注意力机制:让神经网络专注于重点

本文介绍了注意力机制在神经网络中的应用,起源于解决长距离依赖问题,它模仿人类认知,通过加权求和的方式聚焦关键信息。核心概念包括点积注意力、缩放点积注意力和多头注意力。注意力机制已广泛应用于机器翻译、文本摘要、图像描述生成等领域,并推荐了学习资源,如PyTorch和预训练模型BERT。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 神经网络的发展历程

神经网络作为一种强大的机器学习模型,已经在计算机视觉、自然语言处理、语音识别等诸多领域取得了巨大的成功。早期的神经网络模型如前馈神经网络、卷积神经网络等,通过对输入数据进行层层变换和非线性映射,最终得到所需的输出。然而,这些模型在处理序列数据时存在一些缺陷,比如难以捕捉长距离依赖关系、梯度消失或爆炸等问题。

1.2 注意力机制的兴起

为了解决上述问题,2014年,注意力机制(Attention Mechanism)应运而生。注意力机制的核心思想是允许模型在编码输入序列时,对不同位置的输入词元分配不同的注意力权重,从而更好地捕捉长距离依赖关系。注意力机制最初被应用于机器翻译任务,取得了巨大的成功,随后也被广泛应用于其他自然语言处理任务和计算机视觉任务中。

2. 核心概念与联系

2.1 注意力机制的本质

注意力机制的本质是一种加权求和操作。在编码输入序列时,模型会为每个位置的输入词元计算一个注意力权重,表示该位置对当前输出的重要程度。然后,模型将所有位置的输入词元的表示加权求和,作为当前时间步的输出表示。

2.2 注意力机制与人类认知的联系

注意力机制与人类认知过程存在着内在的联系。当人类阅读一段文字或观察一幅图像时,我们的大脑会自动分配注意力资源,关注重要的部分,而忽略不太重要的部分。这种选择性加工机制有助于我们高效地处理海量信息,提取关键内容。注意力机制赋予了神

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值