OceanBase向量检索快速入门:原理、实践与深度解析

文章目录

一、向量检索技术概述

1.1 向量检索的基本概念

向量检索(Vector Search)是一种基于向量相似度的信息检索技术,它将复杂的数据(如文本、图像、音频等)通过深度学习模型转换为高维向量表示,然后通过计算向量之间的距离或相似度来找到最相关的数据。

在传统数据库中,我们通常使用精确匹配或模糊匹配来查询数据,而向量检索则提供了一种基于语义相似度的全新查询方式。这种技术在推荐系统、图像搜索、自然语言处理等领域有着广泛的应用。

核心要素解析

  1. 向量嵌入(Vector Embedding):将非结构化数据转换为固定长度的数值向量表示。例如:

    • 文本:“数据库” → [0.23, -0.45, 0.78, …, 0.12] (维度通常为256/512/768等)
    • 图片:一张猫的图片 → [0.56, 0.89, -0.23, …, 0.45]
  2. 相似度度量(Similarity Metric):用于计算向量之间相似程度的数学方法,常见的有:

    • 欧氏距离(Euclidean Distance)
    • 余弦相似度(Cosine Similarity)
    • 内积(Inner Product)
  3. 近似最近邻搜索(Ap

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clf丶忆笙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值