Unity ML-Agents系列教程(一)环境安装

(一)背景

最近人工智能有点火,各种机器人、大模型等,所以也学习下Unity下的人工智能,看看Unity怎么机器学习的。

因为ML Agent这个是多年前Unity弄的,所以现在找到的资料都是几年前的,而现在Python和其他依赖库都已经升级n个版本了,所以按照现在找到的资料大部分都是报错。

后来经过踩坑好久,各种报错解决,终于找到一个靠谱的了,部署成功了。(出现Unity Logo说明成功了)

以上是背景,下面说下详细步骤:

(二)安装Conda

如果你刚接触肯定对各种都很陌生,首先Conda是什么,Conda 是一个开源的软件包管理系统和环境管理系统,通过Conda可以很方便的创建虚拟环境,在各个虚拟环境中切换,不会导致相互环境冲突。下图就是各种虚拟环境。

到Conda官网Conda Documentation — conda 25.3.0 documentation下载对应的安装包即可,我目前是在windows里的,所以下载windows的conda安装包。

下载完在这里能看到Anaconda Prompt,这个软件后面我们用来输入命令行。

Conda 安装好之后已经包含 Python了,就不需要单独再下载Python了。

(三)准备Unity ML-Agent官方示例包

我们先把官方示例跑通,官方给了很多示例来熟悉这个框架。

进入Unity的官方示例GitHub,将工程下载下来或者clone下来。GitHub - Unity-Technologies/ml-agents: The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables games and simulations to serve as environments for training intelligent agents using deep reinforcement learning and imitation learning.

 

其中,Project就是Unity的工程,我们用Unity打开即可,官方提供了很多示例,我们直接运行也可以,但是直接运行是用训练好的模型跑的,我们后面再来说下怎么自己训练模型。

(四)安装Python环境

通过下面的命令分别在Conda里敲,如果链接太慢,可以把--index-url改成阿里云的镜像:https://mirrors.aliyun.com/pypi/simple/

也就是pip3 install torch -i https://mirrors.aliyun.com/pypi/simple/

备注:后面-i就是--index-url的缩写,-i指定了从哪里安装库。

# 1、使用Conda创建一个虚拟环境,-n后面的mlagents就是虚拟环境名称,指定Python版本
conda create -n mlagents python=3.10.12

# 2、激活虚拟环境
conda activate mlagents

# 3、使用下面命令安装依赖库
conda install numpy=1.23.5
pip3 install torch~=2.2.1 --index-url https://download.pytorch.org/whl/cu121

# 4、测试下安装成功没
python
import torch
import numpy
print(torch.__version__)
print(numpy.__version__)
exit()

# 5、清空命令行内容(可选)
clear

# 6、CD到clone下来的文件夹(这个你们下载在哪里就改成哪里,根目录)
cd /d E:\360Downloads\ml-agents-latest_release\ml-agents-latest_release

# 7、从clone下来的工程里安装依赖项
python -m pip install ./ml-agents-envs
python -m pip install ./ml-agents

# 8、检查训练库安装成功没
mlagents-learn --help

# 9、开始启动一个训练项,供Unity连接,当前为Basic示例
mlagents-learn config/ppo/Basic.yaml --run-id=run1

# 强制覆盖或恢复上一次运行(可选)
mlagents-learn config/ppo/Basic.yaml --run-id=run1 --force
mlagents-learn config/ppo/Basic.yaml --run-id=run1 --resume

 mlagents-learn --help会出险unity的logo,说明安装成功了。

 启动实例后,会出现如下输出,这样Unity就可以与Python连接传输数据了。

[INFO] Listening on port 5004. Start training by pressing the Play button in the Unity Editor.

 如果没设置好,Unity这里会输出Couldn't connect to trainer on port 5004 using API version,这是因为Python没有准备好环境和启动实例。

 

连接上之后,命令行会输出如下信息。

[INFO] Connected to Unity environment with package version 3.0.0 and communication version 1.5.0

 (五)结尾

到此我们环境就搭好了,可以愉快的玩耍了。

(参考)以下是一些参考链接

视频教程:https://www.youtube.com/watch?v=bT3SV1SLqHA

视频教程对应的文档:ml-agents-course-assets/conda-commands.md at main · LudicWorlds/ml-agents-course-assets · GitHub

Unity官方示例(里面的doc有详细教程,但是太老了):GitHub - Unity-Technologies/ml-agents: The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables games and simulations to serve as environments for training intelligent agents using deep reinforcement learning and imitation learning.Unity官方示例教程:Installation - Unity ML-Agents Toolkit

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼蛋-Felix

如果对你有用,可以请我喝杯可乐

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值