好的,作为一名资深软件工程师和技术博主,我很乐意为你撰写这篇关于AI应用架构师在负载均衡方面经验总结的技术博客。
AI应用架构师经验总结:负载均衡的10个最佳实践(万亿参数时代的干货指南)
一、引言 (Introduction)
钩子 (The Hook):
“系统又挂了!” 凌晨三点,你被刺耳的手机铃声惊醒。屏幕那头是焦急的产品经理:“用户反馈AI模型API完全无法响应,好几家大客户在投诉!” 你强打精神登录监控平台,映入眼帘的是某个推理节点CPU使用率100%,而其他几个节点却在“摸鱼”,请求队列长度已经爆表。又是负载均衡的锅?在这个AI模型参数动辄数十亿、数百亿,用户对响应速度和服务可用性要求严苛的时代,一次负载均衡策略的失误,就可能意味着数百万美元的损失和不可挽回的用户信任危机。你是否也曾为AI应用的“冰火两重天”——部分节点累死、部分节点闲死——而头疼不已?
定义问题/阐述背景 (The “Why”):
负载均衡(Load Balancing)并非一个新概念,它是分布式系统架构中的基石,旨在将网络流量、计算任务或数据负载“公平地”分配到多个服务器或资源上。然而,当我们将负载均衡的舞台从传统Web服务迁移到AI应用,特别是大模型推理、训练任务时,其复杂性和重要性被推向了新的高度。