【深度学习|特征增强融合模块】MAF (Multi-scale Attention Fusion)一种多尺度的注意力融合模块

【深度学习|特征增强融合模块】MAF (Multi-scale Attention Fusion)一种多尺度的注意力融合模块

【深度学习|特征增强融合模块】MAF (Multi-scale Attention Fusion)一种多尺度的注意力融合模块



在这里插入图片描述

MAF (Multi-scale Attention Fusion)

MAF 是一种多尺度的注意力融合模块,旨在利用多种尺度的信息来增强特征表示。具体地,它结合了多种卷积层和注意力机制,用于捕捉图像中不同尺度的信息,并融合这些信息来生成更加丰富的特征表示。

  • MAF 使用了不同的卷积核大小(通过 dilation 参数控制),以及多种类型的注意力机制(包括通道注意力和空间注意力)。

MAF的主要特征:

  • 多尺度卷积: 通过使用多个不同膨胀(dilation)率的卷积核(conv1_1, conv2_1, conv3_1)来提取不同尺度的特征。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值