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Nomadic input on mobile devices: the influence of touch 

input technique and walking speed on performance and 

offset modeling 

Running Head: Nomadic input: performance parameters and offset modeling 

 

 

ABSTRACT 

In everyday life people use their mobile phones on-the-go with different walking 

speeds and with different touch input techniques. Unfortunately, much of the published 

research in mobile interaction does not quantify the influence of these variables. In this 

paper, we analyze the influence of walking speed, gait pattern and input techniques on 

commonly used performance parameters like error rate, accuracy and tapping speed, and 

we compare the results to the static condition. We examine the influence of these factors 

on the machine learned offset model used to correct user input and we make design 

recommendations. The results show that all performance parameters degraded when the 

subject started to move, for all input techniques. Index finger pointing techniques 

demonstrated overall better performance compared to thumb-pointing techniques. The 

influence of gait phase on tap event likelihood and accuracy was demonstrated for all 

input techniques and all walking speeds. Finally, it was shown that the offset model built 

on static data did not perform as well as models inferred from dynamic data, which 

indicates the speed-specific nature of the models. Also, models identified using specific 

input techniques did not perform well when tested in other conditions, demonstrating the 

limited validity of offset models to a particular input technique. The model was therefore 

calibrated using data recorded with the appropriate input technique, at 75% of preferred 

walking speed, which is the speed to which users spontaneously slow down when they 

use a mobile device and which presents a tradeoff between accuracy and usability. This 

led to an increase in accuracy compared to models built on static data. The error rate was 

reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 

11.9% for portrait-based methods. 
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1. INTRODUCTION  

Given the increasing use of flexible, multi-purpose hand-held devices, there is an 

increasing demand for robust, accurate human-machine interaction through touch 

interfaces on-the-go, subject to movement of the human body, and being used in a range 

of poses and tapping techniques. However, if we wish to develop improved inference of 

human intent in such complex environments we need to better understand the impact of 

mobile use on touch behavior. While future sensing systems might provide additional 

information to the device, to improve accuracy with the currently available hardware we 

have to find innovative ways to interpret current touch actions, as well as designing more 

sophisticated and robust inference algorithms.  

Due to the size and softness of the finger the finger is perceived as a much larger 

contact region than intended, during the touch event itself, so the user might visually 

target with a different part of their finger from what actually touches the screen (Holz & 

Baudisch, 2011). It was discovered that there is a constant trend in the error between the 

actual target position and the touch location, which can be partially compensated for by 

the development of user-specific offset models. The offset model approach tries to reduce 

variation in user input by learning (modeling) the differences between the intended input 

and the actual touch location. Lately, considerable effort has been put into finding the 

best possible models that account for most of the variation. Unfortunately, many of the 

approaches used generic models which did not take account of either the needs of specific 

users or the particular mobile phone being used. Recent effort has been directed toward 

this user-specific and device-specific context with the incorporation of information from 

additional sensors such as accelerometers. However, the literature has few examples of 

systematic analysis of the influence of input technique, gait speed and gait dynamics on 

offset models.  

By taking device motion into account we are able to identify changes that occur in 

accuracy, tapping speed and throughput, as well as the underlying offset model once the 

subject starts to move. The goal of the experimental study in this paper was to gather data 

from a number of on-board sensors in different input and walking speed scenarios and 

analyze them to find possible relationships between the variables, as well as their 

influence on offset models.  As we can infer gait phase from accelerometer recordings, 

we explore the relationship between gait phase, input technique and accuracy. This 

supports detailed quantitative assessment and provides insight into important questions 

e.g. which phase of the gait cycle (if any) users prefer for tapping, and how that relates to 

tapping accuracy and the input technique being used? These questions have so far not 

been answered for the full range of measurement conditions. 

In this paper we derive offset models for every input technique and explore and analyze 

the differences. These observations can be used in the design of touch screen virtual keys 

in mobile scenarios as well as aiding the calibration of algorithms to infer which input 

technique is currently being used, increasing the accuracy and efficiency and improving 

the user experience. 
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2. RELATED WORK 

2.1. Understanding touch 

To understand touch interaction and improve the accuracy requires analysis of the 

underlying “touch mechanism”. Holz & Baudisch, (2010) challenged the commonly 

accepted fat finger problem and introduced a perceived input model. In (Holz & 

Baudisch, 2011) they thoroughly investigated the “touch mechanism” (or users’ mental 

model of touch) when a user acquires a target for varying target sizes and varying angles 

of approach. Previously there had been an implicit assumption that users acquire targets 

with the center of the contact area between finger and device, but this failed to explain 

systematic error offsets recorded in user input. The research found that users generally 

look for visual cues to align the top part of the finger that is not intended for touch (e.g. 

the top of the user’s fingernail) with target vertical/horizontal lines. Based on that 

finding, a projected center model could be constructed to increase the accuracy of input, 

but this is technically challenging with currently available mass-production mobile 

hardware. The ‘Shift’ method proposed in (Vogel & Baudisch, 2007) tries to avoid finger 

occlusion and ambiguity about which part of the finger defines selection, by creating a 

callout showing a copy of the occluded screen area and placing it in a non-occluded 

location. However, a higher level of effort per touch is needed, since the whole touching 

procedure is different from standard interaction strategies.  

2.2. Offset models 

Offset models are the class of models that calculate the deviation between the intended 

and actual touch location and correct for it regardless of the input scenario (e.g. keyboard 

layout or language models are not necessary). This effect and its potential for 

improvement in user interaction were recognized early in the research. Sears (1991) 

experimented with large touch screens fixed to a table with a fixed tilt angle. The results 

obtained showed that when the device was tilted away from the user the actual touch 

location was below the target while if it was tilted toward the user the touch location was 

below and to the left of the target. Implementing the offset model corrections enabled a 

reduction in the size of the virtual keys while maintaining the same error rate. This 

phenomenon was also recorded in (Himberg, Häkkilä, Kangas & Mäntyjärvi, 2003), 

where an on-line learning algorithm was used to move soft keys according to the spatial 

distribution of touch events made on a customized screen laptop PC. The result obtained 

in the experiments demonstrated the tendency of right-handed subjects to hit to the left of 

the intended target, while left-handed subjects tended to hit to the right of the actual 

target. Offsets were noticed in (Parhi, Karlson & Bederson, 2006) where the authors set 

to investigate the optimal target size in discrete (single) and serial (successive) target 

selections. Users were static (standing) and used their thumbs for interaction, holding the 

device in a single hand. In particular, they noticed a right-leaning trend for targets in the 

right part of the screen. It was additionally noticed that after certain target dimensions a 

further increase had no statistically significant effect on error rates, but that the target size 

did have a significant impact on tap time. This was attributed to the fact that users took 

extra care with smaller targets. Park, Han, Park and Cho (2008) explored the practical 
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impact of offsets and measured error rate, success rate and pressing convenience of 25 

predefined regions on 240 x 320 pixel PDA screen when using one-handed thumb input 

as the only input technique. The results indicated two regions (an appropriate and an 

inappropriate) for virtual key placement, and the benefit of the correction algorithm based 

on these offsets was demonstrated to be statistically significant.   

The largest study to date on offset models, in terms of collected touch events, was 

carried out in (Henze, Rukzio & Boll, 2011), where crowd-sourcing via Android Market 

was used. A custom-designed game collected data on user touch events and intended 

targets, which enabled analysis of offsets. The paper demonstrated that on such a large 

sample set there was a systematic offset in touch positions and that it depended on the 

target size and on target screen location. It should, however, be kept in mind that 

although large amounts of data were collected, there was little control over the 

participants and how they held their phone and whether or not they were stationary or on-

the-go while playing. The reported results showed several interesting findings. The error 

value increases significantly when targets smaller than 15 mm were used, reaching 40% 

for targets smaller than 8 mm. This high error rate might be attributed to instructions 

given to players to “touch and move as fast as you can”, since players might put greater 

emphasis on speed and not accuracy. Contrary to some earlier research, it was noted that 

error rates were lower for targets in the center of the screen compared to targets on the 

border. When the offset model was derived and applied to the data, the error rates 

dropped by about 8% and improved player precision. There was no attempt made to 

customize the offset models to be user-specific, device-specific or input technique-

specific.  

User-specific offset models: These were analyzed in (Weir, Rogers, Murray-Smith & 

Löchtefeld, 2012), where a machine learning approach based on Gaussian process 

regression was used to capture the systematic error between the intended and actual touch 

positions. The inferred functions were highly nonlinear and varied over screen location 

and users. One novel aspect of this research was that it was based on data from the raw 

capacitive sensor array as well as the typical data provided by the mobile phone’s touch 

API. The results demonstrated a similar performance in terms of accuracy improvement 

ranging from about 5%-24% depending on target size. To further drive home the point 

about user-specific nature of offset models, the accuracy of each individual model (8 

participants) was compared to the accuracy of model generated by data collected from all 

subjects. Statistically significant improvements in individual models were observed. The 

cross-device context of offset models was discussed in (Buschek, Rogers & Murray-

Smith, 2013) where 13 different mobile phones were used in a game-like setup. In order 

to improve the accuracy (5-6%) of the interaction, cross-device and cross-user transfer 

functions were proposed. These transfer functions adapted the user offset model recorded 

on different mobile phones (or different user models on same phone) to obtain 

improvement. Although the authors note some limitations of their study (e.g. the lack of 

feedback and use of linear regression with quadratic terms for modeling) several 

additional interesting observations were made. First of all, about 60 randomly chosen 

training examples (targets) in portrait one-thumb mode were sufficient for obtaining 

meaningful offset models which is a significant reduction compared to similar research 
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(200 in (Weir, Rogers, Murray-Smith & Löchtefeld, 2012)). Secondly, a negative effect 

of screen size on effectiveness of offset models was observed.  

Role of finger pose: In (Holz & Baudisch, 2010) a slightly different approach to offset 

model analysis was taken, employing specialized hardware in the form of a fingerprint 

reader. The authors demonstrated that the offset model is user-specific and depends on 

the posture of the finger used in the interaction. The results demonstrated that roll, tilt and 

yaw all have a statistically significant impact on touch location and thus the offset model. 

Based on these results, one could argue that a particular subject, using a specific input 

technique (e.g. landscape orientation with one thumb) could be uniquely identified, since 

the angle of a finger approaching the target (taking into account the screen position of the 

target) should have distinct values. We explore this further in our analysis of offset 

models. (Rogers, Williamson, Stewart & Murray-Smith, 2011) demonstrated that such 

use of finger pose could have a practical application. They used low-resolution, longer-

range capacitive sensors in a custom-built case intended to mimic a mobile device. They 

developed an explicit model of a finger in contact with the sensor array and a theoretical 

sensor model in order to infer the finger pose from raw measurements. The accuracy was 

significantly better than the case of a simple interpolation algorithm, converging to a 

stable error rate for button sizes of about 3 mm (in contrast, the simple interpolation 

algorithm converged at about 5 mm).  

Posture: The influence of posture was recognized as an important factor in designing 

more accurate text entry interfaces through posture adaptation, as was the case in 

(Azenkot & Zhai, 2012). Here, the authors demonstrated that different postures result in 

different typing patterns (e.g. different offsets) on a soft keyboard during text entry for a 

particular key. Three postures were analyzed: two-thumbs, one-thumb and one-finger and 

corresponding error rates and typing speeds calculated. Goel, Wobbrock and Patel (2012) 

expanded on these findings. In their work they could differentiate between the use of 

right or left thumb and could infer which hand is holding the device (or if the device is 

lying on a flat surface). This was achieved by the inclusion of additional interaction 

elements such as swiping motions and sensors (gyroscope) which enabled reasonable 

estimation after 5 interaction steps. Authors report 84.3% accuracy for hand posture 

detection and 99.7% accuracy for table vs. hand detection. The same research group 

designed a text entry system named ContextType which improved text entry accuracy 

using posture information in (Goel, Jansen, Mandel, Patel, Wobbrock, 2013). Based on 

inferred posture, ContextType switched between different keyboard models, which 

reduced total text entry error rate by 20.6% compared to the control condition. With the 

inclusion of several additional features (like time elapsed between taps) posture detection 

accuracy was increased to 89.7% and the decision was made, on average, within 4.9 taps. 

The authors also noted that the typing speed (expressed in words per minute) was not 

significantly affected with inclusion of a posture-adaptive keyboard. This approach was 

further refined in (Yin, Ouyang, Partridge & Zhai, 2013) to include a user-specific 

posture adaptive keyboard. In the paper, an elaborate hierarchical model was used which 

reduced the language-model independent error rate by 13.2% over the baseline model. 

This approach had an on-line posture classification accuracy of 86.4%. However, in this 

and other works presented in the paragraph, no effort has been made to study how the 

typing pattern behavior changes while users are on-the-go, or how the proposed on-line 
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adaptation performed under nomadic conditions (i.e. all data collection was made while 

subjects were seating/stationary). Further, all studies used soft keyboards using only the 

lower part of the screen, which might affect the generalization of the results. 

2.3. User input on-the-go (nomadic input) 

In most of the research presented, the experimental setup was limited to a static 

setting (e.g. sitting or standing still). This is not sufficient for an average user of a mobile 

device, since motion (e.g. walking) can potentially have a significant influence on 

conclusions. This was recognized quite early in (Johnson, 1998), where a number of 

scenarios are explored and the associated problems discussed. In a mobile setting, new 

variables emerge and the experimental setup needs to be adjusted accordingly, making 

controlled studies difficult in real-world scenarios. Thus in (Kjeldsov & Stage, 2004) an 

experiment was carried out to compare evaluation techniques for mobile devices in a 

laboratory setting (but not a static scenario) and in a real world situation. It was observed 

that the laboratory setting provides a good approximation in terms of user performance 

(e.g. accuracy), but a more realistic setting is needed for an evaluation of required mental 

workload. Similar conclusions were made in (Barnard, Yi, Jacko & Sears, 2005), with the 

additional inclusion of a treadmill as possible experimental tool. In (Kane, Wobbrock & 

Smith, 2008) five additional environmental effects were identified: weather, pedestrians, 

public events, safety and clothing. For example, cloudy weather reduced the task time by 

18.5% compared to partly cloudy and sunny conditions, due to the varying visibility of 

the device’s screen. This confirmed the influence of lighting conditions on a user’s 

behavior (Barnard, Yi, Jacko & Sears, 2005). The main analysis of the study included the 

performance of a walking user interface. This interface adapted the size of the GUI 

control elements when user was on-the-go. To control the walking pace in public, a 

human pacesetter was used. Despite this, the actual button size change was not automatic 

but rather controlled by the experimenter. A number of observations were made: the 

number of task errors varied by target size and that motion unevenly affects how size 

affects errors. Handedness and gender had no effect on task time. Most importantly, 

significant interaction between size and movement (in instances without adaptation) was 

detected, which is in contrast to (Mizobuchi, Chignelli & Newton, 2005) where no such 

effect was observed. This might be due to the different input techniques used. No effect 

of walking speed or input speed on accuracy was observed, while the decrease in walking 

speed while using a mobile phone compared to the usual walking speed was noted. 

However, the authors do caution that the experiment was carried out in a long hallway 

without obstacles (either static or dynamic).   

An interesting study of the influence of walking speed on touch accuracy was made in 

(Bergström-Lehtovirta, Oulasvirta & Brewster, 2011). Here, a number of test subjects 

were placed on a treadmill, with the speed varied from 0-160% of preferred walking 

speed (PWS). PWS was suggested as a means to assess usability in (Pirhonen, Brewster 

& Houlguin, 2002). It was noted that no matter how slowly the user walks, it comes at a 

cost (in terms of accuracy) compared to the static case. The relationship between speed 

and accuracy was found to be highly non-linear, with a local optimum between 40-80% 

of PWS. Two additional observations were made: firstly, the mean decrease in speed 

when using a mobile phone was about 24% from PWS compared when walking without 
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the device. Secondly, it was noted that both hand and body oscillations had a significant 

negative effect on accuracy, with hand oscillations being the stronger predictor. A similar 

decrease in walking speed (25%) was observed in (Schildbach & Rukzio, 2010). Here, a 

resistive touch-screen mobile device was used to examine the negative effects of walking 

on target selection and text reading, and their relation to size of targets and text. A 

pedestrian-free obstacle course was used for testing since mental workload is higher than 

on a treadmill (Lin, Goldman, Price, Sears & Jacko, 2007). In the experiment there was a 

31% increase in task time, 23% decrease in accuracy and 24% increase in workload 

compared to the static condition. In (Yatani & Truong, 2007), similar effects of walking 

on accuracy, typing speed and workload were observed when interacting with a PDA 

using a stylus-based input technique, showing progressive deterioration in accuracy as the 

mobile task got more demanding (from static to walking, to climbing stairs).  

One factor in the design of user interfaces that was not considered in previously 

presented research, but was studied in (Crossan, Murray-Smith, Brewster, Kelly & 

Musizza, 2005) is the relationship between gait phase and interaction accuracy. This was 

studied using a PDA with a stylus input. When walking, the arm holding the device 

oscillates in relation to the gait cycle. This was also noted in later work (Goel, Findlater 

& Wobbrock, 2012). Analysis of results collected from over 20 subjects showed that 

there was part of the gait cycle which was about 3 times more likely to be used for 

tapping, and for which tapping accuracy was higher, with a lower error mean and lower 

variability. The preferred phase corresponded to moments when the device was moving 

downwards along with the supporting arm. This could be used in design of user interfaces 

presenting feedback to encourage interaction at certain gait phases.  

Yamabe and Takahashi (2007) identify three significant factors that need to be taken 

into account when designing a user interface for a mobile context: physical condition, 

degree of attention and social ethics. This is in contrast to (Kane, Wobbrock & Smith, 

2008). Yamabe and Takahashi (2007) nicely summarize the problem: ‘The main cause of 

the usability deterioration is a gap between a pre-assumed computer-human-interaction 

model and a model in the actual working environment. Implicitly or explicitly, most of 

services are designed to be operated in users’ stationary situations, such as “sitting on a 

chair” and “standing on the street”.’. To account for the user movement, they propose 

automatic adaptation of the user interface, based on the 3D accelerometer reading. Their 

system performed comparably to the static case in most of the test scenarios, but again 

here a simple straight line path was taken by test subjects in a controlled environment. In 

(Goel, Findlater & Wobbrock, 2012) an accelerometer-based adaptive virtual keyboard 

named “WalkType” was also used but a more sophisticated algorithm was employed. It 

was inspired by image stabilization algorithms for cameras. Several interesting 

observations in line with (Crossan, Murray-Smith, Brewster, Kelly & Musizza, 2005) 

were made, although here a portrait, two-thumb input technique was used. Target 

selection tended to shift towards the center of the keyboard if a tap occurred when users’ 

feet hit the ground, while a shift to the left was dominant when the left foot hit the 

ground. A right shift was dominant when the right foot hit the ground. The final model 

reduced uncorrected errors in the walking condition by 45.2% and increased the typing 

speed by 12.9%.  
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2.4. Alternative approaches to improving user input 

Beyond learning offset models, there are other examples of adaptive methods to 

improve touch accuracy.  Examples of multimodal feedback (beyond visual) include 

(Hoggan, Brewster & Johnston, 2008) for tactile and (Brewster, 2002) for audio 

feedback.  

Existing solutions for motor-impaired users are being leveraged into the small-device 

domain like mobile phones because able-bodied subjects using their mobile phones while 

on-the-go are situationally impaired by both the device and the context of use (Yesilada, 

Harper, Chen & Trewin, 2010). This hypothesis was proved in static experiments where 

most of the typing and pointing errors recorded were common in both people with and 

without a motor impairment. Testing was only carried out in static conditions. The 

“TrueKeys” system for motor-impaired users in (Kane, Wobbrock, Harniss & Johnson, 

2008) combines a word frequency model, keyboard layout and error patterns to 

automatically identify typing mistakes and offer potential corrections via visual feedback. 

Although the algorithm performed well, correcting more mistakes than other popular 

spell checkers, the typing speed was lower. This was attributed to the challenge of forcing 

users to learn new typing habits and unlearn already established ones. 

Baldwin and Chai (2012) implemented a dynamic, user-specific adaptation of virtual 

keyboard key sizes, based on a language model and observed typing behavior. Special 

care was given to online data collection methods which dynamically updated the resizing 

model. Three approaches were used, with each one having a certain level of tradeoff 

between accuracy and speed. The authors reported a reduction in relative error up to 

10.4% over non-user specific models. A related topic is ‘key anchoring’, presented in 

(Gunawardana, Peak & Meek, 2010). This approach is similar to offset model building 

(e.g. the same input data is used) but is only applicable for keyboard input, since they are 

based on natural language technologies. A similar approach to model building was taken 

in (Findlater & Wobbrock, 2012) where a machine learning approach inferred which key 

was targeted. This approach, however, required keyboard layout and key-press 

classification models which could dynamically adapt to individual users.  

2.5. Relation of this paper to previous work 

A significant amount of research effort has gone into developing innovative ways for 

improving user interaction, especially in terms of accuracy and typing speed. This is 

typically achieved by adapting keyboards or offset models. It has been recognized that 

static and dynamic use conditions have a significant effect on the outcome (Johnson, 

1998). More recently, it was shown that the inclusion of movement data (usually via 

accelerometer) has the potential to significantly improve the interaction experience (Goel. 

Findlater & Wobbrock, 2012). However, usually this research was limited to one input 

technique and/or one walking speed. Our study is the first attempt (to our knowledge) to 

systematically analyze the interactions among a wide range of input techniques for 

different walking speeds and to investigate how that interaction translates to tapping time, 

accuracy, offset model construction and gait phase, with associated design implications.  
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3. MATERIALS AND METHODS  

3.1. Participants 

In total, 20 subjects (17 males, 3 females) participated in the study (all were 

volunteers from academic staff and students). The participants’ mean age was 28.25 years 

with a standard deviation of 2.79 years. All participants were self-rated as experienced 

mobile phone users, owning a smart phone for an average of 3.07 years and with an 

average mobile phone interaction time (excluding phone calls) of 60 minutes per day. 

Three of the participants were left-handed, although two of them often used their right 

hand while using a mobile phone with particular input techniques. It is also interesting to 

note (for possible cross-device considerations and implications) that the most widely 

owned phones among users at the time of testing were: Sony Xperia series (9), HTC 

series (3), Samsung Galaxy series (3) and iPhone series (2). A within-subject 5x5 

factorial experimental design was used, requiring all participants to use all input 

techniques for all walking speeds. 

3.2. Mobile phone input techniques 

In the study, five input techniques were used, as depicted in Figure 1:  

• portrait 1 thumb pointing (P1TP) – the mobile phone is in portrait orientation, held 

by one hand and the user interacts with the phone with the thumb of the hand holding 

the phone. The user chose which hand was most comfortable to use for interaction.  

• portrait index finger pointing (PIFP) – the mobile phone is in portrait orientation, 

held by one hand and the participant interacts with the phone with the index finger of 

the opposite hand. Which hand to use for interaction and which for holding the device 

was left to the user. Also the manner in which the mobile phone is held (i.e. how it is 

held in place by the holding hand as depicted in Figure 1) was left to the user. 

• portrait 2 thumbs pointing (P2TP) – the phone is in portrait orientation, held by 

both hands and the participant interacts using both thumbs. The user chose which 

thumb to use to interact with particular target (with regard to its on-screen position).  

• landscape index finger pointing (LIFP) – the mobile phone is in landscape 

orientation, held by one hand and the participant interacts with the phone with the 

index finger of the opposite hand. The user chose which hand to use for interaction, 

which for holding the device and the manner in which the mobile phone is held 

• landscape 2 thumbs pointing (L2TP) – the phone is in landscape orientation, held 

by both hands and the participant interacts using both thumbs. Which thumb to use to 

interact with particular target (with respect to its on-screen position) is left to user. 

These input techniques were chosen in order to take into account all possible input 

scenarios and were explained to test subjects. Only landscape with one thumb was not 

chosen, since in pre-testing interviews none of the subjects seemed to use it. It should be 
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noted that during the measurements all test subjects chose to use PIFP and LIFP variants 

presented in the lower row of Figure 1. Also, in pre-testing interviews, participants were 

asked to state their two most used input techniques in order of frequency of use. 60% of 

all participants stated that P1TP is their most used input technique, followed by 15% for 

PIFP and L2TP and 10% for P2TP, while none of the subjects chose LIFP. For the 

occasionally-used input techniques, 30% of all participants chose P1TP and L2TP, with 

PIFP in second place with 20% followed by P2TP with 15% and LIFP with 5%. These 

percentages might be useful in the design process.  

 (Figure 1 about here) 

3.3. Experimental setup and procedure 

The goal of the study is to systematically analyze the interactions among a wide range 

of input techniques (with their particularities, including target size) for different walking 

speeds and to investigate how that interaction translates to performance measures, along 

with associated design implications. 

Walking circuit and selection task 

In the experiment, participants were asked to walk on an indoor circuit (as depicted in 

Figure 2) which included three right- or left-hand turns (depending on walking direction), 

as well as going in clockwise and counterclockwise directions. A full lap was ca. 39 m 

long. This design of walking path was used because it placed realistic mobility demands 

on the subject, simulating a real world environment where users have to keep track of 

where they are and interact with the mobile phone at the same time.  

During that time, users had to maintain the desired walking pace and tap 150 targets 

for each measurement condition as quickly and as accurately as possible while trying not 

to overemphasize either condition. This number was chosen as a compromise between 

the time it takes to finish a trial (60 minutes of walking + time for static measurement and 

pre- and post-measurement interview = 75 minutes per subject) and the recommended 

training set size which in (Buschek, Rogers & Murray-Smith, 2013) was shown to be 

about 60 targets. These results were also confirmed in (Weir, Buschek, & Rogers, 2013).  

Target positions presented to users were random and could appear anywhere in the 

whole screen area, except for a 20 pixel wide column on the right of the screen used for 

providing feedback to users about current step frequency. This scenario is akin to the 

range of someone using a web browser or text editor on a mobile phone, and not only the 

virtual keyboard, which usually occupies only the lower half of the screen. The user was 

not provided with feedback that a target selection was correct, but was notified implicitly 

that a selection was made by drawing a new target on screen. This is in line with related 

studies like (Gunawardana, Peak & Meek, 2010).  

The target size varied depending on whether the screen was in portrait or in landscape 

orientation and was constant throughout the particular condition. This was motivated by 

the fact that virtual keys (including a virtual keyboard) change their appearance and size 
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to accommodate for screen size (height versus width) of a particular phone orientation. 

When choosing target sizes we were guided by the Apple (Apple, 2010; Clark, 2010) and 

Nokia (Ribeiro & Carvalhais, 2012; Nokia, 2011) recommendations. For example, 

iPhone guidelines recommend that “..in the keyboard, for example, keys are 44 pixels tall 

but only 30 pixels wide – similarly, in landscape mode view, the buttons are 44 pixels 

wide but 38 pixels high…That means that practical minimum size of any tap target is 44 x 

30.” Taking into account the physical screen size and screen resolution of 251 ppi that 

means that 44 pixels roughly corresponds to 7 mm, and 30 pixels to 4.5 mm. Nokia 

resources, on the other hand, state that target size is determined based on which finger is 

used: for index finger it should be 7 x 7 mm and for thumb it should be 8 x 8 mm. Taking 

into account 163 ppi resolution from the datasheet and screen resolution of 854x480 

pixels along with physical dimensions of the screen, one can calculate recommended 

target size in pixels. For our particular experiment we opted for the Apple 

recommendation and calculated target dimensions in pixels as depicted in Figure 3a.  

It should be noted that use of different target sizes for different mobile phone 

orientations might influence direct comparison of the results obtained. However, the 

intention was to be as realistic as possible to provide practical recommendations to 

designers. Thus we are particularly interested in pose performance (with all of its 

particularities, including virtual key size) compared to other ones as they are available in 

real world (Nicolau & Jorge, 2012). More direct comparison of performance of target 

selection is also provided through the use of the throughput parameter since it takes into 

account (effective) target size. 

(Figure 2 about here) 

 

Experimental design 

There were two factors in the design, all manipulated within subjects: input technique 

(5 levels) and walking speed (5 levels – including static condition). Walking speed levels 

were defined relative to individual subjects’ preferred walking speed (PWS), including 

the static condition. These levels were: 0PWS (static), 0.5PWS, 0.75PWS, PWS and 

1.25PWS. These levels were chosen because they pertain to a subject’s normal walking 

speed (PWS), the speed he spontaneously slows down to when using a mobile phone 

(0.75PWS) and two extremes (0.5PWS and 1.25PWS) which the subject could 

comfortably perform and which form a uniformly spaced grid. Thus 20 test subjects 

performed 25 trials in total, resulting in total of 25x150x20 = 750000 tap events. Static 

and dynamic measurement conditions were counterbalanced separately (since they were 

recorded separately at two different time instances) using a balanced Latin square based 

technique, in order to minimize learning effects. Gait speed was not directly controlled 

for, due to limitations of the instrumentation, as discussed later in the section. However, 

since for a particular subject his/her stride length is constant during normal, undisturbed 

gait, the gait speed and gait frequency ratio are also constant (Bertram & Ruina, 2001). 

Thus, by controlling gait frequency we controlled gait speed. 
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Mobile phone 

The experiment was carried out on the Nokia N9 mobile phone, using Python and 

PyGame running natively. This phone was chosen both because it met the technical 

requirements (the ability to access raw accelerometer signals at a high sampling 

frequency and enough computational power to run the filter in real time) and because 

none of participants had it as a personal phone. Thus, no participant would have extra 

familiarity with the specific device. 

(Figure 3 about here) 

The mobile phone’s role was threefold. First, it served as a sensor, with an 

accelerometer and a touch screen capacitive array. Secondly it was used as preprocessing 

unit for the real-time filtering and data processing needed for the calculation of the 

current user pace. Thirdly, it was used as data logger to save raw data (accelerometer 

signal along all three axes, target location and actual touch point as interpolated by the 

mobile phone, and the time stamp of each touch event) and some of the calculated values 

(gait phase inferred from accelerometer data, current user walking pace etc.). 

Subsequently, all data analysis was done in two software environments: MATLAB and 

R. An example of recorded hit distributions for different input techniques and different 

subject handedness is presented in Figure 4, in accordance with the prior literature 

(Himberg Häkkilä, Kangas & Mäntyjärvi, 2003). 

 In the experiment, the mobile phone was used as a pacesetter. Although there are 

several other approaches commonly used in the literature we dismissed them either as 

impractical (e.g. a human pacesetter, due to the number of experiments and the fact that 

actual pace variations between pacesetter and subjects were not recorded) or intrusive 

(e.g. setting the tempo with metronome or some other audio feedback might influence the 

typing style and speed, as was shown for gait synchronization (Murray-Smith, Ramsay, 

Garrod, Jackson & Musizza, 2007)). Frequency synchronization between gait and audio 

feedback was also undesirable, since we wanted to investigate the possible patterns 

between gait style/speed and touch events. 

(Figure 4 about here) 

Pace-setting algorithm based on the Hilbert transform 

For the subject pacesetting, an algorithm was developed and implemented to run in 

real time on the mobile phone. This was enabled by our choice of gait frequency as a 

measure of a person’s speed. Different people have different stride lengths (generally 

dependent on a person’s height) and to achieve the same speed a subject with a larger 

stride would have to have a lower frequency and consequently his gait would be steadier 

(Renaudin, Susi & Lachapelle, 2012). Additionally, a pacesetter based on accelerometer 

measurements is more robust and easier to implement if it is based on frequency and not 

the speed. This is because the speed would require the integration of the accelerometer 

signal and thus accumulate error over time. Also, taking into account that different 

participants felt more comfortable walking at different speeds, we chose to define these 

Page 13 of 61

URL: http://mc.manuscriptcentral.com/hci

Human-Computer Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 - 14 - 

frequencies with respect to individuals’ PWS. Before each measurement the user was 

instructed to keep the phone in their hands, look straight ahead and make three laps 

around the test circuit with the walking speed/frequency which felt most comfortable. 

This was recorded by our algorithm as the PWS for that subject. 

To calculate the frequency, the raw accelerometer signals were firstly low-pass 

filtered to preserve only the gravity component. From it, and with the assumption that e.g. 

for portrait, the z-axis was vertical and the y direction was in the direction the user was 

walking, one could compensate all raw accelerometer signals for small variations in pitch 

and tilt angles that participants introduce into the measurement, due to their unique style 

of holding the phone. This is depicted in Figure 5. All subsequent data analysis for the 

pacesetting algorithm is based on the raw, compensated accelerometer signal in the 

direction of the z-axis, since it best captures the cyclic nature of human gait.  

 (Figure 5 about here) 

This signal is then band-pass filtered with a band-pass frequency determined by 

subjects’ walking frequency and configured before the measurement. The band-pass gap 

should be kept as narrow as possible, because of the Hilbert transform’s sensitivity to low 

frequency trends. Filtered signals are then fed to the Hilbert transform filter (a real-time 

approximation of the analytical Hilbert transform). This filter had a 5-point size which 

enabled the minimum latency between the actual movement and user feedback. Based on 

it, the phase angle can be calculated, which can take on values from the [-π, +π] interval. 

In our research we were not concerned about finding the correspondence between the 

phase angle and gait phase but rather about the frequency of particular gait phase angles. 

For simplicity we chose this angle to be 0 and implemented a zero detection algorithm 

but only when there is sudden change from –π to +π range. This is because a zero 

crossing occurs twice during one gait cycle. In this manner, the frequency of gait is 

obtained. It should be noted that the gait phase data can be then further used in analysis to 

detect whether certain gait instances are more likely to contain tap events than others. 

Once the frequency is known, it is presented to the user, making him aware of his 

relationship with the desired frequency, while not adding significantly to the workload 

(according to users’ subjective opinion in post measurement interviews). Achieving the 

exact frequency would be nearly impossible, due to the variability of human gait and the 

data processing involved. We chose a frequency band that was acceptable (± 10% of 

desired frequency). This information was presented to the user in the form of a dynamic 

bar with changing color, as depicted in Figure 3b.  

During the measurement trials, users reported that they found this type of pacesetting 

easy and fun to use and the obtained results were sufficiently close to the desired walking 

frequency. The only measurement condition that provided significant problems to our 

algorithm and to users was 0.5PWS. It is believed that the issue with this condition was 

caused by the magnitude of the signals fed to the Hilbert transform filter. Specifically, 

lower accelerations associated with slower walking, made it harder for the pitch and tilt 

compensation algorithm to distinguish acceleration from the effect of the force of gravity, 

ultimately leading to degraded performance of the Hilbert transform filter due to its 

sensitivity to low frequency trends. This effect was reduced as the walking speed started 
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to increase. We determined the extent of the influence of slower walking speeds on the 

performance of our pacesetting algorithm by analysis of the normalized estimation error. 

The median recorded gait frequency and required gait frequency for each walking speed 

were compared (normalized relative to the required gait frequency), so that direct 

comparison with the allowed frequency band could be made. Taking into account all test 

subjects, the following mean errors (and their standard deviations) were obtained, as 

percentage of the target frequency: 67.91%±41.26% for 0.5PWS, 19.46%±26.6% for 

0.75PWS, -9.52%±18.73% for PWS and -24.97%±16.13% for 1.25PWS. Lower absolute 

mean values are associated with more stable frequency tracking (keeping in mind that 

±10% deviance from desired frequency was allowed). 

3.4. Definition of error rate, accuracy and tapping time 

A rectangular-shaped virtual key was used instead of a crosshair. This was motivated 

by the intention to better simulate a real world situation (e.g. different target sizes in 

portrait and landscape mode). The error rate was defined as the percentage of wrong 

selections (outside the virtual key) from the total number of selections made in one trial 

for one measurement condition while accuracy was defined as the reciprocal value of the 

Euclidian distance between the center of the intended and actual target locations.  

The center of the virtual key was moved to the screen coordinate frame origin and the 

distance to the actual touch point (which was also moved for same distance both in value 

and direction) was calculated. If the distance between the target center and touch location 

was too large (outside the [q3 - 1.5(q3 – q1),  q1 + 1.5(q3 – q1)] interval where q1 and q3 are 

first and third quartile of all measured distances, respectively), the touch event was 

considered an outlier and was removed from further analysis (22 touch events in total). 

These situations occurred on average once per measurement condition, due to 

uncontrolled user finger movement (due to walking) or unintentional selections (double 

taps). Since those movements were uncontrolled they were not representative of the 

user’s actual intent and were considered noise. Also, error rates indicate the frequency of 

the selection point being outside the virtual key.  

An additional parameter calculated was tapping time. This time was calculated as the 

difference between two time stamps associated with two consecutive touch events. It was 

used as indicator of user tapping speed for a particular input technique, since users were 

instructed to keep selecting targets as they are presented, without any pause. 

3.5. Throughput as a performance parameter 

Throughput was introduced as a part of the ISO 9241-9 standard (“Ergonomic design 

for office work with visual display terminals (VDTs) - Requirements for non-keyboard 

input devices”) as an objective parameter for evaluation of non-keyboard input devices. It 

is based on Fitts’ law, which tries to quantify the capacity of the human motor system to 

transmit information content. Several formulations of Fitts’ law have been proposed over 

the years, the main difference being in the definition of the index of difficulty 

(MacKenzie, 1992). Also, 2D pointing and selection is different from the original 1D 

Fitts experiment, so certain adjustments need to be considered (MacKenzie & Buxton, 
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1992; Accot & Zhai, 2003; Wobbrock, Cutrell, Harada & MacKenzie, 2008). This is 

further complicated by the fact that the targets used in our experiment were rectangular, 

which complicates the notion of target width.  

Several decisions had to be made during the analysis. First, since our error rate was 

well above the required 4% (from the original Fitts’ law formulation) as presented in 

section 4.1, we needed to take into account the effective target width (MacKenzie, 1992). 

This was done by defining the target width using the standard deviation (σ ) of selection 

points with respect to the target center and with equation, 

                                                            , 

(as proposed in MacKenzie & Buxton, 1992), which leads to the equation for calculating 

the effective index of difficulty (ID)  

, 

where D is the distance from the starting point to the target. Calculation of D is somewhat 

problematic in our experiment, as further discussed in the Results and Discussion section. 

The +1 term ensures that the ID will always be positive. The throughput is then defined 

as, 

                                                              ,                                                        (1) 

where MT is the measurement time needed to go from the starting point to the target.  

3.6. Offset models 

An offset model is a function f that maps the API-reported location to the intended 

touch locations. The function is derived using some form of machine learning or 

regression from training examples. A training example is the quadruplet (xa,ya,xi,yi), 

where (xa,ya) defines the actual touch location and (xi,yi) defines the intended (target) 

touch location. These models have been shown to be both user- and device-specific. In 

the experiment, dependencies on measurement condition were examined as well as 

possible changes between models derived from static data and dynamic data. 

Additionally, we examined whether inclusion of a more sophisticated model resulted in 

better estimates, capturing more variance. Thus, two well known model groups were 

used: a quadratic model and cubic model linear regression (as suggested in (Buschek, 

Rogers & Murray-Smith, 2013)). Models were built independently for the x and y 

directions. The purpose of this paper is not to find the best model but rather to analyze 

trends which can then be applied to a particular problem. Offset models were thus 

constructed in two scenarios: for a particular measurement condition and for a particular 

input technique (regardless of walking speed). Examples of offset models are depicted in 

Figure 6. 
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 (Figure 6 about here) 

As with most machine learning based problems, training and prediction phases are 

required. For the training phase, 80% of the touch events for particular measurement 

conditions were randomly selected, while the remaining 20% were used for prediction 

and evaluation. During the training phase N tuples containing touch and target locations 

(2D coordinates) are available. Depending on the model used, M basis functions 

M21 ,,........., ΦΦΦ  are used to model non-linear surfaces. For a quadratic model, M=5, 

with 11 c)y,x( =Φ , x)y,x(2 =Φ , y)y,x(3 =Φ , 2
4 x)y,x( =Φ  and 

2
5 y)y,x( =Φ . For a 

cubic model, M=7,with 11 c)y,x( =Φ , x)y,x(2 =Φ , y)y,x(3 =Φ , 2
4 x)y,x( =Φ ,

2
5 y)y,x( =Φ , 

3
6 x)y,x( =Φ  and 

3
7 y)y,x( =Φ . When using quadratic and cubic 

models an N × M matrix X is built with, the mth basis function evaluated for nth training 

example. Each row of matrix X contains one training example and each column contains 

one input dimension. If all x coordinates of all N training examples are stacked in vector 

xt  and all y coordinates in vector yt , the maximum likelihood solution of equations 

( ) x
T1T

x tXXXw −=  and  ( ) y
T1T

y tXXXw −=  can be derived. The resulting weight vectors 

w define the offset model using T
xx w)a(f =  and T

yy w)a(f = . We define two independent 

models: one for the x-axis and one for the y-axis.  

The aim of the offset model is to predict  from the recorded input . In 

general, during real world application, exact knowledge of the intended touch location is 

unknown, so the offset model should provide better accuracy than the mobile phone 

interpolation alone. If a quadratic or cubic model is used for a new touch event t vector 

is constructed, i.e.  or 

depending on the model used. Now, predictions on can be made using 

 and . Also, the variance of the predictions can be calculated using

, where is the maximum likelihood estimate for the dataset noise 

variance, defined as . The prediction variance can then be used as an 

indicator for uncertain user intention for autonomy handover (H-Metaphor in (Flemisch 

et. al. 2003)), as demonstrated in (Rogers, Williamson, Stewart & Murray-Smith, 2010; 

Weir, Pohl, Rogers, Vertanen, Kristensson, 2014). 

 

4. RESULTS AND DISCUSSION 

4.1. Error rate analysis 

We analyze the error rate for the static case for all input techniques. The error rate is 

the percentage of selections made outside the virtual key from the total number of 

selections made in one trial for one measurement condition. If the means and 
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corresponding standard deviations are calculated, Figure 7 is obtained while Figure 8a 

presents a box-and-whiskers plot for the error rate in the static condition for each input 

technique. 

The results for error rate are in line with similar research in the literature (e.g. Henze, 

Rukzio, & Boll, 2011). From the mean data alone, one could conclude that the landscape 

orientation provides better accuracy, possibly due to a slightly larger virtual key, while 

for a given orientation, the index finger pointing input technique gives better accuracy 

than single-handed techniques. This might be due to the fact that in the two-handed 

approach the user dynamics are more flexible and can better adjust to outside 

interference. One-way repeated measure ANOVA testing showed that input technique is 

a statistically important variable (p<0.001, F(4,76)=4.18, η
2
=0.27), while a post-hoc 

Tukey’s Honest Significant Difference (THSD) test showed that the statistical difference 

is between pairs P1TP-L2TP, P2TP-L2TP, P1TP-LIFP, P2TP-LIFP and PIFP-LIFP (with 

p<0.05). Please note that the THSD test corrects for the family-wise error rate which 

arises when multiple pair-wise comparisons are performed (this correction is performed 

in all post hoc analysis presented in the remainder of the manuscript). It is also interesting 

to note that for portrait-based techniques, the mean error rates in the y direction (i.e. when 

touch location was outside the virtual key along the y-axis) were twice that of the x 

direction, possibly due to the smaller target width. This was not present in the landscape-

based input techniques, where target width and height are almost identical.  

(Figure 7 about here) 

If the error rate is examined for the dynamic condition for each individual speed and 

input technique, the box-and-whiskers plot in Figure 8b is obtained. From the plot it can 

be concluded that the error rate increases as a person starts to move, regardless of the 

current speed, along with a slight increase in standard deviation. It is also interesting to 

note from the figure that, for a given input technique, the error rate median has a 

minimum at PWS. Here, several observations can be made. First, it seems that a higher 

penalty is paid (in terms of error rate) when walking faster than when walking slower 

(although almost every subject noted higher concentration was needed for slower speeds). 

Secondly, our conclusion is somewhat different from that of (Bergström-Lehtovirta, 

Oulasvirta & Brewster, 2011). This could be attributed to different experimental setups 

used (treadmill vs. free walk, type of target and target size used, mental workload needed 

in obstacle course, finer speed increments) or to inaccuracies in our pacesetting 

algorithms (using a treadmill, a more accurate speed selection can be made). 

(Figure 8 about here) 

Nevertheless, a speed with a minimum error rate is observed, as was the case in 

similar studies. Effects of larger mean errors in the y-direction in portrait modes were 

also present here, as in the static case, but now the difference was about 1.5 times 

smaller. When one-way repeated measure ANOVA analysis was performed for a 

particular input technique, with speed as an independent variable (with inclusion of static 

condition where speed is 0), statistically significant differences were observed: P1TP 

(p<0.001, F(4,76)=24.38, η
2
=0.26), PIFP (p<0.001, F(4,76)=9.18, η

2
=0.20), P2TP 
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(p<0.001, F(4,76)=11.60, η
2
=0.18), LIFP (p<0.001, F(4,76)=33.44, η

2
=0.32) and L2TP 

(p<0.02, F(4,76)=3.07, η
2
=0.10). A post-hoc THSD test was performed (for each 

ANOVA) which revealed the following: for all input techniques there was a statistically 

significant difference between the static condition and the dynamic conditions (with the 

exception of 0.75PWS in P2TP scenario). For dynamic scenarios, the significant 

difference was detected for: the P1TP input technique (PWS-1.25PWS), the PIFP input 

technique (0.75PWS-1.25PWS and PWS-1.25PWS), the P2TP input technique (0.5PWS-

0.75PWS, 0.75PWS-PWS and 0.75PWS-1.25PWS), the LIFP input technique (0.75PWS-

1.25PWS and PWS-1.25PWS), and for the L2TP input technique (0.5PWS-1.25PWS and 

PWS-1.25PWS). All statistical differences were detected at p<0.05 level. Two-way 

ANOVA was also performed in order to determine if there was a significant effect 

between the input technique and walking speed for error rate. A significant interaction 

effect was observed (p<0.001, df=16, F=3.03). 

It is interesting to see how the error rate changes with respect to the target position on 

the screen, both within one particular condition and among input conditions. Within 

conditions variability implies that there are parts of the screen where the error will be 

larger/smaller, as expected and is the motivation for non constant offset models. Between 

conditions variability implies that the input technique has an influence on the error rate as 

well as walking speed. These dependencies will be analyzed in the offset models.  

In Figure 9 we present average error rates for different parts of the screen in changing 

measurement conditions for the P1TP input technique over all subjects. For this purpose, 

the screen was divided into 3 sections along the y-axis and 4 sections along the x-axis. 

From the figure it is evident that the static input has the lowest error rates over the whole 

screen area, when compared to other input scenarios. Looking at the general color 

patterns over the whole screen area, it can be concluded that the heat map for the PWS 

condition has lower error rates for a particular screen slice (compared to other dynamic 

conditions and the same slice). It is interesting to note the line-like pattern in all dynamic 

scenarios (less in 1.25PWS) in the second row from the top, which roughly corresponds 

to the height at which the thumb of the holding hand is positioned (remember that this is 

P1TP pose). This is potentially interesting finding for interface designers and we expect 

this phenomenon to be reflected in corresponding offset model.  Similar changes were 

detected for all other input techniques. 

(Figure 9 about here) 

No improvement in performance was observed, in terms of error rate between users 

who do not prefer a particular technique and the ones who do, both in static and dynamic 

scenarios. Our analysis was limited to P1TP techniques, since for all other input 

techniques too few test subjects chose them as their preferred one. Also, we analyzed 

whether target-to-target distance (without consideration for angle of approach) had an 

influence on the error rate e.g. do some distances have a higher probability of error in 

selection than others. It was demonstrated that, both for successful and unsuccessful 

target selection, a similar distribution of target-to-target distances is obtained. This was 

observed for all input techniques in both static and dynamic settings. However, since the 
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target-to-target parameter was not controlled for, further research is needed to make 

conclusive observations. 

4.2. Accuracy analysis 

As stated earlier, we make a distinction between error rate and accuracy. Here, we 

define accuracy as a function of distance from actual touch location to target center 

(lower total error implies higher accuracy and vice versa). Although the target center, in 

general, might not be something the user is intentionally targeting it is a widely used 

approach in the literature (Azenkot & Zhai, 2012), especially when considering offset 

models. Additionally, the target size used in the study was small compared to the finger 

size (Lee & Zhai, 2009) so users did not have a large area to target (as would be the case 

with the space bar, for example). Formal analysis was also done to confirm the 

correlation between accuracy with respect to the virtual key center and virtual key border 

(which is an alternative choice). It showed moderately strong correlation with a factor of 

-0.52 (±0.34) for the static case and -0.22 (±0.35) for the dynamic case. This value varied 

across users and input postures and should be kept in mind during the accuracy analysis 

presented in the following sections. Figure 10a presents the box-and-whiskers plot for 

accuracy in the static condition for each of the input techniques, across all test subjects. 

From Figure 10a it can be seen that different techniques have different medians, with 

landscape-based techniques having better accuracy then portrait-based techniques, but 

with a smaller margin than in the case with error rates. Corresponding mean values are 

presented in Figure 7. For a particular mobile orientation, the index finger pointing input 

technique has better accuracy than other input techniques. These findings have statistical 

significance (p<0.02, F(4,76)=3.25, η
2
=0.10), according to one-way repeated measure 

ANOVA analysis. A post-hoc THSD test revealed that difference between LIFP and 

L2TP techniques was significant at a p=0.05 significance level. Similar conclusions can 

be drawn when looking at the accuracy along the x and y axis individually, although there 

is an increase in the mean in the x direction compared to the y direction.  

(Figure 10 about here) 

If the error value is examined for the dynamic condition for each individual speed and 

input technique, the box-and-whiskers plot in Figure 10b is obtained. The figure shows 

that, for a given input technique, the median accuracy has a maximum at PWS. This 

observation is in line with results for error rate and data from the literature. When one-

way repeated measures ANOVA analysis was performed for a particular input technique, 

with speed as the independent variable (with the inclusion of the static condition), 

statistical significance was observed in all cases. A post-hoc THSD test was performed 

(at p=0.05 level - for each ANOVA), which revealed the following: for the P1TP input 

technique (p<0.001, F(4,76)=12.90, η
2
=0.16), the only statistically significant change in 

accuracy was between the static condition and all dynamic ones, while for all dynamic 

cases there was significant difference only between PWS-1.25PWS pair. For the PIFP 

input technique (p<0.001, F(4,76)=19.34, η
2
=0.33) the static condition was statistically 

different from all dynamic cases, while for dynamic cases a statistically significant 

changes were detected between 0.5PWS-PWS, 0.75PWS-1.25PWS and PWS-1.25PWS. 
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For the P2TP input technique (p<0.001, F(4,76)=8.64, η
2
=0.16), the statistical difference 

was between the static condition and 0.5PWS as well as 1.25PWS and between pairs 

0.5PWS-1.25PWS and 0.75PWS-1.25PWS for dynamic condition. For the LIFP input 

technique (p<0.001, F(4,64)=9.46, η
2
=0.21) a statistical difference was observed for the 

static condition and 1.25PWS as well as between 0.75PWS-1.25PWS and PWS-1.25PWS 

pairs. Finally, for the L2TP input technique (p<0.001, F(4,76)=17.5, η
2
=0.15) the only 

statistically significant difference, except between the static condition and dynamic 

conditions, was between PWS and 1.25PWS. Additionally two-way ANOVA was 

performed in order to test for interaction between input technique and speed for accuracy, 

and no significant effect was detected (p=0.082, df=16, F=1.56). No statistically 

significant changes were detected in individual directions (e.g. along the x and y axis). 

 Smoothed scatter plots of normalized (with respect to the coordinate frame origin) 

touch and target positions are depicted in Figure 11. These plots show the 2D distribution 

of touches with an emphasis on maximum and deviation. Two examples are presented, 

one for portrait-based mode and other for landscape-based mode. Both techniques are 

based on index finger pointing. In both cases, it is evident that for the static condition the 

2D distribution is tight and centered, with the larger variation in portrait mode possibly 

due to the smaller target size. This distribution changes in dynamic conditions in both 

maximum position and width of distribution, which suggests that offset models 

developed for the static condition might not work as well in dynamic conditions, and that 

the offset model should also be walking speed dependent. From both figures it can also 

be observed that for PWS there seems to be a decrease in variation compared to other 

walking speeds, which is in accordance with the findings for accuracy and error rate. 

(Figure 11 about here) 

4.3. Tapping speed analysis 

Tapping speed was defined as the time between two consecutive taps, regardless of 

whether the resulting selection was correct or incorrect. Four observations were removed 

from this part of the analysis because the test subjects were in some way distracted and 

the time between two taps was extremely large (>5 s). The distraction caused them to 

raise their heads and to stop typing (unnecessarily increasing typing time). Afterwards, 

the typing continued as before. The issue did not affect typing accuracy. Calculated 

tapping time means (and standard deviations) for all input methods in the static condition 

are presented in Figure 7. A one-way repeated measure ANOVA was performed and a 

significant effect (p<0.001, F(4,76)=21.90, η
2
=0.22) was observed. A post-hoc THSD 

test (performed for each ANOVA) revealed that the P2TP and L2TP input methods had a 

statistically significant difference from all other methods at p=0.05 level (e.g. P2TP was 

the slowest while L2TP was the fastest method). Since the differences are so small, we 

have visualized these differences via a cumulative distribution function (CDF) of 

tapping-time log, shown in Fig. 12a. From the figure it is clear that the L2TP diagram 

reaches peak values before other methods, while P1TP does that slightly later. The 

remaining three methods are very close, such that they can hardly be distinguished in the 

plot.  
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(Figure 12 about here) 

Analysis of the correlation between tapping speed and total error (accuracy) was 

performed, with the results presented in Figure 13. From the results, unsurprisingly, an 

increase in tapping time has a slight but significant negative correlation with the total 

error, i.e. a decrease in tapping speed is associated with increased accuracy. 

A similar analysis for dynamic conditions was performed. Figure 12b compares 

tapping time means for different walking speeds and input techniques. It can be seen that 

test subjects generally performed faster typing when compared to the static condition for 

0.5PWS and 1.25 PWS, while they were generally slowest for PWS. This might explain 

why for that walking speed the accuracy was highest, as demonstrated in the previous 

section. It can also be seen that, in general, L2TP is again the fastest input technique, 

while P1TP is again the slowest. However, if Figures 11 and 12 are compared, it can be 

seen that this increase in tapping time is not reflected in increased accuracy (compared to 

other input techniques for a particular walking speed). Statistical analysis (one way 

repeated measures ANOVA + post-hoc THSD for each ANOVA) revealed the following: 

for the P1TP technique there was a significant difference (p<0.001, F(4,76)=56.30, 

η
2
=0.52) between the following cases: static-PWS, static-0.75PWS, 0.5PWS-PWS, 

0.5PWS-0.75PWS, 0.75PWS-1.25PWS and PWS-1.25PWS. For PIFP a statistical 

significance (p<0.005, F(4,76)=44.76, η
2
=0.45) was observed between the static 

condition and all other conditions except 0.5PWS as well as between 0.5PWS and all 

other dynamic conditions and PWS and all other dynamic conditions. A similar scenario 

was observed for the P2TP method (p<0.005, F(4,76)=40.12, η
2
=0.22) where statistical 

significance was detected between 0.75PWS and all other conditions (including static) 

and PWS and all other conditions (including static), while for the LIFP method (p<0.001, 

F(4,76)=50.20, η
2
=0.56) post-hoc analysis revealed a significant difference between all 

conditions except 0.5PWS-1.25PWS pair. For the L2TP method (p<0.01, F(4,76)=44.53, 

η
2
=0.38) statistical significance was detected between 1.25PWS and all other conditions 

as well as pairs static-PWS, 0.5PWS-0.75PWS and 0.75PWS-PWS. Two-way ANOVA 

for an interaction between input technique and walking speed for tapping time provided a 

statistically significant result (p<0.001, df=16, F=26.65).  

(Figure 13 about here) 

An analysis of tapping time and total error correlation was performed for the dynamic 

conditions and similar results as for the static case were obtained (small but statistically 

significant negative correlation within a range of -0.40 and -0.04 and with p<0.001 in all 

cases), except for the P1TP-PWS case, where there was no statistical significance for 

correlation (CR=-0.004, 95%CI=[-0.04,0.03]; p=0.84). The correlation coefficients varied 

depending on speed, but no general pattern was observed. 

4.4. Throughput analysis  

Throughput was calculated as described in Equation (1) and presented in Figure 14. 

The means and standard deviations using values marked as outliers in the figure, are 

presented in Figure 7. One-way repeated measures ANOVA analysis revealed a 
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significant effect (p<0.005, F(4,76)=7.27, η
2
=0.11) between input technique and 

throughput. A post-hoc THSD test showed a significant difference between P1TP and all 

other techniques except P2TP and between LIFP and L2TP techniques (at p=0.05 level). 

The data suggest that index finger pointing techniques have a higher throughput than 

thumb-based methods, while landscape-based methods in general have higher values than 

portrait-based methods. Interestingly, the P1TP technique was subjectively ranked as the 

preferred input technique by 60% of test subjects in pre-measurement interviews, but 

actually has the lowest observed throughput value.  

As mentioned in the Materials and methods section, the distance-to-target parameter 

needs to be further discussed. In controlled experiments users are instructed to place a 

pointer (or finger) into a known starting position after every selection, so the exact value 

of D is known. In our experiment this was not the case. Users selected targets 

consecutively without the need to go to a ‘home’ position after each selection. The 

distance between two consecutive targets was known and that is the distance used in the 

calculation of the index of difficulty.  

Some special scenarios might emerge which have an influence on the final throughput 

value. In two-handed techniques the next target might be presented on the opposite side 

of the screen (D close to maximum) but near the other inputting finger, thus reducing the 

D and thus the effective ID and hence the MT and making throughput higher. We have 

used the one-handed ID as the baseline task description for comparison among 

conditions. The reduction in distance to target is inherent to two-handed approaches and 

the reason why their throughput is higher, but without improved sensing of which hand 

was used for each trial, it is not trivial to adapt the distance to target for a more realistic 

ID. Also, in all approaches, the next target might be presented in a location obscured by 

the user’s finger or hand (which might be close to the previous target, thus having low D) 

making the user search for it for longer  decreasing throughput. Additionally, our targets 

were random, which might bias the results (depending on user reaction). However, 

averaged over all test subjects these effects should not present a problem. These issues 

prevent direct comparison between these results and means from the literature for other 

devices, such as a standard computer mouse (4-5 bits/s). However, they are indicative of 

the amount of data which can be accurately input by a particular method on a mobile 

device touch screen and can, in our view, be mutually compared and conclusions drawn 

based on that comparison (i.e. their relative values are important). This discussion also 

pertains to the dynamic scenario. It is also interesting to note from Figure 14a that a 

number of outliers are detected (both higher and lower value points which could 

correspond to the cases outlined above).  

(Figure 14 about here) 

Results are presented in Figure 14b for the dynamic case. Similar trends in throughput 

can be seen. Although people are more accurate for PWS, it seems that due to the higher 

selection (tapping) time, throughput is lowest for that speed across all methods. For 

0.75PWS throughput is somewhat higher, while it is highest for 0.5PWS and 1.25PWS, 

possibly due to faster typing. It should, however, be kept in mind that the throughput 

calculation does not take into account error rates. 0.75PWS appears to be the optimal 
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speed in the experiment due to a good compromise between throughput and error 

rate/accuracy, which is in line with subjects’ preferred walking speed when interacting 

with a mobile phone. A number of outliers can be seen in Figure 14b, as in the static case.  

The means (and corresponding standard deviations) in all dynamic conditions (taking 

into account outliers) are presented in Figure 15. When compared to the static case it can 

be concluded that index finger pointing methods have a higher loss (in terms of 

magnitude) of throughput when compared to other methods (between 0.476-0.883 bits/s 

for PIFP and 0.702-1.422 bits/s for LIFP), while the smallest loss is for L2TP (between 

0.361-0.557 bits/s). However, there was no significant effect at p=0.05 level - a one-way 

ANOVA detected an almost significant effect (p=0.059, F(4,15)=5.57, η
2
=0.03) of input 

technique on reduction in throughput. 

(Figure 15 about here) 

One-way repeated measures ANOVA analysis of the influence of walking speed on 

throughput for each individual method revealed significant effects with varying values of 

p. A post-hoc THSD test was performed (for each ANOVA) and it revealed the 

following. For the P1TP input method (p<0.001, F(4,76)=35.84, η
2
=0.57) a significant 

effect was observed between the static condition and all dynamic ones and between pairs 

0.5PWS-PWS and 0.5PWS-1.25PWS (at p=0.05 significance level). For PIFP (p<0.001, 

F(4,76)=29.75, η
2
=0.54), the static condition also exhibited a statistically significant 

difference compared to all other dynamic scenarios, while in the case of walking no 

difference was observed. For P2TP (p<0.001, F(4,76)=23.02, η
2
=0.48) and LIFP 

(p<0.001, F(4,76)=35.89, η
2
=0.59), identical results were obtained in terms of post-hoc 

analysis with addition that for LIFP technique difference was also observed for pairs 

0.5PWS-PWS and 0.5PWS-1.25PWS. For L2TP the significance effect (p<0.001, 

F(4,76)=6.20, η
2
=0.19) was observed between static and all dynamic cases except 

0.5PWS (at p=0.05 significance level). Two-way ANOVA was performed in order to 

determine if there is interaction between input technique and walking speed for 

throughput data. A significant effect was recorded with (p<0.001, df=16, F=5.91). 

4.5. Gait phase analysis 

The acceleration data can be used to explore possible relationships between tapping 

accuracy and gait phase as well as relationships between input technique and gait phase. 

We now answer two questions: 1.) “Do subjects have regions of the gait phase cycle 

where they prefer to tap and is this reflected in performance parameters like accuracy?”, 

and 2.) “Is the distribution of gait phase values at tap instances unique to a particular 

input technique and does it change with walking speed?”. This analysis is limited to the 

dynamic/walking scenarios. We explore gait phase distributions at time instances when 

touch events occurred in various measurement scenarios. Figure 16 illustrates the 

relationship between gait phase zero-crossings and actual movement for one of the test 

subjects, using the P1TP input technique. The figure also contains histograms of right 

knee angle values (kinematic parameter recorded using an in-house built optoelectronic 

motion capture system) sampled at time instances when zero-crossings occurred (over 90 

s time period). Note the existence of a single peak in all subplots, demonstrating the 
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consistency of our gait phase estimation algorithm. Further analysis is needed to precisely 

define the relationship between the gait phase recorded by the mobile phone and 

kinematic parameters of the gait. 

 (Figure 16 about here) 

The distributions of gait phase angle along the z-axis (as the dominant axis during 

gait) are presented in Figure 17. The angle is defined over the [-π, +π] interval. 

Distributions were calculated taking into account the periodic nature of the signal under 

consideration (i.e. phases at –π and +π corresponds to two consecutive time instances) 

which is most heavily reflected in the boundary values. Note that for a particular 

condition, PDF estimates at –π and +π have similar values. From Figure 17a it can be 

seen that for a particular speed, all input techniques have similar general trends, although 

with some minor deviations depending on the input technique. For example, PIFP has 

two distinct peaks for all speeds, including 1.25PWS while other techniques do not have 

such pronounced maxima. This two peak trend (connected with left and right leg 

movement during one full step) is present for all speeds, while this phenomenon is 

weaker for faster walking (1.25PWS) where one dominant peak is present.  

(Figure 17 about here) 

This clearly demonstrates that there are certain phases during the gait cycle that are 

more likely to have more touch events associated with them. If the associated vertical 

accelerations are examined it can be observed that for both peaks (around -2 and 2 

radians) acceleration values are similar: slightly negative and close to zero. Taking into 

account the following facts: (1) acceleration along the z-axis is equal to zero about the 

time the foot makes contact with the surface (heel strike), (2) our phase gait cannot 

discriminate between the right and left foot, and (3) positive orientation of the 

accelerometer coordinate frame (Figure 5), we can conclude that these instances are 

related to the time just before the heel strike, when the foot descends. This is in 

accordance with observations made in (Crossan, Murray-Smith, Brewster, Kelly & 

Musizza, 2005), but makes a certain level of generalization since here we tested it on all 

possible input styles. It should be noted that some discrepancies do exist, which could be 

attributed to measurement conditions i.e. larger targets, different type of device (PDA) 

and use of a rigid physical stylus in (Crossan, Murray-Smith, Brewster, Kelly & Musizza, 

2005). However, because no simultaneous video recording was done it is not trivial to 

connect gait phase angles to actual gait phases or events for all measurements.  

Next, it is interesting to explore whether there is any statistical significance between 

distributions over the same input methods and different speeds and different speeds over 

all input techniques. Since the distributions in general are not Gaussian but rather 

multimodal, we employ the Kolmogorov-Smirnov two sample test (Conover, 1999, 

Böhm & Hornik, 2012). Looking at Figure 17a, we see that there are 5 signals in each 

subfigure, so 10 individual tests (per subfigure) are necessary to cover all possibilities (in 

total, 40 tests were performed). A comparison with adjusted p values (Holm-Bonferroni 

method) over all subjects and methods for different speeds and over all subjects and 

speeds for different input techniques was performed (due to the large number of tests and 
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taking into account space constraints we do not provide more details on the test results). 

It is interesting to observe that for all measurement conditions the resulting adjusted p-

values suggest there is a different underlying process responsible for the generation of the 

observed densities. These results seem to suggest that for a particular walking speed, the 

gait phase data could be used as an additional feature (especially in on-the-go scenario) to 

infer which input technique is being used and possibly improve on detection rates 

reported in the literature (Goel, Wobbrock & Patel, 2012, Ouyang, Partridge & Zhai, 

2013). The same analysis could be achieved for Figure 17b, i.e. analyzing different speed 

distributions over a particular input method (30 tests in total were performed, 6 per 

subfigure). From these results it can be concluded that gait phase analysis could be used 

to detect significant deviations in the gait speed due to the fact that people seem to 

change or adapt their gait phase/touch event dynamic with changing speed.  

Over all methods it seems that 0.75PWS and PWS have the most similar 

distributions, while this structure disappears at lower and higher speeds. Additionally, it 

should be kept in mind that the presented results are means across all subjects for each 

measurement condition. Our analysis of individual subjects suggest that their gait phase 

distribution in general does follow the trends present in the means in Figure 17, but with 

two side notes: 1.) the gait phase angle at which the maximum/minimum appears differs 

slightly from subject to subject and 2.) for certain measurement scenarios some subjects 

tend to have significantly different distributions from the mean. This implies that an 

individualized approach might provide better insight into the possible application of gait 

phase data in identification of current input method. For completeness, we analyzed plots 

for gait phase distributions along the other two axes and it was found that for the same 

walking speed there seems to be more variation in distribution trends than compared to 

the z-axis, with two peak structures in general not being visible. We concluded that z-axis 

motion is dominant and restricted our analysis to it.   

One additional analysis which can be carried out on the available data to provide 

more insight into the interaction dynamics is a comparison of accuracy/total error with 

gait phase angle. We divided the gait phase (along the z-axis) into 10 bins of equal size 

(approx. 0.314 radians) for each input technique-walking speed combination and for each 

bin we calculated the mean and standard deviation. An example of such a result is 

presented in Figure 18, where bin1 corresponds to the lowest phase angles. From the 

examples, it can be seen that indeed there seems to be a local minimum slightly offset 

from the positions of the two peaks. For P1TP-0.75PWS, the two peaks for tapping 

distributions are at around -3 rad and +2.51 rad, while accuracy is best for bins 4 (from -

1.5679 rad to -0.9410 rad) and 7 (from 0.3128 rad to 0.9397 rad). For L2TP-0.75PWS, 

the two peaks for tapping distribution are at around -2.51 rad and +2.51 rad, while 

accuracy is best for bins 1 (from -3.1416 rad to -2.8217 rad) and 7 (from 0.3128 rad to 

0.9397 rad), although note that the bin 8 (from 0.9397 rad to 1.5666 rad) median is very 

close to the bin 7 median. Similar results were observed for all other scenarios. The result 

suggests that although accuracy is greatest (i.e. total error is lowest) in the general 

vicinity of the gait phase where most of the taps occur, it leads it slightly in phase.  

In order to gain further insight, a one way repeated measures ANOVA was carried 

out, along with post-hoc THSD testing (for all ANOVAs) on accuracy bin means for 
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particular pose-speed combination and across all subjects. What this testing showed was 

highly statistical significance for all pose-speed combinations (for brevity only minimum 

values are listed here, p<0.001, F(9, 171)>194, η
2
>0.9)). Post-hoc analysis revealed that 

there was either a single bin (70% of cases) or two neighboring ones (25% of cases) with 

significantly lower pixel error (i.e. higher accuracy). Only in one case (1.25PWS-L2TP) 

were the two bins with lowest pixel error not neighbors (bins 2 and 4). Also, in all but 

two cases (0.75PWS-L2TP and PWS-PIFP) there were at least two bins that did not have 

a statistically significant difference (the value ranged between one and five bin pairs). 

The maximum absolute difference between bin means ranged from 3.8 to 7.6 pixels, 

depending on the pose-speed combination.  

 (Figure 18 about here) 

It is interesting to examine if there is a particular bin that has in general the lowest 

pixel error (highest accuracy) across all conditions and subjects. This is depicted in 

Figure 19, which presents histograms of bins with lowest pixel accuracy obtained from 

post-hoc analysis: in the case of a tie (i.e. two bins), both were considered. It can be seen 

that bin 7 is the bin with highest probability of having lowest pixel error. In Figure 18 it 

can be seen it is just before the gait phase where most of the taps occur, which is in line 

with our previous conclusions. This is also in line with some previous research (Crossan, 

Murray-Smith, Brewster, Kelly & Musizza, 2005) that suggested the existence of such 

gait phase intervals. This leads us to hypothesize that people might be less likely to select 

targets at a particular time instance during the gait cycle (i.e. where most taps occur) not 

because their accuracy is best there but rather because it relates in some way to human 

physiology (e.g. right leg left arm synchronization during the gait cycle). 

 (Figure 19 about here) 

4.6. Offset model analysis 

The advantages of touch offset model compensation on target selection accuracy have 

been demonstrated in the literature, as discussed in section 2.2. However, no 

compensation analysis was performed with subjects on-the-go. In this section we answer 

the following questions: “Are offset models walking speed and input technique specific?” 

and “What is the performance of offset models built on static condition compared to 

offset models built on data recorded while user was on-the-go if they are both applied to 

nomadic scenario data?”. Based on the results, we make recommendations on which 

model to use for on-the-go scenario. 

Before model construction, we analyzed various parameters such as screen position, 

input technique, mobile phone tilt and pitch angles, in order to verify and rank their 

impact on offset models. These were tested as predictors in a linear regression via 

random forests variable importance analysis (Breiman, 2001, Genuer, Poggi & Tuleau-

Malot, 2010). In general, the on screen position and input method were always ranked 

among the first three, with varying order. It was interesting to note that if the offset model 

along the x-axis was built, the x location on screen had more impact than the y position 

and vice versa. This analysis only confirmed that the input method (and, indirectly, the 
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approach angles, as outlined in the literature) had a significant effect on the offset model 

and that further investigation is justified.  

 In the analysis, only the on-screen location feature (for a particular input method) 

was used in model building. We used 10-fold verification for all cases, where 80% of 

randomly selected cases were used in each iteration for training (ideally 150x0.8=120) 

while the remaining 20% (150x0.2=30) were used for testing performance parameters 

like error rate and accuracy. When between-conditions model building and testing was 

done, the whole dataset from the testing condition scenario was used. First, the error rate 

was examined for the static case and the dynamic case. In this scenario, data from a 

particular measurement condition was used for model building for each subject 

individually, due to the well-known subject dependency of the offset models. Various 

other cases are examined later. 

Figure 20 depicts the error rates for static and dynamic conditions for various 

measurement conditions, when that condition data is used for building a model. From the 

figure it can be seen that the application of an offset model significantly improved the 

error rate (a statistically significant improvement was observed in all cases). The 

improvement varied depending on condition from 6.4% to 16.7% (mean 12.43%) in the 

static condition, and from 14.5% to 30.1% (mean 22.9%) for the dynamic condition.  

(Figure 20 about here) 

It is also interesting to note the relationship between different linear regression 

models. Based on the obtained results it seems that in the static case, a quadratic model is 

adequate (an accuracy-computation tradeoff) which was also confirmed with root mean 

square analysis. Thus, in subsequent analysis only the quadratic model will be used. 

Improved results might be achieved with some more sophisticated machine learning 

algorithms like Gaussian process priors (Rasmussen & Williams, 2006), as used in (Weir, 

Rogers, Murray-Smith & Löchtefeld, 2012). They come at higher computational cost, 

which might not be justified by the increased accuracy compared to the quadratic linear 

regression used in our case.  

Next, it is interesting to examine how errors behave when an offset model constructed 

with a different input technique is implemented. This phenomenon is not widely analyzed 

in the literature. If a significant deviation appears, it suggests that offset models are 

sensitive to the input technique and approach angle. Figure 21 presents these results. 

From the figure, it is evident that the error rate increases depending on which input 

technique is used for model building, although it was still lower than without any 

compensation, with the exception of the landscape techniques, where accuracy was best 

to begin with. It seems that, unsurprisingly, the largest increases are present when a 

different phone orientation is used, although there are some deviations (LIFP in cases of 

PIFP and P2TP). Error rates increased in all cases, compared to Figure 20, with increases 

ranging from 7.3% to 13.9% for P1TP, from 6.1% to 16.5% for PIFP, from 3.2% to 

11.6% for P2TP, from 8.1% to 10.7% for LIFP and from 6.1% to 13.7% for L2TP. These 

data emphasize the importance of correctly inferring pose and input technique.  
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(Figure 21 about here) 

Next, we examine how a model built in a static condition behaves when a person 

starts to walk, and how that compares to a model built with data from the dynamic 

measurement condition, e.g. speed for a particular input method. This is depicted in 

Figure 22a. From the figure it can be concluded that performance degrades significantly 

for portrait-based methods while the degradation is somewhat smaller for landscape-

based methods. This implies that when the accuracy of the underlying method is good it 

matters less that the model was built using static or dynamic data, although differences do 

exist. It should be noted that use of a model built using static data is still an improvement 

over cases where no offset compensation is performed.  

(Figure 22 about here) 

However, a reduction in error difference is observed in Figure 22b, when using an 

offset model built using 0.75PWS, since 75% of PWS is reported in the literature 

(Bergström-Lehtovirta, Oulasvirta & Brewster, 2011) as the speed at which users 

spontaneously walk when using a mobile phone. Here again, the improvement is more 

dramatic for portrait-based methods (ranging from 5.3% to 11.9%) while for landscape-

based methods the improvement is somewhat less impressive (ranging from 0.05% to 

5.3%). This was confirmed with a paired t-test comparing portrait-based methods across 

all walking speeds (which was later also done for landscape-based methods). The 

following values were obtained: for the portrait case (p<0.001, df=8, t=10.22, common 

language effect size (CLES) = 0.99); for the landscape case (p=0.52, df=5, t=0.67, CLES 

= 0.60). It can be concluded that if nothing else were known about the current input style, 

it might be better to build an offset model using 0.75PWS data, rather than static data, in 

order to reduce the error rate over every input technique and walking speed. 

For accuracy as a second performance parameter, similar trends were observed. In the 

static condition the accuracy gain was lower (from 3.1 to 4.2 pixels depending on input 

technique) than in the dynamic case (from 5.6 to 12.7 pixels, depending on measurement 

condition). Implementing offset models built on corresponding model data therefore has a 

higher benefit in terms of accuracy in the dynamic case than in the static case. The same 

trends in the data can be observed in terms of how an offset model constructed on 

dynamic data outperforms a model based on static data. Although the difference is not so 

dramatic in terms of sheer amplitude (up to 4 pixels) it translates into significant results 

in terms of error rate, as was demonstrated earlier. An example of changes in model 

generation for all input methods, for one test subject, is presented in Figure 23. The figure 

was generated using the amplitude of the output of both x and y offset models (for 

particular on-screen location) for calculation of the total (in a Euclidian sense) offset 

amplitude. It would be interesting to change the walking speed in more precise 

increments and record what happens to the offset vector at particular screen locations and 

possibly infer an approximate analytical equation which describes these changes.  

(Figure 23 about here) 
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Finally, the benefit of inclusion of speed in offset modeling was tested by including 

walking speed as a feature in the regression model. Walking speed was filtered with a 10-

point moving average filter before inclusion in the model, in order to provide smoother 

input. In the training phase 80% of all posture-speed combinations (across all subjects) 

were used, while the remaining 20% was used for testing (this was done in 10-fold cross 

validation manner). In order to provide a fair comparison with other conditions, their 

results were sampled in similar way: random 20% of all posture-speed pairs (across all 

subjects) were selected for comparison with the new model. For all cases, the mean value 

and standard deviation were calculated as presented in Figure 24. 

(Figure 24 about here) 

These results suggest that the inclusion of walking speed decreases the error rate 

(10.88%) compared with the no compensation case. This we believe further emphasizes 

the speed dependency of offset models. However, it performs worst when compared to 

other compensation approaches: the corresponding speed model (5.36%) and 0.75PWS 

model (3.38%). It is worth noting that variation also increases significantly in the model 

with speed variable. One possibility is that the degraded performance could mainly be 

attributed to the variations in the speed estimate and that a more robust speed estimate or 

sensor would improve the performance of the model but more testing is needed.  

5. CONCLUSIONS 

In this paper we analyzed the influence of walking speed and input technique on 

standard performance parameters like error rate, accuracy, tapping time and throughput. 

The paper provides the most comprehensive analysis to date of finger tapping accuracy 

on capacitive touch screens, while mobile. This is done from the perspective of a 

particular input pose with all of its particularities, including different target sizes in 

portrait and landscape orientations. 

 The error rate in the static case (i.e. the subject was stationary) varied between a 

mean of 11.96% for the landscape-based index finger pointing technique to 30.12% for 

the portrait two thumbs pointing technique. Regardless of input technique, this error 

significantly increased when users started to move, with error rate minima for 75% or 

100% of preferred walking speed (depending on technique).  

In terms of accuracy in the static scenario, all methods demonstrated similar mean 

values, with the landscape index finger pointing being the most accurate and portrait two-

thumbs pointing, least accurate. Similar trends to the case of error rate in the walking 

scenario were obtained. The results for tapping speed showed that mean values are again 

similar, with landscape two-thumb pointing being the fastest (0.517 s between taps) and 

portrait one thumb pointing the slowest (0.558 s between taps). Tapping speed increased 

when users started to move at speeds of 75% and 100% of preferred walking speed, while 

it dropped when 50% and 125% of preferred walking speed was used. Tapping speed was 

similar across all techniques, suggesting that users seemed to trade maintaining tap rate 

against worsening error rates.  
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Combining tapping accuracy and tapping speed in one parameter we analyzed the 

throughput, with the caveat that, due to the specific nature of the two-finger based input 

techniques, direct comparison of the results with similar cases studied in the literature 

(for example, for the computer mouse) are not straightforward. The largest throughput 

was obtained for landscape, index finger pointing (5.586 bit/s), while the lowest value 

was measured for the portrait, one-thumb pointing technique (4.968 bits/s). This result is 

somewhat surprising, since it shows that the portrait, one-thumb input technique is the 

slowest in transmitting user intent to the device but 60% of all subjects stated in their pre-

measurement interviews that it was their preferred interaction technique.  

In summary, these results lead to several conclusions which might be of interest to 

designers of mobile phone interfaces and/or applications:  

1. Users performed better, in terms of throughput and error rate, with index finger 

pointing, while holding the phone with the other hand, than with thumb pointing. 

Also, landscape modes generally performed better (in terms of error rate) than 

portrait-based ones. 

2. All parameters for all input techniques worsened when the user started to move (even 

with slower speeds), with best performance in general being measured at preferred 

walking speed. 

3. Tapping time measurements suggested that users seemed to make a tradeoff, 

maintaining tapping speed against worsening error rates. 

Implications for design: Such quantification of variations in performance in different 

postures might be useful for designers when deciding whether to support particular 

posture modes for mobile use. Furthermore, the quantification of worsening performance 

for different conditions can be used to recommend upper limits on accuracy for interfaces 

you want people to be able to use the system on the move, or to provide a principled basis 

to support adaptive simplification of interfaces as users walk more rapidly. Any such 

context-sensitive simplification of the interface would be visible to users, and would need 

to be communicated using carefully chosen design metaphors. 

Context-dependent offset models are better than static offset models: We also analyzed 

how pose and walking speed influence the accuracy of offset models used to infer finger 

position. Offset models were built using simple regression with a quadratic model. The 

results confirmed earlier conclusions from the literature, that the use of offset models can 

significantly reduce error rates. In our measurements, the error rate was reduced by 

between 6-17% in the static case, while the improvement was even more dramatic in the 

mobile scenario, where the reduction was between 14-30% (depending on the input 

technique). This reduction was based on offset models built on data from the 

corresponding walking speed-input technique combination, but if a different walking 

speed and/or input technique was used (even in static condition) the correction rate 

degraded significantly. This demonstrated the walking speed and input technique 

variability of offset models. We demonstrated that building a global model on 75% 

preferred walking speed (and the appropriate input technique) is a good compromise, 
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although context-adaptive methods which blend models learned at different speeds would 

probably improve on this further.  

The use of such context-dependent offset models, in conjunction with decisions based on 

the influence of walking speed, and the input technique, has the potential to both improve 

the user experience and allow for smaller-sized controls in a manner invisible to the user.  

Gait phase effects for capacitive touch differ from earlier stylus results: Gait phase 

analysis demonstrated that the tapping distribution is dependent on the input technique 

being used, as well as the current walking speed. The existence of peaks in gait phase 

distributions with respect to touch events suggests that subjects are likely to tap during 

certain gait phases, demonstrating tap alignment with steps. In our analysis there was no 

strong correlation between preferred regions of gait phase for tapping and lower error 

rates, in contrast to earlier work (Crossan, Murray-Smith, Brewster, Kelly & Musizza, 

2005). Although regions of higher accuracy were detected they did not correspond to the 

peaks in the gait phase distribution. This suggests that the different hardware and input 

styles used in these studies (PDA with resistive screen and physical stylus vs. capacitive 

touch screen on mobile phone with index finger pointing) make a significant difference to 

user behavior. One result of the analysis in this paper suggests that interfaces which 

encourage a rhythm of tapping might not have as high improvements in finger actuated 

capacitive touch screen performance as expected, given the results of (Crossan, Murray-

Smith, Brewster, Kelly & Musizza, 2005).   

Future research directions: In this study, users were selecting abstract targets (blank 

virtual keys) which might have some influence on performance parameters and offset 

models, as users aim at a visual target in an arbitrary location. It would be interesting to 

compare this with the results when using standard interface elements, like keyboards 

where the visual targeting is eliminated by learning effects (e.g. when typing a message, 

users know which key to press next and the general area where that key is located) and 

where actions are affected by co-articulation effects related to key presses before and 

after. Further learning effects include providing feedback information on targeting 

success which would allow users to adapt their behavior during the experiment, to 

improve performance. The conservative assumptions of no precision feedback in our 

study simplify the experiment design and analysis, but might make the results overly 

pessimistic. 

The experiment design can also be generalized to other popular gestural inputs, 

and could be repeated to test the usability of more complex interactions such as swipe 

gestures, pinch to zoom, gesture typing vs. tap typing etc. while in motion and with a 

range of phone postures. Similarly, it could be applied to touch interaction on other 

wearables, such as smart watches. 

The walking behavior chosen here was relatively simple, indoors, on an even surface and 

with minimal external disturbances. Future developments might use inertial sensing to 

log user tapping behavior ‘in the wild’, subject to more complicated scenarios. 
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Figure 1 – Input techniques used in the experiment (P1TP – portrait one thumb 

pointing, PIFP – portrait index finger pointing, P2TP – portrait two thumbs pointing, 

LIFP – landscape index finger pointing, L2TP – landscape two thumbs pointing) 
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Figure 2 – Sketch of walking path used in the experiment along with dimensions. 

Left: transition from counterclockwise to clockwise walking direction.  Right:  transition 

from clockwise to counterclockwise walking direction. Subjects always started the 

measurement in the clockwise direction. 
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a)  

 

b)  

Figure 3 – Mobile phone used in experiment: a) dimensions of target squares used in 

the experiment (upper row) and screenshot of the mobile phone screen (not the entire 

phone) during measurements (lower row); b) examples of user feedback on gait 

frequency. The changing color of frequency ticks and indicator bar, depends on the 

current gait frequency. Yellow was used to indicate the within-range frequency, close to 

±10% limits. 
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Figure 4 – Smoothed scatter plot of normalized (with respect to 0,0) touch locations 

for all input techniques in static conditions of 3 left handed (upper row) and 3 right 

handed (lower row) test subjects. The central square represents the actual target for both 

phone orientations (note the changed coordinate frame orientation). 
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Figure 5 – Tilt and pitch compensation of the mobile phone coordinate system (note 

that the figure depicts an accelerometer coordinate system which is different from the 

screen coordinate system – see Figure 3) 
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Figure 6 – Offset model vector fields for one test subject in portrait mode trained on 

static data. Each arrow corresponds to the offset vector in x and y direction associated 

with a 25x25 pixel area. 
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Input 

technique 

Error rate 

[%] 

Total error 

(accuracy) 

[pixel] 

Tapping time 

[s] 

Throughput 

[bits/s] 

Mean STD Mean STD Mean STD Mean STD 

P1TP 27.74 16.21 24.71 6.33 0.5583 0.1644 4.977 1.498 

PIFP 25.49 18.6 23.55 8.10 0.5367 0.1490 5.457 1.631 

P2TP 30.12 16.03 23.75 6.69 0.5407 0.1625 5.161 1.607 

LIFP 11.96 13.72 21.75 7.18 0.5367 0.1546 5.586 1.612 

L2TP 17.95 15.17 24.38 7.16 0.5172 0.1330 5.446 1.795 

Figure 7 – Mean values and associated standard deviations (STD) for static condition 

for four performance parameters 
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a) 

 

b) 

Figure 8 – Box-and-whiskers plot of error rate for: a) static conditions across all test 

subjects for all input techniques; b) dynamic conditions across all test subjects for all 

input techniques 
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Figure 9 – Heat map plot of error rates at screen divided into 12 sections during P1TP 

interaction (first row: static, 0.5PWS, 0.75PWS; second row: PWS, 1.25PWS). Note that 

values are representative of error rates for screen grid parts and not the overall error rate. 
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a)  

 

b) 

Figure 10 – Box-and-whiskers plot of total error for: a) static conditions across all test 

subjects for all input techniques; b) dynamic conditions across all test subjects for all 

input techniques. 
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Figure 11 – Smoothed scatter plot of normalized (in respect to 0,0) touch locations for 

the PIFP input technique (left figure) and LIFP input technique (right figure) in all 

measurement conditions across all test subjects. The central square represents the actual 

target in portrait/landscape mode. 
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a) 

 

b) 

Figure 12 - Tapping speed results: a) Cumulative distribution function (CDF) plot of 

tapping time for different input methods in the static condition, over all test 

subjects, b) comparison of tapping time means over all test subjects in different 

dynamic conditions and for different input methods. The horizontal red line 

corresponds to the mean tapping time in the static condition. 
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Input 

technique Correlation 

coefficient 

95% confidence 

interval Statistical 

significance           

(p value) 
  

lower 

bound 

upper 

bound 

P1TP -0.19 -0.23 -0.15 p<0.001 

PIFP -0.11 -0.15 -0.08 p<0.001 

P2TP -0.09 -0.13 -0.06 p<0.001 

LIFP -0.18 -0.21 -0.14 p<0.001 

L2TP -0.13 -0.16 -0.09 p<0.001 

Figure 13 – Correlation analysis of tapping speed and total error in static condition 
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a) 

 

b) 

Figure 14– Comparison of throughput values obtained for: a) all input methods in the 

static condition, b) all input methods in the dynamic condition. 
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Input 

technique 

Walking 

speed 

Throughput 

[bits/s] 

Mean STD 

P1TP 

0.5PWS 4.525 1.624 

0.75PWS 4.354 1.717 

PWS 4.319 1.761 

1.25PWS 4.306 1.724 

PIFP 

0.5PWS 4.732 1.628 

0.75PWS 4.663 1.616 

PWS 4.558 1.689 

1.25PWS 4.517 1.636 

P2TP 

0.5PWS 4.508 1.534 

0.75PWS 4.555 1.645 

PWS 4.481 1.727 

1.25PWS 4.469 1.699 

LIFP 

0.5PWS 4.960 1.467 

0.75PWS 4.78 1.559 

PWS 4.640 1.618 

1.25PWS 4.558 1.748 

L2TP 

0.5PWS 5.202 1.895 

0.75PWS 5.001 1.842 

PWS 5.035 2.108 

1.25PWS 5.007 2.045 

Figure 15 – Throughput means and standard deviations (STD) for all input techniques 

and all walking speed 
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Figure 16– Illustration of the relationship between actual subject gait and gait phase 

zero crossings. Histograms depict distribution of right knee angle values for time 

instances when zero-crossing occurred. Four key points are marked with corresponding 

numbers in all subplots. 
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a) 

 

b) 

Figure 17– Comparison of gait phase angle distributions along z axis. Figure 17a depicts 

a comparison for each walking speed over all input methods while Figure 17b 

depicts a comparison of each input method over all walking speeds. 
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a) 

 

b) 

Figure 18– Examples of gait phase/total error analysis along the z axis for two input 

method-walking speed scenarios: a) figure depicts the P1TP-0.75PWS scenario; b) figure 

depicts the L2TP-0.75PWS scenario. Gait phases have been binned into 10 groups. For 

comparison reasons, the PDF estimate is also plotted. 
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Figure 19 – Histogram of gait phase bins with highest accuracies across all pose-

speed combinations and subjects. 
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a)  

  

b)  

Figure 20 – Error rate box plots for corrected and uncorrected bias in different 

conditions for the a) static and b) dynamic cases (black and white circles represent 

means). Data from the condition was used to build the model.  
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Figure 21 – Error rate box plots in the static condition for an offset model built using 

data collected on same subject but with different input techniques (circles represent 

means).  

 

 

 

 

 

 

 

 

Page 58 of 61

URL: http://mc.manuscriptcentral.com/hci

Human-Computer Interaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 - 59 - 

 

 

 

 
 

a) 

 

b) 

Figure 22– Error rate differences between offset model errors (white circles are 

means): a) difference between dynamic conditions and a model built for the static 

condition, and b) difference between dynamic conditions and a model built on 0.75PWS 

data. 
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Figure 23– Comparison of contour plots for amplitudes of offset models for all 

measurement scenarios for one subject (subject No. 16). Note that, for comparison 

reasons, the scale has been limited to the [0,35] interval.  
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Approach 
Mean error 

rate 

Standard 

deviation 

No compensation 41.67% 7.69% 

Compensation with corresponding speed 

model 
25.43% 1.85% 

Compensation with 0.75PWS speed 

model 
27.41% 3.56% 

Compensation with speed in statistical 

model – linear quadratic regression 
30.79% 8.05% 

 

Figure 24 – Comparison of mean error rate and standard deviation of regression 

model with speed variable with baseline and other compensation approaches 
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