4.1.2 后验概率最大化的含义

本文探讨了朴素贝叶斯分类器的工作原理,指出它将实例分配到后验概率最大的类别中,这一过程等价于期望风险最小化。通过0-1损失函数的定义,详细推导了期望风险函数,并最终得出结论:期望风险最小化准则转化为后验概率最大化准则,即选择使后验概率最大的类别作为预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素贝叶斯法将实例分到后验概率最大的类中,这等价与期望风险最小化。
假设采用0-1损失函数:
L(Y,f(X))={ 1, Y≠f(X)0, Y=f(X)L(Y,f(X))=\begin{cases} 1, \ Y \neq f(X) \\ 0, \ Y=f(X) \end{cases} L(Y,f(X))={ 1, Y=f(X)0, Y=f(X)
其中f(X)f(X)f(X)是分类决策函数,X,YX,YX,Y的联合概率分布是P(X,Y)P(X,Y)P(X,Y)
期望风险函数为
Rexp(f)=E(L(Y,f(X)))=EX(L(Y,f(X))P(Y∣X)) \begin{equation*} \begin{split} R_{exp}(f) &= E(L(Y, f(X))) \\ &=E_X(L(Y,f(X))P(Y|X)) \end{split} \end{equation*} Rexp(f)=E(L(Y,f(X)))=EX(L(Y,f(X))P(YX))
需要对上式极小化。

下面推导等会儿要用到的等式:
y∈{ c1,c2,…,cK}y \in \{c_1,c_2, \dots, c_K\}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值