# -*- coding: utf-8 -*-
# module pyparsing.py
#
# Copyright (c) 2003-2019 Paul T. McGuire
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
__doc__ = \
"""
pyparsing module - Classes and methods to define and execute parsing grammars
=============================================================================
The pyparsing module is an alternative approach to creating and
executing simple grammars, vs. the traditional lex/yacc approach, or the
use of regular expressions. With pyparsing, you don't need to learn
a new syntax for defining grammars or matching expressions - the parsing
module provides a library of classes that you use to construct the
grammar directly in Python.
Here is a program to parse "Hello, World!" (or any greeting of the form
``"<salutation>, <addressee>!"``), built up using :class:`Word`,
:class:`Literal`, and :class:`And` elements
(the :class:`'+'<ParserElement.__add__>` operators create :class:`And` expressions,
and the strings are auto-converted to :class:`Literal` expressions)::
from pip._vendor.pyparsing import Word, alphas
# define grammar of a greeting
greet = Word(alphas) + "," + Word(alphas) + "!"
hello = "Hello, World!"
print (hello, "->", greet.parseString(hello))
The program outputs the following::
Hello, World! -> ['Hello', ',', 'World', '!']
The Python representation of the grammar is quite readable, owing to the
self-explanatory class names, and the use of '+', '|' and '^' operators.
The :class:`ParseResults` object returned from
:class:`ParserElement.parseString` can be
accessed as a nested list, a dictionary, or an object with named
attributes.
The pyparsing module handles some of the problems that are typically
vexing when writing text parsers:
- extra or missing whitespace (the above program will also handle
"Hello,World!", "Hello , World !", etc.)
- quoted strings
- embedded comments
Getting Started -
-----------------
Visit the classes :class:`ParserElement` and :class:`ParseResults` to
see the base classes that most other pyparsing
classes inherit from. Use the docstrings for examples of how to:
- construct literal match expressions from :class:`Literal` and
:class:`CaselessLiteral` classes
- construct character word-group expressions using the :class:`Word`
class
- see how to create repetitive expressions using :class:`ZeroOrMore`
and :class:`OneOrMore` classes
- use :class:`'+'<And>`, :class:`'|'<MatchFirst>`, :class:`'^'<Or>`,
and :class:`'&'<Each>` operators to combine simple expressions into
more complex ones
- associate names with your parsed results using
:class:`ParserElement.setResultsName`
- access the parsed data, which is returned as a :class:`ParseResults`
object
- find some helpful expression short-cuts like :class:`delimitedList`
and :class:`oneOf`
- find more useful common expressions in the :class:`pyparsing_common`
namespace class
"""
__version__ = "2.4.7"
__versionTime__ = "30 Mar 2020 00:43 UTC"
__author__ = "Paul McGuire <[email protected]>"
import string
from weakref import ref as wkref
import copy
import sys
import warnings
import re
import sre_constants
import collections
import pprint
import traceback
import types
from datetime import datetime
from operator import itemgetter
import itertools
from functools import wraps
from contextlib import contextmanager
try:
# Python 3
from itertools import filterfalse
except ImportError:
from itertools import ifilterfalse as filterfalse
try:
from _thread import RLock
except ImportError:
from threading import RLock
try:
# Python 3
from collections.abc import Iterable
from collections.abc import MutableMapping, Mapping
except ImportError:
# Python 2.7
from collections import Iterable
from collections import MutableMapping, Mapping
try:
from collections import OrderedDict as _OrderedDict
except ImportError:
try:
from ordereddict import OrderedDict as _OrderedDict
except ImportError:
_OrderedDict = None
try:
from types import SimpleNamespace
except ImportError:
class SimpleNamespace: pass
# version compatibility configuration
__compat__ = SimpleNamespace()
__compat__.__doc__ = """
A cross-version compatibility configuration for pyparsing features that will be
released in a future version. By setting values in this configuration to True,
those features can be enabled in prior versions for compatibility development
and testing.
- collect_all_And_tokens - flag to enable fix for Issue #63 that fixes erroneous grouping
of results names when an And expression is nested within an Or or MatchFirst; set to
True to enable bugfix released in pyparsing 2.3.0, or False to preserve
pre-2.3.0 handling of named results
"""
__compat__.collect_all_And_tokens = True
__diag__ = SimpleNamespace()
__diag__.__doc__ = """
Diagnostic configuration (all default to False)
- warn_multiple_tokens_in_named_alternation - flag to enable warnings when a results
name is defined on a MatchFirst or Or expression with one or more And subexpressions
(only warns if __compat__.collect_all_And_tokens is False)
- warn_ungrouped_named_tokens_in_collection - flag to enable warnings when a results
name is defined on a containing expression with ungrouped subexpressions that also
have results names
- warn_name_set_on_empty_Forward - flag to enable warnings whan a Forward is defined
with a results name, but has no contents defined
- warn_on_multiple_string_args_to_oneof - flag to enable warnings whan oneOf is
incorrectly called with multiple str arguments
- enable_debug_on_named_expressions - flag to auto-enable debug on all subsequent
calls to ParserElement.setName()
"""
__diag__.warn_multiple_tokens_in_named_alternation = False
__diag__.warn_ungrouped_named_tokens_in_collection = False
__diag__.warn_name_set_on_empty_Forward = False
__diag__.warn_on_multiple_string_args_to_oneof = False
__diag__.enable_debug_on_named_expressions = False
__diag__._all_names = [nm for nm in vars(__diag__) if nm.startswith("enable_") or nm.startswith("warn_")]
def _enable_all_warnings():
__diag__.warn_multiple_tokens_in_named_alternation = True
__diag__.warn_ungrouped_named_tokens_in_collection = True
__diag__.warn_name_set_on_empty_Forward = True
__diag__.warn_on_multiple_string_args_to_oneof = True
__diag__.enable_all_warnings = _enable_all_warnings
__all__ = ['__version__', '__versionTime__', '__author__', '__compat__', '__diag__',
'And', 'CaselessKeyword', 'CaselessLiteral', 'CharsNotIn', 'Combine', 'Dict', 'Each', 'Empty',
'FollowedBy', 'Forward', 'GoToColumn', 'Group', 'Keyword', 'LineEnd', 'LineStart', 'Literal',
'PrecededBy', 'MatchFirst', 'NoMatch', 'NotAny', 'OneOrMore', 'OnlyOnce', 'Optional', 'Or',
'ParseBaseException', 'ParseElementEnhance', 'Pars
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
数据探索的利器 —— K-Means聚类算法详解与应用 简介: 本资源是为数据科学家、分析师以及机器学习爱好者准备的K-Means聚类算法全面指南。通过这份资源,用户将深入理解K-Means聚类的工作原理、算法流程、优化技巧以及实际应用案例,是探索数据内在结构、实现数据驱动决策的得力助手。 核心内容: 算法原理:详细介绍K-Means聚类算法的数学原理和工作机制。 算法流程:逐步解析K-Means聚类的执行流程,包括聚类数的选择、数据点的分配、质心的更新等关键步骤。 优化技巧:探讨K-Means算法的优化方法,如初始化质心的策略、加速收敛的技术等。 编程实现:提供K-Means聚类的编程示例,使用Python、R等流行数据分析语言。 应用案例:展示K-Means聚类在市场细分、社交网络分析、图像分割等多个领域的应用实例。 评估指标:介绍如何评估聚类效果,包括轮廓系数、戴维森堡丁指数等指标。 特色亮点: 深入浅出:以浅显易懂的方式讲解复杂的聚类算法,适合初学者和有经验的专业人士。 编程实践:通过编程示例,帮助用户将理论知识转化为实践技能。 行业应用:丰富的行业应用案例,展示K-
资源推荐
资源详情
资源评论

















收起资源包目录





































































































共 650 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论


Sheljoee.
- 粉丝: 308
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 主要是在学习李航的统计学习方法和周志华的机器学习西瓜书的笔记和相关的代码实现
- 单片机技术试题集.doc
- 基于卷积神经网络的图像分类技术.docx
- JavaEE物联网云计算系列培训教材-Oracle数据库设计01.ppt
- 《计算机应用基础Windows-xp》综合练习.doc
- 清大学习吧项目管理手册汇编.doc
- 基于单片机的数字秒表系统研究设计.doc
- 数字图像处理期末考试答案.docx
- 中职服装专业课堂教学信息化探究.docx
- 创客教育在《计算机应用基础》课程教学中的应用.docx
- 大数据时代高校资产管理信息化建设研究.docx
- BIM+智慧工地的项目管理模式探究.docx
- 论网络虚拟财产的刑法保护.docx
- 计算机网络安全防范策略.docx
- 【高中信息技术课件】算法及其实现.ppt
- 国内外大数据下政策评估研究综述.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
