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Abstract

Two-phase piecewise homogeneous plane deformations are examined in respect
of a neo-Hookean matrix material reinforced with embedded aligned fibres charac-
terized by a single stiffness parameter. The deformations are interpreted in terms of
fibre kinking and fibre splitting. Previous work has shown that such a transversely
isotropic material can lose ellipticity if the reinforcing stiffness is sufficiently large
and the fibre direction is sufficiently compressed. In particular, it was shown that
the associated failure modes are characterised by the emergence of weak surfaces
of discontinuity that are normal to the fibre direction (the onset of fibre kinking)
or parallel to the fibre direction (the onset of fibre splitting). Here, the analysis of
strong surfaces of discontinuity, developing from weak ones, is studied. The con-
sidered model can give rise to piecewise smooth plane deformations separated by a
plane stationary surface of discontinuity, interpreted as either kinking or splitting.
Attention is restricted to (plane) deformations in which, on one side of the surface
of discontinuity, the load axis is aligned with the fibre axis. Then the fibre stretch
on this side of the discontinuity is a natural load parameter. The ellipticity status of
the two-phase piecewise homogeneous plane deformations is shown to span all four
possible ellipticity/non-ellipticity permutations. If both deformation states are ellip-
tic, then a suitable intermediate deformation is shown to be non-elliptic. Moreover,
it is shown that the mechanism is dissipative, and maximally dissipative quasi-static
failure motion is examined in respect of both kinking and splitting. It follows that,
firstly, surfaces of discontinuity perpendicular to the fibre direction, associated with
fibre kinking, are nucleated followed by surfaces of discontinuity parallel to the fibre
direction, associated with fibre splitting. With respect to kinking, such maximally
dissipative kinks nucleate only in compression as weak surfaces of discontinuity, with
the subsequent motion converting non-elliptic deformation to elliptic deformation.

Keywords: Discontinuous finite deformations; Fibre-reinforced materials; Fibre
kinking; Fibre splitting.
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1 Introduction

Based on the implications of the loss of ellipticity of the governing equations of equilibrium
for fibre-reinforced incompressible nonlinearly elastic solids, the purpose of the present
work is to examine the initiation of kink band instabilities and the possible coincidence of
kinking and splitting in such materials. To set the scene we first consider some background
on shear band initiation and related instabilities.

1.1 Background and motivation

A general theoretical framework for shear bands was provided by Hill (1962), while, with
a view to establishing a realistic model capable of predicting the critical bifurcation stress
(and/or strain) leading to formation of a shear band, different constitutive models were
analysed in a variety of contexts. For example, Rice (1976) showed that some isotropic elas-
tic solids, and elastic-plastic solids with a smooth yield surface, do not develop shear band
instabilities, while important theoretical contributions were made by Hill and Hutchinson
(1975), Anand and Spitzig (1980) and Hutchinson and Tvergaard (1981) within the theory
of plasticity under several loading conditions. In the context of the inelastic behaviour
of over-consolidated clay soils shear band formation was investigated by Rice (1973) and
Rudnicki and Rice (1975).

In connection with asymptotic studies of crack problems, Knowles and Sternberg (1978,
1980) showed that loss of ellipticity of the field equations of nonlinear compressible hyper-
elastic materials under plane deformation is a necessary condition for the emergence of
solutions lacking the standard smoothness properties required by the governing differential
equations of equilibrium. Identification of the surfaces on which ellipticity fails formed the
subject of an earlier paper (Knowles and Sternberg, 1976), while Knowles and Sternberg
(1978) were concerned with the emergence of surfaces of discontinuity and piecewise homo-
geneous deformations and energy considerations associated with the loss of ellipticity. and
dissipation (see also Abeyaratne, 1980; Abeyaratne and Knowles, 1989; Knowles, 1979).

Budiansky and Fleck (1993) provided one of the most widely used models that incorpo-
rates the effect of combined stress loading for predicting realistic ranges of kink band angles
in composites. Similar analyses were conducted by Sutcliffe and Fleck (1994) and Moran et
al. (1995) for carbon fibre epoxy composites, by Moran and Shih (1998) for ductile matrix
fibre composites, by Poulsen et al. (1997) for wood, and for an advanced fibre-reinforced
composite by Kyriakides et al. (1995) and Vogler and Kyriakides (1997). These works
focus not only on predicting the compressive strength but also on the propagation of the
kink band. It has been assumed in the literature that a kink band may start from either
a well-defined initial band of wavy fibres (for example, Kyriakides et al., 1995; Kyriakides
and Ruff, 1997) or from a deformation induced band, as in, for example, Christoffersen and
Jensen (1996), Jensen and Christoffersen (1997) and Christensen and DeTeresa (1997).

Analysis of discontinuous deformation gradients, forming two-phases of the same ma-
terial, provides both qualitative and quantitative information on the formation and broad-
ening of (shear) kink bands (Merodio and Pence, 2001a,b). Two different phases of a given
material formed by two joined homogeneously deformed half-spaces have been studied by
Fu and Freidin (2004) with respect to (quasi-static) bifurcation and stability using a kinetic
stability criterion and an energy analysis. Furthermore, Fu and Zhang (2006) analysed kink
band formation with respect to the choice of the strain-energy function and the stability
of the solutions based on the so-called Maxwell relation. Considering uni-directionally
fibre-reinforced materials, they obtained the kink propagation stress, the kink orientation
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angle and the fibre direction within the kink band. More recently, Baek and Pence (2010)
studied the effect of shearing deformation in fibre-reinforced materials on the emergence
and disappearance of kink surfaces for several different boundary-value problems.

Experiments by Lee and Anthony (1999) examined the effect of fibre diameter and initial
misalignment angle on the compressive behaviour of glass fibre unidirectionally-reinforced
composites and the prediction of their compressive strength for a wide range of fibre volume
fractions. The initial fibre misalignment angle and the axial propagation of kink bands
have also been studied experimentally by Kyriakides et al. (1995) and Kyriakides and
Ruff (1997). Lee et al. (2000) observed experimentally that glass fibre epoxy composites
fail predominantly by a splitting failure mode at lower fibre volume fractions and by a
combination of splitting and kinking at higher fibre volume fractions, while, by contrast,
carbon fibre epoxy composites were found to fail only by kinking.

With this background in mind, the motivation for the present work is to provide qual-
itative understanding of kink band phenomena in fibre-reinforced materials, with special
attention to the simultaneous existence of fibre kinking and fibre splitting observed by
Prabhakar and Waas (2013a). Various efforts have been aimed at developing models that
can capture and predict fibre failure (Yerramalli and Waas, 2004; Prabhakar and Waas,
2013a,b; El Hamdaoui et al., 2015, 2018; Hasanyan and Waas, 2018) since, to some extent,
the use of fibre-reinforced materials has been constrained by lack of understanding of the
failure mechanisms.

To analyze and predict failure mechanisms, micromechanics approaches that consider
the geometry of the microstructure and the imperfections associated with them have been
used to obtain the load bearing capacity of the material (see Prabhakar and Waas, 2013b
and references therein). It is therefore essential to consider models that account for fibre
and matrix constituents of the composite since such models provide physical insight into the
failure of both the fibre and the matrix, as well as the load transfer between them. However,
micromechanics approaches are often less practical than macromechanical models since, for
example, they are more costly in computational time due to the large number of degrees-of-
freedom involved. Our preferred approach is therefore to adopt a macroscopic continuum
model that embodies information about the microstructure, such as fibre orientation.

Within a macroscopic continuum framework, initiation of material failure is often as-
sociated with the loss in ellipticity of the governing equations. Analysis of ellipticity is
therefore important, not only for characterizing macromechanical behaviour and failure
but also, for instance, in computational mechanics, where loss of ellipticity leads to mesh-
dependent results that depend on the mesh size, and this needs to be well understood
(Hasanyan and Waas, 2018).

A continuum-mechanical model in the setting of nonlinear elasticity theory that predicts
the onset of material instabilities for fibre-reinforced materials has been established in a
series of paper by Merodio and Ogden (2002, 2003, 2005a,b,c) and references therein. The
loss of stability and the onset of fibre failure in fibre-reinforced materials were related to the
ellipticity status of the governing equation of equilibrium, a status which changes locally in
type as a result of deformation. This change is referred to as loss of (ordinary) ellipticity,
which can be interpreted as the onset of a failure mechanism.

For a given strain-energy function the loss of ellipticity condition determines both the
deformation associated with the existence of surfaces of weak discontinuity and the di-
rection of the normal to that surface. Surfaces of weak discontinuity (or weak surfaces)
are surfaces across which the second derivative of the deformation field is discontinuous.
For some historical background related to this type of discontinuity it is of interest to
consult the book by Hadamard (1903). It has been found in Merodio and Ogden (2002)
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that for reinforcing models that depend only on the fibre stretch ellipticity is lost under
fibre contraction, and the associate failure mode is fibre kinking. On the other hand, for
reinforcing models that depend on the shear as well as stretch the failure mechanism can
involve combination of fibre kinking and fibre splitting.

These failure modes are characterised by the emergence of weak surfaces of discontinuity
that are normal to the fibre direction (fibre kinking) or parallel to the fibre direction
(fibre splitting). Weak surfaces do not provide information about either the (quasi-static)
development of the discontinuities or the different kinematic and stress variables across the
surfaces of discontinuity. These data are provided by surfaces of strong discontinuity. In
a fully developed or strong surface of discontinuity the first derivative of the deformation
field (i.e. the deformation gradient) suffers a finite jump.

Surfaces of strong discontinuity, also referred as elastostatic shocks, non-evolutionary
jump discontinuities, phase boundaries, stationary kink surfaces, stationary kinks, etc.,
were considered in (Merodio and Pence, 2001a,b) for analyzing fibre kinking using a re-
inforcing model that depends on the fibre stretch. Their analysis focused on the (plane)
deformation gradients across the shock, where, in addition, one of the (in-plane) principal
stretches associated with one side of the shock was aligned with the fibre direction. Hence-
forth in this paper, for simplicity of terminology, we mainly refer to surfaces of discontinuity
as (elastostatic) shocks, although they are not shocks in the conventional sense.

The kink band is given by a three-zone state with the kink zone separating the two
sides of the band (designated the ‘+’ and ‘−’ sides). However, it should be emphasized
that the actual width of a kink band and its development is not captured by the pure
elasticity theory used here. This requires a more general constitutive theory such as a
second-gradient theory.

Our aim is to exploit the elasticity theoretical framework further in order to capture the
combination of fibre kinking and fibre splitting. This requires the emergence of equilibrated
shocks that are able to describe kinking and splitting simultaneously to be accommodated.
The onset of fibre splitting also has a three-zone state, where in this case there is a splitting
zone separating the ‘+’ and ‘−’ sides of the discontinuity. It can be argued that fibre
splitting is not related to continuous displacements, as it is in fact a catastrophic failure
mechanism. However, analysis of piecewise homogeneous deformations provides useful
input for understanding and describing the mechanisms involved. Indeed, connecting the
fibre stretching and shearing with the formation of shocks, i.e. with the formation of
different fibre failure mechanisms, can be exploited in the nonlinear constitutive modelling
of fibre-reinforced materials.

1.2 Structure of the paper

The main goals of the present analysis are to predict the combined splitting–kinking failure
mode observed experimentally by Lee et al. (2000) and to capture the evolution of the
elastostatic shock direction and kinking angle. Two-phase deformations of a fibre-reinforced
material that correspond to two different phases of the same elastic material are constructed
and analyzed for this purpose. The material model adopted here consists of a neo-Hookean
matrix in which are embedded aligned fibres so that the material response is transversely
isotropic. The fibres are characterized by a so-called reinforcing model that penalizes
deformation in the fibre direction, and the overall material strain-energy function is taken
to be the sum of the neo-Hookean and reinforcing energy functions.

Sections 2–4 focus on purely mechanical aspects of shocks. In Section 2, the main
equations are presented. These include the requirements of displacement continuity and
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traction continuity that have to be satisfied by the set of all considered piecewise homoge-
neous plane deformations. In Section 3 some special cases are studied, namely both weak
and strong shocks orthogonal and parallel to the fibre direction, while more general shocks
are analyzed in Section 4. The ellipticity status of the piecewise homogeneous plane defor-
mations is also provided. The results show that the existence of a strong shock involves loss
of ellipticity at a suitable intermediate deformation, in agreement with previous analyses.

In Section 5, quasi-static shock motion is considered based on a detailed energy analysis
involving the use of the so-called driving traction, i.e. the magnitude of a fictitious nominal
traction acting on the shock by the surrounding material. Following (Merodio and Pence,
2001a,b) two families of solutions are studied with the purpose of establishing a criterion
for selecting shock evolution, both for non-dissipative solutions and maximally dissipative
shocks, which can be considered as two extreme cases. For sufficiently small values of
the reinforcing parameter, as fibre contraction is increased, non-dissipative shocks nucleate
at the particular values that give the first modes associated with loss of ellipticity in,
for example, the ‘+’ zone. Incipient loss of ellipticity may occur in two different modes,
which are associated with fibre kinking and fibre splitting. It follows that, firstly, shocks
perpendicular to the fibre direction, associated with fibre kinking, are nucleated followed
by shocks parallel to the fibre direction, associated with fibre splitting, and the quasi-static
evolution of both kinking and splitting is analyzed.

Non-dissipative motion or neutral stability (analogous to the Gibbs and Maxwell phase
equilibrium conditions) from the values of the ‘+’ side gives rise to a simultaneous rapid
(almost instantaneous) large increase of the fibre contraction together with a rapid esca-
lation of shear deformation, subsequently referred to as ‘fibre shearing’, in turn associated
with an increase in the transverse strain. This occurs at the point of loss of ellipticity for
any value of the reinforcing parameter, and, for sufficiently large values of the fibre rein-
forcement, a snap-back mechanism is associated with the non-dissipative kinking solutions.
This means that the considered failure mechanisms are clearly dissipative, i.e. energy is
dissipated in the process of kink band and splitting formation (see Prabhakar and Waas,
2013b). It has been noted that large strains within the kink band suggest fibre/matrix
splitting, which has been observed in experiments in conjunction with the formation of
kink banding for certain materials (Prabhakar and Waas, 2013a).

Maximally dissipative shocks are also studied. Then no snap-back is found and a
unique solution is singled out in the ‘−’ zone for both kinking and splitting, as for the non-
dissipative case, although in that case just for sufficiently small values of the reinforcing
parameter. Therefore, two families (kinking and splitting) nucleate, each being associated
with the two different failure modes given by the breakdown of ellipticity in the ‘+’ zone.
During subsequent motions for the maximally dissipative kinking solutions, there is a rapid
increase of fibre contraction and fibre shearing while non-elliptic deformations convert into
elliptic deformations. With respect to fibre kinking angles, as well as kink orientation
angles, it is shown that maximally dissipative solutions might capture experimental obser-
vations closely although we are dealing here with just a simple prototype model and our
results have a qualitative rather than a quantitative meaning. In addition, with respect to
fibre splitting, maximally dissipative shocks are associated with fibre angles in the splitting
zone which are almost zero and there is also a rapid increase of fibre contraction and fibre
shearing.
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2 Basic Equations

2.1 Material model under plane strain

We consider an incompressible elastic material under plane strain deformation. Let D be
the (plane) domain occupied by a body in its undeformed configuration and D∗ be the
(plane) domain occupied by the same body in its deformed configuration. Vectors and
tensors are described with respect to the planar orthonormal bases {Ei}, i = 1, 2, in D,
and {ei}, i = 1, 2, in D∗. Let χ denote the smooth invertible mapping that deforms D
onto D∗ according to

x = χ(X) = X + u(X), (1)

where X = X1E1 +X2E2 and x = x1e1 + x2e2 are the position vectors of a material point
in the undeformed and deformed configurations, respectively, while u = u1(X1, X2) E1 +
u2(X1, X2) E2 is the corresponding displacement vector. The (two-dimensional) deforma-
tion gradient tensor is F = ∂χ/∂X, and the associated right and left Cauchy–Green defor-
mation tensors are C = FTF and B = FFT, respectively. The incompressibility constraint
given by detF = 1 has the explicit form

F11F22 − F12F21 = 1. (2)

We consider a homogeneous anisotropic finite elastic material model based on an
isotropic neo-Hookean matrix in which are embedded aligned reinforcing fibres that endow
the material with a transversely isotropic character. The model involves the invariants
I1 = tr(C) for the neo-Hookean matrix and I5 = A · (C2A) = a · (Ba) related to the
reinforcement, where the unit vector A represents the fibre direction in the undeformed
configuration, while its image in the deformed configuration is given by a = FA. The
strain-energy function W of the material is given by

W =
1

2
µ[I1 − 3 + ρ(I5 − 1)2], (3)

where µ > 0 is the shear modulus of the neo-Hookean matrix material, and ρ > 0 is the
reinforcing strength parameter that regulates the degree of anisotropy.

The fibre direction is now specialized to A = E1, the square of the stretch in this
direction being I4 = A · (CA) = C11. Note that the limit ρ = 0 retrieves the neo-Hookean
isotropic base response and ρ→∞ corresponds to an inextensible material.

For the considered plane strain deformation I4 and I5 are related through

I5 = C2
11 + C2

12 = I24 + C2
12, (4)

where C12 is a measure of shear deformation (fibre shearing).
We denote by S the first Piola–Kirchhoff stress tensor, which, for a general strain-energy

function W (F), is given by

S =
∂W (F)

∂F
− pF−T, (5)

where p is a Lagrange multiplier arising from the incompressibility constraint. Using (5)
and (6) the first Piola–Kirchhoff can be expressed as

S = 2W1F + 2W5(FA⊗CA + FCA⊗A)− pF−T, (6)

restricted to plane strain as appropriate, where the subscripts 1 and 5 on W refer to the
differentiation with respect to I1 and I5, respectively. The undeformed configuration is
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considered to be stress free so that it follows from (6) that the strain-energy function (3)
must satisfy

W = 0, 2W1 − p0 = 0, W5 = 0 (7)

in the reference configuration, where p0 is the value of p therein.
From the standard connection the corresponding Cauchy stress σ = SFT is given by

σ =
∂W (F)

∂F
FT − pI = 2W1B + 2W5(a⊗Ba + Ba⊗ a)− pI, (8)

where I is the identity tensor.
In the absence of body forces, the equilibrium equations are given in terms of the first

Piola–Kirchhoff stress tensor as
DivS = 0. (9)

2.2 Piecewise homogeneous deformations: elastostatic shocks

The solutions of the equilibrium equation for an incompressible nonlinearly elastic fibre-
reinforced material are assumed to satisfy certain smoothness requirements. If these
smoothness requirements are violated then new solutions with different smoothness prop-
erties may emerge, as we now discuss. We assume that the system of equations (2) and
(9) admits a solution such that F, S and p are continuous in D except on some smooth
surface S across which the deformation and traction are assumed to be continuous but the
deformation gradient F, S and p are discontinuous. We denote by S∗ the image of S in
D∗, by Π+ and Π− the two joined half-spaces in D and by Π+

∗ and Π−∗ their corresponding
images in D∗. Let (F+, S+, p+) denote the field values in Π+ and (F−, S−, p−) those in
Π−. Then, equilibrium in each half-space and traction continuity require





DivS± = 0 in D± \ S

JSK+−N = 0 on S,
(10)

respectively, where J•K+− = •+−•−. From (5) the first Piola–Kirchhoff stress tensors in the
two half-spaces are given by

{
S+ = W+

F − p+ F+−T in Π+

S− = W−
F − p− F−−T in Π−,

(11)

where the subscript F on W signifies differentiation of W with respect to F, with the
superscripts ± indicating evaluation in Π±.

For the local analysis it is sufficient to consider piecewise homogeneous deformations.
Continuity of the deformation then requires

F+X = F−X on S, (12)

where x = F±X in Π±.
More specifically, we consider that the (planar) deformation gradient in Π+ is given by

F+ = λ e1 ⊗ E1 + λ−1 e2 ⊗ E2, (13)

where the incompressibility constraint (2) has been used. The associated right and left
Cauchy–Green deformation tensors, C+ and B+, respectively, have diagonal elements
(λ2, λ−2). Displacement continuity holds if and only if (see Merodio and Pence, 2001a)

F− = (I + k l⊗ n)F+, (14)
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where the incompressibility constraint (3) has been taken into account. The associated
right and left Cauchy–Green deformation tensors, C+ and B+, respectively, are given by
diag(λ2, λ−2). Displacement continuity holds if and only if (see Merodio and Pence [14])

F− = (I + k l⊗ n)F+, (15)

where the parameter k is the measure of the difference between the two deformation gradi-
ents, and it is also known as the shock strength. The main features associated with a shock
are shown in Figure 1. The shock plane is orthogonal to the plane in which the deformation
takes place. The fiber reinforcement maintains its initial direction in Π+, while in Π− the
fiber direction suffers a change with respect to the initial direction. The angle between the
fiber direction in the deformed and undeformed configurations, denoted by φ, is called the
kinking angle (see Figure 1). The dashed line in the undeformed configuration represents
the intersection of the elastostatic shock plane S with the (E1,E2) plane. Let L and N be
the tangent and the normal unit vectors to the shock line, respectively. It follows that

L = L1E1+L2E2 = cosϕE1+sinϕE2, N = N1E1+N2E2 = − sinϕE1+cosϕE2. (16)

The dashed line in the deformed configuration represents the intersection of the elastostatic
shock plane S∗ with the (e1, e2) plane, while, the two unit vectors l and n are the tangent
and the normal to the shock line, respectively. Then

l = l1 e1 + l2 e2 = cosα e1 + sinα e2, n = n1 e1 + n2 e2 = − sinα e1 + cosα e2. (17)

φ

αϕ

Π+ Π− Π+
∗ Π−∗

S S∗

(a) Undeformed configuration D (b) Deformed configuration D∗

E1

E2

LN

e1

e2

l
n

Figure 1: Kinematics of a plane elastostatic shock: (a) the undeformed configuration with the
fiber reinforcement direction E1, which is also an in-plane (Lagrangian) principal directions of the
deformation; (b) the deformed confoguration showing the fiber kinking angle φ and the elastostatic
shock angle α.

The kinematics of an elastostatic shock for incompressible materials provides a relation
between the normal unit vector n to the shock line in the deformed configuration and its
pre-image N in the undeformed configuration as

N = |FL|FTn, (18)

which in turn leads to a relation between the shock angles α and ϕ via

tanα =
F21 + F22 tanϕ

F11 + F12 tanϕ
. (19)

To evaluate (19) one can use either F+ or F−. If one uses F+ , then

tanα = λ−2 tanϕ. (20)
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Figure 1: Kinematics of a plane elastostatic shock: (a) undeformed configuration with the fibre
reinforcement direction E1, which is also an in-plane (Lagrangian) principal direction of the
deformation, and shock angle ϕ; (b) deformed configuration showing the fibre kinking angle φ
and shock angle α.

where the parameter k measures the difference between the two deformation gradients,
and is known as the shock strength. The main features associated with a shock are shown
in Fig. 1. The shock plane is orthogonal to the plane in which the deformation takes
place. The fibre reinforcement maintains its initial direction in Π+, while in Π− it suffers
a change from its initial direction. The angle between the fibre direction in the deformed
and undeformed configurations, denoted by φ, is called the kinking angle (see Fig. 1). The
dashed line in the undeformed configuration represents the intersection of the elastostatic
shock plane S with the (E1,E2) plane. Let L and N, respectively, be tangent and the
normal unit vectors to the shock line defined by

L = L1 E1+L2 E2 = cosϕE1+sinϕE2, N = N1 E1+N2 E2 = − sinϕE1+cosϕE2. (15)

The dashed line in the deformed configuration represents the intersection of the elasto-
static shock plane S∗ with the (e1, e2) plane, and the unit vectors l and n are tangential
and normal to the shock line, respectively, and given by

l = l1 e1 + l2 e2 = cosα e1 + sinα e2, n = n1 e1 + n2 e2 = − sinα e1 + cosα e2. (16)

The angles ϕ and α are identified in Fig. 1.
The kinematics of an elastostatic shock for an incompressible material provides a rela-

tion between the normal unit vector n to the shock line in the deformed configuration and
its pre-image N in the undeformed configuration as

N = |FL|FTn, (17)

which yields a relation between the shock angles α and ϕ via

tanα =
F21 + F22 tanϕ

F11 + F12 tanϕ
. (18)

To evaluate (18) one can use either F+ or F− to give

tanα = λ−2 tanϕ. (19)

In terms of the Cauchy stress tensor, the equilibrium equation (10)1 can be written as
divσ± = 0 in D∗ \ S∗, and, on use of (17), the traction continuity equation (10)2 becomes

σ+n = σ−n on S∗. (20)

8



From (13), (14) and (16) the components of F− are given by

F−11 = λ(1 + kn1n2), F−22 = λ−1(1− kn1n2), F−12 = λ−1kn2
2, F−21 = −λkn2

1. (21)

The associated left Cauchy–Green deformation tensor B− has components

B−11 = (1 + kn1n2)
2λ2 + k2n4

2λ
−2, B−12 = −kn2

1(1 + kn1n2)λ
2 + kn2

2(1− kn1n2)λ
−2,

B−22 = k2n4
1λ

2 + (1− kn1n2)
2λ−2, (22)

and the corresponding components of C− are

C−11 = (1 + 2kn1n2 + k2n2
1)λ

2, C−12 = k(n2
2 − n2

1) + k2n1n2,

C−22 = (1− 2kn1n2 + k2n2
2)λ
−2. (23)

The kinking angle φ is given by

tanφ =
F−21
F−11

= − kn2
1

(1 + kn1n2)
. (24)

This framework was considered in Merodio and Pence (2001a,b) in order to analyze
fibre kinking. Fig. 1 gives a local illustration of just one elastostatic shock. The lower
part of Fig. 2 is a local illustration (at a point) of the combined kinking and incipient
splitting mechanisms with three elastostatic shocks. The upper right part of Fig. 2 shows
a kink band given by a three-zone state, denoted F+/F−K/F

+, where the index K refers
to the kinking zone. The fibre splitting mechanism also has a three-zone state, denoted
F+/F−S /F

+, where the index S refers to the splitting zone.
The angle α gives the direction of the surface of discontinuity (shock). Surfaces normal

to the fibre direction are interpreted in terms of fibre kinking. On the other hand, surfaces
close to the fibre direction are interpreted in terms of fibre splitting. With this analysis
we determine values of I4 and I5 in both the kinking zone and the splitting zone, which
provides information about the mechanisms (all the quantities are evaluated in both the
Π+ and Π− half-spaces). The goal of this work is to characterize both F−K and F−S with
respect to the considered strain-energy function involving the invariant I5.

Continuity of the deformation gives F− in terms of F+ and (k, α). Then, for a given
deformation gradient F+ and a scalar p+, one seeks (k, α, p−) satisfying the traction con-
tinuity condition (20). Using (3), (13) and (21) in (20), then taking the scalar product
of (20) with n and separately with l, and after some simple manipulations, the traction
continuity requirement leads to two equations that can be written as

p+ − p− = µρ

6∑

n=1

ank
n, H = n2

1λ
2 + n2

2λ
−2 + ρ

6∑

n=0

bn k
n = 0, (25)

where, in the latter, the trivial solution k = 0 has been eliminated. The coefficients an and
bn are given by

a1 = −4n1n2[n
2
1 − n2

2 − λ4(3n2
1 − n2

2) + 6λ8n2
1],

a2 = 4n2
1[n

2
2 + 6λ4n2

2(n
2
1 − n2

2)− 3λ8n2
1(n

2
1 + 5n2

2)],

a3 = 4n1n2[(n
2
1 − n2

2)
3 + 2λ4n2

1(n
4
1 + 2n2

1n
2
2 − 7n4

2)− 4λ8n4
1(3n

2
1 + 5n2

2)],

a4 = −4n2
1[3n

2
2(n

2
1 − n2

2)
2 + λ4n2

1(n
4
1 − 7n2

1n
2
2 + 16n4

2) + 3λ8n4
1(n

2
1 + 5n2

2)],

a5 = 12n3
1n2[n

2
2(n

2
1 − n2

2) + λ4n2
1(n

2
1 − 3n2

2)− 2λ8n4
1],

a6 = −4n4
1(n

2
2 + λ4n2

1)
2, (26)
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Figure 2: Illustration of fiber kinking and splitting in a unidirectional fiber-reinforced material
subject to compressive loading aligned with the initial fiber direction. We associate the mechanism
of fiber kinking with the existence of shocks perpendicular to the fiber reinforcement direction
while the mechanism of fiber splitting is related to the existence of shocks close to the direction of
the fiber reinforcement and outside the kink band. More particularly, the kink band is given by
a three zone state F+/F−K/F

+ with parallel separating kinks giving a fiber that abruptly changes
direction across the first kink and then returns to the original direction across the second kink.
Fiber splitting is illustrated with two symmetrically disposed shocks with respect to the initial
fiber direction so that there is also a three zone state F+/F−S /F

+. The latter mechanism is known
to be catastrophic. The goal of this work is to characterize both F−K and F−S with respect to the
considered strain-energy function involving the invariant I5.

and

b0 = −2[(n2
1 − n2

2)
2 + (n2

1 − n2
2 + 8n2

1n
2
2)λ

4 − 2n2
1(n

2
1 + 7n2

2)λ
8],

b1 = 6n1n2[n
2
1 − n2

2 − (n4
1 + 6n2

1n
2
2 − 3n4

2)λ
4 + 2n2

1(3n
2
1 + 7n2

2)λ
8],

b2 = 2[(1− 2n2
1n

2
2)(1− 8n2

1n
2
2) + 2n2

1(n
2
1 − n2

2)(n
4
1 − 6n2

1n
2
2 − 15n4

2)λ
4

+ 2n4
1(3n

4
1 + 30n2

1n
2
2 + 35n4

2)λ
8],

b3 = −10n1n2[(n
2
1 − n2

2)
3 + 2n2

1n
2
2(3n

2
1 − 5n2

2)λ
4 − 2n4

1(3n
2
1 + 7n2

2)λ
8],

b4 = 6n2
1[3n

2
2(n

2
1 − n2

2)
2 + n2

1(n
2
1 − 3n2

2)(n
2
1 − 5n2

2)λ
4 + 2n4

1(n
2
1 + 7n2

2)λ
8],

b5 = −14n3
1n2[n

2
2(n

2
1 − n2

2) + n2
1(n

2
1 − 3n2

2)λ
4 − 2n4

1λ
8],

b6 = 4n4
1(n

2
2 + n2

1λ
4)2. (27)

For a given deformation gradient F+ and a fixed material parameter ρ, if (λ, n1, n2, k)
is a solution of (25) then (λ,−n1, n2,−k) and (λ, n1,−n2,−k) are also solutions since
H(λ,−n1, n2,−k) = H(λ, n1, n2, k). Hence, one may restrict attention to α ∈ (0, π/2).
This is in agreement with the fiber kinking and splitting mechanism illustrated at the
bottom of Figure 2. For k associated with the solution (λ, n1, n2, k) there also exists a
solution (λ, n1,−n2,−k). Before a thorough characterization of equilibrated shocks, we
turn to study several special shocks that will enlighten the analysis. In particular, in the
next section we consider weak shocks for which (k → 0), orthogonal shocks (α = 90◦) and
parallel shocks (α = 0◦). Stability is not currently a matter of concern, but will be treated
later on in Section 5.
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Figure 2: Illustration of fibre kinking and splitting in a unidirectional fibre-reinforced material
subject to compressive loading aligned with the initial fibre direction. Fibre kinking is associated
with the existence of shocks perpendicular to the fibre reinforcement while fibre splitting is related
to the existence of shocks close to the direction of the fibre reinforcement and outside the kink
band. More particularly, the kink band is identified by a three-zone state F+/F−K/F

+ with parallel
separating shocks across the first of which the fibres abruptly change direction and then return to
the original direction across the second shock. Fibre splitting, which is known to be catastrophic,
is illustrated by two symmetrically disposed shocks with respect to the initial fibre direction with
a three-zone state F+/F−S /F

+.
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For a given deformation gradient F+ and material parameter ρ, it follows that if
(λ, n1, n2, k) is a solution of (25) then (λ,−n1, n2,−k) and (λ, n1,−n2,−k) are also so-
lutions since H(λ,−n1, n2,−k) = H(λ, n1, n2, k). Hence, noting that in this paper α is
measured in degrees, one may restrict attention to α ∈ [0, 90]. This is in agreement with
the fibre kinking and splitting mechanism illustrated in the lower part of Fig. 2. For k as-
sociated with the solution (λ, n1, n2, k) there also exists a solution (λ, n1,−n2,−k). Before
a more general characterization of equilibrium shocks, we consider several special shocks
that will inform the subsequent analysis. In particular, in the next section we consider
weak shocks for which (k → 0), orthogonal shocks (α = 90) and parallel shocks (α = 0).
Stability is not an immediate matter of concern, but will be treated later on in Section 5.
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3 Some special elastostatic shocks

3.1 Weak elastostatic shocks

The governing differential equation changes locally in type from elliptic to hyperbolic as
the deformation of the material proceeds. This change is referred to as loss of ordinary
ellipticity and it leads to the emergence of weak surfaces of discontinuity (otherwise referred
to as weak shocks or characteristic surfaces). Let ξ be a coordinate in the direction normal
to the shock. The surfaces carrying the discontinuities of the deformation gradient F,
the stress tensor S and the pressure p are often referred to as strong elastostatic shocks.
On the other hand, weak elastostatic shocks involve a continuous derivative ∂u/∂ξ of the
displacement field as well as a continuous pressure p, but a discontinuous second derivative
∂2u/∂ξ2 of the displacement field u and a discontinuous first derivative ∂p/∂ξ of p. We
now show that a strong elastostatic shock turns into a weak elastostatic shock as the shock
strength tends to zero. The loss of ellipticity is given by (see, for example, Merodio and
Ogden, 2002)

Q(n) : l⊗ l = 0, (28)

where

Qij = FpαFqβ
∂2W

∂FjβFiα
npnq

are the components of the acoustic tensor Q and, subject to l ·n = 0, l and n are arbitrary
unit vectors as distinct from the specific l and n introduced in Section 2.2, and : signifies
double contraction.

The analysis of (28) for a given W furnishes the ellipticity status of that particular
strain energy. If, for some pair of orthogonal unit vectors l and n such that l · n = 0,
a given deformation gradient F satisfies equation (28), then the deformation is said to
be non-elliptic for that material model. Furthermore, the unit vector n is then identified
as the normal vector to a surface (in the deformed configuration), referred to as a weak
surface of discontinuity while l is in the direction of the tangent to the surface, following
the terminology introduced in the previous section. Once F is specified, it is possible to
check the ellipticity status of the deformation (see Merodio and Neff, 2006).

In respect of (3) the ellipticity condition (28) specializes to

{(B : n⊗ n)I + 2ρ(I5 − 1)[2(B : a⊗ n)(a · n)I + (B : n⊗ n)(a⊗ a)

+ (a · n)(a⊗Bn) + (a · n)(Bn⊗ a) + (a · n)2B]

+ 4ρ[(B : a⊗ n)a + (a · n)Ba]⊗ [(B : a⊗ n)a + (a · n)Ba]} : l⊗ l = 0, (29)

which, on use of (13) and (16), becomes

4ρ(7n2
2 + n2

1)n
2
1 λ

8 − 2ρ(n2
1 − n2

2 + 8n2
1n

2
2)λ

4 + n2
1 λ

2 + 2ρ(4n2
1n

2
2 − 1) + n2

2λ
−2 = 0. (30)

This identifies weak surfaces of discontinuity characterised by (λ, α) for a fixed material
parameter ρ. It is easy to show that (30) is equivalent to the general equation (25)2 that
gives elastostatic shocks in the limit k → 0 for which n2

1λ
2 + n2

2λ
−2 + ρb0 = 0. Our

purpose now is to determine the emergence of these weak surfaces of discontinuity. Under
compressive loading, attention is restricted to λ ∈ (0, 1) and, by symmetry, to α ∈ [0, 90].
When ρ is sufficiently large, ellipticity is lost for λ = λo < 1, but very close to the
undeformed configuration and the weak surface is perpendicular to the fibre (α = 90),
which is interpreted as fibre kinking. Hence, very moderate fibre compression is sufficient
for ellipticity loss. As λ decreases (inside the non-elliptic region) there could be one weak
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Figure 3: The curves in each panel show plots of α versus λ based on (29) for ρ = 3, 9, 30, 60 in
(a)–(d), respectively, thus providing their ellipticity status. In each panel, the right-hand curve
is interpreted as follows. The incipient loss of ellipticity occurs for λ = λo < 1 (close to the
undeformed configuration λ = 1) and the associated weak surface is perpendicular to the fibre,
i.e. α = 90, which is interpreted as fibre kinking. As λ decreases (in the non-elliptic domain) the
curve gives one weak surface satisfying α < 90 until λ = λp for which it is possible, in addition,
to obtain a weak surface parallel to the fibre, i.e. α = 0, which is interpreted as fibre splitting.
The left-hand curve in each plot is not of interest since ellipticity has already been lost.

If there exists a (λ, α) pair satisfying (30) for a fixed material parameter ρ, then a weak
surface of discontinuity (weak shock) may arise inside the material. Strong surfaces of
discontinuity (strong shocks) described by the set of parameters (λ, k, α), in which k repre-
sents the strength of the shock may also arise inside the material. Based on the weak shocks
obtained, we now focus attention on particular strong shocks: those satisfying (α = 90)
which are called orthogonal strong surfaces of discontinuity (orthogonal strong shocks), and
those satisfying (α = 0), which are referred to as parallel strong surfaces of discontinuity
(parallel strong shocks).

3.2 Orthogonal strong shocks

In this section attention is restricted to orthogonal strong shocks. Using α = 90, (25)2 and
(27) one obtains a cubic in k2:

4ρλ8k6 + 6ρλ4(2λ4 + 1)k4 + 2ρ(2λ4 + 6λ8 + 1)k2 − 2ρ(1 + λ4 − 2λ8) + λ2 = 0. (31)

By applying Descarte’s rule of signs, it is easy to check that (31) admits non-zero real
solutions for k provided

ρ >
λ2

2(1 + λ4 − 2λ8)
= ρ̄(λ), (32)

wherein ρ̄ is defined. Fig. 4 shows values of ρ̄ versus λ from (32), obtained from (31) with
k = 0.
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Figure 3: The curves in each panel show plots of α versus λ based on (29) for ρ = 3, 9, 30, 60 in
(a)–(d), respectively, thus providing their ellipticity status. In each panel, the right-hand curve
is interpreted as follows. The incipient loss of ellipticity occurs for λ = λo < 1 (close to the
undeformed configuration λ = 1) and the associated weak surface is perpendicular to the fibre,
i.e. α = 90, which is interpreted as fibre kinking. As λ decreases (in the non-elliptic domain) the
curve gives one weak surface satisfying α < 90 until λ = λp for which it is possible, in addition,
to obtain a weak surface parallel to the fibre, i.e. α = 0, which is interpreted as fibre splitting.
The left-hand curve in each plot is not of interest since ellipticity has already been lost.

surface for which α < 90. Furthermore, it is possible to obtain a second weak surface
parallel to the fibre with α = 0 for λ = λp, which is interpreted as fibre splitting. The
emergence of these two solutions, and the results obtained here, are in agreement with
those given by Merodio and Ogden (2002). These results are summarized in Fig. 3. The
values λo and λp depend on the material parameter ρ. Table 1 shows these values for a
selection of specific values of ρ.

ρ 1 1.3 3 9 30 60

λo 0.9541 0.9655 0.9856 0.9953 0.9986 0.9993

λp − 0.7682 0.9502 0.9853 0.9957 0.9979

Table 1: Values of λo associated with the incipient shock α = 90 and λp associated with the
incipient shock α = 0 for ρ = 1, 1.3, 3, 9, 30, 60.

If there exists a (λ, α) pair satisfying (30) for a fixed material parameter ρ, then a
weak surface of discontinuity (weak shock) may arise inside the material. Strong surfaces
of discontinuity (strong shocks) described by the set of parameters (λ, k, α), in which k
represents the strength of the shock may also arise inside the material. Based on the
weak shocks obtained, we now focus attention on particular strong shocks: those satisfying
α = 90, which are called orthogonal strong surfaces of discontinuity (orthogonal strong
shocks), and those satisfying α = 0, which are referred to as parallel strong surfaces of
discontinuity (parallel strong shocks).
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solutions for k provided

ρ >
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2(1 + λ4 − 2λ8)
= ρ̄(λ), (32)
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Figure 4: Plot of ρ̄(λ) given by (32). For a given value of λ, orthogonal shocks are only possible
in the region above the curve defined by ρ > ρ̄(λ).
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Figure 5: Plots of k versus λ from (31), which are associated with strong orthogonal shocks for
the indicated values of ρ = 0.2, 0.4, 1, 10. As λ decreases from 1, the first shock that emerges in
each curve is a weak shock, i.e. k = 0. The weak shock further develops into a strong shock with
decreasing values of λ. The curves are symmetric with respect to the λ axis. In addition, using
(24), it is easy to show that if k < 0 (k > 0) then φ > 0 (φ < 0).

strength k against λ satisfying (31) for several values of ρ for which (32) holds. In summary,
for a value of the reinforcing parameter ρ satisfying (32), a weak solution emerges when
λ = λo as λ decreases from λ = 1. A further decrease in λ develops the weak orthogonal
shock into a strong orthogonal shock.
We now examine different kinematical variables in the two zones of the localized deforma-
tion for a given value of ρ. In Π+ the deformation is given by λ. For λ < 1 it follows that
I+4 < 1 and I+5 < 1 since I+5 = (I+4 )2 = λ4. For such a λ, the deformation in Π− is provided
by values (λ, k, α = 90) satisfying (31). Values of k can be taken either positive or negative
since this only affects the fibre kinking direction, i.e. the sign of the fibre shearing. We
focus on values k < 0 for which, by (23)2, C

−
12 > 0. In particular, I−4 = C−11 is obtained

using (23)1 and C−12 is obtained using (23)2. These two values, in turn, using (4), give I−5 .
In Fig. 6 the quantities (C−11)

1/2 (fibre stretch), C−12 (fibre shearing), I−4 and I−5 are plotted
against λ. We plot all the quantities for completeness and clarity since although they are
related it is important to single out their values to fully understand their influence on the
different fibre instabilities that are exhibited later on during the energetic analysis. At this
point we just mention that the fibre in Π− is subject to both shearing and contraction.
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in the region above the curve defined by ρ > ρ̄(λ).

According to these results, (31) admits real solutions if and only if ρ > ρ̄(λ). Note that
for ρ = 0 an orthogonal strong surface is not possible. Fig. 5 shows values of the shock
strength k against λ satisfying (31) for several values of ρ for which (32) holds. In summary,
for a value of the reinforcing parameter ρ satisfying (32), a weak solution emerges when
λ = λo as λ decreases from λ = 1. A further decrease in λ develops the weak orthogonal
shock into a strong orthogonal shock.
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We now examine different kinematical variables in the two zones of the localized defor-
mation for a given value of ρ. In Π+ the deformation is given by λ. For λ < 1 it follows
that I+4 < 1 and I+5 < 1 since I+5 = (I+4 )2 = λ4. For such a λ, the deformation in Π− is
provided by values (λ, k, α = 90) satisfying (31). Values of k can be taken either positive or
negative since this only affects the fibre kinking direction, i.e. the sign of the fibre shearing.
We focus on values k < 0 for which, by (23)2, C

−
12 > 0. In particular, I−4 = C−11 is obtained

using (23)1 and C−12 is obtained using (23)2. These two values, in turn, using (4), give I−5 .
In Fig. 6 the quantities (C−11)

1/2 (fibre stretch), C−12 (fibre shearing), I−4 and I−5 are plotted
against λ. We plot all the quantities for completeness and clarity since although they are
related it is important to single out their values to fully understand their influence on the
different fibre instabilities that are exhibited later on during the energetic analysis. At this
point we just mention that the fibre in Π− is subject to both shearing and contraction.
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Figure 6: Plots of (C−11)
1/2, C−12, I

−
4 and I−5 versus λ for ρ = 0.2, 0.4, 1. These values provide the

deformation in Π− for orthogonal strong shocks. For any value ρ, as λ decreases C−12 increases
monotonically up to C−12 ≈ 1 while C−11 decreases monotonically down to C−11 ≈ 0.

3.3 Parallel strong shocks

Parallel strong shocks are given by (25)2 with (27) restricted to α = 0, which yields

k2 − 1

2ρλ2
(−2ρλ6 + 2ρλ2 − 1) = 0, (33)

from which it follows that a necessary condition for such a surface to exist is

ρ >
1

2λ2(1− λ4) = ρ̂(λ), (34)

which defines ρ̂.
In Fig. 7 the curve gives the values ρ̂(λ) versus λ that satisfy (34). A parallel strong shock
exists if and only if ρ > ρ̂∗, where ρ̂∗ ≈ 1.298. Alternatively, for such a value of ρ, parallel
strong shocks are possible for values of λ ∈ [λmin, λmax], where λmin and λmax are the ρ-
dependent minimum and maximum values of λ from ρ = 1/2λ2(1 − λ4). Furthermore, it
follows that λmax = λp. Hence, for a value of the reinforcing parameter ρ satisfying (34) as
λ decreases from λ = 1 a parallel weak solution emerges when λ = λp. A further decrease
in λ develops the weak parallel shock into a strong one.
In Fig. 8 values of the strength of the shock k given by (33) against λ for specific values
of the reinforcing parameter ρ are shown. As λ decreases from λ = 1, the first solution of
(33) is a weak solution, i.e. k = 0. Solutions with k 6= 0 emerge as λ decreases further.
Values of k can be either positive or negative, which affects only the fibre kinking direction,
i.e. the sign of the fibre shearing. From (23), we have C−12 = k and I−4 = C−11 = λ2 and, on
use of the expression (4) and (33), I−5 = 1 − 1/(2ρλ2). Clearly, the fibre stretch (C−11)

1/2

depends linearly on λ, while the fibre shearing C−12 = k is given by (33), all subject to the
ρ-dependent restriction λ ∈ [λmin, λmax].
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Parallel strong shocks are given by (25)2 with (27) restricted to α = 0, which yields

k2 − 1

2ρλ2
(−2ρλ6 + 2ρλ2 − 1) = 0, (33)

from which it follows that a necessary condition for such a surface to exist is

ρ >
1

2λ2(1− λ4) = ρ̂(λ), (34)

which defines ρ̂.
In Fig. 7 the curve gives the values ρ̂(λ) versus λ that satisfy (34). A parallel strong

shock exists if and only if ρ > ρ̂∗, where ρ̂∗ ≈ 1.298. Alternatively, for such a value of ρ,
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For a given ρ > ρ̂∗, the curve gives two values of λ: the minimum value is referred to as λmin

and the maximum is called λmax. Parallel strong shocks only exist for values λ ∈ [λmin, λmax].
Furthermore, λmax = λp .
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Figure 8: Plots of k versus λ from (31) that correspond to strong parallel surfaces for the material
parameter ρ = 1.5, 3, 8, 20.

Clearly, I−4 < 1 for all λ in the latter range, and as λ decreases from λ = λmax = λp the
fibre continues to contract while initially shearing takes place with the shear component
k = C−12 increasing from 0 at λmax until it reaches a maximum, thereafter decreasing down
to 0 again at λ = λmin. This is in contrast to the case of an orthogonal strong surface (see
Fig. 6) for which C−12 increases from zero at λ = λo. Note that I−5 > 0 requires 2ρλ2 > 1
and hence I−5 < 1 in the considered range.

4 The general solution for elastostatic shocks

In this section, for a fixed reinforcing parameter ρ, a general three-dimensional solution in
(λ, k, α) space of (25)2 is determined and examined. It is first illustrated for ρ = 3 since
for larger values of ρ, the main features of the solution have similar characteristics. The
projection of the solution for ρ = 3 on to the (λ, k) plane is shown in Fig. 9, which reflects
the symmetry (λ, n1, n2, k)↔ (λ,−n1, n2,−k) about the horizontal line at k = 0.
The solutions S2 and S3 are associated with angles α ≈ 90 and α ≈ 0, respectively. They
can be interpreted in terms of orthogonal and parallel strong shocks. Fig. 9 shows the
complete domain of the solutions (λ, k, α) associated with mechanically consistent strong
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In Fig. 8 values of the strength of the shock k given by (33) against λ for specific values
of the reinforcing parameter ρ are shown. As λ decreases from λ = 1, the first solution of
(33) is a weak solution, i.e. k = 0. Solutions with k 6= 0 emerge as λ decreases further.
Values of k can be either positive or negative, which affects only the fibre kinking direction,
i.e. the sign of the fibre shearing. From (23), we have C−12 = k and I−4 = C−11 = λ2 and, on
use of the expression (4) and (33), I−5 = 1 − 1/(2ρλ2). Clearly, the fibre stretch (C−11)

1/2

depends linearly on λ, while the fibre shearing C−12 = k is given by (33), all subject to the
ρ-dependent restriction λ ∈ [λmin, λmax].
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Figure 9: Plot of the projection of the three-dimensional solution (λ, k, α) of (26)2 on to the
(λ, k) plane for the reinforcing parameter ρ = 3. There are no solutions in the region that is
not labelled. The two families of solutions, S2 and S3, are associated with angles α ≈ 90◦ and
α ≈ 0, respectively, which can be interpreted in terms of orthogonal and parallel strong surfaces
of discontinuity.

The solutions S2 and S3 are associated with angles α ≈ 90◦ and α ≈ 0, respectively. They
can be interpreted in terms of orthogonal and parallel strong surfaces of discontinuity.
Figure 9 shows the complete domain of the solutions (λ, k, α) associated with mechanically
consistent strong surfaces of discontinuity as given by (26)2 for ρ = 3. Note that (26)2
admits real solutions for which λ > 1, but these will be ruled out later on with the energy
analysis.
Figure 10 shows the particular solution of (26)2 in the three-dimensional space (λ, k, α)
for which α ∈ (0, π/2), the cross-section of the projection of which corresponds to k > 0
in Fig. 9. The dashed curves correspond to α = 90◦ and α = 0◦ with the shapes shown
in Figs. 5 and 8, respectively, thus connecting this analysis with the solutions obtained in
the previous section.
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Figure 9: Plot of the projection of the three-dimensional solution (λ, k, α) of (25)2 on to the (λ, k)
plane for ρ = 3. There are no solutions in the region that is not labelled. The two families of
solutions, S2 and S3, are associated with angles α ≈ 90◦ and α ≈ 0, respectively, which can be
interpreted in terms of orthogonal and parallel strong surfaces of discontinuity.

shocks as given by (25)2 for ρ = 3. Note that (25)2 admits real solutions for which λ > 1,
but these will be ruled out later on by energy considerations.
Fig. 10 shows the particular solution of (25)2 in the three-dimensional space (λ, k, α) for
which α ∈ [0, 90], the cross-section of the projection of which corresponds to k > 0 in Fig.
9, i.e. the projection of the surface on to the (λ, k) plane is not the whole area denoted
as S1 since, by the indicated symmetry, this area captures all solutions, not just those for
α ∈ [0, 90]. The solutions in S1 indicate that if a solution exists for the pair of values (λ, k),
then (λ,−k) is also a solution. The values of (λ, k, α) on the surface in Fig. 10 give rise
to shocks. The curve where the surface shown in Fig. 10(a) intersects the plane α = 90
has the same shape as the curves shown in Fig. 5 for different values of ρ, while the curve
where the surface shown in Fig. 10(b) intersects the plane α = 0 is that given in Fig. 8 for
ρ = 3, thus connecting this analysis with the solutions obtained in the previous section.
For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as do S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ [0, 90].
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Figure 10: The three-dimensional solution (λ, k, α) for α ∈ [0, 90] as given by (25)2 for ρ = 3 from
two different viewing positions.
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plane for ρ = 3. There are no solutions in the region that is not labelled. The two families of
solutions, S2 and S3, are associated with angles α ≈ 90 and α ≈ 0, respectively, which can be
interpreted in terms of orthogonal and parallel strong surfaces of discontinuity.

The solutions S2 and S3 are associated with angles α ≈ 90 and α ≈ 0, respectively.
They can be interpreted in terms of orthogonal and parallel strong shocks. Fig. 9 shows the
complete domain of the solutions (λ, k, α) associated with mechanically consistent strong
shocks as given by (25)2 for ρ = 3. Note that (25)2 admits real solutions for which λ > 1,
but these will be ruled out later on by energy considerations.

Let us consider, without loss of generality, some of the solutions labelled S1, in particular
those for which α ∈ [0, 90]. Fig. 10 shows the solution of (25)2 as a surface in the three-
dimensional space (λ, k, α). The projection of this surface on to the (λ, k) plane is not the
whole area identified as S1 since, by symmetry, the area S1 captures all solutions, not just
those for α ∈ [0, 90]. The solutions in S1 indicate that if a solution exists for the pair of
values (λ, k), then (λ,−k) is also a solution. The values of (λ, k, α) on the surface in Fig.
10 give rise to shocks. The curve where the surface shown in Fig. 10(a) intersects the plane
α = 90 has the same shape as the curves shown in Fig. 5 for different values of ρ, while
the curve where the surface shown in Fig. 10(b) intersects the plane α = 0 is that given in
Fig. 8 for ρ = 3, thus connecting this analysis with the solutions obtained in the previous
section.

For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as do S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30.
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The solutions S2 and S3 are associated with angles α ≈ 90◦ and α ≈ 0, respectively. They
can be interpreted in terms of orthogonal and parallel strong surfaces of discontinuity.
Figure 9 shows the complete domain of the solutions (λ, k, α) associated with mechanically
consistent strong surfaces of discontinuity as given by (26)2 for ρ = 3. Note that (26)2
admits real solutions for which λ > 1, but these will be ruled out later on with the energy
analysis.
Figure 10 shows the particular solution of (26)2 in the three-dimensional space (λ, k, α)
for which α ∈ (0, π/2), the cross-section of the projection of which corresponds to k > 0
in Fig. 9. The dashed curves correspond to α = 90◦ and α = 0◦ with the shapes shown
in Figs. 5 and 8, respectively, thus connecting this analysis with the solutions obtained in
the previous section.
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Figure 10: The three-dimensional solution (λ, k, α) for α ∈ [0, 90] as given by (25)2 for ρ = 3 from
two different viewing positions.
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Figure 10: The three-dimensional solution (λ, k, α) for α ∈ [0, 90] associated with the solutions
shown in S1, as given by (25)2 for ρ = 3 from two different viewing positions.

(a) (b)

Figure 10: The three dimensional manifold (λ, k, α) obeying α ∈ (0, π/2) as given by eq. (26) for
the reinforcing parameter ρ = 3 from two different viewing positions.

For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
In Fig. 10, values (λ, k, α) on the surface give rise to shocks. The dashed curve shown in
Fig. 10(a) has the same shape as those shown in Fig. 5 for different values of ρ, while the
dashed line shown in Fig. 10(b) is that given in Fig. 8 for ρ = 3. It is important to remark
that the projection of this surface on to the (λ, k) plane is not the whole area denoted
as S1 since this area captures all solutions (by symmetry), not just the ones restricted
to α ∈ (0, π/2). On the other hand, solutions in S1 indicate that if a solution exists for
the pair of values (λ, k), then (λ,−k) is also a solution. Nevertheless, with this particular
surface (restricted to values of S1 with α ∈ (0, π/2)) a connection with the previous section
is noted.
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Figure 10: The three-dimensional solution (λ, k, α) for α ∈ (0, π/2) as given by (26)2 for ρ = 3
from two different viewing positions.

Fig. 10 give rise to shocks. The dashed curve shown in Fig. 10(a) has the same shape as
those shown in Fig. 5 (α = 90◦) for different values of ρ, while the dashed line shown in
Fig. 10(b) (α = 0◦) is that given in Fig. 8 for ρ = 3, thus connecting this analysis with
the solutions obtained in the previous section.
For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
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Figure 11: The figures illstrate the projection of the three-dimensional solution (λ, k, α) of (26)2
on.to the (λ, k)−plane for the reinforcing parameters ρ = 9 and ρ = 30 in (a) and (b), respectively.
A visual comparison of Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in
Fig. 9 intersect. In particular, for ρ = 9, Fig. 11(a) shows the intersection of the areas S1 and
S3, while Fig. 11(b) for ρ = 30 shows the intersection of all three areas.

Various λ cross sections of the solution of (26)2 for ρ = 3 are shown in Fig. 12. This
gives a representation of the mechanically consistent equilibrated kinks associated with
a specific reinforcing parameter ρ and F+. Four specific cross sections corresponding to
λ = 1, λ̄o = 0.9856, 0.8 and 0.4 are shown. All cross sections show that if (λ, α, k) is a
solution then (λ, π − α,−k) is also a solution. For λ = 1 > λ̄p = 0.9856 the cross sections
consist of four distinct components. Following the symmetry (λ, α, k)↔ (λ, π−α,−k) we
just consider the two components (curves) for which α ∈ (0, π/2). The projection of the
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Figure 10: The three dimensional manifold (λ, k, α) obeying α ∈ (0, π/2) as given by eq. (26) for
the reinforcing parameter ρ = 3 from two different viewing positions.

For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
In Fig. 10, values (λ, k, α) on the surface give rise to shocks. The dashed curve shown in
Fig. 10(a) has the same shape as those shown in Fig. 5 for different values of ρ, while the
dashed line shown in Fig. 10(b) is that given in Fig. 8 for ρ = 3. It is important to remark
that the projection of this surface on to the (λ, k) plane is not the whole area denoted
as S1 since this area captures all solutions (by symmetry), not just the ones restricted
to α ∈ (0, π/2). On the other hand, solutions in S1 indicate that if a solution exists for
the pair of values (λ, k), then (λ,−k) is also a solution. Nevertheless, with this particular
surface (restricted to values of S1 with α ∈ (0, π/2)) a connection with the previous section
is noted.
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A visual comparison of Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in
Fig. 9 intersect. In particular, for ρ = 9, Fig. 11(a) shows the intersection of the areas S1 and
S3, while Fig. 11(b) for ρ = 30 shows the intersection of all three areas.

Various λ cross sections of the solution of (26)2 for ρ = 3 are shown in Fig. 12. This
gives a representation of the mechanically consistent equilibrated kinks associated with
a specific reinforcing parameter ρ and F+. Four specific cross sections corresponding to
λ = 1, λ̄o = 0.9856, 0.8 and 0.4 are shown. All cross sections show that if (λ, α, k) is a
solution then (λ, π − α,−k) is also a solution. For λ = 1 > λ̄p = 0.9856 the cross sections
consist of four distinct components. Following the symmetry (λ, α, k)↔ (λ, π−α,−k) we
just consider the two components (curves) for which α ∈ (0, π/2). The projection of the
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on to the (λ, k) plane for ρ = 9 and ρ = 30 in (a) and (b), respectively. A visual comparison of
Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in Fig. 9 intersect. In
particular, for ρ = 9, the areas S1 and S3 intersect, while for ρ = 30 all three areas intersect.

For ρ = 3 several cross sections of the solution of (25)2 for different values of λ, i.e. λ = 1,
λo = 0.9856, 0.8 and 0.4, are shown in Fig. 12.
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Figure 12: Different λ cross sections of the solution of (25)2 for ρ = 3.

This gives a representation of the mechanically consistent equilibrium kinks associated with
a specific value of ρ and F+. Each cross section shows that if (λ, α, k) is a solution then
(λ, 180−α,−k) is also a solution. For λ = 1 > λp = 0.9856 the cross sections consist of four
distinct components. From the symmetry (λ, α, k)↔ (λ, 180−α,−k) we just consider the
two components (curves) for which α ∈ [0, 90]. The projection of the component (curve) at
the top left corner on to the (λ, k) plane is related to values in the area denoted S3 in Fig.
9. The projection of the other curve onto the (λ, k) plane is related to values in the area
denoted S1. This also follows for the corresponding symmetric components in that cross
section. For λ = λo = 0.9856 the cross sections consist of four distinct components, but
two of these components coalesce (at α = 90), and, furthermore, as λ decreases these two
components merge into a single component. For λ = 0.8 two new (additional) components
are introduced. These solutions are related to parallel shocks, which emerge as weak shocks
when λ = λp = 0.9502. The projection of these two components on to the (λ, k) plane is
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on to the (λ, k) plane for ρ = 9 and ρ = 30 in (a) and (b), respectively. A visual comparison of
Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in Fig. 9 intersect. In
particular, for ρ = 9, the areas S1 and S3 intersect, while for ρ = 30 all three areas intersect.

For ρ = 3 several cross sections of the solution of (25)2 for different values of λ, i.e.
λ = 1, 0.9856, 0.8 and 0.4, are shown in Fig. 12.

This gives a representation of the mechanically consistent equilibrium kinks associated
with a specific value of ρ and F+. Each cross section shows that if (λ, α, k) is a solution then
(λ, 180−α,−k) is also a solution. For λ = 1 > λp = 0.9856 the cross sections consist of four
distinct components. From the symmetry (λ, α, k)↔ (λ, 180−α,−k) we just consider the
two components (curves) for which α ∈ [0, 90]. The projection of the component (curve)
at the top left corner on to the (λ, k) plane is related to values in the area denoted S3 in
Fig. 9. The projection of the other curve onto the (λ, k) plane is related to values in the
area denoted S1. Furthermore, points (λ, k, α) of this curve are on the surface of the three-
dimensional solution shown in Fig. 10. The projections of the corresponding symmetric
components in that cross section on to the (λ, k) plane follow from the symmetry of the
solutions. For λ = λo = 0.9856 the cross sections consist of four distinct components, but
two of these components coalesce (at α = 90), and, furthermore, as λ decreases these two
components merge into a single component. For λ = 0.8 two new (additional) components
are introduced. These solutions are related to parallel shocks, which emerge as weak shocks
when λ = λp = 0.9502. The projection of these two components on to the (λ, k) plane is
related to values in the area denoted S1 in Fig. 9. For λ = 0.4 the cross section has only
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Figure 10: The three dimensional manifold (λ, k, α) obeying α ∈ (0, π/2) as given by eq. (26) for
the reinforcing parameter ρ = 3 from two different viewing positions.

For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
In Fig. 10, values (λ, k, α) on the surface give rise to shocks. The dashed curve shown in
Fig. 10(a) has the same shape as those shown in Fig. 5 for different values of ρ, while the
dashed line shown in Fig. 10(b) is that given in Fig. 8 for ρ = 3. It is important to remark
that the projection of this surface on to the (λ, k) plane is not the whole area denoted
as S1 since this area captures all solutions (by symmetry), not just the ones restricted
to α ∈ (0, π/2). On the other hand, solutions in S1 indicate that if a solution exists for
the pair of values (λ, k), then (λ,−k) is also a solution. Nevertheless, with this particular
surface (restricted to values of S1 with α ∈ (0, π/2)) a connection with the previous section
is noted.
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Figure 10: The three-dimensional solution (λ, k, α) for α ∈ (0, π/2) as given by (26)2 for ρ = 3
from two different viewing positions.

Fig. 10 give rise to shocks. The dashed curve shown in Fig. 10(a) has the same shape as
those shown in Fig. 5 (α = 90◦) for different values of ρ, while the dashed line shown in
Fig. 10(b) (α = 0◦) is that given in Fig. 8 for ρ = 3, thus connecting this analysis with
the solutions obtained in the previous section.
For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
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A visual comparison of Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in
Fig. 9 intersect. In particular, for ρ = 9, Fig. 11(a) shows the intersection of the areas S1 and
S3, while Fig. 11(b) for ρ = 30 shows the intersection of all three areas.

Various λ cross sections of the solution of (26)2 for ρ = 3 are shown in Fig. 12. This
gives a representation of the mechanically consistent equilibrated kinks associated with
a specific reinforcing parameter ρ and F+. Four specific cross sections corresponding to
λ = 1, λ̄o = 0.9856, 0.8 and 0.4 are shown. All cross sections show that if (λ, α, k) is a
solution then (λ, π − α,−k) is also a solution. For λ = 1 > λ̄p = 0.9856 the cross sections
consist of four distinct components. Following the symmetry (λ, α, k)↔ (λ, π−α,−k) we
just consider the two components (curves) for which α ∈ (0, π/2). The projection of the
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Fig. 10(b) (α = 0◦) is that given in Fig. 8 for ρ = 3, thus connecting this analysis with
the solutions obtained in the previous section.
For larger values of ρ the families of solutions S1 and S3 intersect at some point in the
(λ, k) plane as well as S1, S2 and S3. This is illustrated in Fig. 11 for ρ = 9, 30. Let us
consider without loss of generality some of the solutions labeled as S1, in particular those
for which α ∈ (0, π/2).
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A visual comparison of Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in
Fig. 9 intersect. In particular, for ρ = 9, Fig. 11(a) shows the intersection of the areas S1 and
S3, while Fig. 11(b) for ρ = 30 shows the intersection of all three areas.

Various λ cross sections of the solution of (26)2 for ρ = 3 are shown in Fig. 12. This
gives a representation of the mechanically consistent equilibrated kinks associated with
a specific reinforcing parameter ρ and F+. Four specific cross sections corresponding to
λ = 1, λ̄o = 0.9856, 0.8 and 0.4 are shown. All cross sections show that if (λ, α, k) is a
solution then (λ, π − α,−k) is also a solution. For λ = 1 > λ̄p = 0.9856 the cross sections
consist of four distinct components. Following the symmetry (λ, α, k)↔ (λ, π−α,−k) we
just consider the two components (curves) for which α ∈ (0, π/2). The projection of the
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on to the (λ, k) plane for ρ = 9 and ρ = 30 in (a) and (b), respectively. A visual comparison of
Fig. 9 and Fig. 11 shows that as ρ increases, the areas Si, i = 1, 2, 3, in Fig. 9 intersect. In
particular, for ρ = 9, the areas S1 and S3 intersect, while for ρ = 30 all three areas intersect.

For ρ = 3 several cross sections of the solution of (25)2 for different values of λ, i.e. λ = 1,
λo = 0.9856, 0.8 and 0.4, are shown in Fig. 12.

0 45 90 135 180
-6

-4

-2

0

2

4

6

0 45 90 135 180
-6

-4

-2

0

2

4

6

0 45 90 135 180
-6

-4

-2

0

2

4

6

0 45 90 135 180
-6

-4

-2

0

2

4

6

(a) (b)

(c) (d)

k k

k k

α α

α α

λ = 1 λ = 0.9856

λ = 0.8 λ = 0.4

Figure 12: Different λ cross sections of the solution of (25)2 for ρ = 3.

This gives a representation of the mechanically consistent equilibrium kinks associated with
a specific value of ρ and F+. Each cross section shows that if (λ, α, k) is a solution then
(λ, 180−α,−k) is also a solution. For λ = 1 > λp = 0.9856 the cross sections consist of four
distinct components. From the symmetry (λ, α, k)↔ (λ, 180−α,−k) we just consider the
two components (curves) for which α ∈ [0, 90]. The projection of the component (curve) at
the top left corner on to the (λ, k) plane is related to values in the area denoted S3 in Fig.
9. The projection of the other curve onto the (λ, k) plane is related to values in the area
denoted S1. This also follows for the corresponding symmetric components in that cross
section. For λ = λo = 0.9856 the cross sections consist of four distinct components, but
two of these components coalesce (at α = 90), and, furthermore, as λ decreases these two
components merge into a single component. For λ = 0.8 two new (additional) components
are introduced. These solutions are related to parallel shocks, which emerge as weak shocks
when λ = λp = 0.9502. The projection of these two components on to the (λ, k) plane is
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This gives a representation of the mechanically consistent equilibrium kinks associated with
a specific value of ρ and F+. Each cross section shows that if (λ, α, k) is a solution then
(λ, 180−α,−k) is also a solution. For λ = 1 > λp = 0.9856 the cross sections consist of four
distinct components. From the symmetry (λ, α, k)↔ (λ, 180−α,−k) we just consider the
two components (curves) for which α ∈ [0, 90]. The projection of the component (curve) at
the top left corner on to the (λ, k) plane is related to values in the area denoted S3 in Fig.
9. The projection of the other curve onto the (λ, k) plane is related to values in the area
denoted S1. This also follows for the corresponding symmetric components in that cross
section. For λ = λo = 0.9856 the cross sections consist of four distinct components, but
two of these components coalesce (at α = 90), and, furthermore, as λ decreases these two
components merge into a single component. For λ = 0.8 two new (additional) components
are introduced. These solutions are related to parallel shocks, which emerge as weak shocks
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Figure 12: Different λ cross sections of the solution of (25)2 for ρ = 3.

one component. For smaller values of λ, for instance λ = 0.1, the cross sections include
values related to the area denoted as S2 in Fig. 9. These values do not attract our attention
since they are related to excessive (fibre) compression.

For ρ = 30 some λ cross sections of the solution of (25)2 are shown in Fig. 13 for
completeness. In particular, four specific cross sections corresponding to λ = 0.999, 0.98,
0.93 and 0.92 are shown. All cross sections show that if (λ, α, k) is a solution then (λ, 180−
α,−k) is also a solution. For λ = 0.999 > λo = 0.9986 the cross section consists of the
four distinct components described when λ = 1 for ρ = 3 and additionally there are two
(new) components. These two solutions are related to parallel shocks. They will contact
the point (k = 0, α = 0) when λp = 0.9957 and for smaller values of λ these components
develop as illustrated for λ = 0.98, which is then described similarly to Fig. 12(c). The
other two cross sections show how the different components intersect.

4.1 Ellipticity status of the shocks and half-spaces

An equilibrated elastostatic shock is possible inside the material if and only if, for a given
ρ, there exists a set (λ, k, α) that satisfies (25)2. We show here that the loss of ordinary
ellipticity is a necessary condition for such an elastostatic shock to arise.

In this section the focus is on the type of deformation in the two half-spaces for a
mechanically consistent strong shock. The deformations in Π+ and Π− may be either
elliptic or non-elliptic. If that in Π+ is elliptic or non-elliptic, then that in Π− may be
either elliptic or non-elliptic (see Merodio, 1999; Merodio and Pence, 2001a,b). Recall that
the deformation in Π+ is characterized by λ through (13) and that in Π− is characterized
by λ, k and α by means of (21). Since weak shocks require loss of ordinary ellipticity in
Π+ under the deformation in (13) and involve F− = F+, then weak shocks involve the loss
of ordinary ellipticity in Π− under the deformation given in (21). The existence of strong
shocks (k 6= 0) can be associated with two different elliptic deformation gradients (see
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when λ = λp = 0.9502. The projection of these two components on to the (λ, k) plane is
related to values in the area denoted S1 in Fig. 9. For λ = 0.4 the cross section has only
one component. For smaller values of λ, for instance λ = 0.1, the cross sections include
values related to the area denoted as S2 in Fig. 9. These values do not attract our attention
since they are related to excessive (fibre) compression.
For ρ = 30 some λ cross sections of the solution of (25)2 are shown in Fig. 13 for complete-
ness. In particular, four specific cross sections corresponding to λ = 0.999, 0.98, 0.93 and
0.92 are shown. All cross sections show that if (λ, α, k) is a solution then (λ, 180−α,−k) is
also a solution. For λ = 0.999 > λo = 0.9986 the cross section consists of the four distinct
components described when λ = 1 for ρ = 3 and additionally there are two (new) com-
ponents. These two solutions are related to parallel shocks. They will contact the point
(k = 0, α = 0) when λp = 0.9957 and for smaller values of λ these components develop as
illustrated for λ = 0.98, which is then described similarly to Fig. 12(b). The other two
cross sections show how the different components intersect.
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Figure 13: Different λ cross sections of the solution of (25)2 for ρ = 30.

4.1 Ellipticity status of the shocks and half-spaces

An equilibrated elastostatic shock is possible inside the material if and only if, for a given
ρ, there exists a set (λ, k, α) that satisfies (25)2. We show here that the loss of ordinary
ellipticity is a necessary condition for such an elastostatic shock to arise.
In this section the focus is on the type of deformation in the two half-spaces for a me-
chanically consistent strong shock. The deformations in Π+ and Π− may be either elliptic
or non-elliptic. If that in Π+ is elliptic or non-elliptic, then, that in Π− may be either
elliptic or non-elliptic (see Merodio and Pence, 2001a,b; Merodio, 1999). Recall that the
deformation in Π+ is characterized by λ through (13) and that in Π− is characterized by
λ, k and α by means of (21). Since weak shocks require loss of ordinary ellipticity in Π+

under the deformation in (13) and involve F− = F+, then weak shocks involve the loss
of ordinary ellipticity in Π− under the deformation given in (21). The existence of strong
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Figure 13: Different λ cross sections of the solution of (25)2 for ρ = 30.

Knowles and Sternberg, 1978; Abeyaratne, 1980; Abeyaratne and Knowles, 1989; Merodio
and Pence, 2001b). Nevertheless, this requires an intermediate non-elliptic deformation
gradient between the two given deformation gradients separated by the strong surface of
discontinuity.

Consider the parameter k̄ and the deformation gradient F̄ given by (21) on replacing
k by k̄. The parameter k̄ is then understood as the parameter giving the sequence of
deformations connecting the deformation in Π+ (k̄ = 0) and the deformation in Π− (k̄ = k).
To analyze the ellipticity status of F̄ one has to check (28). If for some pair of orthogonal
unit vectors l and n such that l ·n = 0, F̄ satisfies the equation (28), then the deformation
gradient is said to be non-elliptic. The polynomial expression of (28) for F̄ is a lengthy one
and provides no additional insight, and is not therefore included here. We just consider
that there exists a set (λ, k̄, α, ρ) such that F̄ is non-elliptic, i.e. it satisfies (28). For
the purpose of our analysis it is sufficient to show that if (λ, k, α, ρ) is a solution of (25)2
then there exists a non-elliptic (λ, k̄, α, ρ) such that |k̄| ≤ |k| (for details, see Merodio,
1999). This guarantees that there exists both a k̄ that gives a characteristic direction in
the reference configuration that is aligned therein with a shock surface and an intermediate
non-elliptic deformation gradient between the two given deformation gradients separated
by the strong shock.

For the purpose of this discussion, our attention is now restricted to different fixed λ
cross sections in order to determine whether or not there exists an intermediate value of
k̄ such that F̄ = F−(k̄) is non-elliptic. To this end, in Fig. 14 are plotted the solutions
(λ, k, α) that follow from (25)2 (solid curves) and the solutions (λ, k̄, α) that follow from
(28) (dashed curves) for the reinforcing parameter ρ = 30 and different fixed λ cross
sections. It is clearly seen in Fig. 14 that for a mechanically consistent strong shock
characterized by (λ, k, α, ρ) there always exists at least one value of k̄, with |k̄| ≤ |k|,
such that the set (λ, k̄, α, ρ) yields an (intermediate) non-elliptic deformation gradient.
Thus, a mechanically consistent strong shock involves loss of ordinary ellipticity at some
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deformation on the k̄-parametrized path connecting F+ and F−.
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Figure 14: Different λ cross sections of (λ, k, α) solutions of (25)2 (solid curves) and (λ, k̄, α)
solutions of (28) (dashed curves) for ρ = 30. Note that for all cross sections both solutions
intersect at least when k = k̄ = 0 (weak surfaces). Furthermore, for a given angle α it is easy to
check that there exists a |k̄|≤ |k|. This establishes that a mechanically strong shock involves loss
of ordinary ellipticity at some intermediate deformation gradient on the path connecting F+ and
F−.

At any point of the body that is being traversed by a moving elastostatic shock, the work of
the external forces differs from the elastic energy storage rate by the work done in moving
the elastostatic shock. The latter can be expressed as the integral over the shock surface
A of the product of a scalar parameter that represents the so-called shock driving traction,
denoted by S, with the normal component of the elastostatic shock velocity, denoted V. It
has been shown, as in Knowles (1979), that in the presence of a mechanically equilibrated
elastostatic shock, the energy balance can be expressed as

d

dt

∫

D
W (F) dV =

∫

∂D
t · v dA−

∫

δA

SV dA, (36)

where δA is the material area that represents the elastostatic shock at time t and V is the
normal velocity component of δA in the reference configuration. The equality (36) is true
if and only if the field quantities involved in the considered problem do not have classical
smoothness, otherwise the second term on the right-hand side of (36) vanishes and the
inequality (35) becomes an equality.
As in Abeyaratne and Knowles (1989), S is defined as the magnitude of a fictitious nominal
traction vector acting on the elastostatic shock by the surrounding material, and Knowles
(1979) has shown that it is given by

S = JW (F)− SN · FNK+−. (37)

By the traction continuity condition (10)2 and the formulas (14) and (17) this can be
written

S = JW (F)K+− + k(σn) · l, (38)
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Figure 14: Different λ cross sections of (λ, k, α) solutions of (25)2 (solid curves) and (λ, k̄, α)
solutions of (28) (dashed curves) for ρ = 30. Note that for all cross sections both solutions
intersect at least when k = k̄ = 0 (weak surfaces). Furthermore, for a given angle α it is easy to
check that there exists a |k̄| ≤ |k|. This establishes that a mechanically strong shock involves loss
of ordinary ellipticity at some intermediate deformation gradient on the path connecting F+ and
F−.

5 Energetically admissible shocks

5.1 Shock driving traction

Various aspects of the theory of finite elastostatics for materials characterized by non-
elliptic elastic potentials have been studied in a number of investigations. Under suitable
conditions, such materials can sustain equilibrium deformations with jump discontinuities
in the derivative of the displacement field and the stress field across the shocks.

A quasi-static motion involving equilibrium elastostatic shocks at each instant may be
dissipative. Thus, the existence of an elastostatic shock modifies the mechanical energy
balance of the elastic body. For every regular three-dimensional sub-domain D of the
reference configuration, with boundary ∂D, it is required at each instant of time t that

∫

∂D
t · v dA− d

dt

∫

D
W (F) dV ≥ 0, (35)

where t is the nominal traction vector, v is the quasi-static particle velocity and W is the
elastic energy density per unit reference volume. The first term gives the work done by the
external forces acting on ∂D, while the second term represents the elastic energy storage
rate.
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At any point of the body that is being traversed by a moving elastostatic shock, the
work of the external forces differs from the elastic energy storage rate by the work done in
moving the elastostatic shock. The latter can be expressed as the integral over the shock
surface, denoted A at time t, of the product of a scalar parameter that represents the so-
called shock driving traction, denoted by S, with the normal component of the elastostatic
shock velocity, denoted V. It was shown, as in Knowles (1979), that in the presence of a
mechanically equilibrated elastostatic shock, the energy balance can be expressed as

d

dt

∫

D
W (F) dV =

∫

∂D
t · v dA−

∫

A

SV dA, (36)

where V is the normal velocity component of A in the reference configuration. The equality
(36) holds if and only if the field quantities involved in the considered problem do not have
classical smoothness, otherwise the second term on the right-hand side of (36) vanishes
and the inequality (35) becomes an equality.

As in Abeyaratne and Knowles (1989), S is defined as the magnitude of a fictitious
nominal traction vector acting on the elastostatic shock by the surrounding material, and
Knowles (1979) showed that it is given by

S = JW (F)− SN · FNK+−. (37)

By the traction continuity condition (10)2 and the formulas (14) and (17) this can be
written

S = JW (F)K+− + k(σn) · l, (38)

where the traction σn can be calculated from either the ‘+’ or ‘−’ side. See also Abeyaratne
and Knowles (1989), who showed this result for an incompressible anisotropic nonlinearly
elastic material under plane deformation, where k is the strength of the elastostatic shock.

From a variational point of view, Abeyaratne (1983) showed that for the particular
case of dead load the criterion of energy stability S = 0 is a necessary condition for the
displacement field u to minimize the potential energy over the considered function class.
Then, if during the quasi-static motion S = 0 at any point of the elastostatic shock, the
motion is said to be dissipation free. An equilibrium state for which S = 0 is said to satisfy
the Maxwell condition, also known as a neutral stability, in which, neither Π+ nor Π− is
energetically favoured.

The Maxwell (line) condition gives rise to non-dissipative solutions in elastostatics and
it is just the specialization of the admissibility condition S = 0 used for shocks.

An elastostatic shock considered to be advancing into Π+ requires V > 0, while the
advancement towards Π− requires V < 0. Then, based on the energy balance in (36), the
existence of an energetically admissible elastostatic shock requires

• S ≤ 0 (S ≥ 0) when the admissible elastostatic shock motion involves Π− ( Π+ )
being converted into Π+ (Π−), i.e. Π+ (Π−) is favoured V < 0 (V > 0).

Our attention is naturally restricted to shocks for which S ≥ 0. In what follows the
focus is on both the neutral stability S = 0, which leads to solutions of boundary-value
problems, and to maximally dissipative solutions (maxima of S, where dS/dα = 0). Before
embarking on the general treatment, let us illustrate this analysis with an enlightening
example.

Because of the symmetry noted earlier it is sufficient to consider shocks for which
α ∈ [0, 90], and for illustration the solutions of the cross section Fig. 14(b) are shown
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in Fig. 15. The points where S = 0 and/or dS/dα = 0 satisfy H = 0 are obtained by
using (38). In particular, the points 1 and 2 satisfy S = 0 (non-dissipative), points 3 and
4 are locations of maximal S, and points 5 and 6 satisfy both conditions. For points 5
and 6, k = 0 the deformation gradient is continuous, and therefore not of interest. The
deformation in Π−, as measured by C−11 and C−12, is obtained for each point using (23)1,2,
and the results are shown in Table 2.
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Figure 15: Plot of H = 0 (continuous curves) and the region S > 0 (shaded) showing the locations
(bullet points) where S = 0 and dS/dα = 0 for the λ cross section in Fig. 14(b) associated with
λ = 0.98 and ρ = 30. The points labelled with the red numbers 1 and 2 satisfy S = 0, i.e. are
non-dissipative, and points 3 and 4 satisfy dS/dα = 0. The values (α, k) at these points are
approximately 1: (12.5, 1.68); 2: (44, 1.38); 3: (11.6, 1.29); 4: (50, 1.13). Also shown are the
points 5, 6 where k = 0 and α = 5.5, 80, respectively, with H = 0, S = 0 and dS/dα = 0 all
satisfied.
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Here, after ruling out the trivial solution k = 0 in (40), the neutral stability reduces to the
solutions of

S0 =
6∑

n=0

sn k
n = 0. (42)

Then, a mechanically consistent shock (λ, k, α, ρ) satisfying (25)2 is non-dissipative if and
only if it is neutrally stable. Therefore, a non-dissipative mechanically consistent elasto-
static shock characterized by (λ, k, α, ρ) must satisfy the system of equations

H = S0 = 0. (43)

Figs. 16(a) and (b) show, respectively, values of α versus λ and values of k versus λ
obtained from (43) for ρ = 1. Corresponding results for ρ = 1.3 are shown in Fig. 17. Let
us focus first on ρ = 1. As λ decreases from the undeformed configuration, i.e. as fibre
contraction is increased, non-dissipative shocks nucleate where the first mode associated
with loss of ellipticity for F+ occurs. It follows that, firstly, non-dissipative shocks nucleate

22

Figure 15: Plot of H = 0 (continuous curves) and the region S > 0 (shaded) showing the locations
(bullet points) where S = 0 and dS/dα = 0 for the λ cross section in Fig. 14(b) associated with
λ = 0.98 and ρ = 30. The points labelled with the red numbers 1 and 2 satisfy S = 0, i.e. are
non-dissipative, and points 3 and 4 satisfy dS/dα = 0. The values (α, k) at these points are
approximately 1: (12.5, 1.68); 2: (44, 1.38); 3: (11.6, 1.29); 4: (50, 1.13). Also shown are the
points 5, 6 where k = 0 and α = 5.5, 80, respectively, with H = 0, S = 0 and dS/dα = 0 all
satisfied.

Point 1 2 3 4 5 6

C−11 0.41 0.52 0.53 0.61 0.96 0.96

C−12 0.93 −0.9 0.86 −0.83 0 0

Table 2: Values of C−11 and C−12 at the points 1, . . . , 6 in Fig. 15.

5.2 Favourability of Π− versus Π+

In this section we focus on the neutral stability characterized by S = 0. The expression for
S is now given explicitly following (38) for the strain-energy function W in (3) subject to
the deformations in (13) and (21). This gives

(σn) · l = µn1n2[λ
2 − λ−2 + 4ρλ4(λ4 − 1)], (39)

which in turn, on use of (38), yields a polynomial of degree eight in k given by

S = k2µS0 = k2µ
6∑

n=0

sn k
n, (40)
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Here, after ruling out the trivial solution k = 0 in (40), the neutral stability reduces to
the solutions of

S0 =
6∑

n=0

sn k
n = 0. (42)

Then, a mechanically consistent shock (λ, k, α, ρ) satisfying (25)2 is non-dissipative if and
only if it is neutrally stable. Therefore, a non-dissipative mechanically consistent elasto-
static shock characterized by (λ, k, α, ρ) must satisfy the system of equations

H = S0 = 0. (43)

Figs. 16(a) and (b) show, respectively, values of α versus λ and values of k versus λ
obtained from (43) for ρ = 1. Corresponding results for ρ = 1.3 are shown in Fig. 17. Let
us focus first on ρ = 1. As λ decreases from the undeformed configuration, i.e. as fibre
contraction is increased, non-dissipative shocks nucleate where the first mode associated
with loss of ellipticity for F+ occurs. It follows that, firstly, non-dissipative shocks nucleate
when λ = λo for which α = 90, as shown in Fig. 16(a), the curve being associated with
fibre kinking. Due to the symmetry this curves gives rise to kink bands associated with a
three-zone state F+/F−K/F

+, where the index K refers to the kinking zone.
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Figure 16: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.

when λ = λo for which α = 90, as shown in Fig. 16(a), the curve being associated with
fibre kinking. Due to the symmetry this curves gives rise to kink bands associated with a
three-zone state F+/F−K/F

+, where the index K refers to the kinking zone.
It was shown in Section 3.3 that fibre splitting is possible if and only if ρ > ρ̂∗, where
ρ̂∗ ≈ 1.298. It follows that ρ = 1.3 is associated with fibre splitting but the associated
values of λ are not shown since they are small, as has been described in Section 3.3.
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Figure 17: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.3.

Nevertheless, as λ decreases further a second family of non-dissipative shocks, associated
with fibre splitting, nucleates when λ = λp for which α = 0. Similarly to fibre kinking,
and again due to the symmetry, fibre splitting also manifests a three-zone state, given
by F+/F−S /F

+, where the index S refers to the splitting zone. Therefore, the incipient
loss of ellipticity gives rise to non-dissipative shocks, associated with the nucleation of two
different modes, one with fibre kinking and other with fibre splitting (for any value of ρ,
subject to ρ > ρ̂∗ in the case of splitting). For instance, Figs. 18 and 19, respectively
for ρ = 3 and ρ = 30, show values of α versus λ and k versus λ derived from (43), the
continuous curves being associated with fibre kinking and the dashed curves with fibre
splitting. However, for sufficiently large values of ρ it can be seen that kinks can exist even
if the condition 0 < λ < λo does not hold. Furthermore, the continuous curves in Figs. 19
include values λ > 1. This means that (43) does not provide for the selection of a unique
kink for a given material parameter ρ and load parameter λ. This is to be expected in view
of analogous non-uniqueness results in finite elastic descriptions of a variety of problems
involving discontinuous deformation gradients. The process is non-dissipative and a more
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Figure 16: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.

It was shown in Section 3.3 that fibre splitting is possible if and only if ρ > ρ̂∗, where
ρ̂∗ ≈ 1.298. It follows that ρ = 1.3 is associated with fibre splitting but the associated
values of λ are not shown since they are small, as has been described in Section 3.3.

23



0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

45

60

75

90

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.2

0.4

0.6

0.8

1α k

λ λ

(a) (b)

Figure 16: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.

when λ = λo for which α = 90, as shown in Fig. 16(a), the curve being associated with
fibre kinking. Due to the symmetry this curves gives rise to kink bands associated with a
three-zone state F+/F−K/F

+, where the index K refers to the kinking zone.
It was shown in Section 3.3 that fibre splitting is possible if and only if ρ > ρ̂∗, where
ρ̂∗ ≈ 1.298. It follows that ρ = 1.3 is associated with fibre splitting but the associated
values of λ are not shown since they are small, as has been described in Section 3.3.
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Figure 17: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.3.

Nevertheless, as λ decreases further a second family of non-dissipative shocks, associated
with fibre splitting, nucleates when λ = λp for which α = 0. Similarly to fibre kinking,
and again due to the symmetry, fibre splitting also manifests a three-zone state, given
by F+/F−S /F

+, where the index S refers to the splitting zone. Therefore, the incipient
loss of ellipticity gives rise to non-dissipative shocks, associated with the nucleation of two
different modes, one with fibre kinking and other with fibre splitting (for any value of ρ,
subject to ρ > ρ̂∗ in the case of splitting). For instance, Figs. 18 and 19, respectively
for ρ = 3 and ρ = 30, show values of α versus λ and k versus λ derived from (43), the
continuous curves being associated with fibre kinking and the dashed curves with fibre
splitting. However, for sufficiently large values of ρ it can be seen that kinks can exist even
if the condition 0 < λ < λo does not hold. Furthermore, the continuous curves in Figs. 19
include values λ > 1. This means that (43) does not provide for the selection of a unique
kink for a given material parameter ρ and load parameter λ. This is to be expected in view
of analogous non-uniqueness results in finite elastic descriptions of a variety of problems
involving discontinuous deformation gradients. The process is non-dissipative and a more
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Figure 17: Plot of (a) α versus λ and (b) k versus λ with ρ = 1.3.

Nevertheless, as λ decreases further a second family of non-dissipative shocks, associated
with fibre splitting, nucleates when λ = λp for which α = 0. Similarly to fibre kinking,
and again due to the symmetry, fibre splitting also manifests a three-zone state, given
by F+/F−S /F

+, where the index S refers to the splitting zone. Therefore, the incipient
loss of ellipticity gives rise to non-dissipative shocks, associated with the nucleation of two
different modes, one with fibre kinking and other with fibre splitting (for any value of ρ,
subject to ρ > ρ̂∗ in the case of splitting). For instance, Figs. 18 and 19, respectively
for ρ = 3 and ρ = 30, show values of α versus λ and k versus λ derived from (43), the
continuous curves being associated with fibre kinking and the dashed curves with fibre
splitting. For sufficiently large values of ρ it can be seen that kinks can exist even if the
condition 0 < λ < λo does not hold. Furthermore, the continuous curves in Figs. 19
include values λ > 1. This means that (43) does not provide for the selection of a unique
kink for a given material parameter ρ and load parameter λ. This is to be expected in view
of analogous non-uniqueness results in finite elastic descriptions of a variety of problems
involving discontinuous deformation gradients. In this framework it may be concluded that
the process is non-dissipative and a more restrictive condition needs to be specified to rule
out certain solutions. The formation and growth of such a kink band must be obtained by
examining the admissibility and stability of the kinks described and the criterion has to
eliminate the snap-back that the non-dissipative condition allows.

restrictive condition needs to be specified to rule out certain solutions. The formation
and growth of such a kink band must be obtained by examining the admissibility and
stability of the kinks described and the criterion has to eliminate the snap-through that
the non-dissipative condition allows.

0.85 0.9 0.95 1
0

30

60

90

0.85 0.9 0.95 1
0

0.4

0.8

1.2

1.6

α

k

λ λ

(a) (b)

Figure 18: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 19: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.

The deformation in Π− can be obtained for each non-dissipative shock solution using
(23)1,2. This yields a better understanding of the fibre behaviour in the zones of localized
deformation. For a complete picture and to further illustrate the physical meaning of the
solutions shown in Fig. 18 for ρ = 3 and Fig. 19 for ρ = 30, using (23)1 we plot C−11 against
λ for ρ = 3 and ρ = 30 in Fig. 20(a) and Fig. 21(a), respectively, and using (23)2 we plot
(C−12 against λ) in Fig. 20(b) and Fig. 21(b) for the two values of ρ. The evolution of φ
with λ for all the non-dissipative shocks is shown in Fig. 22.
Let us focus on the values of C−11 and C−12 associated with the non-dissipative shocks that
nucleate with the incipient loss of ellipticity, i.e. we focus on the solutions that are associ-
ated with the values λ = λo for fibre kinking and λ = λp for fibre splitting. Quasi-static
evolution of the two families of shocks is described as follows. With respect to fibre kink-
ing (at λ = λo), Figs. 20(a) and 21(a) show that the nucleation of non-dissipative motion
or neutral stability from the values on the + side gives rise to F−K, and involves a simul-
taneous rapid (almost instantaneous) large increase of the fibre contraction as measured
by C−11 (continuous curves) together with a rapid escalation of fibre shearing C−12, which
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Figure 18: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.

The deformation in Π− can be obtained for each non-dissipative shock solution using
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restrictive condition needs to be specified to rule out certain solutions. The formation
and growth of such a kink band must be obtained by examining the admissibility and
stability of the kinks described and the criterion has to eliminate the snap-through that
the non-dissipative condition allows.
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Figure 18: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 19: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.

The deformation in Π− can be obtained for each non-dissipative shock solution using
(23)1,2. This yields a better understanding of the fibre behaviour in the zones of localized
deformation. For a complete picture and to further illustrate the physical meaning of the
solutions shown in Fig. 18 for ρ = 3 and Fig. 19 for ρ = 30, using (23)1 we plot C−11 against
λ for ρ = 3 and ρ = 30 in Fig. 20(a) and Fig. 21(a), respectively, and using (23)2 we plot
(C−12 against λ) in Fig. 20(b) and Fig. 21(b) for the two values of ρ. The evolution of φ
with λ for all the non-dissipative shocks is shown in Fig. 22.
Let us focus on the values of C−11 and C−12 associated with the non-dissipative shocks that
nucleate with the incipient loss of ellipticity, i.e. we focus on the solutions that are associ-
ated with the values λ = λo for fibre kinking and λ = λp for fibre splitting. Quasi-static
evolution of the two families of shocks is described as follows. With respect to fibre kink-
ing (at λ = λo), Figs. 20(a) and 21(a) show that the nucleation of non-dissipative motion
or neutral stability from the values on the + side gives rise to F−K, and involves a simul-
taneous rapid (almost instantaneous) large increase of the fibre contraction as measured
by C−11 (continuous curves) together with a rapid escalation of fibre shearing C−12, which
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Figure 19: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.

(23)1,2. This yields a better understanding of the fibre behaviour in the zones of localized
deformation. For a complete picture and to further illustrate the physical meaning of the
solutions shown in Fig. 18 for ρ = 3 and Fig. 19 for ρ = 30, using (23)1 we plot C−11 against
λ for ρ = 3 and ρ = 30 in Fig. 20(a) and Fig. 21(a), respectively, and using (23)2 we plot
C−12 against λ in Fig. 20(b) and Fig. 21(b) for the two values of ρ. The evolution of the
kinking angle φ with λ for all the non-dissipative shocks is shown in Fig. 22.
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Figure 20: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 21: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 30. The dashed curve
corresponds to splitting and the continuous curve to kinking.
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Figure 22: Plot of φ versus λ: (a) ρ = 3; (b) ρ = 30. The dashed curve corresponds to splitting
and the continuous curve to kinking.

is shown in Figs. 20(b) and 21(b) (dashed curves). This effect is also shown for fibre
splitting, i.e. the nucleation of non-dissipative motion from the values on the + side gives
rise to F−S , and involves a simultaneous rapid (almost instantaneous) large increase of the
fibre contraction together with a rapid escalation of fibre shearing. The fibres are highly
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Figure 20: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.

Let us focus on the values of C−11 and C−12 associated with the non-dissipative shocks
that nucleate with the incipient loss of ellipticity, i.e. we focus on the solutions that
are associated with the values λ = λo for fibre kinking and λ = λp for fibre splitting.
Quasi-static evolution of the two families of shocks is described as follows. With respect
to fibre kinking (at λ = λo), Figs. 20(a) and 21(a) show that the nucleation of non-
dissipative motion or neutral stability from the values on the ‘+’ side gives rise to F−K,
and involves a simultaneous rapid large increase of the fibre contraction as measured by
C−11 (continuous curves) together with a rapid escalation of fibre shearing C−12, which is
shown in Figs. 20(b) and 21(b) (continuous curves). This effect is also shown for fibre
splitting, i.e. the nucleation of non-dissipative motion from the values on the ‘+’ side gives
rise to F−S (dashed curves in each case), and involves a simultaneous rapid large increase
of the fibre contraction together with a rapid escalation of fibre shearing. The fibres are
highly contracted and undergo large shear deformations. Nevertheless, for sufficiently large
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Figure 22: Plot of φ versus λ: (a) ρ = 3; (b) ρ = 30. The dashed curve corresponds to splitting
and the continuous curve to kinking.

values of ρ, for instance ρ = 3, we find that kinks can exist even for λ > λo. The process
is non-dissipative and a more restrictive condition needs to be specified to rule out these
solutions. The formation and growth of such a kink band must be obtained by examining
the admissibility and stability of the kinks described and an admissibility criterion has to
eliminate the snap-back that the non-dissipative condition allows.

5.3 Maximally dissipative shocks

We recall that the shock driving traction S determines the local rate of mechanical energy
dissipation. A mechanically consistent elastostatic shock that creates Π− at the expense
of Π+ requires (necessary but not sufficient) S ≥ 0 to be energetically admissible. It was
shown in Merodio and Pence (2001b) that, for a given λ, the shock angle α parametrizes
the energetically admissible elastostatic shocks of strength k which in turn determines the
dependence of S on α at fixed λ and ρ. We now look for the energetically admissible
shocks that maximize S; its maximum is denoted Smax. Based on the interpretation of the
shock driving traction, these particular shocks correspond to a maximum traction exerted
by the surrounding material. Then maximally dissipative elastostatic shocks require that
dS/dα = 0, and when combined with (25)2 they are given by

dS

dα
= 0, H = 0, S ≥ 0. (44)
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The derivative of S with respect to α is obtained using (40) as

µ−1
dS

dα
= k

[
k
∂S0

∂α
+

(
k
∂S0

∂k
+ 2S0

)
dk

dα

]
, (45)

where the derivative of k with respect to α is obtained using (25)2 as

dk

dα
= −∂H

∂α

/
∂H

∂k
, (46)

and hence

µ−1
dS

dα
= k

[
k
∂S0

∂α
−
(
k
∂S0

∂k
+ 2S0

)
∂H

∂α

/
∂H

∂k

]
. (47)

Each family of non-dissipative shocks gives rise to a family of maximally dissipative
shocks. We focus on the maximally dissipative shocks associated with the non-dissipative
shocks that nucleate with the incipient loss of ellipticity.

Figs. 23(a) and (b), respectively, show plots of α and k against λ for (λ, k, α) satisfying
(44) for Smax with ρ = 3, and in each case for the fibre kinking (F–K) and fibre splitting
(F–S) failure modes. Parallel results are shown for ρ = 30 in Figs. 24 (a) and (b). Plots
of the angle φ from (24) are shown in Fig. 25.
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Figure 23: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 24: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Plots of C−11 and C−12 versus λ for the values (λ, k, α) satisfying (44) associated with fibre
kinking (continuous curves) and fibre splitting (dashed curves) are shown in Fig. 26 for
ρ = 3 and Fig. 27 for ρ = 30. The nucleation of maximally-dissipative motion from the
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Figure 23: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.

The criterion of maximum dissipation singles out a unique physically admissible elasto-
static shock from the energetically admissible elastostatic shocks, unlike the situation for
non-dissipative ones. In addition, the maximally dissipative elastostatic shock is shown
to capture closely features observed in different experiments of kink band formation with
splitting in fibre-reinforced materials. In particular, it follows from Fig. 25 that φ at Smax

is almost zero for fibre splitting while the fibre rotation associated with kink formation
involves three phases: an initial phase of rapid rotation, a second phase of slow rotation,
and a final phase of essentially constant orientation.

Plots of C−11 and C−12 versus λ for the values (λ, k, α) satisfying (44) associated with
fibre kinking (continuous curves) and fibre splitting (dashed curves) are shown in Fig.
26 for ρ = 3 and Fig. 27 for ρ = 30. The nucleation of maximally-dissipative motion
from the values on the ‘+’ side (decreasing λ) gives rise to F−S , which involves a rapid
escalation of fibre shearing (as measured by C−12). This is also the case for non-dissipative
shocks at the incipient loss of ellipticity. Maximally dissipative shocks also show a large
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Figure 23: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 24: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Plots of C−11 and C−12 versus λ for the values (λ, k, α) satisfying (44) associated with fibre
kinking (continuous curves) and fibre splitting (dashed curves) are shown in Fig. 26 for
ρ = 3 and Fig. 27 for ρ = 30. The nucleation of maximally-dissipative motion from the
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Figure 24: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.

0.92 0.94 0.96 0.98 1

30

60

90

0.92 0.94 0.96 0.98 1

0.3

0.6

0.9

α k

λ λ

(a) (b)

Figure 23: Plot of (a) α versus λ and (b) k versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 24: Plot of (a) α versus λ and (b) k versus λ with ρ = 30. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Plots of C−11 and C−12 versus λ for the values (λ, k, α) satisfying (44) associated with fibre
kinking (continuous curves) and fibre splitting (dashed curves) are shown in Fig. 26 for
ρ = 3 and Fig. 27 for ρ = 30. The nucleation of maximally-dissipative motion from the
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Figure 25: Plot of φ versus λ: (a) ρ = 3; (b) ρ = 30. The dashed curve corresponds to splitting
and the continuous curve to kinking.

increase of the fibre contraction from the ‘+’ side values (as measured by C−11) as is also
the case for non-dissipation. This can be appreciated by comparing the values of C−11 and
C−12 in Figs. 26 and 27 with those in Figs. 20 and 21, respectively, for both kinking and
splitting. The transverse strain, as measured by C−22, as well as C−12, has an important role
in the fibre splitting as it increases during the compression as λ decreases. It is given by
the incompressibility condition in the form C−22 = [1 + (C−12)

2]/C−11, and increases as C−12
increases (in magnitude) and C−11 decreases together.
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Figure 26: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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Figure 27: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 30. The dashed curve
corresponds to splitting and the continuous curve to kinking.

values of the + side (decreasing λ) gives rise to F−S , which involves a rapid escalation of
fibre shearing (C−12). This is also the case for non-dissipative shocks at the incipient loss of
ellipticity. Maximally dissipative shocks also show a large increase of the fibre contraction
from the + side values (as measured by C−11) as is also the case for non-dissipation.
This can be appreciated by comparing the values of C−11 and C−12 in Figs. 26 and 27 with
those in Figs. 20 and 21, respectively, for both kinking and shearing. It is straightforward
to show, on use of the formula (4) for I5, which captures simultaneously fibre stretch and
fibre shearing in both F–S and F–K modes for both Smax and S = 0, that just after shock
nucleation the values of I−5 associated with Smax are in all cases greater than those of I+5
at nucleation (given by the loss of ellipticity on the + side). The maximally dissipative
elastostatic shocks are related to a non-elliptic deformation on one half-space and an elliptic
deformation on the other half-space. It is therefore tempting to conclude that as elliptic
deformations are energetically favoured maximizing the dissipative inequality may be a
reasonable condition for singling out a physically and mechanically admissible elastostatic
shock.
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Figure 26: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 3. The dashed curve corresponds
to splitting and the continuous curve to kinking.
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nucleation the values of I−5 associated with Smax are in all cases greater than those of I+5
at nucleation (given by the loss of ellipticity on the + side). The maximally dissipative
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Figure 27: Plot of (a) C−11 versus λ and (b) C−12 versus λ with ρ = 30. The dashed curve
corresponds to splitting and the continuous curve to kinking.

It is straightforward to show, on use of the formula (4) for I5, which captures simul-
taneously fibre stretch and fibre shearing in both F–S and F–K modes for both Smax and
S = 0, that just after shock nucleation the values of I−5 associated with Smax are in all cases
greater than those of I+5 at nucleation (given by the loss of ellipticity on the ‘+’ side). The
maximally dissipative elastostatic shocks are related to a non-elliptic deformation on one
half-space and an elliptic deformation on the other half-space. It is therefore tempting to
conclude that as elliptic deformations are energetically favoured maximizing the dissipative
inequality may be a reasonable condition for singling out a physically and mechanically
admissible elastostatic shock.

6 Conclusions

It can be argued that fibre splitting is not related to continuous displacements as it is a
catastrophic failure mechanism. However, the approach that we have adopted here provides
useful data for understanding and describing the failure mechanisms. Furthermore, we
have shown that connecting the invariants I4 and I5 with the formation of shocks, i.e.
with the formation of different fibre failure mechanisms, can be exploited in the nonlinear
constitutive modelling of fibre reinforced materials.

The shearing indicator C12 captured by the invariant I5 produces different solutions
in comparison with those given by considering the invariant I4 alone in the constitutive
model (see Merodio and Pence, 2001a,b). This implies that shearing between the matrix
and fibre in composite (heterogeneous) materials is associated with possible failure by fibre
splitting.

The considered failure mechanisms have been shown to be clearly dissipative. Further-
more, they give rise to two-phase piecewise homogeneous plane deformations in which the
phase being created suffers a rapid increase of fibre contraction and fibre shearing com-
pared to the original phase. Maximally dissipative solutions have been analyzed in detail
and it has been shown that not only is it possible to single out a unique solution but also
these solutions are associated with non-elliptic deformations being converted into elliptic
deformations. These features are reasonable for singling out admissible solutions.
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