
9666 /* Load the IP header length into A. */
9667 s
= gen_loadx_iphdrlen(cstate
);
9669 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TXA
);
9672 /* Forcibly append these statements to the true condition
9673 * of the protocol check by creating a new block that is
9674 * always true and ANDing them. */
9675 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9684 static struct block
*
9685 gen_vxlan6(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9687 struct block
*b0
, *b1
;
9688 struct slist
*s
, *s1
;
9690 b0
= gen_vxlan_check(cstate
, gen_port6
, OR_TRAN_IPV6
, vni
, has_vni
);
9692 /* Load the IP header length. We need to account for a
9693 * variable length link prefix if there is one. */
9694 s
= gen_abs_offset_varpart(cstate
, &cstate
->off_linkpl
);
9696 s1
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9700 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_X
);
9704 s
= new_stmt(cstate
, BPF_LD
|BPF_IMM
);
9708 /* Forcibly append these statements to the true condition
9709 * of the protocol check by creating a new block that is
9710 * always true and ANDing them. */
9711 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9714 b1
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9723 /* We need to store three values based on the VXLAN header:
9724 * - The offset of the linktype.
9725 * - The offset of the end of the VXLAN header.
9726 * - The offset of the end of the encapsulated MAC header. */
9727 static struct slist
*
9728 gen_vxlan_offsets(compiler_state_t
*cstate
)
9730 struct slist
*s
, *s1
;
9732 /* Calculate the offset of the VXLAN header itself. This
9733 * includes the IP header computed previously (including any
9734 * variable link prefix) and stored in A plus the fixed size
9735 * headers (fixed link prefix, MAC length, UDP header). */
9736 s
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9737 s
->s
.k
= cstate
->off_linkpl
.constant_part
+ cstate
->off_nl
+ 8;
9739 /* Add the VXLAN header length to its offset and store */
9740 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9744 /* Push the link header. VXLAN packets always contain Ethernet
9746 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 1, 0, alloc_reg(cstate
));
9748 s1
= new_stmt(cstate
, BPF_ST
);
9749 s1
->s
.k
= cstate
->off_linkhdr
.reg
;
9752 /* As the payload is an Ethernet packet, we can use the
9753 * EtherType of the payload directly as the linktype. */
9754 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9758 cstate
->off_linktype
.reg
= alloc_reg(cstate
);
9759 cstate
->off_linktype
.is_variable
= 1;
9760 cstate
->off_linktype
.constant_part
= 0;
9762 s1
= new_stmt(cstate
, BPF_ST
);
9763 s1
->s
.k
= cstate
->off_linktype
.reg
;
9766 /* Two bytes further is the end of the Ethernet header and the
9767 * start of the payload. */
9768 s1
= new_stmt(cstate
, BPF_ALU
|BPF_ADD
|BPF_K
);
9772 /* Move the result to X. */
9773 s1
= new_stmt(cstate
, BPF_MISC
|BPF_TAX
);
9776 /* Store the final result of our linkpl calculation. */
9777 cstate
->off_linkpl
.reg
= alloc_reg(cstate
);
9778 cstate
->off_linkpl
.is_variable
= 1;
9779 cstate
->off_linkpl
.constant_part
= 0;
9781 s1
= new_stmt(cstate
, BPF_STX
);
9782 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9790 /* Check to see if this is a VXLAN packet. */
9792 gen_vxlan(compiler_state_t
*cstate
, bpf_u_int32 vni
, int has_vni
)
9794 struct block
*b0
, *b1
;
9798 * Catch errors reported by us and routines below us, and return NULL
9801 if (setjmp(cstate
->top_ctx
))
9804 b0
= gen_vxlan4(cstate
, vni
, has_vni
);
9805 b1
= gen_vxlan6(cstate
, vni
, has_vni
);
9810 /* Later filters should act on the payload of the VXLAN frame,
9811 * update all of the header pointers. Attach this code so that
9812 * it gets executed in the event that the VXLAN filter matches. */
9813 s
= gen_vxlan_offsets(cstate
);
9815 b1
= gen_true(cstate
);
9816 sappend(s
, b1
->stmts
);
9821 cstate
->is_encap
= 1;
9826 /* Check that the encapsulated frame has a link layer header
9827 * for Ethernet filters. */
9828 static struct block
*
9829 gen_encap_ll_check(compiler_state_t
*cstate
)
9832 struct slist
*s
, *s1
;
9834 /* The easiest way to see if there is a link layer present
9835 * is to check if the link layer header and payload are not
9838 /* Geneve always generates pure variable offsets so we can
9839 * compare only the registers. */
9840 s
= new_stmt(cstate
, BPF_LD
|BPF_MEM
);
9841 s
->s
.k
= cstate
->off_linkhdr
.reg
;
9843 s1
= new_stmt(cstate
, BPF_LDX
|BPF_MEM
);
9844 s1
->s
.k
= cstate
->off_linkpl
.reg
;
9847 b0
= new_block(cstate
, BPF_JMP
|BPF_JEQ
|BPF_X
);
9855 static struct block
*
9856 gen_atmfield_code_internal(compiler_state_t
*cstate
, int atmfield
,
9857 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9862 * This check is a no-op for A_MSGTYPE so long as the only incoming
9863 * code path is from gen_atmmulti_abbrev(), which makes the same
9864 * check first; also for A_PROTOTYPE so long as the only incoming code
9865 * paths are from gen_atmtype_abbrev(), which makes the same check
9866 * first, or from gen_llc_internal() or gen_linktype(), which restrict
9869 assert_atm(cstate
, atmkw(atmfield
));
9874 assert_maxval(cstate
, "VPI", jvalue
, UINT8_MAX
);
9875 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vpi
, BPF_B
,
9876 0xffffffffU
, jtype
, reverse
, jvalue
);
9880 assert_maxval(cstate
, "VCI", jvalue
, UINT16_MAX
);
9881 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_vci
, BPF_H
,
9882 0xffffffffU
, jtype
, reverse
, jvalue
);
9886 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_proto
, BPF_B
,
9887 0x0fU
, jtype
, reverse
, jvalue
);
9891 b0
= gen_ncmp(cstate
, OR_LINKHDR
, cstate
->off_payload
+ MSG_TYPE_POS
, BPF_B
,
9892 0xffffffffU
, jtype
, reverse
, jvalue
);
9901 static struct block
*
9902 gen_atmtype_metac(compiler_state_t
*cstate
)
9904 struct block
*b0
, *b1
;
9906 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9907 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 1, BPF_JEQ
, 0);
9912 static struct block
*
9913 gen_atmtype_sc(compiler_state_t
*cstate
)
9915 struct block
*b0
, *b1
;
9917 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9918 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 5, BPF_JEQ
, 0);
9923 static struct block
*
9924 gen_atmtype_llc(compiler_state_t
*cstate
)
9928 b0
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LLC
, BPF_JEQ
, 0);
9929 cstate
->linktype
= cstate
->prevlinktype
;
9934 gen_atmfield_code(compiler_state_t
*cstate
, int atmfield
,
9935 bpf_u_int32 jvalue
, int jtype
, int reverse
)
9938 * Catch errors reported by us and routines below us, and return NULL
9941 if (setjmp(cstate
->top_ctx
))
9944 return gen_atmfield_code_internal(cstate
, atmfield
, jvalue
, jtype
,
9949 gen_atmtype_abbrev(compiler_state_t
*cstate
, int type
)
9951 struct block
*b0
, *b1
;
9954 * Catch errors reported by us and routines below us, and return NULL
9957 if (setjmp(cstate
->top_ctx
))
9960 assert_atm(cstate
, atmkw(type
));
9965 /* Get all packets in Meta signalling Circuit */
9966 b1
= gen_atmtype_metac(cstate
);
9970 /* Get all packets in Broadcast Circuit*/
9971 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9972 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 2, BPF_JEQ
, 0);
9977 /* Get all cells in Segment OAM F4 circuit*/
9978 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9979 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
9984 /* Get all cells in End-to-End OAM F4 Circuit*/
9985 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9986 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
9991 /* Get all packets in connection Signalling Circuit */
9992 b1
= gen_atmtype_sc(cstate
);
9996 /* Get all packets in ILMI Circuit */
9997 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
9998 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 16, BPF_JEQ
, 0);
10003 /* Get all LANE packets */
10004 b1
= gen_atmfield_code_internal(cstate
, A_PROTOTYPE
, PT_LANE
, BPF_JEQ
, 0);
10007 * Arrange that all subsequent tests assume LANE
10008 * rather than LLC-encapsulated packets, and set
10009 * the offsets appropriately for LANE-encapsulated
10012 * We assume LANE means Ethernet, not Token Ring.
10014 PUSH_LINKHDR(cstate
, DLT_EN10MB
, 0,
10015 cstate
->off_payload
+ 2, /* Ethernet header */
10017 cstate
->off_linktype
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 12;
10018 cstate
->off_linkpl
.constant_part
= cstate
->off_linkhdr
.constant_part
+ 14; /* Ethernet */
10019 cstate
->off_nl
= 0; /* Ethernet II */
10020 cstate
->off_nl_nosnap
= 3; /* 802.3+802.2 */
10030 * Filtering for MTP2 messages based on li value
10031 * FISU, length is null
10032 * LSSU, length is 1 or 2
10033 * MSU, length is 3 or more
10034 * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
10037 gen_mtp2type_abbrev(compiler_state_t
*cstate
, int type
)
10039 struct block
*b0
, *b1
;
10042 * Catch errors reported by us and routines below us, and return NULL
10045 if (setjmp(cstate
->top_ctx
))
10048 assert_ss7(cstate
, ss7kw(type
));
10053 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10054 0x3fU
, BPF_JEQ
, 0, 0U);
10058 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10059 0x3fU
, BPF_JGT
, 1, 2U);
10060 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10061 0x3fU
, BPF_JGT
, 0, 0U);
10066 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li
, BPF_B
,
10067 0x3fU
, BPF_JGT
, 0, 2U);
10071 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10072 0xff80U
, BPF_JEQ
, 0, 0U);
10076 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10077 0xff80U
, BPF_JGT
, 1, 0x0100U
);
10078 b1
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10079 0xff80U
, BPF_JGT
, 0, 0U);
10084 b0
= gen_ncmp(cstate
, OR_PACKET
, cstate
->off_li_hsl
, BPF_H
,
10085 0xff80U
, BPF_JGT
, 0, 0x0100U
);
10095 * These maximum valid values are all-ones, so they double as the bitmasks
10096 * before any bitwise shifting.
10098 #define MTP2_SIO_MAXVAL UINT8_MAX
10099 #define MTP3_PC_MAXVAL 0x3fffU
10100 #define MTP3_SLS_MAXVAL 0xfU
10102 static struct block
*
10103 gen_mtp3field_code_internal(compiler_state_t
*cstate
, int mtp3field
,
10104 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10112 newoff_sio
= cstate
->off_sio
;
10113 newoff_opc
= cstate
->off_opc
;
10114 newoff_dpc
= cstate
->off_dpc
;
10115 newoff_sls
= cstate
->off_sls
;
10117 assert_ss7(cstate
, ss7kw(mtp3field
));
10119 switch (mtp3field
) {
10122 * See UTU-T Rec. Q.703, Section 2.2, Figure 3/Q.703.
10124 * SIO is the simplest field: the size is one byte and the offset is a
10125 * multiple of bytes, so the only detail to get right is the value of
10126 * the [right-to-left] field offset.
10129 newoff_sio
+= 3; /* offset for MTP2_HSL */
10133 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP2_SIO_MAXVAL
);
10134 // Here the bitmask means "do not apply a bitmask".
10135 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sio
, BPF_B
, UINT32_MAX
,
10136 jtype
, reverse
, jvalue
);
10140 * See UTU-T Rec. Q.704, Section 2.2, Figure 3/Q.704.
10142 * SLS, OPC and DPC are more complicated: none of these is sized in a
10143 * multiple of 8 bits, MTP3 encoding is little-endian and MTP packet
10144 * diagrams are meant to be read right-to-left. This means in the
10145 * diagrams within individual fields and concatenations thereof
10146 * bitwise shifts and masks can be noted in the common left-to-right
10147 * manner until each final value is ready to be byte-swapped and
10148 * handed to gen_ncmp(). See also gen_dnhostop(), which solves a
10149 * similar problem in a similar way.
10151 * Offsets of fields within the packet header always have the
10152 * right-to-left meaning. Note that in DLT_MTP2 and possibly other
10153 * DLTs the offset does not include the F (Flag) field at the
10154 * beginning of each message.
10156 * For example, if the 8-bit SIO field has a 3 byte [RTL] offset, the
10157 * 32-bit standard routing header has a 4 byte [RTL] offset and could
10158 * be tested entirely using a single BPF_W comparison. In this case
10159 * the 14-bit DPC field [LTR] bitmask would be 0x3FFF, the 14-bit OPC
10160 * field [LTR] bitmask would be (0x3FFF << 14) and the 4-bit SLS field
10161 * [LTR] bitmask would be (0xF << 28), all of which conveniently
10162 * correlates with the [RTL] packet diagram until the byte-swapping is
10165 * The code below uses this approach for OPC, which spans 3 bytes.
10166 * DPC and SLS use shorter loads, SLS also uses a different offset.
10173 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10174 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_opc
, BPF_W
,
10175 SWAPLONG(MTP3_PC_MAXVAL
<< 14), jtype
, reverse
,
10176 SWAPLONG(jvalue
<< 14));
10184 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_PC_MAXVAL
);
10185 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_dpc
, BPF_H
,
10186 SWAPSHORT(MTP3_PC_MAXVAL
), jtype
, reverse
,
10187 SWAPSHORT(jvalue
));
10195 assert_maxval(cstate
, ss7kw(mtp3field
), jvalue
, MTP3_SLS_MAXVAL
);
10196 b0
= gen_ncmp(cstate
, OR_PACKET
, newoff_sls
, BPF_B
,
10197 MTP3_SLS_MAXVAL
<< 4, jtype
, reverse
,
10208 gen_mtp3field_code(compiler_state_t
*cstate
, int mtp3field
,
10209 bpf_u_int32 jvalue
, int jtype
, int reverse
)
10212 * Catch errors reported by us and routines below us, and return NULL
10215 if (setjmp(cstate
->top_ctx
))
10218 return gen_mtp3field_code_internal(cstate
, mtp3field
, jvalue
, jtype
,
10222 static struct block
*
10223 gen_msg_abbrev(compiler_state_t
*cstate
, int type
)
10228 * Q.2931 signalling protocol messages for handling virtual circuits
10229 * establishment and teardown
10234 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, SETUP
, BPF_JEQ
, 0);
10237 case A_CALLPROCEED
:
10238 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CALL_PROCEED
, BPF_JEQ
, 0);
10242 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT
, BPF_JEQ
, 0);
10246 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, CONNECT_ACK
, BPF_JEQ
, 0);
10250 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE
, BPF_JEQ
, 0);
10253 case A_RELEASE_DONE
:
10254 b1
= gen_atmfield_code_internal(cstate
, A_MSGTYPE
, RELEASE_DONE
, BPF_JEQ
, 0);
10264 gen_atmmulti_abbrev(compiler_state_t
*cstate
, int type
)
10266 struct block
*b0
, *b1
;
10269 * Catch errors reported by us and routines below us, and return NULL
10272 if (setjmp(cstate
->top_ctx
))
10275 assert_atm(cstate
, atmkw(type
));
10281 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10282 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10284 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10290 b0
= gen_atmfield_code_internal(cstate
, A_VCI
, 3, BPF_JEQ
, 0);
10291 b1
= gen_atmfield_code_internal(cstate
, A_VCI
, 4, BPF_JEQ
, 0);
10293 b0
= gen_atmfield_code_internal(cstate
, A_VPI
, 0, BPF_JEQ
, 0);
10299 * Get Q.2931 signalling messages for switched
10300 * virtual connection
10302 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10303 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10305 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10307 b0
= gen_msg_abbrev(cstate
, A_CONNECTACK
);
10309 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10311 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10313 b0
= gen_atmtype_sc(cstate
);
10317 case A_METACONNECT
:
10318 b0
= gen_msg_abbrev(cstate
, A_SETUP
);
10319 b1
= gen_msg_abbrev(cstate
, A_CALLPROCEED
);
10321 b0
= gen_msg_abbrev(cstate
, A_CONNECT
);
10323 b0
= gen_msg_abbrev(cstate
, A_RELEASE
);
10325 b0
= gen_msg_abbrev(cstate
, A_RELEASE_DONE
);
10327 b0
= gen_atmtype_metac(cstate
);