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Abstract 

High-density lipoprotein (HDL) is a circulating complex of lipids and proteins known primarily 

for its role in reverse cholesterol transport and consequent protection from atheroma. In spite of this, 

therapies aimed at increasing HDL concentration do not reduce the risk of cardiovascular disease 

(CVD), and as such focus has shifted towards other HDL functions protective of vascular health – 

including vaso-dilatory, anti-inflammatory, antioxidant and anti-thrombotic actions. It has been 

demonstrated that in disease states such as CVD and conditions of insulin resistance such as type 

2 diabetes mellitus (T2DM), HDL function is impaired owing to changes in the abundance and 

function of HDL-associated lipids and proteins, resulting in reduced vascular protection. However, 

the gold standard density ultracentrifugation technique used in the isolation of HDL also co-isolates 

extracellular vesicles (EVs). EVs are ubiquitous cell-derived particles with lipid bilayers that carry a 

number of lipids, proteins and DNA/RNA/miRNAs involved in cell to cell communication. EVs 

transfer their bioactive load through interaction with cell surface receptors, membrane fusion and 

endocytic pathways and have been implicated in both cardiovascular and metabolic diseases – both 

as protective and pathogenic mediators. Given that studies using density ultracentrifugation to 

isolate HDL also co-isolate EVs, biological effects attributed to HDL may be confounded by EVs. 

We hypothesise that some of HDL’s vascular protective functions in cardiovascular and metabolic 

disease, may be mediated by EVs. Elucidating the contribution of EVs to HDL functions will provide 

better understanding of vascular protection and function in conditions of insulin resistance and 

potentially provide novel therapeutic targets for such diseases. 
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Introduction  

The identification of plasma high-density lipoprotein (HDL) concentration as an inverse 

predictor of  cardiovascular risk harks back to the Framingham Heart Study of the 1970s [1, 2]. HDL 

is a circulating complex of lipids and proteins primarily known for its role in reverse cholesterol 

transport; the removal of excess cholesterol from peripheral tissues and subsequent transfer to the 

liver for excretion in bile [3]. However, intervention studies have consistently demonstrated that 

pharmacotherapy aimed at increasing HDL concentration, for example by cholesteryl ester transfer 

protein inhibition, does not reduce the risk of cardiovascular disease (CVD) [4, 5]. As such focus 

has shifted towards HDL functionality, independent of concentration, that protects endothelial 

function and vascular health, such as vaso-dilatory, anti-inflammatory, antioxidant, and anti-

thrombotic actions (Figure 1.). A landmark proteomic study of HDL in 2005 initially identified 13 

proteins associated with HDL [6], but given technological advances, such as in liquid-

chromatography mass spectrometry, this total now exceeds over 100 proteins [7]. It has been 

demonstrated that in disease states like CVD, type 2 diabetes mellitus (T2DM) and the metabolic 

complication of pregnancy pre-eclampsia, HDL function is impaired owing to changes in the 

abundance and function of HDL associated lipids and proteins [8, 9].  

 

Figure 1 – An overview of HDL and EV vascular effects. 
HDL and EVs have overlapping vascular functional effects mediated through distinct mechanisms. This may lead to 
confounding in studies where HDL and EVs are not adequately separated. 

 

However, the gold standard density ultracentrifugation (DUC) technique used to isolate HDL 

from plasma has been shown to co-isolate extracellular vesicles (EVs), owing to their overlapping 

densities [10]. EVs are ubiquitous cell-derived particles with lipid bilayers characterised by their size; 

from smallest to largest are exosomes, microparticles and apoptotic bodies. Exosomes are formed 

through the endocytosis of cell interior multivesicular bodies and can carry lipids, proteins and 

DNA/RNA/miRNA that can mediate cell to cell communication. Microparticles and apoptotic bodies 

are formed directly from the cell membrane, with the latter blebbing from cells undergoing apoptosis. 

All EV subtypes can be found in a variety of body fluids and can be derived from multiple origins 

including endothelial cells, platelets, immune cells and adipose tissue [11]. EVs transfer their 

bioactive load through interaction with cell surface receptors, membrane fusion and endocytic 

pathways and as such have been implicated in cardiovascular and metabolic diseases as both 

protective and pathogenic mediators [12]. As studies using DUC to isolate HDL also co-isolate EVs, 

biological effects attributed to HDL may be confounded by EVs (Figure 1). This may in part explain 

the lack of efficacy of therapeutics aimed at increasing HDL concentration to reduce CVD risk and 

posits EVs as an alternative therapeutic target in metabolic disease and consequent cardiovascular 

risk. In the present hypothesis article, current knowledge of HDL and EVs in CVD and metabolic 

disease is briefly discussed and the evidence for EVs mediating some HDL functions summarised. 
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HDL protects the vascular endothelium in health, but this is impaired in 

cardiovascular and metabolic disease. 

 The vascular protection mediated by HDL has been shown to employ a variety of pathways 

other than reverse cholesterol transport (Figure 2). Anti-inflammatory and vaso-dilatory effects of 

HDL are largely attributed to the stimulation of endothelial nitric oxide synthase (eNOS), increasing 

the availability of nitric oxide (NO) and inducing vasodilation. NO also plays a role in the prevention 

of inflammation, through the inhibition of expression of adhesion molecules (vascular cell adhesion 

molecule-1 [VCAM-1], and intercellular adhesion molecule-1 [ICAM-1]) in response to tumour 

necrosis factor-α (TNFα) signalling. NO stimulation by HDL has been attributed to apolipoprotein-AI 

(ApoAI) acting through scavenger-receptor B1 (SRB1) and the apolipoprotein M (ApoM)-anchored 

lysophospholipid sphingosine-1-phospate (S1P) through its receptor S1PR-1 [13, 14]. HDL 

antithrombotic actions are also linked with NO stimulation, through improved blood flow due to NO-

mediated vasodilation, coupled with antagonised platelet activation via platelet activating factor and 

thromboxane A2 downregulation [15]. There is evidence for antithrombotic functions of HDL beyond 

NO stimulation, such as HDL reducing the propensity for von-Willebrand factor to become hyper-

adhesive and efficiently bind platelets [16]. HDL bound paraoxonase-1 (PON-1) acts to prevent the 

oxidation of low-density lipoprotein and other lipids, attenuating the effects of oxidative stress. HDL 

PON-1 has also been shown to reduce the activity of the oxidised low-density lipoprotein receptor 

LOX-1, reducing downstream reactive oxygen species production [17].  

Cardiovascular and metabolic disease have both been shown to adversely affect vascular 

protection by HDL, though the cause/effect relationship is yet to be fully established [18]. HDL from 

coronary artery disease (CAD) patients inhibited eNOS stimulation due to reduced PON-1 and was 

unable to prevent adhesion molecule expression in response to TNFα (Figure 2) [17]. CAD-derived 

HDL had lower S1P content and a reduced ability to limit inflammation in vascular smooth muscle 

cells compared to healthy HDL, which could be recovered through S1P enrichment [19]. The 

cholesterol efflux capacity and anti-inflammatory ability of HDL is impaired in myocardial infarction 

(MI) patients, with the degree of dysfunction correlated with the likelihood of future cardiac events 

and the severity of MI [20, 21]. The antioxidant functions of HDL were diminished in chronic heart 

failure patients and were linked to clinical outcomes in terms of disease severity [22]. 

 

Figure 2 –HDL-mediated vascular protection.  

HDL has multiple mechanisms of action protecting the vasculature, predominantly in an eNOS dependent manner. 

Apolipoprotein AI (ApoAI) binds scavenger receptor B1 (SRB1) and induces the Akt pathway, leading to downstream 

endothelial nitric oxide (eNOS) activation and nitric oxide (NO) production. The same pathway is activated when 

apolipoprotein M (ApoM) bound sphingosine-1-phosphate (S1P) acts on S1P receptor 1/3. HDL bound PON-1 

prevents the oxidation of low-density lipoprotein (LDL) and reduces oxidised-LDL receptor (LOX-1) activation, 

preventing the subsequent generation of reactive oxygen species (ROS) that inhibit NO action. The generation of NO 

inhibits NFκB-mediated adhesion molecule synthesis (vascular cell and intercellular adhesion molecule 1, VCAM-1 / 

ICAM-1) in response to tumour necrosis factor alpha and other cytokines through their respective receptors. 
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Metabolic disease is associated with dyslipidaemia, obesity and insulin resistance resulting 

in increased CVD risk. In T2DM, vascular inflammation, oxidative stress and advanced glycation 

end products due to hyperglycaemia ultimately accrue and provoke vascular dysfunction and 

atheroma [23]. Glycation of HDL bound proteins and enzymes in T2DM reduces protective effects 

of HDL due to conformational changes in those glycated proteins [24].  Much like in coronary artery 

disease, T2DM HDL had reduced ability to stimulate eNOS and prevent TNFα induced NFκB 

inflammatory responses in endothelial cells [25]. These changes were observed alongside lower 

PON-1 antioxidant activity and were associated with hyperglycaemia [26]. Of note, South Asians 

have increased risk of T2DM and CVD with the onset of disease occurring at younger age and lower 

BMI compared to white Europeans [27] and there is evidence of impaired anti-oxidant and anti-

inflammatory properties of HDL in this population [28]. The HDL lipidome is also altered in T2DM, 

particularly with regard to S1P content. HDL S1P was lower in HDL from diabetes patients impairing 

protective intracellular pathways which can be reversed through enrichment of HDL with S1P in a 

dose-dependent manner [29, 30], though there is some disagreement as to whether HDL S1P/ApoM 

or plasma S1P/ApoM is associated with CVD in T2DM in a study of African Americans with diabetes 

[31]. Other alterations to the HDL lipidome in T2DM subjects with dyslipidaemia include a substantial 

(+77%) increase in triglyceride content and smaller HDL particles with elevated ceramide, known to 

be linked with inflammation and insulin resistance [32]. 

 These impairments in HDL vascular protection in those at risk of CVD can be ameliorated 

through lifestyle interventions. A randomised controlled trial where participants at risk of 

cardiovascular disease adhered to a Mediterranean diet rich with olive oil or nuts for a year showed 

improvements in HDL cholesterol efflux, PON-1 activity and improved vaso-dilatory function through 

nitric oxide stimulation [33]. A similar diet undertaken by men with metabolic syndrome for five weeks 

provoked some changes in the HDL proteome (namely inter-α-trypsin inhibitor heavy chain H4) 

linked to an improvement in the anti-inflammatory effects of HDL with no other changes in HDL 

function [34]. In a comparable cohort of men, a high-fibre, low-fat diet changed HDL from an 

inflammatory to anti-inflammatory state as well as increasing the activity of platelet-activating factor 

acetylhydrolase (PAF-AH) [35]. Evidence is conflicting on weight loss and improvements in HDL 

function; adolescents following gastric sleeve weight loss surgery were seen to have better HDL 

cholesterol efflux and anti-oxidant activity compared to their pre-surgery baseline, while a study of 

diet and low intensity exercise induced weight loss in obese women with or without diabetes had no 

impact on HDL functional metrics [36, 37]. 

In terms of exercise, a three-month bicycle ergometer training programme in metabolic 

syndrome patients returned cholesteryl ester transfer protein activity to normal, non-metabolic 

syndrome levels while increasing PON-1 activity [38]. A 10 week walk/run training programme in 

those with the metabolic syndrome increased HDL PON-1 activity, while also attenuating adhesion 

molecule expression and monocyte adhesion in endothelial cells incubated with participant HDL. 

The same study also found HDL reduced the inhibition of NO production by eNOS in endothelial 

cells treated with TNF-α. These effects occurred independently of HDL concentration, in fact, HDL 

levels did not increase in the participants after 10 weeks of training [39]. Cardiac rehabilitation, 
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through diet education and a five-month exercise programme involving brisk walking 3-5 times per 

week, led to 9.4% increase in HDL cholesterol efflux in acute coronary syndrome patients [40]. After 

15 weeks of aerobic exercise in chronic heart failure patients, HDL better stimulated eNOS- 

mediated NO production compared to pre-training baseline levels with no accompanying changes 

in proteomics [41]. 

Extracellular vesicles in cardiovascular and metabolic disease 

 Extracellular vesicles have both protective and pathogenic effects in the vasculature in 

cardiovascular and metabolic disease, which may be expected given their diverse cellular origins, 

cargoes and subtype. Interestingly, EVs have also been posited to regulate metabolism, which has 

been reviewed by Fatima et al [42]. In pathophysiology, circulating EV levels increase [12]. Much 

like HDL however, the cause/effect relationship between EVs and cardiometabolic disease is 

unclear. EVs can be anti-inflammatory; quiescent endothelium derived EVs (EEVs) reduce 

monocyte activation through miRNA 10a in vitro and in a mouse model of peritonitis [43]. EEVs can 

also deliver miRNAs 126 and 222 locally to the endothelium, where they promote endothelial repair 

[44] and a reduction in ICAM-1 expression [45] respectively, though these functions were impaired 

with diabetes mellitus-like hyperglycaemia. Shear-stressed human umbilical vein endothelial cell 

(HUVEC) EVs have atheroprotective effects, mediated through the transfer of miRNA 143/145 to 

smooth muscle cells and preventing their de-differentiation. In a mouse model of atherosclerosis 

miRNA 143/145 containing EVs reduced atherosclerotic lesion size by two-fold [46]. EEVs from 

TNFa stimulated HUVECs limit palmitate-induced oxidative stress through the transfer and 

stimulation of eNOS [47]. In contrast, EVs derived in a similar fashion can evoke inflammatory 

responses in HUVECs while inducing a mixture of pro- and anti-inflammatory responses in THP-1 

monocyte like cells, dependent upon the chemokines and cytokines transferred including IL-6, IL-8, 

CCL-4 and CCL-5 [48].  

In terms of pathogenic EV effects, endothelial and platelet-derived exosomes isolated from 

cerebrovascular disease patient plasma contain higher levels of select pro-atherogenic proteins 

compared to healthy controls [49]. Platelet EVs released during myocardial infarction contain 

miRNA-320b leading to increased ICAM-1 expression on endothelial cells [50], while platelet EV 

miRNA-142-3p causes aberrant endothelial proliferation in hypertension [51]. Exosomes from 

activated monocytes induce ICAM-1 and IL-6 expression in endothelial cells in an NFκB dependent 

manner, linking chronic inflammation and cardiovascular pathology [52]. Metabolic syndrome patient 

plasma EVs inhibit eNOS activity through the inhibitory threonine-145 phosphorylation site in 

endothelial cells and reduce endothelial dependent contraction in mouse aortic rings post EV 

injection in vivo, though these EVs did not alter the expression of cytokines as described in other 

studies [53]. HUVECs cultured in high glucose conditions produce a higher concentration of EVs 

that are pro-coagulant, induce endothelial ROS production and impair endothelial relaxation. These 

EVs have a distinct proteomic profile compared to control media cultured HUVEC EVs, containing 

proteins related to oxidation-reduction processes, haemostasis and protein complex formation not 

present in the controls [54]. Stimulating HUVECs with high glucose in tandem with angiotensin II 
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produces EVs that decrease eNOS expression in mouse aortic rings through the MEK/ERK 

pathway, impairing NO mediated relaxation [55]; taken together these studies offer EVs as a 

potential link between diabetic pathophysiology and vascular dysfunction.  

 There is evidence for EVs mediating the positive vascular/metabolic effects of exercise, 

particularly as a number of factors known to be released during exercise (so-called ‘exerkines’) can 

be found in EVs [56]. A six-month aerobic exercise regimen in sedentary African American men and 

women reduced the plasma concentration of endothelial EVs and IL-6 and improved flow mediated 

dilation of the brachial artery [57]. Exercised mouse serum EVs administered intramyocardially prior 

to ischaemia/reperfusion injury reduced the resulting infarct size to a greater extent compared to 

EVs from sedentary mice, and prevented cardiomyocyte apoptosis in vitro [58]. Moderate exercise 

in mice increases circulating  EV number and miRNA 126 carried by endothelial progenitor cell EVs, 

and these EVs improved survival in endothelial cells cultured with high glucose in hypoxic conditions 

[59]. Longer term exercise is also associated with improved EV function; student rowers who 

regularly trained for more than one year had a 1.8-fold increase in endothelial exosomal miRNA-

342-5p, found to prevent apoptosis in cultured cardiomyocytes in a caspase 9 and JNK2 dependent 

manner. Shear stress of the endothelium occurs during exercise, and this is associated with 

increases in miRNA-342-5p containing exosomes released from HUVECS [60]. In contrast, a study 

of pre-hypertensive individuals undertaking 6 months of aerobic exercise found that the long-term 

exercise associated sheer stress reduced the number of circulating EVs, owing to increased 

endothelial mitochondrial biogenesis [61].  

Are extracellular vesicles responsible for some of HDL’s vascular functions? 

 A key issue in the study of both HDL and EVs is their co-isolation when using density 

ultracentrifugation (DUC), and the consequent risk of mis-interpreting experimental outcomes. HDL 

and EVs co-isolate due to overlapping densities in the range of 1.063-1.21g/ml and although EVs 

only account for ~1% of the particles in a given HDL fraction isolated using DUC, they are much 

larger in diameter and therefore account for around 10 times the volume. Without further processing 

of HDL fractions after DUC, EV contamination will remain [10]. As such, studies on HDL that have 

not undertaken additional purification steps subsequent to DUC do not take into consideration 

potentially confounding EVs, thereby potentially inappropriately attributing beneficial or detrimental 

EV effects to HDL. It should be noted that it is particularly difficult to completely separate HDL and 

EVs, even when using multistep purification processes, and the post isolation processes can alter 

the biological activity and integrity of both HDL and EVs. It has been demonstrated that another 

lipoprotein, LDL, can bind to EVs leading to their co-isolation [62] though it is unclear whether HDL 

directly interacts with EVs in a similar manner. While density ultracentrifugation is the standard 

technique employed for lipoprotein isolation, EV isolation techniques are much more varied and 

include antibody-based techniques (including immuno-magnetic isolation), size-exclusion 

chromatography (SEC) and kit-based procedures that may affect the types and quality of EVs 

isolated, as well as the degree of HDL contamination. Of the EV isolation techniques, SEC can 

effectively separate purified fractions of larger EVs from HDL and plasma proteins but with the 



7 
 
 

 

 

caveat of lower yield than DUC. Smaller EVs isolated using SEC may still be contaminated by HDL, 

given the pore size of 75nm in the columns used in these studies being much larger than HDL and 

small EVs [63, 64]. A study comparing methods of EV isolation found that kit-based procedures and 

centrifugation alone were not adequate to deplete lipoproteins. A combination of isolation techniques 

is required to deplete lipoproteins in serum samples though this leads to a limited EV yield [65]. As 

such, studies on extracellular vesicles from plasma/serum samples which have employed DUC or 

kit-based procedures alone may be confounded by HDL. 

 Very few studies have directly compared HDL and EVs. HDL, like EVs, has been proposed 

to carry miRNAs. Isolated and purified HDL carries an miRNA profile distinct from both EVs and 

LDL. HDL appears to transport miRNA from a variety of cellular origins while EVs contain miRNA 

only from their parent cells [66]. A comprehensive lipidomic comparison of lipoproteins and EVs 

established distinct lipidomic profiles of HDL and EVs, where EVs contain eight-times less lipid 

compared to lipoproteins but are enriched in lysoglycerophospholipids and have higher relative 

sphingolipid content (particularly sphingomyelin) compared to HDL. This study did however find 

markedly different EV lipid compositions to previous EV only lipidomic studies, particularly the 

enrichment in lysoglycerophospholipids [67]. This may be due to the EV isolation technique; 

previous EV only lipidomic studies employed ultracentrifugation which as discussed can lead to 

contamination by other plasma particles like HDL. Although steps to understand the separate roles 

of HDL and EVs in health and disease have been undertaken, these studies are somewhat 

confounded by the issues associated with HDL and EVs co-isolating, and the potential problems 

encountered when further purifying HDL or EV fractions (Table 1). 

There is considerable overlap in some of the protective and detrimental functions of HDL and 

EVs in cardiovascular and metabolic disease, particularly in terms of anti-oxidative, anti-

inflammatory and atheroprotective functions (Figure 1). There is also overlap in the mechanisms by 

which these functions take place, including miRNA transfer and eNOS stimulatory pathways, and 

that impaired HDL and EV functionality in cardiometabolic disease can be recovered with exercise. 

Given that a large number of the studies cited used ultracentrifugation which leads to co-isolation of 

HDL and EVs without stringent measures, it follows that there may be some confounding taking 

place, and that the biological effects described could be misattributed to either HDL or EVs. It may 

also be the case that HDL and EVs do indeed share these effects, but one particle may have 

dominant effects over the other in changing disease states and progression.  Even in studies where 

HDL and EVs have been separated with further processing, there are some potential issues. The 

effect of fed and fasting states on EV function and circulating concentration is unclear, though it has 

been shown that adipose derived EVs have altered cargo in response to nutrition status [68]. It is 

difficult to pinpoint the cellular sources of circulating EVs given that there is little consensus 

regarding tissue specific markers and considerable overlap in the markers currently used [69].  
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Particle to be 

isolated 
Isolation Method Advantages Limitations 

HDL 

Density 

Ultracentrifugation  

‘Gold-standard’ method for HDL 

isolation [70] 

 

Enables isolation of HDL 

subspecies separately 

Co-isolation of EVs and plasma proteins [10] 

 

Shear forces may damage/remove HDL surface-bound 

proteins [71] 

 

Buffers used may interfere with downstream analysis, 

due to high salt concentration or oxidation [71] 

 

Lengthy process [70] 

 

Low throughput process limited by centrifuge capacity 

[71] 

Size Exclusion 

Chromatography 

 

Fast; only requires a single step 

 

Economical 

SEC eluate is enriched for HDL but still contains 

contaminants [70] 

 

Co-isolation of similar molecular weight plasma proteins 

[70] 

Immunoaffinity 

More specific than DUC and SEC 

 

Scalable for high-throughput 

applications [71] 

Typically uses antibodies to ApoAI which can be found 

on non-HDL particles [70] 

 

Newer method that requires further characterisation 

Extracellular 

Vesicles 

Density 

Ultracentrifugation 

Well established and easy to 

perform [72] 

Co-isolation of HDL and other plasma proteins[64]  

 

Lengthy process 

 

Risk of damage to EV integrity 

 

Low throughput [72] 

Size Exclusion 

Chromatography 

Fast; only requires a single step 

[64] 

 

Removal of the majority of 

plasma contaminants [64] 

Dilute EVs across fractions require pooling, 

reducing purity [65] 

 

Co-isolation of similar sized plasma proteins 

 

Smaller EVs co-isolated with HDL [63] 

Immunoaffinity 
Results in highly pure EV 

samples [69] 

Only captures a subset of EVs carrying sufficient target 

protein 

 

Best suited to small sample volumes 

 

Not suited to downstream functional assays due to tight 

antibody binding [69] 

Commercial kit-based 

procedures 

Convenient 

 

Fast 

 

High EV yield [65] 

High degree of lipoprotein and plasma protein 

contamination [65] 

 

 

 

Table 1 - Summary of the advantages and limitations of HDL and EV isolation methods. 

A combination of isolation methods is usually required to isolate purified fractions of HDL and EVs, in order to account 

for the limitations of each individual method.  



9 
 
 

 

 

Hypothesis 

Given that HDL and EVs co-isolate in DUC as well as in commonly used kit-based EV 

isolation protocols, there is the possibility that EV effects are being attributed to HDL. This may also 

occur in the other direction, where HDL effects are being attributed to EVs.  There has been little 

direct comparison between HDL and EVs despite this co-isolation. Overlapping functions of HDL 

and EV on the endothelium in both health and disease have been described in separate studies 

while exercise has been shown to recover perturbed HDL and EV function. As such, we hypothesise 

that some of HDL’s vascular protective functions are in fact mediated by EVs, and that some EV 

functions may be mediated by HDL. 

Future experimental work  

 Despite the development of novel techniques, such as the use of agarose gel electrophoresis 

[73], the separation of HDL from EVs remains a challenge. Purified HDL and EVs should undergo 

proteomic analysis to ensure that EV proteins are not being assigned to HDL (and vice versa) and 

to understand how both proteomes change in cardiometabolic disease. To enhance these proteomic 

studies, functional readouts of both HDL and EVs can also aid the clarification of biological effects 

undertaken by each, such as in vitro inflammatory cell assays and ex vivo vessel wire myography. 

Further understanding of the degree to which HDL and EVs are involved in cardiometabolic diseases 

can be achieved through regression analyses of vascular readouts with HDL and EVs, such as 

soluble VCAM-1 as a marker of vascular inflammation [74]. A transcriptomics approach may reveal 

changes in miRNAs associated with HDL and EVs in disease.  

Clinical Implications 

 Clarifying HDL and EV roles in vascular protection may highlight one or the other as a more 

likely therapeutic target in cardiometabolic disease. It may explain to some degree why HDL 

cholesterol raising therapies are not as effective as expected, should it be found that EVs are 

actually performing some HDL-associated protective functions. Recombinant HDL and HDL 

mimetics are increasingly being investigated as potential therapies for cardiovascular risk with 

varying success. Understanding the molecular and functional changes in HDL in cardiometabolic 

disease may reveal new candidates for recombinant HDL components and improve their efficacy 

[75, 76]. 
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