[算法前沿]--017-中文大模型ChatGLM微调:P-Tuning,deepspeed,LoRA<中>

本文介绍了ChatGLM模型及其优化技术P-Tuningv2和LoRA。通过P-Tuningv2进行参数微调,结合LoRA实现高效训练。在实例中展示了微调前后模型生成的回答质量提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. ChatGLM模型介绍

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。
ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答.

2. 基于 P-Tuningv2的高效参数微调方法

  • P-tuning-v2是一种指令调优的方法. INT4量化级别下最低只需 7GB 显存即可启动微调。

2.1 环境配置

- 计算资源:A6000 Tensor Core GPU
- 镜像:Cuda11.6 PyTorch 1.12.1 镜像
- 挂载模型的文件到宿主机制定的路径

安装依赖环境

protobuf
transformers==4.27.1
cpm_kernels
torch>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI拉呱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值