Python深度学习实践:深度信念网络(DBN)的理论与实践
1.背景介绍
1.1 深度学习的兴起
近年来,深度学习作为一种有效的机器学习方法,在计算机视觉、自然语言处理、语音识别等领域取得了巨大的成功。与传统的机器学习算法相比,深度学习能够自动从数据中学习特征表示,无需人工设计特征,从而在处理高维复杂数据时表现出色。
1.2 深度信念网络概述
深度信念网络(Deep Belief Network, DBN)是一种概率生成模型,由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成,能够高效地对原始输入数据进行非线性特征提取。DBN通过无监督逐层预训练和有监督微调的方式训练,可以学习到高质量的概率分布,从而在分类、回归、降维、协同过滤等任务中表现优异。
2.核心概念与联系
2.1 受限玻尔兹曼机
受限玻尔兹曼机(RBM)是DBN的基本构建模块,由一个可见层(Visible Layer)和一个隐藏层(Hidden Layer)组成。可见层对应于输入数据,而隐藏层则学习到输入数据的隐含特征表示。RBM通过能量函数建模可见层和隐藏层之间的相互作用,并利用对比散度算法进行无监督训练。
2.2 层次结构
DBN由多个RBM按层次结构堆叠而成。较低层的RBM从原始输入数据中学习基础特征,而较高层的RBM则从前一层的