【深度学习|特征增强融合模块】MAF (Multi-scale Attention Fusion)一种多尺度的注意力融合模块
【深度学习|特征增强融合模块】MAF (Multi-scale Attention Fusion)一种多尺度的注意力融合模块
文章目录
MAF (Multi-scale Attention Fusion)
MAF 是一种多尺度的注意力融合模块,旨在利用多种尺度的信息来增强特征表示。具体地,它结合了多种卷积层和注意力机制,用于捕捉图像中不同尺度的信息,并融合这些信息来生成更加丰富的特征表示。
- MAF 使用了不同的卷积核大小(通过 dilation 参数控制),以及多种类型的注意力机制(包括通道注意力和空间注意力)。
MAF的主要特征:
- 多尺度卷积: 通过使用多个不同膨胀(dilation)率的卷积核(
conv1_1
,conv2_1,
conv3_1
)来提取不同尺度的特征。<