The MySQL Test Framework, Version 2.0

Abstract
This manual describes the MySQL test framework, consisting of the test driver and the test script language.

This manual is no longer updated. Any further updates to test framework documention take place in the MySQL
Source Code documentation and can be accessed at The MySQL Test Framework, Version 2.0.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL
Documentation Library.

Document generated on: 2017-07-20 (revision: 53027)

http://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 Introduction to the MySQL TeSt FrameEWOIKcoeiiuuiiiiiiiiieiii et e e e 1
2 MySQL Test Framework COMPONENTSccouuuiiiiiii ettt ettt ettt e et et e e eba s 3
2.1 Test Framework SyStem REQUIFEMENTSuuuiiiiuiiieiiiiiie ettt e e e e 6

2.2 The Test FrameWork And SSLcoouuuiiiiiiiieiiii et e e 6

2.3 How to Report Bugs from Tests in the MySQL Test SUIteovviiiiiiiiiiiiiic e 6

3 RUNNING TESE CASES ...tiitiieiiiti ettt ettt ettt ettt ettt ettt e et e e e et et e et et r e e e eaa e e e eaa e e eenans 9
3.1 Running Tests in Parallel ... 10

4 WILING TESE CBSES ... eieitiieiiiii ettt ettt ettt e ettt e et e et e et et b e e et e te e et eeteneeeesbereeeeatnnaaeenes 11
4.1 Writing a Test Case: QUICK STAIccouuuiiiiiii e 11

4.2 Test Case Coding GUIEIINEScoouuiiiiiiii et 12
4.2.1 File Naming and Organization GUIdeliNeScoviiiiiiiiiiiiiiii e 12

4.2.2 Test Case Content-Formatting GUIidelinesocoeuiiiiiiiiiniiiii e 13

4.2.3 Naming Conventions for Database ODJECEScooeeiiiiiiiiiiiin e, 14

4.3 SAMPIE TESE CASE ...eiitiiiiiii ettt ettt ettt e et e e e e e e e eene 15

4.4 Cleaning Up from a Previous TeSt RUNoiiiiiiiiiiiii e e 15

4.5 Generating a Test Case ResUlt File ... 16

4.6 Checking for EXPECIEA EITOISccouuuiiiiiiii ettt ettt e ettt e e et e e e ena e eees 17

4.7 Controlling the Information Produced by @ Test Casecccuvuiieiiiiiiieiiiiiieeeii e 19

4.8 Dealing with Output That Varies Per TEeSt RUNcoviiiiiiiiiiiii e 20

4.9 Passing Options from nysql -t est-run. pl tonysqgl d ornysqgltestccccceiiieiinnnnnn. 21

4.10 Specifying Test Case-Specific Server OPLioNSoveviiiiiieiiiiie e 22

4.11 Specifying Test Case-Specific BOOtStrap OPLIONSccuuuieiiiiiiiieiiiiiieeee e 23

4.12 Using Include Files to SIMPIify TESt CASESviiiiiiiiiiiiiiieei e 23

4.13 Controlling the Binary Log Format Used for TESISoviiiiiiiiiiiiiiiiciii e 24
4.13.1 Controlling the Binary Log Format Used for an Entire Test Runccccceeeeees 24

4.13.2 Specifying the Required Binary Log Format for Individual Test Cases 25

4.14 Writing RePliCAtiON TESESieuiiieiiiii e e 26

4.15 Thread Synchronization in TESt CASEScocuuuiiiiiiiieieii e e 27

4.16 Suppressing Errors and Warningo.uu et 28

4.17 Stopping & Server DUMNNG @ TEST ...ttt et eenees 28

4.18 Other Tips for WIitiNg TESt CASESiieiiiiiiiiii ettt e e 29

5 MYSQL TSt PrOQIaIMSc.uiiiiiiiiiiiiii ettt e e e e e e e e enans 31
5.1 mysql t est — Program t0 RUN TeSt CASESveiiiiiniiiiiiiieeiiiie e 31

52 nmysql _client_test — TeSt CHeNnt APlcoouiiiiiii e 35

53 nysql -test-run. pl — Run MySQL TeSt SUItEccvviviiiiiiiiiieeci e 37

5.4 nysql -stress-test. pl — Server Stress Test Programccccoeveveviinieiiiiinnenininnnnn. 52

6 nysql t est Language REFEIENCEccoiiiiiiiiii e et 55
6.1 mysql t est INPUL CONVENTIONScoouuiiiiiiiii et 55

6.2 MySOl 1 €ST COMMANGSouuiiiiii ettt ettt e e e eneans 57

6.3 Mysql test Variables ... 76

6.4 mysql t est FIOw Control CONSIIUCESccoeuuuieiiiiiieiiiii e eees 77

6.5 EIrOr HANAING «.coveeiiii e e et et e e e e et e e 78

7 Creating and EXECULING UNIt TESEScceuuuiiiiitiieeiiii ettt ettt et e e e eeeens 81
7.1 Unit TeStiNg USING TAP ..ottt et e e e eenaans 81

7.2 Unit Testing Using the Google Test Frameworkc.oooiuiiiiiiiinieiiiecee e 81

7.3 Unit Tests Added to Main TESE RUNSuiiiiiiiiiiii et 83

8 Plugins for Testing PIUGIN SEIVICEScoouuuiiiiiiiieieii ettt e et e e e e e e 85
a0 = TSRS PPPTR 87

Preface and Legal Notices

MySQL distributions include a set of test cases and programs for running them. These tools constitute
the MySQL test framework that provides a means for verifying that MySQL Server and its client
programs operate according to expectations. The test cases consist mostly of SQL statements, but can
also use test language constructs that control how to run tests and verify their results.

This manual describes the MySQL test framework. It describes the programs used to run tests and the
language used to write test cases.

Much of the content of this manual is based on material originally written by (in alphabetic order) Omer
BarNir, Kent Boortz, and Matthias Leich. Updates and adaptations to version 2 and documentation of
new features were done by Bjorn Munch.

Legal Notices

Copyright © 2006, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle

Legal Notices

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

vi

Chapter 1 Introduction to the MySQL Test Framework

MySQL distributions include a test suite: a set of test cases and programs for running them. (If you find
that the test suite is not included in your distribution, look for a similar distribution with - t est in the
name and install that as well.) These tools constitute the MySQL test framework that provides a means
for verifying that MySQL Server and its client programs operate according to expectations. The test
cases consist mostly of SQL statements, but can also use test language constructs that control how to
run tests and verify their results. Distributions also provide facilities for running unit tests and creating
new unit tests.

This document describes the components of the MySQL test framework, how the test programs work,
and the language used for writing test cases. It also provides a tutorial for developing test cases and
executing them.

What is described here is version 2 of the test framework, which replaced version 1 from MySQL
version 5.1.32. Version 1 is no longer supported and may eventually be removed.

Any feature described here as being available from MySQL 5.5.X is also available in any MySQL 5.6 or
higher since the official release of 5.6 (version 5.6.10). It may not be available in all pre-GA releases of
5.6 that have been made available for download. Features described as availbale from MySQL 5.6 or
5.6.X are not available in any 5.5 release (unless otherwise stated) and may not be available in pre-GA
releases of 5.6.

Similarly, features described as available in 5.7 are at least available in 5.7.7 and will be in the first GA
release of 5.7. Unless otherwise stated, those features are not available in 5.6.

The application that runs the test suite is named nysql -t est - run. pl . Its location is the nysql -
t est directory, which is present both in source and binary MySQL Server distributions.

On platforms other than Windows, nysql -t est - r un. pl is also available through the shortened name
nt r in the same directory, as either a symbolic link or a copy.

The nysql -t est -run. pl application starts MySQL servers, restarts them as necessary when a
specific test case needs different start arguments, and presents the test result. For each test case,
nysqgl -t est-run. pl invokes the mysql t est program (also referred to as the “test engine”) to read
the test case file, intepret the test language constructs, and send SQL statements to the server.

Input for each test case is stored in a file, and the expected result from running the test is stored in
another file. The actual result is compared to the expected result after running the test.

For a MySQL source distribution, mysql -t est - run. pl is located in the nysql -t est directory, and
nmysqgl t est is located in the cl i ent directory. The nysql -t est and cl i ent directories are located
in the root directory of the distribution.

For a MySQL binary distribution, mysql - t est - run. pl is located in the nysql - t est directory,
and nysql t est is located in the same directory where other client programs such as nysql or
nysql admi n are installed. The locations of the nysql -t est and other directories depend on the
layout used for the distribution format.

Within the nysql - t est directory, test case input files and result files are stored in the t and r
directories, respectively. The input and result files have the same basename, which is the test
name, but have extensions of . t est and . r esul t, respectively. For example, for a test named
“decimal,” the input and result files are nysql -t est/t/deci mal .t est and nysql -test/r/
decimal .resul t.

Each test file is referred to as one test case, but usually consists of a sequence of related tests. An
unexpected failure of a single statement in a test case makes the test case fail.

There are several ways a test case can fail:

e The nysqgl t est test engine checks the result codes from executing each SQL statement in the test
input. If the failure is unexpected, the test case fails.

» Atest case can falil if an error was expected but did not occur (for example, if an SQL statement
succeeded when it should have failed).

» The test case can fail by producing incorrect output. As a test runs, it produces output (the results
from SELECT, SHOW and other statements). This output is compared to the expected result found
inthe mysql -t est/r directory (in a file with a . r esul t suffix). If the expected and actual results
differ, the test case fails. The actual test result is written to a file in the nysql -t est/ r directory
with a . r e] ect suffix, and the difference between the . resul t and . r ej ect files is presented for
evaluation.

» Atest case will fail if the MySQL server dies unexpectedly during the test. If this happens, the
nysql t est test client will usually also report a failure due to loosing the connection.

» Finally, the test case will fail if the error log written by the MySQL server during the test includes
warnings or errors which are not filtered (suppressed). See Section 4.16, “Suppressing Errors and
Warning” for more about suppressing warnings.

This method of checking test results puts some restrictions on how test cases can be written. For
example, the result cannot contain information that varies from run to run, such as the current time.
However, if the information that varies is unimportant for test evaluation, there are ways to instruct the
test engine to replace those fields in the output with fixed values.

Because the test cases consist mostly of SQL statements in a text file, there is no direct support for test
cases that are written in C, Java, or other languages. Such tests are not within the scope of this test
framework. But the framework does support executing your own scripts and initiating them with your
own data. Also, a test case can execute an external program, so in some respects the test framework
can be extended for uses other than testing SQL statements. Finally, it is possible to embed small
pieces of Perl code within the test; this can sometimes be used to perform actions or execute logic
which is beyond the capabilities of the test language or SQL.

Chapter 2 MySQL Test Framework Components

Table of Contents

2.1 Test Framework System ReQUIFEMENESoiiniiiiiii e e e e e anes 6
2.2 The Test Framework and SSL oo et eenas 6
2.3 How to Report Bugs from Tests in the MySQL TeSt SUItEovviiiiiiiiiiii e 6

The MySQL test framework consists of programs that run tests, and directories and files used by those
programs.

Test Framework Programs

The MySQL test framework uses several programs:

The nysql -t est -run. pl Perl script is the main application used to run the test suite. It invokes
nysqgl t est to run individual test cases.

nysql t est runs test cases. Prior to MySQL 8.0, a version named nysql t est _enbedded is
available; it is similar to nysql t est but is built with support for the | i bnysql d embedded server.

The nysqgl _client test program is used for testing aspects of the MySQL client API that
cannot be tested using nysql t est and its test language. Prior to MySQL 8.0, a version named
nysql _client test enbedded is available; it is similar to nysql _cl i ent test butis used for
testing the embedded server.

The nysql - stress-test. pl Perl script performs stress-testing of the MySQL server.

A unit-testing facility is provided so that individual unit test programs can be created for storage
engines and plugins.

Test suite programs can be found in these locations:

For a source distribution, nysql t est isinthe cl i ent directory. For a binary distribution, it is in the
MySQL bi n directory.

For a source distribution, nysgl _client _test isinthet est s directory. For a binary distribution, it
is in the MySQL bi n directory.

The other programs are located in the mysql - t est directory. For a source distribution, nysql -
t est is found under the source tree root. For a binary distribution, the location of nysql - t est
depends on the layout used for the distribution format.

Test Framework Directories and Files

The test suite is located in the mysql - t est directory, which contains the following components:

The nysql -test-run. pl and nysqgl -stress-test. pl programs that are used for running
tests.

The t directory contains test case input files. A test case file might also have additional files
associated with it.

« Afile name of the formt est _nane. t est is a test case file for a test named t est _nane. For
example, subquery. t est is the test case file for the test named subquery.

« Afile name of the form t est _nane- nast er . opt provides options to associate with the named
test case. mysqgl -t est - run. pl restarts the server with the options given in the file if the options
are different from those required for the currently running server.

Note that the - mast er . opt file is used for the “main” server of a test, even if no replication is
involved.

¢ Afile name of the formt est _nane- sl ave. opt provides slave options.

« In MySQL 8.0.1, server options which need to be passed during initialization of the server can
be passed in botht est _nane- nast er. opt andtest nane- sl ave. opt . Each bootstrap
variable must be passed as the value of a - - boot st r ap option so that nysql -t est - run. pl
can recognize that the variable should be used during server initialization, remove the existing data
directory, and initialize a new data directory with the options provided. nysql -t est - run. pl will
also start the server afterwards, with the bootstrap options, and other options specified.

« Afile name of the form t est _nane. cnf contains additional entries for the config file to be used
for this test.

< Afile name of the form t est _nane- nast er. sh is a shell script that will be executed before the
server is started for the named test case. There may also be at est _nane- sl ave. sh which is
executed before the slave server is started.

These files will not work on Windows and may therefore be replaced with a more portable
mechanism in the future.

« The di sabl ed. def file contains information about deferred/disabled tests. When a test is failing
because of a bug in the server and you want it to be ignored by nysql -t est - r un. pl , list the test
in this file.

The format of a line in the di sabl ed. def file looks like this, where fields are separated by one or
more spaces or Tab characters:

test _nane : BUG#Nnnnn YYYY- MM DD di sabl er conmment

Example:

rpl _row bl ob_i nnodb : BUG#18980 2006- 04-10 kent Test fails randomy

t est _nane is the test case name. BUG#nnnnn indicates the bug related to the test that causes it
to fail (and thus requires it to be disabled). di sabl er is the name of the person that disabled the
test. corment normally provides a reason why the test was disabled.

The text following the colon is not part of the mandatory syntax for this file; nysql -t est -run. pl
will not actually care what is written here. However, it is a recommended standard.

MySQL 5.5.17 introduces an additional element: after the test name and before the colon you
may add one or more @ at f or mto have the test disabled only on specific platform(s). Basic OS
names as reported by $7Oin Perl, or ' wi ndows' are supported. Alternatively, @ pl at f or mwill
disable the test on all except the named platform.

A comment line can be written in the file by beginning the line with a “#” character.
* The r directory contains test case result files:

« A file name of the formt est _nane. r esul t is the expected result for the named test case.
Afiler/test nane.result isthe output that corresponds to the input in the test case file
t/test _nane.test.

« Afile name of the formt est _nane. r e] ect contains output for the named test case if the test
fails due to output mismatch (but not it it fails for other reasons).

For a test case that succeeds, the . r esul t file represents both the expected and actual result.
For a test case that fails, the . r esul t file represents the expected result, and the . r ej ect file
represents the actual result.

Ifa.reject file is created because a test fails, nysql -t est - run. pl removes the file later the
next time the test succeeds.

» The i ncl ude directory contains files that are included by test case files using the sour ce
command. These include files encapsulate operations of varying complexity into a single file so that
you can perform the operations in a single step. See Section 4.12, “Using Include Files to Simplify
Test Cases”.

e The |l i b directory contains library files used by nysql -t est - run. pl , and database initialization
SQL code.

» The st d_dat a directory contains data files used by some of the tests.

» The var directory is used during test runs for various kinds of files: log files, temporary files, trace
files, Unix socket files for the servers started during the tests, and so forth. This directory cannot be
shared by simultaneous test runs.

» The sui t e directory contains a set of subdirectories containing named test suites. Each subdirectory
represents a test suite with the same name.

» The col | ecti ons directory contains collections of test runs that are run during integration and
release testing of MySQL. They are not directly useful outside this context, but need to be part of the
source repository and are included for reference.

Unit test-related files are located in the uni t t est directory. Additional files specific to storage engines
and plugins may be present under the subdirectories of the st or age or pl ugi n directories.

Test Execution and Evaluation

There are a number of targets in the top-level Makef i | e that can be used to run sets of tests. meke
t est runs all the tests. Other targets run subsets of the tests, or run tests with specific options for the
test programs. Have a look at the Makef i | e to see what targets are available.

A “test case” is a single file. The case might contain multiple individual test commands. If any individual
command fails, the entire test case is considered to fail. Note that “fail” means “does not produce the
expected result.” It does not necessarily mean “executes without error,” because some tests are written
precisely to verify that an illegal statement does in fact produce an error. In such an instance, if the
statement executes successfully without producing the expected error, that is considered failure of the
test.

Test case output (the test result) consists of:

 Input SQL statements and their output. Each statement is written to the result followed by its output.
Columns in output resulting from SQL statements are separated by tab characters.

* The result from nmysqgl t est commands such as echo and exec. The commands themselves are
not echoed to the result, only their output.

The di sabl e_query | og and enabl e_query_ | og commands control logging of input SQL
statements. The di sabl e_result _| og and enabl e_r esul t _| og commands control logging of
SQL statement results, and warning or error messages resulting from those statements.

nmysql t est reads a test case file from its standard input by default. The - -t est-fi | e or-x option
can be given to name a test case file explicitly.

nmysqgl t est writes test case output to the standard output by default. The --resul t-fileor-R
option can be used to indicate the location of the result file. That option, together with the - - r ecor d
option, determine how nysql t est treats the test actual and expected results for a test case:

Test Framework System Requirements

« If the test produces no results, nysql t est exits with an error message to that effect, unless - -
resul t-fil eis given and this file is empty.

» Otherwise, if--resul t-fil eis notgiven, nysql t est sends test results to the standard output.

e With--result-filebutnot--record, nysqltest reads the expected results from the given
file and compares them with the actual results. If the results do not match, nysql t est writes a
. rej ect file in the same directory as the result file and exits with an error. It will also print out a diff
of the expected and actual result, provided it can find an appropriate di f f tool to use.

e Withboth--result-fileand--record, mysqltest updates the given file by writing the actual
test results to it. The file does not need to pre-exist.

nysqgl t est itself knows nothing of the t and r directories under the nysql -t est directory. The

use of files in those directories is a convention that is used by nmysql - t est - r un. pl , which invokes
nysqgl t est with the appropriate options for each test case to tell mysql t est where to read input and
write output.

2.1 Test Framework System Requirements

The nysqgl t est and nysqgl _client _test programs are written in C++ and are available on any
system where MySQL itself can be compiled, or for which a binary MySQL distribution is available.

Other parts of the test framework such as nmysql -t est - run. pl are Perl scripts and should run on
systems with Perl installed.

nysgl t est uses the di ff program to compare expected and actual test results. If di f f is not found,
nysgl t est writes an error message and dumps the entire contents of the . resul t and . r ej ect
files so that you can try to determine why a test did not succeed. If your system does not have di f f,
you may be able to obtain it from one of these sites:

http://ww. gnu. org/software/diffutils/diffutils.htm
http://gnuwi n32. sour cef or ge. net/ packages/di ffutils. htm

nysql -test -run. pl cannot function properly if started from within a directory whose full path
includes a space character, due to the complexities of handling this correctly in all the different contexts
it will be used.

2.2 The Test Framework and SSL

When nysql -t est -run. pl starts, it checks whether mysql d supports SSL connections:

* If nysql d supports SSL, nysql -t est -run. pl starts it with the proper - - ss| - xxx options
that enable it to accept SSL connections for those test cases that require secure connections
(those with “ssl” in their name). As nysqgl -t est - run. pl runs test cases, a secure connection to
nysql d is initiated for those cases that require one. For those test cases that do not require SSL, an
unencrypted connection is initiated.

» If nysql d does not support SSL, nysql -t est -run. pl skips those test cases that require secure
connections.

If nysql -t est-run. pl is started with the - - ssl option, it sets up a secure connection for all test

cases. In this case, if nysql d does not support SSL, nysql -t est -run. pl exits with an error
message: Coul dn't find support for SSL

2.3 How to Report Bugs from Tests in the MySQL Test Suite

If test cases from the test suite fail, you should do the following:

http://www.gnu.org/software/diffutils/diffutils.html
http://gnuwin32.sourceforge.net/packages/diffutils.htm

How to Report Bugs from Tests in the MySQL Test Suite

Do not file a bug report before you have found out as much as possible about what when wrong. See
the instructions at http://dev.mysqgl.com/doc/refman/en/bug-reports.

Make sure to include the output of mysql -t est - run. pl , as well as contents of all . r e] ect filesin
the mysql -t est / r directory, or the (often much shorter) diff that mysql -t est - run. pl reported.

Check whether an individual test in the test suite also fails when run on its own:

shel | > cd nysql -test
shell > ./ nysql -test-run.pl test_nane

If this fails, and you are compiling MySQL yourself, you should configure MySQL with - - wi t h-
debug and run mysqgl -t est - run. pl with the - - debug option. If this also fails, open a bug report
and upload the trace file nysql -t est/ var/t np/ mast er. t r ace to the report, so that we can
examine it. For instructions, see How to Report Bugs or Problems. Please remember to also include
a full description of your system, the version of the nysql d binary and how you compiled it.

Run nysql -t est-run. pl with the - - f or ce option to see whether any other tests fail.

If you have compiled MySQL yourself, check the MySQL Reference Manual to see whether there are
any platform-specific issues for your system. There might be configuration workarounds to deal with
the problems that you observe. Also, consider using one of the binaries we have compiled for you at
http://dev.mysgl.com/downloads/. All our standard binaries should pass the test suite!

If you get an error such as Result | ength mi smatch or Result content mi snatch it means
that the output of the test was not an exact match for the expected output. This could be a bug in
MySQL or it could be that your version of nysql d produces slightly different results under some
circumstances.

This output from mysql -t est - run. pl should include a diff of the expected and actual result. If
unable to produce a diff, it will instead print out both in full. In addition, the actual result is put in a file
in the r directory with a . r esul t extension.

If a test fails completely, you should check the logs file in the nmysql -t est/ var/ | og directory for
hints of what went wrong.

If you have compiled MySQL with debugging, you can try to debug test failures by running nysql -
test-run. pl with either or both of the - - gdb and - - debug options.

If you have not compiled MySQL for debugging you should probably do so by specifying the -
DW TH_DEBUG option when you invoke CVake.

http://dev.mysql.com/doc/refman/en/bug-reports
http://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
http://dev.mysql.com/downloads/
http://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug
http://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug

Chapter 3 Running Test Cases

Table of Contents

3.1 RUNNING TeStS iN Parallel ... et eens 10

Typically, you run the test suite either from within a source tree (after MySQL has been built), or on
a host where the MySQL server distribution has been installed. (If you find that the test suite is not
included in your distribution, look for a similar distribution with - t est in the name and install that as
well.)

To run tests, your current working directory should be the nmysql - t est directory of your source tree
or installed distribution. In a source distribution, nysql -t est is under the root of the source tree. In
a binary distribution, the location of nysql -t est depends on the distribution layout. The program
that runs the test suite, mysql -t est - run. pl , will figure out whether you are in a source tree or an
installed directory tree.

To run the test suite, change location into your nysql -t est directory and invoke the nysql - t est -
run. pl script:

shel | > cd nysql -t est
shell > ./nysqgl -test-run.p

nysql -t est-run. pl accepts options on the command line. For example:

shell > ./nysqgl -test-run.pl --force --suite=binlog

By default, mysql -t est - run. pl exits if a test case fails. - - f or ce causes execution to continue
regardless of test case failure.

For a full list of the supported options, see Section 5.3, “nysql -t est -run. pIl — Run MySQL Test
Suite”.

To run one or more specific test cases, name them on the nysql -t est - run. pl command line.
Test case files have names liket / t est _nane. t est, where t est _nane is the name of the test
case, but each name given on the command line should be the test case name, not the full test case
file name. The following command runs the test case named r pl _abcd, which has a test file of t /
rpl __abcd. test:

shell > ./nysqgl -test-run.pl rpl_abcd

To run a family of test cases for which the names share a common prefix, use the - - do- t est option:

shell > ./ nysqgl -test-run.pl --do-test=prefix

For example, the following command runs the events tests (test cases that have names beginning with
event s):

shell > ./nysqgl -test-run.pl --do-test=events

To run a specific named testsuite with all the test cases in it, use the - - sui t e option:

shell > ./nysql -test-run.pl --suite=suite_nane

For example, the following command runs the replication tests located in the r pl suite:

Running Tests in Parallel

shel | > ./ nysqgl -test-run.pl --suite=rpl

nysqgl -t est-run. pl starts the MySQL server, sets up the environment for calling the nysqgl t est
program, and invokes nysql t est to run the test case. For each test case to be run, nysql t est
handles operations such as reading input from the test case file, creating server connections, and
sending SQL statements to servers.

The language used in test case files is a mix of commands that the nysql t est program understands
and SQL statements. Input that mysql t est doesn't understand is assumed to consist of SQL
statements to be sent to the database server. This makes the test case language familiar to those that
know how to write SQL and powerful enough to add the control needed to write test cases.

You need not start a MySQL server first before running tests. Instead, the nysql -t est - r un. pl
program will start the server or servers as needed. Any servers started for the test run use ports in the
range from 13000 by default.

3.1 Running Tests in Parallel

It is possible to run more than one instance of nysql -t est - run. pl simultaneously on the same
machine. Both will by default use server ports from 13000 but will coordinate used port numbers as well
as check for availibility, to avoid conflicts.

Running several instances from the same nysql -t est directory is possible but problematic. You
must the use the - - var di r to set different log directories for each instance. Even so, you can get into
trouble becuse they will write. r ej ect files to the same directories.

It is also possible to have a single nysql -t est - run. pl run tests in several threads in parallel.
Execution of the tests will be distributed among the threads. This is achieved using the - - par al | el
option, with the number of threads as argument. The special value aut o will ask nysql -t est -
run. pl to pick a value automatically, based on system information. The parallel option may also be
given using the environment variable MTR_PARALLEL.

10

Chapter 4 Writing Test Cases

Table of Contents

4.1 Writing @ Test Case: QUICK STAIcoouuuiiiiiiii e 11
4.2 Test Case CodiNg GUIEIINEScoouuiiiiii et 12

4.2.1 File Naming and Organization GUIElINESuoiiiiiiiiiiiiiie e 12

4.2.2 Test Case Content-Formatting GUIAEIINESoooiiiiiiiiiiiiiiie e 13

4.2.3 Naming Conventions for Database ODJECLSoviiiiiiiieiiiiiieci e 14
4.3 SAMPIE TESE CBSE . iitiiiiiiitii ettt e et et et et e et et e rea e eaaas 15
4.4 Cleaning Up from a Previous TeSt RUNociiiiiiiii e 15
4.5 Generating a Test Case ReSUIt File ... e 16
4.6 Checking for EXPECLEA EITOIScouuuiiiiiiiii ettt ettt e e ettt e et e e e eab e e e enaa e eeees 17
4.7 Controlling the Information Produced by @ TeSt CASEcccuuiiiiiiiiiiiiiiiieee e 19
4.8 Dealing with Output That Varies Per TeSt RUNccooiiiiiiiiii e 20
4.9 Passing Options from nysql -test-run. pl tonysql d or mysgltestccoooovviiiiiiiiiiiinnenens 21
4.10 Specifying Test Case-Specific Server OPLIONSccveuuiiiiiiiie e 22
4.11 Specifying Test Case-Specific BOOStrap OPLiONSveiiiiiieiiiiiieiiii e 23
4.12 Using Include Files to SIMPlify TESt CASEScccuuuuiiiiiiiieiiii ettt 23
4.13 Controlling the Binary Log Format Used for TESScc.uuiiiiiiiiiiiiiiiieee e 24

4.13.1 Controlling the Binary Log Format Used for an Entire Test Runcccoooeevinniiinnnnnn. 24

4.13.2 Specifying the Required Binary Log Format for Individual Test Casesccccceeeeeee. 25
4.14 Writing RePHCALION TESES ...iitiiiiiii ettt e et e 26
4.15 Thread Synchronization iN TESt CASEScciiuuuiieiiiiieee et 27
4.16 Suppressing Errors and WAaININGooouu oottt e e 28
4.17 Stopping & Server DUMNNG @ TESE ...oouuu ittt e eeneens 28
4.18 Other Tips fOor WIItiNG TESE CASESciiitiieiiiiiie ettt ettt e et e e e e e 29

Normally, you run the test suite during the development process to ensure that your changes do not
cause existing test cases to break. You can also write new test cases or add tests to existing cases.
This happens when you fix a bug (so that the bug cannot reappear later without being detected) or
when you add new capabilities to the server or other MySQL programs.

This chapter provides guidelines for developing new test cases for the MySQL test framework.

Internet. Take care that their contents include no confidential information, or
copyrighted third-party material with a licence that would not allow this.

Note
@ All test cases added to the MySQL source repository are published on the
Some definitions:
* One “test file” is one “test case.”

» One “test case” might contain a “test sequence” (that is, a number of individual tests that are grouped
together in the same test file).

* A“command” is an input test that nysql t est recognizes and executes itself. A “statement” is an
SQL statement or query that nysql t est sends to the MySQL server to be executed.

4.1 Writing a Test Case: Quick Start

The basic principle of test case evaluation is that output resulting from running a test case is compared
to the expected result. This is just a di f f comparison between the output and an expected-result file
that the test writer provides. This simplistic method of comparison does not by itself provide any way
to handle variation in the output that may occur when a test is run at different times. However, the test

11

Test Case Coding Guidelines

language provides commands for postprocessing result output before the comparison occurs. This
enables you to manage certain forms of expected variation.

Use the following procedure to write a new test case. In the examples, t est _nane represents the
name of the test case. It is assumed here that you'll be using a development source tree, so that when
you create a new test case, you can commit the files associated with it to the source repository for
others to use.

1.

Change location to the test directory nysql - ver si on/ mysql -t est:

shel | > cd nysql - versi on/ nysql -t est
nysql - ver si on represents the root directory of your source tree, such as nysqgl - 5. 6.

Create the test case in afilet/t est _nane. t est. You can do this with any text editor. For details
of the language used for writing mysql t est test cases, see Chapter 6, nysql t est Language
Reference.

Create an empty result file:

shel | > touch r/test_name.result

Run the test:

shell > ./nysql -test-run.pl test_name

Assuming that the test case produces output, it should fail because the output does not match
the result file (which is empty at this point). The failure results in creation of a reject file named
r/test _namne.reject.Examine this file. If the reject file appears to contain the output that you
expect the test case to produce, copy its content to the result file:

shell > cp r/test_nane.reject r/test_nane.result

Another way to create the result file is by invoking nmysql -t est - r un. pl with the --record
option to record the test output in the result file:

shell > . /nysqgl -test-run.pl --record test_nane

Run the test again. This time it should succeed:

shell > ./ nysqgl -test-run.pl test_nane

You can also run the newly created test case as part of the entire suite:

shell > . /nysql -test-run.p

It is also possible to invoke the mysql t est program directly. If the test case file refers to environment
variables, you will need to define those variables in your environment first. For more information about
the nysqgl t est program, see Section 5.1, “nysql t est — Program to Run Test Cases”.

4.2 Test Case Coding Guidelines

4.2.1 File Naming and Organization Guidelines

Test case file names may use alphanumeric characters (A- Z, a-z, 0-9), underscore (' ') or dash

('_

'), but should not start with underscore or dash. Other special characters may work but this is not

guaranteed so they should be avoided.

12

Test Case Content-Formatting Guidelines

Test names have traditionally used lowercase only, and we recommend continuing this for tests added
to the common repository, though uppercase letters are also supported.

Test cases are located in the nmysql -t est / t directory. Test case file names consist of the test name
with a . t est suffix. For example, a test named f oo should be written in the file nysql -test/t/
foo.test.

In addition to this directory, tests are organized in test suites, located in subdirectories under the sui t e
directory. For example, a test named bar under the replication suite r pl may be stored in the file
nmysql -test/suite/rpl/t/bar.test.

In practice, the file would likely be called r pl _bar . t est as tests in a suite usually also have the suite
name as a prefix. This is just a convention from the time when suites were not supported, and not a
requirement for test naming.

One test case file can be a collection of individual tests that belong together. If one of the tests fails,
the entire test case fails. Although it may be tempting to write each small test into a single file, that will
be too inefficient and makes test runs unbearably slow. So make the test case files not too big, not too
small.

Each test case (that is, each test file) must be self contained and independent of other test cases. Do
not create or populate a table in one test case and depend on the table in a later test case. If you have
some common initialization that needs to be done for multiple test cases, create an include file. That

is, create a file containing the initialization code in the nysqg-t est /i ncl ude directory, and then put

a sour ce command in each test case that requires the code. For example, if several test cases need
to have a given table created and filled with data, put the statements to do that in a file named nysql -
test/include/create my table.inc.The.incisa convention, not arequirement. Then put the
following command in each test case file that needs the initialization code:

--source include/create_my_table.inc

The file name in the sour ce command is relative to the nysql - t est directory. Remember to drop the
table at the end of each test that creates it.

4.2.2 Test Case Content-Formatting Guidelines

When you write a test case, please keep in mind the following general guidelines.

There are C/C++ coding guidelines in the MySQL Source Code documentation; please apply them
when it makes sense to do so: Coding Guidelines

Other guidelines may be found in this page, which discusses general principles of test-case writing:
MySQL Internals: How to Create Good Test Cases

The following guidelines are particularly applicable to writing test cases:

» To write a test case file, use any text editor that uses linefeed (newline) as the end-of-line character.
» Avoid lines longer than 80 characters unless there is no other choice.

* A comment in a test case is started with the “#” character.

Section 6.1, “mysqgl t est Input Conventions”, discusses the details of input syntax for nysql t est
test cases.

» Use spaces, not tabs.
» Write SQL statements using the same style as our manual:
* Use uppercase for SQL keywords.

» Use lowercase for identifiers (names of objects such as databases, tables, columns, and so forth).

13

http://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_CODING_GUIDELINES.html
http://dev.mysql.com/doc/internals/en/good-tests.html

Naming Conventions for Database Objects

Ignore this guidline if your intent is to test lettercase processing for SQL statements, of course.
Use lowercase for nysql t est commands (echo, sl eep, | et, and so forth).

You may notice that many existing test cases currently do not follow the lettercase guideline and
contain SQL statements written entirely in lowercase. Nevertheless, please use the guideline for
new tests. Lettercase for older tests can be left as is, unless perhaps you need to revise them
significantly.

» Break a long SQL statement into multiple lines to make it more readable. This means that you
will need to write it using a “; " delimiter at the end of the statement rather than using “- - " at the
beginning because the latter style works only for single-line statements.

 Include comments. They save the time of others. In particular:

< Please include a header in test files that indicates the purpose of the test and references the
corresponding worklog task, if any.

« Comments for a test that is related to a bug report should include the bug number and title.

Worklog and bug numbers are useful because they enable people who are interested in additional
background related to the test case to know which worklog entries or bug reports to read.

Example SQL statement, formatted onto multiple lines for readability:

SELECT f1 AS "ny_colum", f10
FROM nysqgltest1.t5
WHERE (f2 BETWEEN 17 AND 25 OR f2 = 61)
AND f3 IN (SELECT
FROM nysqgltest1.t4
WHERE)
ORDER BY ... ;

Example test file header:

#HtHH#H####H#H suitel/ funcs_1/t/a_processlist_val _no_prot.test ########HHHHAR

Testing of values w thin | NFORVATI ON_SCHEVA. PROCESSLI ST
The prepared statenment variant of this test is
suite/funcs_1/t/b_processlist_val _ps.test.
There is inportant docunmentation within
sui te/funcs_1/dat adi ct/ processlist_val.inc
Not e(m ei ch):
The name "a_process..." with the unusual prefix "a " is

caused by the fact that this test should run as second test, that
means direct after server startup and a_processlist_priv_no_prot.
O herwi se the connection IDs within the processlist would differ.

Creation:
2007-08-09 meich Inplenent this test as part of
W.#3982 Test information_schema. processli st

FHEHHEHREFERREREEREERRERS
T T T T T T T

Example test reference to bug report:

Bug #3671 Stored procedure crash if function has "set @ari abl e=par ant

4.2.3 Naming Conventions for Database Objects

14

Sample Test Case

It is possible to run test cases against a production server. This is very unlikely to happen by accident,
as nmysql -test-run. pl will start its own server unless you use the - - ext er n Even so, try to write
test cases in a way that reduces the risk that running tests will alter or destroy important tables, views,
or other objects. (DROP DATABASE statements are particularly dangerous if written using names that
could exist on a customer's machine.) To avoid such problems, we recommend the following naming
conventions:

» User names: User names should begin with “mysql” (for example, nysql user 1, nysql user 2)

« Database names: Unless you have a special reason not to, use the default database named t est
that is already created for you. For tests that need to operate outside the t est database, database
names should contain “test” or begin with “mysqgl” (for example, nysqgl t est 1, nysql t est 2)

e Tablenames:t1,t2,t3, ...
e View names: vl1l,v2,v3, ..

For examples of how to name objects, examine the existing test cases. Of course, you can hame
columns and other objects inside tables as you wish.

4.3 Sample Test Case

Here is a small sample test case:

- - di sabl e_war ni ngs

DROP TABLE | F EXI STS t1;
- - enabl e_war ni ngs

SET SQL_WARNI NGS=1;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES ("hej");

The first few lines try to clean up from possible earlier runs of the test case by dropping the t 1
table. The test case uses di sabl e_war ni ngs to prevent warnings from being written to the output
because it is not of any interest at this point during the test to know whether the table t 1 was there.
After dropping the table, the test case uses enabl e_war ni ngs so that subsequent warnings will
be written to the output. The test case also enables verbose warnings in MySQL using the SET
SQL_WARNI NGS=1; statement.

Next, the test case creates the table t 1 and tries some operations. Creating the table and inserting
the first row are operations that should not generate any warnings. The second insert should generate
a warning because it inserts a nonnumeric string into a numeric column. The output that results from
running the test looks like this:

DROP TABLE | F EXI STS t1;

SET SQL_WARNI NGS=1;

CREATE TABLE t1 (a INT);

INSERT INTO t1 VALUES (1);

INSERT INTO t1 VALUES ("hej");

VMr ni ngs:

War ni ng 1265 Data truncated for colum "a' at row 1

Note that the result includes not only the output from SQL statements, but the statements themselves.
Statement logging can be disabled with the di sabl e_query | og test language command. There are
several options for controlling the amount of output from running the tests.

If there was a test failure, it will be reported to the screen. You can see the actual output from the last
unsuccessful run of the test case in the reject filer/ t est _nane. rej ect.

4.4 Cleaning Up from a Previous Test Run

15

Generating a Test Case Result File

For efficiency, the nysqgl t est test engine does not start with a clean new database for running each
test case, so a test case generally starts with a “cleaning up section.” Assume that a test case will use
two tables named t 1 and t 2. The test case should begin by making sure that any old tables with those
names do not exist:

- - di sabl e_war ni ngs
DROP TABLE | F EXI STS t1,t2;
- - enabl e_war ni ngs

The di sabl e_war ni ngs command instructs the test engine not to log any warnings until an

enabl e_war ni ngs command occurs or the test case is ended. (MySQL generates a warning if the
table t 1 or t 2 does not exist.) Surrounding this part of the test case with commands to disable and
enable warnings makes its output the same regardless of whether the tables exist before the test is
started. After ensuring that the tables do not exist, we are free to put in any SQL statements that create
and use the tablest 1 and t 2. The test case should also clean up at the end of the test by dropping
any tables that it creates.

Let's put in some SQL code into this test case:

- - di sabl e_war ni ngs

DROP TABLE | F EXI STS t1,t2;

- - enabl e_war ni ngs

CREATE TABLE t1 (
Period SMALLI NT(4) UNSI GNED ZEROFI LL DEFAULT ' 0000 NOT NULL,
Var or _peri od SMALLI NT(4) UNSI GNED DEFAULT ' 0' NOT NULL

)
CREATE TABLE t2 (Period SMALLI NT);

I NSERT | NTO t1 VALUES (9410, 9412);
I NSERT | NTO t2 VALUES (9410), (9411), (9412), (9413);

SELECT PERI OD FROM t 1;

SELECT * FROM t 1;

SELECT t1.* FROMt1;

SELECT * FROMt1l INNER JO N t2 USI NG (Peri od);

DROP TABLE t1, t2;

If a test case creates other objects such as stored programs or user accounts, it should take care to
also clean those up at the beginning and end of the test. Temporary files should also be removed,
either at the end or just after they have been used.

4.5 Generating a Test Case Result File

The test code we just wrote contains no checks of the result. The test will report a failure for one of two
reasons:

* An individual SQL statement fails with an error
» The overall test case result does not match what was expected

Note that these are the reasons why nysql t est would fail; if the test is run from nysqgl -t est -
run. pl the test may fail for additional reasons.

In the first case, nysql t est aborts with an error. The second case requires that we have a record of
the expected result so that it can be compared with the actual result. To generate a file that contains
the test result, run the test with the - - r ecor d option, like this:

shel | > cd nysql -test
shell > ./nysqgl -test-run.pl --record foo

Running the test as shown creates a result file named nmysql -t est/r/foo. resul t that has this
content:

16

Checking for Expected Errors

DROP TABLE | F EXI STS t1,t2;

CREATE TABLE t1 (

Period SMALLI NT(4) UNSI GNED ZEROFI LL DEFAULT ' 0000 NOT NULL,
Var or _peri od SVALLI NT(4) UNSI GNED DEFAULT ' 0' NOT NULL
)

CREATE TABLE t2 (Period SMALLI NT);

I NSERT I NTO t1 VALUES (9410, 9412);

I NSERT I NTO t2 VALUES (9410), (9411), (9412), (9413);
SELECT period FROM t 1

peri od

9410

SELECT * FROM t 1;

Period Varor_period

9410 9412

SELECT t1.* FROM t1;

Period Varor_period

9410 9412

SELECT * FROMt1 INNER JO N t2 USI NG (Period);

Period Varor_period

9410 9412
DROP TABLE t1, t2;
ok

If we look at this result file, it contains the statements in the f 00. t est file together with the output from
the SELECT statements. The output for each statement includes a row of column headings followed by
data rows. Rows have columns separated by Tab characters.

At this point, you should inspect the result file and determine whether its contents are as expected.

If so, let it be part of your test case. If the result is not as expected, you have found a problem, either
with the server or the test. Determine the cause of the problem and fix it. For example, the test might
produce output that varies from run to run. To deal with this, you can postprocess the output before the
comparison occurs. See Section 4.8, “Dealing with Output That Varies Per Test Run”.

4.6 Checking for Expected Errors

A good test suite checks not only that operations succeed as they ought, but also that they fail as they
ought. For example, if a statement is illegal, the server should reject it with an error message. The test
suite should verify that the statement fails and that it fails with the proper error message.

The test engine enables you to specify “expected failures.” Let's say that after we create t 1, we try to
create it again without dropping it first:

- -di sabl e_war ni ngs

DROP TABLE | F EXI STS t1,t2;

- - enabl e_war ni ngs

CREATE TABLE t1 (
Peri od SMALLI NT(4) UNSI GNED ZERCFI LL DEFAULT ' 0000° NOT NULL,
Var or _peri od SMALLI NT(4) UNSI GNED DEFAULT ' 0' NOT NULL

CREATE TABLE t2 (Period SMALLI NT);

INSERT INTO t1 VALUES (9410, 9412):
I NSERT | NTO t2 VALUES (9410), (9411), (9412), (9413);

SELECT period FROM t 1;

SELECT * FROM t 1;

SELECT t1.* FROM t 1;

SELECT * FROMt1 INNER JO N t2 USI NG (Peri od);

CREATE TABLE t1 (sonething SMALLI NT(4));

The result is failure and an error:

At line 21: query 'CREATE TABLE t1 (sonething SMALLINT(4))"'
failed: 1050: Table 't1l' already exists

17

Checking for Expected Errors

To handle this error and indicate that indeed we do expect it to occur, we can put an er r or command
before the second cr eat e t abl e statement. Either of the following commands test for this particular
MySQL error:

--error 1050
--error ER TABLE EXI STS _ERROR

1050 is the numeric error code and ER_TABLE_EXI STS_ERRORis the symbolic name. Symbolic
names are more stable than error numbers because the numbers sometimes change, particularly for
those created during recent development. For such errors, use of numbers rather than the names in a
test case will require test to be revised should the numbers change.

After we make a change to add an er r or command before the CREATE TABLE statement and run the
test again, the end of the result will look like this:

CREATE TABLE t1 (sonething SMALLINT(4));
ERROR 42S01: Table 't1' already exists

In this case, the result shows the statement that causes the error, together with the resulting error
message. The fact that mysql t est does not terminate and that the error message becomes part of
the result indicates that the error was expected.

You can also test for errors by specifying an SQLSTATE value. For MySQL error number 1050, the
corresponding SQLSTATE value is 42S01. To specify an SQLSTATE value in an er r or command,
use an S prefix:

--error S42S01

A disadvantage of SQLSTATE values is that sometimes they correspond to more than one MySQL
error code. Using the SQLSTATE value in this case might not be specific enough (it could let through
an error that you do not actually expect).

If you want to test for multiple errors, the er r or command allows multiple arguments, separated by
commas. For example:

--error ER NO SUCH TABLE, ER KEY_NOT_FOUND

For a list of MySQL error codes, symbolic names, and SQLSTATE values, see http://dev.mysqgl.com/
doc/refman/en/error-messages-server.html. You can also examine the nmysqgl d_error. h and
sql _state. hfilesinthei ncl ude directory of a MySQL source distribution.

As of MySQL 8.0, it is also possible to use symbolic error names to refer to client errors:

--error CR _SERVER GONE_ERROR

For a list of MySQL client error codes, see http://dev.mysqgl.com/doc/refman/en/error-messages-
client.html. You can also examine the er r nsg. h file in the i ncl ude directory of a MySQL source
distribution.

The built-in variable $mysql _er r no contains the numeric error returned by the most recent SQL
statement sent to the server, or 0 if the statement executed successfully. This may be useful after
statements that may or may not fail, or fail in more than one way (more than one argument to the
error command), in case you need to perform different actions. Note that this applies to SQL
statements, not to other commands.

From MySQL 5.5.17, there is also a variable $rmysql _er r nane which contains the symbolic name of
the last error. In some cases the symbolic name is not available; in those cases the variable will contain
the string " <Unknown>". For new test development we recommend testing against the name rather

18

http://dev.mysql.com/doc/refman/en/error-messages-server.html
http://dev.mysql.com/doc/refman/en/error-messages-server.html
http://dev.mysql.com/doc/refman/en/error-messages-client.html
http://dev.mysql.com/doc/refman/en/error-messages-client.html

Controlling the Information Produced by a Test Case

than the number, since the number may change in future versions. If the last statement succeeded
($rmysql _errno is 0), this variable is an empty string.

4.7 Controlling the Information Produced by a Test Case

By default, the nysqgl t est test engine produces output only from sel ect , show, and other SQL
statements that you expect to produce output (that is, statements that create a result set). It also
produces output from certain commands such as echo and exec. nysql t est can be instructed to be
more or less verbose.

Suppose that we want to include in the result the number of rows affected by or returned by SQL
statements. To do this, add the following line to the test case file preceding the first table-creation
statement:

--enable_info

After rerunning the test by invoking mysqgl -t est - r un. pl with the - - r ecor d option to record the
new result, the result file will contain more information:

DROP TABLE |F EXISTS t1,t2

CREATE TABLE t1 (

Period SMALLI NT(4) UNSI GNED ZERCFI LL DEFAULT ' 0000' NOT NULL
Var or _peri od SMALLI NT(4) UNSI GNED DEFAULT ' 0' NOT NULL
)

af fected rows: 0

CREATE TABLE t2 (Period SMALLI NT)

af fected rows: 0

I NSERT I NTO t1 VALUES (9410, 9412)

af fected rows: 1

I NSERT | NTO t2 VALUES (9410), (9411), (9412), (9413);
af fected rows: 4

info: Records: 4 Duplicates: 0 Warnings: 0
SELECT period FROM t 1;

peri od

9410

af fected rows: 1

SELECT * FROM t 1;

Period Varor_period

9410 9412

af fected rows: 1

SELECT t1.* FROM t 1;

Period Varor_period

9410 9412

af fected rows: 1

SELECT * FROMt1 INNER JO N t2 USI NG (Peri od);
Period Varor_period

9410 9412

af fected rows: 1

DROP TABLE t1, t2

af fected rows: 0

ok

To turn off the affected-rows reporting, add this command to the test case file:

--disable_info

In general, options can be enabled and disabled for different parts of the test file. Suppose that we
are interested in the internals of the database as well. We could enable the display of query metadata
using enabl e_net adat a. With this option enabled, the test output is a bit verbose. However, as
mentioned earlier, the option can be enabled and disabled selectively so that it is enabled only for
those parts of the test case where it interests you to know more.

If you perform an operation for which you have no interest in seeing the statements logged to the
result, you can disable statement logging. For example, you might be initializing a table where you

19

Dealing with Output That Varies Per Test Run

don't really expect a failure, and you are not interested in seeing the initialization statements in the test
result. You can use the di sabl e_query_| og command to temporarily disable recording of input SQL
statements, and enable recording again with enabl e_query_| 0g. You can disable the recording of
the output from executing commands using di sabl e _resul t _| og and enable recording again with
enabl e_result_| og.

4.8 Dealing with Output That Varies Per Test Run

It is best to write each test case so that the result it produces does not vary for each test run, or
according to factors such as the time of day, differences in how program binaries are compiled, the
operating system, and so forth. For example, if the result contains the current date and time, the test
engine has no way to verify that the result is correct.

However, sometimes a test result is inherently variable according to external factors, or perhaps there
is a part of a result that you simply do not care about. mysql t est provides commands that enable you
to postprocess test output into a more standard format so that output variation across test runs will not
trigger a result mismatch.

One such command is r epl ace_col um, which specifies that you want to replace whatever is in a
given column with a string. This makes the output for that column the same for each test run.

To see how this command works, add the following row after the first insert in the test case:

INSERT | NTO t1 VALUES (DATE_FORMAT(NOA(), '%'), 9999):

Then record the test result and run the test again:

shell > ./nysqgl -test-run.pl --record foo
shell > ./ nmysqgl -test-run.pl foo

Most likely, a failure will occur and nysql -t est - r un. pl will display the difference between the
expected result and what we actually got, like this (the header has been simplified):

CURRENT_TEST: mai n. f oo
--- r/foo.result 2009-11-17 16: 22: 38
+++ r/foo.reject 2009- 11-17 16: 22: 47
@ - 10, 15 +10, 15 @@

SELECT period FROM t 1;

peri od

9410
- 0038

+0047

SELECT * FROM t 1;

Peri od Varor_peri od

9410 9412
-0038 9999
+0047 9999

SELECT t1.* FROM t 1,
Peri od Varor_peri od

9410 9412
-0038 9999
+0047 9999

SELECT * FROMt1 INNER JO N t2 USI NG (Peri od);
Peri od Varor_peri od
9410 9412

nmysqltest: Result content m snatch
The actual numbers will likely be different for your case, and the format of the diff may also vary.

If we are not really interested in the first column, one way to eliminate this mismatch is by using the
repl ace_col utm command. The duration of the effect of this command is the next SQL statement,
so we need one before each sel ect statement:

20

Passing Options from nysql -t est -run. pl tonysql d or nysql t est

--replace_colum 1 SECONDS
SELECT period FROM t 1;
--replace_colum 1 SECONDS
SELECT * FROM t 1;
--replace_col um 1 SECONDS
SELECT t1.* FROMt1;

In the r epl ace_col unm commands, SECONDS could be any string. Its only purpose is to map variable
output onto a constant value. If we record the test result again, we will succeed each time we run the
test after that. The result file will look like this:

DROP TABLE IF EXISTS t1,t2;

CREATE TABLE t1 (

Peri od SMALLI NT(4) UNSI GNED ZEROFI LL DEFAULT ' 0000° NOT NULL,
Var or _peri od SMALLI NT(4) UNSI GNED DEFAULT ' 0' NOT NULL
E

affected rows: 0

CREATE TABLE t2 (Period SMALLI NT);

affected rows: 0

I NSERT I NTO t1 VALUES (9410, 9412);

affected rows: 1

I NSERT I NTO t1 VALUES (DATE_FORMAT(NOW), '9%'), 9999);
affected rows: 1

I NSERT | NTO t2 VALUES (9410), (9411), (9412), (9413);
affected rows: 4

info: Records: 4 Duplicates: 0 Warnings: O
SELECT period FROM t1;

peri od

SECONDS

SECONDS

affected rows: 2

SELECT * FROM t 1;

Period Varor_period

SECONDS 9412

SECONDS 9999

affected rows: 2

SELECT t1.* FROM t 1;

Period Varor_period

SECONDS 9412

SECONDS 9999

affected rows: 2

SELECT * FROMt1 INNER JO N t2 USI NG (Period);
Period Varor_period

9410 9412

affected rows: 1

DROP TABLE t1, t2;

affected rows: 0

ok

4.9 Passing Options from nysqgl -t est -run. pl to nysqgl d or
nysql t est

nysql -t est-run. pl supports several options that enable you to pass options to other programs.
Each of these options takes a value consisting of one or more comma-separated options:

* The - - nysql d option tells nysql -t est - run. pl to start the mysql d server with the named option
added. More than one such extra option may be provided. The following command causes - - ski p-
i nnodb and - - key_buf f er _si ze=16384 to be passed to nmysql d:

shel | > nysql -test-run. pl --nysqgl d=--ski p-innodb --nysql d=--key_buffer_si ze=16384

Note how - - nysql d needs to be repeated for each server option to add. It does not work to add
several server options with one - - nysql d even if enclosed in quotation marks, as that will be
interpreted as a single server option (including spaces).

21

Specifying Test Case-Specific Server Options

e The - - conbi nat i on option is similar to - - nysql d, but behaves differently. mysql -t est - run. pl
executes multiple test runs, using the options for each instance of - - conbi nat i on in successive
runs. The following command passes - - ski p-i nnodb to nmysql d for the first test run, and - -

i nnodb and - -i nnodb-fil e- per-tabl e for the second test run:

shel | > nmysql -t est-run. pl
- - conbi nati on=- - ski p-i nnodb
--conbi nati on=--innodb, --i nnodb-fil e-per-table

If - - conmbi nat i on is given only once, it has no effect.

For test runs specific to a given test suite, an alternative to the use of the - - conbi nat i on option is
to create a conbi nat i ons file in the suite directory. The file should contain a section of options for
each test run. For an example, see Section 4.13.1, “Controlling the Binary Log Format Used for an
Entire Test Run”.

» The - -nysql t est option is used to pass extra options to nysql t est .

shel | > nysql -test-run. pl --nysqltest=options

For an example, see Section 5.3, “nysql -t est - run. pl — Run MySQL Test Suite”.

4.10 Specifying Test Case-Specific Server Options

Within a test case, many system variables can be set by using statements such as these:

SET sqgl _war ni ngs=1;
SET sqgl _npde=' NO_AUTO VALUE_ON_ZERO ;

But sometimes you need to restart the server to use command-line options that are specific to a given
test case. You can specify these options in a file named nysql -test/t/test name-nmaster. opt.
When afile named t / t est _nane- nmast er . opt exists, mysql -t est-run. pl examines it for extra
options that the server needs to be run with when executing the t est _nane test case. If no server has
yet been started or the current server is running with different options, nysql -t est - run. pl restarts
the server with the new options.

You may refer to environment variables in the option file, using the usual $VAR _NAME syntax. From
MySQL 5.6, it is also possible to refer to optional variables using the syntax $?VAR NAME. This will be
replaced with an empty string if the variable is not set.

As a special case, the option - - ski p- core-fil e will be interpreted by nysql -t est - run. pl , which
will then block the server from producing any core files or crash dumps during this test. This may be
useful for tests that intentionally crash the server.

Another special case is - - t est case-ti meout =mi nut es which can be used to set a different, longer
timeout for a particular test case. The given timeout in minutes will be used for this test if it's longer
than the default.

Files inthe mysql -t est / t directory with names ending in - sl ave. opt are similar, but they are used
for slave servers in replication tests.

Sometimes it's also necessary to execute some external commands before starting the server, such as
creating a directory. If you add a file named t / t est _nane- nast er . sh, it will be executed by nysql -
test-run. pl before it starts the server; a similar file may be created for the slave in replication tests.

Because the . sh file is executed through / bi n/ sh, it cannot be used on Windows, and any tests
using such a file will automatically be skipped if you run on Windows. For this reason, this mechanism
may be replaced with a more portable one in some future release of MySQL.

22

Specifying Test Case-Specific Bootstrap Options

4.11 Specifying Test Case-Specific Bootstrap Options

If a test has to run with a particular value of a bootstrap variable such as - - i nnodb- page- si ze or
--innodb-dat a-fil e-pat h, the option can be passed on the command line while running nysql -
test-run. pl . For example, consider a test that can only run with - - i nnodb- page- si ze=8k. The
test can be run like this:

shel | > perl nysqgl-test-run.pl test_nanme_8k --bootstrap=--innodb-page-size=8k --nysql d=--i nnodb- page-s

To ensure the test runs with only a particular page size, an inc file is used to make it skip during runs
with other page sizes.

--source include/ have_i nnodb_8k. i nc

One limitation of using this include file is that the test is skipped unless the required option is passed on
the command line.

Another way to run a test with a bootstrap variable is to delete the existing data directory, and initialize
a new data directory with the bootstrap options, inside the test. When the server is started with the
bootstrap options after this, the SQL queries will run with the specified options.

Now it is possible to pass bootstrap options in the master.opt file of the test, so that the test can
run with the specified value of the bootstrap options without using any command line arguments, or
reinitializing the server within the test. Specifying bootstrap variables in the opt file is the preferred
method. The usage is:

--boot strap --innodb- page-si ze=8k

or

- - boot st rap=- -i nnodb- page- si ze=8k

Each bootstrap variable must be specified as the value of a - - boot st r ap option in the opt file to
ensure nysql -t est -run. pl recognizes that the variable must be used during server initialization. If
there are bootstrap options in the file, the current data directory is deleted, and initialized again with the
options set in the file. The server is also started with the bootstrap options passed along with the other
options in the opt file.

Similarly, bootstrap options passed in the slave.opt will be used to reinitialize the slave server in
replication scenarios.

Note that since the options are passed in the opt files, they have precedence over the command line
options. So, if a test has a master.opt file containing - - i nnodb- page- si ze=8k, and while it is being
run, - - i nnodb- page- si ze=4k is passed on the command line, the test will run with 8k page size.

4.12 Using Include Files to Simplify Test Cases

The i ncl ude directory contains many files intended for inclusion into test case files. For example, if a
test case needs to verify that the server supports the CSV storage engine, use this line in the test case
file:

--source include/have_csv.inc

These include files serve many purposes, but in general, they encapsulate operations of varying
complexity into single files so that you can perform each operation in a single step. Include files are
available for operations such as these:

23

Controlling the Binary Log Format Used for Tests

» Ensure that a given feature is available. The file checks to make sure that the feature is available and
exits if not.

» Storage engine tests: These files have names of the form have_engi ne_nane. i nc, such as
have i nnodb.inc orhave fal con.inc. The Myl SAM MERCE, and MEMORY storage engines
are always supported and need not be checked.

¢ Character set tests: These files have names of the form have _charset nane. i nc, such as
have utf8.inc orhave cpl251.inc.

« Debugging capabilities: Include the have debug. i nc file if a test requires that the server was
built for debugging (that is, that the MySQL distribution was configured with the - - wi t h- debug
option).

» Wait for a condition to become true. Set the $wai t _condi ti on variable to an SQL statement that
selects a value and then include the wai t _condi ti on. i nc file. The include file executes the
statement in a loop with a 0.1 second sleep between executions until the select value is nonzero. For
example:

let $wait_condition= SELECT ¢ = 3 FROM t;
--source include/wait_condition.inc

» Control the binary log format. See Section 4.13, “Controlling the Binary Log Format Used for Tests”.

« Control replication slave servers. See Section 4.14, “Writing Replication Tests”.

You can think of an include file as a rudimentary form of subroutine that is “called” at the point of
inclusion. You can “pass parameters” by setting variables before including the file and referring to them
within the file. You can “return” values by setting variables within the file and referring them following
inclusion of the file.

4.13 Controlling the Binary Log Format Used for Tests

The server can do binary logging using statement-based logging (SBL), which logs events as
statements that produce data changes, or row-based logging (RBL), which logs events as changes to
individual rows. It also supports mixed logging, which switches between SBL and RBL automatically as
necessary.

The server's global bi nl og_f or mat system variable indicates which log format is in effect. It has
possible values of STATEMENT, ROW and M XED (not case sensitive). This system variable can be set
at server startup by specifying - - bi nl og_f or nat =val ue on the command line or in an option file. A
user who has the SUPER privilege can change the log format at runtime. For example:

SET GLOBAL binl og_format = STATEMENT;

Some tests require a particular binary log format. You can exercise control over the binary log format in
two ways:

» To control the log format that the server uses for an entire test run, you can pass options to nysql -
test-run. pl that tell it which format nysql d should use.

» To verify that a particular log format is in effect for a specific test case, you can use an appropriate
include file that checks the current format and exits if the format is other than what is required.

The following sections describe how to use these techniques.

4.13.1 Controlling the Binary Log Format Used for an Entire Test Run

24

Specifying the Required Binary Log Format for Individual Test Cases

To specify the binary log format for a test run, you can use the - - mysql d or - - conbi nat i on option
to tell nysql -t est -run. pl to pass a logging option to nysql d. For example, the following command
runs the tests from the r pl suite that have names that begin with r pl _r ow. The tests are run once
with the binary log format set to STATENMENT:

shel | > nysqgl -test-run.pl --suite=rpl --do-test=rpl_row
--nmysql d=- - bi nl og_f or mat =st at enent

To run tests under multiple log formats, use two or more instances of the - - conbi nat i on option.
The following command runs the same tests as the preceding command, but runs them once with the
binary log format set to ROWand a second time with the format set to M XED:

shel | > nysql -test-run.pl --suite=rpl --do-test=rpl_row
- - conbi nat i on=- - bi nl og_f or mat =r ow
- - conbi nat i on=- - bi nl og_f or mat =m xed

The - - conbi nat i on option must be given at least twice or it has no effect.

As an alternative to using the - - conbi nat i on option, you can create a file named conbi nat i ons
in the test suite directory and list the options that you would specify using - - conbi nat i on, one line
per option. For the preceding nmysql -t est - run. pI| command, the suite name is r pl , so you would
create a file named sui t e/ r pl / conbi nat i ons with these contents:

[row

- - bi nl og_f or mat =r ow

[m xed]
- - bi nl og_f or mat =m xed

Then invoke nysql -t est-run. pl like this:

shel | > nysql -test-run.pl --suite=rpl --do-test=row

The format of the combi nat i ons file is similar to that of my. cnf files (section names followed by
options for each section), but options listed in the conmbi nat i ons file should include the leading
dashes. (Options in ny. cnf files are given without the leading dashes.) nysql -t est - run. pl
displays the section name following the test name when it reports the test result.

Any - - conbi nat i on options specified on the command line override those found in a
conbi nat i ons file.

The - - conbi nat i on option and the conbi nat i ons file have different scope. The - - conbi nat i on
option applies globally to all tests run by a given invocation of nysql -t est -run. pl . The
combi nat i ons file is placed in a test suite directory and applies only to tests in that suite.

4.13.2 Specifying the Required Binary Log Format for Individual Test Cases

To specify within a test case that a particular binary log format is required, include one of the following
lines to indicate the format:

--source include/ have_binl og_format_row.inc
--source include/ have_binl og_format_statenment.inc
--source include/ have_binl og_f ormat _m xed. i nc

The following files can be used for tests that support two binary log formats:

--source include/ have_binl og_format_m xed_or_row. i nc
--source include/ have_binl og_format_m xed_or_statenent.inc
--source include/ have_binl og_format_row or_statenent.inc

25

Writing Replication Tests

Before nysql -t est -run. pl runs the test case, it checks whether the value that it is using for the

bi nl og_f or mat system variable matches what the test requires, based on whether the test refers to
one of the preceding include files. If bi nl og_f or nat does not have an appropriate value, nysql -

t est-run. pl skips the test.

If a test supports all binary log formats, none of the have_bi nl og_f or mat _*. i nc include files
should be used in the test file. A test that includes no such file is assumed to support all formats.

4.14 Writing Replication Tests

If you are writing a replication test case, the test case file should begin with this command:

--source include/ master-slave.inc

To switch between the master and slave, use these commands:

connecti on naster;
connection sl ave;

If you need to do something on an alternative connection, you can use connecti on naster1; for
the master and connecti on sl avel; forthe slave.

To run the master with additional options for your test case, put them in command-line format in
t/test _nane-master. opt.When afile namedt/test nane-naster. opt exists, nysql -
test-run. pl examines it for extra options that the server needs to be run with when executing the
t est _nane test case. If no server has yet been started or the current server is running with different
options, nysql -t est - run. pl restarts the server with the new options.

For the slave, similar principles apply, but you should list additional options int/t est _nane-
sl ave. opt .

Several include files are available for use in tests that enable better control over the behavior of slave
server I/0O and SQL threads. The files are located in the i ncl ude directory and have names of the
formwai t _for_slave *.inc. By using these files, you can help make replication tests more stable
because it will be more likely that test failures are due to replication failures, not due to problems with
the tests themselves.

The slave-control include files address the issue that it is not always sufficient to use a START SLAVE
or STOP SLAVE statement by itself: When the statement returns, the slave may not have reached the
desired operational state. For example, with START SLAVE, the following considerations apply:

* Itis not necessary to wait for the SQL thread after START SLAVE or START SLAVE SQL_ THREAD
because the thread will have started by the time statement returns.

» By contrast, it is necessary to wait for the 1/O thread after START SLAVE or START SLAVE
| O THREAD because although the thread will have started when the statement returns, it may not yet
have established the connection to the master.

To verify that a slave has reached the desired state, combine the use of START SLAVE or STOP
SLAVE with an appropriate “wait” include file. The file contains code that waits until the state has been
reached or a timeout occurs. For example, to verify that both slave threads have started, do this:

START SLAVE;
--source include/wait_for_slave to_start.inc

Similarly, to stop both slave threads, do this:

STOP SLAVE;

26

Thread Synchronization in Test Cases

--source include/wait_for_slave_to_stop.inc
The following list describes the include files that are available for slave control:
e« wait _for _slave to _start.inc

Waits for both slave threads (/O and SQL) to start. Should be preceded by a START SLAVE
statement.

e wait_for_slave to_stop.inc

Waits for both slave threads (/0 and SQL) to stop. Should be preceded by a STOP SLAVE
statement.

e wait_for_slave_sql _to_stop.inc

Waits for the slave SQL thread to stop. Should be preceded by a STOP SLAVE SQL_THREAD
statement.

e wait _for_slave io to _stop.inc

Waits for the slave 1/O thread to stop. Should be preceded by a STOP SLAVE | O THREAD
statement.

e wait _for_slave paraminc

Waits until SHOW SLAVE STATUS output contains a given value or a timeout occurs. Before

including the file, you should set the $sl ave_par amvariable to the column name to look for in SHOW
SLAVE STATUS output, and $sl ave_par am val ue to the value that you are waiting for the column
to have.

Example:

| et $sl ave_paranr Sl ave_SQ._Runni ng;
| et $sl ave_param val ue= No;
--source include/slave wait_slave paraminc

e wait_for_slave_sql _error.inc

Waits until the SQL thread for the current connection has gotten an error or a timeout occurs.
Occurrence of an error is determined by waiting for the Last _SQL_Er r no column of SHOW SLAVE
STATUS output to have a nonzero value.

4.15 Thread Synchronization in Test Cases

The Debug Sync facility allows placement of synchronization points in the code. They can be activated
by statements that set the debug_sync system variable. An active synchronization point can emit a
signal or wait for a signal to be emitted by another thread. This waiting times out after 300 seconds by
default. The - - debug- sync-ti nmeout =N option for mysql -t est - run. pl changes that timeout to N
seconds. A timeout of zero disables the facility altogether, so that synchronization points will not emit or
wait for signals, even if activated.

The purpose of the timeout is to avoid a complete lockup in test cases. If for some reason the expected
signal is not emitted by any thread, the execution of the affected statement will not block forever. A
warning shows up when the timeout happens. That makes a difference in the test result so that it will
not go undetected.

For test cases that require the Debug Sync facility, include the following line in the test case file:

--source include/ have_debug_sync.inc

27

Suppressing Errors and Warning

For a description of the Debug Sync facility and how to use synchronization points, see MySQL
Internals: Test Synchronization.

4.16 Suppressing Errors and Warning

After a test is finished, and if it didn't fail for some other reason, nysql -t est - run. pl will check the
log written by the server(s) during the test for any warnings or errors. If it finds any, it will print them out
and the test will be reported as failed.

However, many warnings and also a few errors may occur normally without signifying a real problem.
Also, many tests purposefully perform actions that will provoke warnings. For these not to result in a
test failure, it is possible to specify that certain messages are to be suppressed.

There is a list of global suppressions; warnings that will always be suppressed. These are listed in the
filei ncl ude/ ntr_war ni ngs. sql . Any error or warning that contains one of the listed strings will be
ignored. It is not necessary to include the whole text, and regular expressions can be used, such as . *
to match any substring or [0- 9] * to match any number.

You will rarely need to change or add to this global list, but you may need to suppress a particular error
or warning for a new test case. A typical case is a test that performs some illegal action on purpose to
test the respone; if this also results in a warning in the server log, this should not cause this particular
test to fail.

To add a suppresion for a warning text like for example The tabl e 't23456" is full wherethe
number in the table name can vary, add this line anywhere in the test case file:

call ntr.add_suppression("The table "t[0-9]*" is full");

This may be put anythere in the test, but we recommend putting it either near the top, or just after the
action that may result in the warning. If you're adding this line to an existing test, keep in mind that it will
be echoed in the output, so the exact same line also needs to be added to the corresponding place in
the result file. Alternatively, you may turn off logging like this, and will then not have to edit the result
file:

--di sabl e_query_| og
call ntr.add_suppression("The table "t[0-9]*" is full");
--enabl e_query_| og

It is also possible to intruct mysql -t est - run. pl to skip the check for errors and warnings
completely, by use of the - - nowar ni ngs command line option.

4.17 Stopping a Server During a Test

If a server dies during execution of a test case, this will be interpreted as a failure. However, there may
be cases where you actually want to stop and possibly restart a server intentionally. It is possible to let
the system know you expect a server to terminate, and to either wait or have it restarted immediately:

Before you initiate the action that will stop the server, the test case should write either r est art or
wai t to the file SMYSQLTEST_VARDI R/ t np/ nmysql d. 1. expect . The easiest way to do this is using
the exec echo construct like in the following example.

If you write r est ar t into this file, the server will be immediately restarted. If you write wai t instead,
the server will remain down, but can be restarted at a later time by writing r est ar t to the file.

--exec echo "wait" > $MYSQLTEST_VARDI R/ t mp/ nysql d. 1. expect
--shut down_server 10

--source include/wait_until _disconnected.inc

Do sonething while server is down

--enabl e_reconnect

28

http://dev.mysql.com/doc/internals/en/test-synchronization.html
http://dev.mysql.com/doc/internals/en/test-synchronization.html

Other Tips for Writing Test Cases

--exec echo "restart" > $MYSQLTEST_VARDI R/t np/ nysql d. 1. expect
--source include/wait_until_connected_again.inc

For your convenience, there is a file i ncl ude/ restart _nysql d. i nc which you can "source" in your
own test case to do what's shown in this code example.

The file name to write the command to will be nysql d. 2. expect for the slave server in replication
tests. Note that you have to use $MYSQLTEST_VARDI R/ t np for the directory here; if you use
$MYSQL_TMP_DI Rinstead, it will not work when running tests in parallel.

It is also possible to provide additional command line options to the restarted server, by writing a line
with r est art : (with a colon) followed by one or more options into the expect file. These extra options
will be dropped if the same server is restarted again, unless they are repeated.

4.18 Other Tips for Writing Test Cases
« Writing loops

If you need to do something in a loop, you can use something like this:

let $1= 10;
while ($1)
{

execute your statenents here
dec $1;
}

» Pausing between statements

To sleep between statements, use the sl eep command. It supports fractions of a second. For
example, sl eep 0. 2; sleeps 0.2 seconds.

Try not to use sl eep orr eal _sl eep commands more than necessary. The more of them there are,
the slower the test suite becomes. In some cases, heavy reliance on sleep operations is an indicator
that the logic of a test should be reconsidered.

e Commenting the test result

When the output in a result file is not understandable by inspection, it can be helpful to have the test
case write comments to the result file that provide context. You can use the echo command for this:

--echo # Comment to explain the follow ng out put

Of course, the same line (without - - echo) will need to be put in the corresponding place in the result
file, if you are adding this to an existing test.

» Sorting result sets

If a test case depends on SELECT output being in a particular row order, use an ORDER BY clause.
Do not assume that rows will be selected in the same order they are inserted, particularly for tests
that might be run multiple times under conditions that can change the order, such as with different
storage engines, or with and without indexing.

If you do not want to add ORDER BY to the query, an alternative is to use the test command
sorted_result which will sort the result of the following statement before putting it into the result
file.

» Performing file system operations

Avoid using exec or syst emto execute operating system commands for file system operations.
This used to be very common, but OS commands tend to be platform specific, which reduces test

29

Other Tips for Writing Test Cases

portability. mysql t est now has several commands to perform these operations portably, so these
commands should be used instead: r enove fil e, chnod, nkdi r, and so forth.

Local versus remote storage

Some test cases depend on being run on local storage, and may fail when run on remote storage
such as a network share. For example, if the test result can be affected by differences between local
and remote file system times, the expected result might not be obtained. Failure of these test cases
under such circumstances does not indicate an actual malfunction. It is not generally possible to
determine whether tests are being run on local storage.

Skipping consistency check or forcing restart after test

As mentioned before, a test case should leave the server in a "clean” state for the next test. In cases
where this is not possible or too costly, the test may in stead ask for the consistency check to be
skipped, and the server(s) to be restarted. This is done by this executing this command at any time
during the test:

call nmtr.force restart();

This signals to mysql -t est - run. pl that it should restart the server before the next test, and also
skip the consistency check.

30

Chapter 5 MySQL Test Programs

Table of Contents

5.1 mysql t est — Program t0 RUN TESt CASESuiivuiiiiiiiciiieiie e e e e e e e e e e eaeaanas 31
5.2nysqgl _client _test — Test CENt APl ... 35
5.3nysqgl -test-run. pl — RUun MySQL TSt SUILEcvvviiiiiiiii e 37
5.4 mysql -stress-test. pl — Server Stress Test Programcccuveviiiiiiiiiiiiiieeeineeeeieeans 52

This chapter describes the test programs that run test cases. For information about the language used
for writing test cases, see Chapter 6, mysqgl t est Language Reference.

The test suite uses the following programs:

* Thenysqgl -test-run. pl Perl script is the main application used to run the MySQL test suite. It
invokes mysql t est to run individual test cases. (Prior to MySQL 4.1, a similar shell script, mysql -
t est - run, can be used instead.)

e nysqgl t est runs test cases. Prior to MySQL 8.0, a version named nysql t est _enbedded is
available; it is similar to nysql t est but is built with support for the | i bnysql d embedded server.

 Thenysqgl client test program is used for testing aspects of the MySQL client API that
cannot be tested using nysql t est and its test language. Prior to MySQL 8.0, a version named
nysql _client test enbedded is available; it is similar to nysql _client test butis used for
testing the embedded server.

* The nysqgl - stress-test. pl Perl script performs stress-testing of the MySQL server.

5.1 nysql t est — Program to Run Test Cases

The nysqgl t est program runs a test case against a MySQL server and optionally compares the output
with a result file. This program reads input written in a special test language. Typically, you invoke
nysqgl t est using nysql -t est -run. pl rather than invoking it directly.

nysql t est _enbedded is similar but is built with support for the | i bmysql d embedded server. This
program is available only prior to MySQL 8.0.

Features of nysql t est :

e Can send SQL statements to MySQL servers for execution

» Can execute external shell commands

» Can test whether the result from an SQL statement or shell command is as expected

» Can connect to one or more standalone nysql d servers and switch between connections

e Can connect to an embedded server (I i bnysql d), if MySQL is compiled with support for
I'i bmysqgl d. (In this case, the executable is named nysql t est _enbedded rather than

nysql t est.)

By default, mysql t est reads the test case on the standard input. To run mysql t est this way, you
normally invoke it like this:

shel | > nysqgl test [options] [db_nanme] < test_file
You can also name the test case file witha--test-fil e=fil e_nane option.

The exit value from nysql t est is O for success, 1 for failure, and 62 if it skips the test case (for
example, if after checking some preconditions it decides not to run the test).

31

mysql t est — Program to Run Test Cases

nysqgl t est supports the following options:

--help,-?

Display a help message and exit.
--basedi r=dir_nane,-b dir_nane

The base directory for tests.
--character-sets-dir=path

The directory where character sets are installed.
--conpress,-C

Compress all information sent between the client and the server if both support compression.
--cursor-protocol

Use cursors for prepared statements.
- - dat abase=db_nane, - D db_nane

The default database to use.
- - debug[=debug_opti ons], - #[debug_opti ons]

Write a debugging log if MySQL is built with debugging support. The default debug_opt i ons value
is'd:t:S:i:0/tnp/ nysqgltest.trace'.

- - debug- check
Print some debugging information when the program exits.
--debug-info
Print debugging information and memory and CPU usage statistics when the program exits.
- -expl ai n-protocol,
Run EXPLAI N EXTENDED on all SELECT, INSERT, REPLACE, UPDATE and DELETE queries.
--host =host _nane, - h host _nane
Connect to the MySQL server on the given host.
--include=file_nane,-i file_name

Include the contents of the given file before processing the contents of the test file. The included
file should have the same format as other nysql t est test files. This option has the same effect as
putting a - - source fil e_nanme command as the first line of the test file.

--j son-expl ai n- prot ocol ,

Run EXPLAI N FORVAT=JSON on all SELECT, INSERT, REPLACE, UPDATE and DELETE queries.
The | son- expl ai n- pr ot ocol option is available from MySQL 5.6.

--logdir=dir_nane
The directory to use for log files.

- - mar k- progress

32

mysql t est — Program to Run Test Cases

Write the line number and elapsed time tot est _fil e. progress.
--max- connect-retri es=num

The maximum number of connection attempts when connecting to server.
- - max- connect i ons=num

The maximum number of simultaneous server connections per client (that is, per test). If not set, the
maximum is 128. Minimum allowed limit is 8, maximum is 5120.

--no-defaults
Do not read default options from any option files. If used, this must be the first option.
--plugi n-dir=path

The directory in which to look for plugins. It may be necessary to specify this option if the
def aul t _aut h argument is used for the connect () command to specify an authentication plugin
but nysql t est does not find it. This option was added in MySQL 5.5.7.

- - passwor d[=passwor d] , - p[passwor d]

The password to use when connecting to the server. If you use the short option form (- p), you
cannot have a space between the option and the password. If you omit the passwor d value
following the - - passwor d or - p option on the command line, you are prompted for one.

--port=port_num-P port_num
The TCP/IP port number to use for the connection.
- - pr ot ocol ={ TCP| SOCKET]| PI PE| MEMORY}
Choose the protocol for communication with the server. SOCKET is default.
The - - prot ocol option is ignored if running with the embedded server.
- - ps- prot ocol
Use the prepared-statement protocol for communication.
--qui et
Suppress all normal output. This is a synonym for --silent.
--record, -r

Record the output that results from running the test file into the file named by the - -resul t-file
option, if that option is given. It is an error to use this option without also using - -resul t-fil e.

--result-file=file nanme,-R file_nane

This option specifies the file for test case expected results. - - resul t - f i | e, together with - -
recor d, determines how mysql t est treats the test actual and expected results for a test case:

« If the test produces no results, mysql t est exits with an error message to that effect, unless - -
result-fil eisgiven and the named file is an empty file.

e Otherwise, if--resul t-fil eisnotgiven, nysql t est sends test results to the standard output.

e With--result-filebutnot--record, nysqltest reads the expected results from the given
file and compares them with the actual results. If the results do not match, nysql t est writes a

33

mysql t est — Program to Run Test Cases

. rej ect file in the same directory as the result file, outputs a diff of the two files, and exits with an
error.

e Withboth--result-fileand--record, nysqltest updates the given file by writing the
actual test results to it.

--server-arg=val ue, - A val ue

Pass the argument as an argument to the embedded server. For example, - - ser ver - ar g=- -
tnpdir=/tnpor--server-arg=--core. Upto 64 arguments can be given. This option was
removed in MySQL 8.0.

--server-file=file_name,-F file_nane

Read arguments for the embedded server from the given file. The file should contain one argument
per line. This option was removed in MySQL 8.0.

--server-public-key-path=file_nane

The path name to a file containing the server RSA public key. The file must be in PEM format. The
public key is used for RSA encryption of the client password for connections to the server made
using accounts that authenticate with the sha256 passwor d plugin. This option is ignored for client
accounts that do not authenticate with that plugin. It is also ignored if password encryption is not
needed, as is the case when the client connects to the server using an SSL connection.

The server sends the public key to the client as needed, so it is not necessary to use this option for
RSA password encryption to occur. It is more efficient to do so because then the server need not
send the key.

For additional discussion regarding use of the sha256 passwor d plugin, including how to get the
RSA public key, see SHA-256 Pluggable Authentication.

This option is available only if MySQL was built using OpenSSL. It was added in MySQL 5.6.6 under
the name - - server - publ i c- key and renamed in 5.6.7 to - - ser ver - publ i c- key- pat h.

--silent,-s

Suppress all normal output.
--ski p-safemal | oc

Do not use memory allocation checking.
--sl eep=num-T num

Cause all sl eep commands in the test case file to sleep numseconds. This option does not affect
real sl eep commands.

An option value of 0 can also be used, which effectively disables sl eep commands in the test case.
--socket=path,-S path

The socket file to use when connecting to | ocal host (which is the default host).
--sp-protocol

Execute DML statements within a stored procedure. For every DML statement, nysqgl t est creates
and invokes a stored procedure that executes the statement rather than executing the statement
directly.

--tail-lines=nn

34

http://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html

nysqgl client test — Test Client API

Specify how many lines of the result to include in the output if the test fails because an SQL
statement fails. The default is 0, meaning no lines of result printed.

o --test-file=file_name,-x file_nane
Read test input from this file. The default is to read from the standard input.
e --timer-file=file_nane,-mfile_nane

If given, the number of millisecond spent running the test will be written to this file. This is used by
nysql -test-run. pl forits reporting.

* --tls-version=protocol _|ist

The protocols permitted by the client for encrypted connections. The value is a comma-separated
list containing one or more of these protocols: TLSv1, TLSv1.1, TLSv1.2. (TLSv1.2 is supported only
if MySQL was compiled using OpenSSL 1.0.1 or higher. It is not supported if MySQL was compiled
using yaSSL.)

This option was added in MySQL 5.7.10.
e --tnpdir=dir_nane,-t dir_nane

The temporary directory where socket files are created.
+ --trace-exec

If enabled, this option causes nysql t est to immediately display the output from executed programs
to st dout .

This option was added in MySQL 8.0.0.
e --user=user_name,-u user_nane
The MySQL user name to use when connecting to the server.
* --verbose,-v
Verbose mode. Print out more information about what the program does.
e --version,-V
Display version information and exit.
e --View protocol

Every SELECT statement is wrapped inside a view.

52nysqgl _client test — Test Client API

The nysqgl _client test program is used for testing aspects of the MySQL client API that cannot be
tested using nysqgl t est and its test language. nysql _client test isrun as part of the test suite.

nmysqgl _client_test enbedded is similar but is used for testing the embedded server. This program
is available only prior to MySQL 8.0.

The source code for the programs can be found inint est s/ nysqgl _client _test.c inasource
distribution. The program serves as a good source of examples illustrating how to use various features
of the client API.

nmysqgl client test isused in atest by the same name in the main tests suite of nysql - t est -
run. pl but may also be run directly. Unlike the other programs listed here, it does not read an

35

nysqgl client test — Test Client API

external description of what tests to run. Instead, all tests are coded into the program, which is written
to cover all aspects of the C language API.

nysgl _client test supports the following options:
e --help,-?
Display a help message and exit.
e --basedir=dir_nane, -b dir_nane
The base directory for the tests.
s --count=count, -t count
The number of times to execute the tests.
 --database=db_nane,-D db_nane
The database to use.
 --debug[=debug _options],-#[debug_opti ons]

Write a debugging log if MySQL is built with debugging support. The default debug_opt i ons value
is'd:t:o,/tnmp/nysql _client test.trace'.

e --getopt-1l-test=option, -g option
Option to use for testing bugs in the get opt library.
 --host=host _name,-h host_nane
Connect to the MySQL server on the given host.
e --password[=password], - p[passwor d]

The password to use when connecting to the server. If you use the short option form (- p), you
cannot have a space between the option and the password. If you omit the passwor d value
following the - - passwor d or - p option on the command line, you are prompted for one.

» --port=port_num-P port_num

The TCP/IP port number to use for the connection.
 --server-arg=arg, -A arg

Argument to send to the embedded server. This option was removed in MySQL 8.0.
e --showtests,-T

Show all test names.
e --silent,-s

Be more silent.
e --socket=path,-S path

The socket file to use when connecting to | ocal host (which is the default host).
* --testcase,-cC

The option is used when called from nysql -t est -run. pl , so that nysql _client_test may
optionally behave in a different way than if called manually, for example by skipping some tests.
Currently, there is no difference in behavior but the option is included to make this possible.

36

nysql -test-run. pl — Run MySQL Test Suite

e --user=user_naneg, -u user_nane

The MySQL user name to use when connecting to the server.
e -v dir_nane, --vardir=dir_nane

The data directory for tests. The default is nysql -t est/ var.

53nysql -test-run. pl —Run MySQL Test Suite

Note
@ This content is no longer updated. Any further updates to test framework
documention take place in the MySQL Source Code documentation and can be
accessed at The MySQL Test Framework, Version 2.0.
The nysql -t est -run. pl Perl script is the main application used to run the MySQL test suite. It
invokes nysql t est to run individual test cases.

Invoke mysql -t est-run. pl inthe nysql -t est directory like this:

shel | > nysqgl -test-run. pl [options] [test_nane]

Each t est _nane argument names a test case. The test case file that corresponds to the test name is
t/test _nane.test.

For each t est _nane argument, mysql -t est - run. pl runs the named test case. With no
t est _name arguments, nmysql -t est-run. pl runs all . t est filesin the t subdirectory.

If no suffix is given for the test name, a suffix of . t est is assumed. Any leading path name is ignored.
These commands are equivalent;

shel | > nysql -test-run. pl nytest
shel | > nysql -test-run. pl nytest.test
shel | > nysqgl -test-run.pl t/nytest.test

A suite name can be given as part of the test name. That is, the syntax for naming a test is:

[suite_nanme.]test_nane[.suffix]

If a suite name is given, nysql -t est - run. pl looks in that suite for the test. The test file
corresponding to a test named sui t e_nane. t est _nane is found in sui t e/ sui t e_nane/

t/test _nane.test. There is also an implicit suite name nai n for the tests in the top t directory.
With no suite name, nysql -t est - run. pl looks in the default list of suites for a match and runs the
test in any suites where it finds the test. Suppose that the default suite list is mai n, bi nl og, r pl ,
and that a test myt est . t est exists in the mai n and r pl suites. With an argument of nmyt est or
nytest.test, nysqgl-test-run. pl wilrunnytest.test fromthe mai nandrpl suites.

To run a family of test cases for which the names share a common prefix, use the - - do-

t est =pr ef i x option. For example, - - do-t est =r pl runs the replication tests (test cases that have
names beginning with r pl). - - ski p-t est has the opposite effect of skipping test cases for which the
names share a common prefix.

The argument for the - - do-t est and - - ski p-t est options also allows more flexible specification
of which tests to perform or skip. If the argument contains a pattern metacharacter other than a lone
period, it is interpreted as a Perl regular expression and applies to test names that match the pattern.
If the argument contains a lone period or does not contain any pattern metacharacters, it is interpreted

37

http://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html

nysqgl -test-run. pl — Run MySQL Test Suite

the same way as previously and matches test names that begin with the argument value. For example,
--do-t est =t est a matches tests that begin with t est a, - - do- t est =nai n. t est a matches tests in
the mai n test suite that begin with t est a, and - - do-t est =mai n. *t est a matches test names that
contain mai n followed by t est a with anything in between. In the latter case, the pattern match is not
anchored to the beginning of the test name, so it also matches names such as xmai nyt est a.

As of MySQL 5.7, it is possible to put a list of test names in a file and have nysql -t est - run. pl run
those tests, using the option - - do-t est - | i st =f i | e. The tests should be listed one per line in the
file, using the fully qualified name sui t e.t est . A space may be used in place of the period. A line
beginning with # indicates a comment and is ignored.

As of MySQL 8.0, mysqgl -t est-run. pl supports a - - do- sui t e option, which is similar to - - do-
t est but permits specifying entire suites of tests to run.

To perform setup prior to running tests, mysql - t est - run. pl needs to invoke mysql d with the
--boot st rap and - - ski p- grant -t abl es options. If MySQL was built with the compiler flag -

DDI SABLE_GRANT_OPTI ONS, then - - boot strap, --ski p-grant-tables,and--init-fil e will
be disabled. To handle this, set the M\YSQLD BOOTSTRAP environment variable to the full path name of
a server that has all options enabled. nysqgl -t est - run. pl will use that server to perform setup; it is
not used to run the tests.

Theinit filetestwillfailif--init-fileisdisabled. Thisis an expected failure in this case.

Torun nmysql -t est-run. pl on Windows, you'll need either Cygwin or ActiveState Perl to run it. You
may also need to install the modules required by the script. To run the test script, change location into
the mysql - t est directory, set the MTR_VS_CONFI G environment variable to the configuration you
selected earlier (or use the - - vs- conf i g option), and invoke nysql -t est - run. pl . For example
(using Cygwin and the bash shell):

shel | > cd nysql -test

shel | > export MIR_VS_CONFI G=debug

shell > ./nysqgltest-run.pl --force --tinmer

shell > ./nysqgltest-run.pl --force --timer --ps-protocol

nysqgl -t est-run. pl uses several environment variables. Some of them are listed in the following
table. Some of these are set from the outside and used by nysql -t est - r un. pl , others are set by
nysql -t est-run. pl instead, and may be referred to in tests.

Variable Description

MIR_BUI LD_THREAD If set, defines which port number range is used for the server

MIR_MEM If set to anything, will run tests with files in "memory" using tmpfs or
ramdisk. Not available on Windows. Same as - - nemoption

MIR_MAX_PARALLEL If set, defines maximum number of parallel threads if - -

paral | el =aut o is given

MIR_NAME_TI MEQUT Setting of a timeout in minutes or seconds, corresponding to
command line option - - nanme- t i meout . Avaliable timeout names are
TESTCASE, SUI TE (both in minutes) and START, SHUTDOWN, CTEST
(all in seconds). MTR_CTEST_TI MECUT is for ct est unit tests; it was
added in MySQL 8.0.0.

MIR_PARALLEL If set, defines number of parallel threads executing tests. Same as - -
par al | el option

MIR_PORT_BASE If set, defines which port number range is used for the server

MYSQL_CONFI G EDI TOR Path name to mysqgl confi g_edit or binary. Supported as of
MySQL 5.6.6.

MYSQL_TEST Path name to nysql t est binary

38

nysql -test-run. pl — Run MySQL Test Suite

Variable Description

MYSQL_TEST DI R Full path to the nysql -t est directory where tests are being run from

MYSQL_TEST LOGE N_FI LE |Path name to login file used by nysqgl confi g_editor. If not
set, the default is $HOVE/ . nyl ogi n. cnf, or %APPDATA% My SQL
\'. nyl ogi n. cnf on Windows. Supported as of MySQL 5.6.6.

MYSQ._TMP_DI R Path to temp directory used for temporary files during tests

MYSQLD Full path to server executable used in tests. Supported as of MySQL
5.5.17.

MYSQLD_BOOTSTRAP Full path name to mysql d that has all options enabled

MYSQLD BOOTSTRAP_CMD |Full command line used for initial database setup for this test batch

MYSQLD CMVD Command line for starting server as used in tests, with the minimum
set of required arguments. Supported as of MySQL 5.5.17.

MYSQLTEST_VARDI R Path name to the var directory that is used for logs, temporary files,
and so forth

TSAN_OPTI ONS Path name to a file containing ThreadSanitizer suppressions.
Supported as of MySQL 8.0.1.

The variable MTR_PORT_BASE is a more logical replacement for the original variable

MIR_BUI LD_THREAD. It gives the actual port number directly (will be rounded down to a multiple of
10). If you use MTR_BUI LD THREAD, the port number is found by multiplying this by 10 and adding
10000.

Tests sometimes rely on certain environment variables being defined. For example, certain tests
assume that MYSQL_TEST is defined so that mysql t est can invoke itself with exec $MYSQL_TEST.

Other tests may refer to the last three variables listed in the preceding table, to locate
files to read or write. For example, tests that need to create files will typically put them in
SMYSQL_TMP_DI R/ fil e_nane.

The variable $MYSQLD_CMVD will include any server options added with the - - nysql d option to
nysql -test-run. pl, but will not include server options added specifically for the currently running
test.

nmysql -t est-run. pl supports the options in the following list. An argument of - - tells nysql -t est -
run. pl notto process any following arguments as options.

e --help,-h
Display a help message and exit.
e --big-test

Allow tests marked as "big" to run. Tests can be thus marked by including the line - - sour ce
i ncl ude/ bi g_t est. i nc, and they will only be run if this option is given, or if the environment
variable Bl G _TEST is set to 1.

This is typically done for tests that take very long to run, or that use very much resources, so that
they are not suitable for running as part of a normal test suite run.

If both - - bi g-test and - - onl y- bi g-t ests are given, - - onl y- bi g-t est s is ignored.
e --boot -dbhx

Run the mysql d server used for bootstrapping the database through the dbx debugger. This option
is available from MySQL 5.5.17.

e --boot-ddd

39

nysqgl -test-run. pl — Run MySQL Test Suite

Run the mysql d server used for bootstrapping the database through the ddd debugger. This option
is available from MySQL 5.5.17.

- - boot - gdb

Run the mysql d server used for bootstrapping the database through the gdb debugger. This option
is available from MySQL 5.5.17.

See also the - - manual - boot - gdb option.
--bui | d-t hread=nunber

Specify a number to calculate port numbers from. The formula is 10 * bui | d_t hr ead + 10000.
Instead of a number, it can be set to aut o, which is also the default value, in which case nmysql -
test-run. pl will allocate a number unique to this host.

The value (humber or aut 0) can also be set with the MTR_BUI LD_THREAD environment variable.

This option is kept for backward compatibility. The more logical - - por t - base is recommended
instead.

--callgrind
Instructs val gri nd to use cal | gri nd.

--charset-for-testdb=charset nane
Specify the default character set for the t est database. The default value is | ati nl.
This option was added in MySQL 8.0.1.

--check-testcases

Check test cases for side effects. This is done by checking the system state before and after

each test case; if there is any difference, a warning to that effect is written, but the test case is not
marked as failed because of it. This check is enabled by default. To disable it, use the - - nocheck-
t est cases option.

--clean-vardir

Clean up the var directory with logs and test results etc. after the test run, but only if there were no
test failures. This option only has effect if also running with option - - mem The intent is to alleviate
the problem of using up memory for test results, in cases where many different test runs are being
done on the same host.

--client-bindir=path
The path to the directory where client binaries are located.
--client-dbx
Start nysql t est in the dbx debugger. Support for dbx is available from MySQL 5.5.12.
--client-ddd
Start nysql t est in the ddd debugger.
--client-debugger =debugger
Start nysql t est in the named debugger.

--client-gdb

40

nysql -test-run. pl — Run MySQL Test Suite

Start nysql t est in the gdb debugger.
--client-1libdir=path

The path to the directory where client libraries are located.
- - conbi nati on=val ue

Extra option to pass to mysqgl d. The value should consist of a single mysql d option including
dashes. This option is similar to - - nysql d but has a different effect. nysql -t est - run. pl
executes multiple test runs, using the options for each instance of - - conbi nat i on in successive
runs. If - - conbi nat i on is given only once, it has no effect. For test runs specific to a given test
suite, an alternative to the use of - - conbi nat i on is to create a conbi nat i ons file in the suite
directory. The file should contain a section of options for each test run. See Section 4.9, “Passing
Options from nysql -t est-run. pl tonysqgl d ornysql test”.

--coment =str

Write st r to the output within lines filled with #, as a form of banner.
--conpress

Compress all information sent between the client and the server if both support compression.
--cursor-protocol

Pass the - - cur sor - pr ot ocol optionto nmysql t est (implies - - ps- pr ot ocol).
- - dbx

Start nysql d in the dbx debugger. Support for dbx is available from MySQL 5.5.12.
--ddd

Start nysql d in the ddd debugger.
- - debug

Dump trace output for all clients and servers.
- - debugger =debugger

Start nysql d using the named debugger.
- - debug- common

This option works similar to - - debug but turns on debug only for the debug macro keywords
query, info, error, enter, exit which are considered the most commonly used.

- - debug- server

Runs nysql d. debug (if available) instead of mysql d as server. If it does find nysql d. debug, it
will search for plugin libraries in a subdirectory debug under the directory where it's normally located.
This option does not turn on trace output and is independent of the debug option.

- - debug-sync-ti neout =seconds

Controls whether the Debug Sync facility for testing and debugging is enabled. The option value is
a timeout in seconds. The default value is 300. A value of O disables Debug Sync. The value of this
option also becomes the default timeout for individual synchronization points.

nysql -test-run. pl passes--1o0ose-debug-sync-ti nmeout=seconds tonysql d. The - -
| oose prefix is used so that mysql d does not fail if Debug Sync is not compiled in.

41

nysqgl -test-run. pl — Run MySQL Test Suite

For information about using the Debug Sync facility for testing, see Section 4.15, “Thread
Synchronization in Test Cases”.

--defaul t-mnmyi sam

Use MWy SAMas the default storage engine for all except | nnoDB-specific tests. This option is on
by default in MySQL 5.5 and 5.6, but is off by default as of MySQL 5.7. See also - - nodef aul t -
nyi sam

--defaults-file=file_nane

Use the named file as fixed config file template for all tests.
--defaults extra file=file_name

Add setting from the named file to all generated configs.
--di scover

Attempt to preload di scover , the Developer Studio Memory Error Discovery Tool when starting
nysql d. Reports from di scover may be found in | og/ nysqgl d. %p. t xt under the directory given
by - - var di r. This option was added in MySQL 8.0.1. It is supported only on SPARC-M7 systems.

--do-suite=prefix or regex

Run all test cases from suites having a name that begins with the given pr ef i x value or matches
the regular expression. If the argument matches no existing suites, nysql -t est - run. pl aborts.

The argument for the - - do- sui t e option allows more flexible specification of which tests to
perform. See the description of the - - do-t est option for details.

The - - do- sui t e option was added in MySQL 8.0.
--do-test=prefix or regex

Run all test cases having a name that begins with the given pr ef i x value or matches the regular
expression. This option provides a convenient way to run a family of similarly named tests.

The argument for the - - do- t est option allows more flexible specification of which tests to perform.
If the argument contains a pattern metacharacter other than a lone period, it is interpreted as a Perl
regular expression and applies to test names that match the pattern. If the argument contains a lone
period or does not contain any pattern metacharacters, it is interpreted the same way as previously
and matches test names that begin with the argument value. For example, - - do- t est =t est a
matches tests that begin with t est a, - - do-t est =mai n. t est a matches tests in the nai n test
suite that begin with t est a, and - - do- t est =nmai n. *t est a matches test names that contain mai n
followed by t est a with anything in between. In the latter case, the pattern match is not anchored to
the beginning of the test name, so it also matches names such as xnmai nyt est z.

--do-testlist=file

Run all tests listed in the file f i | e. In this file, tests should be listed one per line in the form
sui t e.t est or alternatively, with a space instead of the period. A line beginning with # will be
ignored and can be used for comments.

The - -do-test- i st option is available from MySQL 5.7.
- - enbedded- ser ver

Use a version of nysql t est built with the embedded server. This option was removed in MySQL
8.0.

- -enabl e-di sabl ed

42

nysql -test-run. pl — Run MySQL Test Suite

Ignore any di sabl ed. def file, and run also tests marked as disbaled. Success or failure of those
tests will be reported the same way as other tests.

--experimental =fil e_nane

Specify a file that contains a list of test cases that should be displayed with the [exp-fail] code
ratherthan[fail] if they fail.

For an example of a file that might be specified using this option, see nysql -t est/ col | ecti ons/
def aul t. experi nental .

It is also possible to supply more than one - - exper i nent al , test cases listed in all the files will be
treated as experimental.

- - expl ai n- prot ocol ,
Run EXPLAI N EXTENDED on all SELECT, | NSERT, REPLACE, UPDATE, and DELETE statements.
--externoption=val ue

Use an already running server. The option/value pair is what is needed by the nysql client to
connect to the server. Each - - ext er n can only take one option/value pair as argument, so it you
need more you need to repeat - - ext er n for each of them. Example:

.Inysql-test-run.pl --extern socket=var/tnp/nysqld.1l.sock alias

Note: If a test case has an . opt file that requires the server to be restarted with specific options, the
file will not be used. The test case likely will fail as a result.

--fast

Do not perform controlled shutdown when servers need to be restarted or at the end of the test run.
This is equivalent to using - - shut down- t i meout =0.

--fail-check-testcases

Enabling this option when a test is run, causes it to fail if MTR's internal check of the test case fails.
If this option is disabled, only a warning is generated while the test passes. This option is enabled by
default. For additional information, see the description of the - - check-t est cases option.

The - -fail -check-test cases option was added in MySQL 8.0.
--force

Normally, nysql -t est - run. pl exits if a test case fails. - - f or ce causes execution to continue
regardless of test case failure.

--force-restart

Always restart the server(s) between each tast case, whether it's needed or not. Will also restart
between repeated runs of the same test case. This may be useful e.g. when looking for the source of
a memory leak, as there will only have been one test run before the server exits.

--gcov

Run tests with the gcov test coverage tool.
--gdb

Start nysql d in the gdb debugger.

- - gpr of

43

nysqgl -test-run. pl — Run MySQL Test Suite

Run tests with the gpr of profiling tool.
--include-ndbcl uster, --include-ndb
Run also tests that need Cluster.
--j son-expl ai n- prot ocol ,

Run EXPLAI N FORVAT=JSON on all SELECT, INSERT, REPLACE, UPDATE and DELETE queries.
The j son- expl ai n- pr ot ocol option is available from MySQL 5.6.

- - manual - boot - gdb

This option is similar to - - boot - gdb but attaches the debugger to the server during the
bootstrapping process, permitting the use of a remote debugger. This option is available from
MySQL 5.7.14.

- - manual - dbx

Use a server that has already been started by the user in the dbx debugger. Support for dbx is
available from MySQL 5.5.12.

- - manual - ddd
Use a server that has already been started by the user in the ddd debugger.
- - manual - debug
Use a server that has already been started by the user in a debugger.
- -manual - gdb
Use a server that has already been started by the user in the gdb debugger.
--mar k- progress
Marks progress with timing (in milliseconds) and line number in var /| og/ t est name. pr ogr ess.
- - max- connect i ons=num

The maximum number of simultaneous server connections that may be used per test. If not set, the
maximum is 128. Minimum allowed limit is 8, maximum is 5120. Corresponds to the same option for
nysql t est .

- - max- save- cor e=N

Limit the number of core files saved, to avoid filling up disks in case of a frequently crashing
server. Defaults to 5, set to 0 for no limit. May also be set with the environment variable
MIR_MAX_SAVE CORE

- - max- save- dat adi r =N

Limit the number of data directories saved after failed tests, to avoid filling up disks in case of
frequent failures. Defaults to 20, set to 0 for no limit. May also be set with the environment variable
MIR_MAX_SAVE_DATADI R

--max-test-fail =N

Stop execution after the specified number of tests have failed, to avoid using up resources
(and time) in case of massive failures. retries are noe counted, nor are failures of tests marked
experimental. Defaults to 10, set to O for no limit. May also be set with the environment variable
MIR_MAX_TEST FAI L

44

nysql -test-run. pl — Run MySQL Test Suite

--mem
This option is not supported on Windows.

Run the test suite in memory, using tmpfs or ramdisk. This can decrease test times significantly,

in particular if you would otherwise be running over a remote file system. nysql -t est - r un. pl
attempts to find a suitable location using a built-in list of standard locations for tmpfs and puts the
var directory there. This option also affects placement of temporary files, which are created in var /

t .

The default list includes / dev/ shm You can also enable this option by setting the environment
variable MTR_MEM =di r _nane] . If di r _nan® is given, it is added to the beginning of the list of
locations to search, so it takes precedence over any built-in locations.

Once you have run tests with - - mremwithin a mysql - t est directory, a soflink var will have been set
up to the temporary directory, and this will be re-used the next time, until the soflink is deleted. Thus,
you do not have to repeat the - - nemoption next time.

--nysqgl d=val ue

Extra option to pass to nysql d. Only one option may be specified in val ue; to specify more than
one, use additional - - mysql d options. See Section 4.9, “Passing Options from nmysql -t est -
run. pl tonysql dornysql test”.

--nysgl d- env=vari abl e=val ue

Sets (or changes) an environment variable before starting mysql d. Varibles set in the environment
from which you run nysql - t est - run. pl will normally also be propagated to nysql d, but there
may be cases where you want a setting just for a single run, or you may not want the setting to affect
other programs. You may use additional - - nysql d- env options to set more than one variable.

--nysql t est =opti ons
Extra options to pass to nysql t est .

This option was added in MySQL 8.0.0.

--ndb- connect string=str

Pass - - ndb- connect stri ng=str to the master MySQL server. This option also prevents nmysql -
test-run. pl from starting a cluster. It is assumed that there is already a cluster running to which
the server can connect with the given connectstring.

--nocheck-t est cases

Disable the check for test case side effects. For additional information, see the description of the - -
check-t est cases option.

--nodef aul t-nmyi sam

For MySQL 5.5 or 5.6, do not override the build-in default engine to use MylSAM instead for non-
InnoDB tests. Since the existing collection of tests were originally adapted for MyISAM as default,
many tests will fail when this option is used, because the test behaves differently or produces
different output when the engine switches to InnoDB.

From MySQL 5.7, the default engine for tests has been changed to InnoDB and this option will have
no effect.

- -nor eor der

45

nysqgl -test-run. pl — Run MySQL Test Suite

Do not reorder tests to reduce number of restarts, but run them in exactly the order given. If a whole
suite is to be run, the tests are run in alphabetic order, though similiar combinations will be grouped
together. If more than one suite is listed, the tests are run one suite at a time, in the order listed.

--no-skip

This option forces all tests to run, ignoring any - - ski p commands used in the test. This ensures
that all tests are run. An excluded list (excl udenoski p. | i st) is maintained to track which tests
should continue to be skipped. The - - no- ski p option continues to skip the tests that are named in
the excluded list. The default value of - - no- ski p introduced variable is OFF, which implies users
are not forced to run all tests unless the - - no- ski p is explicitly used.

shel | > nmysql -test-run. pl
--sui te=i nnodb
--no-skip

--noti mer

Cause nysql t est not to generate a timing file. The effect of this is that the report from each test
case does not include the timing in milliseconds as it normally does.

--nounit-tests
Do not run unit tests, overriding default behavior or setting of the MTR_UNI T_TESTS variable.

Running of unit tests was enabled from MySQL 5.5.11.

- - nowar ni ngs

Do not look for and report errors and warning in the server logs.
--only-big-tests

This option causes only big tests to run. Normal (non-big) tests are skipped. If both - - bi g- t est
and - - onl y- bi g-t est s are given, - - onl y- bi g-t est s is ignored.

--onl y-bi g-tests was added in MySQL 8.0.1.

--paral |l el ={N| aut o}

Run tests using N parallel threads. By default, 1 thread is used. Use - - par al | el =aut o to set N
automatically.

Setting the MTR_PARALLEL environment variable to N has the same effect as specifying - -
paral | el =N.

The MTR_MAX_PARALLEL environment variable, if set, specifies the maximum number of
parallel workers that can be spawned when the - - par al | el =aut o option is specified. If - -
par al | el =aut o is not specified, MTR_MAX_ PARALLEL variable has no effect.

--port-base=P

Specify base of port numbers to be used; a block of 10 will be allocated. P should be divisible by 10;
if it is not, it will be rounded down. If running with more than one parallel test thread, thread 2 will use
the next block of 10 and so on.

If the port number is given as aut o, which is also the default, mysql - t est - r un. pl will allocate
a number unique to this host. The value may also be given with the environment variable
MIR_PORT_BASE.

46

nysql -test-run. pl — Run MySQL Test Suite

- - port - base was added in MySQL 5.1.45 as a more logical alternative to - - bui | d-t hr ead. If
both are used, - - por t - base takes precedence.

--print-testcases

Do not run any tests, but print details about all tests, in the order they would have been run.

- - ps- pr ot ocol

Pass the - - ps- pr ot ocol optionto nysql t est.

--record

Pass the - - r ecor d option to mysql t est . This option requires a specific test case to be named on
the command line.

--reorder

Reorder tests to minimize the number of server restarts needed. This is the default behavior. There
is no guarantee that a particular set of tests will always end up in the same order.

--repeat =N
Run each test N number of times.

--report-features

Display the output of SHOW ENG NES and SHOW VARI ABLES. This can be used to verify that
binaries are built with all required features.

--report-tines

At the end of the test run, write a summary of how much time was spent in various phases of
execution. If you run with - - par al | el , the total will exceed the wall clock time passed, since it will
be summed over all threads.

The times reported should only be treated as approximations, and the exact points where the time
is taken may also change between releases. If the test run is aborted, including if a test fails and - -
f or ce is not in use, the time report will not be produced.

The - -report-tines is available from MySQL 5.5.
--retry=N

If a test fails, it is retried up to a maximum of N runs, but will terminate after 2 failures. Default is 3,
set to 1 or O for no retries. This option has no effect unless - - f or ce is also used; without it, test
execution will terminate after the first failure.

The--retry and--retry-fail ure options do not affect how many times a test repeated with
- -repeat may fail in total, as each repetition is considered a new test case, which may in turn be
retried if it fails.

--retry-failure=N

Allow a failed and retried test to fail more than the default 2 times before giving it up. Setting it to 0 or
1 effectively turns off retries

--sanitize

Scan the server log files for warnings from various sanitizers. Use of this option assumes that
MySQL was configured with - DW TH_ASAN or - DW TH_UBSAN.

47

http://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_asan
http://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ubsan

nysqgl -test-run. pl — Run MySQL Test Suite

This option was added in MySQL 8.0.0. As of MySQL 8.0.1, the TSAN_OPTI ONS environment
variable can be set to specify the path name of a file containing ThreadSanitizer suppressions.

- - shut down-t i neout =seconds

Max number of seconds to wait for servers to do controlled shutdown before killing them. Default is
10.

- - ski p- conbi nati ons
Do not apply combinations; ignore combinations file or option.

--ski p-ndbcl uster, --skip-ndb

Do not start NDB Cluster; skip Cluster test cases. This option only has effect if you do have NDB, if
not it will have no effect as it cannot run those tests anyway.

- - ski p- ndbcl ust er-sl ave, --skip-ndb-slave
Do not start an NDB Cluster slave.

- - ski p-rpl
Skip replication test cases.

- - ski p-ssl
Do not start nysql d with support for SSL connections.

- - ski p-t est =r egex

Specify a regular expression to be applied to test case names. Cases with names that match the
expression are skipped. tests to skip.

The argument for the - - ski p-t est option allows more flexible specification of which tests to skip.
If the argument contains a pattern metacharacter other than a lone period, it is interpreted as a Perl
regular expression and applies to test names that match the pattern. See the description of the - -
do-t est option for details.

--skip-test-list=file
Specify a file listing tests that should be skipped (disabled).

The file has the same format as the di sabl ed. def file listing disabled tests. With this option,
disabling can be done on a case by case basis. The - - ski p-test-11i st option is supported from
MySQL 5.5.

--skip-*

- - ski p- * options not otherwise recognized by nysql -t est - run. pl are passed to the master
server.

--sl eep=N
Pass - - sl eep=Nto nysql t est .
- - sp- prot ocol
Pass the - - sp- pr ot ocol option to nysql t est .

--ssl|

48

nysql -test-run. pl — Run MySQL Test Suite

If nysql -t est-run. pl is started with the - - ssl| option, it sets up a secure connection for all test
cases. In this case, if mysqgl d does not support SSL, nysql -t est -run. pl exits with an error
message: Coul dn't find support for SSL

--start

Initialize and start servers with the startup settings for the specified test case. You can use this option
to start a server to which you can connect later. For example, after building a source distribution you
can start a server and connect to it with the nysql client like this:

shel |l > cd nysql -t est
shell > ./nysqgl -test-run.pl --start alias &
shell> ../nysqgl -S ./var/tnp/ master.sock -h |ocal host -u root

If no tests are named on the command line, the server(s) will be started with settings for the first test
that would have been run without the - - st ar t option.

nysql -t est-run. pl will stop once the server has been started, but will terminate if the server
dies. If killed, it will also shut down the server.

--start-and-exit

This is similarto - - st art, but nysql -t est - run. pl terminates once the server has been started,
leaving just the server process running.

--start-dirty

This is similar to - - st ar t , but will skip the database initialization phase and assume that database
files are already available. Usually this means you must have run another test first.

--start-fronrtest _nane

nysql -test-run. pl sorts the list of names of the test cases to be run, and then begins with
t est _nane.

--strace-client

Create st r ace output for mysql t est . Will produce default st r ace output as
nysqgl t est. st race. Note that this will be overwritten for each new test case, so it's most useful for
running only one test.

The strace-cl i ent option is functional from MySQL 5.5.20, and only supported on Linux. The
option was available in earlier versions too, but was not working properly.

--strace-server

Create st r ace output for the server. Will produce default st r ace output as nmysql d. 1. strace.
Note that this will be overwritten each time the server is restarted, so it's most useful for running a
single test, or if you want trace from the first test that fails.

The st race- server option is available from MySQL 5.5.20, on Linux only.
--stress=stress options

Start a server, but instead of running a test, run mysql - st ress-t est. pl with the supplied
arguments. Arguments needed to communicate with the server will be automatically provided,
the rest should be given as arguments to this option. Command line options for mysql - st r ess-
t est. pl should be separeted by a comma.

The st r ess option was added in MySQL 5.5.17, it is not a direct replacement for the option of the
same name that exists in version 1 of mysql -t est-run. pl .

49

nysqgl -test-run. pl — Run MySQL Test Suite

--suite=suite_nane

Run the named test suite. The default name is mai n (the regular test suite located in the mysql -
t est directory).

--suite-timeout=n nutes
Specify the maximum test suite runtime in minutes.
--summary-report=file_name

Generate a plain text version of the test summary only and write it to the file named as the option
argument. The file is suitable for sending by email. This option was added in MySQL 8.0.1.

--test-progress

Display the percentage of tests remaining. This option was added in MySQL 5.7.19.
--testcase-ti meout =m nut es

Specify the maximum test case runtime in minutes.
--tinmediff

Adds to each test report for a test case, the total time in sconds and milliseconds passed since the
preceding test ended. This option can only be used together with - - t i nest anp, and has no effect
without it.

--tiner

Cause nysql t est to generate a timing file. The default file is named . / var /| og/ ti ner.
--tinestanp

Prints a timestamp before the test case name in each test report line, showing when the test ended.
--tnpdir=path

The directory where temporary file are stored. The default location is . / var / t np. The environment
variable M\YSQL_TMP_DI Rwill be set to the path for this directory, whether it has the default value or
has been set explicitly. This may be referred to in tests.

--unit-tests
Force running of unit tests, overriding default behavior or setting of the MTR_UNI T_TESTS variable.
Running of unit tests was enabled from MySQL 5.5.11.

--unit-tests-report

Extend the unit test run by also outputting the log from the test run, independently of whether it
succeeded or not. This option implies - - uni t - t est s so it is not necessary to specify both. The
--unit-tests-report option is available in MySQL 5.5 from version 5.5.44, in 5.6 from version
5.6.25 as well as in MySQL 5.7.

- -user=user_nane
The MySQL user name to use when connecting to the server.
--user-args

Drops all non-essential command line arguments to the mysql d server, except those supplied with
- -nysql d arguemnts, if any. Only works in combination with - -start,--start-and-exit or--
start-dirty, and only if no test name is given.

50

nysql -test-run. pl — Run MySQL Test Suite

e --valgrind

Run nysql t est and nmysql d with val gri nd. This and the following - - val gri nd options require
that the executables have been build with val gri nd support.

When the server is run with valgrind, an extra pass over the server log file(s) will be performed after
all tests are run, and any report with problems that have been reported at server shutdown will be
extracted and printed. The most common warnings are memory leaks. With each report will also be
listed all tests that were run since previous server restart; one of these is likely to have caused the
problem.

From MySQL 5.5.13, a final "pseudo” test named val gri nd_report is added to the list of tests
when the server is run in valgrind. This test is reported as failed if any such shutdown warnings were
produced by valgrind. Pass or failure of this test is also added to the total test count reported.

e --valgrind-clients
Run all clients started by . t est files with val gri nd. This option requires val gri nd 3.9 or later.
--val grind-clients was addedin MySQL 5.7.9.
e --valgrind-nysqgld
Run the mysql d server with val gri nd.
e --valgrind-nysqltest
Run nysql t est with val gri nd.
e --valgrind-option=str
Extra options to pass to val gri nd.
 --val grind-pat h=path
Specify the path name to the val gri nd executable.
e --vardir=path

Specify the path where files generated during the test run are stored. The default location is . / var .
The environment variable MYSQLTEST _VARDI Rwill be set to the path for this directory, whether it
has the default value or has been set explicitly. This may be referred to in tests.

e --verbose

Give more verbose output regarding test execution. Use the option twice to get even more output.
Note that the output generated within each test case is not affected.

e --verbose-restart

Write when and why servers are restarted between test cases.
e --view protocol

Pass the - - vi ew pr ot ocol optionto nysql t est.
» --vs-config=config_val

Specify the configuration used to build MySQL (for example, - - vs- conf i g=debug - - vs-
confi g=rel ease). This option is for Windows only.

e --vait-all

51

mysql - stress-test. pl — Server Stress Test Program

If--start or--start-dirty is used, wait for all servers to exit before termination. Otherise, it will
terminate if one (of several) servers is restarted.

- -war ni ngs

Search the server log for errors or warning after each test and report any suspicious ones; if any
are found, the test will be marked as failed. This is the default behavior, it may be turned off with - -
nowar ni ngs.

--w t h-ndbcl uster-only

Run only test cases that have ndb in their name.

Note
@ The hostname resolves to 127.0.0.1 and not to the actual IP address.

5.4 nysql -stress-test. pl — Server Stress Test Program

The nysql - stress-test. pl Perl script performs stress-testing of the MySQL server.

nysql - stress-test. pl requires a version of Perl that has been built with threads support.

Invoke nysql - stress-test. pl like this:

shel | > nysqgl -stress-test.pl [options]

nysql - stress-test. pl supports the following options:

--hel p
Display a help message and exit.
--abort-on-error=N

Causes the program to abort if an error with severity less than or equal to N was encountered. Set to
1 to abort on any error.

--check-tests-file

Periodically check the file that lists the tests to be run. If it has been modified, reread the file. This
can be useful if you update the list of tests to be run during a stress test.

--cl eanup
Force cleanup of the working directory.
--log-error-details
Log error details in the global error log file.
- -1 oop- count =N
In sequential test mode, the number of loops to execute before exiting.
--nysql test=path
The path name to the nysql t est program.

--server - dat abase=db_nane

52

mysql - stress-test. pl — Server Stress Test Program

The database to use for the tests. The defaultis t est .
--server - host =host _nane

The host name of the local host to use for making a TCP/IP connection to the local server. By
default, the connection is made to | ocal host using a Unix socket file.

--server-|ogs-dir=path

This option is required. pat h is the directory where all client session logs will be stored. Usually this
is the shared directory that is associated with the server used for testing.

--server - passwor d=password

The password to use when connecting to the server.
--server-port=port_num

The TCP/IP port number to use for connecting to the server. The default is 3306.
--server-socket=fil e _name

For connections to | ocal host , the Unix socket file to use, or, on Windows, the name of the named
pipe to use. The default if / t np/ nysql . sock.

--server-user=user_nane
The MySQL user name to use when connecting to the server. The default is r oot .
--sl eep-ti me=N
The delay in seconds between test executions.
--stress-basedi r=path

This option is required. pat h is the working directory for the test run. It is used as the temporary
location for result tracking during testing.

--stress-datadi r=path

The directory of data files to be used during testing. The default location is the dat a directory under
the location given by the - - st ress- sui t e- basedi r option.

--stress-init-file[=path]

file_nane is the location of the file that contains the list of tests to be run once to initialize the
database for the testing. If missing, the default file is st ress_i ni t . t xt in the test suite directory.

--stress-nmode=nobde

This option indicates the test order in stress-test mode. The node value is either r andomto select
tests in random order or seq to run tests in each thread in the order specified in the test list file. The
default mode is r andom

--stress-suite-basedir=path

This option is required. pat h is the directory that has the t and r subdirectories containing the test
case and result files. This directory is also the default location of the st ress-t est . t xt file that
contains the list of tests. (A different location can be specified with the - - st ress-tests-file
option.)

--stress-tests-file[=file_nane]

53

mysql - stress-test. pl — Server Stress Test Program

Use this option to run the stress tests. f i | e_nane is the location of the file that contains the list of
tests. If f i | e_nane is omitted, the default file is st r ess-t est . t xt in the stress suite directory.
(See - -stress-suite-basedir.)

--suite=suite_name

Run the named test suite. The default name is mai n (the regular test suite located in the mysql -
t est directory).

--test-count =N

The number of tests to execute before exiting.
--test-duration=N

The duration of stress testing in seconds.
--threads=N

The number of threads. The default is 1.
--verbose

Verbose mode. Print more information about what the program does.

54

Chapter 6 nysql t est Language Reference

Table of Contents

6.1 mysql t est INPUL CONVENLIONSiuuii e e e e e e e e e e e et e e e aneeanas 55
6.2 MySQl 1 €St COMMANTAS ...uieiiiiiii et e e e e e e e et e et e e et e et e et e eaaeeneeens 57
6.3 MYSQl 1 EST VaNablescoeiiei e e 76
6.4 nysql t est FIOW CONrol CONSIIUCESivuuiieiii i e e e e e e e e e e e e e e een 77
LR T =1 o = =T T |1 Vo N 78

This chapter describes the test language implemented by nmysqgl t est . The language allows input
to contain a mix of comments, commands executed by mysql t est itself, and SQL statements that
nysgl t est sends to a MySQL server for execution.

Terminology notes:

» A*“command” is an input test that nysql t est recognizes and executes itself. A “statement” is an
SQL statement or query that nysql t est sends to the MySQL server to be executed.

 When nysql t est starts, it opens a connection it calls def aul t to the MySQL server, using any
connection parameters specified by the command options. (For a local server, the default user name
is r oot . For an external server, the default user name is t est or the user specified with the - - user
option.) You can use the connect command to open other connections, the connect i on command
to switch between connections, and the di sconnect command to close connections. However,
the capability for switching connections means that the connection named def aul t need not be
the connection in use at a given time. To avoid ambiguity, this document avoids the term “default
connection.” It uses the term “current connection” to mean “the connection currently in use,” which
might be different from “the connection named def aul t .”

6.1 nysql t est Input Conventions

nmysgl t est reads input lines and processes them as follows:

» “End of line” means a newline (linefeed) character. A carriage return/linefeed (CRLF) pair also is
allowable as as a line terminator (the carriage return is ignored). Carriage return by itself is not
allowed as a line terminator.

* Aline that begins with “#” as the first nonwhitespace content is treated as a comment that extends to
the end of the line and is ignored. Example:

this is a comment

« Earlier versions would also allow comments beginning with “- - " unless the first word was a valid
nysqgl t est command, but this has been deprecated and is longer allowed.

» Other input is taken as normal command input. The command extends to the next occurrence of
the command delimiter, which is semicolon (“; ") by default. The delimiter can be changed with the
del i m ter command.

If mysql t est recognizes the first word of the delimiter-terminated command, nysql t est executes
the command itself. Otherwise, nysqgl t est assumes that the command is an SQL statement and
sends it to the MySQL server to be executed.

Because the command extends to the delimiter, a given input line can contain multiple commands,
and a given command can span multiple lines. The ability to write multiple-line statements is useful
for making long statements more readable, such as a cr eat e t abl e statement for a table that has
many columns.

55

mysql t est Input Conventions

After mysql t est reads a command up to a delimiter and executes it, input reading restarts following
the delimiter and any remaining input on the line that contains the delimiter is treated as though it
begins on a new line. Consider the following two input lines:

echo issue a select statenment; select 1; echo done
i ssuing the select statenent;

That input contains two commands and one SQL statement:

echo issue a SELECT st at ement
SELECT 1
echo done issuing the SELECT st at enent

Similarly, “#” comments can begin on a command line following a delimiter:

SELECT 'hello'; # select a string val ue

On a multiple-line command, “#” or “- - " at the beginning of the second or following lines is not special.
Thus, the second and third lines of the following variable-assignment command are not taken as
comments. Instead, the variable $a is set to a value that contains two linefeed characters:

let $a= This is a variable
assignnment that sets a variable
-- to a multiple-line val ue;

- - commands and normal commands have complementary properties with regard to how nysql t est
reads them:
* A*“-"command is terminated by a newline, regardless of how many delimiters it contains.

» A normal command (without “- -) is terminated by the delimiter (semicolon), no matter how many
newlines it contains.

nmysgl t est commands can be written either with a leading “- -) or as normal command input (no
leading “- -). Use the command delimiter only in the latter case. Thus, these two lines are equivalent:

--sleep 2
sl eep 2;

The equivalence is true even for the del i m t er command. For example, to set the delimiter to “/ / 7,
either of these commands work:

--delimter //
delimter //;

To set the delimiter back to “;”, use either of these commands:

--delimter ;
delimter ;//

A potential ambiguity occurs because a command line can contain either a nysql t est command or
an SQL statement. This has a couple of implications:

* Nonysql t est command should be the same as any keyword that can begin an SQL statement.

» Should extensions to SQL be implemented in the future, it is possible that a new SQL keyword could
be impossible for mysql t est to recognize as such if that keyword is already used as a nysql t est
command.

56

nysgl t est Commands

Any ambiguity can be resolved by using the “- - ” syntax to force interpetation as a nysql t est
command, or the quer y command to force interpretation as SQL.

All file paths used in test commands should use forward slash "/ " as the directory separator as

in Unix. They will be automatically converted when needed if the test is run on Windows. We also
recommend putting all temporary or auxiliary files made during the test under the directory referred
to by SMYSQL_TMP_DI R. Do not put them under fixed full paths like / t np. This will help ensuring
portability of the test, and avoiding conflicts with other programs.

$MYSQL_TMP_DI Ris equivalent to SMYSQLTEST VARDI R/ t np if you are not running with parallel test
threads, but if you run nysql -t est - run. pl with - - par al | el , they will be different. It is therefore
best to be consistent and use $MYSQL_TMP_DI R.

From MySQL 5.5.17, commands named di sabl e_X or enabl e_X, except par si ng, r econnect

and r pl _par se, can take an optional modifier ONCE. If this is added, the relevant setting is enabled or
disabled only for the next command or statement, after which it is reverted to whatever it was before.
Note that the word ONCE must be in upper case; this was chosen in order to make it more visible when
reading the test script.

For example, - - di sabl e_query_| og ONCE will ensure query log is disabled for the next statement,
but will not affect whether or not query log is enabled for statements following the next. It is possible to
enable/disable more that one property (e.g. both query log and result log) for a single statement using
the ONCE modifier.

6.2 nysqgl t est Commands

nmysqgl t est supports the commands described in this section. Command names are not case
sensitive.

Some examples of command use are given, but you can find many more by searching the test case
files in the mysql -t est/t directory.

 append file file_name [term nator]

append_fileislikewite_fil e exceptthatthe lines up to the terminator are added to the
end of the file. The file is created if it does not exist. The file name argument is subject to variable
substitution.

wite_ file $MYSQL_TMP_DI R/ dat a01;
line one for the file
line two for the file

EOF

append_file $MYSQL_TMP_DI R/ dat a01;
line three for the file

EOF

wite file $MYSQL_TMP_DI R/ dat a02 END OF FI LE;
line one for the file

line two for the file

END OF FILE

append_file $MYSQL_TMP_DI R/ dat a02 END_OF_FI LE;
line three for the file

END OF FILE

e cat _file file_nane

cat _fil e writes the contents of the file to the output. The file name argument is subject to variable
substitution.

cat_file $MySQL_TMP_DI R/ dat a01;

e change_user [user_nane], [password], [db_nane]

57

nysgl t est Commands

Changes the current user and causes the database specified by db_nane to become the default
database for the current connection.

change_user root;
--change_user root,,test

character _set charset _nane

Set the default character set to char set _nane. Initially, the character setis | ati nl.

character_set utf8;
--character_set sjis

chnmod octal _node file _nane

Change the mode of the given file. The file mode must be given as a four-digit octal number. The file
name argument is subject to variable substitution, but must evaluate to a literal file name, not a file
name pattern.

chnod 0644 $MYSQ._TMP_DI R/ dat a_xxx01;

connect (name, host_nane, user_nane, password, db_nane [, port_num [, socket
[,options [,default_auth]]]])

Open a connection to the server and make the connection the current connection.
The arguments to connect are:

¢ nane is the name for the connection (for use with the connect i on, di sconnect, and
di rty_cl ose commands). This name must not already be in use by an open connection.

* host _nane indicates the host where the server is running.
e user _nane and passwor d are the user name and password of the MySQL account to use.

« db_nane is the default database to use. As a special case, * NO- ONE* means that no default
database should be selected. You can also leave db_nane blank to select no database.

e port_num if given, is the TCP/IP port number to use for the connection. This parameter can be
given by using a variable.

* socket, if given, is the socket file to use for connections to | ocal host . This parameter can be
given by using a variable.

e opti ons can be one or more of the following words, separated by spaces:

« CLEARTEXT: Enable use of the cleartext authentication plugin. This option was added in MySQL
5.5.27.

» COVPRESS: Use the compressed client/server protocol, if available.

« Pl PE: Use the named-pipe connection protocol, if available.

e SHM Use the shared-memory connection protocol, if available.

« SOCKET: Use the socket-file connection protocol. This option was added in MySQL 8.0.1.
e TCP: Use the TCP/IP connection protocol. This option was added in MySQL 8.0.1.

* SSL: Use a secure connection.

58

nysgl t est Commands

Prior to MySQL 8.0.1, passing Pl PE or SHMon non-Windows systems caused the default (socket-
file) connection protocol to be used. As of 8.0.1, this causes an error, and, similarly, passing
SOCKET on Windows systems causes an error.

e def aul t _aut h is the name of an authentication plugin. It is passed to the nysql _options() C
API function using the MYSQL_DEFAULT _AUTH option. If nysqgl t est does not find the plugin, use
the - - pl ugi n-di r option to specify the directory where the plugin is located.

This argument can be used as of MySQL 5.5.7.

To omit an argument, just leave it blank. For an omitted argument, nysql t est uses an empty
string for the first five arguments and the opt i ons argument. For omitted port or socket options,
nysql t est uses the default port or socket.

connect (connl, | ocal host,root,,);
connect (conn2, | ocal host, root, mypass, test);
connect (connil, 127.0.0. 1, root, , t est, SMASTER_MYPORT) ;

The last example assumes that the SMASTER _MYPORT variable has already been set (perhaps as an
environment variable).

If a connection attempt fails initially, mysql t est retries five times if the abort-on-error setting is
enabled.

connection connecti on_nane

Select connect i on_nanmne as the current connection. To select the connection that mysql t est
opens when it starts, use the name def aul t .

connecti on naster;
connecti on conn2;
connecti on default;

A variable can be used to specify the connect i on_nane value.

| et $var= convert _error(error)

This is not a command as such but rather a function that can be used in | et statements. If the
argument is a number, it returns the name of the corresponding error, or <Unknown> if no such error
exists. If the argument is an error name, it returns the corresponding number, or fails if the error
name is unknown. If the argument is 0 or an empty string, it returns 0. The function can also take a
variable as argument.

| et $errvarl=convert_error (ER_UNKNOM_ERRCR) ;
| et $errvar2=convert_error(1450);
| et $errvar3=convert_error($errvarl);

The convert _error function was added in MySQL 5.6.

copy file fromfile to file

Copythefilefromfiletothefileto file. Thecommandfailsifto fil e already exists. The file
name arguments are subject to variable substitution.

copy _files wildcard src_dir_nane dst_dir_nane [pattern]

Copy all files that match the pattern in the source directory to the destination directory. Patterns
can use ? to represent any single character, or * for any sequence of 0 or more characters. The .
character is treated like any other. The pattern may not include / .

59

nysgl t est Commands

The command works like this:

« Files that match the pattern are copied from the source directory to the destination directory.
Overwriting of files is permitted.

« Copying does not apply to directories matching the pattern or matching files in subdirectories.
« If the source or destination directory is not present, an error occurs.

» The pattern argument is optional. If no pattern is provided, all files from the source directory are
copied to the destination directory.

 If a pattern is provided, but no files match it, an error occurs.

« If the source directory has no files, an error occurs.

copy_files_wldcard $MYSQLTEST VARDI R/ std_data/ $MYSQLTEST VARDI R/ copyl/ *.txt
dec $var _nane

Decrement a numeric variable. If the variable does not have a numeric value, the result is undefined.

dec $count;
dec $2;

delimter str

Set the command delimiter to st r, which may consist of 1 to 15 characters. The default delimiter is
the semicolon character (“;).

delimter /;
--delimter stop

This is useful or needed when you want to include long SQL statements like CREATE PROCEDURE
which include semicolon delimited statements but need to be interpreted as a single statement by
nysql t est . If you have set the delimiter to “/ " as in the previous example, you can set it back to the
default like this:

delimter ;|
di e [message]

Aborts the test with an error code after printing the given message as the reason. Suppose that a
test file contains the following line:

di e Cannot conti nue;

When nysql t est encounters that line, it produces the following result and exits:

nysqgltest: At |ine 1: Cannot continue
not ok

diff files file_namel file_nane2

Compare the two files. The command succeeds if the files are the same, and fails if they are different
or either file does not exist. The file name arguments are subject to variable substitution.

dirty cl ose connection_nane

60

nysgl t est Commands

Close the named connection. This is like di sconnect except thatit calls vi o_del et e() before it
closes the connection. If the connection is the current connection, you should use the connect i on
command to switch to a different connection before executing further SQL statements.

A variable can be used to specify the connect i on_nane value.

di sabl e_abort _on_error,enabl e _abort _on_error

Disable or enable abort-on-error behavior. This setting is enabled by default. With this setting
enabled, mysql t est aborts the test when a statement sent to the server results in an unexpected
error, and does not generate the . r ej ect file. For discussion of reasons why it can be useful to
disable this behavior, see Section 6.5, “Error Handling”.

--di sabl e_abort_on_error
--enabl e_abort_on_error

di sabl e_connect | og, enabl e_connect _| og

Disable or enable logging of creation or switch of connections. Connection logging is disabled
by default. With this setting enabled, nysql t est enters lines in the test results to show when
connections are created, switched or disconnected.

If query logging is turned off using di sabl e_query_ | og, connection logging is also turned off, until
query log is re-enabled.

--di sabl e_connect _| og
--enabl e_connect _| og

di sabl e_info,enable_info

Disable or enable additional information about SQL statement results. Information display is disabled
by default. With this setting enabled, mysql t est displays the affected-rows count and the output
from the nysql _i nf o() C API function. The “affected-rows” value is “rows selected” for statements
such as SELECT and “rows modified” for statements that change data.

--disable_info
--enabl e_info

di sabl e_net adat a, enabl e_net adat a

Disable or enable query metadata display. Metadata display is disabled by default. With this setting
enabled, mysql t est adds query metadata to the result. This information consists of the values
corresponding to the members of the MYSQL_FI ELD C API data structure, for each column of the
result.

--di sabl e_net adat a
--enabl e_net adat a

di sabl e_par si ng, enabl e_par si ng

Disable or enable query parsing. This setting is enabled by default. When disabled, nysql t est
ignores everything until enabl e_par si ng. These commands are useful for "commenting out" a
section from a test case without having to add a comment marker to every single line.

--di sabl e_parsi ng
--enabl e_parsi ng

di sabl e_ps_protocol, enabl e _ps_protocol

61

nysgl t est Commands

Disable or enable prepared-statement protocol. This setting is disabled by default unless the - - ps-
pr ot ocol option is given.

- -di sabl e_ps_protoco
--enabl e_ps_protoco

di sabl e_query_| og, enabl e_query_| og

Disable or enable query logging. This setting is enabled by default. With this setting enabled,
nysql t est echoes input SQL statements to the test result.

One reason to disable query logging is to reduce the amount of test output produced, which also
makes comparison of actual and expected results more efficient.

--di sabl e_query_I og
--enabl e_query_| og

di sabl e_reconnect, enabl e_r econnect

Disable or enable automatic reconnect for dropped connections. (The default depends on the client
library version.) This command only applies to the current connection.

- -di sabl e_r econnect
- -enabl e_r econnect

di sable_result_| og,enable_result_ | og

Disable or enable the result log. This setting is enabled by default. With this setting enabled,
nysql t est displays query results (and results from commands such as echo and exec).

--disabl e_result_I| og
--enable_result_| og

di sabl e_rpl _parse, enabl e_rpl _parse

Disable or enable parsing of statements to determine whether they go to the master or slave. The
default is whatever the default is for the C API library.

--di sabl e_rpl _parse
--enabl e_rpl _parse

di sabl e_session_track_i nfo, enabl e_session_track_i nfo

Disable or enable display of session tracking information. These commands were added in MySQL
5.7. Session-tracking display disabled by default.

--di sabl e_session_track_i nfo
--enabl e_session_track_info

di sabl e_war ni ngs, enabl e_war ni ngs

Disable or enable warnings. This setting is enabled by default. With this setting enabled, nysql t est
uses SHOW WARNI NGS to display any warnings produced by SQL statements.

- -di sabl e_war ni ngs
- - enabl e_war ni ngs

di sconnect connecti on_nane

62

nysgl t est Commands

Close the named connection. If the connection is the current connection, you should use the
connect i on command to switch to a different connection before executing further SQL statements.

di sconnect conn2;
di sconnect sl ave;

echo text

Echo the text to the test result. References to variables within the text are replaced with the
corresponding values. The text does not need to be enclosed in quotation marks; if it is, the quotation
marks will be included in the output.

--echo Anot her sql _node test
echo should return only 1 row,

end

End ani f orwhi | e block. If there is no such block open, nysqgl t est exits with an error. See
Section 6.4, “nysql t est Flow Control Constructs”, for information on flow-control constructs.

nysql t est considers } and end the same: Both end the current block.

end_timer

Stop the timer. By default, the timer does not stop until just before nysql t est exits.

error error_code [, error_code]

Specify one or more comma-separated error values that the next command is expected to return.
Each err or _code value is a MySQL-specific error number or an SQLSTATE value. (These are
the kinds of values returned by the mysqgl _errno() and nysql _sql state() C API functions,
respectively.)

If you specify an SQLSTATE value, it should begin with an S to enable nysqgl t est to distinguish it

from a MySQL error number. For example, the error number 1050 and the SQLSTATE value 42501
are equivalent, so the following commands specify the same expected error:

--error 1050
--error $42S01

SQLSTATE values should be five characters long and may contain only digits and uppercase letters.

It is also possible to use the symbolic error name from nysql d_error. h:

--error ER TABLE_EXI STS_ERROR

As of MySQL 8.0, it is also possible to use symbolic error names from er r nsg. h to refer to client
errors:

--error CR SERVER GONE_ERRCR

Finally, you can assign either a numerical code or a symbolic error name to a variable and refer to
that in the er r or command. This feature was added in MySQL 5.5.18. Numbers, symbolic names
and variables may be freely mixed.

If a statement fails with an error that has not been specified as expected by means of a er r or
command, nysgl t est aborts and reports the error message returned by the MySQL server.

63

nysgl t est Commands

If a statement fails with an error that has been specified as expected by means of a er r or
command, nysqgl t est does not abort. Instead, it continues and writes a message to the result
output.

e Ifan error command is given with a single error value and the statement fails with that error,
mysql t est reports the error message returned by the MySQL server.

Input:

--error $42S02
DROP TABLE t;

mysql t est reports:

ERROR 42S02: Unknown table 't

e Ifan error command is given with multiple error values and the statement fails with any of those
errors, nysql t est reports a generic message. (This is true even if the error values are all the
same, a fact that can be used if you want a message that does not contain varying information
such as table names.)

Input:

--error $S41S01, S42S02
DROP TABLE t;

mysql t est reports:

Got one of the listed errors

An error value of 0 or SO0000 means “no error,” so using either for an er r or command is the same
as saying explicitly, “no error is expected, the statement must succeed.”.

To indicate that you expect success or a given error or errors, specify 0 or SO0000 first in the error
list. If you put the no-error value later in the list, the test will abort if the statement is successful. That
is, the following two commands have different effects: The second form literally means the next
command may fail with error code 0, (rather than succeed) which in practice never happens:

--error 0, 1051
--error 1051,0

You can use er r or to specify shell status values for testing the value of shell commands executed
using the exec command. This does not apply to syst em for which the command status is ignored.

If you use er r or in combination with send and r eap, the er r or should be used just before the
r eap, as this is the command that actually gives the result and the potential error.

From MySQL 5.5.18, variables may also be used as arguments to the er r or command; these may
contain a number (including 0), an SQLSTATE or a symbolic error name. Variables and constant
values may be freely combined.

eval statenent

Evaluate the statement by replacing references to variables within the text with the corresponding
values. Then send the resulting statement to the server to be executed. Use “\ $” to specify a literal
“$” character.

64

nysgl t est Commands

The advantage of using eval st at enent versus just st at enent is that eval provides variable
expansion.

eval USE $DB;
eval CHANGE MASTER TO MASTER PORT=$SLAVE MYPORT;
eval PREPARE STMI1 FROM "$ny_stnt";

exec command [arg]

Execute the shell command using the popen() library call. References to variables within the
command are replaced with the corresponding values. Use “\ $” to specify a literal “$” character.

On Cygwin, the command is executed from cnd. exe, so commands such as r mcannot be executed
with exec. Use syst eminstead.

--exec $MYSQL_DUWP --xm --skip-create test
--exec rm $MYSQLTEST_VARDI R/t np/t1
exec $MYSQ._SHOWtest -v -v;

Note

@ exec or syst emare sometimes used to perform file system operations,
but the command for doing so tend to be operating system specific, which
reduces test portability. mysql t est now has several commands to perform
these operations portably, so they should be used instead: r enove _fil e,
chnod, nkdi r, and so forth.

execw comand [ar g]

This is a variant of the exec command which is needed on Windows if the command line contains
non-ASCII characters. Otherwise it works exactly the same. On platforms other than Windows there
is no difference, but on Windows it uses a different version of the popen() library call. So if your
command line contains non-ASCII characters, it is recommended to use execwinstead of exec.

The execw command is available from MySQL 5.6.
exi t

Terminate the test case. This is considered a “normal termination.” That is, using exi t does not
result in evaluation of the test case as having failed. It is not necessary to use exi t at the end of a
test case, as the test case will terminate normally when reaching the end without failure.

expr $var _nanme=oper andl oper at or oper and2

Evaluate an expression and assign the result to a variable. The result is also the return value of the
expr command itself.

--let $val 1= 10

--let $var2= 20

--expr $res= $varl + $var2
--echo $res

oper andl and oper and2 must be valid variables.

expr supports these mathematical operators:

+ Addition

- Subtraction

* Miltiplication
[/ Division

65

nysgl t est Commands

% Modul o

expr supports these logical operators:

&& Logi cal AND
|| Logical OR

expr supports these bitwise operators:

& Binary AND
| Binary OR
A Binary XOR
<< Binary left shift
>> Binary right shift

Operations are subject to these conditions:
« Operations that do not support noninteger operands truncate such operands to integer values.
 If the result is an infinite value, expr returns the i nf keyword.

« Division by 0 results in an infinite value.

The expr command was added in MySQL 8.0.1.

file exists file_nane

file_exists succeeds if the named file exists and fails otherwise. The file name argument is
subject to variable substitution.

file_exists /etc/passwd;
force-cpdir src_dir_nane dst_dir_nane

Copies the source directory, src_di r _nane, to the destination directory, dst _di r _nane. The copy
operation is recursive, so it copies subdirectories. Returns 0 for success and 1 for failure.

--force-cpdir testdir testdir2
If the source directory does not exist, an error occurs.
If the destination directory does not exist, mysql t est creates it before copying the source directory.

force-cpdi r was added in MySQL 8.0.1.

force-rndir dir_nane

Remove a directory named di r _nane. Returns 0 for success and 1 for failure.

--force-rndir testdir

force-rndi r removes the directory as well as its contents, if any, unlike r ndi r, which fails if the
directory to be removed contains any files or directories.

force-rndi r was added in MySQL 8.0.

hori zontal results

Set the default query result display format to horizontal. Initially, the default is to display results

- tally,
NuTiZutmailty .

' 66

nysgl t est Commands

--horizontal _results
if (expr)

Begin ani f block, which continues until an end or } line. nysql t est executes the block if the
expression is non-zero. There is no provision for el se with i f. See Section 6.4, “nysqgl t est Flow
Control Constructs”, for further information about i f statements.

| et $counter= 0;
if ($counter)

{

echo Counter is not O;
if (!$counter)

{

echo Counter is O;

}

i nc $var_nane

Increment a numeric variable. If the variable does not have a numeric value, the result is undefined.
inc $i;

inc $3;

I et $var_nane = val ue

| et $var _name = query_get val ue(query, col nanme, row_num

Assign a value to a variable. The variable name cannot contain whitespace or the “=" character.

Except for the one-digit $0 to $9, it cannot begin with a number. mysql t est aborts with an error if
the value is erroneous.

References to variables within val ue are replaced with their corresponding values.

If the | et command is specified as a normal command (that is, not beginning with “- -), val ue
includes everything up to the command delimiter, and thus can span multiple lines.

--let $1=0
| et $count= 10;

When assigning a literal string to a variable, no quoting is required even if the string contains spaces.
If the string does include quotation marks, they will be trated like any other characters and be
included in the string value. This is important to be aware of when using the variable in an SQL
statement.

The result from executing a query can be assigned to a variable by enclosing the query within
backtick (** ") characters:

l et $g= " SELECT VERSI ON() ;

The | et command can set environment variables, not just nysql t est test language variables. To
assign a value to an environment variable rather than a test language variable, just omit the dollar
sign:

I et $nysql test_variabl e= foo;
| et ENV_VARI ABLE= bar;

67

nysgl t est Commands

This is useful in interaction with external tools. In particular, when using the per | command, the Perl
code cannot access test language variables, but it can access environment variables. For example,
the following statement can access the ENV_VARI ABLE value:

print $SENV{' ENV_VARI ABLE' };

The | et syntax also allows the retrieval of a value from a query result set produced by a statement
such as SELECT or SHOW See the description of query _get val ue() for more information.

nkdir dir_nane

Create a directory named di r _nane. Returns 0 for success and 1 for failure.

--nkdir testdir
list_files dir_nanme [pattern]

[ist _files liststhe files in the named directory. If a pattern is given, lists only file(s) matching the
pattern, which may contain wild cards.

--list_files $MYSQLD DATADI R/test t1*
list files_append_file file_nanme dir_nane [pattern]

list files_append fileworkslikelist files,butratherthan outputting the file list, it is
appended to the file named in the first argument. If the file does not exist, it is created.

--list_files_append_file $MYSQL_TMP_DIR/filelist $MYSQL_TMP_DIR/testdir *.txt;
list files wite file file_name dir_nane [pattern]

list files_ wite fileworkslikelist files append fil e, butcreates a new file to write
the file list to. If the file already exists, it will be replaced.

--list files wite file SMYSQL_ TMP_ DIR/ filelist $MYSQL_ TMP DI R/testdir *.txt;
| oner case_result

Output from the following SQL statement will be converted to lowercase. This is sometimes needed
to ensure consistent result across different platforms. If this is combined with one of the r epl ace
commands or with sort ed_r esul t, both will take effect on the output, with conversion to lowercase
being applied first.

--l owercase_result
move _file fromnane to_nane

nove_fil erenames from nane toto_nane. The file name arguments are subject to variable
substitution, but must evaluate to a literal file name, not a file name pattern.

nmove_file $MYSQL_TMP_DI R/ dat a0l $MYSQL_TMP_DI R/ test. out;
output file_nane

Direct output from the next SQL statement to the named file rather than to the test output. If the file
already exists, it will be overwritten. Only the next SQL statement will have its output redirected. This
command is available from MySQL 5.7.

68

nysgl t est Commands

out put $MYSQL_TMP_DI R/ out-file
perl [term nator]

Use Perl to execute the following lines of the test file. The lines end when a line containing the
terminator is encountered. The default terminator is EOF, but a different terminator can be provided.

perl ;
print “"This is a test\n";
ECF

perl END _OF_FI LE;
print “"This is another test\n";
END_OF_FI LE

pi ng

Ping the server. This executes the nysql _pi ng() C API function. The function result is discarded.
The effect is that if the connection has dropped and reconnect is enabled, pinging the server causes
a reconnect.

query [statenent]

Send the statement to the server to be executed. The quer y command can be used to force
nysql t est to send a statement to the server even if it begins with a keyword that is a mysqgl t est
command.

query _get val ue(query, col _nanme, row _num

The query_get _val ue() function can be used only on the right hand side of a variable assigment
inal et statement.

query_get val ue() enables retrieval of a value from a query result set produced by a statement
such as SELECT or SHOW The first argument indicates the query to execute. The second and third
arguments indicate the column name and row number that specify which value to extract from the
result set. The column name is case sensitive. Row numbers begin with 1. The arguments can be
given literally or supplied using variables.

Suppose that the test file contains this input:

CREATE TABLE t1(a I NT, b VARCHAR(255), c DATETI ME);

SHOW COLUMNS FROM t 1;

| et $val ue= query_get val ue(SHOW COLUWS FROM t 1, Type, 1);
echo $val ue;

The result will be:

CREATE TABLE t1(a INT, b VARCHAR(255), c DATETI MVE);
SHOW COLUMNS FROM t 1;

Field Type Nul | Key Default Extra
a int(11) YES NULL

b var char (255) YES NULL
c datetime YES NULL
int(11)

If the query fails, an error message occurs and the test fails.
query_hori zontal statenent

Execute the statement and display its result horizontally.

69

nysgl t est Commands

query_hori zontal SELECT PI();
query_vertical statenent

Execute the statement and display its result vertically.

query_vertical SELECT PI();
real sl eep num
Sleep numseconds. numcan have a fractional part. Unlike the s| eep command, r eal _sl eep is not

affected by the - - s| eep command-line option.

--real _sleep 10
real _sl eep 5;

Try not to use sl eep or r eal _sl| eep commands more than necessary. The more of them there are,
the slower the test suite becomes.

reap

Receive the result of the statement sent with the send command within the current session. You
should not use r eap unless a statement has been sent with send, and you should not use send
again if there is an outstanding send that has not been processed with r eap.

remove file file_nane

renove_fi | e removes the file. It fails with an error if the file does not exist. The file name argument
is subject to variable substitution, but must evaluate to a literal file name, not a file name pattern.
renove_file $MYSQ._TMP_DI R/ dat a01;

renove files_w ldcard dir_nane [pattern]

Remove all files in the named directory that match the pattern. Removal does not apply to directories
matching the pattern or matching files in subdirectories. Patterns can use ? to represent any single
character, or * for any sequence of 0 or more characters. The . character is treated like any other.
The pattern may not include / .

If no pattern argument is given, all files in the directory will be removed, but not the directory itself.

remove_files_wildcard $MYSQL_TMP_DIR file*.txt;
repl ace_col um col _num val ue [col _num val ue]

Replace strings in the output from the next statement. The value in col _numis replaced by the
corresponding val ue. There can be more than one col _nunival ue pair. Column numbers start
with 1.

A replacement value can be double-quoted. (Use “\ " ” to specify a double quote within a replacement
string.) Variables can be used in a replacement value if it is not double-quoted.

If mixed r epl ace_xxx commands are given, only the final one applies.

Note

@ Although repl ace_regex and r epl ace_resul t affect the output from
exec, repl ace_col umm does not because exec output is not necessarily
columnar.

70

nysgl t est Commands

--replace_colum 9 #
replace_colum 1 b 2 d;

repl ace_regex /pattern/replacenent/[i]

In the output from the next statement, find strings within columns of the result set that match

pat t er n (a regular expression) and replace them with r epl acenent . Each instance of a string
in a column that matches the pattern is replaced. Matching is case sensitive by default. Specify the
optional i modifier to cause matching to be case insensitive.

The syntax for allowable patterns is the same as for the REGEXP SQL operator. In addition, the
pattern can contain parentheses to mark substrings matched by parts of the pattern. These
substrings can be referenced in the replacement string: An instance of \ Nin the replacement string
causes insertion of the N-th substring matched by the pattern. For example, the following command
matches st r awber ry and replaces it with r aspberry and strawberry:

--replace_regex /(strawberry)/raspberry and \1/

Multiple pat t er n/r epl acenent pairs may be given. The following command replaces instances of
A with C (the first pattern replaces A with B, the second replaces B with C):

--replace_regex /A/Bl /Bl C

If a given pattern is not found, no error occurs and the input is unchanged.

replace result fromval to val [fromval to_val]

Replace strings in the result. Each occurrence of f r om val is replaced by the corresponding
to_val . There can be more than from val /t o_val pair. Arguments can be quoted with single
quotation marks or double quotation marks. Variable references within the arguments are expanded
before replacement occurs. Values are matched literally. To use patterns, use the r epl ace_r egex
command.

--replace_result 1024 MAX_KEY_LENGTH 3072 MAX_KEY_LENGTH
repl ace_result $MASTER MYPORT MASTER PORT;

require file_nane

This command specifies a file to be used for comparison against the results of the next query. If the
contents of the file do not match or there is some other error, the test aborts with a “this test is not
supported” error message.

--require r/slave-stopped. result
--require r/have_npscow | eap_ti mezone. require

As of MySQL 8.0.1, r equi r e command is removed.
reset _connection

Reset the connection state by calling mysqgl _reset connecti on(). This command is available
from MySQL 5.7.

result file_nane

This command specifies a file to be used for comparison when the test case completes. If the
content does not match or there is some other error, write the resulttor/fil e_nane. rej ect.

71

http://dev.mysql.com/doc/refman/8.0/en/mysql-reset-connection.html

nysgl t est Commands

If the - - r ecor d command-line option is given, the r esul t command changes the file by writing the
new test result to it.

result format version

Set the format to the specified version, which is either 1 for the current, default behavior, or to 2
which is an extended alternative format. The setting is in effect until it is changed or until the end of
the test.

In format version 2, empty lines and indentation in the test file are preserveded in the result. Also,
comments indicated by a double ## are copied verbatim to the result. Comments using a single # are
not copied. Format version 2 makes it easier for humans to read the result output, but at the cost of
somewhat larger files due to the white space and comments.

--result_format 2
rondi r dir_nane

Remove a directory named di r _nane. Returns 0 for success and 1 for failure.

--rndir testdir

r ndi r fails if the directory to be removed contains any files or directories. To remove the directory
as well as its contents, if any, use f or ce-rndi r.

save_naster_pos

For a master replication server, save the current binary log file name and position. These values can
be used for subsequent sync_wi t h_mast er orsync_sl ave w t h_nast er commands.

send [statenent]

Send a statement to the server but do not wait for the result. The result must be received with the
r eap command. You cannot execute another SQL statement on the same connection between send
and r eap.

If st at enent is omitted, the send command applies to the next statement executed. This means
that send can be used on a line by itself before a statement. Thus, this command:

send SELECT 1;

Is equivalent to these commands:

send;
SELECT 1;

send_eval [statenent]

Evaluate the command, then send it to the server. This is a combination of the send and eval
commands, giving the functionality of both. After variable replacement has been done, it behaves like
the send command.

--send_eval $ny_stnt
send_quit connection

Sends a COM_QUIT command to the server on the named connection.

72

nysgl t est Commands

send_quit con;
send_shut down

Sends a shutdown command to the server but does not wait for it to complete the shutdown. Test
execution proceeds as soon as the shutdown command is sent.

shut down_server [tinmeout]

Stops the server. This command waits for the server to shut down by monitoring its process ID (PID)
file. If the server's process ID file is not gone after t i neout seconds, the process will be killed. If
ti meout is omitted, the default is 60 seconds.

shut down_ser ver;
shut down_server 30;

ski p [message]

Skips the rest of the test file after printing the given message as the reason. This can be used after
checking a condition that must be satisfied, as a way of performing an exit that displays a reason.
Suppose that the test file myt est has these contents:

let $v= 0;
if (!$v)
{

skip value is zero, skipping test;

echo This command i s never reached;

Executing nysql t est -x nyt est yields these results:

The test './nmytest' is not supported by this installation
Detected in file ./nytest at line 4
reason: value is zero, skipping test

If the test is run from nysql -t est - r un. pl , you will instead see the test result as [ski pped]
followed by the message.

sl eep num

Sleep numseconds. numcan have a fractional part. If the - - s| eep command-line option was given,
the option value overrides the value given in the sl eep command. For example, if mysql t est is
started with - - sl eep=10, the command sl eep 15 sleeps 10 seconds, not 15.

--sleep 10
sl eep 0.5;

Try not to use sl eep or r eal _sl| eep commands more than necessary. The more of them there are,
the slower the test suite becomes.

sorted_result

Sort the output from the next statement if it produces a result set. sort ed_resul t is applied
just before displaying the result, after any other result modifiers that might have been specified,
such asrepl ace_result orrepl ace_col umm. If the next statement produces no result set,
sorted_resul t has no effect because there is nothing to sort.

sorted_result;

SELECT 2 AS "ny_col" UNI ON SELECT 1;

l et $ny_stnt=SELECT 2 AS "ny_col" UN ON SELECT 1,
--sorted_result

73

nysgl t est Commands

eval $ny_stnt;

--sorted_result

--replace_colum 1 #

SELECT '1' AS "ny_col 1",2 AS "nmny_col 2"
UNI ON

SELECT ' 2', 1;

sorted_result sorts the entire result of the next query. If this involves constructs such as UNI ON,
stored procedures, or multi-statements, the output will be in a fixed order, but all the results will be
sorted together and might appear somewhat strange.

The purpose of the sort ed_result command is to produce output with a deterministic order for a
given set of result rows. It is possible to use ORDER BY to sort query results, but that can sometimes
present its own problems. For example, if the optimizer is being investigated for some bug, ORDER
BY might order the result but return an incorrect set of rows. sort ed_r esul t can be used to
produce sorted output even in the absence of ORDER BY.

sorted_result is useful for eliminating differences between test runs that may otherwise be
difficult to compensate for. Results without ORDER BY are not guaranteed to be returned in any
given order, so the result for a given query might differ between test runs. For example, the order
might vary between different server versions, so a result file created by one server might fail when
compared to the result created by another server. The same is true for different storage engines.
sorted_result eliminates these order differences by producing a deterministic row order.

Other ways to eliminate differences from results without use of sort ed_r esul t include:
« Remove columns from the select list to reduce variability in the output

« Use aggregate functions such as AVE) on all columns of the select list

* Use ORDER BY

The use of aggregate functions or ORDER BY may also have the advantage of exposing other bugs
by introducing additional stress on the server. The choice of whether to use sorted result or
ORDER BY (or perhaps both) may be dictated by whether you are trying to expose bugs, or avoid
having them affect results. This means that care should be taken with sort ed_r esul t because it
has the potential of hiding server bugs that result in true problems with result order.

source file_nane
Read test input from the named file.

If you find that several test case files contain a common section of commands (for example,
statements that create a standard set of tables), you can put those commands in another file and
those test cases that need the file can include it by means of a sour ce fil e_nanme command. This
enables you to write the code just once rather than in multiple test cases.

Normally, the file name in the sour ce command is relative to the mysql - t est directory because
nysql t est usually is invoked in that directory.

A sourced file can use sour ce to read other files, but take care to avoid a loop. The maximum
nesting level is 16.

--source include/have_csv.inc
source include/varchar.inc;

The file name can include variable references. Variables are expanded including any quotation
marks in the values, so normally the values should not include quotation marks. Suppose that / t np/
j unk contains this line:

SELECT 'I am a query';

74

nysgl t est Commands

The following example shows one way in which variable references could be used to specify the file
name:

let $dir= /tnp;

let $file= junk;

source $dir/$file;
e start _tinmer

Restart the timer, overriding any timer start that occurred earlier. By default, the timer starts when
nysql t est begins execution.

e sync_slave_ with_master [connection_nane]

Executing this command is equivalent to executing the following commands:

save_nmst er _pos;
connecti on connecti on_nane;
sync_wi th_master O;

If connect i on_nane is not specified, the connection named sl ave is used.

The effect is to save the replication coordinates (binary log file name and position) for the server on
the current connection (which is assumed to be a master replication server), and then switch to a
slave server and wait until it catches up with the saved coordinates. Note that this command implicitly
changes the current connection.

A variable can be used to specify the connect i on_nane value.
e sync_with naster offset

For a slave replication server, wait until it has caught up with the master. The position to synchronize
to is the position saved by the most recent save _nast er _pos command plus of f set .

To use this command, save nast er _pos must have been executed at some point earlier in the
test case to cause nysql t est to save the master's replication coordinates.

e system conmand [arg]

Execute the shell command using the syst enq() library call. References to variables within the
command are replaced with the corresponding values. Use “\ $” to specify a literal “$” character.

--systemecho '[nysql test1]' > $MYSQLTEST_VARDI R/t np/t np. cnf
--system echo 'port=1234' >> $MYSQLTEST_VARDI R/t mp/ t np. cnf
system rm $MYSQLTEST_VARDI R/ mast er-data/test/t1. MYl ;

but the command for doing so tend to be operating system specific, which
reduces test portability. mysql t est now has several commands to perform
these operations portably, so they should be used instead: r enove _fil e,

Note
@ exec or syst emare sometimes used to perform file system operations,
chnod, nkdi r, and so forth.

e vertical results

Set the default query result display format to vertical. Initially, the default is to display results
horizontally.

--vertical _results

75

nysql t est Variables

e wait_for_slave_to_stop

Poll the current connection, which is assumed to be a connection to a slave replication server, by
executing SHOW STATUS LI KE ' Sl ave_runni ng' statements until the result is OFF.

For information about alternative means of slave server control, see Section 4.14, “Writing
Replication Tests”.

* while (expr)

Begin a whi | e loop block, which continues until an end line. nysql t est executes the block
repeatedly as long as the expression is true (hon-zero). See flow-control constructs. Section 6.4,
“nysql t est Flow Control Constructs”, for further information about whi | e statements.

Make sure that the loop includes some exit condition that eventually occurs. This can be done by
writing expr so that it becomes false at some point.

l et $i=5;
while ($i)
{
echo $i;
dec $i;
}

e wite file file_nane [term nator]

Write the following lines of the test file to the given file, until a line containing the terminator is
encountered. The default terminator is EOF, but a different terminator can be provided. The file name
argument is subject to variable substitution. An error occurs if the file already exists.

wite file $MYSQL_TMP_DI R/ dat a01;
line one for the file

line two for the file

EOF

wite_ file $MyYSQL_TMP_DI R/ dat a02 END_OF_FI LE;
line one for the file

line two for the file

END _OF FILE

6.3 nysql t est Variables

You can define variables and refer to their values. You can also refer to environment variables, and
there is a built-in variable that contains the result of the most recent SQL statement.

To define a variable, use the | et command. Examples:

let $a= 14;
let $b= this is a string;
--let $a= 14
--let $b=this is a string

The variable name cannot contain whitespace or the “=" character.

If a variable has a humeric value, you can increment or decrement the value:

inc $a;
dec $a;
--inc %a
--dec %a

76

nysql t est Flow Control Constructs

i nc and dec are commonly used in whi | e loops to modify the value of a counter variable that controls
loop execution.

The result from executing a query can be assigned to a variable by enclosing the query within backtick
(" ™) characters:

l et $g= “select version()"

References to variables can occur in the echo, eval , exec, and syst emcommands. Variable
references are replaced by their values. A nonquery value assigned to a variable in a |l et command
can also refer to variables.

Variable references that occur within * query™ are expanded before the query is sent to the server for
execution.

You can refer to environment variables. For example, this command displays the value of the $PATH
variable from the environment:

--echo $PATH

$nysql _errno is a built-in variable that contains the numeric error returned by the most recent SQL
statement sent to the server, or 0 if the statement executed successfully. $nysql _errno has a value
of -1 if no statement has yet been sent.

From MySQL 5.5.17, $nysql _er r nane similarly contains the symbolic name of the last error, or an
empty string if there was no error.

nysqgl t est first checks nysql t est variables and then environment variables. nysql t est variable
names are not case sensitive. Environment variable names are case sensitive.

6.4 nysqgl t est Flow Control Constructs

The syntax for i f and whi | e blocks looks like this:

if (expr)
{
command |i st
}
whi l e (expr)
{

command |i st

}

An expression result is true if nonzero, false if zero. If the expression begins with ! , the sense of the
test is reversed.

If the expression is a string that does not begin with a numeric digit (possibly preceeded by a plus
or minus sign), it evaluates as true if non-empty. Any white space is ignored in this case, so a string
consisting of only white space is false.

There is no provision for el se with i .

For a whi | e loop, make sure that the loop includes some exit condition that eventually occurs. This
can be done by writing expr so that it becomes false at some point.

The allowable syntax for expr is $var _nane, ! $var _nane, a string or integer, or “ query .

From MySQL 5.5, the expression can also be a simple comparison, where the left hand side must be
a variable, and the right hand side can be any type valid for the single expression except the negated

77

Error Handling

variable. The supported operators are ==, | =, <, <=, > and >=. Only the first two may be used if the
right hand side does not evaluate to an integer. With ==, strings must match exactly.

If you use a string on the right hand side of the comparison, it does not have to be quoted even if it
contains spaces. It may optionally be enclosed in single or double quotation marks which will then be
stripped off before comparison. This is in contrastto | et statements, where quoting is not stripped.
The optional quoting is not available in the first release of MySQL 5.5 GA (5.5.8), but can be used from
5.5.9.

Examples of the expression syntax with comparisons (only the header shown):

whi | e ($counter<5) ...
if ($value == '"No such row) ...
if ($slave count != $nmaster count) ...

The opening { (curly brace) must be separated from the preceding) (right parenthesis) by whitespace,
such as a space or a line break.

Variable references that occur within “ query™ are expanded before the query is sent to the server for
execution.

6.5 Error Handling

If an expected error is specified and that error occurs, nysql t est continues reading input. If the
command is successful or a different error occurs, nysql t est aborts.

If no expected error is specified, mysql t est aborts unless the command is successful. (It is implicit
that you expect $nysql _errno to be 0.)

By default, mysql t est aborts for certain conditions:

» A statement that fails when it should have succeeded. The following statement should succeed if
table t exists;

SELECT * FROM t;

» A statement that fails with an error different from that specified:

--error 1
SELECT * FROM no_such_t abl e;

» A statement that succeeds when an error was expected:

--error 1
SELECT 'a string';

You can disable the abort for errors of the first type by using the di sabl e_abort _on_error
command. In this case, when errors occur for statements that should succeed, nysql t est continues
processing intput.

di sabl e_abort _on_error does not cause nysql t est to ignore errors for the other two types,
where you explicitly state which error you expect. This behavior is intentional. The rationale is that if
you use the er r or command to specify an expected error, it is assumed that the test is sufficiently well
characterized that only the specified error is accceptable.

If you do not use the er r or command, it is assumed that you might not know which error to

expect or that it might be difficult to characterize all possible errors that could occur. In this case,

di sabl e_abort _on_error is useful for causing nysql t est to continue processing input. This can
be helpful in the following circumstances:

78

Error Handling

» During test case development, it is useful to process all input even if errors occur so that you can see
all errors at once, such as those that occur due to typographical or syntax errors. Otherwise, you can
see and fix only one scripting problem at a time.

» Within a file that is included with a sour ce command by several different test cases, errors might
vary depending on the processing environment that is set up prior to the sour ce command.

» Tests that follow a given statement that can fail are independent of that statement and do not depend
on its result.

79

80

Chapter 7 Creating and Executing Unit Tests

Table of Contents

7.1 Unit TeStNG USING TAP .o e ettt e e e et e e e e eaa e eaes 81
7.2 Unit Testing Using the Google Test FrameWorkocouuiiiiiiiiiiiii e 81
7.3 Unit Tests Added t0 Main TESE RUNSiiiiiiiiieiii e 83

Storage engines and plugins can have unit tests to test their components. The top-level Makefi | e
targett est - uni t runs all unit tests: It scans the storage engine and plugin directories, recursively,
and executes all executable files having a name that ends with - t .

The following sections describe MySQL unit testing using TAP and the Google Test framework.

7.1 Unit Testing Using TAP

The unit-testing facility based on the Test Anything Protocol (TAP) is mainly used when developing Perl
and PHP modules. To write unit tests for C/C++ code, MySQL has developed a library for generating
TAP output from C/C++ files. Each unit test is written as a separate source file that is compiled to
produce an executable. For the unit test to be recognized as a unit test, the executable file has to be of
the format myt ext - t . For example, you can create a source file named nyt est - t . ¢ that compiles

to produce an executable nyt est - t . The executable will be found and run when you execute meke
test ormake test-unit inthe distribution top-level directory.

Example unit tests can be found in the uni t t est / exanpl es directory of a MySQL source
distribution. The code for the MyTAP protocol is located in the uni t t est / myt ap directory.

Each unit test file should be stored in a storage engine or plugin directory (st or age/ engi ne_nane
or pl ugi n/ pl ugi n_nan®), or one of its subdirectories. A reasonable convention is to create a

uni tt est subdirectory under the storage engine or plugin directory and create unit test files in
unittest.

7.2 Unit Testing Using the Google Test Framework

The Google Test unit-testing framework is available in MySQL source trees and distributions as of
MySQL 5.6.1. Google Test, like MyTAP, provides a unit-testing framework, but Google Test provides
richer functionality, such as:

» Arrich set of predicates
» User-defined predicates and assertions
» Automatic test registration

* Nice error reporting when a predicate fails (with line number, expected and actual values, and
additional comments)

 Test fixtures, and setup/teardown logic
» Death tests

» Disabled tests

 Test filtering and shuffling

Google Test runs on many platforms. Some functionality is missing on some platforms (such as death
tests and parameterized tests), so those features should not be used.

81

Installing Google Test and Running Unit Tests

This section provides notes about using Google Test within the context of MySQL development. For
general-purpose information about Google Test, see these resources:

» Main Google Test page: http://code.google.com/p/googletest

Primer: http://code.google.com/p/googletest/wiki/GoogleTestPrimer

Advanced guide: http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide

» Google presentation: http://docs.google.com/present/view?id=dfsbxvm5_0f5s4pvf9

Installing Google Test and Running Unit Tests

MySQL sources do not include Google Test. To install it so that you can use it, use one of these
approaches:

 Install Google Test in individual source trees. Use the - DENABLE DOWNLOADS=1 configuration
option. This causes Cvake to download Google Test and install it in your source tree for you.

 Install a single instance of Google Test. MySQL requires Google Test 1.6 or higher.
< To install from a tarball, download http://googlemock.googlecode.com/files/gmock-1.6.0.zip.

e To download Google Test from the Subversion repository, use svn checkout http://
googl et est . googl ecode. com svn/ trunk/ googl et est-read-only

< If a Google Test package is available for your operating system, you can install it using the
package manager. For example, you might be able to use apt - get for Debian Linux.

When Google Test has been installed, set the GTEST PREFI X environment variable appropriately
for your command interpreter. For example, use this command line for bash:

GTEST_PREFI| X=/ pat h/to/ your/instal|; export GIEST_PREFI X

Installing Google Test in individual source trees is the recommended method. The single-
instance installation method can be used only if all MySQL builds on a machine take place in the
same environment (same operating system, same compiler), for reasons discussed at https://
groups.google.com/group/googletestframework/browse_thread/thread/668eff1cebf5309d?pli=1.

At configuration time, C\Vake looks for gt est . h. The build process compiles all Google Test-based
unit tests or ignores them, depending on whether gt est . h is found.

After the build has completed, to run the tests, change location into the uni tt est / guni t directory
and execute the ct est command. It need not be invoked with any options, but you can run it with the
- - hel p option to see what options are available.

Another way to run the unit tests is with this command:

make test-unit

Note
@ make test-unit isunavailable as of MySQL 5.6.32 and 5.7.14.

For internal MySQL testing, PushBuild has been extended to install Google Test as a separate
“package.” All trees named nysql -t runk. * are set up to depend on this package.

Writing Unit Tests for Google Test

The Google Test unit test files are located in the uni t t est/ guni t directory. You can look at these
files to see how tests are written. Here are some examples:

82

http://code.google.com/p/googletest
http://code.google.com/p/googletest/wiki/GoogleTestPrimer
http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide
http://docs.google.com/present/view?id=dfsbxvm5_0f5s4pvf9
http://googlemock.googlecode.com/files/gmock-1.6.0.zip
https://groups.google.com/group/googletestframework/browse_thread/thread/668eff1cebf5309d?pli=1
https://groups.google.com/group/googletestframework/browse_thread/thread/668eff1cebf5309d?pli=1

Unit Tests Added to Main Test Runs

e sqgl _list-t.cc:Asimple test of some list classes

 ndl -t. cc: Some tests of metadata locking (MDL), including testing of lock acquisition from multiple
threads

 ndl _nytap-t.cc: The same tests as ndl -t . cc, but written for MyTAP, to illustrate some features
of Google Test

Most MyTAP-based tests are likely easily converted to Google Test. However, there might be low-level
tests that absolutely must be run on every platform, and thus require MyTAP.

As currently implemented, the Google Test unit-test programs produce TAP output rather than the
“plain” alternative. This can be disabled by using the - - di sabl e-t ap- out put command-line option
when running a test executable.

To see what options are available, run a test executable with the - - hel p option.

7.3 Unit Tests Added to Main Test Runs

From MySQL 5.5.11, nysql -t est - run. pl will also run unit tests at the end of full test runs, when
being run from within a build directory. It depends on the unit tests having been built and defined in a
file CTest Test fi | e. cnake in the top level build directory. Those will normally be there after a build
using Cvake, but will not be in a binary package.

The unit tests are run simply by executing ct est with no arguments from the top level build directory.

The result will be shown as a single test at the end, named uni t _t est s which passes if and only if all
unit tests pass. A summary of the result will be printed, including the name of any failed unit tests. The
set of unit tests will be counted as one test (either passed or failed) in the overall test summary.

Unit tests will by default be run only if you have not specified any specific tests or suites on the
command line for nysql -t est - r un. pl . This can be overridden by setting the environment variable
MIR_UNI T_TESTSto 0 or 1. This in turn can be overriden by a command line argument - - uni t -
testsor--nounit-tests.

If the file CTest Test fi | e. cnmake and the ct est command are not both available, unit tests will be
silently skipped, unless you have used the command line option - -uni t -t est s.

83

84

Chapter 8 Plugins for Testing Plugin Services

MySQL server plugins have access to server “services,” as described in MySQL Services for Plugins.
As of MySQL 5.7.8, MySQL distributions include plugins that demonstrate how to test plugin service
APls:

e Thetest franmework pluginis a bare bones plugin that shows the minimum required framework
for service testing.

» Thetest services plugin demonstrates how to test the ny_snprintf and
nmy_pl ugi n_| og_ser vi ce services in unthreaded context.

» Thetest services_threaded pluginis like t est _servi ces, but for threaded context.

The source code for the plugins is located in the pl ugi n/t est _ser vi ces directory of MySQL source
distributions. The READNVE file in that directory contains instructions for running the test cases available
forthet est _services andtest_servi ces_t hreaded plugins.

Note
@ The test plugins in pl ugi n/ t est _ser vi ces are daemon plugins (see

Daemon Plugins). For an example of a nondaemon service-testing plugin
plugin, see thet est _security_context. cc file (available as of MySQL
5.7.9) in the pl ugi n/ audi t _nul | directory. This file creates an audit plugin
for testing the security_cont ext service.

Use the following procedure to create a new service-testing plugin based on one of those provided

in the pl ugi n/ t est _servi ces directory. Assume that you want to create a new plugin named

test _mnyservice (ortest _nyservice_threaded to test in threaded context).

1. Select a source file to use as a basis for the new plugin:
¢ To begin with a bare bones plugin, copy t est _franmework. cc totest myservice. cc.

« To begin with a plugin that already includes code for running tests in unthreaded context, copy
test_services.cctotest_nyservice.cc.

< To begin with a plugin that already includes code for running tests in threaded context, copy
test _services_threaded. cctotest_nyservice_t hreaded. cc.

2. There is a plugin descriptor near the end of the new source file. Modify this descriptor appropriately
for your plugin. Change the nane, aut hor, and descr members that indicate the plugin name
and author and provide a description. For example, if you copied t est _f r anewor k. cc, those
members look like this:

"test _franework",
"Hor st Hunger",
"Test franmework",

Change them to something like this:

"test _nyservice",
"Your Nane Here",
"Test My Service",

3. Modify your source file appropriately for the service to be tested:

« If you copied t est _franmewor k. cc, your file has no tests initially and is set up for unthreaded
context. In this case, add code to thet est _servi ces_plugi n_init() function. This code
should invoke the service to be tested.

85

http://dev.mysql.com/doc/refman/5.7/en/plugin-services.html
http://dev.mysql.com/doc/refman/8.0/en/plugin-types.html#daemon-plugin-type

« If you copiedtest _services.ccortest_services_threaded. cc, the file contains tests
forthe ny_snprintf andny_plugi n_| og_servi ce services in unthreaded or threaded
contexts. Replace or modify those tests with code for your own tests.

Compiling your plugin creates a plugin library file, which you should install in the directory named by
the pl ugi n_di r system variable. The file base name is the same as that of the source file. The file
name suffix differs per platform (for example, . so for Unix and Unix-like systems, . dl | for Windows).

To install or unintall your plugin at server startup, use the - - pl ugi n-1 oad or - - pl ugi n-1 oad- add

option. For example, you can use these lines in an option file (adjust the file name as necessary):

[nysql d]
pl ugi n- | oad- add=t est _nyservi ce. so

To install or uninstall the plugin at runtime, use these statements (adjust the plugin name and file name
as necessary):

I NSTALL PLUG N test _nyservice SONAME 'test_nyservice. so';
UNI NSTALL PLUG N test_mnyservi ce;

For addition information about plugin loading, see Installing and Uninstalling Plugins.

For information about creating and running test cases for your new plugin, adapt the instructions in
the README file in the pl ugi n/ t est _ser vi ces directory. Test cases for the t est _servi ces and
test _services_t hreaded plugins are located in nysql -test/suite/test services.

86

http://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
http://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
http://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
http://dev.mysql.com/doc/refman/8.0/en/server-plugin-loading.html

Index

Symbols
--combination option
mysql-test-run.pl, 21, 24
--mysqld option
mysql-test-run.pl, 21
--mysqltest option
mysql-test-run.pl, 21
.expect file, 28

A

abort-on-error option
mysql-stress-test.pl, 52

add_suppression, 28

append_file command, 57

B

basedir option
mysqltest, 32
mysql_client_test, 36
big-test option
mysq|-test-run.pl, 39
binary log format
controlling, 24
boot-dbx option
mysq|-test-run.pl, 39
boot-ddd option
mysq|-test-run.pl, 39
boot-gdb option
mysq|-test-run.pl, 40
build-thread option
mysq|-test-run.pl, 40

C

callgrind option
mysql-test-run.pl, 40
cat_file command, 57

change_user command, 57

character-sets-dir option
mysqltest, 32

character_set command, 58

charset-for-testdb option
mysq|-test-run.pl, 40
check-testcases option
mysq|-test-run.pl, 40
check-tests-file option
mysql-stress-test.pl, 52
chmod command, 58
clean-vardir option
mysq|-test-run.pl, 40
cleaning up, 15
cleanup option
mysql-stress-test.pl, 52
client-bindir option
mysq|-test-run.pl, 40

client-dbx option
mysql-test-run.pl, 40
client-ddd option
mysql-test-run.pl, 40
client-debugger option
mysql-test-run.pl, 40
client-gdb option
mysql-test-run.pl, 40
client-libdir option
mysql-test-run.pl, 41
coding guidelines
test case, 12
combination option
mysql-test-run.pl, 41
combinations file
mysql-test-run.pl, 21, 24
comment option
mysql-test-run.pl, 41
compress option
mysql-test-run.pl, 41
mysqltest, 32
connect command, 58
connection command, 59
convert_error function, 59
copy_file command, 59

copy_files_wildcard command, 59

count option
mysql_client_test, 36

cursor-protocol option
mysql-test-run.pl, 41
mysqltest, 32

D

database option
mysqltest, 32
mysql_client_test, 36
ddd option
mysql-test-run.pl, 41
debug option
mysql-test-run.pl, 41
mysqltest, 32
mysql_client_test, 36
Debug Sync facility, 27
debug-check option
mysqltest, 32
debug-common option
mysql-test-run.pl, 41
debug-info option
mysqltest, 32
debug-server option
mysql-test-run.pl, 41
debug-sync-timeout option
mysql-test-run.pl, 41
debugger option
mysql-test-run.pl, 41
dec command, 60
default-file option
mysql-test-run.pl, 42

87

default-myisam option
mysq|-test-run.pl, 42
default_extra_file option
mysq|-test-run.pl, 42
delimiter command, 60
die command, 60
diff_files command, 60
dirty _close command, 60
disable_abort_on_error command, 61
disable_connect_log command, 61
disable_info command, 61
disable_metadata command, 61
disable_parsing command, 61
disable_ps_protocol command, 61
disable_query log command, 62
disable_reconnect command, 62
disable_result_log command, 62
disable_rpl_parse command, 62
disable_session_track_info command, 62
disable_warnings command, 62
disconnect command, 62
discover option
mysq|-test-run.pl, 42
do-suite option
mysq|-test-run.pl, 42
do-test option
mysql-test-run.pl, 42
do-test-list option
mysql-test-run.pl, 42

E

echo command, 63
embedded-server option
mysql-test-run.pl, 42
enable-disabled option
mysql-test-run.pl, 42
enable_abort_on_error command, 61
enable_connect_log command, 61
enable_info command, 61
enable_metadata command, 61
enable_parsing command, 61
enable_ps_protocol command, 61
enable_query_log command, 62
enable_reconnect command, 62
enable_result_log command, 62
enable_rpl_parse command, 62
enable_session_track info command, 62
enable_warnings command, 62
end command, 63
end_timer command, 63
environment variable
MTR_BUILD_THREAD, 38
MTR_CTEST_TIMEOUT, 38
MTR_MEM, 38
MTR_PARALLEL, 38
MTR_PORT_BASE, 38
MTR_SHUTDOWN_TIMEOUT, 38
MTR_START_TIMEOUT, 38

MTR_SUITE_TIMEOUT, 38
MTR_TESTCASE_TIMEOUT, 38
MYSQLD, 38
MYSQLD_BOOTSTRAP, 38
MYSQLD_BOOTSTRAP_CMD, 38
MYSQLD_CMD, 38
MYSQLTEST_VARDIR, 38
MYSQL_CONFIG_EDITOR, 38
MYSQL_TEST, 38
MYSQL_TEST_DIR, 38
MYSQL_TEST_LOGIN_FILE, 38
MYSQL_TMP_DIR, 38
TSAN_OPTIONS, 38

error checking, 17

error command, 63

eval command, 64

exec command, 65

execw command, 65

exit command, 65

experimental option
mysql-test-run.pl, 43

explain-protocol option
mysql-test-run.pl, 43
mysqltest, 32

expr command, 65

extern option
mysql-test-run.pl, 43

F

fail-check-testcases option
mysql-test-run.pl, 43
fast option
mysql-test-run.pl, 43
file_exists command, 66
force option
mysql-test-run.pl, 43
force-cpdir command, 66
force-restart option
mysql-test-run.pl, 43
force-rmdir command, 66

G

gcov option
mysql-test-run.pl, 43
gdb option
mysql-test-run.pl, 41, 43
getopt-ll-test option
mysql_client_test, 36
Google test framework, 81
gprof option
mysql-test-run.pl, 43

H

have_binlog_format_*.inc include files, 25
help option
mysql-stress-test.pl, 52
mysql-test-run.pl, 39

88

mysqltest, 32

mysql_client_test, 36
horizontal_results command, 66
host option

mysqltest, 32

mysql_client_test, 36

if command, 67
inc command, 67
include files, 23
as subroutines, 24
include option
mysqltest, 32
include-ndb option
mysql-test-run.pl, 44
include-ndbcluster option
mysql-test-run.pl, 44

J

json-explain-protocol option
mysql-test-run.pl, 44
mysqltest, 32

L

let command, 67

lettercase conventions
mysqltest commands, 14
SQL statements, 13

list_files command, 68

list_files_append_file command, 68

list_files_write_file command, 68

log-error-details option
mysql-stress-test.pl, 52

logdir option
mysqltest, 32

loop-count option
mysql-stress-test.pl, 52

lowercase_result command, 68

M

manual-boot-gdb option
mysql-test-run.pl, 44
manual-dbx option
mysql-test-run.pl, 44
manual-ddd option
mysql-test-run.pl, 44
manual-debug option
mysql-test-run.pl, 44
manual-gdb option
mysql-test-run.pl, 44
mark-progress option
mysql-test-run.pl, 44
mysqltest, 32
max-connect-retries option
mysqltest, 33
max-connections option

mysql-test-run.pl, 44

mysqltest, 33
max-save-core option

mysql-test-run.pl, 44
max-save-datadir option

mysql-test-run.pl, 44
max-test-fail option

mysql-test-run.pl, 44
mem option

mysql-test-run.pl, 45
mkdir command, 68
move_file command, 68
MTR_BUILD_THREAD environment variable, 38
MTR_CTEST_TIMEOUT environment variable, 38
MTR_MEM environment variable, 38
MTR_PARALLEL environment variable, 38
MTR_PORT_BASE environment variable, 38
MTR_SHUTDOWN_TIMEOUT environment variable,
38
MTR_START_TIMEOUT environment variable, 38
MTR_SUITE_TIMEOUT environment variable, 38
MTR_TESTCASE_TIMEOUT environment variable, 38
mysql-stress-test.pl, 52

abort-on-error option, 52

check-tests-file option, 52

cleanup option, 52

help option, 52

log-error-details option, 52

loop-count option, 52

mysqltest option, 52

server-database option, 52

server-host option, 53

server-logs-dir option, 53

server-password option, 53

server-port option, 53

server-socket option, 53

server-user option, 53

sleep-time option, 53

stress-basedir option, 53

stress-datadir option, 53

stress-init-file option, 53

stress-mode option, 53

stress-suite-basedir option, 53

stress-tests-file option, 53

suite option, 54

test-count option, 54

test-duration option, 54

threads option, 54

verbose option, 54
mysql-test-run.pl, 37

big-test option, 39

boot-dbx option, 39

boot-ddd option, 39

boot-gdb option, 40

build-thread option, 40

callgrind option, 40

charset-for-testdb option, 40

check-testcases option, 40

89

clean-vardir option, 40
client-bindir option, 40
client-dbx option, 40
client-ddd option, 40
client-debugger option, 40
client-gdb option, 40
client-libdir option, 41
combination option, 41
comment option, 41
compress option, 41
cursor-protocol option, 41
dbx option, 41

ddd option, 41

debug option, 41
debug-common option, 41
debug-server option, 41
debug-sync-timeout option, 41
debugger option, 41
default-myisam option, 42
defaults-file option, 42
defaults_extra_file option, 42
discover option, 42

do-suite option, 42

do-test option, 42

do-test-list option, 42
embedded-server option, 42
enable-disabled option, 42
experimental option, 43
explain-protocol option, 43
extern option, 43
fail-check-testcases option, 43
fast option, 43

force option, 43

force-restart option, 43

gcov option, 43

gdb option, 43

gprof option, 43

help option, 39

include-ndb option, 44
include-ndbcluster option, 44
json-explain-protocol option, 44
manual-boot-gdb option, 44
manual-dbx option, 44
manual-ddd option, 44
manual-debug option, 44
manual-gdb option, 44
mark-progress option, 44
max-connections option, 44
max-save-core option, 44
max-save-datadir option, 44
max-test-fail option, 44

mem option, 45

mysqld option, 45
mysqld-env option, 45
mysqltest option, 45
ndb-connectstring option, 45
no-skip option, 46
nocheck-testcases option, 45

nodefault-myisam option, 45
noreorder option, 45
notimer option, 46
nounit-tests option, 46
nowarnings option, 46
only-big-tests option, 46
parallel option, 46
port-base option, 46
print-testcases option, 47
ps-protocol option, 47
record option, 47

reorder option, 47

repeat option, 47
report-features option, 47
report-times option, 47
retry option, 47

retry-failure option, 47
sanitize option, 47
shutdown-timeout option, 48
skip-combinations option, 48
skip-ndb option, 48
skip-ndb-slave option, 48
skip-ndbcluster option, 48
skip-ndbcluster-slave option, 48
skip-rpl option, 48

skip-ssl option, 48
skip-test option, 48
skip-test-list option, 48
sleep option, 48
sp-protocol option, 48

ssl option, 48

start option, 49
start-and-exit option, 49
start-dirty option, 49
start-from option, 49
strace-client option, 49
strace-server option, 49
stress option, 49

suite option, 50
suite-timeout option, 50
summary-report option, 50
test-progress option, 50
testcase-timeout option, 50
timediff option, 50

timer option, 50

timestamp option, 50
tmpdir option, 50

unit-tests option, 50
unit-tests-report option, 50
user option, 50

user-args option, 50
valgrind option, 51
valgrind-clients option, 51
valgrind-mysqld option, 51
valgrind-mysqltest option, 51
valgrind-options option, 51
valgrind-path option, 51
vardir option, 51

90

verbose option, 51 verbose option, 35

verbose-restart option, 51 version option, 35
view-protocol option, 51 view-protocol option, 35
vs-config option, 51 mysqltest option
wait-all option, 51 mysql-stress-test.pl, 52
warnings option, 52 mysql-test-run.pl, 45
with-ndbcluster-only option, 52 mysqltest_embedded, 31
MYSQLD environment variable, 38 MYSQLTEST_VARDIR environment variable, 38
mysqld option mysql_client_test, 35
mysql-test-run.pl, 45 basedir option, 36
mysqld-env option count option, 36
mysql-test-run.pl, 45 database option, 36
MYSQLD_BOOTSTRAP environment variable, 38 debug option, 36
MYSQLD_BOOTSTRAP_CMD environment variable, getopt-ll-test option, 36
38 help option, 36
MYSQLD_CMD environment variable, 38 host option, 36
mysqltest, 31 password option, 36, 36
basedir option, 32 port option, 36
character-sets-dir option, 32 server-arg option, 36
compress option, 32 silent option, 36
currsor-protocol option, 32 socket option, 36
database option, 32 user option, 37
debug option, 32 vardir option, 37
debug-check option, 32 mysql_client_test_embedded, 35
debug-info option, 32 MYSQL_CONFIG_EDITOR environment variable, 38
explain-protocol option, 32 MYSQL_TEST environment variable, 38
help option, 32 MYSQL_TEST_DIR environment variable, 38
host option, 32 MYSQL_TEST_LOGIN_FILE environment variable, 38
include option, 32 MYSQL_TMP_DIR environment variable, 38
json-explain-protocol option, 32
logdir option, 32 N

mark-progress option, 32
max-connect-retries option, 33
max-connections option, 33
no-defaults option, 33
password option, 33

plugin-dir option, 33

port option, 33

protocol option, 33

ps-protocol option, 33

quiet option, 33

record option, 33

result-file option, 33
server-arg option, 34
server-file option, 34
server-public-key-path option, 34
silent option, 33, 34
skip-safemalloc option, 34
sleep option, 34

socket option, 34

sp-protocol option, 34

ndb-connectstring option
mysql-test-run.pl, 45
no-defaults option
mysqltest, 33
no-skip option
mysql-test-run.pl, 46
nocheck-testcases option
mysql-test-run.pl, 45
nodefault-myisam option
mysql-test-run.pl, 45
noreorder option
mysql-test-run.pl, 45
notimer option
mysql-test-run.pl, 46
nounit-tests option
mysql-test-run.pl, 46
nowarnings option
mysql-test-run.pl, 46

tail-lines option, 34 O

test-file option, 35 object naming conventions, 14
timer-file option, 35 only-big-tests option
tls-version option, 35 mysql-test-run.pl, 46

tmpdir option, 35 output command, 68

trace-exec option, 35
user option, 35

91

P

parallel option
mysq|-test-run.pl, 46
password option
mysqltest, 33
mysql_client_test, 36, 36
perl command, 69
ping command, 69
plugin-dir option
mysqltest, 33
port option
mysqltest, 33
mysql_client_test, 36
port-base option
mysq|-test-run.pl, 46
print-testcases option
mysq|-test-run.pl, 47
protocol option
mysqltest, 33
ps-protocol option
mysq|-test-run.pl, 47
mysqltest, 33

Q

guery command, 69
query_get value command, 69
qguery_horizontal command, 69
guery_vertical command, 70
quiet option

mysqltest, 33

R

real_sleep command, 70

reap command, 70

record option
mysql-test-run.pl, 47
mysqltest, 33

remove_file command, 70

remove_files_wildcard command, 70

reorder option
mysql-test-run.pl, 47
repeat option
mysql-test-run.pl, 47
replace_column command, 70
replace_regex command, 71
replace_result command, 71
replication testing, 26
report-features option
mysql-test-run.pl, 47
report-times option
mysql-test-run.pl, 47
require command, 71
reset_connection command, 71
result command, 71
result file
generating, 16
result-file option

mysqltest, 33
result_format command, 72
retry option

mysql-test-run.pl, 47
retry-failure option

mysql-test-run.pl, 47
rmdir command, 72

S

sanitize option
mysql-test-run.pl, 47
save_master_pos command, 72
send command, 72
send_eval command, 72
send_quit command, 72
send_shutdown command, 73
server-arg option
mysqltest, 34
mysql_client_test, 36
server-database option
mysql-stress-test.pl, 52
server-file option
mysqltest, 34
server-host option
mysql-stress-test.pl, 53
server-logs-dir option
mysql-stress-test.pl, 53
server-password option
mysql-stress-test.pl, 53
server-port option
mysql-stress-test.pl, 53
server-public-key-path option
mysqltest, 34
server-socket option
mysql-stress-test.pl, 53
server-user option
mysql-stress-test.pl, 53
shutdown-timeout option
mysql-test-run.pl, 48
shutdown_server command, 73
silent option
mysqltest, 33, 34
mysql_client_test, 36
skip command, 73
skip-combinations option
mysql-test-run.pl, 48
skip-ndb option
mysql-test-run.pl, 48
skip-ndb-slave option
mysql-test-run.pl, 48
skip-ndbcluster option
mysql-test-run.pl, 48
skip-ndbcluster-slave option
mysql-test-run.pl, 48
skip-rpl option
mysql-test-run.pl, 48
skip-safemalloc option
mysqltest, 34

skip-ssl option
mysql-test-run.pl, 48
skip-test option
mysql-test-run.pl, 48
skip-test-list option
mysql-test-run.pl, 48
sleep command, 73
sleep option
mysql-test-run.pl, 48
mysqltest, 34
sleep-time option
mysql-stress-test.pl, 53
socket option
mysqltest, 34
mysql_client_test, 36
sorted_result command, 73
source command, 74
sp-protocol option
mysql-test-run.pl, 48
mysqltest, 34
ssl option
mysql-test-run.pl, 48
start option
mysq|-test-run.pl, 49
start-and-exit option
mysq|-test-run.pl, 49
start-dirty option
mysq|-test-run.pl, 49
start-from option
mysq|-test-run.pl, 49
start_timer command, 75
strace-client option
mysq|-test-run.pl, 49
strace-server option
mysq|-test-run.pl, 49
stress option
mysq|-test-run.pl, 49
stress-basedir option
mysql-stress-test.pl, 53
stress-datadir option
mysql-stress-test.pl, 53
stress-init-file option
mysql-stress-test.pl, 53
stress-mode option
mysql-stress-test.pl, 53
stress-suite-basedir option
mysql-stress-test.pl, 53
stress-tests-file option
mysql-stress-test.pl, 53
suite option
mysql-stress-test.pl, 54
mysq|-test-run.pl, 50
suite-timeout option
mysq|-test-run.pl, 50
summary-report option
mysq|-test-run.pl, 50

sync_with_master command, 75

system command, 75

T

tail-lines option
mysqltest, 34

TAP unit tests, 81

test case coding guidelines, 12

test cases, 1
test framework, 3
test-count option
mysql-stress-test.pl, 54
test-duration option
mysql-stress-test.pl, 54
test-file option
mysqltest, 35
test-progress option
mysql-test-run.pl, 50
testcase-timeout option
mysql-test-run.pl, 50
thread synchronization, 27
threads option
mysql-stress-test.pl, 54
timediff option
mysql-test-run.pl, 50
timer option
mysql-test-run.pl, 50
timer-file option
mysqltest, 35
timestamp option
mysql-test-run.pl, 50
tls-version option
mysqltest, 35
tmpdir option
mysql-test-run.pl, 50
mysqltest, 35
trace-exec option
mysqltest, 35

TSAN_OPTIONS environment variable, 38

U

unit tests, 1, 3, 81

From mysql-test-run.pl, 83

Google test, 81
TAP, 81
unit-tests option
mysql-test-run.pl, 50
unit-tests-report option
mysql-test-run.pl, 50
user option
mysql-test-run.pl, 50
mysqltest, 35
mysql_client_test, 37
user-args option
mysql-test-run.pl, 50

suppressing errors and warnings, 28
sync_slave_with_master command, 75

93

V
valgrind option
mysq|-test-run.pl, 51
valgrind-clients option
mysq|-test-run.pl, 51
valgrind-mysqld option
mysq|-test-run.pl, 51
valgrind-mysqltest option
mysq|-test-run.pl, 51
valgrind-options option
mysq|-test-run.pl, 51
valgrind-path option
mysq|-test-run.pl, 51
vardir option
mysq|-test-run.pl, 51
mysql_client_test, 37
verbose option
mysql-stress-test.pl, 54
mysq|-test-run.pl, 51
mysqltest, 35
verbose-restart option
mysq|-test-run.pl, 51
version option
mysqltest, 35
vertical_results command, 75
view-protocol option
mysq|-test-run.pl, 51
mysqltest, 35
vs-config option
mysq|-test-run.pl, 51

W
wait-all option
mysql-test-run.pl, 51
wait_for_slave_to_stop command, 76
warnings option
mysql-test-run.pl, 52
while command, 76
with-ndbcluster-only option
mysql-test-run.pl, 52
write_file command, 76

94

	The MySQL Test Framework, Version 2.0
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to the MySQL Test Framework
	Chapter 2 MySQL Test Framework Components
	2.1 Test Framework System Requirements
	2.2 The Test Framework and SSL
	2.3 How to Report Bugs from Tests in the MySQL Test Suite

	Chapter 3 Running Test Cases
	3.1 Running Tests in Parallel

	Chapter 4 Writing Test Cases
	4.1 Writing a Test Case: Quick Start
	4.2 Test Case Coding Guidelines
	4.2.1 File Naming and Organization Guidelines
	4.2.2 Test Case Content-Formatting Guidelines
	4.2.3 Naming Conventions for Database Objects

	4.3 Sample Test Case
	4.4 Cleaning Up from a Previous Test Run
	4.5 Generating a Test Case Result File
	4.6 Checking for Expected Errors
	4.7 Controlling the Information Produced by a Test Case
	4.8 Dealing with Output That Varies Per Test Run
	4.9 Passing Options from mysql-test-run.pl to mysqld or mysqltest
	4.10 Specifying Test Case-Specific Server Options
	4.11 Specifying Test Case-Specific Bootstrap Options
	4.12 Using Include Files to Simplify Test Cases
	4.13 Controlling the Binary Log Format Used for Tests
	4.13.1 Controlling the Binary Log Format Used for an Entire Test Run
	4.13.2 Specifying the Required Binary Log Format for Individual Test Cases

	4.14 Writing Replication Tests
	4.15 Thread Synchronization in Test Cases
	4.16 Suppressing Errors and Warning
	4.17 Stopping a Server During a Test
	4.18 Other Tips for Writing Test Cases

	Chapter 5 MySQL Test Programs
	5.1 mysqltest — Program to Run Test Cases
	5.2 mysql_client_test — Test Client API
	5.3 mysql-test-run.pl — Run MySQL Test Suite
	5.4 mysql-stress-test.pl — Server Stress Test Program

	Chapter 6 mysqltest Language Reference
	6.1 mysqltest Input Conventions
	6.2 mysqltest Commands
	6.3 mysqltest Variables
	6.4 mysqltest Flow Control Constructs
	6.5 Error Handling

	Chapter 7 Creating and Executing Unit Tests
	7.1 Unit Testing Using TAP
	7.2 Unit Testing Using the Google Test Framework
	7.3 Unit Tests Added to Main Test Runs

	Chapter 8 Plugins for Testing Plugin Services
	Index

