深度强化学习DQN的前沿研究热点与趋势

本文深入介绍了深度强化学习中的DQN算法,从强化学习的背景到DQN的兴起,详细阐述了马尔可夫决策过程、Q-Learning以及深度神经网络在函数逼近中的作用。此外,还解析了DQN算法的核心步骤,包括经验回放和目标网络,并通过代码示例展示了DQN在CartPole问题上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 强化学习概述

强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它关注智能体(Agent)如何通过与环境(Environment)的交互来学习并优化其行为策略,从而获得最大的累积奖励。与监督学习和无监督学习不同,强化学习没有提供明确的输入-输出样本对,而是通过试错和奖惩机制来学习。

1.2 深度强化学习的兴起

传统的强化学习算法在处理高维观测数据和连续动作空间时存在一些局限性。深度神经网络(Deep Neural Networks, DNNs)的出现为强化学习提供了一种强大的函数逼近能力,使得智能体能够直接从原始高维输入(如图像、视频等)中学习策略,从而推动了深度强化学习(Deep Reinforcement Learning, DRL)的发展。

1.3 DQN算法的里程碑意义

2013年,DeepMind公司提出了深度Q网络(Deep Q-Network, DQN),将深度学习与Q-Learning相结合,成为深度强化学习领域的一个里程碑。DQN算法能够直接从原始像素输入中学习控制策略,并在多个经典的Atari游戏中表现出超越人类的水平,引发了学术界和工业界对深度强化学习的广泛关注。

2. 核心概念与联系

2.1 马尔可夫决策过程(MDP)

马尔可夫决策过程(Markov Decision Process, MDP)是强化学习的数学基础。MD

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值