1. 背景介绍
1.1 神经网络的发展历程
神经网络作为一种强大的机器学习模型,已经在计算机视觉、自然语言处理、语音识别等诸多领域取得了巨大的成功。早期的神经网络模型如前馈神经网络、卷积神经网络等,通过对输入数据进行层层变换和非线性映射,最终得到所需的输出。然而,这些模型在处理序列数据时存在一些缺陷,比如难以捕捉长距离依赖关系、梯度消失或爆炸等问题。
1.2 注意力机制的兴起
为了解决上述问题,2014年,注意力机制(Attention Mechanism)应运而生。注意力机制的核心思想是允许模型在编码输入序列时,对不同位置的输入词元分配不同的注意力权重,从而更好地捕捉长距离依赖关系。注意力机制最初被应用于机器翻译任务,取得了巨大的成功,随后也被广泛应用于其他自然语言处理任务和计算机视觉任务中。
2. 核心概念与联系
2.1 注意力机制的本质
注意力机制的本质是一种加权求和操作。在编码输入序列时,模型会为每个位置的输入词元计算一个注意力权重,表示该位置对当前输出的重要程度。然后,模型将所有位置的输入词元的表示加权求和,作为当前时间步的输出表示。
2.2 注意力机制与人类认知的联系
注意力机制与人类认知过程存在着内在的联系。当人类阅读一段文字或观察一幅图像时,我们的大脑会自动分配注意力资源,关注重要的部分,而忽略不太重要的部分。这种选择性加工机制有助于我们高效地处理海量信息,提取关键内容。注意力机制赋予了神