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fifty or so years, it has almost never been possible to demonstrate that

results obtained from such approximations even correctly reproduce

what the original mathematical equations would imply.

Models based on simple programs, however, suffer from no such

problems. For essentially all of them involve only discrete elements which

can be handled quite directly on a practical computer. And this means that

it becomes straightforward in principle—and often highly efficient in

practice—to work out at least the basic consequences of such models.

Many of the models that I discuss in this chapter are actually

based on some of the very simplest kinds of programs that I consider

anywhere in this book. But as we shall see, even these models appear

quite sufficient to capture the behavior of a remarkably wide range of

systems from nature and elsewhere—establishing beyond any doubt, I

believe, the practical value of thinking in terms of simple programs.

The Growth of Crystals

At a microscopic level crystals consist of regular arrays of atoms laid

out much like the cells in a cellular automaton. A crystal forms when a

liquid or gas is cooled below its freezing point. Crystals always start

from a seed—often a foreign object such as a grain of dust—and then

grow by progressively adding more atoms to their surface.

As an idealization of this process, one can consider a cellular

automaton in which black cells represent regions of solid and white

cells represent regions of liquid or gas. If one assumes that any cell

which is adjacent to a black cell will itself become black on the next

step, then one gets the patterns of growth shown below.

step 1 step 2 step 3 step 4 step 5 step 6

step 1 step 2 step 3 step 4 step 5 step 6

Cellular automata with rules that
specify that a cell should become
black if any of its neighbors are
already black. The patterns produced
have a simple faceted form that
reflects directly the structure of the
underlying lattice of cells.
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The shapes produced in each case are very simple, and ultimately

consist just of flat facets arranged in a way that reflects directly the

structure of the underlying lattice of cells. And many crystals in

nature—including for example most gemstones—have similarly simple

faceted forms. But some do not. And as one well-known example,

snowflakes can have highly intricate forms, as illustrated below.

To a good approximation, all the molecules in a snowflake

ultimately lie on a simple hexagonal grid. But in the actual process of

snowflake growth, not every possible part of this grid ends up being

filled with ice. The main effect responsible for this is that whenever a

piece of ice is added to the snowflake, there is some heat released,

which then tends to inhibit the addition of further pieces of ice nearby.

One can capture this basic effect by having a cellular automaton

with rules in which cells become black if they have exactly one black

neighbor, but stay white whenever they have more than one black

neighbor. The pictures on the facing page show a sequence of steps in

the evolution of such a cellular automaton. And despite the simplicity

of its underlying rules, what one sees is that the patterns it produces are

strikingly similar to those seen in real snowflakes.

From looking at the behavior of the cellular automaton, one can

immediately make various predictions about snowflakes. For example,

Examples of typical forms of snowflakes. Note that the scales for different pictures are different.
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one expects that during the growth of a particular snowflake there

should be alternation between tree-like and faceted shapes, as new

branches grow but then collide with each other.

And if one looks at real snowflakes, there is every indication that

this is exactly what happens. And in fact, in general the simple cellular

automaton shown above seems remarkably successful at reproducing

all sorts of obvious features of snowflake growth. But inevitably there

are many details that it does not capture. And indeed some of the

photographs on the facing page do not in the end look much like

patterns produced at any step in the evolution shown above.

step 1 step 2 step 3 step 4 step 5 step 6 step 7

step 8 step 9 step 10 step 11 step 12 step 13

step 14 step 15 step 16 step 17 step 18 step 19

step 20 step 21 step 22 step 23 step 24 step 25

step 26 step 27 step 28 step 29 step 30 step 31

The evolution of a cellular automaton in which each cell on a hexagonal grid becomes black whenever exactly one of its
neighbors was black on the step before. This rule captures the basic growth inhibition effect that occurs in snowflakes. The
resulting patterns obtained at different steps look remarkably similar to many real snowflakes.



S T E P H E N  W O L F R A M A  N E W  K I N D  O F  S C I E N C E

372

But it turns out that as soon as one tries to make a more complete

model, there are immediately an immense number of issues that arise,

and it is difficult to know which are really important and which are not.

At a basic level, one knows that snowflakes are formed when water

vapor in a cloud freezes into ice, and that the structure of a given

snowflake is determined by the temperature and humidity of the

environment in which it grows, and the length of time it spends there. 

The growth inhibition mentioned above is a result of the fact that

when water or water vapor freezes into ice, it releases a certain amount

of latent heat—as the reverse of the phenomenon that when ice is

warmed to 0°C it still needs heat applied before it will actually melt.

But there are also many effects. The freezing temperature, for

example, effectively varies with the curvature of the surface. The rate of

heat conduction differs in different directions on the hexagonal grid.

Convection currents develop in the water vapor around the snowflake.

Mechanical stresses are produced in the crystal as it grows. 

Various models of snowflake growth exist in the standard

scientific literature, typically focusing on one or two of these effects.

But in most cases the models have at some basic level been rather

unsuccessful. For being based on traditional mathematical equations

they have tended to be able to deal only with what amount to fairly

simple smooth shapes—and so have never really been able to address

the kind of intricate structure that is so striking in real snowflakes. 

But with models based on simple programs such as cellular

automata, there is no problem in dealing with more complicated shapes,

and indeed, as we have seen, it is actually quite easy to reproduce the

basic features of the overall behavior that occurs in real snowflakes. 

So what about other types of crystals? 

In nature a variety of forms are seen. And as the pictures on the

facing page demonstrate, the same is true even in cellular automata

with very simple rules. Indeed, much as in nature, the diversity of

behavior is striking. Sometimes simple faceted forms are produced. But

in other cases there are needle-like forms, tree-like or dendritic forms, as

well as rounded forms, and forms that seem in many respects random.
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The occurrence of these last forms is at first especially surprising.

For one might have assumed that any apparent randomness in the final

shape of something like a crystal must always be a consequence of

randomness in its original seed, or in the environment in which it grew. 

But in fact, as the pictures above show—and as we have seen

many times in this book—it is also possible for randomness to arise

intrinsically just through the application of simple underlying rules.

And contrary to what has always been assumed, I suspect that this is

actually how the apparent randomness that one sometimes sees in

shapes formed by crystalline materials often comes about. 

{3, 5, 6} (7 initial cells) {3, 7} (5 initial cells) {2, 5, 7} (2 initial cells) {3, 5, 7} (13 initial cells)

{1, 5} (1 initial cell) {1, 3, 5} (1 initial cell) {3, 6} (5 initial cells) {2, 4, 6} (2 initial cells)

{2} (2 initial cells) {1, 2} (1 initial cell) {1, 3} (1 initial cell) {3, 4} (3 initial cells)

Examples of patterns produced by two-dimensional cellular automata set up to mimic the growth of crystals. The rules in each
case take a cell to become black if the specified number of its neighbors (including diagonals) on a square grid are black on the
step before. These rules are such that once a cell has become black, corresponding to solid, it never reverts to white again. In
each case a row of initial black cells of the specified length was used.




