
EXCERPTED FROM

Processes of
Perception and

Analysis

CHAPTER 10

547

10
Processes of Perception
and Analysis

Introduction

In the course of the past several chapters, we have discussed the basic

mechanisms responsible for a variety of phenomena that occur in

nature. But in trying to explain our actual experience of the natural

world, we need to consider not only how phenomena are produced in

nature, but also how we perceive and analyze these phenomena. For

inevitably our experience of the natural world is based in the end not

directly on behavior that occurs in nature, but rather on the results of

our perception and analysis of this behavior.

Thus, for example, when we look at the behavior of a particular

natural system, there will be certain features that we notice with our

eyes, and certain features, perhaps different, that we can detect by doing

various kinds of mathematical or other analysis.

In previous chapters, I have argued that the basic mechanisms

responsible for many processes that occur in nature can be captured by

simple computer programs based on simple rules. But what about the

processes that are involved in perception and analysis?

Particularly when it comes to the higher levels of perception,

there is much that we do not know for certain about this. But what I

will argue in this chapter is that the evidence we have suggests that the

basic mechanisms at work can once again successfully be captured by

simple programs based on simple rules.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

548

In the traditional sciences, it has rarely been thought necessary to

discuss in any explicit kind of way the processes that are involved in

perception and analysis. For in most cases all that one studies are rather

simple features that can readily be extracted by very straightforward

processes—and which can for example be described by just a few

numbers or by a simple mathematical formula.

But as soon as one tries to investigate behavior of any substantial

complexity, the processes of perception and analysis that one needs to

use are no longer so straightforward. And the results one gets can then

depend on these processes.

In the traditional sciences it has usually been assumed that any

result that is not essentially independent of the processes of perception

and analysis used to obtain it cannot be definite or objective enough to

be of much scientific value. But the point is that if one explicitly

studies processes of perception and analysis, then it becomes possible to

make quite definite and objective statements even in such cases.

And indeed some of the most significant conclusions that I will

reach at the end of this book are based precisely on comparing the

processes that are involved in the production of certain forms of

behavior with the processes involved in their perception and analysis.

What Perception and Analysis Do

In everyday life we are continually bombarded by huge amounts of

data, in the form of images, sounds, and so on. To be able to make use of

this data we must reduce it to more manageable proportions. And this is

what perception and analysis attempt to do. Their role in effect is to take

large volumes of raw data and extract from it summaries that we can use.

At the level of raw data the picture at the top of the facing page,

for example, can be thought of as consisting of many thousands of

individual black and white cells. But with our powers of visual

perception and analysis we can immediately see that the picture can be

summarized just by saying that it consists essentially of an array of

repeated black diamond shapes.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

549

There are in general two ways in which data can be reduced by

perception and analysis. First, those aspects of data that are not relevant

for whatever purpose one has can simply be ignored. And second, one

can avoid explicitly having to specify every element in the data by

making use of regularities that one sees.

Thus, for example, in summarizing the picture above, we choose

to ignore some details, and then to describe what remains in terms of its

simple repetitive overall geometrical structure.

Whenever there are regularities in data, it effectively means that

some of the data is redundant. For example, if a particular pattern is

repeated, then one need not specify the form of this pattern more than

once—for the original data can be reproduced just by repeating a copy of

the pattern. And in general, the presence of regularities makes it

possible to replace literal descriptions of data by shorter descriptions

that are based on procedures for reproducing the data.

There are many forms of perception and analysis. Some happen

quite automatically in our eyes, ears and brains—and these we usually

call perception. Others require explicit conscious effort and mathematical

or computational work—and these we usually call analysis. But the basic

goal in all cases is the same: to reduce raw data to a useful summary form.

Such a summary is important whenever one wants to store or

communicate data efficiently. It is also important if one wants to

compare new data with old, or make meaningful extrapolations or

predictions based on data. And in modern information technology the

problems of data compression, feature detection, pattern recognition

An example of a picture that our powers of
perception and analysis readily allow us to
summarize quite succinctly in simple geometrical
terms. At the lowest level, however, the picture
consists of 24,000 black and white cells.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

550

and system identification all in effect revolve around finding useful

summaries of data.

In traditional science statistical analysis has been the most

common way of trying to find summaries of data. And in general

perception and analysis can be viewed as equivalent to finding models

that reproduce whatever aspects of data one considers relevant.

Perception and analysis correspond in many respects to the

inverse of most of what we have studied in this book. For typically what

we have done is to start from a simple computer program, and then seen

what behavior this program produces. But in perception and analysis we

start from behavior that we observe, then try to deduce what procedure

or program will reproduce this data.

So how easy is it to do this? It turns out that for most of the kinds

of rules used in traditional mathematics, it is in fact fairly easy. But for

the more general rules that I discuss in this book it appears to often be

extremely difficult. For even though the rules may be simple, the

behavior they produce is often highly complex, and shows absolutely no

obvious trace of its simple origins.

As one example, the pictures on the facing page were all

generated by starting from a single black cell and then applying very

simple two-dimensional cellular automaton rules. Yet if one looks just

at these final pictures, there is no easy way to tell how they were made.

Our standard methods of perception and analysis can certainly

determine that the pictures are for example symmetrical. But none of

these methods typically get even close to being able to recognize just

how simple a procedure can in fact be used to produce the pictures.

One might think that our inability to find such a procedure could

just be a consequence of limitations in the particular methods of

perception and analysis that we, as humans, happen to have developed.

And one might therefore suppose that an alien intelligence could exist

which would be able to look at our pictures and immediately tell that

they were produced by a very simple procedure.

But in fact I very much doubt that this will ever be the case. For I

suspect that there are fundamental limitations on what perception and

analysis can ever be expected to do. For there seem to be many kinds of

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

551

systems in which it is overwhelmingly easier to generate highly

complex behavior than to recognize the origins of this behavior.

As I have discovered in this book, it is rather easy to generate

complex behavior by starting from simple initial conditions and then

following simple sets of rules. But the point is that if one starts from

some particular piece of behavior there are in general no such simple

rules that allow one to go backwards and find out how this behavior can

be produced. Typically the problem is similar to trying to find solutions

that will satisfy certain constraints. And as we have seen several times

in this book, such problems can be extremely difficult.

So insofar as the actual processes of perception and analysis that

end up being used are fairly simple, it is inevitable that there will be

situations where one cannot recognize the origins of behavior that one

sees—even when this behavior is in fact produced by very simple rules.

Patterns produced by taking a single black cell, then evolving for 50 and 100 steps according to outer totalistic cellular
automaton rules 54, 222 and 374. Despite the simple description that can be given of this procedure, our standard
methods of perception and analysis cannot readily deduce this description given just the final pictures shown here.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

552

Defining the Notion of Randomness

Many times in this book I have said that the behavior of some system or

another seems random. But so far I have given no precise definition of

what I mean by randomness. And what we will discover in this section

is that to come up with an appropriate definition one has no choice but

to consider issues of perception and analysis.

One might have thought that from traditional mathematics and

statistics there would long ago have emerged some standard definition of

randomness. But despite occasional claims for particular definitions, the

concept of randomness has in fact remained quite obscure. And indeed I

believe that it is only with the discoveries in this book that one is finally

now in a position to develop a real understanding of what randomness is.

At the level of everyday language, when we say that something

seems random what we usually mean is that there are no significant

regularities in it that we can discern—at least with whatever methods

of perception and analysis we use.

We would not usually say, therefore, that either of the first two

pictures at the top of the facing page seem random, since we can readily

recognize highly regular repetitive and nested patterns in them. But the

third picture we would probably say does seem random, since at least at

the level of ordinary visual perception we cannot recognize any

significant regularities in it.

So given this everyday notion of randomness, how can we build

on it to develop more precise definitions? The first step is to clarify

what it means not to be able to recognize regularities in something.

Following the discussion in the previous section, we know that

whenever we find regularities, it implies that redundancy is present,

and this in turn means that a shorter description can be given. So when

we say that we cannot recognize any regularities, this is equivalent to

saying that we cannot find a shorter description.

The three pictures on the facing page can always be described by

explicitly giving a list of the colors of each of the 6561 cells that they

contain. But by using the regularities that we can see in the first two

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

553

pictures, we can readily construct much shorter—yet still complete—

descriptions of these pictures.

The repetitive structure of picture (a) implies that to reproduce

this picture all we need do is to specify the colors in a 49 ä 2 block, and

then say that this block should be repeated an appropriate number of

times. Similarly, the nested structure of picture (b) implies that to

reproduce this picture, all we need do is to specify the colors in a 3 ä 3

block, and then say that as in a two-dimensional substitution system

each black cell should repeatedly be replaced by this block.

But what about picture (c)? Is there any short description that can

be given of this picture? Or do we have no choice but just to specify

explicitly the color of every one of the cells it contains?

Our powers of visual perception certainly do not reveal any

significant regularities that would allow us to construct a shorter

description. And neither, it turns out, do any standard methods of

mathematical or statistical analysis. And so for practical purposes we

have little choice but just to specify explicitly the color of each cell.

But the fact that no short description can be found by our usual

processes of perception and analysis does not in any sense mean that no

such description exists at all. And indeed, as it happens, picture (c) in

fact allows a very short description. For it can be generated just by

(a) (b) (c)

Pictures exhibiting different degrees of apparent randomness. Pictures (a) and (b) have obvious
regularities, and would never be considered particularly random. But picture (c) has almost no
obvious regularities, and would typically be considered quite random. As it turns out, picture (c), like
(a) and (b), can actually be generated by a quite simple process. But the point is that the simplicity of
this process does not affect the fact that with our standard methods of perception and analysis
picture (c) is for practical purposes random.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

554

starting with a single black cell and then applying a simple

two-dimensional cellular automaton rule 250 times.

But does the existence of this short description mean that

picture (c) should not be considered random? From a practical point of

view the fact that a short description may exist is presumably not too

relevant if we can never find this description by any of the methods of

perception and analysis that are available to us. But from a conceptual

point of view it may seem unsatisfactory to have a definition of

randomness that depends on our methods of perception and analysis,

and is not somehow absolute.

So one possibility is to define randomness so that something is

considered random only if no short description whatsoever exists of it.

And before the discoveries in this book such a definition might have

seemed not far from our everyday notion of randomness. For we would

probably have assumed that anything generated from a sufficiently

short description would necessarily look fairly simple. But what we

have discovered in this book is that this is absolutely not the case, and

that in fact even from rules with very short descriptions it is easy to

generate behavior in which our standard methods of perception and

analysis recognize no significant regularities.

So to say that something is random only if no short description

whatsoever exists of it turns out to be a highly restrictive definition of

randomness. And in fact, as I mentioned in Chapter 7, it essentially

implies that no process based on definite rules can ever manage to

generate randomness when there is no randomness before. For since the

rules themselves have a short description, anything generated by

following them will also have a correspondingly short description, and

will therefore not be considered random according to this definition.

And even if one is not concerned about where randomness might

come from, there is still a further problem: it turns out in general to be

impossible to determine in any finite way whether any particular thing

can ever be generated from a short description. One might imagine that

one could always just try running all programs with progressively

longer descriptions, and see whether any of them ever generate what

one wants. But the problem is that one can never in general tell in

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

555

advance how many steps of evolution one will need to look at in order

to be sure that any particular piece of behavior will not occur. And as a

result, no finite process can in general be used to guarantee that there is

no short description that exists of a particular thing.

By setting up various restrictions, say on the number of steps of

evolution that will be allowed, it is possible to obtain slightly more

tractable definitions of randomness. But even in such cases the amount

of computational work required to determine whether something

should be considered random is typically astronomically large. And

more important, while such definitions may perhaps be of some

conceptual interest, they correspond very poorly with our intuitive

notion of randomness. In fact, if one followed such a definition most of

the pictures in this book that I have said look random—including for

example picture (c) on page 553—would be considered not random. And

following the discussion of Chapter 7, so would at least many of the

phenomena in nature that we normally think of as random.

Indeed, what I suspect is that ultimately no useful definition of

randomness can be based solely on the issue of what short descriptions

of something may in principle exist. Rather, any useful definition must,

I believe, make at least some reference to how such short descriptions

are supposed to be found.

Over the years, a variety of definitions of randomness have been

proposed that are based on the absence of certain specific regularities.

Often these definitions are presented as somehow being fundamental.

But in fact they typically correspond just to seeing whether some

particular process—and usually a rather simple one—succeeds in

recognizing regularities and thus in generating a shorter description.

A common example—to be discussed further two sections from

now—involves taking, say, a sequence of black and white cells, and

then counting the frequency with which each color and each block of

colors occurs. Any deviation from equality among these frequencies

represents a regularity in the sequence and reveals nonrandomness. But

despite some confusion in the past it is certainly not true that just

checking equality of frequencies of blocks of colors—even arbitrarily

long ones—is sufficient to ensure that no regularities at all exist. This

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

556

procedure can indeed be used to check that no purely repetitive pattern

exists, but as we will see later in this chapter, it does not successfully

detect the presence of even certain highly regular nested patterns.

So how then can we develop a useful yet precise definition of

randomness? What we need is essentially just a precise version of the

statement at the beginning of this section: that something should be

considered random if none of our standard methods of perception and

analysis succeed in detecting any regularities in it. But how can we ever

expect to find any kind of precise general characterization of what all

our various standard methods of perception and analysis do?

The key point that will emerge in this chapter is that in the end

essentially all these methods can be viewed as being based on rather

simple programs. So this suggests a definition that can be given of

randomness: something should be considered to be random whenever

there is essentially no simple program that can succeed in detecting

regularities in it.

Usually if what one is studying was itself created by a simple

program then there will be a few closely related programs that always

succeed in detecting regularities. But if something can reasonably be

considered random, then the point is that the vast majority of simple

programs should not be able to detect any regularities in it.

So does one really need to try essentially all sufficiently simple

programs in order to determine this? In my experience, the answer tends

to be no. For once a few simple programs corresponding to a few standard

methods of perception and analysis have failed to detect regularities, it is

extremely rare for any other simple program to succeed in detecting them.

So this means that the everyday definition of randomness that we

discussed at the very beginning of this section is in the end already

quite unambiguous. For it typically will not matter much which of the

standard methods of perception and analysis we use: after trying a few

of them we will almost always be in a position to come to a quite

definite conclusion about whether or not something should be

considered random.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

557

Defining Complexity

Much of what I have done in this book has been concerned in one way

or another with phenomena associated with complexity. But just as one

does not need a formal definition of life in order to study biology, so also

it has not turned out to be necessary so far in this book to have a formal

definition of complexity. Nevertheless, following our discussion of

randomness in the previous section, we are now in a position to

consider how the notion of complexity might be formally defined.

In everyday language, when we say that something seems

complex what we typically mean is that we have not managed to find

any simple description of it—or at least of those features of it in which

we happen to be interested. But the goal of perception and analysis is

precisely to find such descriptions, so when we say that something

seems complex, what we are effectively saying is that our powers of

perception and analysis have failed on it.

As we discussed two sections ago, there are two ways in which

perception and analysis can typically operate. First, they can just

throw away details in which we are not interested. And second, they

can remove redundancy that is associated with any regularities that

they manage to recognize.

The definition of randomness that we discussed in the previous

section was based on the failure of the second of these two functions.

For what it said was that something should be considered random if our

standard methods of perception and analysis could not find any short

description from which the thing could faithfully be reproduced.

But in defining complexity we need to consider both functions of

perception and analysis. For what we want to know is not whether a

simple or short description can be found of every detail of something,

but merely whether such a description can be found of those features in

which we happen to be interested.

In everyday language, the terms “complexity” and “randomness”

are sometimes used almost interchangeably. And for example any of the

three pictures at the top of the next page could potentially be referred to

as either “quite random” or “quite complex”. But if one chooses to look

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

558

only at overall features, then typically one would tend to say that the

third picture seems more complex than the other two.

For even though the detailed placement of black and white cells

in the first two pictures does not seem simple to describe, at an overall

level these pictures still admit a quite simple description: in essence

they just involve a kind of uniform randomness in which every region

looks more or less the same as every other. But the third picture shows

no such uniformity, even at an overall level. And as a result, we cannot

give a short description of it even if we ignore its small-scale details.

Of course, if one goes to an extreme and looks, say, only at how

big each picture is, then all three pictures have very short descriptions.

And in general how short a description of something one can find will

depend on what features of it one wants to capture—which is why one

may end up ascribing a different complexity to something when one

looks at it for different purposes.

But if one uses a particular method of perception or analysis, then

one can always see how short a description this manages to produce. And

the shorter the description is, the lower one considers the complexity to be.

But to what extent is it possible to define a notion of complexity

that is independent of the details of specific methods of perception and

analysis? In this chapter I argue that essentially all common forms of

perception and analysis correspond to rather simple programs. And if

one is interested in descriptions in which no information is lost—as in

the discussion of randomness in the previous section—then as I

(a) (b) (c)

Examples of pictures that at an everyday level one might typically describe either as being “quite random” or as being “quite complex”.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

559

mentioned in the previous section, it seems in practice that different

simple programs usually agree quite well in their ability or inability to

find short descriptions.

But this seems to be considerably less true when one is dealing

with descriptions in which information can be lost. For it is rather

common to see cases in which only a few features of a system may be

difficult to describe—and depending on whether or not a given program

happens to be sensitive to these features it can ascribe either a quite

high or a quite low complexity to the system.

Nevertheless, as a practical matter, by far the most common way

in which we determine levels of complexity is by using our eyes and

our powers of visual perception. So in practice what we most often

mean when we say that something seems complex is that the particular

processes that are involved in human visual perception have failed to

extract a short description.

And indeed I suspect that even below the level of conscious

thought our brains already have a rather definite notion of complexity.

For when we are presented with a complex image, our eyes tend to

dwell on it, presumably in an effort to give our brains a chance to

extract a simple description.

If we can find no simple features whatsoever—as in the case of

perfect randomness—then we tend to lose interest. But somehow the

images that draw us in the most—and typically that we find the most

aesthetically pleasing—are those for which some features are simple for

us to describe, but others have no short description that can be found by

any of our standard processes of visual perception.

Before the discoveries in this book, one might have thought that

to create anything with a significant level of apparent complexity would

necessarily require a procedure which itself had significant complexity.

But what we have discovered in this book is that in fact there are

remarkably simple programs that produce behavior of great complexity.

And what this means—as the images in this book repeatedly

demonstrate—is that in the end it is rather easy to make pictures for

which our visual system can find no simple overall description.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

560

Data Compression

One usually thinks of perception and analysis as being done mainly in

order to provide material for direct human consumption. But in most

modern computer and communications systems there are processes

equivalent to perception and analysis that happen all the time when

data is compressed for more efficient storage or transmission.

One simple example of such a process is run-length encoding—a

method widely used in practice to compress data that involves long

sequences of identical elements, such as bitmap images of pages of text

with large areas of white.

The basic idea of run-length encoding is to break data into runs of

identical elements, and then to specify the data just by giving the

lengths of these runs. This means, for example, that instead of having to

list explicitly all the cells in a run of, say, 53 identical cells, one instead

just gives the number “53”. And the point is that even if the “53” is

itself represented in terms of black and white cells, this representation

can be much shorter than 53 cells.

(a) (b) (c) (d) (e)

Various representations of numbers from 1 to 30. (a) is unary, in which any given number is represented by a sequence of cells
whose length is equal to that number. (b) is ordinary binary or base 2 representation. (c), (d) and (e) are set up to be
self-delimiting, so that the end of a number can be recognized purely by looking at the cells within it. (c) is like (b), except that it
has a specification of the number of digits at the front. (d) is essentially binary-coded-ternary, with the end of the number
indicated by a pair of black cells. (e) uses a non-integer base derived from the Fibonacci sequence, with the property that a pair
of black cells can appear only at the end of each number.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

561

Indeed, any digit sequence can be thought of as providing a short

representation for a number. But for run-length encoding it turns out

that ordinary base 2 digit sequences do not quite work. For if the

numbers corresponding to the lengths of successive runs are given one

after another then there is no way to tell where the digits of one number

end and the next begin.

Several approaches can be used, however, to avoid this problem.

One, illustrated in picture (c) at the bottom of the facing page, is to

insert at the beginning of each number a specification of how many

digits the number contains. Another approach, illustrated in picture (d),

is in effect to have two cells representing each digit, and then to

indicate the end of the number by a pair of black cells. A variant on this

approach, illustrated in picture (e), uses a non-integer base in which

pairs of black cells can occur only at the end of a number.

2 3 3 3 3 3 3 3 3 3 3 3 3 3

2 4 3 4 3 4 3 4 3 4 3 4

4 6 7 9 8 7

11 11 10 9

(d)

(c)

(b)

(a)

Examples of run-length encoding. In each case the input data is shown on top, and the output is shown below. The
arrows between input and output show how the data is broken into runs of identical elements. Each run is then
specified by a number, represented as a sequence ending with two black cells, as indicated in the inset picture, and in
picture (e) on the facing page. For the first two sets of input data there are enough long runs present that
compression is achieved. But for the other two sets no compression is achieved. Note that the first cell in the output
is used to specify whether the first run is black or white. In this picture and those that follow, the output consists
purely of black and white cells; the gray annotations are included purely as aids to interpretation.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

562

For small numbers, all these approaches yield representations

that are at least somewhat longer than the explicit sequences shown in

picture (a). But for larger numbers, the representations quickly become

much shorter. And this means that they can potentially be used to

achieve compression in run-length encoding.

The pictures at the bottom of the previous page show what

happens when one applies run-length encoding using representation (e)

from page 560 to various sequences of data. In the first two cases, there

are sufficiently many long runs that compression is achieved. But in the

last two cases, there are too many short runs, and the output from

run-length encoding is actually longer than the input.

The pictures below show the results of applying run-length

encoding to typical patterns produced by cellular automata. When the

patterns contain enough regions of uniform color, compression is

achieved. But when the patterns are more intricate—even in a simple

repetitive way—little or no compression is achieved.

Examples of applying run-length encoding to patterns produced by cellular automata. Successive rows in each original image are
placed end to end so as to give a one-dimensional sequence, then run-length encoded, and then chopped into rows again.
Compression is typically achieved whenever most of the image consists of regions of uniform color.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

563

Run-length encoding is based on the idea of breaking data up into

runs of identical elements of varying lengths. Another common approach

to data compression is based on forming blocks of fixed length, and then

representing whatever distinct blocks occur by specific codewords.

The pictures below show a few examples of how this works. In

each case the input is taken to be broken into blocks of length 3. In the

first two cases, there are then only two distinct blocks that occur, so

each of these can be represented by a codeword consisting of a single

cell, with the result that substantial compression is achieved.

1 4 2 6 5 3 1 3 1 3 1 1 1 2 2 6 5 1 4 1

2 4 3 1 4 2 3 1 1 2 1 1 1 1 3 1 1 1

1 3 2 1 1 1 1 2 2 2 3 1 1 1 2 2 2

2 1 2 1 1 2 2 1 2 1 2 1 1 1 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

(e)

(d)

(c)

(b)

(a)

(e)

(d)

(c)

(b)

(a)

Examples of Huffman coding based on blocks of length 3. In cases (a) and (b), only two possible blocks occur, and
these are assigned codewords consisting of a single black cell and a single white cell. In case (c), 3 possible blocks
occur; the most common is assigned a codeword consisting of a single white cell, while the others are assigned
codewords consisting of two cells. In case (d) 4 out of the 8 possible blocks occur, while in case (e) 6 occur. In all
cases, the output begins with a preamble specifying which block is to be represented by which codeword. The blocks
appear explicitly in this preamble, and are indicated by numbered tabs. The codewords are represented implicitly by
the arrangement of cells shown with arrows. The preamble is followed by the actual codewords representing the
data. The codewords are self-delimiting, so that they can be given one after another, with no separator in between.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

564

When a larger number of distinct blocks occur, longer codewords

must inevitably be used. But compression can still be achieved if the

codewords for common blocks are sufficiently much shorter than the

blocks themselves.

One simple strategy for assigning codewords is to number all

distinct blocks in order of decreasing frequency, and then just to use the

resulting numbers—given, say, in one of the representations discussed

above—as the codewords. But if one takes into account the actual

frequencies of different blocks, as well as their ranking, then it turns

out that there are better ways to assign codewords.

The pictures below show examples based on a method known as

Huffman coding. In each case the first part of the output specifies which

blocks are to be represented by which codewords, and then the

remainder of the output gives the actual succession of codewords that

correspond to the blocks appearing in the data. And as the pictures

below illustrate, whenever there are fairly few distinct blocks that

occur with high frequency, substantial compression is achieved.

Huffman encoding with blocks of length 6 applied to patterns produced by cellular automata. The maximum possible compression
is by a factor of 6; the maximum achieved here is roughly a factor of 3. The difference between the size of the results for the last
two examples is mostly a consequence of the presence of large areas of white in the first of them.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

565

But ultimately there is a limit to the degree of compression that

can be obtained with this method. For even in the very best case any

block of cells in the input can never be compressed to less than one cell

in the output.

So how can one achieve greater compression? One approach—

which turns out to be similar to what is used in practice in most current

high-performance general-purpose compression systems—is to set up an

encoding in which any particular sequence of elements above some

length is given explicitly only once, and all subsequent occurrences of

the same sequence are specified by pointers back to the first one.

The pictures below show what happens when this approach is

applied to a few short sequences. In each case, the output consists of two

kinds of objects, one giving sequences that are occurring for the first time,

and the other giving pointers to sequences that have occurred before. Both

kinds of objects start with a single cell that specifies their type. This is

6 11 �6 8 �11 17

1 11 �1 1 10 �1 19 �21

6 54 �6

6 30 �6

(d)

(c)

(b)

(a)

Examples of pointer-based encoding, in which sequences that have occurred once in the data are subsequently
specified just by pointers. Each section of output starts with an element which indicates whether what follows is a
new sequence, or a pointer to a previous one. After this comes a specification of the length of sequence represented
by this section of output, with the number given in the form used for run-length encoding above. Then comes either a
literal sequence, or a number giving the offset to where the required sequence last occurred in the data. In the
examples shown, pointers are used only for sequences of length at least 6. Pointer-based encoding is similar to the
Lempel-Ziv algorithm widely used in practical high-performance general-purpose compression systems.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

566

followed by a specification of the length of the sequence that the object

describes. In the first kind of object, the actual sequence is then given,

while in the second kind of object what is given is a specification of how

far back in the data the required sequence can be found.

With data that is purely repetitive this method achieves quite

dramatic compression. For having once specified the basic sequence to

be repeated, all that then needs to be given is a pointer to this sequence,

together with a representation of the total length of the data.

Purely nested data can also be compressed nearly as much. For as

the pictures below illustrate, each whole level of nesting can be viewed

just as adding a fixed number of repeated sequences.

Examples of the pattern of repeats found in purely nested data. As indicated in these pictures, any
such data must correspond to the output of a neighbor-independent substitution system (see page
83). In pointer-based encoding, the number of pointers required to represent the data increases
essentially like the number of steps in the evolution of the substitution system. Taking into account
the length of the representation for each pointer, the compressed form of a nested sequence of
length will typically grow in length like . (This can be compared with growth for a
purely repetitive sequence.) Note that actual algorithms for pointer-based encoding will typically find
a slightly less regular pattern of repeats than is shown in the pictures here.

n Log[n]2 Log[n]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

567

So what about two-dimensional patterns? The pictures below

show what happens if one takes various patterns, arranges their rows

one after another in a long line, and then applies pointer-based encoding

to the resulting sequences. When there are obvious regularities in the

original pattern, some compression is normally achieved—but in most

cases the amount is not spectacular.

So how can one do better? The basic answer is that one needs to

take account of the two-dimensional nature of the patterns. Most

compression schemes used in practice have in the past primarily been

set up just to handle one-dimensional sequences. But it is not difficult

to set up schemes that operate directly on two-dimensional data.

The picture on the next page shows one approach based on the

idea of breaking images up into collections of nested pieces, each with a

uniform color. In some respects this scheme is a two-dimensional

analog of run-length encoding, and when there are large regions of

uniform color it yields significant compression.

It is also easy to extend block-based encoding to two dimensions:

all one need do is to assign codewords to two-dimensional rather than

Examples of one-dimensional pointer-based encoding applied to patterns produced by cellular automata. Successive rows in each image
are placed end to end so as to get a sequence to which the encoding can be applied. Pointers are used only for repeats that are of length
at least 4. In the last example, large regions contain no such repeats, and therefore appear in the output just as they do in the input.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

568

one-dimensional blocks. And as the pictures at the top of the facing

page demonstrate, this procedure can lead to substantial compression.

Particularly notable is what happens in case (d). For even though this

pattern is produced by a simple one-dimensional cellular automaton

rule, and even though one can see by eye that it contains at least some

small-scale regularities, none of the schemes we have discussed up till

now have succeeded in compressing it at all.

(c) (d)

(a) (b)

(c)

(a)

(d)

(b)

Examples of encoding by two-dimensional recursive subdivision. The idea is to use a generalization of a two-dimensional
substitution system, in which at each step a square either remains the same or is subdivided into four small squares. The
encoding specifies which choice is made at each step for each square. The method is analogous to the quadtree
representation sometimes used in computer graphics. The substantial compression seen even in case (c) is a
consequence of the large areas of uniform white that are present.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

569

The picture below demonstrates why two-dimensional block

encoding does, however, manage to compress it. The point is that the

two-dimensional blocks that one forms always contain cells whose

colors are connected by the cellular automaton rule—and this greatly

reduces the number of different arrangements of colors that can occur.

In cases (e) and (f), however, there is no simple rule for going from

one row to the next, and two-dimensional block encoding—like all the

other encoding schemes we have discussed so far—does not yield any

substantial compression.

Like block encoding, pointer-based encoding can also be extended

to two dimensions. The basic idea is just to scan two-dimensional data

looking for repeats not of one-dimensional sequences, but instead of

two-dimensional regions. And although such a procedure does not in the

(e)

(c)

(a)

(f)

(d)

(b)

Examples of two-dimensional block-based encoding. Each image is broken into 3 ä 2 blocks, and codewords are then
assigned to these blocks using the Huffman scheme. Note the presence of compression even in case (d). This is a
consequence of the fact that the cellular automaton rule allows only certain blocks to appear in the pattern, as illustrated
in the picture below. (e) is generated by a two-dimensional cellular automaton; (f) is the sequence that appears on the
center column of rule 30.

Cellular automaton rule 30, and the 3 ä 2 blocks which appear in large
patterns generated by it. There are a total of possible 3 ä 2 blocks
of black and white cells; the fact that only 24 of them appear in patterns
generated by rule 30 is what makes it possible for two-dimensional
block-based encoding to compress such patterns.

26 = 64

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

570

past appear to have been used in practice, it is quite straightforward to

implement. The pictures on the facing page show some examples of the

results one gets. And in many cases it turns out that the overall level of

compression obtained is considerably greater than with any of the other

schemes discussed in this section. But what is perhaps still more

striking is that the patterns of repeated regions seem to capture almost

every regularity that we readily notice by eye—as well as some that we

do not. In pictures (c) and (d), for example, fairly subtle repetition on the

left-hand side is captured, as is fourfold symmetry in picture (e).

One might have thought that to capture all these kinds of

regularities would require a whole collection of complicated

procedures. But what the pictures on the facing page demonstrate is

that in fact just a single rather straightforward procedure is quite

sufficient. And indeed the amount of compression achieved by this

procedure in different cases seems to agree rather well with our

intuitive impression of how much regularity is present.

All of the methods of data compression that we have discussed in

this section can be thought of as corresponding to fairly simple

programs. But each method involves a program with a rather different

structure, and so one might think that it would inevitably be sensitive

to rather different kinds of regularities.

But what we have seen in this section is that in fact different

methods of data compression have remarkably similar characteristics.

Essentially every method, for example, will successfully compress large

regions of uniform color. And most methods manage to compress

behavior that is repetitive, and at least to some extent behavior that is

nested—exactly the two kinds of simple behavior that we have noted

many times in this book.

For more complicated behavior, however, none of the methods

seem capable of substantial compression. It is not that no compression

is ever in principle possible. Indeed, as it happens, every single one of

the pictures on the facing page can for example be generated from very

short cellular automaton programs.

But the point is that except when the overall behavior shows

repetition or nesting none of the standard methods of data compression

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

571

(e) (f)

(c) (d)

(a) (b)

(e)

(c)

(a)

(f)

(d)

(b)

Examples of two-dimensional pointer-based encoding. The gray rectangles in the upper pictures indicate repeated regions
that are encoded using pointers. In the particular scheme used here, each of these regions is required to contain at least
25 cells that have not already been encoded using pointers. The images are scanned sequentially and at every point the
maximal rectangle extending to the right and down is found that is a repeat of a rectangle previously encountered, and
contains the largest number of cells not already encoded using pointers. In many cases this maximal rectangle overlaps
those found at subsequent points.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

572

as we have discussed them in this section come even close to finding

such short descriptions. And as a result, at least with respect to any of

these methods all we can reasonably say is that the behavior we see

seems for practical purposes random.

Irreversible Data Compression

All the methods of data compression that we discussed in the previous

section are set up to be reversible, in the sense that from the encoded

version of any piece of data it is always possible to recover every detail of

the original. And if one is dealing with data that corresponds to text or

programs such reversibility is typically essential. But with images or sounds

it is typically no longer so necessary: for in such cases all that in the end

usually matters is that one be able to recover something that looks or

sounds right. And by being able to drop details that have little or no

perceptible effect one can often achieve much higher levels of compression.

In the case of images a simple approach is just to ignore features

that are smaller than some minimum size. The pictures below show

The effect of including progressively smaller features in the representation of images
by nested squares. The encoded version of each image is shown underneath the
image. When smaller squares are included, the amount of data required to specify
the image increases rapidly.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

573

(a) (b)

basic forms ranked basic forms

Examples of how images can be built up by adding together basic forms consisting of so-called two-dimensional Walsh
functions. On the top left the basic forms are given in so-called sequency order. On the top right they are reordered roughly so as
to go systematically from coarser to finer. In the bottom arrays of pictures each successive picture is obtained by adding in the
corresponding basic form with an appropriate weight. The basic forms shown here have the property of being orthogonal, so that
the weight for each form can be deduced simply by multiplying the original image by that form. Note that the forms involve
numerical values -1 and +1, corresponding to cells colored white and black. The images shown here are all rescaled so that
smallest values are white and largest black. The JPEG method of image compression uses an approach similar to the one shown
here, though with basic forms that have continuous levels of gray, rather than just black and white.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

574

what happens if one divides an image into a collection of nested

squares, but imposes a lower limit on the size of these squares. And

what one sees is that as the lower limit is increased, the amount of

compression increases rapidly—though at the cost of a correspondingly

rapid decrease in the quality of the image.

So can one do better at maintaining the quality of the image? Various

schemes are used in practice, and almost all of them are based on the idea

from traditional mathematics that by viewing data in terms of numbers it

becomes possible to decompose the data into sums of fixed basic forms—

some of which can be dropped in order to achieve compression.

The pictures on the previous page show an example of how this

works. On the top left is a set of basic forms which have the property that

any two-dimensional image can be built up simply by adding together

these forms with appropriate weights. On the top right these forms are

then ranked roughly from coarsest to finest. And given this ranking, the

arrays of pictures at the bottom show how two different images can be

built up by progressively adding in more and more of the basic forms.

If all the basic forms are included, then the original image is

faithfully reproduced. But if one drops some of the later forms—thereby

reducing the number of weights that have to be specified—one gets only

an approximation to the image. The facing page shows what happens to

a variety of images when different fractions of the forms are kept.

Images that are sufficiently simple can already be recognized

even when only a very small fraction of the forms are included—

corresponding to a very high level of compression. But most other

images typically require more forms to be included—and thus do not

allow such high levels of compression.

Indeed the situation is very much what one would expect from

the definition of complexity that I gave two sections ago. The relevant

features of both simple and completely random images can readily be

recognized even at quite high levels of compression. But images that

one would normally consider complex tend to have features that cannot

be recognized except at significantly lower levels of compression.

All the pictures on the facing page, however, were generated from

the specific ordering of basic forms shown on the previous page. And

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

575

one might wonder whether perhaps some other ordering would make it

easier to compress more complex images.

One simple approach is just to assemble a large collection of images

typical of the ones that one wants to compress, and then to order the basic

forms so that those which on average occur with larger weights in this

collection appear first. The pictures on the next page show what happens

if one does this first with images of cellular automata and then with

images of letters. And indeed slightly higher levels of compression are

achieved. But whatever ordering is used the fact seems to remain that

images that we would normally consider complex still cannot

systematically be compressed more than a small amount.

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

Examples of images obtained by keeping only certain fractions of the complete set of basic forms. In the case of both
simple and completely random images, many features are recognizable even with fairly few basic forms—implying
that a highly compressed representation can be given.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

576

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

Results obtained by deducing optimal orderings of basic forms from collections of images of cellular automata
(top) and letters (bottom). The orderings of basic forms are shown on the left, in each case starting with those
whose weights are largest in absolute value when averaged over the collection of images. Note that the
orderings are shown for 8 ä 8 basic forms, while the actual images are 32 ä 32. The orderings are deduced
respectively from images of the 256 elementary cellular automata, and the 52 upper and lower case letters.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

577

Visual Perception

In modern times it has usually come to be considered quite unscientific

to base very much just on how things look to our eyes. But the fact

remains that despite all the various methods of mathematical and other

analysis that have been developed, our visual system still represents

one of the most powerful and reliable tools we have. And certainly in

writing this book I have relied heavily on our ability to make all sorts of

deductions on the basis of looking at visual representations.

So how does the human visual system actually work? And what

are its limitations? There are many details yet to be resolved, but over

the past couple of decades, it has begun to become fairly clear how at

least the lowest levels of the system work. And it turns out—just as in

so many other cases that we have seen in this book—that much of what

goes on can be thought of in terms of remarkably simple programs.

In fact, across essentially every kind of human perception, the

basic scheme that seems to be used over and over again is to have

particular kinds of cells set up to respond to specific fixed features in

the data, and then to ignore all other features.

Color perception provides a classic example. On the retina of our

eye are three kinds of color-sensitive cells, with each kind responding

essentially to the level of either red, green or blue. Light from an object

typically involves a whole spectrum of wavelengths. But the fact that

we have only three kinds of color-sensitive cells means that our eyes

essentially sample only three features of this spectrum. And this is why,

for example, we have the impression that mixtures of just three fixed

colors can successfully reproduce all other colors.

So what about patterns and textures? Does our visual system

also work by picking out specific features of these? Everyday

experience suggests that indeed it does. For if we look, say, at the

picture on the next page we do not immediately notice every detail.

And instead what our visual system seems to do is just to pick out

certain features which quickly make us see the picture as a collection

of patches with definite textures.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

578

So how does this work? The basic answer seems to be that there

are nerve cells in our eyes and brains which are set up to respond to

particular local patterns in the image formed on the retina of our eye.

The way this comes about appears to be surprisingly direct.

Behind the 100 million or so light-sensitive cells on our retina are a

sequence of layers of nerve cells, first in the eye and then in the brain.

The connections between these cells are set up so that a given cell in

the visual cortex will typically receive inputs only from cells in a fairly

small area on our retina. Some of these inputs will be positive if the

Patches generated by a variety of one-dimensional cellular automaton rules. Each patch is set up to have a roughly equal number of black and
white squares. But despite this, our visual system quickly notices that different patches have different textures. And presumably this is because
the visual system is automatically identifying particular features in each patch. Everyone appears immediately to be able to see some patches
when shown this picture. But after looking at the picture for a while, the boundaries between the patches seem to get somewhat clearer.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

579

image in a certain part of the area is, say, colored white, while others

will be positive if it is colored black. And the cell in the visual cortex

will then respond only if enough of its inputs are positive,

corresponding to a specific pattern being present in the image.

In practice many details of this setup are quite complicated. But

as a simple idealization, one can consider an array of squares on the

retina, each colored either black or white. And one can then assume

that in the visual cortex there is a corresponding array of cells, with

each cell receiving input from, say, a 2 ä 2 block of squares, and

following the rule that it responds whenever the colors of these squares

form some particular pattern.

The pictures below show a simple example. In each case the first

picture shows the image on the retina, while the second picture shows

which cells respond to it. And with the specific choice of rule used here,

what effectively happens is that the vertical black edges in the original

image get picked out.

Neurophysiological experiments suggest that cells in the visual

cortex respond to a variety of specific kinds of patterns. And as a simple

idealization, the pictures on the next page show what happens with cells

that respond to each of the 16 possible 2 ä 2 arrangements of black and

white squares. In each case, one can think of the results as corresponding

to picking out some specific local feature in the original image.

Responses to two sample images of cells sensitive to the 2 ä 2 template shown on the left. The cells that respond are indicated
by darker squares in the second picture in each pair. Such responses occur whenever the 2 ä 2 template on the left appears,

corresponding to the presence of a vertical black edge. The extraction of features by this kind of simple template matching appears to
be a key element in human visual perception—as well as being common in technological image processing. The sample images used
here are ones generated by the evolution of elementary one-dimensional cellular automata with rules 60 and 124 respectively.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

580

So is this very simple kind of process really what underlies our

seemingly sophisticated perception of patterns and textures? I strongly

suspect that to a large extent it is. An important detail, however, is that

there are cells in the visual cortex which in effect receive input from

larger regions on the retina. But as a simple idealization one can assume

that such cells in the end just respond to repeated versions of the basic

2 ä 2 patterns.

So with this setup, the pictures on the facing page show what

happens with an image like the one from page 578. The results are

somewhat remarkable. For even though the average density of black

and white squares is exactly the same across the whole image, what we

see is that in different patches the features that end up being picked out

have different densities. And it is this, I suspect, that makes us see

different patches as having different textures.

For much as we distinguish colors by their densities of red, green

and blue, so also it seems likely that we distinguish textures by their

Responses to the sample images from the previous page by types of cells sensitive to each of the local arrangements
of black and white squares shown. In each case, one can think of the resulting patterns as being filtered versions of the
original images in which only parts that exhibit particular features are kept. The patterns can also be viewed as outputs
from a single step in the evolution of two-dimensional block cellular automata in which the rules specify that a block
becomes dark if it has the arrangement of cells shown, and becomes light otherwise. The comparative sparsity of dark
blocks is a consequence of the fact that at any given position a dark block can occur in only one of the 16 cases shown.
The absence of any dark blocks in many of the cases shown can be viewed as a reflection of constraints introduced by
the construction of the images from one-dimensional cellular automaton rules.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

581

Responses to a smaller version of the image from page 578 by cells sensitive to all 16 possible 2 ä 2 blocks, as well
as their repetitive 3 ä 3 extensions. Patches which appear to have different textures in the original image are seen
to contain characteristically different densities of these various blocks. I strongly suspect that it is density
differences such as these that allow our visual system to distinguish textures.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

582

densities of certain local features. And the reason that this happens so

quickly when we look at an image is no doubt that the procedure for

picking out such features is a very simple one that can readily be carried

out in parallel by large numbers of separate cells in our eyes and brains.

For patterns and textures, however, unlike for colors, we can

always get beyond the immediate impression that our visual system

provides. And so for example, by making a conscious effort, we can scan

an image with our eyes, scrutinizing different parts in turn and

comparing whatever details we want.

But what kinds of things can we expect to tell in this way? As the

pictures below suggest, it is usually quite easy to see if an image is purely

repetitive—even in cases where the block that repeats is fairly large.

But with nesting the story is quite different. All eight pictures on

the facing page were generated from the two-dimensional substitution

systems shown, and thus correspond to purely nested patterns. But

except for the last picture on each row—which happen to be dominated

by large areas of essentially uniform color—it is remarkably difficult for

us to tell that the patterns are nested. And this can be viewed as a clear

example of a limitation in our powers of visual perception.

As we found two sections ago, many standard methods of data

compression have the same limitation. But at the end of that section I

showed that the fairly simple procedure of two-dimensional pointer

Examples of all the distinct repetitive patterns that can be formed from arrays of 2 ä 2 and 3 ä 3 blocks. In every single case the
presence of pure repetition is easy to recognize by eye. Note that in a pattern generated by repeating one particular block, there
will normally be other blocks that occur with other alignments. Page 215 shows patterns obtained in systems based on
constraints in which one effectively requires that only certain blocks or sets of blocks occur.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

583

encoding will succeed in recognizing nesting. So it is not that nesting is

somehow fundamentally difficult to recognize; it is just that the

particular processes that happen to occur in human visual perception do

not in general manage to do it.

So what about randomness? The pictures on the next page show a

few examples of images with various degrees of randomness. And just

by looking at these images it is remarkably difficult to tell which of

them is in fact the most random.

The basic problem is that our visual system makes us notice local

features—such as clumps of black squares—even if their density is

consistent with what it should be in a completely random array. And as

a result, much as with constellations of stars, we tend to identify what

seem to be regularities even in completely random patterns.

In principle it could be that there would be images in which our

visual system would notice essentially no local features. And indeed in

Examples of nested patterns created by following the two-dimensional substitution rules shown. Except for the last examples on
each row, it is remarkably difficult to recognize the nested structure in these patterns by eye, even with quite careful scrutiny. The
two-dimensional pointer-based encoding scheme from page 571 does however manage to recognize the structure in all cases.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

584

the last two images on each row above all clumps of squares of the same

color, and then all lines of squares of the same color, have explicitly

been removed. At first glance, these images do in some respects look

more random. But insofar as our visual system contains elements that

respond to each of the possible local arrangements of squares, it is

inevitable that we will identify features of some kind or another in

absolutely any image.

In practice there are presumably some types of local patterns to

which our visual system responds more strongly than others. And

knowing such a hierarchy, one should be able to produce images that in

a sense seem as random as possible to us. But inevitably such images

would reflect much more the details of our process of visual perception

than they would anything about actual underlying randomness.

Examples of images that approximate perfect randomness. The second image on each row has
squares chosen independently to be black with probabilities 0.4, 0.5 and 0.6 respectively. In the other
images various features are added or removed. In the first image on each row, if any square is
surrounded by four squares with identical colors, then the square is forced to have the same color. In
the third image, any clump of squares with the same color is broken up by reversing the color of the
center square. And in the fourth image, the same is done with lines of squares of the same color.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

585

Auditory Perception

In the course of this book I have made extensive use of pictures. So why

not also sounds? One issue—beyond the obvious fact that sounds

cannot be included directly in a printed book—is that while one can

study the details of a picture at whatever pace one wants, a sound is in a

sense gone as soon as it has finished playing.

But everyday experience makes it quite clear that one can still

learn a lot by listening to sounds. So what then are the features of

sounds that our auditory system manages to pick out?

At a fundamental level all sounds consist of patterns of rapid

vibrations. And the way that we hear sounds is by such vibrations

being transmitted to the array of hair cells in our inner ear. The

mechanics of the inner ear are set up so that each row of hair cells

ends up being particularly sensitive to vibrations at some specific

frequency. So what this means is that what we tend to perceive most

about sounds are the frequencies they contain.

Musical notes usually have just one basic frequency, while voiced

speech sounds have two or three. But what about sounds from systems

in nature, or from systems of the kinds we have studied in this book?

There are a number of ways in which one can imagine such

systems being used to generate sounds. One simple approach illustrated

on the right is to consider a sequence of elements produced by the

system, and then to take each element to correspond to a vibration for a

brief time—say a thousandth of a second—in one of two directions.

So what are such sounds like? If the sequence of elements is

repetitive then what one hears is in essence a pure tone at a specific

frequency—much like a musical note. But if the sequence is random

then what one hears is just an amorphous hiss.

So what happens between these extremes? If the properties of a

sequence gradually change in a definite way over time then one can

often hear this in the corresponding sound. But what about sequences

that have more or less uniform properties? What kinds of regularities

does our auditory system manage to detect in these?

A sequence of discrete elements
and a possible corresponding
waveform for a sound.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

586

The answer, it seems, is surprisingly simple: we readily recognize

exact or approximate repetition at definite frequencies, and essentially

nothing else. So if we listen to nested sequences, for example, we have

no direct way to tell that they are nested, and indeed all we seem

sensitive to are some rather simple features of the spectrum of

frequencies that occur.

The pictures below show spectra obtained from nested sequences

produced by various simple one-dimensional substitution systems. The

diversity of these spectra is quite striking: some have simple nested

forms dominated by a few isolated peaks at specific frequencies, while

others have quite complex forms that cover large ranges of frequencies.

(j) (k) (l)

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Frequency spectra of nested sequences generated by one-dimensional neighbor-independent substitution systems. The rules
are the same as shown on pages 83 and 84. Note the presence of both isolated peaks and complicated background patterns. If
a sequence corresponds to a pure tone and repeats every elements then its spectrum will consist of equally spaced
peaks. Sequences whose spectra contain no dominant peaks typically sound like random noise, although sometimes explicit
time variation can be heard, and indeed sequence (c) just sounds like a succession of idealized frog ribbets. Intensity or power
spectra are obtained by squaring the quantities shown.

n n/2

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

587

And given only the underlying rule for a substitution system, it

turns out to be fairly difficult to tell even roughly what the spectrum will

be like. But given the spectrum, one can immediately tell how we will

perceive the sound. When the spectrum is dominated by just one large

peak, we hear a definite tone. And when there are two large peaks we also

typically hear definite tones. But as the number of peaks increases it

rapidly becomes impossible to keep track of them, and we end up just

hearing random noise—even in cases where the peaks happen to have

frequencies that are in the ratios of common musical chords.

So the result is that our ears are not sensitive to most of the elaborate

structure that we see in the spectra of many nested sequences. Indeed, it

seems that as soon as the spectrum covers any broad range of frequencies

all but very large peaks tend to be completely masked, just as in everyday

life a sound needs to be loud if it is to be heard over background noise.

So what about other kinds of regularities in sequences? If a

sequence is basically random but contains some short-range

correlations then these will lead to smooth variations in the spectrum.

And for example sequences that consist of random successions of

specific blocks can yield any of the types of spectra shown below—and

can sound variously like hisses, growls or gurgles.

To get a spectrum with a more elaborate structure requires

long-range correlations—as exist in nested sequences. But so far as I can

Frequency spectra for long sequences obtained by concatenating blocks in random orders. Such
spectra can be calculated by fairly standard methods from stochastic analysis. The first case shown
corresponds to white noise. The second-to-last case always has a black element at every third
position, so exhibits a peak at the corresponding repetition frequency.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

588

tell, the only kinds of correlations that are ultimately important to our

auditory system are those that lead to some form of repetition.

So in the end, any features of the behavior of a system that go

beyond pure repetition will tend to seem to our ears essentially random.

Statistical Analysis

When it comes to studying large volumes of data the method almost

exclusively used in present-day science is statistical analysis. So what

kinds of processes does such analysis involve? What is typically done in

practice is to compute from raw data various fairly simple quantities

whose values can then be used to assess models which could provide

summaries of the data.

Most kinds of statistical analysis are fundamentally based on the

assumption that such models must be probabilistic, in the sense that

they give only probabilities for behavior, and do not specifically say

what the behavior will be. In different situations the reasons for using

such probabilistic models have been somewhat different, but before the

discoveries in this book one of the key points was that it seemed

inconceivable that there could be deterministic models that would

reproduce the kinds of complexity and apparent randomness that were

so often seen in practice.

If one has a deterministic model then it is at least in principle

quite straightforward to find out whether the model is correct: for all

one has to do is to compare whatever specific behavior the model

predicts with behavior that one observes. But if one has a probabilistic

model then it is a much more difficult matter to assess its validity—and

indeed much of the technical development of the field of statistics, as

well as many of its well-publicized problems, can be traced to this issue.

As one simple example, consider a model in which all possible

sequences of black and white squares are supposed to occur with equal

probability. By effectively enumerating all such sequences, it is easy to

see that such a model predicts that in any particular sequence the

fraction of black squares is most likely to be .1�2

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

589

But what if a sequence one actually observes has 9 black squares

out of 10? Even though this is not the most likely thing to see, one

certainly cannot conclude from seeing it that the model is wrong. For

the model does not say that such sequences are impossible—it merely

says that they should occur only about 1% of the time.

And indeed there is no meaningful way without more

information to deduce any kind of absolute probability for the model to

be correct. So in practice what almost universally ends up being done is

to consider not just an individual model, but rather a whole class of

models, and then to try to identify which model from this class is the

best one—as measured, say, by the criterion that its likelihood of

generating the observed data is as large as possible.

For sequences of black and white squares a simple class of models

to consider are those in which each square is taken to be black with

some fixed independent probability . Given a set of raw data the

procedure for finding which model in this class is best—according, say,

to the criterion of maximum likelihood—is extremely straightforward:

all one does is to compute what fraction of squares in the data are black,

and this value then immediately gives the value of for the best model.

So what about more complicated models? Instead of taking each

square to have a color that is chosen completely independently, one can for

example take blocks of squares of some given length to have their colors

chosen together. And in this case the best model is again straightforward to

find: it simply takes the probabilities for different blocks to be equal to the

frequencies with which these blocks occur in the data.

If one does not decide in advance how long the blocks are going to

be, however, then things can become more complicated. For in such a

case one can always just make up an extreme model in which only one

very long block is allowed, with this block being precisely the sequence

that is observed in the data.

Needless to say, such a model would for most purposes not be

considered particularly useful—and certainly it does not succeed in

providing any kind of short summary of the data. But to exclude models

like this in a systematic way requires going beyond criteria such as

p

p

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

590

maximum likelihood, and somehow explicitly taking into account the

complexity of the model itself.

For specific types of models it is possible to come up with various

criteria based for example on the number of separate numerical

parameters that the models contain. But in general the problem of

working out what model is most appropriate for any given set of data is

an extremely difficult one. Indeed, as discussed at the beginning of

Chapter 8, it is in some sense the core issue in any kind of empirical

approach to science.

But traditional statistical analysis is usually far from having to

confront such issues. For typically it restricts itself to very specific

classes of models—and usually ones which even by the standards of this

book are extremely simple. For sequences of black and white squares,

for example, models that work as above by just assigning probabilities

to fixed blocks of squares are by far the most common. An alternative,

typically viewed as quite advanced, is to assign probabilities to

sequences by looking at the paths that correspond to these sequences in

networks of the kind shown below.

Networks (a) and (b) represent cases already discussed above.

Network (a) specifies that the colors of successive squares should be

chosen independently, while network (b) specifies that this should be

done for successive pairs of squares. Network (c), however, specifies

that different probabilities should be used depending on whether the

path has reached the left or the right node in the network. But at least

(a) (b) (c) (d)

Networks defining probabilistic models. Each connection in each network has a certain probability
associated with it, and the model takes sequences of black and white squares to be generated by
tracing paths through the networks according to these probabilities. Cases (a) and (b) are so-called
Markov models that in effect involve no memory and are equivalent to models discussed above.
Cases (c) and (d) correspond to so-called hidden Markov models, with some short-term memory.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

591

so long as the structure of the network is kept the same, it is fairly easy

even in this case to deduce from a given set of data what probabilities in

the network provide the best model for the data—for essentially all one

need do is to follow the path corresponding to the data, and see with

what frequency each connection from each node ends up being used.

So what about two-dimensional data? From the discussion in

Chapter 5 it follows that no straightforward analogs of the types of

probabilistic models described above can be constructed in such a case.

But as an alternative it turns out that one can use probabilistic versions

of one-dimensional cellular automata, as in the pictures below.

run 1 run 2 run 3 run 4 run 5

Examples of probabilistic cellular automata, in which the rule specifies the probabilities for each color of cell to be generated given what
the colors of its two neighbors were on the previous step. Because the rule is probabilistic a different detailed pattern of evolution will in
general be obtained each time the cellular automaton is run—as in the top row of pictures above. Despite this, however, any particular
probabilistic cellular automaton will typically exhibit some characteristic overall pattern of behavior, as illustrated in the array of pictures
above. Note that it is fairly common for phase transitions to occur, in which continuous changes in underlying probabilities lead to discrete
changes in typical behavior. Probabilistic cellular automata can be viewed as generalizations of so-called directed percolation models.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

592

The rules for such cellular automata work by assigning to each

possible neighborhood of cells a certain probability to generate a cell of

each color. And for any particular form of neighborhood, it is once again

quite straightforward to find the best model for any given set of data.

For essentially all one need do is to work out with what frequency each

color of cell appears below each possible neighborhood in the data.

But how good are the results one then gets? If one looks at

quantities such as the overall density of black cells that were in effect

used in finding the model in the first place then inevitably the results

one gets seem quite good. But as soon as one looks at explicit pictures

like the ones below, one immediately sees dramatic differences between

the original data and what one gets from the model.

In most cases, the typical behavior produced by the model looks

considerably more random than the data. And indeed at some level this

is hardly surprising: for by using a probabilistic model one is in a sense

starting from an assumption of randomness.

The model can introduce certain regularities, but these almost

never seem sufficient to force anything other than rather simple

features of data to be correctly reproduced.

Needless to say, just as for most other forms of perception and

analysis, it is typically not the goal of statistical analysis to find precise

and complete representations of data. Rather, the purpose is usually just

A comparison between data generated by ordinary cellular automata and the probabilistic cellular automata that are considered
the best fit to it. While properties such as the density of black cells are typically set up to agree between the data and the model,
the pictures make it clear that more detailed features do not.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

593

to extract certain features that are relevant for drawing specific

conclusions about the data.

And a fundamental example is to try to determine whether a

given sequence can be considered perfectly random—or whether instead

it contains obvious regularities of some kind.

From the point of view of statistical analysis, a sequence is

perfectly random if it is somehow consistent with a model in which all

possible sequences occur with equal probability.

But how can one tell if this is so? What is typically done in

practice is to take a sequence that is given and compute from it the

values of various specific quantities, and then to compare these values

with averages obtained by looking at all possible sequences.

Thus, for example, one might compute the fraction of squares in

a given sequence that are black, and compare this to . Or one might

compute the frequency with which more than two consecutive black

squares occur together, and compare this with the value obtained by

averaging over all possible sequences.

And if one finds that a value computed from a particular

sequence lies close to the average for all possible sequences then one

can take this as evidence that the sequence is indeed random. But if one

finds that the value lies far from the average then one can take this as

evidence that the sequence is not random.

The pictures at the top of the next page show the results of

computing the frequencies of different blocks in various sequences, and

in each case each successive row shows results for all possible blocks of

a given length. The gray levels on every row are set up so that the

average of all possible sequences corresponds to the pattern of uniform

gray shown below. So any deviation from such uniform gray potentially

provides evidence for a deviation from randomness.

And what we see is that in the first three pictures, there are many

obvious such deviations, while in the remaining pictures there are no

obvious deviations. So from this it is fairly easy to conclude that the

first three sequences are definitely not random, while the remaining

sequences could still be random.

1�2

1�4

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

594

And indeed sequence (a) is certainly not random; in fact it is

purely repetitive. And in general it is fairly easy to see that in any

sequence that is purely repetitive there must beyond a certain length be

many blocks whose frequencies are far from equal.

It turns out that the same is true for nested sequences. And in the

picture above, sequences (b), (c) and (d) are all nested.

But what about the remaining sequences? Sequences (e) and (f) seem

to yield frequencies that in every case correspond accurately to those

obtained by averaging over all possible sequences. Sequences (g) and (h)

yield results that are fairly similar, but exhibit some definite fluctuations.

So do these fluctuations represent evidence that sequences (g) and

(h) are not in fact random? If one looks at the set of all possible

sequences, one can fairly easily calculate the distribution of frequencies

for any particular block. And from this distribution one can tell with

(e) (f) (g) (h)

(a) (b) (c) (d)

Statistics of block frequencies for various sequences. In each case the frequency of a particular block
is represented by gray level, with results for blocks of successively greater lengths being shown on
successive rows as indicated on the left. The original sequences are shown broken into lines and
arranged in two dimensions. Sequences (b), (c) and (d) are generated by substitution systems with
rules (b) , , (c) , and (d) , respectively. (Note that these
substitution systems are the simplest ones that yield equal frequencies of all blocks up to lengths 1,

2 and 3 respectively.) Sequence (e) is generated by a linear feedback shift register (essentially an additive cellular automaton) with
tap positions . Sequence (f) is formed by concatenating base 2 digits of successive integers. Sequence (g) is the center
column of the pattern generated by the rule 30 cellular automaton. Sequence (h) is the base 2 digits of .

! ! ! ! ! !

{2, 11}

p

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

595

what probability a given deviation from the average should occur for a

sequence that is genuinely chosen at random.

The result turns out to be quite consistent with what we see in

pictures (g) and (h). But it is far from what we see in pictures (e) and (f).

So even though individual block frequencies seem to suggest that

sequences (d) and (e) are random, the lack of any spread in these

frequencies provides evidence that in fact they are not.

So are sequences (g) and (h) in the end truly random? Just like

other sequences discussed in this chapter they are in some sense not,

since they can both be generated by simple underlying rules. But what

the picture on the facing page demonstrates is that if one just does

statistical analysis by computing frequencies of blocks one will see no

evidence of any such underlying simplicity.

One might imagine that if one were to compute other quantities

one could immediately find such evidence. But it turns out that many

of the obvious quantities one might consider computing are in the end

equivalent to various combinations of block frequencies. And perhaps

as a result of this, it has sometimes been thought that if one could just

compute frequencies of blocks of all lengths one would have a kind of

universal test for randomness. But sequences like (e) and (f) on the

facing page make it clear that this is not the case.

So what kinds of quantities can one in the end use in doing

statistical analysis? The answer is that at least in principle one can use

any quantity whatsoever, and in particular one can use quantities that

arise from any of the processes of perception and analysis that I have

discussed so far in this chapter. For in each case all one has to do is to

compute the value of a quantity from a particular sequence of data, and

then compare this value with what would be obtained by averaging over

all possible sequences. In practice, however, the kinds of quantities

actually used in statistical analysis of sequences tend to be rather

limited. Indeed, beyond block frequencies, the only other ones that are

common are those based on correlations, spectra, and occasionally run

lengths—all of which we already discussed earlier in this chapter.

Nevertheless, one can in general imagine taking absolutely any

process and using it as the basis for statistical analysis. For given some

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

596

specific process one can apply it to a piece of raw data, and then see how

the results compare with those obtained from all possible sequences.

If the process is sufficiently simple then by using traditional

mathematics one can sometimes work out fairly completely what will

happen with all possible sequences. But in the vast majority of cases

this cannot be done, and so in practice one has no choice but just to

compare with results obtained by sampling some fairly limited

collection of possible sequences.

Under these circumstances therefore it becomes quite unrealistic

to notice subtle deviations from average behavior. And indeed the only

reliable strategy is usually just to look for cases in which there are huge

differences between results for particular pieces of data and for typical

sequences. For any such differences provide clear evidence that the data

cannot in fact be considered random.

As an example of what can happen when simple processes are

applied to data, the pictures on the facing page show the results of evolution

according to various cellular automaton rules, with initial conditions given

by the sequences from page 594. On each row the first picture illustrates

the typical behavior of each cellular automaton. And the point is that if the

sequences used as initial conditions for the other pictures are to be

considered random then the behavior they yield should be similar.

But what we see is that in many cases the behavior actually

obtained is dramatically different. And what this means is that in such

cases statistical analysis based on simple cellular automata succeeds in

recognizing that the sequences are not in fact random.

But what about sequences like (g) and (h)? With these sequences

none of the simple cellular automaton rules shown here yield behavior

that can readily be distinguished from what is typical. And indeed this is

what I have found for all simple cellular automata that I have searched.

So from this we must conclude that—just as with all the other

methods of perception and analysis discussed in this chapter—

statistical analysis, even with some generalization, cannot readily

recognize that sequences like (g) and (h) are anything but completely

random—even though at an underlying level these sequences were

generated by quite simple rules.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

597

(a) (b) (c) (d) (e) (f) (g) (h)

rule 184

rule 150

rule 122

rule 110

rule 94

rule 73

rule 60

rule 57

rule 54

rule 30

rule 18

rule 4

Examples of applying various rules for cellular automaton evolution to the sequences from page 594. The picture at the
left-hand end of each row is chosen to show the typical behavior of each cellular automaton, given arbitrary initial conditions.
Each cellular automaton rule in effect corresponds to a different statistical analysis procedure. Rule 4 picks out isolated black
cells. Rule 60 essentially constructs a difference table for the sequence of elements. Rules 57 and 184 test for the overall
density of black cells. (As indicated by page 136 the preponderance of white stripes with rule 184 in case (h) is a fluctuation.)

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

598

Cryptography and Cryptanalysis

The purpose of cryptography is to hide the contents of messages by

encrypting them so as to make them unrecognizable except by someone

who has been given a special decryption key. The purpose of

cryptanalysis is then to defeat this by finding ways to decrypt messages

without being given the key.

The picture on the left shows a standard method of encrypting

messages represented by sequences of black and white squares. The

basic idea is to have an encrypting sequence, shown as column (b) on

the left, and from the original message (a) to get an encrypted version of

the message (c) by reversing the color of every square for which the

corresponding square in the encrypting sequence (b) is black.

So if one receives the encrypted message (c), how can one recover

the original message (a)? If one knows the encrypting sequence (b) then

it is straightforward. For all one need do is to repeat the process that was

used for encryption, and reverse the color of every square in (c) for

which the corresponding square in (b) is black.

But how can one arrange that only the intended recipient of the

message knows the encrypting sequence (b)? In some situations it may

be feasible to transmit the whole encrypting sequence in some secure

way. But much more common is to be able to transmit only some short

key in a secure way, and then to have to generate the encrypting

sequence from this key.

So what kind of procedure might one use to get an encrypting

sequence from a key? The picture at the top of the facing page shows an

extremely simple approach that was widely used in practical

cryptography until less than a century ago. The idea is just to form an

encrypting sequence by repeatedly cycling through the elements in the

key. And as the picture demonstrates, combining this with the original

message leads to an encrypted message in which at least some of the

structure in the original message is obscured.

But perhaps not surprisingly it is fairly easy to do cryptanalysis in

such a case. For if one can find out what any sufficiently long segment

in the encrypting sequence was, then this immediately gives the key,

(a) (b) (c)

Example of a scheme for
encryption. From the original
message (a) an encrypted
message (c) is generated by
reversing the color of each
square for which the
corresponding square in the
encrypting sequence (b) is
black. This scheme is the basis
for essentially all practical
stream ciphers.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

599

and from the key the whole of the rest of the encrypting sequence can

immediately be generated.

So what kind of analysis is needed to find a segment of the

encrypting sequence? In an extreme but in practice common case one

might happen to know what certain parts of the original message were—

perhaps standardized greetings or some such—and by comparing the

original and encrypted forms of these parts one can immediately deduce

what the corresponding parts of the encrypting sequence must have been.

And even if all one knows is that the original message was in

some definite language this is still typically good enough. For it means

that there will be certain blocks—say corresponding to words like “the”

in English—that occur much more often than others in the original

message. And since such blocks must be encrypted in the same way

whenever they occur at the same point in the repetition period of the

encrypting sequence they will lead to occasional repeats in the

encrypted message—with the spacing of such repeats always being

some multiple of the repetition period. So this means that just by

looking at the distribution of spacings between repeats one can expect

to determine the repetition period of the encrypting sequence.

And once this is known, it is usually fairly straightforward to find

the actual key. For one can pick out of the encrypted message all the

squares that occur at a certain point in the repetition period of the

A simple example of an encryption system in
which the encrypting sequence is obtained by
repetitively cycling through the elements of the
key. Encryption with two different keys is
shown. In each case the original message is on
the left, the encrypted message is on the right,
and the encrypting sequence corresponds to the
highlighted column of cells. The system is
essentially a Vigenère cipher of the kind widely
used between the 1500s and the early 1900s.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

600

encrypting sequence, and which are therefore encrypted using a particular

element of the key. Then one can ask whether such squares are more

often black or more often white, and one can compare this with the result

obtained by looking at the frequencies of letters in the language of the

original message. If these two results are the same, then it suggests that

the corresponding element in the key is white, and if they are different

then it suggests that it is black. And once one has found a candidate key it

is easy to check whether the key is correct by trying to use it to recover

some reasonably long part of the original message. For unless one has the

correct key, the chance that what one recovers will be meaningful in the

language of the original message is absolutely negligible.

So what happens if one uses a more complicated rule for generating

an encrypting sequence from a key? Methods like the ones above still

turn out to allow features of the encrypting sequence to be found. And so

to make cryptography work it must be the case that even if one knows

certain features or parts of the encrypting sequence it is still difficult to

deduce the original key or otherwise to generate the rest of the sequence.

The picture below shows one way of generating encrypting

sequences that was widely used in the early years of electronic

cryptography, and is still sometimes used today. The basic idea is to

look at the evolution of an additive cellular automaton in a register of

limited width. The key then gives the initial condition for the cellular

automaton, and the encrypting sequence is extracted, for example, by

sampling a particular cell on successive steps.

Encryption using the rule 60
additive cellular automaton.
This is essentially equivalent
to a linear feedback shift
register.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

601

So given such an encrypting sequence, is there any easy way to do

cryptanalysis and go backwards and work out the key?

It turns out that there is. For as the picture below demonstrates,

in an additive cellular automaton like the one considered here the

underlying rule is such that it allows one not only to deduce the form of

a particular row from the row above it, but also to deduce the form of a

particular column from the column to its right. And what this means is

that if one has some segment of the encrypting sequence, corresponding

to part of a column, then one can immediately use this to deduce the

forms of a sequence of other columns, and thus to find the form of a row

in the cellular automaton—and hence the original key.

But what happens if the encrypting sequence does not include

every single cell in a particular column? One cannot then immediately

use the method described above. But it turns out that the additive

nature of the underlying rule still makes comparatively straightforward

cryptanalysis possible.

The picture on the next page shows how this works. Because of

additivity it turns out that one can deduce whether or not some cell a

certain number of steps down a given column is black just by seeing

whether there are an odd or even number of black cells in certain

specific positions in the row at the top. And one can then immediately

An example of the basis for cryptanalysis of an additive cellular automaton. The first set of pictures show the
ordinary evolution of the rule 60 cellular automaton, in which each successive row is deduced from the one above.
The second set of pictures show a kind of sideways evolution in which the rule is reinterpreted so as to allow a
column of cells to be deduced from the column immediately to its right. Note that in both cases the colors of cells
in the area on the lower right cannot be determined without knowing the colors of more initial cells than are shown.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

602

invert this to get a way to deduce the colors of cells on a given row from

the colors of certain combinations of cells in a given column.

Which cells in a column are known will depend on how the

encrypting sequence was formed. But with almost any scheme it will

eventually be possible to determine the colors of cells at each of the

positions across any register of limited width. So once again a fairly

simple process is sufficient to allow the original key to be found.

So how then can one make a system that is not so vulnerable to

cryptanalysis? One approach often used in practice is to form

combinations of rules of the kind described above, and then to hope

that the complexity of such rules will somehow have the effect of

making cryptanalysis difficult.

But as we have seen many times in this book, more complicated

rules do not necessarily produce behavior that is fundamentally any

more complicated. And instead what we have discovered is that even

among extremely simple rules there are ones which seem to yield

behavior that is in a sense as complicated as anything.

Another consequence of additivity: the correspondence between colors of cells on rows and columns in
the rule 60 cellular automaton. In each case specifying the colors of the cells that are marked with dots
immediately determines the colors of the cells that are marked with diamonds. The final diamond cell is
black if an odd number of the dotted cells are black, and is white otherwise. The pictures on the right show
which cells in the top row and which cells in the right-hand column determine the cells at successive
positions in the right-hand column and in the top row respectively. These pictures can be thought of as
matrices with 1’s at the position of each black dot, and 0’s elsewhere. Multiplying these matrices modulo 2
by vectors corresponding to a row of the cellular automaton gives a column, and vice versa. This means
that the matrix on the second row of pictures is the inverse modulo 2 of the one on the first row.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

603

So can such rules be used for cryptography? I strongly suspect

that they can, and that in fact they allow one to construct systems that

are at least as secure to cryptanalysis as any that are known.

The picture below shows a simple example based on the rule

30 cellular automaton that I have discussed several times before in

this book. The idea is to generate an encrypting sequence by

sampling the evolution of the cellular automaton, starting from

initial conditions that are defined by a key.

In the case of the additive cellular automaton shown on the previous

page its nested structure makes it possible to recognize regularities using

many of the methods of perception and analysis discussed in this chapter.

But with rule 30 most sequences that are generated—even from simple

initial conditions—appear completely random with respect to all of the

methods of perception and analysis discussed so far.

So what about cryptanalysis? Does this also fail to find

regularities, or does it provide some special way—at least within the

context of a setup like the one shown above—to recognize whatever

regularities are necessary for one to be able to deduce the initial

condition and thus determine the key?

There is one approach that will always in principle work: one can

just enumerate every possible initial condition, and then see which of

them yields the sequence one wants. But as the width of the cellular

automaton increases, the total number of possible initial conditions

Encryption using a column
of rule 30 as the encrypting
sequence. I first suggested
this method in 1985.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

604

rapidly becomes astronomical, and to test all of them becomes

completely infeasible.

So are there other approaches that can be used? It turns out that

as illustrated in the picture below rule 30 has a property somewhat like

the additive cellular automaton discussed two pages ago: in addition to

allowing one row to be deduced from the row above, it allows columns

to be deduced from columns to their right. But unlike for the additive

cellular automaton, it takes not just one column but instead two

adjacent columns to make this possible.

So if the encrypting sequence corresponds to a single column,

how can one find an adjacent column? The last row of pictures above

show a way to do this. One picks some sequence of cells for the right

half of the top row, then evolves down the page. And somewhat

surprisingly, it turns out that given the cells in one column, there are

fairly few possibilities for what the neighboring column can be. So by

sampling a limited number of sequences on the top row, one can often

find a second column that then allows columns to the left to be

determined, and thus for a candidate key to be found.

(c)

(b)

(a)

(c)

(b)

(a)
Sideways evolution in rule 30. (a) shows ordinary evolution from one
row to the next. (b) shows evolution to the left starting from a pair of
adjacent columns. (c) shows how a second column can be filled in from
a row of cells to the right. The possibility of (b) is a consequence of
one-sided additivity in rule 30; it leads to some level of cryptanalysis if
the encrypting sequence consists of a complete column of cells.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

605

But it is rather easy to foil this particular approach to

cryptanalysis: all one need do is not sample every single cell in a given

column in forming the encrypting sequence. For without every cell

there does not appear to be enough information for any kind of local

rule to be able to deduce one column from others.

The picture below shows evidence for this. The cells marked by

dots have colors that are taken as given, and then the colors of other

cells are filled in according to the average that is obtained by starting

from all possible initial conditions.

With two complete columns given, all cells to the left are

determined to be either black or white. And with one complete column

given, significant patches of cells still have determined colors. But if

only every other cell in a column is given, almost nothing definite

follows about the colors of other cells.

So what about the approach on page 602? Could this not be used

here? It turns out that the approach relies crucially on the additivity of the

underlying rules. And since rule 30 is not additive, it simply does not work.

What happens is that the function that determines the color of a particular

cell from the colors of cells in a nearby column rapidly becomes extremely

Patterns generated by rule 30 after averaging over all possible initial conditions that reproduce the arrangements of colors in the cells
indicated by dots. If a cell is completely black or completely white then this means that its color is uniquely determined by the
constraints given. If the cell is shown as gray then this means that it has some probability of being black and some probability of being
white. Note that when two complete adjacent columns are specified all the cells on the left-hand side are determined. But when fewer
cells are specified, the number of cells that are determined decreases rapidly, indicating that cryptanalysis is likely to become difficult.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

606

complicated—so that the approach probably ends up essentially being no

better than just enumerating possible initial conditions.

The conclusion therefore is that at least with standard methods

of cryptanalysis—as well as a few others—there appears to be no easy

way to deduce the key for rule 30 from any suitably chosen encrypting

sequence. But how can one be sure that there really is absolutely no

easy way to do this? In Chapter 12 I will discuss some fundamental

approaches to such a question. But as a practical matter one can say that

not only have direct attempts to find easy ways to deduce the key in

rule 30 failed, but also—despite some considerable effort—little

progress has been made in solving any of various problems that turn out

to be equivalent to this one.

Traditional Mathematics and Mathematical Formulas

Traditional mathematics has for a long time been the primary method

of analysis used throughout the theoretical sciences. Its goal can usually

be thought of as trying to find a mathematical formula that summarizes

the behavior of a system. So in a simple case if one has an array of black

and white squares, what one would typically look for is a formula that

takes the numbers which specify the position of a particular square and

from these tells one whether the square is black or white.

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

1
2

0
2

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

1
1

0
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

607

With a pattern that is purely repetitive, the formula is always

straightforward, as the picture at the bottom of the facing page illustrates.

For all one ever need do is to work out the remainder from dividing the

position of a particular square by the size of the basic repeating block, and

this then immediately tells one how to look up the color one wants.

So what about nested patterns? It turns out that in most of

traditional mathematics such patterns are already viewed as quite

advanced. But with the right approach, it is in the end still fairly

straightforward to find formulas for them.

The crucial idea—much as in Chapter 4—is to think about numbers

not in terms of their size but instead in terms of their digit sequences. And

with this idea the picture on the next page shows an example of how what

is in effect a formula can be constructed for a nested pattern.

What one does is to look at the digit sequences for the numbers

that give the vertical and horizontal positions of a certain square. And

then in the specific case shown one compares corresponding digits in

these two sequences, and if these digits are ever respectively 0 and 1,

then the square is white; otherwise it is black.

So why does this procedure work?

As we have discussed several times in this book, any nested

pattern must—almost by definition—be able to be reproduced by a

neighbor-independent substitution system. And in the case shown on

the next page the rules for this system are such that they replace each

square at each step by a 2 ä 2 block of new squares. So as the picture

illustrates this means that new squares always have positions that

involve numbers containing one extra digit. With the particular rules

shown, the new squares always have the same color as the old one,

except in one specific case: when a black square is replaced, the new

square that appears in the upper right is always white. But this square

An example of how the color of any square in a repetitive pattern can be found from its
coordinates by a simple mathematical procedure. The procedure takes the and coordinates of
the square, and computes their remainders after division by 3 and 2 respectively. Using these
remainders—which are shown inside each square—the color of a particular square can be

determined by a simple lookup in the repeating block shown on the left. The whole
procedure can be represented using a mathematical formula that involves either
functions like or more traditional functions like .

x y

Mod Sin
1
0

0
0

1
1

0
1

1
2

0
2

1

0

0 1 2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

608

has the property that its vertical position ends with a 0, and its

horizontal position ends with a 1. So if the numbers that correspond to

the position of a particular square contain this combination of digits at

any point, it follows that the square must be white.

So what about other nested patterns? It turns out that using an

extension of the argument above it is always possible to take the rules

1111
0000

1110
0000

1101
0000

1100
0000

1011
0000

1010
0000

1001
0000

1000
0000

0111
0000

0110
0000

0101
0000

0100
0000

0011
0000

0010
0000

0001
0000

0000
0000

1111
0001

1110
0001

1101
0001

1100
0001

1011
0001

1010
0001

1001
0001

1000
0001

0111
0001

0110
0001

0101
0001

0100
0001

0011
0001

0010
0001

0001
0001

0000
0001

1111
0010

1110
0010

1101
0010

1100
0010

1011
0010

1010
0010

1001
0010

1000
0010

0111
0010

0110
0010

0101
0010

0100
0010

0011
0010

0010
0010

0001
0010

0000
0010

1111
0011

1110
0011

1101
0011

1100
0011

1011
0011

1010
0011

1001
0011

1000
0011

0111
0011

0110
0011

0101
0011

0100
0011

0011
0011

0010
0011

0001
0011

0000
0011

1111
0100

1110
0100

1101
0100

1100
0100

1011
0100

1010
0100

1001
0100

1000
0100

0111
0100

0110
0100

0101
0100

0100
0100

0011
0100

0010
0100

0001
0100

0000
0100

1111
0101

1110
0101

1101
0101

1100
0101

1011
0101

1010
0101

1001
0101

1000
0101

0111
0101

0110
0101

0101
0101

0100
0101

0011
0101

0010
0101

0001
0101

0000
0101

1111
0110

1110
0110

1101
0110

1100
0110

1011
0110

1010
0110

1001
0110

1000
0110

0111
0110

0110
0110

0101
0110

0100
0110

0011
0110

0010
0110

0001
0110

0000
0110

1111
0111

1110
0111

1101
0111

1100
0111

1011
0111

1010
0111

1001
0111

1000
0111

0111
0111

0110
0111

0101
0111

0100
0111

0011
0111

0010
0111

0001
0111

0000
0111

1111
1000

1110
1000

1101
1000

1100
1000

1011
1000

1010
1000

1001
1000

1000
1000

0111
1000

0110
1000

0101
1000

0100
1000

0011
1000

0010
1000

0001
1000

0000
1000

1111
1001

1110
1001

1101
1001

1100
1001

1011
1001

1010
1001

1001
1001

1000
1001

0111
1001

0110
1001

0101
1001

0100
1001

0011
1001

0010
1001

0001
1001

0000
1001

1111
1010

1110
1010

1101
1010

1100
1010

1011
1010

1010
1010

1001
1010

1000
1010

0111
1010

0110
1010

0101
1010

0100
1010

0011
1010

0010
1010

0001
1010

0000
1010

1111
1011

1110
1011

1101
1011

1100
1011

1011
1011

1010
1011

1001
1011

1000
1011

0111
1011

0110
1011

0101
1011

0100
1011

0011
1011

0010
1011

0001
1011

0000
1011

1111
1100

1110
1100

1101
1100

1100
1100

1011
1100

1010
1100

1001
1100

1000
1100

0111
1100

0110
1100

0101
1100

0100
1100

0011
1100

0010
1100

0001
1100

0000
1100

1111
1101

1110
1101

1101
1101

1100
1101

1011
1101

1010
1101

1001
1101

1000
1101

0111
1101

0110
1101

0101
1101

0100
1101

0011
1101

0010
1101

0001
1101

0000
1101

1111
1110

1110
1110

1101
1110

1100
1110

1011
1110

1010
1110

1001
1110

1000
1110

0111
1110

0110
1110

0101
1110

0100
1110

0011
1110

0010
1110

0001
1110

0000
1110

1111
1111

1110
1111

1101
1111

1100
1111

1011
1111

1010
1111

1001
1111

1000
1111

0111
1111

0110
1111

0101
1111

0100
1111

0011
1111

0010
1111

0001
1111

0000
1111

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
0

0
0

1
1

0
1

1

0

0 1

11
00

10
00

01
00

00
00

11
01

10
01

01
01

00
01

11
10

10
10

01
10

00
10

11
11

10
11

01
11

00
11

11

10

01

00

00 01 10 11

111
000

110
000

101
000

100
000

011
000

010
000

001
000

000
000

111
001

110
001

101
001

100
001

011
001

010
001

001
001

000
001

111
010

110
010

101
010

100
010

011
010

010
010

001
010

000
010

111
011

110
011

101
011

100
011

011
011

010
011

001
011

000
011

111
100

110
100

101
100

100
100

011
100

010
100

001
100

000
100

111
101

110
101

101
101

100
101

011
101

010
101

001
101

000
101

111
110

110
110

101
110

100
110

011
110

010
110

001
110

000
110

111
111

110
111

101
111

100
111

011
111

010
111

001
111

000
111

111

110

101

100

011

010

001

000

000 001 010 011 100 101 110 111

0
1

0 1

0
1

0 1

1
0

0
0

0
1

1
1

0
0

0
1

1
1

1
0

An example of how the color of any square in a nested pattern can be found from its coordinates by a fairly simple mathematical
procedure. The procedure works by looking at the base 2 digit sequences of the coordinates. If any digit in the coordinate of a
particular square is 0 when the corresponding digit in the coordinate is 1 then the square is white; otherwise it is black. The
finite automaton at the bottom right gives a representation of this rule. Starting from the black square, one follows the sequence
of connections that corresponds to the successive digits that one encounters in the and coordinates. Whatever square one
lands up at in the finite automaton then gives the color one wants. Why this procedure works is illustrated by the pictures on the
left. The nested pattern can be built up by a 2D substitution system with the rules shown. At each step in the evolution of this
substitution system one gets a finer grid of squares, each specified in effect by one more digit in their coordinates.

y

x

y x

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

609

for the substitution system that generates a particular nested pattern,

and from these construct a procedure for finding the color of a square in

the pattern given its position. The pictures below show several

examples, and in all cases the procedures are fairly straightforward.

0
1

0 1

0
1

0 1

1
0

0
0

0
1

1
1

0
0

0
1

1
1

1
0

0
1

0 1

0
1

0 1

0
1

0 1

0
1

1
0

1
0

0
1

1
1

0
0

0
0

1
1

0
0

0
1

1
1

1
0

0
1

0 1

0
1

0 1

0
1

0 1

0
0

0
0

1
0

1
1

0
1

0
1

1
0

1
1

0
0

0
1

1
1

1
0

0
1

0 1

0
1

0 1

0
1

0 1

1
0

0
0

0
1

0
1

0
0

1
0

1
1

1
1

0
0

0
1

1
1

1
0

0
1

0 1

0
1

0 1

0
1

0 1

0
1

0
0

1
0

1
1

0
0

1
1

1
0

0
1

0
0

0
1

1
1

1
0

0
1

0 1

0
1

0 1

0
1

0 1

0
1

0 1

0
1

1
0

0
0

1
0

0
0

0
1

1
1

1
1

0
0

1
1

1
0

0
1

0
0

0
1

1
1

1
0

Procedures for determining the color of a square at a given position in various nested patterns. In each case the whole pattern can be
generated by repeatedly applying the substitution system rule shown. The color of any particular square can also be found by feeding the
digit sequences of its and coordinates to the finite automaton shown. The first example shown corresponds to cellular automaton rule
60; the last two examples correspond respectively to rules 90 and 150. In the top row of examples, the initial condition for the substitution
system is a single black square, and the start state for the finite automaton is also its black state. In the second row of examples, the initial
condition consists of a light gray square next to a black square. In these cases, the colors of squares to the left of the center can be found
by starting from the light gray state in the finite automaton; the colors of squares to the right can be found by starting from the black state.

y x

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

610

But while these procedures could easily be implemented as

programs, they are in a sense not based on what are traditionally thought

of as ordinary mathematical functions. So is it in fact possible to get

formulas for the colors of squares that involve only such functions?

In the one specific case shown at the top of the facing page it

turns out to be fairly easy. For it so happens that this particular

pattern—which is equivalent to the patterns at the beginning of each

row on the previous page—can be obtained just by adding together pairs

of numbers in the format of Pascal’s triangle and then putting a black

square whenever there is an entry that is an odd number.

And as the table below illustrates, the entries in Pascal’s triangle

are simply the binomial coefficients that appear when one expands out

the powers of . So to determine whether a particular square in the

pattern is black or white, all one need do is to compute the

corresponding binomial coefficient, and see whether or not it is an odd

number. And this means that if black is represented by 1 and white by

0, one can then give an explicit formula for the color of the square at

position on row : it is simply .

So what about the bottom picture on the facing page? Much as in

the top picture numbers can be assigned to each square, but now these

numbers are computed by successively adding together triples rather

1 � x

x y �1 � ��1�^Binomial�y, x���2

1 1

1 + x 1 + x

(1 + x) 2 1 + 2 x + x2

(1 + x) 3 1 + 3 x + 3 x2 + x3

(1 + x) 4 1 + 4 x + 6 x2 + 4 x3 + x4

(1 + x) 5 1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

Binomial[t,n]

1 1

1 + x + x2 1 + x + x2

(1 + x + x2)
2

1 + 2 x + 3 x2 + 2 x3 + x4

(1 + x + x2)
3

1 + 3 x + 6 x2 + 7 x3 + 6 x4 + 3 x5 + x6

(1 + x + x2)
4

1 + 4 x + 10 x2 + 16 x3 + 19 x4 + 16 x5 + 10 x6 + 4 x7 + x8

(1 + x + x2)
5

1 + 5 x + 15 x2 + 30 x3 + 45 x4 + 51 x5 + 45 x6 + 30 x7 + 15 x8 + 5 x9 + x10

GegenbauerC[n,-t,-1/ 2]

Algebraic representations of the patterns on the facing page. The coefficient of on each row gives the value of each square. These
coefficients can also be obtained from the formulas in terms of and given. A particular square is colored black if
its value is odd. This can be determined either from or equivalently from or . The succession of
polynomials above can be obtained by expanding the generating functions and . is
the ordinary binomial coefficient . is a so-called orthogonal polynomial—a higher mathematical function.

xn

Binomial GegenbauerC

a Mod[a, 2] (1 - (-1)a) /2 Sin[p a/2]2

1/ (1 - (1+ x) y) 1/ (1 - (1+ x + x2) y) Binomial[m, n]

m!/ (n! (m - n) !) GegenbauerC

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

611

than pairs. And once again the numbers appear as coefficients, but now

in the expansion of powers of rather than of .

So is there an explicit formula for these coefficients? If one

restricts oneself to a fixed number of elementary mathematical

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1

1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 4 10 16 19 16 10 4 1

1 5 15 30 45 51 45 30 15 5 1

1 6 21 50 90 126 141 126 90 50 21 6 1

1 7 28 77 161 266 357 393 357 266 161 77 28 7 1

1 8 36 112 266 504 784 1016 1107 1016 784 504 266 112 36 8 1

1 9 45 156 414 882 1554 2304 2907 3139 2907 2304 1554 882 414 156 45 9 1

1 10 55 210 615 1452 2850 4740 6765 8350 8953 8350 6765 4740 2850 1452 615 210 55 10 1

1 11 66 275 880 2277 4917 9042 ...55 ...55 ...68 ...53 ...68 ...55 ...55 9042 4917 2277 880 275 66 11 1

1 12 78 352 1221 3432 8074 ...36 ...14 ...52 ...78 ...76 ...89 ...76 ...78 ...52 ...14 ...36 8074 3432 1221 352 78 12 1

1 13 91 442 1651 5005 ...27 ...42 ...24 ...02 ...44 ...06 ...43 ...41 ...43 ...06 ...44 ...02 ...24 ...42 ...27 5005 1651 442 91 13 1

1 14 105 546 2184 7098 ...83 ...74 ...93 ...68 ...70 ...52 ...93 ...90 ...27 ...90 ...93 ...52 ...70 ...68 ...93 ...74 ...83 7098 2184 546 105 14 1

1 15 120 665 2835 9828 ...65 ...55 ...50 ...35 ...31 ...90 ...15 ...35 ...10 ...07 ...10 ...35 ...15 ...90 ...31 ...35 ...50 ...55 ...65 9828 2835 665 120 15 1

Nested patterns constructed using arithmetic operations. The example at the top is Pascal’s triangle,
formed by making each number be the sum of the numbers immediately to its left and right on the
row above. The example at the bottom is a generalization of Pascal’s triangle in which each number is
the sum of the numbers above it and to its left and right on the row above. In both cases squares are
colored black when the numbers that appear in them are odd. The limiting arrangements of colors
correspond to nested patterns. For the top picture the pattern is what would be generated by an
additive cellular automaton following rule 90; for the bottom picture it is what would be generated by
one following rule 150. The numbers in the top picture are binomial coefficients; those in the bottom
picture are particular trinomial coefficients.

1 � x � x2 1 � x

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

612

functions together with factorials and multinomial coefficients then it

appears that there is not. But if one also allows higher mathematical

functions then it turns out that such a formula can in fact be found: as

indicated in the table above each coefficient is given by a particular

value of a so-called Gegenbauer or ultraspherical function.

So what about other nested patterns? Both of the patterns shown

on the previous page are rather special in that as well as being generated

by substitution systems they can also be produced one row at a time by

the evolution of one-dimensional cellular automata with simple additive

rules. And in fact the approaches used above can be viewed as direct

generalizations of such additive rules to the domain of ordinary numbers.

For a few other nested patterns there exist fairly simple

connections with additive cellular automata and similar systems—

though usually in more dimensions or with more neighbors. But for

most nested patterns there seems to be no obvious way to relate them

to ordinary mathematical functions. Nevertheless, despite this, it is my

guess that in the end it will in fact turn out to be possible to get a

formula for any nested pattern in terms of suitably generalized

hypergeometric functions, or perhaps other functions that are direct

generalizations of ones used in traditional mathematics.

Yet given how simple and regular nested patterns tend to look it

may come as something of a surprise that it should be so difficult to

represent them as traditional mathematical formulas. And certainly if

this example is anything to go by, it begins to seem unlikely that the

more complex kinds of patterns that we have seen so many times in

this book could ever realistically be represented by such formulas.

But it turns out that there are at least some cases where

traditional mathematical formulas can be found even though to the eye

or with respect to other methods of perception and analysis a pattern

may seem highly complex.

The picture at the top of the facing page is one example. A pattern is

built up by superimposing a sequence of repetitive grids, and to the eye this

pattern seems highly complex. But in fact there is a simple formula for the

color of each square: given the largest factor in common between the

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

613

numbers that specify the horizontal and vertical positions of the square, the

square is white whenever this factor is 1, and is black otherwise.

So what about systems like cellular automata that have definite

rules for evolution? Are there ever cases in which patterns generated by

such systems seem complex to the eye but can in fact be described by

simple mathematical formulas?

I know of one class of examples where this happens, illustrated in

the pictures on the next page. The idea is to set up a row of cells

corresponding to the digits of a number in a certain base, and then at

each step to multiply this number by some fixed factor.

Such a system has many features immediately reminiscent of a

cellular automaton. But at least in the case of multiplication by 3 in

� � � � � �

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

3

1

1

4

1

2

1

4

1

2

1

4

1

2

1

4

1

2

1

4

1

2

1

5

1

1

1

1

5

1

1

1

1

5

1

1

1

1

5

1

1

1

1

2

1

6

1

2

3

2

1

6

1

2

3

2

1

6

1

2

3

2

1

1

1

1

1

1

1

7

1

1

1

1

1

1

7

1

1

1

1

1

1

4

1

2

1

8

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

1

1

9

1

1

3

1

1

3

1

1

9

1

1

3

1

1

3

1

1

10

1

2

1

2

5

2

1

2

1

10

1

2

1

2

5

2

1

2

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

4

1

6

1

4

3

2

1

12

1

2

3

4

1

6

1

4

3

2

1

1

1

1

1

1

1

1

13

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

2

1

14

1

2

1

2

1

2

7

2

1

2

1

2

1

5

1

3

1

1

15

1

1

3

1

5

3

1

1

3

5

1

3

1

1

4

1

2

1

16

1

2

1

4

1

2

1

8

1

2

1

4

1

2

1

1

1

1

17

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

18

1

2

3

2

1

6

1

2

9

2

1

6

1

2

3

2

1

1

19

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

1

2

1

4

5

2

1

4

1

10

1

4

1

2

5

4

1

2

1

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

An example of a pattern that looks complex, but can nevertheless still be represented by a simple mathematical formula. Given
the horizontal and vertical positions and a square is white when and is black otherwise. The condition

 is equivalent to the statement that and are relatively prime, or that no reduction is required to bring the fraction
 to lowest terms. It can be shown that if the pattern is extended sufficiently far, then any possible local arrangement of black

squares will eventually appear—though not necessarily with equal frequency.

x y GCD[x, y] Ð 1

GCD[x, y] Ð 1 x y

x /y

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

614

base 2, the presence of carry digits in the multiplication process

makes the system not quite an ordinary cellular automaton. It turns

out, however, that multiplication by 3 in base 6, or by 2 or 5 in base

10, never leads to carry digits, with the result that in such cases the

system can be thought of as following a purely local cellular

automaton rule of the kind illustrated below.

1
1 1

1 0 0 1
1 1 0 1 1

1 0 1 0 0 0 1
1 1 1 1 0 0 1 1

1 0 1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0 1 0 1 1

1 1 0 0 1 1 0 1 0 0 0 0 1
1 0 0 1 1 0 0 1 1 1 0 0 0 1 1

1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1

1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1

base 2; multiplier 3

1
2

1 1
2 2

1 2 1
1 0 1 2
2 1 0 1

1 1 2 0 2
1 0 0 1 1 1
2 0 0 2 2 2

1 1 0 1 2 2 1
2 2 1 0 2 1 2

1 2 1 2 1 2 0 1

base 3; multiplier 2

1
3

1 3
4 3

2 1 3
1 0 4 3
3 2 1 3

1 4 0 4 3
5 0 2 1 3

2 3 1 0 4 3
1 1 3 3 2 1 3
3 4 4 4 0 4 3

1 5 2 2 0 2 1 3

base 6; multiplier 3

1
2
4
8

1 6
3 2
6 4

1 2 8
2 5 6
5 1 2

1 0 2 4
2 0 4 8
4 0 9 6

base 10; multiplier 2

1
5

2 5
1 2 5
6 2 5

3 1 2 5
1 5 6 2 5
7 8 1 2 5

3 9 0 6 2 5
1 9 5 3 1 2 5
9 7 6 5 6 2 5

4 8 8 2 8 1 2 5
2 4 4 1 4 0 6 2 5

base 10; multiplier 5

Patterns of digits in various bases generated by successive multiplication by a fixed factor. Such systems were discussed on page
120. With multiplier row corresponds to the power . The value of the cell at position from the end of row is thus the th

digit of , or . Despite the apparent complexity of the patterns, a fairly simple mathematical formula
thus exists for the color of each square they contain.

m t mt n t n

mt Mod[Quotient[mt, kn], k]

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

0 0 0 0 0 1 1 1 1 1

2 2 2 2 2 3 3 3 3 3

4 4 4 4 4 5 5 5 5 5

6 6 6 6 6 7 7 7 7 7

8 8 8 8 8 9 9 9 9 9

0 0 0 0 0 1 1 1 1 1

2 2 2 2 2 3 3 3 3 3

4 4 4 4 4 5 5 5 5 5

6 6 6 6 6 7 7 7 7 7

8 8 8 8 8 9 9 9 9 9

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9

base 10; multiplier 2 base 10; multiplier 5

0
0

1

1

2

2

3

3

4

4

5

5

0 0 1 1 2 2

3 3 4 4 5 5

0 0 1 1 2 2

3 3 4 4 5 5

0 0 1 1 2 2

3 3 4 4 5 5

base 6; multiplier 3

0 0

0

0 1

0

0 2

1

0 3

1

0 4

2

0 5

2

1 0

3

1 1

3

1 2

4

1 3

4

1 4

5

1 5

5

2 0

0

2 1

0

2 2

1

2 3

1

2 4

2

2 5

2

3 0

3

3 1

3

3 2

4

3 3

4

3 4

5

3 5

5

4 0

0

4 1

0

4 2

1

4 3

1

4 4

2

4 5

2

5 0

3

5 1

3

5 2

4

5 3

4

5 4

5

5 5

5

Cellular automaton rules equivalent to multiplication of digit sequences in various bases. The left part of the
picture shows the explicit form of the rule for base 6 and multiplier 3. The arrays of numbers summarize the rule
for this case and other cases. Note that only certain specific choices of base and multiplier lead to ordinary cellular
automata; with other choices there are carries that propagate arbitrarily far. (See page 661.)

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

615

As the pictures at the top of the facing page demonstrate, the

overall patterns produced in all cases tend to look complex, and in many

respects random. But the crucial point is that because of the way the

system was constructed there is nevertheless a simple formula for the

color of each cell: it is given just by a particular digit in the number

obtained by raising the multiplier to a power equal to the number of steps.

So despite their apparent complexity, all the patterns on the facing page

can in effect be described by simple traditional mathematical formulas.

But if one thinks about actually using such formulas one might at

first wonder what good they really are. For if one was to work out the

value of a power by explicitly performing multiplications, this

would be very similar to explicitly following steps of cellular

automaton evolution. But the point is that because of certain

mathematical features of powers it turns out to be possible—as

indicated in the table below—to find with many fewer than

operations; indeed, one or two operations for every base 2 digit in is

always for example sufficient.

So what about other patterns produced by cellular automata and

similar systems? Is it possible that in the end all such patterns could just

be described by simple mathematical formulas? I do not think so. In fact,

as I will argue in Chapter 12, my strong belief is that in the vast majority

of cases it will be impossible for quite fundamental reasons to find any

mt t

t

mt t

t

m1 m m

m2 m 6m m2

m3 m 6m 6m m2 6m

m4 m 6m 6m 6m (m2)2

m5 m 6m 6m 6m 6m (m2)2 6m

m6 m 6m 6m 6m 6m 6m (m2 6m)2

m7 m 6m 6m 6m 6m 6m 6m (m2 6m)2 6m

m8 m 6m 6m 6m 6m 6m 6m 6m ((m2)2)2

m9 m 6m 6m 6m 6m 6m 6m 6m 6m ((m2)2)2 6m

m10 m 6m 6m 6m 6m 6m 6m 6m 6m 6m ((m2)2 6m)2

Examples of how powers can be computed more
efficiently than by successive multiplications. In the
cases shown, the choice of whether to square or
multiply by an additional factor of at each step in
computing is made on the basis of the successive
digits in the base 2 representation of the number .

m

mt

t

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

616

such simple formula. But even though no simple formula may exist, it is

still always in principle possible to represent the outcome of any process

of cellular automaton evolution by at least some kind of formula.

The picture below shows how this can be done for a single step in

the evolution of three elementary cellular automata. The basic idea is

to translate the rule for a given cellular automaton into a formula that

depends on three variables , and whose values correspond to the

colors of the three initial cells. The formula consists of a sum of terms,

with each term being zero unless the colors of the three cells match a

situation in which the rule yields a black cell.

In the first instance, each term can be set up to correspond

directly to one of the cases in the original rule. But in general this will

lead to a more complicated formula than is necessary. For as the picture

demonstrates, it is often possible to combine several cases into one

term by ignoring the values of some of the variables.

The picture at the top of the facing page shows what happens if

one considers two steps of cellular automaton evolution. There are now

altogether five variables, but at least for rules like rules 254 and 90 the

individual terms end up not depending on most of these variables.

a1 a2 a3

a1a2

a3

 + a1

a2 + a1

a3

a1a2

a3

+a1

a2a3 +a1

a2a3

+a1

a2

a3

rule 30

a1 + a2 + a3

a1a2a3 +a1a2a3

+a1a2

a3 +a1a2

a3

+a1

a2a3 +a1

a2a3

+a1

a2

a3

rule 254

a1a3

 + a1

a3

a1a2a3

+a1a2

a3

+a1

a2a3 +a1

a2

a3

rule 90

Boolean expression representations of the rules for three elementary cellular
automata. The first row shows the original cellular automaton rules. The second
row shows those combinations of cells that yield a black cell according to each of
the rules. The third row shows a minimized version in which gray cells are
introduced to indicate either black or white. In the formulas under the second and
third rows the variable represents the color of the th cell. is analogous to

, to , and to . The formulas given are in so-called
disjunctive normal form (DNF). They are set up so that only at most one term in
each formula is ever relevant for any particular configuration of colors.

ai i ei ej

ei © ej ei + ej ei ª ej ei

¨ ei

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

617

So what happens if one considers more steps? As the pictures on

the next page demonstrate, rules like 254 and 90 that have fairly simple

behavior lead to formulas that stay fairly simple. But for rule 30 the

formulas rapidly get much more complicated.

So this strongly suggests that no simple formula exists—at least

of the type used here—that can describe patterns generated by any

significant number of steps of evolution in a system like rule 30.

But what about formulas of other types? The formulas we have

used so far can be thought of as always consisting of sums of products of

variables. But what if we allow formulas with more general structure,

not just two fixed levels of operations?

It turns out that any rule for blocks of black and white cells can

be represented as some combination of just a single type of operation—

for example a so-called NAND function of the kind often used in digital

electronics. And given this, one can imagine finding for any particular

rule the formula that involves the smallest number of NAND functions.

a1a2a3

+ a1a4

a5

+ a1a2

a3 + a1

a2a3a4 +a1

a2a3a5 +a1

a2

a3

a4 +a1

a2

a3

a5

a1 + a2 + a3 + a4 + a5 a1a5

+ a1

a5

rule 30

rule 254 rule 90

Boolean expression representations of the
results from two steps in the evolution of
three elementary cellular automata. At the
top in each case is shown the explicit array
of outcomes for each of the 32 possible
initial configurations of cells. In the middle
are shown those configurations that yield
black cells. And at the bottom are the
minimal representations of these
collections of possibilities.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

618

a1a2a3a4a5a6

a7

 + a1a2a3a4a6a7a8a9

 + a1a2a3a4a6a7a9a10

 a11

 + a1a2a3a4a6a8

a9 + a1a2a3a4a5

a7 +
a1a2a3a4a5

a8

a9 + a1a2a3a4

a5a7

a8 + a1a2a3a4

a6

a7

a8a9

 + a1a2a3a4

a6

a7

a9a10

 a11

 + a1a2a4a5a6

a7a8

a9

a10 +

a1a2a4a5a6

a7a8

a9

a11 + a1a2a4

a5a6a7a8

a9

 + a1a2a4

a5

a6

a7

a8

a9 + a1a2a3

a4a5

a6

a7

a8 + a1a2a3

a5a6a7

a9 +

a1a2a3

a4

a5a7

a9

 + a1a2a3

a4

a6a8

a9

 + a1a2a3

a4

a6a7

a8 + a1a2a3

a4

a6

a7 + a1a3a4a5

a6a7

 +

a1a3a5a6

a7

a9a10 + a1a3a5a6

a7

a9a11 + a1a3a5

a6a7a8a9a10 + a1a3a5

a6a7a8a9a11 + a1a3a4

a5

a6a7a8 +

a1a3a4

a5

a6a7a9 + a1a3

a5a6a7a8

a9

 + a1a3

a5a6a7

a8 + a1a3

a4

a5a7

a8a10

 a11

 + a1a2

a3a5

a6a7

a8

a9 +

a1a2

a3a4

a5

a6

a7

a8

a9

a10 + a1a2

a3a4

a5

a6

a7

a8

a9

a11 + a1a2

a4a5a7

a8 + a1a2

a4a5a6

a7

a10

 a11

 + a1a2

a4a6a7a8

a9

 +

a1a2

a4a5

a7a8

a9

a10

 a11

 + a1a2

a4a5

a6

a7a8 + a1a2

a4a5

a6

a7a9 + a1a2

a5a6

a7

a8

a9 + a1a2

a3

a4a5a6

a7 +
a1a2

a3

a4a6a7

 + a1a2

a3

a4a5

a7

a8

a9

 + a1a2

a3

a5a7

a8 + a1a2

a3

a6a7a8a9a10 + a1a2

a3

a6a7a8a9a11 +

a1a2

a3

a4

a6a7a8 + a1a2

a3

a4

a6a7a9 + a1a2

a3

a4

a6

a7

a9a10 + a1a2

a3

a4

a6

a7

a9a11 + a1a2

a3

a4

a5

a6

a7

a8

a10

 a11

 +

a1

a2a3a4a5a6a8

a9

 + a1

a2a3a4a5a6a7

a8 + a1

a2a3a4

a7

a8

a9

 + a1

a2a3a4

a5

a6a7

 + a1

a2a3a4

a5

a8

a9

 +

a1

a2a4a5a6

a7a9 + a1

a2a4a5a6

a7a10

 a11

 + a1

a2a5

a6

a7

a8

a9

 + a1

a2a3

a4a5a6

a8 + a1

a2a3

a4a7

a8

a9

 +

a1

a2a3

a4a5

a6 + a1

a2a3

a4a5

a7 + a1

a2a3

a5a6

a7

a8

a9 + a1

a2a3

a6a7a8 + a1

a2a3

a6a7a9 +

a1

a2a3

a5

a6a8

a9 + a1

a2a3

a4

a6

a7

a8a9a10 + a1

a2a3

a4

a6

a7

a8a9a11 + a1

a3a4a5

a6

a7

a8 + a1

a3a4a5

a6

a7

a9

 +

a1

a3a5a7a8a9a10 + a1

a3a5a7a8a9a11 + a1

a3a5a6

a7a8 + a1

a3a4

a5a6a8

a9 + a1

a3a4

a5a7a8 +

a1

a3a4

a6

a7 + a1

a3a4

a5

a7

a8a9a10 + a1

a3a4

a5

a7

a8a9a11 + a1

a3

a4a5

a6

a7

a8

a9 + a1

a3

a4

a5

a6

a7

a8a10

 a11

 +

a1

a3

a4

a5

a6

a7

a9

a10 + a1

a3

a4

a5

a6

a7

a9

a11 + a1

a2

a3a5a6a7

a8

 + a1

a2

a3a5a6

a7 + a1

a2

a3a5

a6

a7

a9 +

a1

a2

a3a5

a6

a7

a10

 a11

 + a1

a2

a3a4

a5a6 + a1

a2

a3a4

a7

a8a10

 a11

 + a1

a2

a3a4

a7

a8a9

 + a1

a2

a4a6a7a8a9

 +
a1

a2

a4a6a7a9a10

 a11

 + a1

a2

a4a6a7a8

a9 + a1

a2

a4a5

a6

a7

a8 + a1

a2

a5a6

a7

a8

a9

a10 + a1

a2

a5a6

a7

a8

a9

a11 +

a1

a2

a5

a6

a7a8

a9

a10 + a1

a2

a5

a6

a7a8

a9

a11 + a1

a2

a4

a5a7

a8

a9

 + a1

a2

a4

a6

a7 + a1

a2

a4

a5

a6a8

a9

 +

a1

a2

a4

a5

a6a7

a8 + a1

a2

a3

a4

a6a7

a8

step 5:

a1a2a3a4

a7 + a1a2a4

a5

a6 + a1a2a3

a4a6a7a8 + a1a2a3

a4a6a7a9 + a1a2a3

a4a5

 + a1a2a3

a6

a7

a8 +

a1a2a3

a6

a7

a9 + a1a3a5a6a7

 + a1a3a5a7a8

a9

 + a1a3a5a6

a7 + a1a3a4

a7

a8

a9

 + a1a4a5

a6

a7

 +

a1a5

a6

a7

a8

a9

 + a1a4

a5

a6a8

a9

 + a1a4

a5

a6a7

 + a1a3

a4a6

a7

 + a1a3

a4a5

a6 + a1a2

a3a4a6

a7 +

a1a2

a3a5a7 + a1a2

a3a4

a7

 + a1a2

a3

a4

a5

a6

a7 + a1

a2a3a4a6a7a8 + a1

a2a3a4a6a7a9 + a1

a2a3a4a5

a7 +

a1

a2a3a4

a6

a7

a8 + a1

a2a3a4

a6

a7

a9 + a1

a2a3

a4

a6

a7 + a1

a3a4a5a6

a7

 + a1

a3a4a5

a6 + a1

a3

a5a6a7

 +
a1

a3

a5a7a8

a9

 + a1

a3

a5a6

a7 + a1

a3

a4

a5a7 + a1

a3

a4

a5a8

a9

 + a1

a2

a3a4

a5

a6

a7 + a1

a2

a4

a5

a6a7a8 +

a1

a2

a4

a5

a6a7a9 + a1

a2

a3

a4a6

a7 + a1

a2

a3

a5a7 + a1

a2

a3

a4

a6

a7

a8 + a1

a2

a3

a4

a6

a7

a9

step 4:

a1a2a3a4a5

 + a1a2a3a5a6

a7

 + a1a2a4

a5 + a1a2

a3a4

a5

a6 + a1a2

a3a4

a5

a7 + a1a2

a3

a5a6 + a1a2

a3

a5a7 +

a1a2

a3

a4

a6

a7

 + a1

a2a4a5a6 + a1

a2a4a5a7 + a1

a2a4

a5

 + a1

a3a4

a5

a6

a7

 + a1

a3

a4a6

a7

 + a1

a3

a5

a6 +

a1

a3

a5

a7 + a1

a2

a3a5 + a1

a2

a4a5

step 3:

a1a2a3

 + a1a4

a5

 + a1a2

a3 + a1

a2a3a4 + a1

a2a3a5 + a1

a2

a3

a4 + a1

a2

a3

a5step 2:

a1a2

a3

 + a1

a2 + a1

a3step 1:

rule 30

a1a3a9a11

 + a1a3a9

a11 + a1a3

a9a11 + a1a3

a9

a11

 + a1

a3a9a11 +

a1

a3a9

a11

 + a1

a3

a9a11

 + a1

a3

a9

a11

step 5:

a1a9

 + a1

a9step 4:

a1a3a5a7

 + a1a3a5

a7 + a1a3

a5a7 + a1a3

a5

a7

 + a1

a3a5a7 + a1

a3a5

a7

 + a1

a3

a5a7

 +
a1

a3

a5

a7

step 3:

a1a5

 + a1

a5step 2:

a1a3

 + a1

a3step 1:
rule 90

a1 + a2 + a3 + a4 + a5 +
a6 + a7 + a8 + a9 + a10 +
a11

step 5:

a1 + a2 + a3 + a4 + a5 + a6 +
a7 + a8 + a9

step 4:

a1 + a2 + a3 + a4 + a5 + a6 + a7

step 3:

a1 + a2 + a3 + a4 + a5step 2:

a1 + a2 + a3step 1:
rule 254

Minimal Boolean expression representations for the results of steps 1 through 5 in the evolution of three elementary cellular
automata. Both rules 254 and 90 have fairly simple overall behavior, and yield comparatively small Boolean expressions. Rule 30
has much more complicated behavior and yields Boolean expressions whose size grows rapidly from one step to the next. (For
steps 1 through 6, the expressions involve 3, 7, 17, 41, 102 and 261 terms respectively.) In each case the Boolean expressions given
are the smallest possible in the disjunctive normal form (DNF) used.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

619

The picture below shows some examples of the results. And once

again what we see is that for rules with fairly simple behavior the

formulas are usually fairly simple. But in cases like rule 30, the formulas

one gets are already quite complicated even after just two steps.

rule 254 (2 steps)

(((((((a1 Ñ a1) Ñ (a2 Ñ a2)) Ñ
(a3 Ñ a3)) Ñ (a3 Ñ a3)) Ñ (a4 Ñ a4)) Ñ

(a4 Ñ a4)) Ñ (a5 Ñ a5)) Ñ (a5 Ñ a5)

rule 90 (2 steps)

((a1 Ñ a1) Ñ a5) Ñ (a1 Ñ (a5 Ñ a5))

rule 30 (2 steps)

(((a1 Ñ a2) Ñ (a1 Ñ a3)) Ñ (a2 Ñ a3)) Ñ ((a1 Ñ a5) Ñ
((a1 Ñ (a1 Ñ a4)) Ñ (((a2 Ñ a3) Ñ ((a2 Ñ a2) Ñ
(a3 Ñ a3))) Ñ (((a1 Ñ a4) Ñ a4) Ñ (a5 Ñ a5)))))

Nand a1 Ñ a2 Not a1 Ñ a1

And (a1 Ñ a2) Ñ (a1 Ñ a2) Or (a1 Ñ a1) Ñ (a2 Ñ a2)

rule 254 (1 step) (((a1 Ñ a1) Ñ (a2 Ñ a2)) Ñ (a3 Ñ a3)) Ñ (a3 Ñ a3)

rule 90 (1 step) ((a1 Ñ a1) Ñ a3) Ñ (a1 Ñ (a3 Ñ a3))

rule 30 (1 step) ((a1 Ñ a1) Ñ a2) Ñ ((a1 Ñ a3) Ñ ((a1 Ñ (a2 Ñ a2)) Ñ (a3 Ñ a3)))

Minimal representations in
terms of NAND functions of
the first two steps in the
evolution of the same
cellular automata as on the
facing page. In each case,
the network and formula
shown are ones that involve
the absolute minimum
number of operations.
Finding these effectively
required searching through
billions of possibilities. The
picture at the top left shows
the action of a single NAND

function. The next three
pictures show how the
operations used in DNF
formulas can be built up
from NANDs.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

620

So even if one allows rather general structure, the evidence is that

in the end there is no way to set up any simple formula that will

describe the outcome of evolution for a system like rule 30.

And even if one settles for complicated formulas, just finding the

least complicated one in a particular case rapidly becomes extremely

difficult. Indeed, for formulas of the type shown on page 618 the

difficulty can already perhaps double at each step. And for the more

general formulas shown on the previous page it may increase by a factor

that is itself almost exponential at each step.

So what this means is that just like for every other method of

analysis that we have considered, we have little choice but to conclude

that traditional mathematics and mathematical formulas cannot in the

end realistically be expected to tell us very much about patterns

generated by systems like rule 30.

Human Thinking

When we are presented with new data one thing we can always do is

just apply our general powers of human thinking to it. And certainly

this allows us with rather modest effort to do quite well in handling all

sorts of data that we choose to interact with in everyday life. But what

about data generated by the kinds of systems that I have discussed in

this book? How does general human thinking do with this?

There are definitely some limitations, since after all, if general

human thinking could easily find simple descriptions of, for example,

all the various pictures in this book, then we would never have

considered any of them complex.

One might in the past have assumed that if a simple description

existed of some piece of data, then with appropriate thinking and

intelligence it would usually not be too difficult to find it. But what the

results in this book establish is that in fact this is far from true. For in

the course of this book we have seen a great many systems whose

underlying rules are extremely simple, yet whose overall behavior is

sufficiently complex that even by thinking quite hard we cannot

recognize its simple origins.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

621

Usually a small amount of thinking allows us to identify at least

some regularities. But typically these regularities are ones that can also

be found quite easily by many of the standard methods of perception

and analysis discussed earlier in this chapter.

So what then does human thinking in the end have to contribute?

The most obvious way in which it stands out from other methods of

perception and analysis is in its large-scale use of memory.

For all the other methods that we have discussed effectively

operate by taking each new piece of data and separately applying some

fixed procedure to it. But in human thinking we routinely make use of

the huge amount of memory that we have built up from being exposed

to billions of previous pieces of data.

And sometimes the results can be quite impressive. For it is quite

common to find that even though no other method has much to say

about a particular piece of data, we can immediately come up with a

description for it by remembering some similar piece of data that we

have encountered before.

And thus, for example, having myself seen thousands of pictures

produced by cellular automata, I can recognize immediately from

memory almost any pattern generated by any of the elementary rules—

even though none of the other methods of perception and analysis can

get very far whenever such patterns are at all complex.

But insofar as there is sophistication in what can be done with

human memory, does this sophistication come merely from the

experiences that are stored in memory, or somehow from the actual

mechanism of memory itself?

The idea of storing large amounts of data and retrieving it

according to various criteria is certainly quite familiar from databases in

practical computing. But there is at least one important difference

between the way typical databases operate, and the way human

memory operates. For in a standard database one tends to be able to find

only data that meets some precise specification, such as containing an

exact match to a particular string of text. Yet with human memory we

routinely seem to be able to retrieve data on the basis of much more

general notions of similarity.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

622

In general, if one wants to find a piece of data that has a certain

property—either exact or approximate—then one way to do this is just

to scan all the pieces of data that one has stored, and test each of them

in turn. But even if one does all sorts of parallel processing this

approach presumably in the end becomes quite impractical.

So what can one then do? In the case of exact matches there are a

couple of approaches that are widely used in practice.

Probably the most familiar is what is done in typical dictionaries:

all the entries are arranged in alphabetical order, so that when one looks

something up one does not need to scan every single entry but instead

one can quickly home in on just the entry one wants.

Practical database systems almost universally use a slightly more

efficient scheme known as hashing. The basic idea is to have some

definite procedure that takes any word or other piece of data and derives

from it a so-called hash code which is used to determine where the data

will be stored. And the point is that if one is looking for a particular

piece of data, one can then apply this same procedure to that data, get

the hash code for the data, and immediately determine where the data

would have been stored.

But to make this work, does one need a complex hashing

procedure that is carefully tuned to the particular kind of data one is

dealing with? It turns out that one does not. And in fact, all that is

really necessary is that the hashing procedure generate enough

randomness that even though there may be regularities in the original

data, the hash codes that are produced still end up being distributed

roughly uniformly across all possibilities.

And as one might expect from the results in this book, it is easy

to achieve this even with extremely simple programs—either based on

numbers, as in most practical database systems, or based on systems

like cellular automata.

So what this means is that regardless of what kind of data one is

storing, it takes only a very simple program to set up a hashing scheme

that lets one retrieve pieces of data very efficiently. And I suspect that

at least some aspects of this kind of mechanism are involved in the

operation of human memory.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

623

But what about the fact that we routinely retrieve from our

memory not just data that matches exactly, but also data that is merely

similar? Ordinary hashing would not let us do this. For a hashing

procedure will normally put different pieces of data at quite different

locations—even if the pieces of data happen in some sense to be similar.

So is it possible to set up forms of hashing that will in fact keep

similar pieces of data together? In a sense what one needs is a hashing

procedure in which the hash codes that are generated depend only on

features of the data that really make a difference, and not on others.

One practical example where this is done is a simple procedure

often used for looking up names by sound rather than spelling. In its

typical form this procedure works by dropping all vowels and grouping

together letters like “d” and “t” that sound similar, with the result that

at least in some approximation the only features that are kept are ones

that make a difference in the way a word sounds.

So how can one achieve this in general?

In many respects one of the primary goals of all forms of

perception and analysis is precisely to pick out those features of data

that are considered relevant, and to discard all others.

And so, as we discussed earlier in this chapter, the human visual

system, for example, appears to be based on having nerve cells that

respond only to certain specific features of images. And this means that

if one looks only at the output from these nerve cells, then one gets a

representation of visual images in which two images that differ only in

certain kinds of details will be assigned the same representation.

So if it is a representation like this that is used as the basis for

storing data in memory, the result is that one will readily be able to

retrieve not only data that matches exactly, but also data that is merely

similar enough to have the same representation.

In actual brains it is fairly clear that input received by all the

various sensory systems is first processed by assemblies of nerve cells

that in effect extract certain specific features. And it seems likely that

especially in lower organisms it is often representations formed quite

directly from such features that are what is stored in memory.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

624

But at least in humans there is presumably more going on. For it

is quite common that we can immediately recognize that we have

encountered some particular object before even if it is superficially

presented in a quite different way. And what this suggests is that quite

different patterns of raw data from our sensory systems can at least in

some cases still lead to essentially the same representation in memory.

So how might this be achieved? One possibility is that our brains

might be set up to extract certain specific high-level features—such as,

say, topological structure in three-dimensional space—that happen to

successfully characterize particular kinds of objects that we

traditionally deal with.

But my strong suspicion is that in fact there is some much

simpler and more general mechanism at work, that operates essentially

just at the level of arbitrary data elements, without any direct reference

to the origin or meaning of these data elements.

And one can imagine quite a few ways that such a mechanism

could potentially be set up with nerve cells.

One step in a particularly simple scheme is illustrated in the

picture below. The basic idea is to have a sequence of layers of nerve

cells—much as one knows exist in the brain—with each cell in each

successive layer responding only if the inputs it gets from some fixed

random set of cells in the layer above form some definite pattern.

One step in a very simple model of the way hash codes for arbitrary data might be generated by layers of nerve cells in the brain.
The response of a single layer of idealized nerve cells to a sequence of progressively different inputs is shown. Each nerve cell
fires and yields black output only if the inputs it gets from certain fixed positions match a particular template. The sequence of
outputs from all the nerve cells can be used as a hash code, whose value tends to be the same for inputs that differ only by small
changes.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

625

In a sense this is a straightforward generalization of the scheme for

visual perception that we discussed earlier in this chapter. But the point is

that with such a setup detailed changes in the input to the first layer of cells

only rarely end up having an effect on output from the last layer of cells.

It is not difficult to find systems in which different inputs often

yield the same output. In fact, this is the essence of the very general

phenomenon of attractors that we discussed in Chapter 6—and it is

seen in the vast majority of cellular automata, and in fact in almost any

kind of system that follows definite rules.

But what is somewhat special about the setup above is that

inputs which yield the same output tend to be ones that might

reasonably be considered similar, while inputs that yield different

outputs tend to be significantly different.

And thus, for example, a change in a single input cell typically

will not have a high probability of affecting the output, while a change

in a large fraction of the input cells will.

So quite independent of precisely which features of the original

data correspond to which input cells, this basic mechanism provides a

simple way to get a representation—and thus a hash code—that will

tend to be the same for pieces of data that somehow have enough

features that are similar.

So how would such a representation in the end be used? In a scheme

like the one above the output cells would presumably be connected to cells

that actually perform actions of some kind—perhaps causing muscles to

move, or perhaps just providing inputs to further nerve cells.

But so where in all of this would the actual content of our

memory reside? Almost certainly at some level it is encoded in the

details of connections between nerve cells.

But how then might such details get set up?

There is evidence that permanent changes can be produced in

individual nerve cells as a result of the behavior of nerve cells around

them. And as data gets received by the brain such changes presumably

do occur at least in some cells. But if one looks, say, at nerve cells

involved in the early stages of the visual system, then once the brain has

matured past some point these never seem to change their properties

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

626

much. And quite probably the same is true of many nerve cells involved

in the general process of doing the analog of producing hash codes.

The reason for such a lack of change could conceivably be simply

that at the relevant level the overall properties of the stream of data

corresponding to typical experience remain fairly constant. But it might

also be that if one expects to retrieve elements of memory reliably then

there is no choice but to set things up so that the hashing procedure one

uses always stays essentially the same.

And if there is a fixed such scheme, then this implies that while

certain similarities between pieces of data will immediately be

recognized, others will not.

So how does this compare to what we know of actual human

memory? There are many kinds of similarities that we recognize quite

effortlessly. But there are also ones that we do not. And thus, for

example, given a somewhat complicated visual image—say of a face or a

cellular automaton pattern—we can often not even immediately

recognize similarity to the same image turned upside-down.

So are such limitations in the end intrinsic to the underlying

mechanism of human memory, or do they somehow merely reflect

characteristics of the memory that we happen to build up from our

typical actual experience of the world?

My guess is that it is to some extent a mixture. But insofar as more

important limitations tend to be the result of quite low-level aspects of

our memory system it seems likely that even if these aspects could in

principle be changed it would in practice be essentially impossible to do

so. For the low levels of our memory system are exposed to an immense

stream of data. And so to cause any substantial change one would

presumably have to insert a comparable amount of data with the special

properties one wants. But for a human interacting with anything like a

normal environment this would in practice be absolutely impossible.

So in the end I strongly suspect that the basic rules by which

human memory operates can almost always be viewed as being

essentially fixed—and, I believe, fairly simple.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

627

But what about the whole process of human thinking? What does

it ultimately involve? My strong suspicion is that the use of memory is

what in fact underlies almost every major aspect of human thinking.

Capabilities like generalization, analogy and intuition immediately

seem very closely related to the ability to retrieve data from memory on

the basis of similarity. But what about capabilities like logical reasoning?

Do these perhaps correspond to a higher-level type of human thinking?

In the past it was often thought that logic might be an appropriate

idealization for all of human thinking. And largely as a result of this,

practical computer systems have always treated logic as something

quite fundamental. But it is my strong suspicion that in fact logic is

very far from fundamental, particularly in human thinking.

For among other things, whereas in the process of thinking we

routinely manage to retrieve remarkable connections almost

instantaneously from memory, we tend to be able to carry out logical

reasoning only by laboriously going from one step to the next. And my

strong suspicion is that when we do this we are in effect again just using

memory, and retrieving patterns of logical argument that we have

learned from experience.

In modern times computer languages have often been thought of

as providing precise ways to represent processes that might otherwise

be carried out by human thinking. But it turns out that almost all of the

major languages in use today are based on setting up procedures that are

in essence direct analogs of step-by-step logical arguments.

As it happens, however, one notable exception is Mathematica.

And indeed, in designing Mathematica, I specifically tried to imitate

the way that humans seem to think about many kinds of

computations. And the structure that I ended up coming up with for

Mathematica can be viewed as being not unlike a precise idealization of

the operation of human memory.

For at the core of Mathematica is the notion of storing collections

of rules in which each rule specifies how to transform all pieces of data

that are similar enough to match a single Mathematica pattern. And the

success of Mathematica provides considerable evidence for the power of

this kind of approach.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

628

But ultimately—like other computer languages—Mathematica

tends to be concerned mostly with setting up fairly short specifications

for quite definite computations. Yet in everyday human thinking we

seem instead to use vast amounts of stored data to perform tasks whose

definitions and objectives are often quite vague.

There has in the past been a great tendency to assume that given

all its apparent complexity, human thinking must somehow be an

altogether fundamentally complex process, not amenable at any level to

simple explanation or meaningful theory.

But from the discoveries in this book we now know that highly

complex behavior can in fact arise even from very simple basic rules.

And from this it immediately becomes conceivable that there could in

reality be quite simple mechanisms that underlie human thinking.

Certainly there are many complicated details to the construction

of the brain, and no doubt there are specific aspects of human thinking

that depend on some of these details. But I strongly suspect that there is

a definite core to the phenomenon of human thinking that is largely

independent of such details—and that will in the end turn out to be

based on rules that are rather simple.

So how will we be able to tell if this is in fact the case? Detailed

direct studies of the brain and its operation may give some clues. But

my guess is that the only way that really convincing evidence will be

obtained is if actual technological systems are constructed that can

successfully be seen to emulate human thinking.

And indeed as of now our experience with practical computing

provides rather little encouragement that this will ever be possible.

There are certainly some tasks—such as playing chess or doing

algebra—that at one time were considered indicative of human-like

thinking, but which are now routinely done by computer. Yet when it

comes to seemingly much more mundane and everyday types of

thinking the computers and programs that exist at present tend to be

almost farcically inadequate.

So why have we not done better? No doubt part of the answer has

to do with various practicalities of computers and storage systems. But

a more important part, I suspect, has to do with issues of methodology.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

629

For it has almost always been assumed that to emulate in any

generality a process as sophisticated as human thinking would necessarily

require an extremely complicated system. So what has mostly been done

is to try to construct systems that perform only rather specific tasks.

But then in order to be sure that the appropriate tasks will

actually be performed the systems tend to be set up—as in traditional

engineering—so that their behavior can readily be foreseen, typically by

standard mathematical or logical methods. And what this almost

invariably means is that their behavior is forced to be fairly simple.

Indeed, even when the systems are set up with some ability to learn

they usually tend to act—much like the robots of classical fiction—

with far too much simplicity and predictability to correspond to

realistic typical human thinking.

So on the basis of traditional intuition, one might then assume

that the way to solve this problem must be to use systems with more

complicated underlying rules, perhaps more closely based on details of

human psychology or neurophysiology. But from the discoveries in this

book we know that this is not the case, and that in fact very simple

rules are quite sufficient to produce highly complex behavior.

Nevertheless, if one maintains the goal of performing specific

well-defined tasks, there may still be a problem. For insofar as the

behavior that one gets is complex, it will usually be difficult to direct it

to specific tasks—an issue rather familiar from dealing with actual

humans. So what this means is that most likely it will at some level be

much easier to reproduce general human-like thinking than to set up

some special version of human-like thinking only for specific tasks.

And it is in the end my strong suspicion that most of the core

processes needed for general human-like thinking will be able to be

implemented with rather simple rules.

But a crucial point is that on their own such processes will most

likely not be sufficient to create a system that one would readily

recognize as exhibiting human-like thinking. For in order to be able to

relate in a meaningful way to actual humans, the system would almost

certainly have to have built up a human-like base of experience.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

630

No doubt as a practical matter this could to some extent be done

just by large-scale recording of experiences of actual humans. But it seems

not unlikely that to get a sufficiently accurate experience base, the system

would itself have to interact with the world in very much the same way

as an actual human—and so would have to have elements that emulate

many elaborate details of human biological and other structure.

Once one has an explicit system that successfully emulates

human thinking, however, one can imagine progressively removing

some of this complexity, and seeing just which features of human

thinking end up being preserved.

So what about human language, for example? Is this purely

learned from the details of human experience? Or are there features of it

that reflect more fundamental aspects of human thinking?

When one learns a language—at least as a young child—one

implicitly tends to deduce simple grammatical rules that are in effect

specific generalizations of examples one has encountered. And I suspect

that in doing this the types of generalizations that one makes are

essentially those that correspond to the types of similarities that one

readily recognizes in retrieving data from memory.

Actual human languages normally have many exceptions to any

simple grammatical rules. And it seems that with sufficient effort we

can in fact learn languages with almost any structure. But the fact that

most modern computer languages are specifically set up to follow

simple grammatical rules seems to make their structures particularly

easy for us to learn—perhaps because they fit in well with low-level

processes of human thinking.

But to what extent is the notion of a language even ultimately

necessary in a system that does human-like thinking? Certainly in

actual humans, languages seem to be crucial for communication. But

one might imagine that if the underlying details of different individuals

from some class of systems were sufficiently identical then

communication could instead be achieved just by directly transferring

low-level patterns of activity. My guess, however, is that as soon as the

experiences of different individuals become different, this will not

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

631

work, and that therefore some form of general intermediate

representation or language will be required.

But does one really need a language that has the kind of sequential

grammatical structure of ordinary human language? Graphical user

interfaces for computer systems certainly often use somewhat different

schemes. And in simple situations these can work well. But my uniform

experience has been that if one wants to specify processes of any significant

complexity in a fashion that can reasonably be understood then the only

realistic way to do this is to use a language—like Mathematica—that has

essentially an ordinary sequential grammatical structure.

Quite why this is I am not certain. Perhaps it is merely a

consequence of our familiarity with traditional human languages. Or

perhaps it is a consequence of our apparent ability to pay attention only

to one thing at a time. But I would not be surprised if in the end it is a

reflection of fairly fundamental features of human thinking.

And indeed our difficulty in thinking about many of the patterns

produced by systems in this book may be not unrelated. For while

ordinary human language has little trouble describing repetitive and

even nested patterns, it seems to be able to do very little with more

complex patterns—which is in a sense why this book, for example,

depends so heavily on visual presentation.

At the outset, one might have imagined that human thinking

must involve fundamentally special processes, utterly different from all

other processes that we have discussed. But just as it has become clear

over the past few centuries that the basic physical constituents of

human beings are not particularly special, so also—especially after the

discoveries in this book—I am quite certain that in the end there will

turn out to be nothing particularly special about the basic processes

that are involved in human thinking.

And indeed, my strong suspicion is that despite the apparent

sophistication of human thinking most of the important processes that

underlie it are actually very simple—much like the processes that seem

to be involved in all the other kinds of perception and analysis that we

have discussed in this chapter.

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

632

Higher Forms of Perception and Analysis

In the course of this chapter we have discussed in turn each of the major

methods of perception and analysis that we in practice use. And if our

goal is to understand the actual experience that we get of the world then

there is no reason to go further. But as a matter of principle one can ask

whether the methods of perception and analysis that we have discussed

in a sense cover what is ultimately possible—or whether instead there

are higher and fundamentally more powerful forms of perception and

analysis that for some reason we do not at present use.

As we discussed early in this chapter, any method of perception

or analysis can at some level be viewed as a way of trying to find simple

descriptions for pieces of data. And what we might have assumed in the

past is that if a piece of data could be generated from a sufficiently

simple description then the data itself would necessarily seem to us

quite simple—and would therefore have many regularities that could be

recognized by our standard methods of perception and analysis.

But one of the central discoveries of this book is that this is far

from true—and that actually it is rather common for rules that have

extremely simple descriptions to give rise to data that is highly

complex, and that has no regularities that can be recognized by any of

our standard methods.

But as we discussed earlier in this chapter the fact that a simple

rule can ultimately be responsible for such data means that at some

level the data must contain regularities. So the point is that these

regularities are just not ones that can be detected by our standard

methods of perception and analysis.

Yet the fact that there are in the end regularities means that at

least in principle there could exist higher forms of perception and

analysis that would succeed in recognizing them.

So might one day some new method of perception and analysis be

invented that would in a sense manage to recognize all possible

regularities, and thus be able to tell immediately if any particular piece

of data could be generated from any kind of simple description?

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

633

My strong belief—as I will argue in Chapter 12—is that at least in

complete generality this will never be possible. But that does not mean that

there cannot exist higher forms of perception and analysis that succeed in

recognizing at least some regularities that our existing methods do not.

The results of this chapter, however, might seem to provide some

circumstantial evidence that in practice even this might not be

possible. For in the course of the chapter we have discussed a whole

range of different kinds of perception and analysis, yet in essentially all

cases we have found that the overall capabilities they exhibit are rather

similar. Most of them, for example, recognize repetition, and some also

recognize nesting. But almost none recognize anything more complex.

So what this perhaps suggests is that in the end there might be

only certain specific capabilities that can be realized in practical

methods of perception and analysis. And certainly it seems not

inconceivable that there could be a fundamental result that the only

kinds of regularities that both occur frequently in actual systems and

can be recognized quickly enough to provide a basis for practical

methods of perception and analysis are ones like repetition and nesting.

But there is another possible explanation for what we have seen

in this chapter: perhaps it is just that we, as humans, are always very

narrow in the methods of perception and analysis that we use. For

certainly it is remarkable that none of the methods that we normally

use ever in the end seem to manage to get much further than we can

already get with our own built-in powers of perception. And what this

perhaps suggests is that we choose the methods we use to be essentially

those that pick out only regularities with which we are somehow

already very familiar from our own built-in powers of perception.

For there is no difficulty in principle in constructing procedures

that have capabilities very different from those of our standard methods

of perception and analysis. Indeed, as one example, one could imagine

just enumerating all possible simple descriptions of some particular

type, and then testing in each case to see whether what one gets

matches a piece of data that one has.

And in some specific cases, this might well succeed in finding

extremely simple descriptions for the data. But to use such a method in

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

634

any generality almost inevitably requires computational resources far

greater than one would normally consider reasonable in a practical

method of perception or analysis.

And in fact there is really no reason to consider such a

sophisticated procedure. For in a sense any program—including one

that is very simple and runs very quickly—can be thought of as

implementing a method of perception or analysis. For if one gives a

piece of data as the input to the program, then the output one gets—

whatever it may be—can be viewed as corresponding to some kind of

description of the data.

But the problem is that under most circumstances this

description will not be particularly useful. And indeed what typically

seems to be necessary to make it useful is that somehow one is already

familiar with similar descriptions, and knows their significance.

A description based on output from a cellular automaton rule

that one has never seen before is thus for example not likely to be

useful. But a description that picks out a feature like repetition that is

already very familiar to us will typically be much more useful.

And potentially therefore our lack of higher forms of perception

and analysis might in the end have nothing to do with any difficulty in

implementing such forms, but instead may just be a reflection of the

fact that we only have enough context to make descriptions of data

useful when these descriptions are fairly close to the ones we get from

our own built-in human methods of perception.

But why is it then that these methods themselves are not more

powerful? After all, one might think that biological evolution would

inevitably have made us as good as possible at handling data associated

with any of the systems that we commonly encounter in nature.

Yet as we have seen in this book almost whenever there is

significant complexity our powers of human perception end up being far

from adequate to find any kind of minimal summaries of data.

And with the traditional view that biological evolution is

somehow a process of infinite power this seems to leave one little

choice but to conclude that there must be fundamental limitations on

possible methods of perception that can be useful.

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S C H A P T E R 1 0

635

One might imagine perhaps that while there could in principle be

methods of perception that would recognize features beyond, say,

repetition and nesting, any single such feature might never occur in a

sufficiently wide range of systems to make its recognition generally

useful to a biological organism.

But as of now I do not know of any fundamental reason why this

might be so, and following my arguments in Chapter 8 I would not be at

all surprised if the process of biological evolution had simply missed

even methods of perception that are, in some sense, fairly obvious.

So what about an extraterrestrial intelligence? Free from any

effects of terrestrial biological evolution might it have developed all

sorts of higher forms of perception and analysis?

Of course we have no direct information on this. But the very fact

that we have so far failed to discover any evidence for extraterrestrial

intelligence may itself conceivably already be a sign that higher forms

of perception and analysis may be in use.

For as I will discuss in Chapter 12 it seems far from inconceivable

that some of the extraterrestrial radio and other signals that we pick up

and assume to be random noise could in fact be meaningful messages—

but just encoded in a way that can be recognized only by higher forms of

perception and analysis than those we have so far applied to them.

Yet whether or not this is so, the capabilities of extraterrestrial

intelligence are not in the end directly relevant to an understanding of

our own experience of the world. In the future we may well manage to

use higher forms of perception and analysis, and as a result our

experience of the world will change—no doubt along with certain

aspects of our science and mathematics. But for now it is the kinds of

methods of perception and analysis that we have discussed in most of

this chapter that must form the basis for the conclusions we make

about the world.

4 NOTES
Sytems Based on Numbers
N O T E S

X
TitleName
P A R T N A M E

1067

NOTES FOR CHAPTER 10

Processes of Perception and Analysis

Defining the Notion of Randomness

â Page 554 · Algorithmic information theory. A description of
a piece of data can always be thought of as some kind of
program for reproducing the data. So if one could find the
shortest program that works then this must correspond to the
shortest possible description of the data—and in algorithmic
information theory if this is no shorter than the data itself
then the data is considered to be algorithmically random.

How long the shortest program is for a given piece of data
will in general depend on what system is supposed to run the
program. But in a sense the program will on the whole be as
short as possible if the system is universal (see page 642).
And between any two universal systems programs can differ
in length by at most a constant: for one can always just add a
fixed interpreter program to the programs for one system in
order to make them run on the other system.

As mentioned in the main text, any data generated by a
simple program can by definition never be algorithmically
random. And so even though algorithmic randomness is
often considered in theoretical discussions (see note below) it
cannot be directly relevant to the kind of randomness we see
in so many systems in this book—or, I believe, in nature.

If one considers all possible sequences (say of 0’s and 1’s)
of length then it is straightforward to see that most of them
must be more or less algorithmically random. For in order to
have enough programs to generate all sequences most of
the programs one uses must themselves be close to length .
(In practice there are subtleties associated with the encoding
of programs that make this hold only for sufficiently large .)
But even though one knows that almost all long sequences
must be algorithmically random, it turns out to be
undecidable in general whether any particular sequence is
algorithmically random. For in general one can give no upper
limit to how much computational effort one might have to
expend in order to find out whether any given short

program—after any number of steps—will generate the
sequence one wants.

But even though one can never expect to construct them
explicitly, one can still give formal descriptions of sequences
that are algorithmically random. An example due to Gregory
Chaitin is the digits of the fraction of initial conditions for
which a universal system halts (essentially a compressed
version—with various subtleties about limits—of the
sequence from page 1127 giving the outcome for each initial
condition). As emphasized by Chaitin, it is possible to ask
questions purely in arithmetic (say about sequences of values
of a parameter that yield infinite numbers of solutions to an
integer equation) whose answers would correspond to
algorithmically random sequences. (See page 786.)

As a reduced analog of algorithmic information theory one
can for example ask what the simplest cellular automaton
rule is that will generate a given sequence if started from a
single black cell. Page 1186 gives some results, and suggests
that sequences which require more complicated cellular
automaton rules do tend to look to us more complicated and
more random.

â History. Randomness and unpredictability were discussed
as general notions in antiquity in connection both with
questions of free will (see page 1135) and games of chance.
When probability theory emerged in the mid-1600s it
implicitly assumed sequences random in the sense of having
limiting frequencies following its predictions. By the 1800s
there was extensive debate about this, but in the early 1900s
with the advent of statistical mechanics and measure theory
the use of ensembles (see page 1020) turned discussions of
probability away from issues of randomness in individual
sequences. With the development of statistical hypothesis
testing in the early 1900s various tests for randomness were
proposed (see page 1084). Sometimes these were claimed to
have some kind of general significance, but mostly they were
just viewed as simple practical methods. In many fields

2n

n

2n

n

n

W

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1068

outside of statistics, however, the idea persisted even to the
1990s that block frequencies (or flat frequency spectra) were
somehow the only ultimate tests for randomness. In 1909
Emile Borel had formulated the notion of normal numbers
(see page 912) whose infinite digit sequences contain all
blocks with equal frequency. And in the 1920s Richard von
Mises—attempting to capture the observed lack of
systematically successful gambling schemes—suggested that
randomness for individual infinite sequences could be
defined in general by requiring that “collectives” consisting
of elements appearing at positions specified by any
procedure should show equal frequencies. To disallow
procedures say specially set up to pick out all the infinite
number of 1’s in a sequence Alonzo Church in 1940
suggested that only procedures corresponding to finite
computations be considered. (Compare page 1021 on coarse-
graining in thermodynamics.) Starting in the late 1940s the
development of information theory began to suggest
connections between randomness and inability to compress
data, but emphasis on measures of information
content (see page 1071) reinforced the idea that block
frequencies are the only real criterion for randomness. In the
early 1960s, however, the notion of algorithmic randomness
(see note above) was introduced by Gregory Chaitin, Andrei
Kolmogorov and Ray Solomonoff. And unlike earlier
proposals the consequences of this definition seemed to show
remarkable consistency (in 1966 for example Per Martin-Löf
proved that in effect it covered all possible statistical tests)—
so that by the early 1990s it had become generally accepted as
the appropriate ultimate definition of randomness. In the
1980s, however, work on cryptography had led to the study
of some slightly weaker definitions of randomness based on
inability to do cryptanalysis or make predictions with
polynomial-time computations (see page 1089). But quite
what the relationship of any of these definitions might be to
natural science or everyday experience was never much
discussed. Note that definitions of randomness given in
dictionaries tend to emphasize lack of aim or purpose, in
effect following the common legal approach of looking at
underlying intentions (or say at physical construction of dice)
rather than trying to tell if things are random from their
observed behavior.

â Inevitable regularities and Ramsey theory. One might have
thought that there could be no meaningful type of regularity
that would be present in all possible data of a given kind. But
through the development since the late 1920s of Ramsey
theory it has become clear that this is not the case. As one
example, consider looking for runs of equally spaced
squares of the same color embedded in sequences of black

and white squares of length . The pictures below show
results with for various . For there are always
some sequences in which no runs of length 3 exist. But it
turns out that for every single possible sequence
contains at least one run of length 3. For any the same is
true for sufficiently large ; it is known that requires

 and requires . (In problems like this the
analog of often grows extremely rapidly with .) If one has
a sufficiently long sequence, therefore, just knowing that a
run of equally spaced identical elements exists in it does not
narrow down at all what the sequence actually is, and can so
cannot ultimately be considered a useful regularity.

(Compare pattern-avoiding sequences on page 944.)

Defining Complexity

â Page 557 · History. There have been terms for complexity in
everyday language since antiquity. But the idea of treating
complexity as a coherent scientific concept potentially
amenable to explicit definition is quite new: indeed this
became popular only in the late 1980s—in part as a result of
my own efforts. That what one would usually call complexity
can be present in mathematical systems was for example
already noted in the 1890s by Henri Poincaré in connection
with the three-body problem (see page 972). And in the 1920s
the issue of quantifying the complexity of simple
mathematical formulas had come up in work on assessing
statistical models (compare page 1083). By the 1940s general
comments about biological, social and occasionally other
systems being characterized by high complexity were
common, particularly in connection with the cybernetics
movement. Most often complexity seems to have been
thought of as associated with the presence of large numbers
of components with different types or behavior, and typically
also with the presence of extensive interconnections or
interdependencies. But occasionally—especially in some
areas of social science—complexity was instead thought of as
being characterized by somehow going beyond what human
minds can handle. In the 1950s there was some discussion in
pure mathematics of notions of complexity associated
variously with sizes of axioms for logical theories, and with
numbers of ways to satisfy such axioms. The development of
information theory in the late 1940s—followed by the

p Log[p]

m

n
m = 3 n n < 9

n > 9
m

n m = 4
n > 35 m = 5 n > 178

n m

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1069

discovery of the structure of DNA in 1953—led to the idea
that perhaps complexity might be related to information
content. And when the notion of algorithmic information
content as the length of a shortest program (see page 1067)
emerged in the 1960s it was suggested that this might be an
appropriate definition for complexity. Several other
definitions used in specific fields in the 1960s and 1970s were
also based on sizes of descriptions: examples were optimal
orders of models in systems theory, lengths of logic
expressions for circuit and program design, and numbers of
factors in Krohn-Rhodes decompositions of semigroups.
Beginning in the 1970s computational complexity theory took
a somewhat different direction, defining what it called
complexity in terms of resources needed to perform
computational tasks. Starting in the 1980s with the rise of
complex systems research (see page 862) it was considered
important by many physicists to find a definition that would
provide some kind of numerical measure of complexity. It
was noted that both very ordered and very disordered
systems normally seem to be of low complexity, and much
was made of the observation that systems on the border
between these extremes—particularly class 4 cellular
automata—seem to have higher complexity. In addition, the
presence of some kind of hierarchy was often taken to
indicate higher complexity, as was evidence of computational
capabilities. It was also usually assumed that living systems
should have the highest complexity—perhaps as a result of
their long evolutionary history. And this made informal
definitions of complexity often include all sorts of detailed
features of life (see page 1178). One attempt at an abstract
definition was what Charles Bennett called logical depth: the
number of computational steps needed to reproduce
something from its shortest description. Many simpler
definitions of complexity were proposed in the 1980s. Quite a
few were based just on changing in the definition
of entropy to a quantity vanishing for both ordered and
disordered . Many others were based on looking at
correlations and mutual information measures—and using
the fact that in a system with many interdependent and
potentially hierarchical parts this should go on changing as
one looks at more and more. Some were based purely on
fractal dimensions or dimensions associated with strange
attractors. Following my 1984 study of minimal sizes of finite
automata capable of reproducing states in cellular automaton
evolution (see page 276) a whole series of definitions were
developed based on minimal sizes of descriptions in terms of
deterministic and probabilistic finite automata (see page
1084). In general it is possible to imagine setting up all sorts
of definitions for quantities that one chooses to call
complexity. But what is most relevant for my purposes in this

book is instead to find ways to capture everyday notions of
complexity—and then to see how systems can produce these.
(Note that since the 1980s there has been interest in finding
measures of complexity that instead for example allow
maintainability and robustness of software and management
systems to be assessed. Sometimes these have been based on
observations of humans trying to understand or verify
systems, but more often they have just been based for
example on simple properties of networks that define the
flow of control or data—or in some cases on the length of
documentation needed.) (The kind of complexity discussed
here has nothing directly to do with complex numbers such
as introduced into mathematics since the 1600s.)

Data Compression

â Practicalities. Data compression is important in making
maximal use of limited information storage and transmission
capabilities. One might think that as such capabilities
increase, data compression would become less relevant. But
so far this has not been the case, since the volume of data
always seems to increase more rapidly than capabilities for
storing and transmitting it. In the future, compression is
always likely to remain relevant when there are physical
constraints—such as transmission by electromagnetic
radiation that is not spatially localized.

â History. Morse code, invented in 1838 for use in
telegraphy, is an early example of data compression based
on using shorter codewords for letters such as “e” and “t”
that are more common in English. Modern work on data
compression began in the late 1940s with the development
of information theory. In 1949 Claude Shannon and Robert
Fano devised a systematic way to assign codewords based
on probabilities of blocks. An optimal method for doing this
was then found by David Huffman in 1951. Early
implementations were typically done in hardware, with
specific choices of codewords being made as compromises
between compression and error correction. In the mid-1970s,
the idea emerged of dynamically updating codewords for
Huffman encoding, based on the actual data encountered.
And in the late 1970s, with online storage of text files
becoming common, software compression programs began
to be developed, almost all based on adaptive Huffman
coding. In 1977 Abraham Lempel and Jacob Ziv suggested
the basic idea of pointer-based encoding. In the mid-1980s,
following work by Terry Welch, the so-called LZW
algorithm rapidly became the method of choice for most
general-purpose compression systems. It was used in
programs such as PKZIP, as well as in hardware devices

pi Log[pi]

pi

�!!!!!!
-1

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1070

such as modems. In the late 1980s, digital images became
more common, and standards for compressing them
emerged. In the early 1990s, lossy compression methods (to
be discussed in the next section) also began to be widely
used. Current image compression standards include: FAX
CCITT 3 (run-length encoding, with codewords determined
by Huffman coding from a definite distribution of run
lengths); GIF (LZW); JPEG (lossy discrete cosine transform,
then Huffman or arithmetic coding); BMP (run-length
encoding, etc.); TIFF (FAX, JPEG, GIF, etc.). Typical
compression ratios currently achieved for text are around
3:1, for line diagrams and text images around 3:1, and for
photographic images around 2:1 lossless, and 20:1 lossy. (For
sound compression see page 1080.)

â Page 560 · Number representations. The sequence of 1’s and
0’s representing a number are obtained as follows:

(a) Unary. . (Not self-delimited.)

(b) Ordinary base 2. . (Not self-delimited.)

(c) Length prefixed. Starting with an ordinary base 2 digit
sequence, one prepends a unary specification of its length,
then a specification of that length specification, and so on:

(d) Binary-coded base 3. One takes base 3 representation, then
converts each digit to a pair of base 2 digits, handling the
beginning and end of the sequence in a special way.

(e) Fibonacci encoding. Instead of decomposing a number into
a sum of powers of an integer base, one decomposes it into a
sum of Fibonacci numbers (see page 902). This
decomposition becomes unique when one requires that no
pair of 1’s appear together.

The representations of all the first numbers
can be obtained from (the version in the main text has

 applied)

â Lengths of representations. (a) , (b) , (c)
,

(d) , (e)
. Large approximations:

(a) , (b) , (c) , (d)
, (e) .

Shown on a logarithmic scale, representations (b) through (e)
(given here for numbers 1 through 500) all grow roughly
linearly:

â Completeness. If one successively reads 0’s and 1’s from an
infinite sequence then the representations (c), (d) and (e) have
the property that eventually one will always accumulate a
valid representation for some number or another. The
pictures below show which sequences of 0’s and 1’s
correspond to complete numbers in these representations.
Every vertical column is a possible sequence of 0’s and 1’s,
and the column is shown to terminate when a complete
number is obtained.

With an infinite random sequence of 0’s and 1’s, different
number representations yield different distributions of sizes
of numbers. Representation (b), for example, is more
weighted towards large numbers, while (c) is more weighted
towards small numbers. Maximal compression for a
sequence of numbers with a particular distribution of sizes is
obtained by choosing a representation that yields a matching
such distribution. (See also page 949.)

â Practical computing. Numbers used for arithmetic in
practical computing are usually assumed to have a fixed
length of, say, 32 bits, and thus do not need to be self-
delimiting. In Mathematica, where integers can be of essentially
any size, a representation closer to (b) above is used.

â Page 561 · Run-length encoding. Data can be converted to
run lengths by . Each number is then
replaced by its representation.

With completely random input, the output will on average be
longer by a factor where is the
length of the representation for . For the Fibonacci encoding
used in the main text, this factor is approximately 1.41028. (In
base 2 this number has 1’s essentially at positions

; as discussed on page 914, the number is
transcendental.)

n

Table[0, {n}]

IntegerDigits[n, 2]

(Flatten[{Sign[-Range[1 - Length[#], 0]], #}] &)[
Map[Rest, IntegerDigits[Rest[Reverse[NestWhileList[

Floor[Log[2, #]] &, n+ 1, # > 1 &]]], 2]]]

Flatten[IntegerDigits[
Append[2 -With[{w = Floor[Log[3, 2 n]]},

IntegerDigits[n - (3w+1 - 1)/2, 3, w]], 3], 2, 2]]

Apply[Take, RealDigits[(N[#, N[Log[10, #] + 3]] &)[
n�!!!!5 /GoldenRatio2 + 1/2], GoldenRatio]]

Fibonacci[n] - 1

Rest[RotateLeft[Join[#, {0, 1}]]] &

Apply[Join, Map[Last,
NestList[{#021, Join[Map[Join[{1, 0}, Rest[#]] &, #021],

Map[Join[{1, 0}, #] &, #011]]} &, {{}, {{1}}}, n - 3]]]

n Floor[Log[2, n] + 1]
Tr[FixedPointList[Max[0, Ceiling[Log[2, #]]] &, n+ 2]] - n - 3

2 Ceiling[Log[3, 2 n+ 1]]
Floor[Log[GoldenRatio, �!!!!5 (n+ 1/2)]] n

n Log[2, n] Log[2, n] + Log[2, Log[2, n]] +?

2 Log[3, n] Log[GoldenRatio, n]

(b) (c) (d) (e)

(a) (b) (c)

Map[Length, Split[data]]

Sum[2-(n+1) r[n], {n, 1, ¥}] r[n]
n

Fibonacci[n]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1071

â Page 563 · Huffman coding. From a list of probabilities for
blocks, the list of codewords can be generated using

Given the list of codewords , the sequence of blocks that
occur in encoded data can be uniquely reconstructed using

Note that the encoded data can consist of any sequence of 0’s
and 1’s. If all possible blocks of length occur with equal
probability, then the Huffman codewords will consist of
blocks equivalent to the original ones. In an opposite
extreme, blocks with probabilities , , , … will
yield codewords of lengths 1, 2, 3, …

In practical applications, Huffman coding is sometimes
extended to allow the choice of codewords to be updated
dynamically as more data is read.

â Maximal block compression. If one has data that consists of a
long sequence of blocks, each of length , and each
independently chosen with probability to be of type , then
as argued by Claude Shannon in the late 1940s, it turns out that
the minimum number of base 2 bits needed on average to
represent each block in such a sequence is

. If all blocks occur with an
equal probability of , then takes on its maximum possible
value of . If only one block occurs with nonzero probability
then . Following Shannon, the quantity (whose form is
analogous to entropy in physics, as discussed on page 1020) is
often referred to as “information content”. This name, however,
is very misleading. For certainly does not in general give the
length of the shortest possible description of the data; all it does
is to give the shortest length of description that is obtained by
treating successive blocks as if they occur with independent
probabilities. With this assumption one then finds that maximal
compression occurs if a block of probability is represented
by a codeword of length . Huffman coding with a
large number of codewords will approach this if all the are
powers of 1/2. (The self-delimiting of codewords leads to
deviations for small numbers of codewords.) For that are
not powers of 1/2, non-integer length codewords would be
required. The method of arithmetic coding provides an
alternative in which the output does not consist of separate
codewords concatenated together. (Compare algorithmic
information content discussed on pages 554 and 1067.)

â Arithmetic coding. Consider dividing the interval from 0 to
1 into a succession of bins, with each bin having a width
equal to the probability for some sequence of blocks to occur.

The idea of arithmetic coding is to represent each such bin by
the digit sequence of the shortest number within the bin—
after trailing zeros have been dropped. For any sequence
this can be done using

Huffman coding of a sequence containing a single 0 block
together with 1 blocks will yield output of length about ;
arithmetic coding will yield length about . Compression
in arithmetic coding still relies, however, on unequal block
probabilities, just like in Huffman coding. Originally
suggested in the early 1960s, arithmetic coding reemerged in
the late 1980s when high-speed floating-point computation
became common, and is occasionally used in practice.

â Page 565 · Pointer-based encoding. One can encode a list of
data by generating pointers to the longest and most recent
copies of each subsequence of length at least using

The process of encoding can be made considerably faster
by keeping a dictionary of previously encountered
subsequences. One can reproduce the original data using

To get a representation purely in terms of 0 and 1, one can use
a self-delimiting representation for each integer that appears.
(Knowing the explicit representation one could then
determine whether each block would be shorter if encoded
literally or using a pointer.) The encoded version of a purely
repetitive sequence of length has a length that grows like

. The encoded version of a purely nested sequence
grows like . The encoded version of a sufficiently
random sequence grows like (with the specific encoding
used in the text, the length is about). Note that any
sequence of 0’s and 1’s corresponds to the beginning of the
encoding for some sequence or another.

It is possible to construct sequences whose encoded versions
grow roughly like fractional powers of . An example is the
sequence whose encoded
version grows like . Cyclic tag systems often seem to
produce sequences whose encoded versions grow like fractional

p

Map[Drop[Last[#], -1] &, Sort[
Flatten[MapIndexed[Rule, FixedPoint[Replace[Sort[#],

{{p0_, i0_}, {p1_, i1_}, pi___} ! {{p0 + p1, {i0, i1}},
pi}] &, MapIndexed[List, p]]01, 21, {-1}]]]] - 1

c
d

First[{{}, d} //. MapIndexed[
{{r___}, Flatten[{#1, s___}]} ! {{r, #2011}, {s}} &, c]]

2b b

1/2 1/4 1/8

b
p[i] i

h = -Sum[p[i] Log[2, p[i]], {i, 2b}]

2-b h
b

h 2 0 h

h

p[i]
-Log[2, p[i]]

p[i]

p[i]

s

Module[{c, m = 0},
Map[c[#] = {m, m += Count[s, #] /Length[s]} &, Union[s]];
Function[x, (First[RealDigits[2# Ceiling[2-# Min[x]],

2, -#, -1]] &)[Floor[Log[2, Max[x] -Min[x]]]]][
Fold[(Max[#1] -Min[#1]) c[#2] +Min[#1] &, {0, 1}, s]]]

n n
Log[n]

d
b

PEncode[d_, b_ : 4] := Module[{i, a, u, v},
i = 2; a = {First[d]}; While[i < Length[d], {u, v} =

Last[Sort[Table[{MatchLength[d, i, j], j}, { j , i - 1}]]];
If[u > b, AppendTo[a, p[i - v, u]]; i += u,

AppendTo[a, d0i1]; i ++]]; a]
MatchLength[d_, i_, j_] := With[{m = Length[d] - i}, Catch[

Do[If[d0i + k1 =!= d0j + k1, Throw[k]], {k, 0, m}]; m+ 1]]

PDecode[a_] := Module[{d = Flatten[
a /. p[j_, r_] " Table[p[j], {r}]]}, Flatten[MapIndexed[
If[Head[#1] === p, d0#21 = d0#2 - First[#1]1, #1] &, d]]]

n
Log[n]

Log[n]2

n
2 n

n
Table[Append[Table[0, {r}], 1], {r, s}]

�!!!!n Log[n]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1072

powers of . Sequences produced by concatenation sequences are
not typically compressed by pointer encoding.

With completely random input, the probability that the
length subsequence which begins at element is a repeat
of a previous subsequence is roughly . The
overall fraction of a length input that consists of repeats of
length at least is greater than and is essentially

â LZW algorithms. Practical implementations of pointer-
based encoding can maintain only a limited dictionary of
possible repeats. Various schemes exist for optimizing the
construction, storage and rewriting of such dictionaries.

â Page 568 · Recursive subdivision. In one dimension,
encoding can be done using

In dimensions, it can be done using

â 2D run-length encoding. A simple way to generalize run-
length encoding to two dimensions is to scan data one row
after another, always finding the largest rectangle of uniform
color that starts at each particular point. The pictures below
show regions with an area of more than 10 cells found in this
way. The presence of so many thin and overlapping regions
prevents good compression.

2D run-length encoding can also be done by scanning the
data according to a more complicated space-filling curve, of
the kind discussed on page 893.

Irreversible Data Compression

â History. The idea of creating sounds by adding together
pure tones goes back to antiquity. At a mathematical level,

following work by Joseph Fourier around 1810 it became
clear by the mid-1800s how any sufficiently smooth function
could be decomposed into sums of sine waves with
frequencies corresponding to successive integers. Early
telephony and sound recording in the late 1800s already used
the idea of compressing sounds by dropping high- and low-
frequency components. From the early days of television in
the 1950s, some attempts were made to do similar kinds of
compression for images. Serious efforts in this direction were
not made, however, until digital storage and processing of
images became common in the late 1980s.

â Orthogonal bases. The defining feature of a set of basic forms
is that it is complete, in the sense that any piece of data can be
built up by adding the basic forms with appropriate weights.
Most sets of basic forms used in practice also have the feature
of being orthogonal, which turns out to make it particularly
easy to work out the weights for a given piece of data. In 1D, a
basic form is just a list. Orthogonality is then the property
that for all . And when this property holds,
the weights are given essentially just by .

The concept of orthogonal bases was historically worked out
first in the considerably more difficult case of continuous
functions. Here a typical orthogonality property is

. As
discovered by Joseph Fourier around 1810, this is satisfied for
basis functions such as .

â Page 573 · Walsh transforms. The basic forms shown in the
main text are 2D Walsh functions—represented as
matrices. Each collection of such functions can be obtained
from lists of vectors representing 1D Walsh functions by
using , or equivalently

.

The pictures below show how 1D arrays of data values can be
built up by adding together 1D Walsh functions. At each step
the Walsh function used is given underneath the array of
values obtained so far.

The components of the vectors for 1D Walsh functions can be
ordered in many ways. The pictures below show the

n

b n
1 - (1 - 2-b)n-1

n
b 1 - 2b /n

1 - Sum[(1 - 2-b)i Product[1+ (1 - 2-b) j - (1 - 2-b-1) j ,
{ j , i - b + 1, i - 1}], {i, b, n - b}] / (n - 2 b + 1)

6 8 10 12 14 16

Subdivide[a_] := Flatten[
If[Length[a] 2 2, a, If[Apply[SameQ, a], {1, First[a]},

{0, Map[Subdivide, Partition[a, Length[a] /2]]}]]]

n
Subdivide[a_, n_] := With[{s = Table[1, {n}]}, Flatten[

If[Dimensions[a] 2 2 s, a, If[Apply[SameQ, Flatten[a]],
{1, First[Flatten[a]]}, {0, Map[Subdivide[#, n] &,

Partition[a, 1/2 Length[a] s], {n}]}]]]]

a0i1
a0i1�.�a0j1 2 0 i 9 j

data�.�a

Integrate[f [r, x] f [s, x], {x, 0, 1}] 2 KroneckerDelta[r, s]

Sin[2 np x] /�!!!!2

¡1

Outer[Outer[Times, ##] &, b, b, 1, 1]
Map[Transpose, Map[# b &, b, {2}]]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1073

complete matrices of basis vectors obtained with three
common orderings.

The matrices for size can be obtained from

with (a) , , (b) ,
, and (c) . (a) is used in the main

text. Known as sequency order, it has the property that each
row involves one more change of color than the previous
row. (b) is known as natural or Hadamard order. It exhibits a
nested structure, and can be obtained as in the pictures below
from the evolution of a 2D substitution system, or
equivalently from a Kronecker product as in

with

(c) is known as dyadic or Paley order. It is related to (a) by
Gray code reordering of the rows, and to (b) by reordering
according to (see page 905)

It is also given by

where (b) is obtained simply by dropping the .

Walsh functions can correspond to nested sequences. The
function at position in
basis (a), for example, is exactly the Thue-Morse sequence
(with 0 replaced by -1) from page 83.

Given the matrix of basis vectors, the Walsh transform is
simply . Direct evaluation of this for length takes
steps. However, the nested structure of in natural order
allows evaluation in only about steps using

This procedure is similar to the fast Fourier transform
discussed below. Transforms of 2D data are equivalent to 1D
transforms of flattened data.

Walsh functions were used by electrical engineers such as
Frank Fowle in the 1890s to find transpositions of wires
that minimized crosstalk; they were introduced into
mathematics by Joseph Walsh in 1923. Raymond Paley
introduced the dyadic basis in 1932. Mathematical
connections with harmonic analysis of discrete groups were
investigated from the late 1940s. In the 1960s, Walsh
transforms became fairly widespread in discrete signal and
image processing.

â Page 575 · Walsh spectra. The arrays of absolute values of
weights of basic forms for successive images are as follows:

â Hadamard matrices. Hadamard matrices are matrices
with elements -1 and +1, whose rows are orthogonal, so that

. The matrices used in
Walsh transforms are special cases with . There are
thought to be Hadamard matrices with every size
(and for no other sizes are possible); the number of
distinct such matrices for each up to 7 is 1, 1, 1, 5, 3, 60, 487.
The so-called Paley family of Hadamard matrices for

 with prime are given by

Originally introduced by Jacques Hadamard in 1893 as the
matrices with elements which attain the maximal
possible determinant , Hadamard matrices appear in
various combinatorial problems, particularly design of
exhaustive combinations of experiments and Reed-Muller
error-correcting codes.

â Image averaging. Walsh functions yield significantly better
compression than simple successive averaging of blocks
of cells, as shown below.

(a) (b) (c)

n = 2s

Nest[Apply[Join, f [{Map[Flatten[Map[{#, #} &, #]] &, #],
Map[Flatten[Map[{#, -#} &, #]] &, g[#]]}]] &, {{1}}, s]

f = Identity g = Reverse f = Transpose
g = Identity f = g = Identity

Nest[Flatten2D[Map[# {{1, 1}, {1, -1}} &, #, {2}]] &, {{1}}, s]

Flatten2D[a_] :=
Apply[Join, Apply[Join, Map[Transpose, a], {2}]]

BitReverseOrder[a_] :=
With[{n = Length[a]}, a0Map[FromDigits[Reverse[#], 2] &,

IntegerDigits[Range[0, n - 1], 2, Log[2, n]]] + 11]

Array[Apply[Times, (-1)^ (IntegerDigits[#1, 2, s]
Reverse[IntegerDigits[#2, 2, s]])] &, 2^{s, s}, 0]

Reverse

2/3 (1+ 4^ (-(Floor[s/2] + 1/2))) 2s

m
data�.�m n n2

m
n Log[n]

Nest[Flatten[Transpose[Partition[#, 2]�.�{{1, 1}, {1, -1}}]] &,
data, Log[2, Length[data]]]

n7n

m�.�Transpose[m] 2 n IdentityMatrix[n]
n = 2s

n = 4 k
n > 2

k

n = 4 k = p + 1 p
PadLeft[Array[JacobiSymbol[#2 - #1, n - 1] &, {n, n} - 1] -

IdentityMatrix[n - 1], {n, n}, 1]

Abs[a] < 1
¡nn/2

2�2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1074

â Practical image compression. Two basic phenomena
contribute to our ability to compress images in practice. First,
that typical images of relevance tend to be far from random—
indeed they often involve quite limited numbers of distinct
objects. And second, that many fine details of images go
unnoticed by the human visual system (see the next section).

â Fourier transforms. In a typical Fourier transform, one uses
basic forms such as with running from 1 to .
The weights associated with these forms can be found using

, and given these weights the original data can also be
reconstructed using . The pictures below show
what happens in such a so-called discrete cosine transform
when different fractions of the weights are kept, and others
are effectively set to zero. High-frequency wiggles associated
with the so-called Gibbs phenomenon are typical near edges.

 can be thought of as multiplication by the
 matrix . Applying

 to this matrix yields a matrix which has an
essentially nested form, and for size can be obtained
from

Using this structure, one obtains the so-called fast Fourier
transform which operates in steps and is given by

(See also page 1080.)

â JPEG compression. In common use since the early 1990s
JPEG compression works by first assigning color values to
definite bins, then applying a discrete Fourier cosine
transform, then applying Huffman encoding to the resulting
weights. The “quality” of the image is determined by how
many weights are kept; a typical default quality factor, used
say by in Mathematica, is 75.

â Wavelets. Each basic form in an ordinary Walsh or Fourier
transform has nonzero elements spread throughout. With
wavelets the elements are more localized. As noted in the late

1980s basic forms can be set up by scaling and translating just
a single appropriately chosen underlying shape. The (a) Haar
and (b) Daubechies wavelets shown below both have
the property that the basic forms (whose 2D
analogs are shown as on page 573) are orthogonal for every
different and .

The pictures below show images built up by keeping
successively more of these basic forms. Sharp edges have
fewer wiggles than with Fourier transforms.

â Sound compression. See page 1080.

Visual Perception

â Color vision. The three types of color-sensitive cone cells on
the human retina each have definite response curves as a
function of wavelength. The perceived color of light with a
given wavelength distribution is basically determined by the
three numbers obtained by integrating these responses. For
any wavelength distribution it turns out that if one scales
these numbers to add up to one, then the chromaticity values
obtained must lie within a certain region. Mixing specific
colors in different proportions allows one to reach any point
in an -cornered polytope. For this polytope comes
close to filling the region of all possible colors, but for no
can it completely fill it—which is why practical displays and
printing processes can produce only limited ranges of colors.

An important observation, related to the fact that limitations
in color ranges are usually not too troublesome, is that the
perceived colors of objects stay more or less constant even
when viewed in very different lighting, corresponding to
very different wavelength distributions. In recent years it has
become clear that the origin of this phenomenon is that

Exp[5 p r x /n] r n

Fourier
InverseFourier

Fourier[data]
n7n Array[Exp[2p 5 #1 #2/n] &, {n, n}, 0]
BitReverseOrder

n = 2s

Nest[With[{c = BitReverseOrder[Range[0, Length[#] - 1] /
Length[#]]}, Flatten2D[MapIndexed[#1 {{1, 1},
{1, -1} (-1)^c0Last[#2]1} &, #, {2}]]] &, {{1}}, s]

n Log[n]

With[{n = Length[data]}, Fold[Flatten[Map[With[
{k = Length[#] /2}, {{1, 1}, {1, -1}}�.�{Take[#, k], Drop[

#, k] (-1)^ (Range[0, k - 1] / k)}] &, Partition[##]]] &,
BitReverseOrder[data], 2^Range[Log[2, n]]] /�!!!!n]

Export

y[x]
2m/2 y[2m x - n]

m n

(a)

(b)

(a) (b)

n

n n = 3
n

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1075

beyond the original cone cells, most color-sensitive cells in
our visual system respond not to absolute color levels, but
instead to differences in color levels at slightly different
positions. (Responses to nearby relative values rather than
absolute values seem to be common in many forms of human
perception.)

The fact that white light is a mixture of colors was noticed by
Isaac Newton in 1704, and it became clear in the course of the
1700s that three primaries could reproduce most colors.
Thomas Young suggested in 1802 that there might be three
types of color receptors in the eye, but it was not until 1959
that these were actually identified—though on the basis of
perceptual experiments, parametrizations of color space were
already well established by the 1930s. While humans and
primates normally have three types of cone cells, it has been
found that other mammals normally have two, while birds,
reptiles and fishes typically have between 3 and 5.

â Nerve cells. In the retina and the brain, nerve cells typically
have an irregular tree-like structure, with between a few and
a few thousand dendrites carrying input signals, and one or
more axons carrying output signals. Nerve cells can respond
on timescales of order milliseconds to changes in their inputs
by changing their rate of generating output electrical spikes.
As has been believed since the 1940s, most often nerve cells
seem to operate at least roughly by effectively adding up
their inputs with various positive or negative weights, then
going into an excited state if the result exceeds some
threshold. The weights seem to be determined by detailed
properties of the synapses between nerve cells. Their values
can presumably change to reflect certain aspects of the
activity of the cell, thus forming a basis for memory (see page
1102). In organisms with a total of only a few thousand nerve
cells, each individual cell typically has definite connections
and a definite function. But in humans with perhaps 100
billion nerve cells, the physical connections seem quite
haphazard, and most nerve cells probably develop their
function as a result of building up weights associated with
their actual pattern of behavior, either spontaneous or in
response to external stimuli.

â The visual system. Connected to the 100 million or so light-
sensitive photoreceptor cells on the retina are roughly two
layers of nerve cells, with various kinds of cross-connections,
out of which come the million fibers that form the optic
nerve. After essentially one stop, most of these go to the
primary visual cortex at the back of the brain, which itself
contains more than 100 million nerve cells. Physical
connections between nerve cells have usually been difficult
to map. But starting in the 1950s it became possible to record
electrical activity in single cells, and from this the discovery

was made that many cells respond to rather specific visual
stimuli. In the retina, most common are center-surround
cells, which respond when there is a higher level of light in
the center of a roughly circular region and a lower level
outside, or vice versa. In the first few layers of the visual
cortex about half the cells respond to elongated versions of
similar stimuli, while others seem sensitive to various forms
of change or motion. In the fovea at the center of the retina, a
single center-surround cell seems to get input from just a few
nearby photoreceptors. In successive layers of the visual
cortex cells seem to get input from progressively larger
regions. There is a very direct mapping of positions on the
retina to regions in the visual cortex. But within each region
there are different cells responding to stimuli at different
angles, as well as to stimuli from different eyes. Cells with
particular kinds of responses are usually found to be
arranged in labyrinthine patterns very much like those
shown on page 427. And no doubt the processes which
produce these patterns during the development of the
organism can be idealized by simple 2D cellular automata.
Quite what determines the pattern of illumination to which a
given cell will respond is not yet clear, although there is some
evidence that it is the result of adaptation associated with
various kinds of test inputs. Since the late 1970s, it has been
common to assume that the response of a cell can be
modelled by derivatives of Gaussians such as those shown
below, or perhaps by Gabor functions given by products of
trigonometric functions and Gaussians. Experiments have
determined responses to these and other specific stimuli, but
inevitably no experiment can find all the stimuli to which a
cell is sensitive.

The visual systems of a number of specific higher and lower
organisms have now been studied, and despite a few
differences (such as cross-connections being behind the
photoreceptors on the retinas of octopuses and squids, but in
front in most higher animals), the same general features are
usually seen. In lower organisms, there tend to be fewer
layers of cells, with individual cells more specialized to
particular visual stimuli of relevance to the organism.

â Feedback. Most of the lowest levels of visual processing
seem to involve only signals going successively from one
layer in the eye or brain to the next. But presumably there is
at least some feedback to previous layers, yielding in effect
iteration of rules like the ones used in the main text. The

f $x f $xx f $xx f + $yy f $xxx f

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1076

resulting evolution process is likely to have attractors,
potentially explaining the fact that in images such as “Magic
Eye” random dot stereograms features can pop out after
several seconds or minutes of scrutiny, even without any
conscious effort.

â Scale invariance. In a first approximation our recognition of
objects does not seem to be much affected by overall size or
overall light level. For light level—as with color constancy—
this is presumably achieved by responding only to
differences between levels at different positions. Probably the
same effect contributes to scale invariance by emphasizing
only edges and corners. And if one is looking at objects like
letters, it helps that one has learned them at many different
sizes. But also similar cells most likely receive inputs from
regions with a range of different sizes on the retina—making
even unfamiliar textures seem the same over at least a certain
range of scales. When viewed at a normal reading distance of
12 inches each square in the picture on page 578 covers a
region about 5 cells across on the retina. With good lighting
and good eyesight the textures in the picture can still be
distinguished at a distance of 5 feet, where each square
covers only one cell. But if the picture is enlarged by a factor
of 3 or more then at normal reading distance it can become
difficult to distinguish the textures—perhaps because the
squares cover regions larger than the templates used at the
lowest levels in our visual system.

â History. Ever since antiquity the visual arts have yielded
practical schemes and sometimes also fairly abstract
frameworks for determining what features of images will
have what impact. In fact, even in prehistoric times it seems
to have been known, for example, that edges are often
sufficient to communicate visual forms, as in the pictures
below.

Visual perception has been used for centuries as an example
in philosophical discussions about the nature of experience.
Traditional mathematical methods began to be applied to it
in the second half of the 1800s, particularly through the
development of psychophysics. Studies of visual illusions
around the end of the 1800s raised many questions that were
not readily amenable to numerical measurement or
traditional mathematical analysis, and this led in part to the
Gestalt approach to psychology which attempted to
formulate various global principles of visual perception.

In the 1940s and 1950s, the idea emerged that visual images
might be processed using arrays of simple elements. At a
largely theoretical level, this led to the perceptron model of
the visual system as a network of idealized neurons. And at a
practical level it also led to many systems for image
processing (see below), based essentially on simple cellular
automata (see page 928). Such systems were widely used by
the end of the 1960s, especially in aerial reconnaissance and
biomedical applications.

Attempts to characterize human abilities to perceive texture
appear to have started in earnest with the work of Bela Julesz
around 1962. At first it was thought that the visual system
might be sensitive only to the overall autocorrelation of an
image, given by the probability that randomly selected points
have the same color. But within a few years it became clear
that images could be constructed—notably with systems
equivalent to additive cellular automata (see below)—that
had the same autocorrelations but looked completely
different. Julesz then suggested that discrimination between
textures might be based on the presence of “textons”, loosely
defined as localized regions like those shown below with
some set of distinct geometrical or topological properties.

In the 1970s, two approaches to vision developed. One was
largely an outgrowth of work in artificial intelligence, and
concentrated mostly on trying to use traditional mathematics
to characterize fairly high-level perception of objects and
their geometrical properties. The other, emphasized
particularly by David Marr, concentrated on lower-level
processes, mostly based on simple models of the responses of
single nerve cells, and very often effectively applying

 with simple kernels, as in the pictures below.

In the 1980s, approaches based on neural networks capable of
learning became popular, and attempts were made in the
context of computational neuroscience to create models
combining higher- and lower-level aspects of visual
perception.

The basic idea that early stages of visual perception involve
extraction of local features has been fairly clear since the
1950s, and researchers from a variety of fields have invented
and reinvented implementations of this idea many times. But
mainly through a desire to use traditional mathematics, these

ListConvolve

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1077

implementations have tended to be implicitly restricted to
using elements with various linearity properties—typically
leading to rather unconvincing results. My model is closer to
what is often done in practical image processing, and
apparently to how actual nerve cells work, and in effect
assumes highly nonlinear elements.

â Page 581 · Implementation. The exact matches for a template
 in data containing elements 0 and 1 can be obtained from

â Testing the model. Although it is difficult to get good
systematic data, the many examples I have tried indicate that
the levels of discrimination between textures that we achieve
with our visual system agree remarkably well with those
suggested by my simple model. A practical issue that arises
is that if one repeatedly tries experiments with the same set
of textures, then after a while one learns to discriminate these
particular textures better. Shifting successive rows or even
just making an overall rotation seems, however, to avoid this
effect.

â Related models. Rather than requiring particular templates
to be matched, one can consider applying arbitrary cellular
automaton rules. The pictures below show results from a
single step of the 16 even-numbered totalistic 5-neighbor
rules. The results are surprisingly easy to interpret in terms of
feature extraction.

â Image processing. The release of programs like Photoshop
in the late 1980s made image processing operations such as
smoothing, sharpening and edge detection widely available
on general-purpose computers. Most of these operations are
just done by applying with simple kernels.
(Even before computers, such convolutions could be done
using the fact that diffraction of light effectively performs
Fourier transforms.) Ever since the 1960s all sorts of schemes
for nonlinear processing of images have been discussed and
used in particular communities. An example originally
popular in the earth and environmental sciences is so-called
mathematical morphology, based on “dilation” of data
consisting of 0’s and 1’s with a “structuring element”
according to (as well as the
dual operation of “erosion”). Most schemes like this can
ultimately be thought of as picking out templates or applying
simple cellular automaton rules.

â Real textures. The textures I consider in the main text are all
based on arrays of discrete black and white squares. One can
also consider textures associated, say, with surface roughness
of physical objects. Models of these are often needed for
realistic computer graphics. Common approaches are to
assume that the surfaces are random with some frequency
spectrum, or can be generated as fractals using substitution
systems with random parameters. In recent times, models
based on wavelets have also been used.

â Statistical methods. Even though they do not appear to
correspond to how the human visual system works,
statistical methods are often used in trying to discriminate
textures automatically. Correlations, conditional entropies
and fractal dimensions are commonly computed. Often it is
assumed that different parts of a texture are statistically
independent, so that the texture can be characterized by
probabilities for local patterns, as in a so-called Markov
random field or generalized autoregressive moving average
(ARMA) process.

â Camouflage. On both animals and military vehicles it is
often important to have patterns that cannot be distinguished
from a background by the visual systems of predators. And
in most cases this is presumably best achieved by avoiding
differences in densities of certain local features. Note that in a
related situation almost any fairly random overlaid pattern
containing many local features can successfully be used to
mask the contents of a paper envelope.

â Halftoning. In printed books like this one, gray levels are
usually obtained by printing small dots of black with varying
sizes. On displays consisting of fixed arrays of pixels, gray
levels must be obtained by having only a certain density of
pixels be black. One way to achieve this is to break the array
into blocks, then successively to fill in pixels in each
block until the appropriate gray level is reached, as in the
pictures below, in an order given for example by

An alternative to this so-called ordered dither approach is
the Floyd-Steinberg or error-diffusion method invented in
1976. This scans sequentially, accumulating and spreading
total gray level in the data, then generating a black pixel
whenever a threshold is exceeded. The method can be
implemented using

s

Sign[ListCorrelate[2 s - 1, data] -Count[s, 1, 2]] + 1

ListConvolve

s

Sign[ListConvolve[s, data, 1, 0]]

2n72n

Nest[
Flatten2D[{{4 # + 0, 4 # + 2}, {4 # + 3, 4 # + 1}}] &, {{0}}, n]

Module[{a = Flatten[data], r, s},
{r, s} = Dimensions[data]; Partition[Do[

a0i + {1, s - 1, s, s + 1}1 += m (a0i1 - If[a0i1 < 1/2, 0, 1]),
{i, r s - s - 1}]; Map[If[# < 1/2, 0, 1] &, a], s]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1078

In its original version , as in the first row of
pictures below. But even with the method
generates fairly random patterns, as in the second row below.
(Note that significantly different results can be obtained if
different boundary conditions are used for each row.)

To give the best impression of uniform gray, one must in
general minimize features detected by the human visual
system. One simple way to do this appears to be to use
nested patterns like the ones below.

â Generating textures. As discussed on page 217, it is in
general difficult to find 2D patterns which at all points match
some definite set of templates. With templates, there
turn out to be just 7 minimal such patterns, shown below.
Constructing patterns in which templates occur with definite
densities is also difficult, although randomized iterative
schemes allow some approximation to be obtained.

One-dimensional cellular automata are especially convenient
generators of distinctive textures. Indeed, as was noticed
around 1980, generalizations of additive rules involving cells
in different relative locations can produce textures with
similar statistics, but different visual appearance, as shown
below. (All the examples shown turn out to correspond to
ordinary, sequential and reversible cellular automata seen
elsewhere in this book.) (See also page 1018.)

â Moire patterns. The pictures below show moire patterns
formed by superimposing grids of points at different angles.
Our visual system does not immediately perceive the grids,

but instead mainly picks up features formed from local
arrangements of dots. The second picture below is similar to
patterns of halftone screens visible in 4-color printing under a
magnifying glass.

In the first two pictures below, bands with spacing
 are visible wherever lines cross. In the second

two pictures there is also an apparent repetitive pattern with
approximately the same repetition period.

The patterns are exactly repetitive only when ,
where and are elements of a primitive Pythagorean triple
(so that , and are all integers, and

). This occurs when , (see
page 945), and in this case the minimum displacement that
leaves the whole pattern unchanged is .

The second row of pictures illustrates what happens if
points closer than distance are joined. The results
appear to capture at least some of the features picked out by
our visual system.

â Perception and presentation. In writing this book it has been
a great challenge to find graphical representations that make
the behavior of systems as clear as possible for the purposes
of human visual perception. Even small changes in
representation can greatly affect what properties are noticed.
As a simple example, the pictures below are identical, except
for the fact that the colors of cells on alternate rows have been
reversed.

m = {7, 3, 5, 1} /16
m = {1, 0, 1, 0} /2

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 8 1/ 7 1/ 4 1/ 3 3/ 8 2/ 5 9/ 16

1/ 5 1/ 4 1/ 3 2/ 5 1/ 2

2�2

1/2 Csc[q /2]

q = 10 8 q = 20 8 q = 10 8 q = 20 8

Tan[q] 2 u/v
u v

u v Sqrt[u2 + v 2]

GCD[u, v] 2 1 u = r 2 - s2 v = 2 r s

{s, r}

3/ 4 5/ 12 20/ 21 28/ 45

1/�!!!!2

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1079

Auditory Perception

â Sounds. The human auditory system is sensitive to sound
at frequencies between about 20 Hz and 20 kHz. Middle A
on a piano typically corresponds to a frequency of 440 Hz.
Each octave represents a change in frequency by a factor of
two. In western music there are normally 12 notes identified
within an octave. These differ in frequency by successive
factors of roughly —with different temperament
schemes using different rational approximations to powers
of this quantity.

The perceived character of a sound seems to depend most on
the frequencies it contains, but also to be somewhat affected
by the way its intensity ramps up with time, as well as the
way frequencies change during this ramp up. Many musical
instruments produce sound by vibrating strings or air in
cylindrical or conical tubes, and in these cases, there is one
main frequency, together with roughly equally spaced
overtones. In percussion instruments, the spectrum of
frequencies is usually much more complicated. In speech,
vowels and voiced consonants tend to be characterized by
the lowest two or three frequencies of the mouth. In nature,
processes such as fluid turbulence and fracture yield a broad
spectrum of frequencies. In speech, letters like “s” also yield
broad spectra, presumably because they involve fluid
turbulence.

Any sound can be specified by giving its amplitude or
waveform as a function of time. corresponds to a
pure tone. Other simple mathematical functions can also
yield distinctive sounds. FM synthesis functions such as

 can be made to sound somewhat like
various musical instruments, and indeed were widely used
in early synthesizers.

â Auditory system. Sound is detected by the motion it causes
in hair cells in the cochlea of the inner ear. When vibrations of
a particular frequency enter the cochlea an active process
involving hair cells causes the vibrations to be concentrated
at a certain distance down the cochlea. To a good
approximation this distance is proportional to the logarithm
of the frequency, and going up one octave in frequency
corresponds to moving roughly 3.5 mm. Of the 12,000 or so

hair cells in the cochlea most seem to be involved mainly
with mechanical issues; about 3500 seem to produce
outgoing signals. These are collected by about 30,000 nerve
fibers which go down the auditory nerve and after several
stops reach the auditory cortex. Different nerve cells seem to
have rates of firing which are set up to reflect both sound
intensity, and below perhaps 300 Hz, actual amplitude peaks
in the sound waveform. Much as in both the visual and
tactile systems, there seems to be a fairly direct mapping
from position on the cochlea to position in the auditory
cortex. In animals such as bats it is known that specific nerve
cells respond to particular kinds of frequency changes. But in
primates, for example, little is known about exactly what
features are extracted in the auditory cortex.

The fact that there are a million nerve fibers going from the
eye to the brain, but only about 30,000 going from the ear to
the brain means that while it takes several million bits per
second to transmit video of acceptable quality, a few tens of
thousands of bits are adequate for audio (NTSC television is
5 MHz; audio CDs 22 kHz; telephone 8 kHz). Presumably
related is also the fact that it is typically much easier to make
realistic sound effects than realistic visual ones.

â Chords. Two pure tones played together exhibit beats at the
difference of their frequencies—a consequence of the fact that

With , one can explicitly hear the time variation of
the beats if their frequency is below about 15 Hz, and the
result is quite pleasant. But between 15 Hz and about 60 Hz,
the sound tends to be rather grating—possibly because this
frequency range conflicts with that used for signals in the
auditory nerve.

In music it is usually thought that chords consisting of tones
with frequencies whose ratios have small denominators
(such as 3/2, corresponding to a perfect fifth) yield the most
pleasing sounds. The mechanics of the ear imply that if two
tones of reasonable amplitude are played together,
progressively smaller additional signals will effectively be
generated at frequencies . The picture
below shows the extent to which such frequencies tend to be
in the range that yield grating effects. The minima at values
of corresponding to rationals with small
denominators may explain why such chords seem more
pleasing. (See also page 917.)

21/12

Sin[w t]

Sin[w (t + a Sin[b t])]

Sin[w1 t] +Sin[w2 t] 2
2 Sin[1/2 (w1 +w2) t]Cos[1/2 (w1 -w2) t]

w ; 500 Hz

Abs[n1 w1 ¡ n2 w2]

w2 /w1

1 1.5 2 2.5 3 3.5 4
w1 �w2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1080

â History. The notion of musical notes and of concepts such as
octaves goes back at least five thousand years. Around 550
BC the Pythagoreans identified various potential connections
between numbers and the perception of sounds. And over
the course of time a wide range of mathematical and
aesthetic principles were suggested. But it was not until the
1800s, particularly with the work of Hermann Helmholtz,
that the physical basis for the perception of sound began to
be seriously investigated. Work on speech sounds by
Alexander Graham Bell and others was related to the
development of the telephone in the late 1800s. In the past
few decades, with better experiments, particularly on the
emission of sound by the ear, and with ideas and analysis
from electrical engineers and physicists the basic behavior of
at least the cochlea is becoming largely understood.

â Sonification. Sound has occasionally been used as a means
of understanding scientific data. In the 1950s and 1960s
analog computers (and sometimes digital computers)
routinely had sound output. And in the 1970s some
discoveries about chaos in differential equations were made
using such output. In experimental neuroscience sounds are
also routinely used to monitor impulses in nerve cells.

â Implementation. in Mathematica generates
sound output by treating the elements of as successive
samples in the waveform of the sound, typically with a
default sample rate of 8000 Hz.

â Time variation. Many systems discussed in this book produce
sounds with distinctive and sometimes pleasing time variation.
Particularly dramatic are the concatenation systems discussed
on page 913, as well as successive rows in nested patterns such
as
and sequences based on numbers such as

 (see page
613). The recursive sequences on page 130 yield sounds
reminiscent of many natural systems.

â Musical scores. Instead of taking a sequence to correspond
directly to the waveform of a sound, one can consider it to
give a musical score in which each element represents a note
of a certain frequency, played for some specific short time.
(One can avoid clicks by arranging the waveform to cross
zero at both the beginning and end of each note.) With this
setup my experience is that both repetitive and random
sequences tend to seem quite monotonous and dull. But
nested sequences I have found can quite often generate
rather pleasing tunes. (One can either determine frequencies
of notes directly from the values of elements, or, say, from
cumulative sums of such values, or from heights in paths like
those on page 892.) (See also page 869.)

â Recognizing repetition. The curve of the function
 shown on page 146 looks complicated to

the eye. But a sound with a corresponding waveform is
recognized by the ear as consisting simply of two pure tones.
However, if one uses the function to generate a score—say
playing a note at the position of each peak—then no such
simplicity can be recognized. And this fact is presumably
why musical scores normally have notes only at integer
multiples of some fixed time interval.

â Sound compression. Sound compression has in practice
mostly been applied to human speech. In typical voice coders
(vocoders) 64k bits per second of digital data are obtained by
sampling the original sound waveform 8000 times per
second, and assigning one of 256 possible levels to each
sample. (Since the 1960s, so-called mu-law companding has
often been used, in which these levels are distributed
exponentially in amplitude.) Encoding only differences
between successive samples leads to perhaps a factor of 2
compression. Much more dramatic compression can be
achieved by making an explicit model for speech sounds.
Most common is to assume that within each phoneme-length
chunk of a few tens of milliseconds the vocal tract acts like a
linear filter excited either by pure tones or randomness. In so-
called linear predictive coding (LPC) optimal parameters are
found to make each sound sample be a linear combination of,
say, 8 preceding samples. The residue from this procedure is
then often fitted to a code book of possible forms, and the
result is that intelligible speech can be obtained with as little
as 3 kbps of data. Hardware implementations of LPC and
related methods have been widespread since before the
1980s; software implementations are now becoming
common. Music has in the past rarely been compressed,
except insofar as it can be specified by a score. But recently
the MP3 format associated with MPEG and largely based on
LPC methods has begun to be used for compression of
arbitrary sounds, and is increasingly applied to music.

â Page 586 · Spectra. The spectra shown are given by
, where the symmetrical second half of this

list is dropped in the pictures. Also of relevance are intensity
or power spectra, obtained as the square of these spectra.
These are related to the autocorrelation function according to

(See also page 1074.)

â Spectra of substitution systems. Questions that turn out to
be related to spectra of substitution systems have arisen in
various areas of pure mathematics since the late 1800s. In the
1980s, particularly following discoveries in iterated maps
and quasicrystals, studies of such spectra were made in the

ListPlay[data]
data

Flatten[IntegerDigits[NestList[BitXor[#, 2 #] &, 1, 500], 2]]

Flatten[Table[If[GCD[i, j] 2 0, 1, 0], {i, 1000}, { j , i}]]

Sin[x] +Sin[�!!!!2 x]

Abs[Fourier[data]]

Fourier[list]2 2
Fourier[ListConvolve[list, list, {1, 1}]] /Sqrt[Length[list]]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1081

context of number theory and dynamical systems theory.
Some general principles were proposed, but a great many
exceptions were always eventually found.

As suggested by the pictures in the main text, spectra such as
(b) and (d) in the limit consist purely of discrete Dirac delta
function peaks, while spectra such as (a) and (c) also contain
essentially continuous parts. There seems to be no simple
criterion for deciding from the rule what type of spectrum
will be obtained. (In some cases it works to look at whether
the limiting ratio of lengths on successive steps is a Pisot
number.) One general result, however, is that all so-called
Sturmian sequences with

 an irrational number must yield discrete spectra. And as
discussed on page 903, if is a quadratic irrational, then such
sequences can be generated by substitution systems.

For any substitution system the spectrum at step
from initial condition is given by a linear recurrence relation
in terms of the . With colors each giving a
string of the same length the recurrence relation is

Some specific properties of the examples shown include:

(a) (Thue-Morse sequence) The spectrum is essentially
. The

main peak is at position 1/3, and in the power spectrum this
peak contains half of the total. The generating function for the
sequence (with 0 replaced by -1) satisfies , so
that . (Z transform or
generating function methods can be applied directly only for
substitution systems with rules such as .)
After steps a continuous approximation to the spectrum is

, which is an example of a type
of product studied by Frigyes Riesz in 1918 in connection with
questions about the convergence of trigonometric series. It is
related to the product of sawtooth functions given by

. Peaks occur for values
of such as 1/3 that are not well approximated by numbers of
the form with small and .

(b) (Fibonacci-related sequence) This sequence is a Sturmian
one. The maximum of the spectrum is at . The
spectrum is roughly like the markings on a ruler that is
recursively divided into pieces.

(c) (Cantor set) In the limit, no single peak contains a
nonzero fraction of the power spectrum. After steps a
continuous approximation to the spectrum is

.

(d) (Period-doubling sequence) The spectrum is
, almost like the

markings on a base 2 ruler.

(See also page 917.)

â Flat spectra. Any impulse sequence
will yield a flat spectrum. With odd the same turns out to
be true for sequences —a fact
used in the design of acoustic diffusers (see page 1183). For
sequences involving only two distinct integers flat spectra are
rare; with those equivalent to seem to be the
only examples. (works for any and , as do
all lists obtained working modulo from
where is any invertible polynomial.) If one ignores the
first component of the spectrum the remainder is flat for a
constant sequence, or for a random sequence in the limit of
infinite length. It is also flat for maximal length LFSR
sequences (see page 1084) and for sequences

 with prime (see page 870).
By adding a suitable constant to each element one can then
arrange in such cases for the whole spectrum to be flat. If

 sequences also satisfy
. Sequences of 0’s and 1’s that have the same

property are , or in general
. If -1 is allowed,

additional sequences such as are also
possible. (See also pages 911.)

â Nested vibrations. With an assembly of springs arranged in
a nested pattern simple initial excitations can yield motion
that shows nested behavior in time. If the standard
methodology of mechanics is followed, and the system is
analyzed in terms of normal modes, then the spectrum of
possible frequencies can look complicated, just as in the
examples on page 586. (Similar considerations apply to the
motion of quantum mechanical electrons in nested
potentials.)

â Page 587 · Random block sequences. Analytical forms for all
but the last spectrum are: , , , ,

, ,
, where , and

runs from to in each plot. Given a list of blocks such as
 each element of can be thought of as a

state in a finite automaton or a Markov process (see page
1084). The transitions between these states have probabilities
given by where

Round[(n+ 1) a + b] -Round[n a + b]
a

a

f[i][t, w] t
i

f[j][t - 1, w] k
s

Thread[Map[f[#][t + 1, w] &, Range[k] - 1] 2
Apply[Plus, MapIndexed[Exp[5w (Last[#2] - 1) st]

f[#1][t, w] &, Range[k] - 1 /. rules, {-1}], {1}] /�!!!!s]

Nest[Range[2 Length[#]] Join[#, Reverse[#]] &, {1}, t]

f [z] 2 (1 - z) f [z 2]

f [z] 2 Product[1 - z 2n

, {n, 0, ¥}]

{1 ! list, 0 ! 1 - list}
t

Product[1 - Exp[2s 5w], {s, t}]

Product[Abs[Mod[2s w, 2, -1]], {s, t}]
w

a/2b a b

Fibonacci[t]

{GoldenRatio, 1}

t

Product[1+Exp[3s 2 5w], {s, t}]

(2# - (-1)# &)[1+ IntegerExponent[n, 2]]

Join[{1}, Table[0, {n}]]
n

Exp[2p 5Mod[Range[n]2, n] /n]

¡1 {1, 1, 1, -1}

{r 2, r s, s2, -r s} r s
xn - 1 p[x] /p[1/x]

p[x]

JacobiSymbol[Range[0, p - 1], p] p

Mod[p, 4] 2 1 JacobiSymbol
Fourier[list] 2 list

{1, 0, 1, 0} {1, 0, 0, 1, 0, 0, 1, 0, 0}

Flatten[Table[{1, Table[0, {n - 1}]}, {n}]]
{0, 1, 0, -1, 0, -1, 0, 1}

1 u2 / (1+ 8 u2) 1/ (1+ 8 u2) u2

(1 - 4 u2)2 / (1 - 5 u2 + 8 u4) u2 / (1 - 5 u2 + 8 u4)
u2 + 1/36 DiracDelta[w - 1/3] u = Cos[p w] w

0 1/2
{{1, 1}, {0}} Flatten[list]

m[Map[Length, list]]

m[s_] := With[{q = FoldList[Plus, 0, s]}, ReplacePart[
RotateRight[IdentityMatrix[Last[q]], {0, 1}], 1/Length[s],
Flatten[Outer[List, Rest[q], Drop[q, -1] + 1], 1]]]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1082

The average spectrum of sequences generated according to
these probabilities can be obtained by computing the
correlation function for elements a distance apart

then forming and
taking the limit . If then the spectrum is

. For a random walk (see
page 977) in which occur with equal probability the
spectrum is , or roughly .

The same basic setup also applies to spectra associated with
linear filters and ARMA time series processes (see page
1083), in which elements in a sequence are generated from
external random noise by forming linear combinations of the
noise with definite configurations of elements in the
sequence.

â Spectra of cellular automata. When cellular automata have
non-trivial attractors as discussed in Chapter 6 the spectra of
sequences obtained at particular steps can exhibit a variety of
features, as shown below.

â 2D spectra. The pictures below give the 2D Fourier
transforms of the nested patterns shown on page 583.

â Diffraction patterns. X-ray diffraction patterns give Fourier
transforms of the spatial arrangement of atoms in a material.
For an ordinary crystal with atoms on a repetitive lattice, the

patterns consist of a few isolated peaks. For quasicrystals
with generalized Penrose tiling structures the patterns also
contain a few large peaks, though as in example (b) on page
586 there are also a hierarchy of smaller peaks present. In
general, materials with nested structures do not necessarily
yield discrete diffraction patterns. In the early 1990s,
experiments were done in which layers a few atoms thick of
two different materials were deposited in a Thue-Morse
sequence. The resulting object was found to yield X-ray
diffraction patterns just like example (a) on page 586.

Statistical Analysis

â History. Some computations of odds for games of chance
were already made in antiquity. Beginning around the 1200s
increasingly elaborate results based on the combinatorial
enumeration of possibilities were obtained by mystics and
mathematicians, with systematically correct methods being
developed in the mid-1600s and early 1700s. The idea of
making inferences from sampled data arose in the mid-
1600s in connection with estimating populations and
developing precursors of life insurance. The method of
averaging to correct for what were assumed to be random
errors of observation began to be used, primarily in
astronomy, in the mid-1700s, while least squares fitting and
the notion of probability distributions became established
around 1800. Probabilistic models based on random
variations between individuals began to be used in biology
in the mid-1800s, and many of the classical methods now
used for statistical analysis were developed in the late 1800s
and early 1900s in the context of agricultural research. In
physics fundamentally probabilistic models were central to
the introduction of statistical mechanics in the late 1800s
and quantum mechanics in the early 1900s. Beginning as
early as the 1700s, the foundations of statistical analysis
have been vigorously debated, with a succession of fairly
specific approaches being claimed as the only ones capable
of drawing unbiased conclusions from data. The practical
use of statistical analysis began to increase rapidly in the
1960s and 1970s, particularly among biological and social
scientists, as computers became more widespread. All too
often, however, inadequate amounts of data have ended up
being subjected to elaborate statistical analyses whose
results are then blindly assumed to represent definitive
scientific conclusions. In the 1980s, at least in some fields,
traditional statistical analysis began to become less popular,
being replaced by more direct examination of data
presented graphically by computer. In addition, in the
1990s, particularly in the context of consumer electronics

r

x[list_, r_] := With[{w = (# -Apply[Plus, #] /Length[#] &)[
Flatten[list]]}, w �.�MatrixPower[
m[Map[Length, list]], r]�.�w /Length[w]]

Sum[x[Abs[r]]Cos[2p r w], {r, -n/2, n/2}]
n !¥ x[r] = lr

(1 - l2)/ (l2 - 2 lCos[2pw] + 1) - 1
¡1

Csc[p w]2 /2 1/w2

rule 110 rule 126 rule 232

rule 30 rule 41 rule 54

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1083

devices, there has been an increasing emphasis on using
statistical analysis to make decisions from data, and
methods such as fuzzy logic and neural networks have
become popular.

â Practical statistics. The vast majority of statistical analysis is
in practice done on continuous numerical data. And with
surprising regularity it is assumed that random variations in
such data follow a Gaussian distribution (see page 976). But
while this may sometimes be true—perhaps as a consequence
of the Central Limit Theorem—it is rarely checked, making it
likely that many detailed inferences are wrong. So-called
robust statistics uses for example medians rather than means
as an attempt to downplay outlying data that does not follow
a Gaussian distribution.

Classical statistical analysis mostly involves trying to use
data to estimate parameters in specific probabilistic models.
Non-parametric statistics and related methods often claim to
derive conclusions without assuming particular models for
data. But insofar as a conclusion relies on extrapolation
beyond actual measured data it must inevitably in some way
use a model for data that has not been measured.

â Time series. Sequences of continuous numerical data are
often known as time series, and starting in the 1960s
standard models for them have consisted of linear
recurrence relations or linear differential equations with
random noise continually being added. The linearity of such
models has allowed efficient methods for estimating their
parameters to be developed, and these are widely used,
under slightly different names, in control engineering and in
business analysis. In recent years nonlinear models have
also sometimes been considered, but typically their
parameters are very difficult to estimate reliably. As
discussed on page 919 it was already realized in the 1970s
that even without external random noise nonlinear models
could produce time series with seemingly random features.
But confusion about the importance of sensitivity to initial
conditions caused the kind of discoveries made in this book
to be missed.

â Page 588 · Origin of probabilities. Probabilities are normally
assumed to enter for at least two reasons: (a) because of
random variation between individuals, and (b) because of
random errors in measurement. (a) is particularly common in
the biological and social sciences; (b) in the physical sciences.
In physics effects of statistical mechanics and quantum
mechanics are also assumed to introduce probabilities.
Probabilistic models for abstract mathematical systems have
in the past been rare, though the results about randomness in
this book may make them more common in the future.

â Probabilistic models. A probabilistic model must associate
with every sequence a probability that is a number between
0 and 1. This can be done either by giving an explicit
procedure for taking sequences and finding probabilities, or
by defining a process in which sequences are generated with
appropriate probabilities. A typical example of the first
approach is the Ising model for spin systems in which
relative probabilities of sequences are found by multiplying
together the results of applying a simple function to blocks
of nearby elements in the sequence. Monte Carlo methods
and probabilistic cellular automata provide examples of the
second approach.

â Page 588 · Binomial distribution. If black squares appear
independently with probability then the probability that
squares out of are black is .

â Page 589 · Estimation of parameters. One way to estimate
parameters in simple probabilistic models is to compute the
mean and other moments of the data and then to work out
what values of the parameters will reproduce these. More
general is the maximum likelihood method in which one
finds the values of the parameters which maximize the
probability of generating the observed data from the model.
(Least squares fits do this for models in which the data
exhibits independent Gaussian variations.) Various
modifications can be made involving for example weighting
with a risk function before maximizing. If one starts with a
priori probability distributions for all parameters, then
Bayes’s Theorem on conditional probabilities allows one to
avoid the arbitrariness of methods such as maximum
likelihood and explicitly to work out from the observed data
what the probability is for each possible choice of
parameters in the model. It is rare in practice, however, to be
able to get convincing a priori probability distributions,
although when there are physical or other reasons to expect
entropy to be maximized the so-called maximum entropy
method may be useful.

â Complexity of models. The pictures at the top of the next
page show least squares fits (found using in Mathematica)
to polynomials with progressively higher degrees and
therefore progressively more parameters. Which fit should be
considered best in any particular case must ultimately
depend on external considerations. But since the 1980s there
have been attempts to find general criteria, typically based on
maximizing quantities such as (the Akaike
information criterion), where is the probability that the
observed data would be generated from a given model
(is proportional to variance in a least squares fit),
and is the number of parameters in the model.

p m
n Binomial[n, m] pm (1 - p)n-m

Fit

-Log[p] - d
p

-Log[p]
d

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1084

â Page 590 · Markov processes. The networks in the main text
can be viewed as representing finite automata (see page 957)
with probabilities associated with transitions between nodes
or states. Given a vector of probabilities to be in each state,
the evolution of the system corresponds to multiplication by
the matrix of probabilities for each transition. (Compare the
calculation of properties of substitution systems on page
890.) Markov processes first arose in the early 1900s and have
been widely studied since the 1950s. In their first uses as
models it was typically assumed that each state transition
could explicitly be observed. But by the 1980s hidden
Markov models were being studied, in which only some of
the states or transitions could be distinguished by outside
observations. Practical applications were made in speech
understanding and text compression. And in the late 1980s,
building on work of mine from 1984 (described on page 276),
James Crutchfield made a study of such models in which he
defined the complexity of a model to be equal to
summed over all connections in the network. He argued that
the best scientific model is one that minimizes this
complexity—which with probabilities 0 and 1 is equivalent to
minimizing the number of nodes in the network.

â Non-local processes. It follows from the fact that any path
in a finite network must always eventually return to a node
where it has been before that any Markov process must be
fundamentally local, in the sense that the probabilities it
implies for what happens at a given point in a sequence must
be independent of those for points sufficiently far away. But
probabilistic models based on other underlying systems can
yield sequences with long-range correlations. As an example,
probabilistic neighbor-independent substitution systems can
yield sequences with hierarchical structures that have
approximate nesting. And since the mid-1990s such systems
(usually characterized as random trees or random context-
free languages) have sometimes been used in analyzing data
that is expected to have grammatical structure of some kind.

â Page 594 · Block frequencies. In any repetitive sequence the
number of distinct blocks of length must become constant
with for sufficiently large . In a nested sequence the
number must always continue increasing roughly linearly,
and must be greater than for every . (The differences of
successive numbers themselves form a nested sequence.) If
exactly distinct blocks occur for every , then the
sequence must be of the so-called Sturmian type discussed

on page 916, and the th element must be given by
, where is an irrational

number. Up to limited nested sequences can contain all
possible blocks, and can do so with asymptotically equal
frequencies. Pictures (b), (c) and (d) show the simplest cases
where this occurs (for length 3
also works). Linear feedback shift registers of the type used
in picture (e) are discussed below. Concatenation sequences
of the type used in picture (f) are discussed on page 913. In
both cases equal frequencies of blocks are obtained only for
sequences of length exactly .

â LFSR sequences. Often referred to as pseudonoise or PN
sequences, maximal length linear feedback shift register
sequences have repetition period and are generated by
shift registers that go through all their possible states except
the one consisting of all 0’s, as discussed on page 974. Blocks
in such sequences obtained from must all
be distinct since they correspond to successive complete
states of the shift register. This means that every block with
length up to (except all 0’s) must occur with equal
frequency. (Note that only a small fraction of all possible
sequences with this property can be generated by LFSRs.)
The regularity of PN sequences is revealed by looking at the
autocorrelation . This quantity is
-1 for all nonzero for PN sequences (so that all but the first
component in are equal), but has mean
0 for truly random sequences. (Related sequences can be
generated from as discussed on page 912.)

â Entropy estimates. Fitting the number of distinct blocks of
length to the form for large the quantity gives the
so-called topological entropy of the system. The so-called
measure entropy is given as discussed on page 959 by the
limit of where the are the
probabilities for the blocks. Actually getting accurate
estimates of such entropies is however often rather difficult,
and typically upper bounds are ultimately all that can
realistically be given. Note also that as discussed in the main
text having maximal entropy does not by any means imply
perfect randomness.

â Tests of randomness. Statistical analysis has in practice
been much more concerned with finding regularities in data
than in testing for randomness. But over the course of the
past century a variety of tests of randomness have been
proposed, especially in the context of games of chance and
their government regulation. Most often the tests are applied
not directly to sequences of 0’s and 1’s, but instead say to
numbers obtained from blocks of 8 elements. A typical
collection of tests described by Donald Knuth in 1968
includes: (1) frequency or equidistribution test (possible

-p Log[p]

m
m m

m m

m+ 1 m

n
Round[(n+ 1) a + b] -Round[n a + b] a

m km

{1 ! {1, 1, 1, 0, 0, 0}, 0 ! {1, 0}}

2j

2n - 1

Partition[list, n, 1]

n

RotateLeft[(-1)list, m]�.�(-1)list

m
Abs[Fourier[(-1)list]]2

RealDigits[1/p, 2]

b kh b b h

-Sum[pi Log[k, pi], {i, kb}] /b pi

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1085

elements should occur with equal frequency); (2) serial test
(pairs of elements should be equally likely to be in
descending and ascending order); (3) gap test (runs of
elements all greater or less than some fixed value should
have lengths that follow a binomial distribution); (4) poker
test (blocks corresponding to possible poker hands should
occur with appropriate frequencies); (5) coupon collector’s
test (runs before complete sets of values are found should
have lengths that follow a definite distribution); (6)
permutation test (in blocks of elements possible orderings of
values should occur equally often); (7) runs up test (runs of
monotonically increasing elements should have lengths that
follow a definite distribution); (8) maximum-of-t test
(maximum values in blocks of elements should follow a
power-law distribution). With appropriate values of
parameters, these tests in practice tend to be at least
somewhat independent, although in principle, if sufficient
data were available, they could all be subsumed into basic
block frequency and run-length tests. Of the sequences on
page 594, (a) through (d) as well as (f) fail every single one of
the tests, (e) fails only the serial test, while (g) and (h) pass all
the tests. (Failure is defined as a value that is as large or small
as that obtained from the data occurring below a specified
probability in the set of all possible sequences.) Widespread
use of tests like these on pseudorandom generators (see page
974) began in the late 1970s, with discoveries of defects in
common generators being announced every few years.

In the 1980s simulations in physics had begun to use
pseudorandom generators to produce sequences with
billions of elements, and by the late 1980s evidence had
developed that a few common generators gave incorrect
results in such cases as phase transition properties of the 3D
Ising model and shapes of diffusion-limited aggregates.
(These difficulties provided yet more support for my
contention that models with intrinsic randomness are more
reliable than those with external randomness.) In the 1990s
various idealizations of physics simulations—based on
random walks, correlation functions, localization of
eigenstates, and so on—were used as tests of pseudorandom
generators. These tests mostly seem simpler than those
shown on page 597 obtained by running a cellular automaton
rule on the data.

Over the years, essentially every proposed statistical test of
randomness has been applied to the center column of rule 30.
And occasionally people have told me that their tests have
found deviations from randomness. But in every single case
further investigation showed that the results were somehow
incorrect. So as of now, the center column of rule 30 appears
to pass every single proposed statistical test of randomness.

â Difference tables. See page 1091.

â Randomized algorithms. Whether a randomized algorithm
gives correct answers can be viewed as a test of randomness
for whatever supposedly random sequence is provided to it.
But in most practical cases such tests are not particularly
stringent; linear congruential generators, for example, almost
always pass. (There are perhaps exceptions in VLSI testing.)
And this is basically why it has so often proved possible to
replace randomized algorithms by deterministic ones that are
at least as efficient (see page 1192). An example is Monte
Carlo integration, where what ultimately matters is uniform
sampling of the integrand—which can usually be achieved
better by quasi-random irrational number multiple (see page
903) or digit reversal (see page 905) sequences than by
sequences one might consider more random.

Cryptography and Cryptanalysis

â History. Cryptography has been in use since antiquity, and
has been a decisive factor in a remarkably large number of
military and other campaigns. Typical of early systems was
the substitution cipher of Julius Caesar, in which every letter
was cyclically shifted in the alphabet by three positions, with
A being replaced by D, B by E, and so on. Systems based on
more arbitrary substitutions were in use by the 1300s. And
while methods for their cryptanalysis were developed in the
1400s, such systems continued to see occasional serious use
until the early 1900s. Ciphers of the type shown on page 599
were introduced in the 1500s, notably by Blaise de Vigenère;
systematic methods for their cryptanalysis were developed in
the mid-1800s and early 1900s. By the mid-1800s, however,
codes based on books of translations for whole phrases were
much more common than ciphers, probably because more
sophisticated algorithms for ciphers were difficult to
implement by hand. But in the 1920s electromechanical
technology led to the development of rotor machines, in
which an encrypting sequence with an extremely long period
was generated by rotating a sequence of noncommensurate
rotors. A notable achievement of cryptanalysis was the 1940
breaking of the German Enigma rotor machine using a
mixture of statistical analysis and automatic enumeration of
keys. Starting in the 1950s, electronic devices were the
primary ones used for cryptography. Linear feedback shift
registers and perhaps nonlinear ones seem to have been
common, though little is publicly known about military
cryptographic systems after World War II. In 1977 the U.S.
government introduced the DES data encryption standard,
and in the 1980s this became the dominant force in the
growing field of commercial cryptography. DES takes 64-bit

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1086

blocks of data and a 56-bit key, and applies 16 rounds of
substitutions and permutations. The S-box that implements
each substitution works much like a single step of a cellular
automaton. No fast method of cryptanalysis for DES is
publicly known, although by now for a single DES system an
exhaustive search of keys has become feasible. Two major
changes occurred in cryptography in the 1980s. First,
cryptographic systems routinely began to be implemented in
software rather than in special-purpose hardware, and thus
became much more widely available. And second, following
the introduction of public-key cryptography in 1975, the idea
emerged of basing cryptography not on systems with
complicated and seemingly arbitrary construction, but
instead on systems derived from well-known mathematical
problems. Initially several different problems were
considered, but after a while the only ones to survive were
those such as the RSA system discussed below based
essentially on the problem of factoring integers. Present-day
publicly available cryptographic systems are almost all based
on variants of either DES (such as the IDEA system of PGP),
linear feedback shift registers or RSA. My cellular automaton
cryptographic system is one of the very few fundamentally
different systems to have been introduced in recent years.

â Basic theory. As was recognized in the 1920s the only way
to make a completely secure cryptographic system is to use a
so-called one-time pad and to have a key that is as long as the
message, and is chosen completely at random separately for
each message. As soon as there are a limited number of
possible keys then in principle one can always try each of
them in turn, looking in each case to see whether they imply
an original message that is meaningful in the language in
which the message is written. And as Claude Shannon
argued in the 1940s, the length of message needed to be
reasonably certain that only one key will satisfy this criterion
is equal to the length of the key divided by the redundancy of
the language in which the message is written—equal to about
0.5 for English (see below).

In a cryptographic system with keys of length there will
typically be a total of possible keys. If one guesses a key it
will normally take a time polynomial in to check whether
the key is correct, and thus the problem of cryptanalysis is in
the class known in theoretical computer science as NP or
non-deterministic polynomial time (see page 1142). It is
suspected but not established that there exist at least some
problems in NP that cannot be solved in polynomial time,
potentially indicating that for an appropriate system it might
be impossible to do cryptanalysis in any time polynomial in

. (See page 1089.)

â Text. As the picture below illustrates, English text typically
remains intelligible until about half its characters have been
deleted, indicating that it has a redundancy of around 0.5.
Most other languages have slightly higher redundancies,
making documents in those languages slightly longer than
their counterparts in English.

Redundancy can in principle be estimated by breaking text
into blocks of length , then looking for the limit of the
entropy as (see page 1084). Statistically uniform
samples of text do not in practice, however, tend to be large
enough to allow more than about to be reached, and the
presence of correlations (even though exponentially damped)
between far-separated letters means that computed entropies
usually decrease continually with , making it difficult to
estimate their limit (see page 1084). Note that particularly in
computer languages higher redundancy is found if one takes
account of grammatical structure.

â Page 599 · Cryptanalysis. The so-called Vigenère cipher was
thought for several centuries to be unbreakable. The idea of
looking for repeats was introduced by Friedrich Kasiski in
1863. A statistical approach based on the fact that frequencies
tend to be closer to uniform for longer keys was introduced
by William Friedman in the 1920s. The methods described in
the main text are fairly characteristic of the mixture between
generality and detail that is typical in practical cryptanalysis.

â Page 600 · Linear feedback shift registers. See notes on pages
974 and 1084. LFSR sequences are widely used in radio
technology, particularly in the context of spread spectrum
applications. Their purpose is usually to provide a way to
distinguish or synchronize signals, and sometimes to provide
a level of cryptographic security. In CDMA technology for
cellular telephones, for example, data is overlaid on LFSR
sequences, and sequences other than the one intended for a
particular receiver seem like noise which can be ignored. As
another example, the Global Positioning System (GPS) works
by having 24 satellites each transmit maximal length
sequences from different length 10 LFSRs. Position is
deduced from the arrival times of signals, as determined by
the relative phases of the LFSR sequences received. (GPS P-
code apparently uses much longer LFSR sequences and
repeats only every 267 days. Before May 2000 it was used to
add unpredictable timing errors to ordinary GPS signals.)

n
kn

n

n

About half the letters in typical English text are redundant.
About half the letter- in typical Eng--sh text are redun-ant.
Abou- half the -etter- in ty-ical Eng--sh text are redun--nt.
Abou- half the -e-t--- i- ty-ical Eng--sh text are redun--nt.
Abou- half t-e -e-t--- -- ty-ical Eng--sh text ar- red-n--nt.
Abou- h-l- t-e -e----- -- ty-ical Eng--sh text ar- r-d-n--nt.
Abou- h-l- t-- -e----- -- ty-ical -ng--sh tex- ar- --d-n--nt.
Abou- h--- --- -e----- -- ty-ica- -ng---h tex- ar- --d-n--nt.
Abou- h--- --- -e----- -- ty---a- -ng---h te-- -r- --d-n--nt.
A-ou- h--- --- -e----- -- ty---a- -ng---- te-- -r- --d----n-.
--ou- ---- --- -e----- -- ty---a- -n----- te-- -r- -------n-.
--o-- ---- --- -e----- -- ty---a- ------- -e-- -r- ---------.
----- ---- --- -e----- -- t------ ------- -e-- --- ---------.

b
b !¥

b = 6

b

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1087

â LFSR cryptanalysis. Given a sequence obtained from a
length LFSR (see page 975)

the vector of taps can be deduced from

(An iterative algorithm in taking about rather than
steps was given by Elwyn Berlekamp and James Massey in
1968.) The same basic approach can be used to deduce the
rule for an additive cellular automaton from vertical
sequences.

â Page 603 · Rule 30 cryptography. Rule 30 is known to have
many of the properties desirable for practical cryptography.
It does not repeat with any short period or show any obvious
structure for almost all keys. Small changes in keys typically
leads to large changes in the encrypting sequence. The
Boolean expressions which determine the encrypting
sequence from the key rapidly become highly complex (see
page 618). And furthermore the system can be implemented
very efficiently, particularly in parallel hardware.

I originally studied rule 30 in the context of basic science,
but I soon realized that it could serve as the basis for
practical random sequence generation and cryptography,
and I analyzed this extensively in 1985. (Most but not all of
the results from my original paper are included in this
book, together with various new results.) In 1985 and soon
thereafter a number of people (notably Richard and Carl
Feynman) tried to cryptanalyze rule 30, but without
success. From the beginning, computations of spacetime
entropies for rule 30 (see page 960) gave indications that
for strong cryptography one should not sample all cells in
a column, and in 1991 Willi Meier and Othmar Staffelbach
described essentially the explicit cryptanalysis approach
shown on page 601. Rule 30 has been widely used for
random sequence generation, but for a variety of reasons I
have not in the past much emphasized its applications in
cryptography.

â Properties of rule 30. Rule 30 can be written in the form
 (see page 869) and thus exhibits a kind of one-sided

additivity on the left. This leads to some features that are
desirable for cryptography (such as long repetition periods)
and to some that are not (such as the sideways evolution of
page 601). It implies that every block of length that occurs
at a particular step has exactly 4 immediate predecessor
blocks of length (see page 960). It also implies that all

 possible single columns of cells can be generated from
some initial condition. Not all pairs of adjacent columns
can occur, however. There seems to be no simple

characterization, say in terms of paths through networks, of
which can, but for successive the total numbers are

or roughly .

Given two complete adjacent columns page 601 shows how
all columns any distance to the left can be found. It turns out
that this can be done even if the right-hand one of the two
adjacent columns is not complete. So for example whenever
there is a black cell in the left column it is irrelevant what
appears in the right column. Note that the configuration of
relevant cells can be repetitive only if the initial conditions
were repetitive (see page 871).

In a cellular automaton of limited size , any column must
eventually repeat. There could be distinct possible
columns; in practice, for successive there are

—within 2%
of already for . This means that for the initial
conditions to be determined uniquely, the number of cells
that must be given in a column is almost exactly , as
illustrated in the pictures below. Many distinct columns
correspond to starting at different points on a single cycle of
states. The length of the longest cycle grows roughly like

 (see page 260). The complete cycle structure is
illustrated on page 962. Most of the possible states have
unique predecessors; for large , about or

 instead have 0 or 2 predecessors. The
predecessors of a given state can be found from

â Directional sampling. One can consider sampling cells not
in a vertical column but on lines at any angle. In a rule 30
system of infinite size, it turns out that at clockwise from
vertical all possible sequences can occur on any two adjacent
lines, probably making cryptanalysis more difficult in this
case. (Note that directional sampling is always equivalent to
looking at a vertical column in the evolution of a cellular
automaton whose basic rule has been composed with an
appropriate shift rule.)

â Alternative rules. Among elementary rules, rule 45 is the
only plausible alternative to rule 30. It usually yields longer

n

Nest[Mod[Append[#, Take[#, -n]�.�vec], 2] &, list, t]

vec
LinearSolve[Table[Take[seq, {i, i + n - 1}], {i, n}],

Take[seq, {n+ 1, 2 n}], Modulus ! 2]

n n2 n3

p Ò (q ª r)

m

m+ 2
2t t

4t

t
{4, 12, 32, 80, 200, 496, 1208, 2916, 6964, 16476, 38616,

89844, 207544, 476596, 1089000, 2477236, 5615036}

2.25t

n
2n

n
{2, 3, 7, 14, 30, 60, 101, 245, 497, 972, 1997, 3997}

2n n = 12

n

20.63 n

2n

n 20.76 n

Root[#3 - #2 - 2 &, 1]n

Cases[Map[Fold[Prepend[#1, If[#2 2 1 Ò
Take[#1, 2] 2 {0, 0}, 0, 1]] &, #, Reverse[list]] &, {{0,

0}, {0, 1}, {1, 0}, {1, 1}}], {a_, b_, c___, a_, b_} ! {b, c, a}]

45 °

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1088

repetition periods (see page 260), but shows slightly slower
responses to changes in the key. (Changes expand about 1.24
cells per step in rule 30, and about 1.17 in rule 45.) Rule 45
shares with rule 30 the property of one-sided additivity. With
the occasional exception of the additive rule 60, elementary
rules not equivalent to 30 or 45 tend to exhibit vastly shorter
repetition periods. (The completely non-additive rule with
largest typical repetition period is rule 110.) (See page 951.)

If one considers rules that depend on 4 rather than 3 cells,
then the results turn out to be surprisingly similar: out of all
65536 possible such rules the ones with longest periods
essentially always seem to be variants of rules 45, 30 or 60. In
a region of size 15, for example, the longest period is 20460,
and this is achieved by rule 13251, which is just rule 45
applied to the first three cells in the neighborhood. (Rule 45
itself has period 6820 in this case.) After a few rules with long
periods, the periods obtained drop off rapidly. (In general the
number of rules with a given period seems to decrease
roughly exponentially with period.) For size 15, the 33 rules
with the longest periods are all additive with respect to one
position. The pictures below show the first rules that are not
additive with respect to any position.

Among the 4,294,967,296 rules which depend on 5 cells,
there are again just a few that give long periods, but now
only a small fraction of these seem directly related to rules 45
and 30, and perhaps half are not additive with respect to any
position. The pictures below show the rules with longest
periods for size 15; these same rules also yield the longest
periods for many other sizes. The first two are additive with
respect to one position, but do not appear to be directly
related to rules 45 or 30; the last two are not additive with
respect to any position. Formulas for the rules are
respectively:

Note that for size 15 the maximum possible period is 32730
(see page 950).

â Nonlinear feedback shift registers. Linear feedback shift
registers of the kind discussed on page 974 can be
generalized to allow any function (note the slight analogy
with cyclic tag systems):

With the choice
and this is essentially a rule elementary
cellular automaton. With a list of length ,

 gives one step in the
evolution of the cellular automaton in a register of width ,
with a certain kind of spiral boundary condition. The case
analogous to rule 30 yields some of the longest repetition
periods—usually remarkably close to the absolute maximum
of (for the result is 1999864, 95% of the
maximum).

Nonlinear feedback shift registers were apparently studied in
the context of military cryptography in the 1950s, but very
little about them has made its way into the open literature
(see page 878). An empirical investigation of repetition
periods in such systems was made by Solomon Golomb in
1959. The main conclusion drawn from extensive data was
that nothing like the linear theory applies. One set of
computations concerned functions

(apparently chosen to have balance between 0’s and 1’s that
would minimize correlations). Tap positions were
among those studied, but nothing like the pictures below
were apparently ever explicitly generated—and nearly three
decades passed before I noticed the remarkable behavior of
the rule 30 cellular automaton.

31420
(1635)

45443
(1620)

14030
(1560)

44227
(1545)

12686
(1380)

2924
(1320)

r = 2

p Ò (¨ q ª r ª s © ¨ t)

r Ò (¨ p ª q ª s © ¨ t)

u = ¨ p © ¨ q ª q © t; ¨ r © u ª q © ¨ s © (p ª ¨ r) ª r © s © ¨ u

s © (q © ¨ r ª p © ¨ q © t) ª ¨ (s ª (p ª q) © (r Ò (q ª t)))

1017723955

2076199695

184612095
(31455)

263458575
(29865)

2076199695
(25395)

1017723955
(23370)

f

NLFSRStep[f_, taps_, list_] :=
Append[Rest[list], f [list0taps1]]

f = IntegerDigits[s, 2, 8]08 - #�.�{4, 2, 1}1 &
taps = {1, 2, 3} s

n
Nest[NLFSRStep[f , taps, #] &, list, n]

n

2n - 1 n = 21

f [{w_, x_, y_, z_}] := Mod[w + y + z + x y + x z + y z, 2]

{1, 2, 3, 4}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1089

Sequences of states in any shift register must correspond to
paths through a network of the kind shown on page 941. And
as noted by Nicolaas de Bruijn in 1946 there are such
paths with length , and thus this number of functions out
of the possible must yield sequences of maximal length.
(For colors, the number of paths is .)

â Backtracking. If one wants to find out which of the
possible initial conditions of width evolve to yield a specific
column of colors in a system like an elementary cellular
automaton one can usually do somewhat better than just
testing all possibilities. The picture below illustrates a typical
approach, applied to 3 steps of rule 30. The idea is
successively to look at each numbered cell, and to make a tree
of possibilities representing what happens if one tries to fill in
each possible color for each cell. A branch in the resulting
tree continues only if it corresponds to a configuration of cell
colors whose evolution is consistent with the specified
column of colors.

The picture below shows trees obtained for the column
in various elementary cellular automata. In cases like rules
250 and 254 no initial condition gives the specified column,
so all branches eventually die out. In class 2 examples like
rule 10 many intermediate configurations are possible. Rules
like 90 and to some extent 30 that allow sideways evolution
yield comparatively simple trees.

If one wants to find just a single initial condition that
works then one can set up a recursive algorithm that in
effect does a depth-first traversal of the tree. No doubt in
many cases the number of nodes that have to be visited
eventually increases like , but many branches usually die
off quickly, greatly reducing the typical effort required in
practice.

â Deducing cellular automaton rules. Given a complete
cellular automaton pattern it is easy to deduce the rule which
produced it just by identifying examples of places where
each element in the rule was used, as in the picture at the top
of the next column. Given an incomplete pattern, deducing
the rule in effect requires solving Boolean equations.

â Linear congruential generators. Cryptanalysis of linear
congruential generators is fairly straightforward. Given only
an output list parameters
that generate the list can be found for sufficiently large
from

With slightly more effort both and can be found just
from .

â Digit sequence encryption. One can consider using as
encrypting sequences the digit sequences of numbers
obtained from standard mathematical functions. As
discussed on page 139 such digit sequences often seem
locally very random. But in many cases one can immediately
tell how a sequence was made just by globally applying
appropriate mathematical functions. Thus, for example,
given the digit sequence of one can retrieve the key just
by squaring the number obtained from early digits in the
sequence. Whenever a number is known to satisfy

 with fixed one can take the
early digits of and use to find integer
solutions for the . With this method allows
algebraic numbers to be recognized. If no linear equation is
satisfied by any combination of known functions of ,
however, the method fails, and it seems quite likely that in
such cases secure encrypting sequences can be generated,
albeit less efficiently than with systems like cellular
automata.

â Problem-based cryptography. Particularly following the
work of Whitfield Diffie and Martin Hellman in 1976 it
became popular to consider cryptography systems based on
mathematical problems that are easy to state but have been
found difficult to solve. It was at first hoped that the
problems could be NP-complete ones, which are universal in
the sense that their solution can be used to provide a solution
to any problem in the class NP (see page 1086). To date,
however, no system has been devised whose cryptanalysis is
known to be NP-complete. Indeed, essentially the only
problem on which cryptography systems have so far
successfully been based is factoring of integers (see below).
And while this problem has resisted a fair number of

22n-1-n

2n f
22n

k k !kn-1

/ kn

2n

n

1 2

3 45 6
1

2
3
4
5

6

1 2

3 45 6 12
3

4
5
6

rule 126 rule 170 rule 129 rule 250 rule 255

rule 10 rule 22 rule 30 rule 54 rule 90

2t

NestList[Mod[a #, m] &, x, n] {a, m}

n

With[{a = Apply[#2�.�Rest[list] /#1 &, Apply[
ExtendedGCD, Drop[list, -1]]]}, ({Mod[a, #], #} &)[

Fold[GCD[#1, If[#1 2 0, #2, Mod[#2, #1]]] &, 0,
ListCorrelate[{a, -1}, list]]]]

x {a, m}

First[IntegerDigits[list, 2, p]]

�!!!!s s

x
Sum[a[i] f [i][x], {i, n}] 2 0 f [i]

x LatticeReduce
a[i] f [i_] = # i &

x

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1090

attempts at solution, it is not known to be NP-complete (and
indeed its ability to be solved in polynomial time on a formal
quantum computer may suggest that it is not).

My cellular automaton cryptography system follows the
principle of being based on a problem that is easy to state.
And indeed the general problem of finding initial conditions
for a cellular automaton is NP-complete (see page 767). But
the problem is not known to be NP-complete for the specific
case of, say, rule 30. Significantly less work has been done on
the problem of finding initial conditions for rule 30 than on
the problem of factoring integers. But the greater simplicity
of rule 30 might make one already have almost as much
confidence in the difficulty of solving this problem as of
factoring integers.

â Factoring integers. The difficulty of factoring is presumably
related to the irregularity of the pattern of divisors shown on
page 909. One approach to factoring a number is just to try
dividing it by each of the numbers up to . A sequence of
much faster methods have however been developed over the
past few decades, one simple example that works for most
being the so-called rho method of John Pollard (compare the
quadratic residue sequences discussed below):

Most existing methods depend on facts in number theory
that are fairly easy to state, though implementing them for
maximum efficiency tends to lead to complex programs.
Typical running times for in Mathematica 4
are shown below for the first 1000 numbers with each of 15
through 30 digits. Different current methods asymptotically
require slightly different numbers of steps—but all typically
at least . Nevertheless, to test whether a
number is prime () it is known that only a few more
than steps suffice.

â RSA cryptography. Widely used in practice, the idea is to
encode messages using a public key specified by a number ,
but to make it so that to decode the messages requires a private
key based on the factors of . An element in a message is
encoded as . It can then be decoded as

, where .
But to find (see page 1093) is equivalent in
difficulty to finding the factors of .

â Quadratic residue sequences. As an outgrowth of ideas
related to RSA cryptography it was shown in 1982 by
Lenore Blum, Manuel Blum and Michael Shub that the
sequence

discussed on page 975 has the property that if with
and primes (congruent to 3 modulo 4) then any systematic
regularities detected in the sequence can eventually be used to
discover factors of . What is behind this is that each of the
numbers in the basic sequence here must be a so-called
quadratic residue of the form , and given any such
quadratic residue the expression
turns out always to be a factor of —and at least sometimes a
non-trivial one. So if one could reconstruct sufficiently many
complete numbers from the sequence of values
then this would provide a way to factor (compare the
Pollard rho method above). But in practice it is difficult to do
this, because without knowing the factors of one cannot
even readily tell whether a given is a quadratic residue
modulo . The pictures below show as black squares all the
quadratic residues for each successive going down the page
(the ordinary squares 1, 4, 9, 16, … show up as vertical black
stripes). If is a prime , then the simple tests

 (see page 1081) or
determine whether is a quadratic residue. But with ,
one has to factor and find and in order to carry out
similar tests. The condition
ensures that only one of the solutions and to

 is ever a quadratic residue, with the result
that the iterated mapping always has a
unique inverse. But unlike in a cellular automaton even given
a complete (the analog of a complete cellular automaton
state) it is difficult to invert the mapping and solve for the on
the previous step.

Traditional Mathematics and Mathematical Formulas

â Practical empirical mathematics. In looking for formulas to
describe behavior seen in this book I have in practice
typically taken associated sequences of numbers and then

n
�!!!!n

n

Module[{f = Mod[#2 + 1, n] &, a = 2, b = 5, c},
While[(c = GCD[n, a - b]) 2 1, {a, b} = {f [a], f [f [b]]}]; c]

FactorInteger[n]

Exp[Sqrt[Log[n]]]
PrimeQ

Log[n]

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

n

n m
c = PowerMod[m, d, n]

PowerMod[c, e, n] e = PowerMod[d, -1, EulerPhi[n]]
EulerPhi[n]

n

Mod[NestList[Mod[#2, m] &, x0, n], 2]

m = p q p
q

m

Mod[v 2, m]

x GCD[x +Mod[x2, m], m]

m

x Mod[x, 2]
m

m
x

m
m

m p
JacobiSymbol[x, p] 2 1 Mod[x (p-1)/2 , p] 2 1

x m = p q
m p q

Mod[p, 4] 2 Mod[q, 4] 2 3
+v -v

x 2 Mod[v 2, m]

x ! Mod[x2, m]

x
x

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1091

tested whether obvious regularities are revealed by
combinations of such operations as: computing successive
differences (see note below), computing running totals,
looking for repeated blocks, picking out running maxima,
picking out numbers with particular modular residues, and
looking at positions of particular values, and at the forms of
the digit sequences of these positions.

â Difference tables and polynomials. A common mathematical
approach to analyzing sequences is to form a difference table
by repeatedly evaluating .
If the elements of correspond to values of a polynomial of
degree at successive integers, then will
contain only zeros. If the differences are computed modulo
then the difference table corresponds essentially to the
evolution of an additive cellular automaton (see page 597). The
pictures below show the results with (rule 60) for (a)

, (b) Thue-Morse sequence, (c) Fibonacci
substitution system, (d) , (e) digits of . (See
also page 956.)

â Page 607 · Implementation. The color of a cell at position
 in the pattern shown is given by

.

â Page 608 · Nested patterns and numbers. See page 931.

â Page 609 · Implementation. Given the rules for a
substitution system in the form used on page 931 a finite
automaton (as on page 957) which yields the color of each cell
from the digit sequences of its position is

This works in any number of dimensions so long as each
replacement yields a block of the same cuboidal form.

â Arbitrary digit operations. If the operation on digit
sequences that determines whether a square will be black can
be performed by a finite automaton (see page 957) then the
pattern generated must always be either repetitive or nested.
The pictures below show examples with more general
operations. Picture (a) in effect shows which words in a
simple context-free language of parenthesis matching (see
page 939) are syntactically correct. Scanning the digit
sequences from the left, one starts with 0 open parentheses,
then adds 1 whenever corresponding digits in the and
coordinates differ, and subtracts 1 whenever they are the

same. A square is black if no negative number ever appears.
Picture (b) has a black square wherever digits at more than
half the possible positions differ between the and
coordinates. Picture (c) has a black square wherever the
maximum run of either identical or different digits has a
length which is an odd number. All the patterns shown have
the kind of intricate substructure typical of nesting. But none
of the patterns are purely nested.

â Page 610 · Generating functions. A convenient algebraic
way to describe a sequence of numbers is to give a
generating function . thus
corresponds to the constant sequence and to the
Fibonacci sequence (see page 890). A 2D array can be
described by . The
array for rule 60 is then , for rule 90

, for rule 150 and for
second-order reversible rule 150 (see page 439)

. Any rational function is the
generating function for some additive cellular automaton.

â Page 611 · Pascal’s triangle. See notes on page 870.

â Nesting in bitwise functions. See page 871.

â Trinomial coefficients. The coefficient of in the expansion
of is

which can be evaluated as

or finally . This result follows
directly from the generating function formula

â Gegenbauer functions. Introduced by Leopold Gegenbauer
in 1893 is a polynomial in with
integer coefficients for all integer and . It is a special case
of and and satisfies a second-
order ordinary differential equation in . The

 form a set of orthogonal functions
on a -dimensional sphere. The
obtained for are .

â Standard mathematical functions. There are an infinite
number of possible functions with integer or continuous

d[list_] := Drop[list, 1] -Drop[list, -1]
list

n Nest[d, list, n+ 1]
k

k = 2
Fibonacci[n]

(Prime[n] - 1)/2 p

(a) (b) (c) (d) (e)

{x, y}
Extract [{{1, 0, 1}, {0, 1, 0}}, Mod[{y, x}, {2, 3}] + 1]

Map[Flatten[MapIndexed[#2 - 1 ! Position[rules, #1 ! _]0
1, 11 &, Last[#], {-1}]] &, rules]

x y

x y

(a) (b) (c)

a[n]
Sum[a[n] xn, {n, 0, ¥}] 1/ (1 - x)

1/ (1 - x - x2)

Sum[a[t, n] xn y t , {n, -¥, ¥}, {t, -¥, ¥}]
1/ (1 - (1+ x) y)

1/ (1 - (1/x + x) y) 1/ (1 - (1/x + 1+ x) y)

1/ (1 - (1/x + 1+ x) y - y 2)

xn

(1+ x + x2)t

Sum[Binomial[n+ t - 1 - 3 k, n - 3 k]
Binomial[t, k] (-1)k, {k, 0, t}]

Binomial[2 t, n]Hypergeometric2F1[-n, n - 2 t, 1/2 - t, 1/4]

GegenbauerC[n, -t, -1/2]

(1 - 2 x z + x2)-m 2 Sum[GegenbauerC[n, m, z] xn, {n, 0, ¥}]

GegenbauerC[n, m, z] z
n m

Hypergeometric2F1 JacobiP
z

GegenbauerC[n, d /2 - 1, z]
d GegenbauerC[n, 1/2, z]

d = 3 LegendreP[n, z]

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1092

arguments. But in practice there is a definite set of standard
named mathematical functions that are considered
reasonable to include as primitives in formulas, and that are
implemented as built-in functions in Mathematica. The so-
called elementary functions (logarithms, exponentials,
trigonometric and hyperbolic functions, and their inverses)
were mostly introduced before about 1700. In the 1700s and
1800s another several hundred so-called special functions
were introduced. Most arose first as solutions to specific
differential equations, typically in physics and astronomy;
some arose as products, sums of series or inverses of other
functions. In the mid-1800s it became clear that despite their
different origins most of these functions could be viewed as
special cases of , and that the
functions covered the solutions to all linear differential
equations of a certain type. (and are
parametric derivatives of ; elliptic
modular functions are inverses.) Rather few new special
functions have been introduced over the past century. The
main reason has been that the obvious generalizations seem
to yield classes of functions whose properties cannot be
worked out with much completeness. So, for example, if
there are more parameters it becomes difficult to find
continuous definitions that work for all complex values of
these parameters. (Typically one needs to generalize
formulas that are initially set up with integer numbers of
terms; examples include taking to be

 and to be .) And if one
modifies the usual hypergeometric equation

 by making nonlinear then solutions
typically become hard to find, and vary greatly in character
with the form of . (For rational Paul Painlevé in the 1890s
identified just 6 additional types of functions that are
needed, but even now series expansions are not known for
all of them.) Generalizations of special functions can in
principle be used to represent the results of many kinds of
computations. Thus, for example, generalized elliptic theta
functions represent solutions to arbitrary polynomial
equations, while multivariate hypergeometric functions
represent arbitrary conformal mappings. In Mathematica,
however, functions like provide more convenient ways
to access such results.

A variety of standard mathematical functions with integer
arguments were introduced in the late 1800s and early 1900s
in connection with number theory. A few functions that
involve manipulation of digits have also become standard
since the use of computers became widespread.

â 1D sequences. Generating functions that are rational always
lead to sequences which after reduction modulo 2 are purely

repetitive. Algebraic generating functions can also lead to
nested sequences. (Note that to get only integer sequences
such generating functions have to be specially chosen.)

 yields a sequence with 1’s at positions , as
essentially obtained from the substitution system

. yields
sequence (a) on page 84.
(see page 890) yields the Thue-Morse sequence. (This
particular generating function satisfies the equation

.) yields almost the
Cantor set sequence from page 83.
gives a sequence with 1’s at positions .

For any sequence with an algebraic generating function and
thus for any nested sequence the th element can always be
expressed in terms of hypergeometric functions. For the
Thue-Morse sequence the result is

â Multidimensional additive rules. The 2D analog of rule 90
yields the patterns shown below. The colors of cells are given
essentially by . In dimensions

 cells are black at step . The fractal
dimension of the (d+1)-dimensional structure formed from all
black cells is .

The 2D analog of rule 150 yields the patterns below; the
fractal dimension of the structure in this case is

.

â Continuous generalizations. Functions such as
and can immediately be evaluated
for continuous and . The pictures on the right below show

 for these functions (equivalent to
 for integer). The discrete results on the

left can be obtained by sampling only where integer grid
lines cross. Note that without further conditions the
continuous forms cannot be considered unique extensions of
the discrete ones. The presence of poles in quantities such as

Hypergeometric2F1[a, b, c, z]

Zeta PolyLog
Hypergeometric2F1

Power[x, y]
Exp[Log[x] y] x ! Gamma[x + 1]

y �[x] 2 f [y[x], y ç[x]] f

f f

Root

Sqrt[1 - 4 x] /2 2m

{2 ! {2, 1}, 1 ! {1, 0}, 0 ! {0, 0}} Sqrt[(1 - 3 x)/ (1+ x)] /2
(1+Sqrt[(1 - 3 x)/ (1+ x)]) / (2 (1+ x))

(1+ x)3 f 2 - (1+ x)2 f + x 2 0 (1 - 9 x)1/3

EllipticTheta[3, p, x] /2
m2

n

1/2 (-1)n + (-3)n �!!!!!p Hypergeometric2F1[3/2,
-n, 3/2 - n, -1/3] / (4 n! Gamma[3/2 - n])

Mod[Multinomial[t, x, y], 2] d
(2 d)^DigitCount[t, 2, 1] t

Log[2, 1+ 2 d]

Log[2, (1+Sqrt[1+ 4/d]) d]

Binomial[t, n]
GegenbauerC[n, -t, -1/2]

t n
Sin[1/2p a[t, n]]2

Mod[a[t, n], 2] a[t, n]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1093

 leads to essential singularities in
the rightmost picture below. (Compare page 922.)

â Nested continuous functions. Most standard continuous
mathematical functions never show any kind of nested
behavior. Elliptic theta and elliptic modular functions are
exceptions. Each of these functions has definite finite values
only in a limited region of the complex plane, and on the
boundary of this region they exhibit singularities at every
single rational point. The picture below shows

. Like other elliptic modular
functions, satisfies
with , , , integers such that . The function
can be obtained as the solution to a second-order nonlinear
ordinary differential equation. Nested behavior is also found
for example in , which is given essentially
by .

â Page 613 · GCD array. (See also page 950.) There are various
deviations from perfect randomness. The density of white
squares is asymptotically . (The probability for
randomly chosen integers to be relatively prime is .)
No or larger block of white squares can ever occur. An
arrangement of black squares with any list of relative offsets
will always eventually occur. (This follows from the Chinese
Remainder Theorem.) The first block of black squares
occurs at , the first block at and the
first block at . The densities of such
blocks are respectively about 0.002, and . In
general the density for an arrangement of white squares with
offsets is given in dimensions by (no simple closed
formula seems to exist except for the case)

White squares correspond to lattice points that are directly
visible from the origin at the top left of the picture, so that

lines to them do not pass through any other integer points.
On row the number of white squares encountered before
reaching the leading diagonal is . This function is
shown below. Its computation is known in general to be
equivalent in difficulty to factoring (see page 1090).
can be computed using Euclid’s algorithm as discussed on
page 915.

â Power cellular automata. Multiplication by in base
corresponds to a local cellular automaton operation on digit
sequences when every prime that divides also divides . The
first non-trivial cases for which this is so are , and

, . When itself divides , the cellular automaton
rule is ; in other
cases the rule can be obtained by composition. A similar result
holds for rational , obtained for example by allowing and
above to be negative. In all cases the cellular automaton rule, like
the original operation on numbers, is invertible. The inverse rule,
corresponding to multiplication by , can be obtained by
applying the rule for multiplication by the integer , then
shifting right by positions. (See page 903.)

The condition for locality in negative bases (see page 902) is
more stringent. The first non-trivial example is , ,
corresponding to a rule that depends on four neighboring cells.

Non-trivial examples of multiplication by in base all
appear to be class 3 systems (see page 250), with small
changes in initial conditions growing at a roughly fixed rate.

â Page 615 · Computing powers. The method of repeated
squaring (also known as the binary power method, Russian
peasant method and Pingala’s method) computes the
quantity by performing about multiplications and
building up the sequence

(related to the Horner form for the base 2 representation of).
Given two numbers and their product can be computed
in base by (does the carries)

For numbers with digits direct evaluation of the
convolution would take about steps. But FFT-related
methods reduce this to about steps (see also page
1142). And this implies that to find a particular digit of in
base will take altogether about steps.

GegenbauerC[1/2, -t, -1/2]

Im[ModularLambda[x + 5 y]]
ModularLambda f [z] 2 f [(a + b z)/ (c + d z)]

a b c d a c - b d 2 1

EllipticTheta[3, 0, z]

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.6 1.65 1.7 1.75

0.02

0.04

0.06

0.08

0.1

Sum[z n2

, {n, ¥}]

6 /p2 ; 0.61 s
1/Zeta[s]

2�2

2�2
{14, 20} 3�3 {1274, 1308}

4�4 {7247643, 10199370}
2 × 10-6 10-14

v s
1�1

Product[With[{p = Prime[n]},
1 - Length[Union[Mod[v, p]]] /ps], {n, ¥}]

n
EulerPhi[n]

n GCD

0

200

400

0 100 200 300 400 500

m k

m k
k = 6 m = 2i 3 j

k = 10 m = 2i 5 j m k
{_, b_, c_} ! m Mod[b, k /m] +Quotient[c, k /m]

m i j

1/m
kq /m

q

k = -6 m = 8

m k

mt Log[t]

FoldList[#12 m#2 &, 1, IntegerDigits[t, 2]]

t
x y

k FromDigits
FromDigits[ListConvolve[IntegerDigits[x, k],

IntegerDigits[y, k], {1, -1}, 0], k]

n
n2

n Log[n]
mt

k t Log[t]2

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1094

One might think that a more efficient approach would be to
start with the trivial length digit sequence for in base ,
then to find a particular base digit just by converting to
base . However, the straightforward method for converting
a -digit number to base takes about divisions, though
this can be reduced to around by using a recursive
method such as

The pictures below show stages in the computation of
(a) by a power tree in base 2 and (b) by conversion from
base 3. Both approaches seem to require about the same
number of underlying steps. Note that even though one
may only want to find a single digit in , I know of no
way to do this without essentially computing all the other
digits in as well.

â Complex powers. The pictures below show successive
powers of complex numbers with digits extracted
according to

Non-trivial cases of complex number multiplication never
correspond to local cellular automaton operations. (Compare
page 933.)

â Additive cellular automata. As discussed on page 951 a step
in the evolution of an additive cellular automaton can be
thought of as multiplication by a polynomial modulo . After
 steps, therefore, the configuration of such a system is given

by . This quantity can be computed
using power tree methods (see below), though as discussed
on page 609, even more efficient methods are also available.
(A similar formalism can be set up for any of the cellular
automata with generalized additivity discussed on page 952;
see also page 886.)

â The more general case. One can think of a single step in the
evolution of any system as taking a rule and state , and
producing a new state . Usually the representations
that are used for and will be quite different, and the

function will have no special properties. But for both
multiplication rules and additive cellular automata it turns
out that rules and states can be represented in the same way,
and the evolution functions have the property of being
associative, so that . This means
that in effect one can always choose to evolve the rule rather
than a state. A consequence is that for example 4 steps of
evolution can be computed not only as
but also as or —
which requires only 3 applications of . And in general if is
associative the result of steps of
evolution can be rewritten for example using the repeated
squaring method as

which requires only about rather than applications
of .

As a very simple example, consider a system which starts with
the integer 1, then at each step just adds 1. One can compute the
result of 9 steps of evolution as ,
but a better scheme is to use partial results and compute
successively —which is what the
repeated squaring method above does when , .
This same basic scheme can be used with any associative
function — , , , , or whatever—so long as
suitable forms for and are used.

For the multiplication rules discussed in the main text both
states and rules can immediately be represented by
integers, with , and giving the multiplier.
For additive cellular automata, states and rules can be
represented as polynomials (see page 951), with

 and for example
for elementary rule 60. The correspondence between
multiplication rules and additive cellular automata can be
seen even more directly if one represents all states by
integers and computes in terms of base digits. In both
cases it then turns out that can be obtained from (see
note above)

where for multiplication rules and for additive
cellular automata . For multiplication rules,
there are normally carries (handled by), but for
power cellular automata, these have only limited range, so
that can be used.

For any associative function the repeated squaring method
allows the result of steps of evolution to be computed with
only about applications of . But to be able to do this
some of the arguments given to inevitably need to be larger.

t ct c
k

k
t x k t

Log[t]

FixedPoint[Flatten[Map[If[# < k, #, With[
{e = Ceiling[Log[k, #] /2]}, {Quotient[#, ke], With[
{s = Mod[#, ke]}, If[s 2 0, Table[0, {e}], {Table[0,

{e - Floor[Log[k, s]] - 1}], s}]]}]] &, #]] &, {x}]

320

mt

mt

(a) (b)

z

(2 d[Re[#], w] + d[Im[#], w] &)[z t]

d[x_, w_] := If[x < 0, 1 - d[-x, w], IntegerDigits[x, 2, w]]

z � 1+ 5 z � 2 + 5 z � 3 + 5 z � 1+ 2 5

k
t

PolynomialMod[polyt , k]

r s
h[r, s]

r s

h

h
h[a, h[b, c]] 2 h[h[a, b], c]

h[r, h[r, h[r, h[r, s]]]]
h[h[h[r, r], h[r, r]], s] u = h[r, r]; h[h[u, u], s]

h h
Nest[h[r, #] &, s, t] t

h[Fold[If[#2 2 0, h[#1, #1], h[r, h[#1, #1]]] &,
r, Rest[IntegerDigits[t, 2]]], s]

Log[t] t
h

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1

1+ 1; 2 + 2; 1+ 4; 5 + 5

h = Plus r = s = 1

h Max GCD And Dot Join
r s

h = Times r = m

h[a_, b_] := PolynomialMod[a b, k] r = 1+ x

h k
h

h[a_, b_] := FromDigits[g[ListConvolve[
IntegerDigits[a, k], IntegerDigits[b, k], {1, -1}, 0]], k]

g = Identity
g = Mod[#, k] &

FromDigits

g = Mod[#, ks] &

h
t

Log[t] h
h

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1095

So whether a speedup is in the end achieved will depend on
how fast can be evaluated for arguments of various sizes.
Typically the issue is whether for large and can be
found with much less effort than it would take to evaluate

 about times. If , then as discussed in the
note above, the most obvious procedure for evaluating

 would involve about operations, where and
are the numbers of digits in and . But when FFT-
related methods allow this to be reduced to about
operations. And in fact whenever is commutative
() it turns out that such methods can be used, and
substantial speedups obtained. But whether anything like
this will work in other cases is not clear.

(See also page 886.)

â Evaluation chains. The idea of building up computations
like from partial results has existed since
Egyptian times. Since the late 1800s there have been efforts
to find schemes that require the absolute minimum number
of steps. The method based on in the previous
two notes can be improved (notably by power tree
methods), but apparently about steps are always
needed. (Finding the optimal addition chain for given may
be NP-complete.)

One can also consider building up lists of non-identical
elements, say by successively using . In general a
length list can require about steps. But if the list
contains a nested sequence, say generated using a
substitution system, then about steps should be
sufficient. (Compare page 566.)

â Boolean formulas. A Boolean function of variables can
always be specified by an explicit table giving values for all
possible inputs. (Any cellular automaton rule with an -cell
neighborhood corresponds to such a function; digit sequences
in rule numbers correspond to explicit tables of values.) Like
ordinary algebraic functions, Boolean functions can also be
represented by a variety of kinds of formulas. Those on pages
616 and 618 use so-called disjunctive normal form (DNF)

, which is common in practice in
programmable logic arrays (PLAs). (The addition and
multiplication operators in the main text should be interpreted
as and respectively.) In general any given function will
allow many DNF representations; minimal ones can be found
as described below. Writing a Boolean function in DNF is the
rough analog of applying to a polynomial.
Conjunctive normal form (CNF) is the
rough analog of applying . DNF and CNF both involve
Boolean formulas of depth 2. As in the note on multilevel
formulas below, one can also in effect introduce intermediate

variables to get recursive formulas of larger depth, somewhat
analogous to results from . (Unbalanced depths in
different parts of a formula lead to latencies in a circuit,
reducing practical utility.)

â DNF minimization. From a table of values for a Boolean
function one can immediately get a DNF representation just
by listing cases where the value is 1. For one step in rule 30,
for example, this yields , as
shown on page 616. One can think of this as specifying
corners that should be colored on an -dimensional Boolean
hypercube. To reduce the representation, one must introduce
“don’t care” elements ; in this example the final minimal
form consists of the list of 3 so-called implicants

. In general, an implicant with ’s
can be thought of as corresponding to an -dimensional
hyperplane on the Boolean hypercube. The problem of
minimization is then to find the minimal set of hyperplanes
that will cover the corners for a particular Boolean function.
The first step is to work out so-called prime implicants
corresponding to hyperplanes that cannot be contained in
higher-dimensional ones. Given an original DNF list , this
can be done using :

The minimal DNF then consists of a collection of these
prime implicants. Sometimes it is all of them, but
increasingly often when it is only some. (For example,
in the first prime implicant is
covered by the others, and can therefore be dropped.)
Given the original list and the complete prime implicant
list the so-called Quine-McCluskey procedure can be
used to find a minimal list of prime implicants, and thus a
minimal DNF:

The number of steps required in this procedure can increase
exponentially with the length of . Other procedures work
slightly more efficiently, but in general the problem of
finding the minimal DNF for a Boolean function of

h
h[a, b] a b

h[r, b] a h = Times

h[a, b] m n m n
a b m ; n

n Log[n]
h

Orderless

1+ 1+ 1+?

IntegerDigits

Log[t]
t

Join
n n

Log[n]

n
2n

n

And[?] ª And[?] ª?

Or And

Expand
Or[?] ©Or[?] ©?

Factor

Collect

{{1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {0, 0, 1}}

n

_

{{1, 0, 0}, {0, 1, _}, {0, _, 1}} m _

m

s
PI [s, n]

PI [s_, n_] := Union[Flatten[
FixedPointList[f [Last[#], n] &, {{}, s}]0All, 11, 1]]

g[a_, b_] := With[{i = Position[Transpose[{a, b}], {0, 1}]},
If[Length[i] 2 1 && Delete[a, i] === Delete[b, i],
{ReplacePart[a, _, i]}, {}]]

f [s_, n_] := With[
{w = Flatten[Apply[Outer[g, #1, #2, 1] &, Partition[Table[

Select[s, Count[#, 1] 2 i &], {i, 0, n}], 2, 1], {1}],
3]}, {Complement[s, w, SameTest ! MatchQ], w}]

n > 3
{{0, 0, _}, {0, _, 1}, {_, 0, 0}}

s
p

QM[s_, p_] := First[Sort[Map[p0#1 &,
h[{}, Range[Length[s]], Outer[MatchQ, s, p, 1]]]]]

h[i_, r_, t_] := Flatten[Map[h[Join[i, r0#1], Drop[r, #],
Delete[Drop[t, {}, #], Position[t0All, #1, {True}]]] &,

First[Sort[Map[Position[#, True] &, t]]]], 1]
h[i_, _, {}] := {i}

p

n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1096

variables is NP-complete (see page 768) and is thus expected
to grow in difficulty faster than any polynomial in . In
practice, however, cases up to about are nevertheless
currently handled quite routinely.

â Formula sizes. There are a total of possible Boolean
functions of variables. The maximum number of terms
needed to represent any of these functions in DNF is .
The actual numbers of functions which require 0, 1, 2, …
terms is for : ; for : , and
for : . The
maximal length turns out always to be realized for the simple
parity function , as well as its negation. The reason for
this is essentially that these functions are the ones that make
the coloring of the Boolean hypercube maximally
fragmented. (Other functions with maximal length are never
additive, at least for .)

â Cellular automaton formulas. See page 869. The maximum
length DNF for elementary rules after 1 step is 4, and this is
achieved by rules 105, 107, 109, 121, 150, 151, 158, 182, 214
and 233. These rules have behavior of quite varying
complexity. Rules 150 and 105 are additive, and correspond
to and its negation. After steps the maximum
conceivable DNF would be of length . In practice, after 2
steps, the maximum length is 9, achieved by rules 107, 121
and 182; after 3 steps, it is 33 achieved by rule 182; after 4
steps, 78 achieved by rule 129; after 5 steps 256 achieved by
rules 105 and 150. The distributions of lengths for all
elementary rules are shown below.

Note that the length of a minimal DNF representation cannot
be considered a reliable measure of the complexity of a
function, since among other things, just exchanging the role
of black and white can substantially change this length (as in
the case of rule 126 versus rule 129).

â Primitive functions. There are several possible choices of
primitive functions that can be combined to represent any
Boolean function. In DNF , and are used.

 alone is also sufficient, as shown on
page 619 and further discussed on page 807. (It is indicated
by in the main text.) The functions , and are
equivalent to , and for variables modulo 2,
and in this case algebraic functions like can
be used for minimization. (See also page 1102.)

â Multilevel formulas. DNF formulas always have depth 2. By
allowing larger depths one can potentially find smaller formulas

for functions. A major result from the 1980s is that it requires a
formula with depth at least to make it
possible to represent an of variables using a polynomial
number of , and operations. If one chooses an -
variable Boolean function at random out of the possibilities,
it is typical that regardless of depth a formula involving at least

 operations will be needed to represent it. A formula of
polynomial size and logarithmic depth exists only when a
function is the computational complexity class NC discussed on
page 1149.

Little is known about systematic minimization of Boolean
formulas with depths above 2. Nevertheless, some programs
for circuit design such as SIS do include a few heuristics. And
this for example allows SIS to generate higher depth
formulas somewhat smaller than the minimal DNF for the
first three steps of rule 30 evolution.

â Page 619 · NAND expressions. If one allows a depth of at
most any -input Boolean function can be obtained just
by combining 2-input functions. (See page 807.) (Note
that unless one introduces an explicit copy operation—or
adds variables as in the previous note—there is no way to use
the same intermediate result multiple times without
recomputing it.)

The pictures below show the distributions of numbers of
 operations needed for all -input Boolean

functions. For , the largest number of such operations is
6, achieved by ; for , it is 14, achieved by (rule
150); for , it is 27, achieved by rule 5737, which is

 except when all inputs are . The average
number of operations needed when , , is about

.

The maximum depths for the expressions of minimal size
are respectively 4, 6 and 7, always achieved among others
for the function taking the most operations. The total
numbers of functions involving successive depths are:

: , : , :
, corresponding to averages

.

n
n = 12

22n

n
2n-1

n = 2 {1, 9, 6} n = 3 {1, 27, 130, 88, 10}

n = 4 {1, 81, 1804, 13472, 28904, 17032, 3704, 512, 26}

Xor

n < 4

Xor t
22 t

step 1 step 2 step 3 step 4

And Or Not
Nand = Not[And[##]] &

Ñ And Xor Not
Times Plus 1 - # &

PolynomialReduce

Log[n] / (c + Log[Log[n]])
Xor n

And Or Not n
22n

2n /n

b1 = a2 + a3 ; a

1 �b1 + a1 �b

1

b1 = a

2 �a3 + a2 �a

3 ; b2 = a4 + a5 ; a1 �b1 + a1 �b

2 + a

1 �b

1 �b2

b1 = a6 + a7 ; b2 = a4 + a5 ; b3 = a

5 �b1 + a4 �b

1; b4 = b

1 + b2; a

1 �a

3 �b3 + a

1 �a2 �b

2 +

a1 �a

2 �a

3 �b

3 + a

1 �a2 �a4 �b

3 + a1 �a2 �a

4 �b2 + a

1 �a

2 �a3 �b4 + a1 �a

2 �a3 �b

4 + a1 �a2 �a3 �b3 �b4

2 n n
Nand

Nand 22n

n
n = 2
Nor n = 3 Xor

n = 4
Not[Xor[##]] & True

n = 2 3 4
{2.875, 6.09, 12.23}

n=2 n=3 n=4

Nand

n = 2 {2, 3, 5, 6} n = 3 {3, 6, 22, 99, 72, 54} n = 4
{4, 10, 64, 923, 9663, 54622, 250}

{2.9, 4.5, 5.8}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1097

The following generates explicit lists of -input Boolean
functions requiring successively larger numbers of
operations:

The results for 2-step cellular automaton evolution in the
main text were found by a recursive procedure. First,
expressions containing progressively more operations
were enumerated, and those for functions that had not been
seen before were kept. It then turned out that this made it
possible to get to expressions at least half as large as any
needed, so that it could be assumed that remaining
expressions could be decomposed as , where
had already been found. The pictures below show some more
results obtained in this way.

â Cellular automaton formulas. For 1 step, the elementary
cellular automaton rules are exactly the 256 Boolean
functions. For 2 steps, they represent a small subset of the

 functions. They require an average of about 11.6
operations, and a maximum of 27 (achieved by rules 107 and 121).

For rule 254 the result after steps (which is always
asymmetric, even though the rule is symmetric) is

If explicit copy operations were allowed, then the number of
 operations after steps could not increase faster than

for any rule. But without copy (fanout) operations no
corresponding result is immediately clear.

â Binary decision diagrams. One can specify a Boolean
function of variables by giving a finite automaton (and thus
a network) in which paths exist only for those lists of values
for which the function yields . The resulting so-called
binary decision diagram (BDD) can be minimized using the
methods of page 957. Out of all possible Boolean functions the
number that require BDDs of sizes 1, 2, … is for :

 and for : ; the absolute
maximum grows roughly like . For cellular automata with
simple behavior, the minimal BDD typically grows linearly on
successive steps. For rule 254, for example, it is , while
for rule 90 it is . For cellular automata with more
complex behavior, it typically grows roughly exponentially.

Thus for rule 30 it is and for rule 110
. The size of the minimal BDD can depend on

the order in which variables are specified; thus for example,
just reflecting rule 30 to give rule 86 yields .

In practical system design BDDs have become fairly popular
in the past ten years, and by maintaining minimality when
logical combinations of functions are formed, cases with
millions of nodes have been studied. (Some practical systems
are found to yield fairly small BDDs, while others are not.)

â History. Logic has been used as an abstraction of arguments
in ordinary language since antiquity. Its serious mathematical
formulation began with the work of George Boole in the mid-
1800s. (See page 1151.) Concepts of Boolean algebra were
applied to electronic switching circuits by Claude Shannon in
1937, and became a standard part of electronic design
methodology by the 1950s. DNF had been introduced as part
of the development of mathematical logic in the early 1900s,
but became particularly popular in the 1970s with the advent
of programmable logic arrays (PLAs) used in application-
specific integrated circuits (ASICs). Diagrammatic and
mechanical methods for minimizing simple logic expressions
have existed since at least medieval times. More systematic
methods for minimizing complex expressions began to be
developed in the early 1950s, but until well into the 1980s a
diagrammatic method known as a Karnaugh map was the
most commonly used in practice. In the late 1970s there
began to be computer programs for large-scale Boolean
minimization—the best known being Espresso. Only in the
1990s, however, did exact minimization of complex DNF
expressions become common. Minimization of Boolean
expressions with depth larger than 2 has been considered off
and on since the late 1950s, and became popular in the 1990s
in connection with the BDDs discussed above. Various forms
of Boolean minimization have routinely been used in chip
and circuit design since the late 1980s, though often physical
and geometrical constraints are now more important than
pure logical ones. In addition, theoretical studies of minimal
Boolean circuits became increasingly popular starting in the
1980s, as discussed on page 1148.

â Reversible logic. In an ordinary Boolean function with
inputs there is no unique way to tell from its output which of
the possible sets of inputs was given. But as noted in the
1970s, it is possible to set up systems that evaluate Boolean
functions, yet operate reversibly. The basic idea is to have
outputs as well as inputs—with every one of the
possible sets of inputs mapping to a unique set of outputs.
Normally one specifies the first inputs, taking the others to
be fixed, and then looks say at the first output, ignoring all
others. One can represent the inside of such a system much

n
Nand

Map[FromDigits[#, 2] &, NestWhile[Append[#,
Complement[Flatten[Table[Outer[1 - Times[##] &,

#0i1, #0-i1, 1], {i, Length[#]}], 2], Flatten[#, 1]]] &,
{1 - Transpose[IntegerDigits[Range[2n] - 1, 2, n]]},
Length[Flatten[#, 1]] < 22n

&], {2}]

Nand

f [##] Ñ g[##] & f

rule 150 rule 110 rule 126 rule 45 rule 54

n = 3
232

n = 5 Nand

t

Nest[{{#, #021+ 1}, #021+ 1} &, {{1, 1}, {2, 2}}, t - 2]

Nand t t2

n

True

n = 2
{1, 0, 6, 9} n = 3 {1, 0, 0, 27, 36, 132, 60}

2n

8 t + 2
4 t + 2

{7, 14, 29, 60, 129}

{7, 15, 27, 52, 88}

{6, 11, 20, 36, 63}

n

2n

m
m 2m

n

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1098

like a sorting network from page 1142—but with -input -
output gates instead of pair comparisons. If each such gate is
itself reversible, then overall reversibility is guaranteed. With
gates that in effect implement and
(with other inputs constant, and other outputs ignored) one
can set up a direct translation of Boolean functions given in
the form shown on page 619. Of the 24 possible reversible

 gates, none can yield anything other than additive
Boolean functions (as formed from and). But of the
40,320 () reversible gates (in 52 distinct classes) it
turns out that 38,976 (in 23 classes) can be used to reproduce
any possible Boolean function. A simple example of such a
universal gate is —and not allowing
permutations of gate inputs (or in effect wire crossings) a
simple example is . (Compare
pages 1147 and 1173.)

â Continuous systems. The systems I discuss in the main text
of this section are mostly discrete. But from experience with
traditional mathematics one might have the impression that
it would at some basic level be easier to get formulas for
continuous systems. I believe, however, that this is not the
case, and that the reason for the impression is just that it is
usually so much more difficult even to represent the states of
continuous systems that one normally tends to work only
with ones that have comparatively simple overall behavior—
and are therefore more readily described by formulas. (See
also pages 167 and 729.)

As an example of what can happen in continuous systems
consider iterated mappings from page 920. Each
successive step in such a mapping can in principle be
represented by an algebraic formula. But the table below
gives for example the actual algebraic formulas obtained in
the case after applying —and shows that
these increase quite rapidly in complexity.

In the specific case , however, it turns out that by
allowing more sophisticated mathematical functions one can
get a complete formula: the result after any number of steps
can be written in any of the forms

where these follow from functional relations such as

For it also turns out that there is a complete formula:

And the same is true for :

In all these examples enters essentially only in . And if
one assumes that this is a general feature then one can
formally derive for any the result

where is a function that satisfies the functional equation

When , is . When it is
and when it is . But in general for
arbitrary there is no standard mathematical function that
seems to satisfy the functional equation. (It has long been
known that only elliptic functions such as satisfy
polynomial addition formulas—but there is no immediate
analog of this for replication formulas.) Given the functional
equation one can find a power series for for any . The
series has an accumulation of poles on the circle ;
the coefficient of turns out to have denominator

For other iterated maps general formulas also seem rare. But
for example and both give results
just involving powers, while sometimes
yields trigonometric functions, as on page 915. In addition,
from a known replication formula for an elliptic or other
function one can often construct an iterated map whose
behavior can be expressed in terms of that function. (See also
page 919.)

Human Thinking

â The brain. There are a total of about 100 billion neurons in a
human brain (see page 1075), each with an average of a few
thousand synapses connecting it to other cells. On a small
scale the arrangement of neurons seems quite haphazard. But
on a larger scale the brain seems to be organized into areas
with very definite functions. This organization is sometimes
revealed by explicitly following nerve fibers. More often it
has been deduced by looking at what happens if parts of the
brain are disabled or stimulated. In recent times it has also
begun to be possible to image local electrical and metabolic
activity while the brain is in normal operation. From all these
methods it is known that each kind of sensory input is first

s s

{p, q} ! {p Ñ q} {p} ! {p, p}

s = 2
Xor Not

8 ! s = 3

{p_, q_, 1} ! {q, p, 1}

{p_, q_, q_} ! {q, 1 - p, 1 - p}

x ! a x (1 - x)

a = 4 FullSimplify

x
4 (1 - x) x

16 (1 - 2 x)2 (1 - x) x

64 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2

256 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2 (32 (x - 1) x (1 - 2 x)2 + 1)2

1024 (1 - 2 x)2 (1 - x) x (8 (x - 1) x + 1)2 (32 (x - 1) x (1 - 2 x)2 + 1)2

(128 (1 - 2 x)2 (x - 1) x (8 (x - 1) x + 1)2 + 1)2

a = 4

t

Sin[2t ArcSin[�!!!!x]]2

(1 -Cos[2t ArcCos[1 - 2 x]]) /2

(1 -ChebyshevT [2t , 1 - 2 x]) /2

Sin[2 x]2 2 4 Sin[x]2 (1 - Sin[x]2)

ChebyshevT [m n, x] 2 ChebyshevT [m, ChebyshevT [n, x]]

a = 2

(1 - (1 - 2 x)2t

) /2

a = -2

1/2 -Cos[1/3 (p - (-2)t (p - 3 ArcCos[1/2 - x]))]

t at

a

1/2 (1 - g[at InverseFunction[g][1 - 2 x]])

g

g[a x] 2 1+ 1/2 a (g[x]2 - 1)

a = 4 g[x] Cosh[Sqrt[2 x]] a = 2 Exp[x]
a = -2 2 Cos[1/3 (p -

�!!!!3 x)]
a

JacobiSN

g[x] a
Abs[a]2 2 1

xm

2^ (m -DigitCount[m, 2, 1]) Apply[Times,
Table[Cyclotomic[s, a]^Floor[(m - 1)/s], {s, m - 1}]]

x ! a x + b x ! 1/ (a + b x)
x ! Sqrt[a x + b]

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1099

processed in its own specific area of the brain. Inputs from
different senses are integrated in an area that effectively
maintains a map of the body; a similar area initiates output to
muscles. Certain higher mental functions are known to be
localized in definite areas of the brain, though within these
areas there is often variability between individuals. Areas are
currently known for specific aspects of language, memory
(see below) and various cognitive tasks. There is some
evidence that thinking about seemingly rather similar things
can lead to significantly different patterns of activity.

Most of the action of the brain seems to be associated with local
electrical connections between neurons. Some collective electrical
activity is however revealed by EEG. In addition, levels of
chemicals such as hormones, drugs and neurotransmitters can
have significant global effects on the brain.

â History. Ever since antiquity immense amounts have been
written about human thinking. Until recent centuries most of
it was in the tradition of philosophy, and indeed one of the
major themes of philosophy throughout its history has been
the elucidation of principles of human thinking. However,
almost all the relevant ideas generated have remained
forever controversial, and almost none have become concrete
enough to be applied in science or technology. An exception
is logic, which was introduced in earnest by Aristotle in the
4th century BC as a way to model certain patterns of human
reasoning. Logic developed somewhat in medieval times,
and in the late 1600s Gottfried Leibniz tried to use it as the
foundation for a universal language to capture all systematic
thinking. Beginning with the work of George Boole in the
mid-1800s most of logic began to become more closely
integrated with mathematics and even less convincingly
relevant as a model for general human thinking.

The notion of applying scientific methods to the study of
human thinking developed largely with the rise of the field
of psychology in the mid-1800s. Two somewhat different
approaches were taken. The first concentrated on doing fairly
controlled experiments on humans or animals and looking at
responses to specific stimuli. The second concentrated on
trying to formulate fairly general theories based on
observations of overall human behavior, initially in adults
and later especially in children. Both approaches achieved
some success, but by the 1930s many of their positions had
become quite extreme, and the identification of phenomena
to contradict every simple conclusion reached led
increasingly to the view that human thinking would allow no
simple explanations.

The idea that it might be possible to construct machines or
other inanimate objects that could emulate human thinking

existed already in antiquity, and became increasingly popular
starting in the 1600s. It began to appear widely in fiction in
the 1800s, and has remained a standard fixture in portrayals
of the future ever since.

In the early 1900s it became clear that the brain consists of
neurons which operate electrically, and by the 1940s
analogies between brains and electrical machines were
widely discussed, particularly in the context of the
cybernetics movement. In 1943 Warren McCulloch and
Walter Pitts formulated a simple idealized model of networks
of neurons and tried to analyze it using methods of
mathematical logic. In 1949 Donald Hebb then argued that
simple underlying neural mechanisms could explain
observed psychological phenomena such as learning.
Computer simulations of neural networks were done starting
in the mid-1950s, but the networks were too small to have
any chance to exhibit behavior that could reasonably be
identified with thinking. (Ironically enough, as mentioned on
page 879, the phenomenon central to this book of complex
behavior with simple underlying rules was in effect seen in
some of these experiments, but it was considered a
distraction and ignored.) And in the 1960s, particularly after
Frank Rosenblatt’s introduction of perceptrons, neural
networks were increasingly used only as systems for specific
visual and other tasks (see page 1076).

The idea that computers could be made to exhibit human-like
thinking was discussed by Alan Turing in 1950 using many of
the same arguments that one would give today. Turing made
the prediction that by 2000 a computer would exist that could
pass the so-called Turing test and be able to imitate a human
in a conversation. (René Descartes had discussed a similar
test for machines in 1637, but concluded that it would never
be passed.) When electronic computers were first becoming
widespread in the 1950s they were often popularly referred
to as “electronic brains”. And when early efforts to make
computers perform tasks such as playing games were fairly
successful, the expectation developed that general human-
like thinking was not far away. In the 1960s, with extensive
support from the U.S. government, great effort was put into
the field of artificial intelligence. Many programs were
written to perform specific tasks. Sometimes the programs
were set up to follow general models of the high-level
processes of thinking. But by the 1970s it was becoming clear
that in almost all cases where programs were successful
(notable examples being chess, algebra and autonomous
control), they typically worked by following definite
algorithms not closely related to general human thinking.

Occasional work on neural networks had continued through
the 1960s and 1970s, with a few definite results being obtained

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1100

using methods from physics. Then in the early 1980s,
particularly following work by John Hopfield, computer
simulations of neural networks became widespread. Early
applications, particularly by Terrence Sejnowski and Geoffrey
Hinton, demonstrated that simple neural networks could be
made to learn tasks of at least some sophistication. But by the
mid-1990s it was becoming clear that—probably in large part
as a consequence of reliance on methods from traditional
mathematics—typical neural network models were mostly
being successful only in situations where what was needed
was a fairly straightforward extension of standard continuous
probabilistic models of data.

â The future. To achieve human-like thinking with computers
will no doubt require advances in both basic science and
technology. I strongly suspect that a key element is to be able
to store a collection of experiences comparable to those of a
human. Indeed, to succeed even with specific tasks such as
speech recognition or language translation seems to require
human-like amounts of background knowledge. Present-day
computers are beginning to have storage capacities that are
probably comparable to those of the brain. From looking at
the brain one might guess that parallel or other non-standard
hardware might be required to achieve efficient human-like
thinking. But I rather suspect that—much as in the analogy
between birds and airplanes—it will in the end be possible to
set up algorithms that achieve the same basic functions but
work satisfactorily even on standard sequential-processing
computers.

â Sleep. A common feature of higher organisms is the
existence of distinct behavioral states of sleep and
wakefulness. There are various theories that sleep is
somehow fundamental to the process of thinking. But my
guess is that its most important function is quite mundane:
just as muscles build up lactic acid waste products, so also I
suspect synapses in the brain build up waste products, and
these can only safely be cleared out when the brain is not in
normal use.

â Page 621 · Pointer encoding. The pointer encoding
compression method discussed on page 571 implements a
very simple form of memory based on literal repetitions, and
already leads to fairly good compression of many kinds of
data.

â Page 622 · Hashing. Given data in the form of sequences of
numbers between and , a very simple hashing scheme
is just to compute . But for data
corresponding, say, to English words this scheme yields a
very nonuniform distribution of hash codes, since, for
example, there are many words beginning with “ba”, but

none beginning with “bb”. The slightly modified but still
very simple scheme , where is
usually chosen to be a prime, is what is most often used in
practice. For a fair fraction of values of , the hash codes
obtained from this scheme change whenever any element of

 is changed. If then it turns out that
interchanging a pair of adjacent length blocks in never
affects the result. Out of the many hundreds of times that I
have used hashing in practice, I recall only a couple of cases
where schemes like the one just described were not adequate,
and in these cases the data always turned out to have quite
dramatic regularities.

In typical applications hash codes give locations in computer
memory, from which actual data is found either by following
a chain of pointers, or by probing successive locations until
an empty one is reached. In the internals of Mathematica the
most common way that hashing is used is for recognizing
data and finding unique stored versions of it. There are
several subtleties associated with setting up hash codes that
appropriately handle approximate real numbers and
Mathematica patterns.

Hashing is a sufficiently simple idea that it has been invented
independently many times since at least the 1950s. The main
alternative to hashing is to store data with successive
elements corresponding to successive levels in a tree. In the
past decade, hashing has become widely used not only for
searching but also for authentication. The basic idea in this
case is to take a document and to compute from it a small
hash code that changes when almost any change is made in
the document, and for which it is a difficult problem of
cryptanalysis to work out what changes in the document will
lead to no change in the hash code. Schemes for such hash
codes can fairly easily be constructed using rule 30 and other
cellular automata.

â Page 623 · Similar words. The soundex system for hashing
names according to sound was first used on 1880 U.S. census
data, and is still today widely used by telephone information
services. The system works essentially by dropping vowels
and assigning consonants to six possible groups. More
sophisticated systems along the same lines can be set up
using finite automata.

Natural language query systems usually work by stripping
words to their linguistic roots (e.g. “stripping” “strip”)
before looking them up. Spell-checking systems typically
find suggested corrections by doing a succession of lookups
after applying transformations based on common errors.

Even given two specific words it can be difficult to find out
whether they should be considered similar. Fairly efficient

0 k - 1
FromDigits[Take[list, n], k]

Mod[FromDigits[list, k], m] m

m

list m = ks - 1
s list

!

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1101

algorithms are known for cases such as genetic sequences
where small numbers of insertions, deletions and
substitutions are expected. But if more complicated
transformations are allowed—say corresponding to rules in a
multiway system—the problem rapidly becomes intractable
(see page 765).

â Numerical data. In situations where pieces of data can be
thought of as points in space similarity can often be defined
in terms of spatial distance. And this means that around
every point corresponding to a piece of data in memory
there is a region of points that can be considered more
similar to that point than to any other. Picture (a) shows a
so-called Voronoi diagram (see page 1038) obtained in this
way in two dimensions. Particularly in higher dimensions,
it becomes rather difficult in practice to determine for
certain which existing point is closest to some new point.
But to do it approximately is considerably easier. One
approach, illustrated in picture (b), is to use a -
dimensional tree. Another approach, illustrated in picture
(c), is to set up a continuous function with minima at the
existing points, and then to search for the closest minimum.
In most cases, this search will be done using some iterative
scheme such as Newton’s method; the result is that the
boundaries between regions typically take on an intricate
nested form. (The case shown corresponds to iteration of
the map corresponding to Newton’s
method for finding the complex roots of .)

The pictures below show how one can build up a kind of
memory landscape by successively adding points. In a first
approximation, the regions considered similar to a particular
minimum are delimited by sharp watersheds corresponding
to local maxima in the landscape. But if an iterative scheme
for minimization is used, these watersheds are typically no
longer sharp, but take on a local nested structure, much as in
picture (c) above.

In numbers earlier digits are traditionally considered more
important than later ones, and this allows numbers to be

arranged in a simple one-dimensional sequence. But in
strings where each element is considered equally important,
no such layout is possible. A vague approximation, perhaps
useful for some applications, is nevertheless to use a space-
filling curve (see page 893).

â Error-correcting codes. In many information transmission
and storage applications one needs to be able to recover data
even if some errors are introduced into it. The standard way
to do this is to set up an error-correcting code in which blocks
of original data elements are represented by a codeword of
length that in effect includes some redundant elements.
Then—somewhat in analogy to retrieving closest
memories—one can take a sequence of length that one
receives and find the codeword that differs from it in the
fewest elements. If the codewords are chosen so that every
pair differs by at least elements (or equivalently, have so-
called Hamming distance at least), then this means that
errors in up to elements can be corrected, and
finding suitable codewords is like finding packings of
spheres in -dimensional space. It is common in practice to
use so-called linear codes which can be analyzed using
algebraic methods, and for which the spheres are arranged in
a repetitive array. The Hamming codes with ,

, are an example, invented by Marcel Golay in
1949 and Richard Hamming in 1950. Defining

blocks of data of length can be encoded with

while blocks of length (and at most one error) can be
decoded with

A number of families of linear codes are known, together
with a few nonlinear ones. But in all cases they tend to be
based on rather special mathematical structures which do not
seem likely to occur in any system like the brain.

â Matrix memories. Many times since the 1950s it has been
noted that methods from linear algebra suggest ways to
construct associative memories in which data can potentially
be retrieved on the basis of some form of similarity. Typically
one starts from some list of vectors to be stored, then forms a
matrix such as . Given a new piece of
data corresponding to a vector , its decomposition in terms
of stored vectors can be found by computing . And by
applying various forms of thresholding one can often pick
out at least approximately the stored vector closest to the
piece of data given. But such schemes tend to be inefficient in
practice, as well as presumably being unrealistic as actual
models of the brain.

d

z ! z - (z 3 - 1)/ (3 z 2)
z 3 2 1

(a) (b) (c)

m
n

n

r
r

Floor[(r - 1)/2]

n

n = 2s - 1
m = n - s r = 3

PM[s_] := IntegerDigits[Range[2s - 1], 2, s]

m

Join[data, Mod[data�.�Select[PM[s], Count[#, 1] > 1 &], 2]]

n

Drop[(If[# 2 0, data, MapAt[1 - # &, data, #]] &)[
FromDigits[Mod[data�.�PM[s], 2], 2]], -s]

m = PseudoInverse[list]
v

v �.�m

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1102

â Neural network models. The basic rule used in essentially
all neural network models is extremely simple. Each neuron
is assumed to have a value between -1 and 1 corresponding
roughly to a firing rate. Then given a list of the values of
one set of neurons, one finds the values of another set using

, where in early models was
usually chosen, and now is more common, and is
a rectangular matrix which gives weights—normally
assumed to be continuous numbers, often between -1 and
+1—for the synaptic connections between the neurons in
each set. In the simplest case, studied especially in the
context of perceptrons in the 1960s, one has only two sets of
neurons: an input layer and an output layer. But with suitable
weights one can reproduce many functions. For example,
with three inputs and one output, yields
essentially the rule for the rule 178 elementary cellular
automaton. But out of the possible Boolean functions of
inputs, only 14 (out of 16) can be obtained for , 104 (out
of 256) for , 1882 for , and 94304 for . (The VC
dimension is for such systems.) The key idea that
became popular in the early 1980s was to consider neural
networks with an additional layer of “hidden units”. By
introducing enough hidden units it is then possible—just as
in the formulas discussed on page 616—to reproduce
essentially any function. Suitable weights (which are
typically far from unique) are in practice usually found by
gradient descent methods based either on minimization of
deviations from desired outputs given particular inputs
(supervised learning) or on maximization of some
discrimination or other criterion (unsupervised learning).

Particularly in early investigations of neural networks, it was
common to consider systems more like very simple cellular
automata, in which the corresponded not to states of
successive layers of neurons, but rather to states of the same
set of neurons at successive times. For most choices of
weights, such a system exhibits typical class 3 behavior and
never settles down to give an obvious definite output. But in
special circumstances probably not of great biological
relevance it can yield class 2 behavior. An example studied
by John Hopfield in 1981 is a symmetric matrix with
neuron values being updated sequentially in a random order
rather than in parallel.

â Memory. Since the early 1900s it has been suspected that
long-term memory is somehow encoded in the strengths of
synaptic connections between nerve cells. It is known that at
least in specific cases such strengths can remain unchanged
for at least hours or more, but can immediately change if
connected nerve cells have various patterns of simultaneous
excitation. The changes that occur appear to be associated

changes in ionic channels in cell membranes and sometimes
with the addition of new synapses between cells.

Observations suggest that in humans there are several
different types of memory, with somewhat different
characteristics. (Examples include memory for facts and for
motor skills.) Usually there is a short-term or so-called
working component, lasting perhaps 30 seconds, and
typically holding perhaps seven items, and a long-term
component that can apparently last a lifetime. Specific parts
of the brain (such as the hippocampus) appear necessary for
the long-term component to form. In at least some cases there
is evidence for specialized areas that handle particular types
of memories. When new data is first presented, many parts of
the brain are often active in processing it. But once the data
has somehow been learned, only parts directly associated
with handling it usually appear to be active.

Memories often seem at some level to be built up
incrementally, as reflected in smooth learning curves for
motor skills. It is not clear whether this is due to actual
incremental changes in nerve cells or just to the filling in of
progressively more cases that differ in detail.

Experiments on human learning suggest that a particular
memory typically involves an association between
components from several sensory systems, as well as
emotional state.

When several incomplete examples of data are presented,
there appears to be some commonality in the character of
generalizations that we make. One mathematically
convenient but probably unrealistic model studied in recent
years in the context of computational learning theory
involves building up minimal Boolean formulas consistent
with the examples seen.

â Child development. As children get older their thinking
becomes progressively more sophisticated, advancing
through a series of fairly definite stages that appear to be
associated with an increasing ability to handle generalization
and abstraction. It is not clear whether this development is
primarily associated with physiological changes or with the
accumulation of more experiences (or, in effect, with the
addition of more layers of software). Nor is it clear how it
relates to the fact that the number of items that can be stored
in short-term memory seems steadily to increase.

â Computer interfaces. The earliest computer interfaces were
essentially just numerical. By the 1960s text-based interfaces
were common, and in the decade following the introduction of
the Macintosh in 1984 graphical interfaces based on menus and
dialogs came to largely dominate consumer software. Such
interfaces work well if what one wants is basically to take a

s[i]

s[i + 1] = u[w �.�s[i]] u = Sign
u = Tanh w

w = {{-1, +1, -1}}

22n

n
n = 2

n = 3 n = 4 n = 5
n+ 1

s[i]

w

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1103

single object and apply operations to it. And they can be
extended somewhat by using visual block diagrams or
flowcharts. But whenever there is neither just a single active
data element nor an obvious sequence of independent execution
steps—as for many of the programs in this book—my
experience has always been that the only viable choice of
interface is a computer language like Mathematica, based
essentially on one-dimensional sequences of word-like
constructs. The rule diagrams in this book represent a possible
new method for specifying some simpler programs, but it
remains to be seen whether such diagrams can readily both be
created incrementally by humans and interpreted by computer.

â Page 627 · Structure of Mathematica. Beneath all the
sophisticated capabilities of Mathematica lies a remarkably
simple basic structure. The key idea is to represent data of
any kind by a symbolic expression of the general form

. (is thus ,
 is and is .) The

basic action of Mathematica is then to transform such
expressions according to whatever rules it knows. Most often
these rules are specified in terms of Mathematica patterns—
expressions in which can stand for any expression.

â Context-free languages. The set of valid expressions in a
context-free language can be defined recursively by rules
such as and that specify how one
expression can be built up from sequences of literal objects or
“tokens” and other expressions. (As discussed on page 939,
the fact that the left-hand side contains nothing more than
is what makes the language context free.) To interpret or
parse an expression in a context-free language one has to go
backwards and find out which rules could be used to
generate that expression. (For the built-in syntax of
Mathematica this is achieved using .)

It is convenient to think of expressions in a language as having
forms such as with . Then
the rules for the language consisting of balanced runs of
parentheses (see page 939) can be written as

Different expressions in the language can be obtained by
applying different sequences of these rules, say using (this
gives so-called leftmost derivations)

Given an expression, one can then use the following to find a
list of rules that will generate it—if this exists:

In general, there will in principle be more than one such list,
and to pick the appropriate list in a practical situation one
normally takes the rules of the language to apply with a
certain precedence—which is how, for example, comes
to be interpreted in Mathematica as rather
than . (Note that in practice the output
from a parser for a context-free language is usually
represented as a tree—as in Mathematica —with each
node corresponding to one rule application.)

Given only the rules for a context-free language, it is often
very difficult to find out the properties of the language
(compare page 944). Indeed, determining even whether two
sets of rules ultimately yield the same set of expressions is in
general undecidable (see page 1138).

â Languages. There are about 140 human languages and 15
full-fledged computer languages currently in use by a million
people or more. Human languages typically have perhaps
50,000 reasonably common words; computer languages
usually have a few hundred at most (Mathematica, however,
has at least nominally somewhat over 1000). In expressing
general human issues, different human languages tend to be
largely equivalent—though they often differ when it comes
to matters of special cultural or environmental interest to
their users. Computer languages are also mostly equivalent
in their handling of general programming issues—and
indeed among widespread languages the only substantial
exception is Mathematica, which supports symbolic,
functional and pattern-based as well as procedural
programming. Human languages have mostly evolved quite
haphazardly over the course of many centuries, becoming
sometimes simpler, sometimes more complicated. Computer
languages are almost always specifically designed once and
for all, usually by a single person. New human languages
have sometimes been developed—a notable example being
Esperanto in the 1890s—but for reasons largely of political
history none have in practice become widely used.

Human languages always seem to have fairly definite rules
for what is grammatically correct. And in a first
approximation these rules can usually be thought of as
specifying that every sentence must be constructed from
various independent nested phrases, much as in a context-
free grammar (see above). But in any given language there
are always many exceptions, and in the end it has proved
essentially impossible to identify specific detailed features—
beyond for example the existence of nouns and verbs—that
are convincingly universal across more than just languages
with clear historical connections (such as the Indo-European
ones). (One obvious general deviation from the context-free

head[arg1, arg2, ?] a + b2 Plus[a, Power[b, 2]]
{a, b, c} List[a, b, c] a = b + 1 Set[a, Plus[b, 1]]

_

"e" ! "e + e" "e" ! "(e)"

"e"

ToExpression

s["(", "(", ")", ")"] Attributes[s] = Flat

{s[e] ! s[e, e], s[e] ! s["(", e, ")"], s[e] ! s["(", ")"]}

Fold[#1 /. rules0#21 &, s[e], list]

Parse[rules_, expr_] := Catch[Block[{t = {}}, NestWhile[
ReplaceList[#, MapIndexed[ReverseRule, rules]] &,
{{expr, {}}}, # /. {s[e], u_} " Throw[u]; # =!= {} &];]]

ReverseRule[a_ ! b_, {i_}] := {___, {s[x___, b, y___], {u___}},
___} " {s[x, a, y], {i, u}} /; FreeQ[s[x], s[a]]

x + y z
Plus[x, Times[y, z]]

Times[Plus[x, y], z]

FullForm

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1104

model is that in practice subordinate clauses can never be
nested too deep if a sentence is expected to be understood.)

All the computer languages that are in widespread use today
are based quite explicitly on context-free grammars. And even
though the original motivation for this was typically ease of
specification or implementation, I strongly suspect that it has
also been critical in making it readily possible for people to
learn such languages. For in my observation, exceptions to the
context-free model are often what confuse users of computer
languages the most—even when those users have never been
exposed to computer languages before. And indeed the same
seems to be true for traditional mathematical notation, where
occasional deviations from the context-free model in fields like
logic seem to make material particularly hard to read. (A
notable feature that I was surprised to discover in designing
Mathematica 3 is that users of mathematical notation seem to
have a remarkably universal view of the precedence of
different mathematical operators.)

The idea of describing languages by grammars dates back to
antiquity (see page 875). And starting in the 1800s extensive
studies were made of the comparative grammars of different
languages. But the notion that grammars could be thought of
like programs for generating languages did not emerge with
clarity until the work of Noam Chomsky beginning in 1956.
And following this, there were for a while many efforts to
formulate precise models for human languages, and to relate
these to properties of the brain. But by the 1980s it became
clear—notably through the failure of attempts to automate
natural language understanding and translation—that
language cannot in most cases (with the possible exception of
grammar-checking software) meaningfully be isolated from
other aspects of human thinking.

Computer languages emerged in the early 1950s as higher-
level alternatives to programming directly in machine code.
FORTRAN was developed in 1954 with a syntax intended as a
simple idealization of mathematical notation. And in 1958, as
part of the ALGOL project, John Backus used the idea of
production systems from mathematical logic (see page 1150)
to set up a recursive specification equivalent to a context-free
grammar. A few deviations from this approach were tried—
notably in LISP and APL—but by the 1970s, following the
development of automated compiler generators such as yacc,
so-called Backus-Naur context-free specifications for
computer languages had become quite standard. (A practical
enhancement to this was the introduction of two-
dimensional grammar in Mathematica 3 in 1996.)

â Page 631 · Computer language fluency. It is common that
when one knows a human language sufficiently well, one

feels that one can readily “think in that language”. In my
experience the same is eventually true with computer
languages. In particular, after many years of using
Mathematica, I have now got to the point where I can
effectively think directly in Mathematica, so that I can start
entering a Mathematica program even though I may be a long
way from being able to explain in English what I want to do.

â Brainteasers. In many puzzles and IQ tests the setup is to
give a few elements in some sequence of numbers, strings or
pictures, then to ask what the next element would be. The
correct answer is normally assumed to be the one that in a
sense allows the simplest description of all the data. But
despite attempts to remove cultural and other biases such
questions in practice seem almost always to rely on being
able to retrieve from memory various specific forms and
transformations. And I strongly suspect that if one were, for
example, to construct similar questions using outputs from
many of the simple programs I discuss in this book then
unless one had studied almost exactly the cases of such
programs used one would never manage to work out the
answers.

â Human generation of randomness. If asked to type a
random sequence of 0’s and 1’s, most people will at first
produce a sequence with too many alternations between 0
and 1. But with modest learning time my experience is that
one can generate sequences with quite good randomness.

â Game theory. Remarkably simple models are often
believed to capture features of what might seem like
sophisticated decision making by humans, animals and
human organizations. A particular case on which many
studies have been done is the so-called iterated Prisoner’s
Dilemma, in which two players make a sequence of choices

 and to “cooperate” () or “defect” (), each trying to
maximize their score with . At a
single step, standard static game theory from the 1940s
implies that a player should always defect, but in the 1960s
a folk theorem emerged that if a whole sequence of steps is
considered then a possible strategy for perfectly rational
players is always to cooperate—in apparent agreement
with some observations on human and animal behavior. In
1979 Robert Axelrod tried setting up computer programs as
players and found that in tournaments between them the
winner was often a simple “tit-for-tat” program that
cooperates on the first step, then on subsequent steps just
does whatever its opponent did on the previous step. The
same winner was also often obtained by natural selection—
a fact widely taken to explain cooperation phenomena in
evolutionary biology and the social sciences. In the late
1980s similar studies were done on processes such as

a b 1 2
m0a, b1 m = {{1, -1}, {2, 0}}

P R O C E S S E S O F P E R C E P T I O N A N D A N A L Y S I S N O T E S F O R C H A P T E R 1 0

1105

auctions (cf page 1015), and in the late 1990s on games
such as Rock, Paper, Scissors (RoShamBo) (with

). (A simpler game—
certainly played since antiquity—is Penny Matching or
Evens and Odds, with .) But even
though they seemed to capture or better actual human
behavior, the programs considered in all these cases
typically just used standard statistical or Markov model
methods, or matching of specific sequences—making them
far too weak to make predictions about the kinds of
complex behavior shown in this book. (Note that a
program can always win the games above if it can in effect
successfully predict each move its opponent will make. In a
game between two arbitrary programs it can be
undecidable which will win more often over the course of
an infinite number of moves.)

â Games between programs. One can set up a game between
two programs generating single bits of output by for example
taking the input at each step to be the concatenation of the
historical sequences of outputs from the two programs. The
pictures below show what happens if the programs operate
by applying elementary cellular automaton rules times to

 inputs. The plots on the left show cumulative scores in
the Evens and Odds game; the array on the right indicates for
each of the 256 possible rules the average number of wins it
gets against each of the 256 rules. At some level considerable
complexity is evident. But the rules that win most often
typically seem to do so in rather simple ways.

Higher Forms of Perception and Analysis

â Biological perception.Animals can process data not only
from visual or auditory sources (as discussed on pages 577
and 585), but also from mechanical, thermal, chemical and
other sources. Usually special receptors for each type of data
convert it into electrical impulses in nerve cells. Mechanical
and thermal data are often mapped onto an array of nerve
cells in the brain, from which features are extracted similar
to those in visual perception. Taste involves data from solids

and liquids; smell data from gases. The human tongue has
millions of taste buds scattered on its surface, each with
many tens of nerve cells. Rather little is currently known
about how taste data is processed, and it is not even clear
whether the traditional notion that there are just four or so
primary tastes is correct. The human nose has several tens of
millions of receptors, apparently broken into a few hundred
distinct types. Each of these types probably has proteins that
form pockets with definite shapes, making it respond to
molecules whose shapes fit into these pockets. People
typically distinguish a few thousand odors, presumably by
comparing responses of different receptor types. (Foods
usually contain tens of distinct odors; manufactured scents
hundreds.) There is evidence that at the first level of
processing in the brain all receptors of a given type excite
nerve cells that lie in the same spatial region. But just how
different regions are laid out is not clear, and may well differ
between individuals. Polymers whose lengths differ by
more than one or two repeating units often seem to smell
different, and it is conceivable that elaborate general
features of shapes of molecules can be perceived. But more
likely there is no way to build up sophisticated taste or
smell data—and no analog of any properties such as
repetition or nesting.

â Page 634 · Evolving to predict. If one thinks that biological
evolution is infinitely powerful one might imagine that by
emulating it one would always be able to find ways to
predict any sequence of data. But in practice methods
based, for example, on genetic programming seem to do at
best only about as well as all sorts of other methods
discussed in this chapter. And typically what limits them
seems to be much the same as I argue in Chapter 8 limits
actual biological evolution: that incremental changes are
difficult to make except when the behavior is fairly simple.
(See also page 985.)

It is common for animals to move in apparently random
ways when they are trying to avoid predators. Yet I suspect
that the randomness they use is often generated by quite
simple rules (see page 1011)—so that in principle it could be
predictable. So it is then notable that biological evolution has
apparently never made predators able to catch their prey by
predicting anything that looks to us particularly random;
instead strategies tend to be based on tricks that do not
require predicting more than at most repetition.

â Page 635 · Familiar features. What makes features familiar
to us is that they are common in our typical environment and
are readily recognized by our built-in human powers of
perception. In the distant past humans were presumably
exposed only to features generated by ordinary natural

m = {{0, -1, 1}, {1, 0, -1}, {-1, 1, 0}}

m = {{1, -1}, {-1, 1}}

t
2 t + 1

36 vs. 90

35 vs. 90

34 vs. 90

33 vs. 90

32 vs. 90

31 vs. 90

30 vs. 90

36 vs. 91

35 vs. 91

34 vs. 91

33 vs. 91

32 vs. 91

31 vs. 91

30 vs. 91

36 vs. 92

35 vs. 92

34 vs. 92

33 vs. 92

32 vs. 92

31 vs. 92

30 vs. 92

36 vs. 93

35 vs. 93

34 vs. 93

33 vs. 93

32 vs. 93

31 vs. 93

30 vs. 93

255

0
0 255rules

S T E P H E N W O L F R A M A N E W K I N D O F S C I E N C E

1106

processes. But ever since the dawn of civilization humans
have increasingly been exposed to things that were explicitly
constructed through engineering, architecture, art,
mathematics and other human activities. And indeed as
human knowledge and culture have progressed, humans
have ended up being exposed to new kinds of features. For
example, while repetition has been much emphasized for
several millennia, it is only in the past couple of decades that
precise nesting has had much emphasis. So this may make
one wonder what features will be emphasized in the future.
The vast majority of forms created by humans in the past—
say in art or architecture—have had basic features that are

either directly copied from systems in nature, or are in effect
built up by using extremely simple kinds of rules. On the
basis of the discoveries in this book I thus tend to suspect that
almost any feature that might end up becoming emphasized
in the future will already be present—and probably even be
fairly common—in the behavior of the kinds of simple
programs that I have discussed in this book. (When future
technology is routinely able to interact with individual atoms
there will presumably quickly be a new class of quantum and
other features that become familiar.)

â Relativism and postmodernism. See pages 1131 and 1196.

