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The analytical theory of our earlier study (Mortensen et al., 2021, Math. Med. Biol., 38, 106–131) is
extended to address the outstanding cases of fibroblast barrier distribution and myocyte strait distribution.
In particular, closed-form approximations to the resting membrane potential and to the critical parameter
values for propagation are derived for these two non-uniform fibroblast distributions and are in good
agreement with numerical estimates.
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1. Introduction

The spatial distribution of fibroblasts within the myocardial tissue and the electrical coupling between
the fibroblasts and cardiomyocytes are significant but poorly understood factors in triggering and
sustaining cardiac arrhythmias. In our recent article (Mortensen et al., 2021) entitled ‘Action potential
propagation and block in a model of atrial tissue with myocyte–fibroblast coupling’, hereinafter
referred to as MGSS, we proposed that electrical propagation in the fibrous tissue may be understood
conceptually on the basis of three elementary fibroblast distributions: (C1) uniform, (C2) fibroblast
barrier and (C3) myocyte strait, illustrated in Fig. 1. Using direct numerical simulations, we then
estimated primary action potential biomarkers including conduction velocity, peak potential and
triangulation index and found that propagation block occurs at certain critical values of the parameters
defining each of the elementary distributions. Based on a fast-slow scale analysis (Biktashev et al.,
2008; Simitev & Biktashev, 2006, 2011), we demonstrated that the boundary of absolute refractoriness
in the myocyte–fibroblast tissue is determined primarily by the value of the myocyte potential ahead of
a propagating pulse and used this to obtain a simple analytic expression that captures with remarkable
accuracy the block of propagation in the case of a uniform fibroblast distribution (C1).
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Fig. 1. A schematic illustration of fibroblast distributions C1 (uniform), C2 (fibroblast barrier) and C3 (myocyte strait) as they
may appear in a border zone between intact myocardium and fibrosis. Red shades indicate high fibroblast density. To the left is
an image of a border zone adapted by permission from BMJ Publishing Group (Yamamura et al., 2018). Propagation fronts are
considered plane waves locally so coordinate systems are attached to the idealized regions only and propagation is along the x
axis.

The purpose of this addendum is to extend the analytical theory of MGSS to the remaining two
elementary fibroblast distribution cases—(C2) fibroblast barriers and (C3) myocyte straits. In the
following, we derive and report closed-form approximations to the resting membrane potentials, which
allows us to estimate, also in closed form, the critical parameter values separating electrical propagation
from failure in these two non-uniform distributions. Our motivation for this analysis, the background
literature on the topic and the notation used here are identical to those introduced in MGSS unless
explicitly stated otherwise. Hence, we refer the reader to our earlier paper MGSS for these and further
details.

2. Analytic approximations of propagation through fibroblast barriers and myocyte straits

Fibrous atrial tissue is modelled in MGSS as a 2D continuum of atrial myocytes where a fixed number
of identical fibroblasts, n(x, y), are connected in parallel at every Cartesian point (x, y) via an inter-cell
conductance Ggap. In particular, the ‘fibroblast barrier’ distribution (C2) is defined by

n(x, y) = N H
(
Δx/2 − x

)
H

(
x + Δx/2), (2.1a)

and the ‘myocyte strait’ distribution (C3) is defined by

n(x, y) = N
(

H
( − y − Δy/2) + H

(
y − Δy/2)

)
, (2.1b)

and these are illustrated in Fig. 1. Here, Δx and Δy are the widths of barriers and straits, respectively, N
is a positive integer and H(·) is the Heaviside step function. The propagation of electrical excitation
in atrial tissues with such distributions is then described by a boundary value problem for the
monodomain equations (2.1) of MGSS. Further, in MGSS, we demonstrated that the boundary of
absolute refractoriness is determined to a good approximation by the value of the myocyte potential
ahead of a propagating pulse (prefront voltage), Vα

m. Note that superscripts in Vα
m, and further below in

V0
m, do not denote exponentiation.

We now consider action potentials travelling along the x axis in fully rested tissue with fibroblast
distributions (2.1). Then, the prefront voltage Vα

m is identical to the steady state myocyte potential, which
we proceed to determine. Distributions (2.1) are functions of a single variable denoted by s for brevity,
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Table 1 Exponentials and constants of integration in the solution (2.3) of equations (2.2).

Case Interval K1 K2 K3 λ

Fibroblast barrier (2.1a) s ∈ [
0, Δs

2

] √
κ1κ6

2(κ3κ7+κ8
√

κ1)

√
κ1κ6

2(κ3κ7+κ8
√

κ1)
κ4
κ2

3
κ3κ5

s ∈ [
Δs
2 , ∞) − κ3κ6κ7

κ9(κ3κ7+κ8
√

κ1)
0 V0

m
√

κ1κ5

Myocyte strait (2.1b) s ∈ [
0, Δs

2

] −κ3κ6
2(κ3κ11+κ10

√
κ1)

−κ3κ6
2(κ3κ11+κ10

√
κ1)

V0
m

√
κ1κ5

s ∈ [
Δs
2 , ∞) −

√
κ1κ6κ10

κ12(κ3κ11+κ10
√

κ1)
0 κ4

κ2
3

κ3κ5

with s being x in the case of a fibroblast barrier and y in the case of a myocyte strait, respectively. Since
these functions are also even, the steady state version of equations (2.1) of MGSS can be reduced in
both fibroblast distribution cases to a 1D, time-independent system posed on the real half-line

d2

ds2
Vα

m = χ

σss

(
Gm(Vα

m − V0
m) + n(s)Ggap(V

α
m − Vα

f )
)

, s ∈ R+, (2.2a)

0 = Gf(V
α
f − V0

f ) + Ggap(V
α
f − Vα

m), (2.2b)

d

ds
Vα

m(0) = 0,

[
d

ds
Vα

m

]
s→∞

= 0. (2.2c)

Here, χ is the cell surface-to-volume ratio, σss with s = x, y are the relevant diagonal component of the
conductivity tensor and their values are listed in Table 1 of MGSS. To make the problem analytically
tractable, we have also linearized the equations near the uncoupled resting potentials V0

m = −81 mV
and V0

f = −46 mV of the original myocyte and fibroblast models by Courtemanche et al. (1998) and
Morgan et al. (2016) as detailed in section 4.5 of MGSS, with Gm and Gf being the coefficients to the
leading-order Taylor series terms. Equation (2.2b) is easily solved for the fibroblast resting potential Vα

f ,
and we are left with a boundary-value problem for a single second-order linear inhomogeneous ordinary
differential equation for the myocyte resting potential Vα

m. Since the distributions n(s) are piecewise
constant, this resulting equation has constant coefficients in each of the intervals s ∈ [0, Δs/2] and
s ∈ [Δs/2, ∞). Imposing continuity and smoothness matching conditions at s = Δs/2 and boundary
conditions (2.2c), we find the solution

Vα
m(s) = K1 exp(−λs) + K2 exp(λs) + K3, (2.3a)

Vα
f (s) = (

κ2Vα
m(s) + V0

f

)
/
(
κ2 + 1

)
. (2.3b)

Here the constants K1, K2, K3 and λ take different values in the intervals s ∈ [0, Δs/2] and s ∈
[Δs/2, ∞) and for the different choices of fibroblast distributions (2.1) as listed in Table 1 with further
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notation defined as

κ1 = Gm

Ggap
, κ2 = Gf

Ggap
, κ2

3 = Nκ2 + κ1κ2 + κ1

κ2 + 1
, κ4 = Nκ2V0

f + κ1V0
m(κ2 + 1)

κ2 + 1
, κ5 =

√
χGgap

σss
,

κ6 = V0
m − κ4

κ2
3

, κ7 = sinh

(
κ3κ5

Δs

2

)
, κ8 = cosh

(
κ3κ5

Δs

2

)
, κ9 = exp

(
−√

κ1κ5
Δs

2

)
, (2.4)

κ10 = sinh

(√
κ1κ5

Δs

2

)
, κ11 = cosh

(√
κ1κ5

Δs

2

)
, κ12 = exp

(
−κ3κ5

Δs

2

)
.

The critical curves Δs(N) partitioning the generic parameter planes π(N, Δs) of the problem into
regions of propagation and no propagation are determined from the conditions

max
s∈[0,∞)

Vα
m(s) = Eh, and min

s∈[0,∞)
Vα

m(s) = Eh, (2.5)

for fibroblast barrier and myocyte strait cases, respectively, as detailed in the formulation of equation
(4.12) of MGSS. By the first of boundary conditions (2.2c), the profile Vα

m(s) has an absolute extremum
at s = 0 equal to Vα

m(s = 0) = 2K1 + K3. Hence, in the case of the fibroblast barrier distribution (2.1a),
condition (2.5) becomes

√
κ1κ6

(κ3κ7 + κ8
√

κ1)
+ κ4

κ2
3

= Eh. (2.6)

This equation can be solved exactly for Δs. Indeed, the only terms that depend on Δs are κ7 and κ8, and
noting from (2.4) that κ7 = (κ2

8 −1)1/2, we solve the equation for κ8. Using the definition of κ8, we find
a closed-form approximation for the critical curve in the case of the fibroblast barrier distribution (2.1a)

Δx = 2

κ3κ5
cosh−1

⎛
⎝κ3

√
(Eh − κ4/κ

2
3 )2(κ2

3 − κ1) + κ2
6κ1 + κ6κ1

|Eh − κ4/κ
2
3 |(κ2

3 − κ1)

⎞
⎠ . (2.7)

Since K1 does not vanish, we note that equation (2.6) cannot have any solutions precisely when Eh = K3.
The latter defines a vertical asymptote for the critical curve and can be solved explicitly to find

Nasy = κ1(κ2 + 1)(V0
m − Eh)

κ2

(
Eh − V0

f

) . (2.8)

This is in agreement with equation (4.12) of MGSS for the uniform distribution (C1) as the latter can be
thought of as an infinitely wide fibroblast barrier.

For the myocyte strait distribution (2.1b), the approximation for the critical curve takes the form

Δs = 2√
κ1κ5

cosh−1

⎛
⎝κ2

3κ6 +
√

κ1

(
κ2

3κ2
6 + (Eh − V0

m)2
(
κ1 − κ2

3

))
(
Eh − V0

m

) (
κ1 − κ2

3

)
⎞
⎠ . (2.9)
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Fig. 2. Closed-form approximations in comparison to direct numerical simulations of MGSS for the case of fibroblast barrier
distribution (2.1a). (a) Resting myocyte potential Vα

m. Expression (2.3) is shown by solid curves and numerical results are shown
by broken curves both at values of N and Δx given in the legend. The thin dash-dotted line is the line Vα

m = Eh. Propagation if
successful is along the x axis. (b) Critical curve Δx(N). Expression (2.7) is shown by a solid green curve and numerical results are
shown by a dotted black curve with error bars. The numerical curve with error bars is the same one shown in Fig. 6(a) of MGSS.
The vertical asymptote Nasy is shown by a thin dashed line.

Fig. 3. Closed-form approximations in comparison to direct numerical simulations of MGSS for the case of myocyte strait
distribution (2.1b). (a) Resting myocyte potential Vα

m. Expression (2.3) is shown by solid curves and numerical results are shown
by broken curves both at values of N and Δy given in the legend. The thin dash-dotted line is the line Vα

m = Eh. Propagation if
successful is perpendicular to the y axis. (b) Critical curve Δy(N). Expression (2.9) is shown by a solid green curve and numerical
results are shown by a dotted black curve with error bars. The numerical curve with error bars is the same one shown in Fig. 8(a)
of MGSS.

This is obtained from the condition mins∈[0,∞) Vα
m(s) = 2K1 + K3 = Eh in a similar way to the

fibroblast barrier case but rewriting first in terms of κ11 rather than κ8. This curve does not have a
vertical asymptote as V0

m �= Eh.
Figures 2 and 3 show a comparison of the derived closed-form approximations with values from

the direct numerical simulations reported in MGSS for both fibroblast distributions. The discrepancy
between the expression for the resting myocyte potential (2.3) and the numerical values is due to
retaining only the linear terms in the Taylor expansions leading to the right-hand sides of the first two of
equations (2.2). The expressions for the critical curves (2.7) and (2.9) are compared to the corresponding
numerical curves shown in Figs 6(a) and 8(a) of MGSS, respectively, and their accuracy is additionally
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affected by the asymptotic reduction procedure used in MGSS to separate the description of fronts
from the description of steady state equilibrium. However, the linearization errors and the asymptotic
reduction errors seem to compensate each other resulting in a remarkably close agreement between the
analytic and the numerical results for the critical curves of propagation. The direct numerical simulations
of MGSS are, of course, also subject to numerical errors that are harder to estimate.

3. Conclusion

Two archetypal non-uniform spatial distributions of myocyte–fibroblast coupling were considered
here. Approximations to the resting potentials of the coupled cells and to the distribution parameters
at which action potential propagation is blocked were derived in explicit analytic form and are in
good correspondence with values from direct numerical simulations. The results of the addendum are
significant as they provide theoretical underpinning of realistic 2D and 3D computational studies where
high fibroblast density as opposed to collagen accumulation leads to resting depolarization and spatial
distribution of refractoriness (McDowell et al., 2011) and to the generation of complex fractionated
atrial electrograms (Ashihara et al., 2012). Further, closed-form approximations of propagation in
inhomogeneous medium such as the ones derived here can be used to estimate poorly constrained values
of histological and electrophysiological parameters of myocardial tissue.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council (grant
numbers EP/N014642/1, EP/S030875/1 and EP/T017899/1).

References

Ashihara, T., Haraguchi, R., Nakazawa, K., Namba, T., Ikeda, T., Nakazawa, Y., Ozawa, T., Ito, M.,
Horie, M. & Trayanova, N. A. (2012) The role of fibroblasts in complex fractionated electrograms during
persistent/permanent atrial fibrillation. Circ. Res., 110, 275–284.

Biktashev, V., Suckley, R., Elkin, Y. & Simitev, R. D. (2008) Asymptotic analysis and analytical solutions of a
model of cardiac excitation. Bull. Math. Biol., 70, 517–554.

Courtemanche, M., Ramirez, R. & Nattel, S. (1998) Ionic mechanisms underlying human atrial action potential
properties: insights from a mathematical model. Am. J. Physiol., 275, H301–H321.

McDowell, K. S., Arevalo, H. J., Maleckar, M. M. & Trayanova, N. A. (2011) Susceptibility to arrhythmia
in the infarcted heart depends on myofibroblast density. Biophys. J., 101, 1307–1315.

Morgan, R., Colman, M. A., Chubb, H., Seemann, G. & Aslanidi, O. V. (2016) Slow conduction in the border
zones of patchy fibrosis stabilizes the drivers for atrial fibrillation: insights from multi-scale human atrial
modeling. Front. Physiol., 7.

Mortensen, P., Gao, H., Smith, G. & Simitev, R. D. (2021) Action potential propagation and block in a model
of atrial tissue with myocyte–fibroblast coupling. Math. Med. Biol., 38, 106–131.

Simitev, R. D. & Biktashev, V. (2006) Conditions for propagation and block of excitation in an asymptotic model
of atrial tissue. Biophys. J., 90, 2258–2269.

Simitev, R. D. & Biktashev, V. N. (2011) Asymptotics of conduction velocity restitution in models of electrical
excitation in the heart. Bull. Math. Biol., 73, 72–115.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/38/3/292/6271027 by U
niversity of G

lasgow
 user on 30 August 2021



298 P. MORTENSEN ET AL.

Yamamura, K., Yuen, D., Hickey, E. J., He, X., Chaturvedi, R. R., Friedberg, M. K., Grosse-Wortmann, L.,
Hanneman, K., Billia, F., Farkouh, M. E. & Wald, R. M. (2018) Electrotonic myofibroblast-to-myocyte
coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers. Heart, 108,
855–863. D

ow
nloaded from

 https://academ
ic.oup.com

/im
am

m
b/article/38/3/292/6271027 by U

niversity of G
lasgow

 user on 30 August 2021


	Addendum: Action potential propagation and block in a model of atrial tissue with myocyte--fibroblast coupling
	1. Introduction
	2. Analytic approximations of propagation through fibroblast barriers and myocyte straits
	3. Conclusion


