大语言模型应用指南:什么是机器学习

本文介绍了机器学习在人工智能中的核心地位,特别是大语言模型的兴起及其在自然语言处理中的作用。文章详细阐述了机器学习的定义、监督与非监督学习,以及Transformer模型和Self-Attention机制。通过预训练与微调策略,大语言模型能应用于文本生成、机器翻译、问答系统等多个领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大语言模型应用指南:什么是机器学习

1. 背景介绍

1.1 人工智能的崛起

人工智能(Artificial Intelligence, AI)作为一个研究领域,已经存在了几十年。近年来,随着计算能力的飞速提升、海量数据的积累以及机器学习算法的不断优化,人工智能取得了长足的进步,并在多个领域展现出超乎想象的能力。从无人驾驶、语音识别到医疗诊断,人工智能系统正在彻底改变着我们的生活方式。

1.2 机器学习的核心地位

在人工智能的多个分支中,机器学习(Machine Learning)扮演着核心角色。它赋予计算机以学习的能力,使之可以从海量数据中自动分析规律,并对未知数据做出准确预测。机器学习已广泛应用于计算机视觉、自然语言处理、推荐系统等诸多领域,为人工智能的发展贡献了强大的算法引擎。

1.3 大语言模型的兴起

近年来,以GPT(Generative Pre-trained Transformer)为代表的大语言模型取得了突破性进展,展现出令人惊叹的自然语言理解和生成能力。这些模型通过在海量文本数据上预训练,掌握了丰富的语言知识,可以完成翻译、问答、文本续写等复杂任务。大语言模型的出现,标志着机器学习在自然语言处理领域取得了重大突破,为人工智能的发展开辟了新的视野。

2. 核心概念与联系

2.1 机器学习的定义

机器学习是一门研究如何从数据中学习的科学,它赋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值